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Abstract

We study modeling and control of collective dynamics. More specifically, we

consider the problem of steering a particle system from an initial distribution to a

final one with minimum energy control during some finite time window. It turns

out that this problem is closely related to Optimal Mass Transport (OMT) and the

Schrödinger bridge problem (SBP). OMT is concerned with reallocating mass from

a specified starting distribution to a final one while incurring minimum cost. The

SBP, on the other hand, seeks a most likely density flow to reconcile two marginal

distributions with a prior probabilistic model for the flow. Both of these problems

can be reformulated as those of controlling a density flow that may represent either

a model for the distribution of a collection of dynamical systems or, a model for the

uncertainty of the state of single dynamical system. This thesis is concerned with

extensions of and point of contact between these two subjects, OMT and SBP. The

aim of the work is to provide theory and tools for modeling and control of collections

of dynamical systems. The SBP can be seen as a stochastic counterpart of OMT and,

as a result, OMT can be recovered as the limit of the SBP as the stochastic excitation

vanishes. The link between these two problems gives rise to a novel and fast algorithm

to compute solutions of OMT as a suitable limit of SBP. For the special case where the

marginal distributions are Gaussian and the underlying dynamics linear, the solution

to either problem can be expressed as linear state feedback and computed explicitly

in closed form.

A natural extension of the work in the thesis concerns OMT and the SBP on

discrete spaces and graphs in particular. Along this line we develop a framework

to schedule transportation of mass over networks. Control in this context amounts

to selecting a transition mechanism that is consistent with initial and final marginal

distributions. The SBP on graphs on the other hand can be viewed as an atypical

stochastic control problem where, once again, the control consists in suitably mod-

ifying the prior transition mechanism. By taking the Ruelle-Bowen random walk

as a prior, we obtain scheduling that tends to utilize all paths as uniformly as the

topology allows. Effectively, a consequence of such a choice is reduced congestion

and increased robustness. The paradigm of Schrödinger bridges as a mechanism for

scheduling transport on networks can be adapted to weighted graphs. Thus, our

approach may be used to design transportation plans that represent a suitable com-

promise between robustness and cost of transport.
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Chapter 1

Introduction

Collective dynamics refers to the group behavior of collections of systems. In the

present work, we are interested in the modeling and control of such collections. The

main object of interest is the (probability) distribution of the states of the underly-

ing dynamical systems. Imagine a cloud of particles (smoke, dust, pollutants, etc.)

that diffuse in the air, or the ground, through porous media. Evidently, it is of

great practical interest to be able to interpolate flow and density measurements and

to control the spread of such distributions. Controlling the distribution of particles

is easier to envisage in the context of focusing particle beams or directing swarms

of robots, a topic with a rapidly growing literature. Other paradigms include the

control of thermodynamic systems as well as quality control of industrial and man-

ufacturing processes. The former relates to suppressing thermodynamic stochastic

excitation, effecting “active cooling” for the purpose of e.g., improving performance

in certain high-resolution instruments. In quality control, it is the state-uncertainty

of a stochastic dynamical process that is to be modeled and regulated.

A distribution may equally well represent the state of a collection of dynamical

systems or the uncertainty in the state of a single dynamical process. Either way,

in broad terms, our aim is (i) to model the corresponding density-flow and reconcile

priors with measurements, and (ii) to shape and regulate the flow by a suitable control

action. These seemingly different questions, the first pertaining to estimation and the

second to control, turn out to be closely related. Indeed, the problem of shaping the

distribution of a collection of particles with minimum energy control is equivalent to

the problem of constructing a model that reconciles observed experimental marginal
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distributions and is closest to a given prior in the sense of a large-deviation principle.

More specifically, the experimentally observed marginals may represent a rare event

for the given prior probability law, and modeling the flow amounts to determining the

most likely trajectories of the particles. These two problems exemplify the relation

between Optimal Mass Transport (OMT) and Schrödinger bridges, and fit within the

broader framework of Stochastic Optimal control.

The OMT problem goes back to 1781, when Gaspard Monge asked for the most

efficient way to transport mass between two locations. An account of the historical

context and extensive literature can be found in [1]. The problem formulation calls for

an efficient transportation plan to move mass between two given end-point marginal

distributions. A satisfactory approach to solving such problems withstood the efforts

of many brilliant mathematical minds, until 1942, when Leonid Kantorovich intro-

duced duality and linear programming along with a suitable “relaxation” of Monge’s

problem to optimize resource allocation. This area is currently undergoing a new,

rapidly developing phase, starting from mid 1990’s when contributions by Brenier,

McCann, Gangbo, Rachev, Cullen, Mather and others, led to new insights and tech-

niques for a range of problems in physics (fluids, porous media, galaxy dynamics,

etc.), probability, financial mathematics, economics, and operations research (see the

two recent monographs [1, 2] by Villani).

The Schrödinger bridge problem was first posed in 1931/32 by Erwin Schrödinger

[3, 4], one of the founders of Quantum Mechanics. The question was to identify

the most likely paths that diffusive particles may have taken, given experimentally

observed marginal distributions at the beginning and end-point of a time interval. In

asking such a question, Schrödinger, wanted to gain insights for a new interpretation

of Quantum Mechanics and thereby explain the famous equation that bears his name

by purely classical means. As a side note, Stochastic Mechanics, born out of this

line of research, has to some degree fulfilled Schrödinger’s original aim [5, 6]. Thus,

the probability structure of diffusions that interpolate given marginals at two points

in time are known as Schrödinger bridges; the mathematical problem consists of

specifying a suitable probability law on the space of all possible paths that is consistent

with the marginals and is closest in the relative entropy sense to the given prior. In

Schrödinger’s work the prior was simply the law of Brownian motion.

As we will see, both of the above topics amount to problems in stochastic optimal

2



control where the goal is to steer density functions. Indeed, they can be reformulated

as the optimal control problems to minimize the cost of reallocating distributions with

and without stochastic excitation, respectively. More specifically, for the Schrödinger

problem, particles are diffusive whereas for the OMT problem, they obey determin-

istic “inertia-less” dynamics; most of the technical issues relate to the nature of the

cost and the geometry of the underlying space. The initial focus on “non-degenerate”

diffusions and on “inertia-less” particles in the original formulation of the Schrödinger

and OMT problems, respectively, is evidently limiting. Herein, we consider particles

with inertia and, possibly, “degenerate” diffusions, and we address some of the same

issues at the interface between the two topics. As it turned out, this has been a

fruitful endeavor with many potential applications. By studying OMT and SBP from

a controls perspective, we are able to address a range of problems that pertain to col-

lective dynamics. SBP can be seen as a stochastic version of the OMT problem – the

former converges to the latter as the stochastic excitation vanishes. As a byproduct,

a fast algorithm that we have developed for the Schrödinger problem can be applied

to obtain approximate solutions to OMT. This should prove advantageous in high

dimensional spaces where computations are challenging, and compare favorably to

state of the art techniques [7–9].

A special case of density steering problems of particular interest is when the

underlying dynamics are linear, the cost functional quadratic, and the goal is to drive

from one Gaussian distribution to another with minimum cost. In this case we are

able to obtain optimal control laws in closed form, as state feedback, very much like

in standard linear quadratic optimal control. The flow of densities remains within

the family of Gaussian distributions. Thus, this linear-quadratic version of the theory

(OMT and SBP) can be seen as a covariance control problem, that is, the problem to

control the covariance of the Gaussian distribution of the state vector (e.g., see [10]

for a stationary version of such a problem). In this direction, we also consider cases

where noise and control channels differ as well as where the cost functional has a

quadratic penalty on the state vector.

The last part of the thesis is concerned with OMT and SBP on discrete spaces.

Motivation is provided by problems of mass transport and of resource allocation over

networks. The goal is to schedule a robust transport plan that carries mass (resources,

goods, etc.) from a starting distribution to a final one (target distribution), and it does

so by utilizing all alternative paths in an efficient manner. More specifically, our aim

3



is to devise transport scheduling that is robust and economical in the sense of reducing

fragility (sensitivity to failures of links), and at the same time, reducing wear that

may be caused by excessive usage of a few key links. The approach we take is based on

SBP on graphs. The solution to such a problem provides a transport plan that effects

the desired mass transport and it is the closest to the prior transport mechanism in

the sense of relative entropy. Therefore, the solution may inherit important properties

from the prior mechanism. The prior is now seen as a design parameter. By selecting

as prior the Ruelle-Bowen (RB) random walk [11,12], which has the striking property

of giving equal probability to all paths of equal length (a type of uniform measure

on paths), we can achieve transport plans that utilize all alternatives as much as

the topology allows. The choice of this particular prior leads to low probability of

conflict and congestion, and ensures a certain degree of inherent robustness of the

resulting transport plan. Our approach to consider SBP on graphs with respect to

the RB random walk can be generalized to weighted graphs. In fact, the choice of a

prior distribution may be used to ensure that the resulting transportation achieves

a compromise between robustness and cost. It appears attractive with respect to

robustness when compared to OMT strategies that optimize cost by solving a linear

program. Thus, the approach to scheduling transport based on Schrödinger bridges

affords great flexibility and potential practical advantages.

Overview of the contents We first give a brief introduction to the three main

areas, optimal control, optimal mass transport, and Schrödinger bridges in Chapters

2, 3 and 4, respectively. In Chapter 4, we also provide a proof of existence and

uniqueness of solutions to SBP from which we derive a fast computational algorithm.

In Chapter 5, we formulate the problems to model and control collective dynamics. In

Chapter 6, we explore the case of linear dynamics and Gaussian marginals. Explicit

solutions are presented and several extensions are studied. In Chapter 7 we consider

similar issues on graphs and networks. In Chapter 8 we provide some concluding

thoughts and discuss future directions.
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Chapter 2

Optimal control

Optimal control theory concerns the problem of finding an optimal control strategy

for driving a dynamical system while minimizing a given cost function. Depending

on the underlying dynamics, the problem can be deterministic or stochastic. In this

chapter, we review basic results in optimal control theory that are relevant to our

work.

2.1 Deterministic optimal control problem

Consider a dynamical system

ẋ(t) = f(t, x(t), u(t)), x(0) = x0,

where x ∈ Rn denotes the state vector and u ∈ Rm denotes the control input. The

finite horizon optimal control problem is to minimize the cost function 1

J(u) =

∫ 1

0

L(t, x(t), u(t))dt+ Ψ(x(1)).

We refer to L as the running cost, or the Lagrangian, and Ψ as the terminal cost. We

require the optimization variable u(·) to be piecewise continuous [13]. The control

inputs are often restricted to a subset of Rm. The terminal state x(1) may have

to satisfy additional constraints. In this chapter, we consider only the simple case

1Here, without loss of generality, we choose the time interval to be [0, 1] because general time
interval [t0, t1] can be converted into this case by scaling.
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without all these complexities. We refer the interested reader to [13–16].

Two main methods to solve optimal control problems are Pontryagin’s principle

[13] due to Lev Pontryagin and his students, and dynamic programming (DP) [13]

due to Richard Bellman. We discuss only the latter as it will be needed in this work.

2.1.1 Dynamic programming

Compared to Pontryagin’s principle, which gives a necessary condition for opti-

mality, dynamic programming provides a sufficient and necessary condition. A key

ingredient in dynamic programming is the value function, or cost-to-go function, de-

fined by

V (t, x) = inf
u

{∫ 1

t

L(t, x(t), u(t))dt+ Ψ(x(1)) | x(t) = x

}
for t ∈ [0, 1] and x ∈ Rn. Here the minimization is taken over all possible control

inputs from t to 1 and the state satisfies x(t) = x. Clearly, V satisfies the boundary

condition

V (1, x) = Ψ(x), ∀x ∈ Rn.

Due to the additivity of the cost function, one can show that for any control input

u(·) the inequality

V (t, x) ≤
∫ r

t

L(s, x(s), u(s))ds+ V (r, x(r)),

holds for all 0 ≤ t ≤ r ≤ 1. In fact, the minimum value of the RHS is equal to the

LHS; this is the famous dynamic programming principle [13].

Lemma 1 For any 0 ≤ t ≤ r ≤ 1

V (t, x) = inf
u

{∫ r

t

L(s, x(s), u(s))ds+ V (r, x(r)) | x(t) = x

}
.

The DP principle provides a criterion to verify if a given control policy is optimal

or not. In the above, taking r = t+ h yields

inf
u

{
1

h

∫ t+h

t

L(s, x(s), u(s))ds+
1

h
[V (t+ h, x(t+ h))− V (t, x)] | x(t) = x

}
= 0.
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Under some technical assumptions, we can let h→ 0 and take the limit, which leads

to the dynamic programming equation

∂

∂t
V (t, x) + inf

u∈Rm

{
L(t, x, u) +

∂

∂x
V (t, x) · f(t, x, u)

}
= 0.

The biggest difference between the DP equation and the DP principle is that the

infimum is taken over u ∈ Rm in DP equation while it is taken over all the control

law u(·) in DP principle. Therefore, the dynamic programming equation is easier to

check. One, however, has to note that much stronger assumptions are needed for the

dynamic programming equation to hold. Define the Hamiltonian

H(t, x, p) = inf
u∈Rm

{L(t, x, u) + p · f(t, x, u)} .

Then the DP equation becomes

∂

∂t
V (t, x) +H(t, x,

∂

∂x
V (t, x)) = 0.

This is the celebrated Hamilton-Jacobi-Bellman (HJB) equation. In principle, un-

der some technical assumptions, solving the HJB equation with boundary condition

V (1, x) = Ψ(x) yields an optimal control policy, which in fact is given in the feedback

form

u(t, x) = argminu∈Rm

{
L(t, x, u) +

∂

∂x
V (t, x) · f(t, x, u)

}
.

However, in general, the HJB equation rarely has a solution in the classical sense. One

has to resort to weak solutions. The highly fine-tuned theory of viscosity solutions

[13, 17] is designed especially for this purpose [18].

2.2 Stochastic optimal control

We next move to optimal control problems with stochastic disturbances, i.e.,

stochastic optimal control. This is a highly technical subject. Before going into the

problem formulation, we briefly recall the basis of stochastic calculus (Itô calculus).

For more details, see [13,18,19].
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2.2.1 Probability theory, Stochastic processes and the Wiener process

Probability theory is a branch of mathematics concerned with the analysis of ran-

dom phenomena. Modern theory of probability is built on the concept of probability

space [18,19], which is a triple (Ω,F,P). Here Ω is the sample space, F is a σ-algebra

on Ω and P denotes the probability measure, which is a map from F to [0, 1]. An Rn-

valued random vector is a map x from Ω to Rn satisfying some measurability require-

ments. This map induces a measure on Rn. An Rn-valued stochastic process [18, 19]

is a family of maps x(t) from Ω to Rn satisfying some measurability requirements. In

our work, we are interested in diffusion processes, that is, Rn-valued stochastic pro-

cesses with continuous sample paths over the time interval [0, Tf ]. In this case, the

sample space can be identified with the space of continuous, n-dimensional sample

paths, namely, Ω = C([0, Tf ],Rn).

An extremely important concept in the study of diffusion processes is Brownian

motion, or equivalently, the Wiener process [18, 19]. This provides the theoretical

foundation on how molecular dynamics affect large scale properties of ensembles,

which was layed down more than a hundred years ago. Brownian motion is named

after the Scottish botanist Robert Brown, who first observed this phenomenon in 1827.

Many decades later, Albert Einstein published a paper [20] in 1905 that explained

Brownian motion in detail. Brownian motion is captured by the mathematical model

of the Wiener process, denoted by w(t) in this thesis. The probability measure induced

by the Wiener process is referred to as the Wiener measure.

2.2.2 Stochastic differential equations

Although the Wiener process itself is a good model for molecular dynamics, its

significance rests on its role as a building block for more complex models, more specif-

ically, as a driving force for the differential equations corresponding to the underlying

dynamics. This class of differential equations, which we refer to as stochastic differ-

ential equations (SDEs) [19], is perhaps the most important and widely used form of

stochastic modeling in continuous time setting.

A commonly used SDE in control is

dx(t) = f(t, x(t))dt+ σ(t, x(t))dw(t), x(0) = x0, a.s. (2.1)
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where dw(t), known as white noise, represents the driving force induced by Brownian

motion and a.s. means almost surely. Under some proper assumptions on f , σ and

x0 [19], equation (2.1) has a solution. There are two types of solutions, strong and

weak [19]. Strong solutions have the property that x(·) causally depends on the

past, while requiring very strong assumptions on f, σ. The assumptions for weak

solutions to exist are much weaker. Even though weak solutions do not possess the

causal dependence property of strong solutions, it is a powerful tool widely used in

stochastic control theory [13,18].

For linear dynamics, the associated SDE

dx(t) = A(t)x(t)dt+B(t)dw(t), x(0) = x0. (2.2)

always has a unique solution, given explicitly by

x(t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, τ)B(τ)dw(τ).

Here Φ(t, s) is the state-transition matrix of (2.2) determined by

∂

∂t
Φ(t, s) = A(t)Φ(t, s) and Φ(t, t) = I,

with I denoting the identity matrix.

2.2.3 Stochastic optimal control

In stochastic control theory the basic object of interest is a SDE with a control

input, namely

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dw(t), x(0) = x0.

A control policy is said to be admissible if the resulting controlled process admits a

(weak) solution. The control input u(t) is assumed to be adapted2 to the process x(t).

Here we consider the Markov control strategy u = α(t, x(t)) only. For the problems

we are interested in, the optimal controls are indeed of the form u = α(t, x(t)).

2One process is adapted to another process if the current value of the former depends only on
the past values of the latter.
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The goal of stochastic optimal control is to obtain an admissible control strategy

u to achieve a particular purpose by minimizing a suitable cost functional that is

attached to each admissible control strategy u. Similar to the deterministic case, we

consider the cost function

J(u) = E
{∫ 1

0

L(s, x(s), u(s))ds+ Ψ(x(1))

}
, (2.3)

where we again refer to L as the running cost and Ψ as the terminal cost.

The two main approaches to solve stochastic optimal control problems are the

stochastic counterparts of Pontryagin’s principle and DP. The stochastic Pontryagin’s

principle involves the so-called backward stochastic differential equation [21], which

is a very delicate object to handle. We shall only discuss the stochastic version of

DP, which shares the same name.

2.2.4 Dynamic programming

The DP approach for stochastic control resembles that for deterministic optimal

control. Define the value function

V (t, x) = inf
u
E
{∫ 1

t

L(t, x(t), u(t))dt+ Ψ(x(1)) | x(t) = x

}
,

where the minimum on the RHS is taken over all the admissible Markov control

strategy. Then, we have the DP principle

V (t, x) = inf
u
E
{∫ r

t

L(s, x(s), u(s))ds+ V (r, x(r)) | x(t) = x

}
for 0 ≤ t ≤ r ≤ 1. In other words, the process∫ t

0

L(s, x(t), u(t))ds+ V (t, x(t))

is a martingale [18] when u is the optimal control policy. Taking r = t+h, multiplying

both sides by 1/h and letting h→ 0 we obtain, at least formally, the DP equation

∂

∂t
V (t, x) + inf

u∈Rm

{
L(t, x, u) + f · ∂

∂x
V (t, x) +

1

2
trace[σσ′

∂2

∂x2
V (t, x)]

}
= 0.
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Now define

H(t, x, p,G) = inf
u∈Rm

{
L(t, x, u) + f · p+

1

2
trace[σσ′G]

}
.

Then the dynamic programming equation becomes

∂

∂t
V (t, x) +H(t, x,

∂

∂x
V (t, x),

∂2

∂x2
V (t, x)) = 0,

which is a second-order HJB equation. Recall that the DP equation is a first-order

HJB equation in the deterministic setting. In general, the second-order HJB equation

is more likely to have a classical solution because of the second-order Laplacian-like

term. The optimal control strategy is

u(t, x) = argminu∈Rm

{
L(t, x, u) +

∂

∂x
V (t, x) · f(t, x, u) +

1

2
trace[σσ′

∂2

∂x2
V (t, x)]

}
,

where V (·, ·) is the solution of the HJB equation with the boundary condition V (1, x) =

Ψ(x).

2.3 Linear Quadratic case

The Linear Quadratic Gaussian (LQG) [22] problems are a special class of optimal

control that can be solved in closed form. In these problems, the underlying dynamics

are linear and the cost function is quadratic. In deterministic setting, we consider the

dynamics

ẋ(t) = A(t)x(t) +B(t)u(t),

and the cost function

J(u) =

∫ 1

0

[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt+ x(1)′Fx(1),

where R(·) is positive definite and Q(·), F are positive semi-definite. Similarly, for

the stochastic case, the problem has the dynamics

dx(t) = A(t)x(t)dt+B(t)u(t)dt+B1(t)dw(t)
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and the cost function

J(u) = E
{∫ 1

0

[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt+ x(1)′Fx(1)

}
,

with R(·), Q(·) and F satisfying the same assumptions as in deterministic setting.

In both cases, the systems are assumed to be controllable in the sense that the

reachability Gramian

M(t1, t0) :=

∫ t1

t0

Φ(t1, τ)B(τ)B(τ)′Φ(t1, τ)′dτ,

is nonsingular for all 0 ≤ t0 < t1 ≤ 1. Here, as usual, Φ(t, s) denotes the state-

transition matrix of the dynamics A(·).

The optimal control for both the deterministic and the stochastic problems can

be established by solving the corresponding Riccati equations. In fact, they share the

same optimal control strategy

u(t) = −R(t)−1B(t)′P (t)x(t),

where P (·) satisfies the Riccati equation

−Ṗ (t) = A(t)′P (t) + P (t)A(t)− P (t)B(t)R(t)−1B(t)′P (t) +Q(t)

with the boundary condition

P (1) = F.

To derive this, one can use either Pontryagin’s principle or DP. An easier approach

is completion of square [23,24] (see Chapter 6).

2.3.1 Infinite horizon optimal control

For the linear quadratic problems, we will also need the results for the infinite

horizon optimal control, where the cost function becomes

J(u) =

∫ ∞
0

[x(t)′Qx(t) + u(t)′Ru(t)]dt

12



in deterministic setting, and

J(u) = lim
Tf→∞

E
{

1

Tf

∫ Tf

0

[x(t)′Qx(t) + u(t)′Ru(t)]dt

}
in the stochastic setting. Here R is positive definite and Q is positive semi-definite.

Furthermore, the underlying dynamics are assumed to be time-invariant, namely,

A(·), B(·), B1(·) are constant. These two problems (deterministic and stochastic)

share the same optimal control policy

u(t) = −R−1B′Px(t),

where P is the unique positive definite solution to the Algebraic Riccati Equation

(ARE)

A′P + PA− PBR−1B′P +Q = 0.

The infinite horizon optimal control problem can also be studied for general dynamics,

but is not pursued in this thesis. Interested reader is referred to [13,18].
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Chapter 3

Optimal Mass Transport

The Optimal Mass Transport (OMT) theory is concerned with moving mass (e.g.,

soil, goods) from an initial distribution to a final one with the least amount of cost.

The problem was first proposed by the French mathematician Gaspard Monge [25] in

1781. Later on, Leonid Kantorovich studied the problem and applied it to resource

allocation [26]. The OMT theory was further developed by many great mathemati-

cians, e.g., Brenier, Gangbo, McCann, Otto, Rachev, Villani, and it has a range of

applications in physics, mathematics and economics. In this chapter, we introduce

some basic results of OMT that are relevant to our work. Interested reader who

wishes to learn more about OMT is referred to [1, 27].

3.1 Monge’s optimal mass transport problem

Consider two nonnegative measures µ0, µ1 on Rn with equal total mass. These

may represent probability distributions, distribution of resources, etc. Without loss

of generality, we take µ0 and µ1 to be probability distributions, i.e.,

µ0(Rn) = µ1(Rn) = 1.

We seek a transport (measurable) map

T : Rn → Rn : x 7→ T (x)
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that specifies where mass µ0 at x must be transported so as to match the final

distribution in the sense that T]µ0 = µ1 [28]. That is, µ1 is the push-forward of µ0

under T , meaning

µ1(B) = µ0(T−1(B)) (3.1)

for every Borel set [29] B in Rn. In other words, we require∫
Rn
h(T (x))µ0(dx) =

∫
Rn
h(y)µ1(dy)

for every continuous function h.

A transport map T is called optimal if it achieves the minimum cost of trans-

portation ∫
Rn
c(x, T (x))µ0(dx).

Here, c(x, y) represents the transportation cost per unit mass from point x to point y.

Let T (µ0, µ1) denote the set of all the feasible transport maps satisfying (3.1), then

Monge’s OMT problem is described as follows.

Problem 2

inf
T∈T (µ0,µ1)

∫
Rn
c(x, T (x))µ0(dx).

In the original formulation of OMT, due to Gaspard Monge, the cost c(x, y) was

chosen to be the distance ‖x − y‖. Later on, the problem was generalized to cover

more general costs like ‖x − y‖p for 1 ≤ p < ∞. The special case where p = 2

possesses many nice properties and has been extensively studied [2].

It is a difficult task to solve Problem 2 directly due to the highly nonlinear de-

pendence of the transportation cost on T . This fact complicated early analyses of the

problem [1]. To see the difficulty, assume µ0 and µ1 have smooth densities ρ0 and ρ1,

respectively. Then condition (3.1) reduces to

ρ0(x) = ρ1(T (x)) det(DT (x)), x ∈ Rn, (3.2)
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where DT is the Jacobian matrix of the map T . If we write T = (T 1, . . . , T n)′, then

DT (x) =


∂T 1

∂x1
· · · ∂T 1

∂xn
...

. . .
...

∂Tn

∂x1
· · · ∂Tn

∂xn

 .
It is not even straightforward to see that there exists a map satisfying the constraint

(3.2), let alone the existence of the minimizer of Problem 2.

3.2 Kantorovich relaxation and solutions

A new chapter of OMT was opened in 1942 when Leonid Kantorovich presented

a relaxed formulation [26]. Therein, instead of a transport map, we seek a joint

distribution π on the product space Rn×Rn so that the marginal distributions coincide

with µ0 and µ1 respectively. Namely, π satisfies∫
B×Rn

π(dxdy) =

∫
B

µ0(dx) and

∫
Rn×B

π(dxdy) =

∫
B

µ1(dy)

for any measurable B ⊂ Rn. The joint distribution π is referred to as the “coupling”

of µ0 and µ1. Let Π(µ0, µ1) denote the set of all couplings of µ0 and µ1, then we

arrive at the Kantorovich formulation of OMT:

Problem 3

inf
π∈Π(µ0,µ1)

∫
Rn×Rn

c(x, y) π(dxdy). (3.3)

Note that Problem 3 is a linear program. Therefore, standard duality theory can

be applied to solve it. This duality result is referred to as the Kantorovich duality

theorem [1, 28], which plays an important role in OMT.

3.2.1 Solutions

We focus on the special case where

c(x, y) = ‖x− y‖2. (3.4)

We assume that µ0 and µ1 are absolutely continuous [29] with densities ρ0 and ρ1

respectively with respect to the Lebesgue measure. Moreover, we assume µ0 and µ1
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possess finite second moment1, namely, µ0, µ1 ∈ P2(Rn), the space of all probability

measures with finite second order moment. Interested reader is referred to [1] for

more details.

Under the above assumptions, one can show that Problem 3 has a unique solution

[1,2,30] using the Kantorovich duality theorem. The optimal coupling π concentrates

on the graph of the optimal mass transport map T , namely,

π = (Id× T )]µ0.

Here Id stands for the identity map. The unique optimal transport map T is the

solution of Problem 2. In addition, it is the gradient of a convex function φ, i.e.,

y = T (x) = ∇φ(x). (3.5)

By virtue of the fact that the push-forward of µ0 under T = ∇φ is µ1 (see (3.2)),

the function φ satisfies a particular case of the Monge-Ampère equation [1, p.126], [7,

p.377]

det(Hφ(x))ρ1(∇φ(x)) = ρ0(x),

where Hφ is the Hessian matrix of φ. This is a fully nonlinear second-order elliptic

equation. Numerical schemes for computing φ have been recently developed [7], [8],

[9]. However, computation of the optimal transport plan T in high dimensional spaces

is still a challenge.

3.2.2 The Wasserstein distance

The OMT problem with quadratic cost (3.4) induces an important metric [1] on

the space P2(Rn) via

W2(µ0, µ1) :=

{
inf

π∈Π(µ0,µ1)

∫
Rn×Rn

‖x− y‖2 π(dxdy)

}1/2

.

This metric is the so-called Wasserstein metric (distance). It induces the weak topol-

ogy [31] on P2(Rn). Another nice property of W2 is that the gradient flow on P2(Rn)

with respect to this metric is a useful tool to study many partial differential equations.

For instance, the gradient flow of the entropy functional
∫
ρ log ρ is the heat equation

1Otherwise the minimum of the transport cost could be infinity.
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∂ρ/∂t = ∆ρ. See [1, 2, 28,32] for details.

3.2.3 Displacement interpolation

After determining the amount of mass to be moved from where to where via the

optimal transport map T , we have many options on how to move mass from x to

T (x). For instance, one can choose to move the mass with constant speed. If so, the

displacement of the mass along the path from t = 0 to t = 1 is

µt = (Tt)]µ0, Tt(x) = (1− t)x+ tT (x). (3.6a)

Moreover, one can show that µt is absolutely continuous with density

ρ(t, x) =
dµt
dx

(x). (3.6b)

The distribution flow µt, 0 ≤ t ≤ 1 is referred to as the displacement interpolation [33]

between µ0 and µ1.

The displacement interpolation is in fact the geodesic between µ0 and µ1 with

respect to the Wassertein metric W2; it is the unique path between µ0 and µ1 with

minimal length and

W2(µt, µs) = (s− t)W2(µ0, µ1)

for any 0 ≤ t ≤ s ≤ 1.

Another remarkable property of the displacement interpolation is that the entropy

functional
∫
ρ log ρ is convex along the path [33]. This, in fact, opened the door to

study the connection between OMT and Riemannian geometry, and led to the discover

of the celebrated Lott-Sturm-Villani theory [2, 34–36].

3.3 Fluid dynamics formulation of OMT

In the previous section on displacement interpolation we have already seen the

usefulness of taking the time dimension into account. Indeed, in [7], Benamou and

Brenier noticed that by considering the problem during a time interval, the OMT

problem can be fitted into the framework of continuum mechanics. More specifically,
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the OMT problem can be recast as a “fluid-dynamics” problem [7]:

inf
(ρ,v)

∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx, (3.7a)

∂ρ

∂t
+∇ · (vρ) = 0, (3.7b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (3.7c)

It turns out that the displacement interpolation ρ(t, ·) between ρ0 and ρ1 is the

optimal density flow for the above optimization problem. The basic idea behind this

new formulation is quite intuitive. The space-time function v(t, x) can be viewed as

a time-varying velocity field that drives the fluid from ρ0 to ρ1. In the Lagrangian

coordinates [37], we can define the pathline as

X(0, x) = x,
∂

∂t
X(t, x) = v(t,X(t, x)).

This induces a transport plan x 7→ X(1, x) from ρ0 to ρ1. Assume ρ and v are

sufficiently smooth, then∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx =

∫
Rn

∫ 1

0

‖v(t,X(t, x))‖2ρ0(x)dtdx

=

∫
Rn

∫ 1

0

‖ ∂
∂t
X(t, x)‖2ρ0(x)dtdx

≥
∫
Rn
‖X(1, x)− x‖2ρ0(x)dx

≥
∫
Rn
‖∇φ(x)− x‖2ρ0(x)dx,

where ∇φ(x) is the optimal transport map as in (3.5). On the other hand, when

v(t, x) = ∇φ(x)− x,

equalities are achieved in the above since the corresponding

X(t, x) = x+ t(∇φ(x)− x)

is a constant speed path for all x.

Note that, in the above, we made very strong assumptions on the smoothness of
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ρ and v. These assumptions are not necessary. In general, the minimum in (3.7) is

taken over all the pairs ρ, v satisfying (3.7) and other weaker assumptions. It is not

an easy task to rigorously show the equivalence between (3.7) and the OMT problem

(see [1, Theorem 8.1], [27, Chapter 8]).
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Chapter 4

Schrödinger bridge problem

In this chapter, we briefly review some background of the Schrödinger bridge problem

(SBP). In 1931/32, Schrödinger [3, 4] considered the following problem. A large

number N of independent Brownian particles in Rn are observed to have an empirical

distribution approximately equal to µ0(dx) = ρ0(x)dx at time t = 0, and an empirical

distribution approximately equal to µ1(dy) = ρ1(y)dy at some later time t = 1.

Suppose that ρ1(y) is considerably different from what it should be according to

probability theory, namely ∫
Rn
qB(0, x, 1, y)ρ0(x)dx,

where

qB(s, x, t, y) = (2π)−n/2(t− s)−n/2 exp

(
−‖x− y‖

2

2(t− s)

)
denotes the Brownian (Gaussian) transition probability kernel. Apparently, the par-

ticles have been transported in an unlikely way. Of all the many unlikely ways in

which this could have happened, which one is the most likely?

By discretization and passage to the limit, Schrödinger [3, 4] computed the most

likely probability law that is consistent with the empirical marginal distributions as

N →∞. He derived that the corresponding density flow ρ(t, ·) from ρ0 to ρ1 is of the

form

ρ(t, x) = ϕ(t, x)ϕ̂(t, x),
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where the factors ϕ and ϕ̂ satisfy

ϕ(t, x) =

∫
Rn
qB(t, x, 1, y)ϕ(1, y)dy, (4.1a)

ϕ̂(t, x) =

∫
Rn
qB(0, y, t, x)ϕ̂(0, y)dy, (4.1b)

respectively. To match the wanted marginals ρ0 and ρ1, the two factors also have to

fulfill the boundary conditions

ρ0(x) = ϕ(0, x)ϕ̂(0, x), (4.1c)

ρ1(x) = ϕ(1, x)ϕ̂(1, x). (4.1d)

The coupled system (4.1) is referred to as the Schrödinger system. It is not obvious

that this nonlinearly coupled system admits a solution, not to mention the uniqueness.

In fact, it is a highly nontrivial problem. Even though Schrödinger obtained the

solution to his problem and he strongly believed its validity based on his intuition,

he could not mathematically prove its existence. It was almost 10 years later when

Fortet [38] firstly proved the existence of the solution to the Schrödinger system for

one dimensional case, i.e., n = 1, under some strong assumptions on the marginal

distributions ρ0 and ρ1. Later on, Beurling [39], Jamison [40], and Föllmer [41]

generalized the results to various degrees.

4.1 Problem formulation and solutions

In [41], Föllmer showed that, in the language of large deviations, Schrödinger’s

problem amounts to seeking a probability law on the path space that agrees with

the observed empirical marginals and is the closest to the prior law of the Brownian

diffusion in the sense of relative entropy [41, 42]. That is, determining a probability

measure P on the space of continuous functions on [0, 1], denoted by Ω = C([0, 1],Rn),

which minimizes the relative entropy1

H(P ,W) :=

∫
Ω

log

(
dP
dW

)
dP

over all the probability measures that are absolutely continuous [29] with respect to

the stationary Wiener measure W [41, 42], and have prescribed marginals ρ0 and ρ1.

1 dP
dW denotes the Radon-Nikodym derivative.
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The stationary Wiener measureW is the unbounded measure is induced by a Wiener

process (Brownian motion) with Lebesgue measure as initial measure, namely,

W :=

∫
Rn
Wx dx

where Wx is the measure induced by the Brownian motion starting from x at t = 0.

The prior measure can also be replaced by
∫
RnW

x η(dx) for some measure η with

respect to which µ0 is absolutely continuous, i.e., µ0 << η. While the relative entropy

between two probability measures is nonnegative [43], this is not the case for general

measures. See [42, Appendix A] for more precise definition of relative entropy with

respect to an unbounded measure.

In fact, the Schrödinger bridge problem solved in Beurling [39], Jamison [40],

and Föllmer [41] involved general reference measures other then the Wiener measure.

Let D(µ0, µ1) be the set of probability measures on the path space Ω with marginal

distributions µ0 and µ1, and Q the prior reference measure, then the general SBP can

be formulated as follows.

Problem 4 (Schrödinger bridge problem)

minimize H(P ,Q) s.t. P ∈ D(µ0, µ1).

Although this is an abstract problem on an infinite-dimensional space, it is a

convex optimization problem since H(·,Q) is a strictly convex function. We refer

to the solution of Problem 4 as the Schrödinger bridge. As mentioned earlier, the

existence of the minimizer has been proven in various degrees of generality by Fortet

[38], Beurling [39], Jamison [40], Föllmer [41]. In particular, the proof in [41] is

based on the convexity of the SBP together with some compactness arguments (see

also [44]). The uniqueness of the solution follows from the strict convexity of H(·,Q).

In the present work, we focus on the case where the prior reference measure Q is

induced by certain Markovian evolution with kernel q. The result is summarized below

in Theorem 5. See [42, 45, and the references therein] for results with more general

reference measures other than Markovian evolution, and more general underlying

spaces other than the Euclidean space Rn.
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Theorem 5 Consider two probability measures µ0(dx) = ρ0(x)dx and µ1(dy) =

ρ1(y)dy on Rn and a continuous, everywhere positive Markov kernel q(s, x, t, y). Then

there exists a unique pair of nonnegative functions (ϕ̂0, ϕ1) on Rn such that the mea-

sure P01 on Rn × Rn defined by

P01(E) =

∫
E

q(0, x, 1, y)ϕ̂0(x)ϕ1(y)dxdy, ∀E ∈ Rn × Rn (4.2)

has marginals µ0 and µ1. Furthermore, the Schrödinger bridge from µ0 to µ1 has the

one-time marginal distribution flow

Pt(dx) = ϕ(t, x)ϕ̂(t, x)dx, (4.3a)

where

ϕ(t, x) =

∫
Rn
q(t, x, 1, y)ϕ1(y)dy, (4.3b)

ϕ̂(t, x) =

∫
Rn
q(0, y, t, x)ϕ̂0(y)dy. (4.3c)

The distribution flow (4.3) is referred to as the entropic interpolation with prior q

between µ0 and µ1, or simply entropic interpolation, when it is clear from the context

what the Markov kernel q is.

4.2 Static Schrödinger bridge problem

Any measure on the path space Ω = C([0, 1],Rn) can be disintegrated as [27,42]

P(·) =

∫
Rn×Rn

Pxy(·)P01(dxdy),

where P01 ∈ Π(µ0, µ1) is the projection of P to the boundaries of the path x(·) ∈ Ω

at t = 0 and t = 1, and Pxy ∈ D(δx, δy), which we refer to as the pinned bridge [46],

is the probability measure on Ω conditioned on x(0) = x, x(1) = y, defined as

Pxy = P(· | x(0) = x, x(1) = y).
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Hence, the relative entropy H(P ,Q) of P with respect to Q has the following form

H(P ,Q) =

∫
Rn×Rn

H(Pxy,Qxy)P01(dxdy) +H(P01,Q01).

The first term of the RHS is nonnegative since both Pxy and Qxy are probability

measures and the relative entropy between two probability measures is nonnegative.

Moreover, the two terms on the RHS are decoupled, therefore, these can be minimized

independently. Intuitively, the minimum of the first term is zero by taking Pxy to be

Qxy for all x, y. That is, the Schrödinger bridge P shares the same pinned bridges with

the prior measure Q. The second term on the RHS is minimized over the set Π(µ0, µ1)

of all couplings between the marginal distributions µ0 and µ1. Namely, the optimal

coupling P01 in (4.2) solves the static Schrödinger bridge problem as follows [42].

Problem 6 (static Schrödinger bridge problem)

minimize H(P01,Q01) s.t. P01 ∈ Π(µ0, µ1).

It turns out that Problem 6 and Problem 4 are indeed equivalent, as stated

next [41,42].

Proposition 1 Problem 4 and Problem 6 admit respectively at most one solution

P̂ and π̂. If Problem 4 admits the solution P̂, then π̂ = P̂01 solves Problem 6.

Conversely, if π̂ solves Problem 6, then Problem 4 admits the solution

P̂(·) =

∫
Rn×Rn

Qxy(·) π̂(dxdy), (4.4)

which means

P̂01 = π̂,

and P̂ shares its pinned bridge with Q, namely,

P̂xy = Qxy, ∀(x, y) π̂ a.s..

Problem 6 is simpler than Problem 4 since the optimization variable is a distri-

bution on the finite dimensional space Rn × Rn rather than the infinite dimensional
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space Ω. The equivalence between these two problems implies that one needs only to

worry about the two marginals when solving a SBP. It also provides the intuition for

the fact that the Schrödinger bridge is in the same reciprocal class [40] as the prior

process.

4.3 Fluid dynamics formulation

In Problem 6, when the prior is Markovian, the solution is also a Markov process.

In particular, if the prior corresponds to a Wiener process, the solution is a Markov

diffusion process with the generator

∇ logϕ · ∇+ ∆/2, (4.5)

where ϕ is one of the factor of the Schrödinger bridge as in (4.3). In other words, the

Schrödinger bridge is a diffusion process with an extra drift term ∇ logϕ compared

to the Wiener process. By Girsanov’s theorem, the relative entropy between the

Schröndinger bridge P and the prior measure W is equal to [42,47]∫
Rn

∫ 1

0

1

2
‖∇ logϕ(t, x)‖2ρ(t, x)dtdx

plus some constant. On the other hand, since the Schrödinger bridge has generator

(4.5), its density flow satisfies the Fokker-Planck equation [48]

∂ρ

∂t
+∇ · (ρ∇ logϕ)− 1

2
∆ρ = 0 (4.6)

This leads to the fluid dynamic formulation of the SBP [42,47] with prior W

inf
(ρ,v)

∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx, (4.7a)

∂ρ

∂t
+∇ · (vρ)− 1

2
∆ρ = 0, (4.7b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (4.7c)

The minimizer is given by

v(t, x) = ∇ logϕ(t, x).
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An alternative equivalent reformulation of (4.7) is [49]

inf
(ρ,v)

∫
Rn

∫ 1

0

[
‖v(t, x)‖2 +

1

4
‖∇ log ρ(t, x)‖2

]
ρ(t, x)dtdx, (4.8a)

∂ρ

∂t
+∇ · (vρ) = 0, (4.8b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (4.8c)

In the above the Laplacian in the dynamical constraint is traded for a “Fisher in-

formation” regularization term in the cost functional. Note that now the constraint

(4.8b) is a continuity equation. This formulation answers at once a question posed

by E. Carlen in 2006 investigating the connections between optimal transport and

Nelson’s stochastic mechanics [50].

4.4 Alternative proof and algorithm based on Hilbert metric

As we already mentioned, the SBP (Problem 6) is a convex optimization prob-

lem, thus it can be solved using standard optimization tools after discretization.

However, the complexity increases very fast as we increase the resolution of discretiza-

tion. Herein, we provide an alternative proof [51] of the existence and uniqueness of

Schrödinger bridge based on the Hilbert metric. Naturally, this proof leads to a sim-

ple and efficient algorithm to obtain the pair (ϕ̂0, ϕ1) in Theorem 5. This algorithm

turns out to be a continuous counterpart of Sinkhorn iteration [52–54] in discrete

setting, which is widely used in statistics to study contingency tables.

4.4.1 Hilbert metric

The Hilbert metric was firstly introduced by David Hilbert in 1895 [55]. The form

that the metric takes to quantify distance between rays in positive cones, as used

herein, is due to Garrett Birkhoff [56]. The importance of the metric and subsequent

developments has been discussed in [57]. See also a recent survey on its applications

in analysis [58]. The Hilbert metric and certain key facts are presented next.

Definition 7 Let S be a real Banach space and let K be a closed solid cone in S,

i.e., K is a closed subset of S with nonempty interior, and has the properties (i)

K + K ⊂ K, (ii) αK ⊂ K for all real α ≥ 0 and (iii) K ∩ −K = {0}. The cone K
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induces a partial order relation � in S

x � y⇔ y − x ∈ K.

For any x,y ∈ K+ := K\{0}, define

M(x,y) := inf{λ | x � λy}, (4.9a)

m(x,y) := sup{λ | λy � x} (4.9b)

with the convention inf ∅ =∞. Then the Hilbert metric is defined on K+ by

dH(x,y) := log

(
M(x,y)

m(x,y)

)
. (4.10)

Strictly speaking, the Hilbert metric is a projective metric since it remains invari-

ant under scaling by positive constants, i.e., dH(x,y) = dH(λx,y) = dH(x, λy) for

any λ > 0. Thus, it actually measures the distance between rays while not elements.

A map E : K → K is said to be positive if E maps K+ to K+. For such a map

define its projective diameter

∆(E) := sup{dH(E(x), E(y)) | x,y ∈ K+}

and contraction ratio

κ(E) := inf{λ | dH(E(x), E(y)) ≤ λdH(x,y), ∀x,y ∈ K+}.

For a positive map E which is also linear, we have κ(E) ≤ 1. In fact, the Birkhoff-

Bushell theorem [56–59] gives the relation between ∆(E) and κ(E) as

κ(E) = tanh(
1

4
∆(E)). (4.11)

Another important relation is

∆(E) ≤ 2 sup{dH(E(x),x0) | x ∈ K+}, (4.12)

28



where x0 denotes an arbitrary element in the interior of K. This follows directly from

the definition of ∆(E) and the triangular inequality

dH(E(x), E(y)) ≤ dH(E(x),x0) + dH(E(y),x0), x,y ∈ K+.

The main objects of SBP are probability distributions. These are nonnegative, by

definition, and thereby belong to a convex set (simplex) or a cone (if we dispense of

the normalization). According to the Birkhoff-Bushell theorem (4.11), as we noted,

linear endomorphisms of a positive cone are contractive; a fact which is often the key

in obtaining solutions of the corresponding equations. Thus, the geometry underlying

the SBP is expected to be impacted by endowing distributions with a suitable version

of Hilbert metric.

4.4.2 Alternative proof

Herein, we summarized an alternative proof presented in [51] for the existence

and uniqueness of the solution of Problem 6 based on the Hilbert metric. We focus

on the case where ρ0 and ρ1 have compact supports. See [51] for the general case

without this assumption.

Proposition 2 Suppose that, for i ∈ {0, 1}, Si ⊂ Rn is a compact set, ρi(xi)dxi

is absolutely continuous probability measure (with respect to the Lebesgue measure)

on the σ-field Σi of Borel sets of Si, and that q(0, ·, 1, ·) is a continuous, everywhere

positive function on S0 × S1. Then, there exist nonnegative functions ϕ(0, ·), ϕ̂(0, ·)
defined on S0 and ϕ(1, ·), ϕ̂(1, ·) defined on S1 satisfying the following Schrödinger

system of equations:

ϕ(0, x0) =

∫
S1

q(0, x0, 1, x1)ϕ(1, x1)dx1, (4.13a)

ϕ̂(1, x1) =

∫
S0

q(0, x0, 1, x1)ϕ̂(0, x0)dx0, (4.13b)

ρ0(x0) = ϕ(0, x0)ϕ̂(0, x0), (4.13c)

ρ1(x1) = ϕ(1, x1)ϕ̂(1, x1). (4.13d)

Moreover, this solution is unique up to multiplication of ϕ(0, ·) and ϕ(1, ·) and division

of ϕ̂(0, ·) and ϕ̂(1, ·) by the same positive constant.
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In order to study the Schrödinger system (4.13) we consider

E : ϕ(1, x1) 7→ ϕ(0, x0) =

∫
S1

q(0, x0, 1, x1)ϕ(1, x1)dx1 (4.14a)

E† : ϕ̂(0, x0) 7→ ϕ̂(1, x1) =

∫
S0

q(0, x0, 1, x1)ϕ̂(0, x0)dx0 (4.14b)

D̂ρ0 : ϕ(0, x0) 7→ ϕ̂(0, x0) = ρ0(x0)/ϕ(0, x0) (4.14c)

Dρ1 : ϕ̂(1, x1) 7→ ϕ(1, x1) = ρ1(x1)/ϕ̂(1, x1), (4.14d)

on appropriate domains we describe next. Define

Lpε(S) := {f ∈ Lp(S) | f(x) ≥ ε,∀x ∈ S},

for ε ≥ 0, and

Lp+(S) :=
⋃
ε>0

Lpε(S),

for p ∈ {1, 2,∞} and S ∈ {S0, S1}, and endow L∞+ (S) with the Hilbert metric with

respect to the natural partial order of inequality between elements (almost every-

where). It is noted that its closure L∞0 (S) is a closed convex cone satisfying the

condition (non-empty interior) in Definition 7 of the Hilbert metric.

Since q is positive and continuous on the compact set S0×S1, it must be bounded

from below and above, i.e., there exist 0 < α ≤ β <∞ such that

α ≤ q(0, x, 1, y) ≤ β, ∀(x, y) ∈ S0 × S1. (4.15)

It follows that E , E† map nonnegative integrable functions (L1
0), except the zero func-

tion, to functions that are bounded below by a positive constant (L∞+ ). Conversely,

since ρ0 and ρ1 are nonnegative and integrate to 1 (though, possibly unbounded),

D̂ρ0 ,Dρ1 map L∞+ to L1
0. Thus, the Schrödinger system relates to the following circu-

lar diagram

ϕ̂(0, x0)
E†−−−−→ ϕ̂(1, x1)

D̂ρ0

x y Dρ1

ϕ(0, x0)
E←−−− ϕ(1, x1)

where ϕ(0, x0), ϕ̂(1, x1) ∈ L∞+ , while ϕ(1, x1), ϕ̂(0, x0) ∈ L1
0 on the corresponding

domains S0, S1, i.e., the circular diagram provides a correspondence between spaces
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as follows,

L1
0(S0)

E†−−−−→ L∞+ (S1)

D̂ρ0

x y Dρ1

L∞+ (S0)
E←−−− L1

0(S1).

We will focus on the composition C := E† ◦ D̂ρ0 ◦ E ◦ Dρ1 , that is,

C : L∞+ (S1)→ L∞+ (S1)

: ϕ̂(1, x1)
E†◦D̂ρ0◦E◦Dρ1−−−−−−−−→ (ϕ̂(1, x1))next

and establish the following key lemma.

Lemma 8 There exists a positive constant γ < 1 such that

dH(C(f1), C(f2)) ≤ γdH(f1, f2)

for any f1, f2 ∈ L∞+ .

The rest of the proof is omitted. It lies on the strict contractiveness of C. See [51]

for more details.

4.4.3 Computational algorithm

Given marginal probability measures µ0(dx) = ρ0(x)dx and µ1(dx) = ρ1(x)dx

on Rn, we begin by specifying a compact subset S ⊂ Rn that supports most of

the two densities, i.e., such that µ0(S) and µ1(S) are both ≥ 1 − δ, for sufficiently

small value δ > 0. We treat the restriction to S for both, after normalization so

that they integrate to 1, as the end-point marginals for which we wish to construct

the corresponding entropic interpolation. Thus, for the purposes of this section and

subsequent examples/applications both ρ0 and ρ1 are supported on a compact subset

S ∈ Rn.

It is important to consider the potential spread of the mass along the entropic

interpolation and the need for S to support the flow without “excessive” constraints

at the boundary. Thus, a slightly larger compact set S, beyond what is suggested in

the previous paragraph, might be necessary in some applications.
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Next, we discretize in space and represent functions ϕ(i, x), ϕ̂(i, x) (i ∈ {0, 1})
using (column) vectors φi, φ̂i, e.g., φi(k) = ϕ(i, xk) for a choice of sample points

xk ∈ S, k = 1, . . . , N and, likewise, ρ0, ρ1 (column) vectors representing the sampled

values of the two densities. Then, we recast (4.14) as operations on these vectors.

Accordingly,

E : φ1 7→ φ0 = Qφ1 (4.16a)

E† : φ̂0 7→ φ̂1 = Q†φ̂0 (4.16b)

D̂ρ0 : φ0 7→ φ̂0 = ρ0 � φ0 (4.16c)

Dρ1 : φ̂1 7→ φ1 = ρ1 � φ̂1, (4.16d)

using the same symbols for the corresponding operators, and using � to denote entry-

wise division between two vectors, i.e., a� b := [ai/bi]. Here, Q represents a matrix.

The values of its entries depend on the prior kernel q. By iterating the discretized

action of C, we obtain a fixed-point pair of vectors (φi, φ̂i). From this we can readily

construct the entropic interpolation between the marginals by discretizing for inter-

mediate points in time. By Lemma 8, the speed of convergence is linear with rate of

convergence γ. The rate also depends on the compact sets we select for ρ0 and ρ1,

see (4.15).

We note that, when the noise intensity is too small, numerical issues may arise

due to limited machine precision. One way to alleviate this effect, especially regarding

(4.16c-4.16d), is to store and operate with the logarithms of elements in Q, ρi, φi, φ̂i,

denoted by lQ, lρi, lφi, lφ̂i (i ∈ {0, 1}). More specifically, let (lQ)jk = logQjk and set

(lρi)j =

log(ρi)j if (ρi)j > 0,

−10000 otherwise,

(since, e.g., in double precision floating point numbers < 10−308 are taken to be zero).

Carrying out operations in (4.16) in logarithmic coordinates, D̂ρ0 becomes

(lφ̂0)j = (lρ0)j − (lφ0)j,
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and similarly for Dρ1 . The map E† becomes

(lφ̂1)k = log
∑
j

exp(lQjk + (lφ̂0)j)

= Mk + log
∑
j

exp(lQjk + (lφ̂0)j −Mk),

(and similarly for E), where Mk = maxj{lQjk + (lφ̂0)j}. In this way the dominant

part of the power index, which is Mk, is respected.
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Chapter 5

Steering of densities

In this chapter, we study the general modeling and control problems of collective dy-

namics. More specifically, we are interested in stochastic control problems of steering

the probability density of the state vector of a linear system between an initial and a

final distribution for two cases, i) with and ii) without stochastic disturbance. That

is, we consider the linear dynamics

dx(t) = A(t)x(t)dt+B(t)u(t)dt+
√
εB(t)dw(t) (5.1)

where w is a standard Wiener process, u ∈ Rm is a control input, x ∈ Rn is the

state process, and A,B is a controllable pair of continuous matrices, for the two cases

where i) ε > 0 and ii) ε = 0. In either case, the state is a random vector with an

initial distribution µ0. Our goal is to determine a minimum energy control that drives

the system to a final state distribution µ1 over the time interval [0, 1]1, that is, the

minimum of

E{
∫ 1

0

‖u(t)‖2dt} (5.2)

subject to µ1 being the probability distribution of the state vector at the terminal

time t = 1. The distribution of the state vector may represent either the probability

distribution of the state of a single dynamical system where the goal is to reduce the

uncertainty of the state, or the distribution of the states of a collection of identical

systems where the goal is to control the collective dynamics. Since the main object

1Without loss of generality, we consider the problem during the time window [0, 1] because any
finite time window can be reduced to this case by rescalling.
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is density, we also refer to the problem as the density steering problem. Several

generalizations of this problem will also be briefly mentioned at the end of this chapter.

When the state distribution represents the density of particles whose position

obeys ẋ(t) = u(t) (i.e., A(t) ≡ 0, B(t) ≡ I, and ε = 0) the problem reduces to the

classical Optimal Mass Transport (OMT) (see Chapter 3) with a quadratic cost [1,7].

Thus, the above problem, for ε = 0, represents a generalization of OMT to deal with

particles obeying known “prior” non-trivial dynamics while being steered between

two end-point distributions – we refer to this as the problem of OMT with prior

dynamics (OMT-wpd). Applications are envisioned in the steering of particle beams

through time-varying potential, the steering of swarms (UAV’s, large collection of

microsatelites, etc.), as well as in the modeling of the flow and collective motion

of particles, clouds, platoons, flocking of insects, birds, fish, etc. between end-point

distributions [60] and the interpolation/morphing of distributions [8]. From a controls

perspective, “important limitations standing in the way of the wider use of optimal

control can be circumvented by explicitly acknowledging that in most situations the

apparatus implementing the control policy will judged on its ability to cope with a

distribution of initial states, rather than a single state” as pointed out by R. Brockett

in [61, page 23]. A similar problem has been studied in [62] from another angle.

For the case where ε > 0, the flow of “particles” is dictated by dynamics as

well as by Brownian diffusion. The corresponding stochastic control problem to steer

the state density function between the marginal distributions has been shown to be

equivalent to the Schrödinger bridge problem (SBP) [63]. In its original formula-

tion [3, 4, 64], SBP seeks a probability law on path space with given two end-point

marginals which is close to a Markovian prior in the sense of relative entropy. Im-

portant contributions were due to Fortet, Beurling, Jamison and Föllmer [38–41].

Another closely related area of research has been that of reciprocal processes, with im-

portant engineering applications in, e.g., image processing and other fields [40,65–70].

Renewed interest in SBP was sparked after a close relationship to stochastic

control was recognized [63, 71, 72]. The Schrödinger bridge problem can be seen as a

stochastic version of OMT due to the presence of the diffusive term in the dynamics

(ε > 0). As a result, its solution is more well behaved due to the smoothing property

of the Laplacian. On the other hand, it follows from [42, 73–75] that for the special

case A(t) ≡ 0 and B(t) ≡ I, the solution of the SBP converges to that of the OMT
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when “slowing down” the diffusion by taking ε → 0. Recalling the algorithm in

Section 4.4.3, these two facts suggest the SBP as means to construct approximate

solutions for both the standard OMT and the problem of OMT-wpd.

5.1 Optimal control formulation of OMT

Recall the OMT problem (see Chapter 3)

inf
T∈T (µ0,µ1)

∫
Rn
c(x, T (x))µ0(dx), (5.3)

and the relaxed version, namely, the Kantorovich problem

inf
π∈Π(µ0,µ1)

∫
Rn×Rn

c(x, y)π(dxdy). (5.4)

The above formulations represent a “static” end-point formulation, i.e., focusing on

“what goes where”. In contrast, Benamou and Brenier [7] provides a fluid dynamic

formulation of OMT (see Section 3.3) which captures the moving trajectories of the

mass. We next present another closely related formulation [49], where the OMT

problem is cast as a stochastic control problem with atypical boundary constraints:

inf
v∈V

E
{∫ 1

0

‖v(t, x(t))‖2dt

}
, (5.5a)

ẋ(t) = v(t, x(t)), (5.5b)

x(0) ∼ µ0, x(1) ∼ µ1. (5.5c)

Here V represents the family of admissible Markov feedback control laws. We call

a control law v(t, x) admissible if the corresponding controlled system (5.5b) has a

unique solution for almost every deterministic initial condition at t = 0. Note that

requiring v(t, ·) to be uniformly Lipschitz continuous on [0, 1] is a sufficient but not

necessary condition for v to be admissible.

This optimal control formulation of OMT (5.5) leads to an intuitive derivation

of the fluid dynamic formulation (3.7) of OMT as follows. Assume µ0 and µ1 are

absolutely continuous with density functions ρ0, ρ1 and x(t) has an absolutely contin-

uous distribution, namely, x(t) ∼ ρ(t, x)dx. Then ρ satisfies weakly2 the continuity

2In the sense
∫
[0,1]×Rn [(∂f/∂t+ v · ∇f)ρ]dtdx = 0 for smooth functions f with compact support.
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equation
∂ρ

∂t
+∇ · (vρ) = 0 (5.6)

expressing the conservation of probability mass, where ∇· denotes the divergence of

a vector field, and

E
{∫ 1

0

‖v(t, x(t))‖2dt

}
=

∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx.

As a result, (5.5) is recast as:

inf
(ρ,v)

∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx, (5.7a)

∂ρ

∂t
+∇ · (vρ) = 0, (5.7b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (5.7c)

which is the same as the fluid dynamic formulation (3.7) in Chapter 3.

Recall the optimal transport plan, namely, the minimizer of (5.3) is

T (x) = ∇φ(x) (5.8)

the gradient of convex function φ (see (3.5)). Consequently, the optimal control

strategy of (5.5) is given by

v(t, x) = T ◦ T−1
t (x)− T−1

t (x), (5.9)

where ◦ denotes the composition of maps and

Tt(x) = (1− t)x+ tT (x).

Apparently, Tt is the gradient of a uniformly convex function for 0 ≤ t < 0, so Tt is

injective and therefore (5.9) is well-defined on Tt(Rn), the codomain of Tt. The values

v(t, x) outside Tt(Rn) do not play any role.

An alternative expression for the optimal control (5.9) can be established using

standard optimal control theory, and this is summarized in the following proposition

[1, Theorem 5.51].
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Proposition 3 Given marginal distributions µ0(dx) = ρ0(x)dx, µ1(dx) = ρ1(x)dx,

let ψ(t, x) be defined by the Hopf-Lax representation

ψ(t, x) = inf
y

{
ψ(0, y) +

‖x− y‖2

2t

}
, t ∈ (0, 1]

with

ψ(0, x) = φ(x)− 1

2
‖x‖2

and φ as in (5.8). Then v(t, x) := ∇ψ(t, x) exists almost everywhere and it solves

(5.5).

5.2 Optimal mass transport with prior dynamics

The OMT problems ((5.3) or (5.4)) have been studied for general cost c(x, y) that

derives from an action functional

c(x, y) = inf
x(·)∈Xxy

∫ 1

0

L(t, x(t), ẋ(t))dt, (5.10)

where the Lagrangian L(t, x, p) is strictly convex and superlinear in the velocity vari-

able p, see [2, Chapter 7], [76, Chapter 1], [77] and Xxy is the family of absolutely

continuous paths with x(0) = x and x(1) = y. Existence and uniqueness of an opti-

mal transport map T has been established for general cost functionals as in (5.10). It

is easy to see that the choice c(x, y) = ‖x− y‖2 corresponds to the special case where

L(t, x, p) = ‖p‖2.

Another interesting special case is when

L(t, x, p) = ‖p− v(t, x)‖2. (5.11)

This has been motivated by a transport problem “with prior” associated to the ve-

locity field v(t, x) [49, Section VII], where the prior was thought to reflect a solution

to a “nearby” problem that needs to be adjusted so as to be consistent with updated

estimates for marginals.

An alternative motivation for (5.11) is to address transport in an ambient flow

field v(t, x). In this case, assuming the control has the ability to steer particles in all

38



directions, transport will be effected according to dynamics

ẋ(t) = v(t, x) + u(t)

where u(t) represents control effort and∫ 1

0

‖u(t)‖2dt =

∫ 1

0

‖ẋ(t)− v(t, x)‖2dt

represents corresponding quadratic cost (energy). Thus, it is of interest to consider

more general dynamics where the control does not affect directly all state directions.

One such example is the problem to steer inertial particles in phase space through

force input.

Therefore, herein, we consider a natural generalization of OMT where the trans-

port paths are required to satisfy dynamical constraints. We focus our attention on

linear dynamics and, consequently, cost of the form

c(x, y) = inf
u∈U

∫ 1

0

L̃(t, x(t), u(t))dt, where (5.12a)

ẋ(t) = A(t)x(t) +B(t)u(t), (5.12b)

x(0) = x, x(1) = y, (5.12c)

and U is a suitable class of controls. Apparently, (5.11) corresponds to A(t) ≡ 0 and

B(t) ≡ I in (5.12). When B(t) is invertible, (5.12) reduces to (5.10) by a change of

variables, taking

L(t, x, p) = L̃(t, x, B(t)−1(p− A(t)x)).

However, when B(t) is not invertible, an analogous change of variables leads to a

Lagrangian L(t, x, p) that fails to satisfy the classical conditions (strict convexity

and superlinearity in p). Therefore, in this case, the existence and uniqueness of an

optimal transport map T has to be established independently. We do this for the

case where L̃(t, x, u) = ‖u‖2 corresponding to control energy.

We now formulate the corresponding stochastic control problem. The system

dynamics

ẋ(t) = A(t)x(t) +B(t)u(t), (5.13)

are assumed to be controllable and the initial state x(0) is a random vector with

39



probability density ρ0. Here, A and B are continuous maps taking values in Rn×n

and Rn×m, respectively. We seek a minimum energy feedback control law u(t, x) that

steers the system to a final state x(1) having distribution ρ1(x)dx. That is, we address

the following:

inf
u∈U

E
{∫ 1

0

‖u(t, xu)‖2dt

}
, (5.14a)

ẋu(t) = A(t)xu(t) +B(t)u(t, xu(t)), (5.14b)

xu(0) ∼ ρ0(x)dx, xu(1) ∼ ρ1(y)dy, (5.14c)

where U is the family of admissible Markov feedback control laws. We call a control

law u(t, x) admissible if the corresponding controlled system (5.14b) has a unique

solution for almost every deterministic initial condition at t = 0.

We next show that (5.14) is indeed a reformulation of (5.4) with generalized cost

(5.12) when L̃(t, x, u) = ‖u‖2. First we note the cost is equal to

c(x, y) = min
x(·)∈Xxy

∫ 1

0

L̂(t, x(t), ẋ(t))dt, (5.15)

where

L̂(t, x, v) =

(v − A(t)x)′(B(t)B(t)′)†(v − A(t)x), if v − A(t)x ∈ R(B(t)),

∞, otherwise

with † denoting pseudo-inverse and R(·) “the range of”. If the minimizer of (5.15)

exists, which will be denoted as x∗(·), then any probabilistic average of the action

relative to absolutely continuous trajectories starting at x at time 0 and ending in y at

time 1 cannot give a lower value. Thus, the probability measure on Xxy concentrated

on the path x∗(·) solves the following problem

inf
Pxy∈D(δx,δy)

EPxy
{∫ 1

0

L̂(t, x(t), ẋ(t))dt

}
, (5.16)

where D(δx, δy) are the probability measures on the space Ω = C([0, 1],Rn) of contin-

uous paths whose initial and final one-time marginals are Dirac’s deltas concentrated

at x and y, respectively.

Let u be a feasible control strategy in (5.14), and xu(·) be the corresponding
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controlled process. This process induces a probability measure P in D(µ0, µ1), namely

a measure on the path space Ω whose one-time marginals at 0 and 1 are µ0 and µ1,

respectively. The measure P can be disintgrated as [27,42]

P =

∫
Rn×Rn

Pxy π(dxdy), (5.17)

where Pxy ∈ D(δx, δy) and π ∈ Π(µ0, µ1). Then the control energy in (5.14) is greater

than or equal to

EP
{∫ 1

0

L̂(t, x(t), ẋ(t))dt

}
=

∫
Rn×Rn

EPxy
{∫ 1

0

L̂(t, x(t), ẋ(t))dt

}
π(dxdy)

≥
∫
Rn×Rn

c(x, y)π(dxdy), (5.18)

which shows that the minimum of (5.14) is bounded below by the minimum of (5.4)

with cost in (5.12) or equivalently (5.15). In Section 5.2.1 we will construct a control

strategy such that the joint measure π in (5.17) solves (5.4) and Pxy is concentrated

on the path x∗(·) for π-almost every pair of intial position x and terminal position

y. Therefore, the stochastic optimal control problem (5.14) is indeed a reformulation

of the OMT (5.4) with the general cost in (5.12), and we refer to both of them as

OMT-wpd.

Formally, the stochastic control formulation (5.14) suggests the “fluid-dynamics”

version:

inf
(ρ,u)

∫
Rn

∫ 1

0

‖u(t, x)‖2ρ(t, x)dtdx, (5.19a)

∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ) = 0, (5.19b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (5.19c)

Establishing rigorously the equivalence between (5.19) and OMT-wpd (5.14) is a

delicate issue. We expect the equivalence can be shown along the lines of [1, Theorem

8.1], [27, Chapter 8].

Naturally, for the trivial prior dynamics A(t) ≡ 0 and B(t) ≡ I, the OMT-

wpd reduces to the classical OMT and the solution {ρ(t, ·) | 0 ≤ t ≤ 1} is the
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displacement interpolation of the two marginals [33]. In Section 5.2.1, we show directly

that Problem (5.14) has a unique solution.

5.2.1 Solutions to OMT-wpd

As usual, let Φ(t, s) be the state transition matrix of (5.13) from s to t, and

M(t, s) =

∫ t

s

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ

be the reachability Gramian of the system which, by the controllability assumption, is

positive definite for all 0 ≤ s < t ≤ 1; we denote Φ10 := Φ(1, 0) and M10 := M(1, 0).

Recall [78,79] that for linear dynamics (5.13) and given boundary conditions x(0) = x,

x(1) = y, the least energy c(x, y) and the corresponding optimal control input can be

given in closed-form, namely

c(x, y) =

∫ 1

0

‖u∗(t)‖2dt = (y − Φ10x)′M−1
10 (y − Φ10x) (5.20)

where

u∗(t) = B(t)′Φ(1, t)′M−1
10 (y − Φ10x). (5.21)

The corresponding optimal trajectory is

x∗(t) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 y. (5.22)

The OMT-wpd problem with this cost is

inf
π

∫
Rn×Rn

(y − Φ10x)′M−1
10 (y − Φ10x)π(dxdy), (5.23a)

π(dx× Rn) = ρ0(x)dx, π(Rn × dy) = ρ1(y)dy, (5.23b)

where π is a measure on Rn × Rn.

Problem (5.23) can be converted to the standard Kantorovich formulation (5.4)

of the OMT by a transformation of coordinates. Indeed, consider the linear map

C :

[
x

y

]
−→

[
x̂

ŷ

]
=

[
M
−1/2
10 Φ10x

M
−1/2
10 y

]
(5.24)
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and set

π̂ = C]π.

Clearly, (5.23a-5.23b) become

inf
π̂

∫
Rn×Rn

‖ŷ − x̂‖2π̂(dx̂dŷ), (5.25a)

π̂(dx̂× Rn) = ρ̂0(x̂)dx̂, π̂(Rn × dŷ) = ρ̂1(ŷ)dŷ, (5.25b)

where

ρ̂0(x̂) = |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x̂),

ρ̂1(ŷ) = |M10|1/2ρ1(M
1/2
10 ŷ).

Problem (5.25) is now a standard OMT with quadratic cost function and we know

that the optimal transport map T̂ for this problem exists [1]. It is the gradient of a

convex function φ, i.e.,

T̂ = ∇φ, (5.26)

and the optimal π̂ is concentrated on the graph of T̂ [30]. The solution to the original

problem (5.23) can now be determined using T̂ , and it is

π = (Id× T )]µ0

with

y = T (x) = M
1/2
10 T̂ (M

−1/2
10 Φ10x). (5.27)

From the above argument we can see that, with cost function (5.12) and L̃(t, x, u) =

‖u‖2, the OMT problem (5.3) and its relaxed version (5.4) are equivalent.

Having the optimal map T , the one-time marginals can be readily computed as

the push-forward

µt = (Tt)]µ0, (5.28a)

where

Tt(x) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 T (x), (5.28b)
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and

ρ(t, x) =
dµt
dx

(x). (5.28c)

In this case, we refer to the parametric family of one-time marginals as displacement

interpolation with prior dynamics. Combining the optimal map T with (5.21), we

obtain the optimal control strategy

u(t, x) = B(t)′Φ(1, t)′M−1
10 [T ◦ T−1

t (x)− T−1
t (x)]. (5.29)

Again Tt is injective for 0 ≤ t < 1, so the above control strategy is well-defined on

Tt(Rn). T0 = Id is of course injective. To see Tt is indeed an injection for 0 < t < 1,

assume that there are two different points x 6= y such that Tt(x) = Tt(y). Then

0 = (x− y)′Φ(t, 0)′M(t, 0)−1(Tt(x)− Tt(y))′

= (x− y)′Φ(t, 0)′M(t, 0)−1Φ(t, 1)M(1, t)M−1
10 Φ10(x− y)+

(x− y)′Φ′10M
−1/2
10 (∇φ(M

−1/2
10 Φ10x)−∇φ(M

−1/2
10 Φ10y)).

The second term is nonnegative due to the convexity of φ. The first term is equal to

(x− y)′
(
Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M

−1
10 Φ10

)
(x− y),

which is positive since

Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M
−1
10 Φ10 =

(∫ t

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

−
(∫ 1

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

is positive definite for all 0 < t < 1. Since the control (5.29) is consistent with both

the optimal coupling π and the optimal trajectories (5.22), it achieves the minimum

of (5.4), which is of course is the minimum of (5.14) based on (5.18).

An alternative expression for the optimal control (5.29) can be derived as fol-

lows using standard optimal control theory (see Chapter 2). Consider the following
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deterministic optimal control problem

inf
u∈U

∫ 1

0

1

2
‖u(t, xu)‖2dt− ψ1(xu(1)), (5.30a)

ẋu(t) = A(t)xu(t) +B(t)u(t) (5.30b)

for some terminal cost −ψ1. The dynamic programming principle [13] gives the value

function (cost-to-go function) −ψ(t, x) as

− ψ(t, x) = inf
u:x(t)=x

∫ 1

t

1

2
‖u(t, xu)‖2dt− ψ1(xu(1)). (5.31)

The associated dynamic programming equation is

inf
u∈Rm

[
1

2
‖u‖2 − ∂ψ

∂t
−∇ψ · (A(t)x+B(t)u)

]
= 0. (5.32)

Point-wise minimization yields the Hamilton-Jacobi-Bellman equation

∂ψ

∂t
+ x′A(t)′∇ψ +

1

2
∇ψ′B(t)B(t)′∇ψ = 0 (5.33a)

with boundary condition

ψ(1, y) = ψ1(y), (5.33b)

and the corresponding optimal control is

u(t, x) = B(t)′∇ψ(t, x). (5.34)

When the value function −ψ(t, x) is smooth, it solves the Hamilton-Jacobi-Bellman

equation (5.33). In this case, if the optimal control (5.34) drives the controlled process

from initial distribution µ0 to terminal distribution µ1, then this u in fact solves the

OMT-wpd (5.14). In general, one cannot expect (5.33) to have a classical solution and

has to be content with viscosity solutions [13,17]. Here, however, it is possible to give

an explicit expression for the value function based only on the dynamic programming

principle (5.31). This is summarized in the following proposition. The proof is given

in Appendix A.1.

Proposition 4 Given marginal distributions µ0(dx) = ρ0(x)dx, µ1(dx) = ρ1(x)dx,

45



let ψ(t, x) be defined by the formula

ψ(t, x) = inf
y

{
ψ(0, y) +

1

2
(x− Φ(t, 0)y)′M(t, 0)−1(x− Φ(t, 0)y)

}
(5.35)

with

ψ(0, x) = φ(M
−1/2
10 Φ10x)− 1

2
x′Φ′10M

−1
10 Φ10x

and φ as in (5.26). Then u(t, x) := B(t)′∇ψ(t, x) exists almost everywhere and it

solves (5.14).

5.3 Optimal control formulation of Schrödinger bridges

For the case of nondegenerate Markov processes, a connection between the SBP

and stochastic control has been drawn in [63], see also [71] and [80]. In particular,

for the case of a Gaussian (Brownian) kernel, it was shown there that the one-time

marginals ρ(t, x) for SBP are the densities of the optimal state vector in the stochastic

control problem

inf
v∈V

E
{∫ 1

0

‖v(t, xv)‖2dt

}
, (5.36a)

dxv(t) = v(t, xv(t))dt+ dw(t), (5.36b)

xv(0) ∼ ρ0, xv(1) ∼ ρ1. (5.36c)

Here V is the class of admissible Markov controls with finite energy. In particular,

it implies the controlled process has a weak solution [19, p. 129] in [0, 1]. This

reformulation reckons on the fact that the relative entropy between xv and x0 (zero

control) in (5.36b) is bounded above by the control energy, namely,

H(Pxv ,Px0) ≤ 1

2
E
{∫ 1

0

‖v(t, xv(t))‖2dt

}
,

where Pxv ,Px0 denote the measures induced by xv and x0, respectively. The proof is

based on Girsanov theorem (see [19,63]). The optimal control to (5.36) is then given

by

v(t, x) = ∇ logϕ(t, x)
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with ϕ is one of the factor of the Schrödinger bridge as in (4.3b), see [63]. The

stochastic control problem (5.36) has the following equivalent formulation [81,82]:

inf
(ρ,v)

∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx, (5.37a)

∂ρ

∂t
+∇ · (vρ)− 1

2
∆ρ = 0, (5.37b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (5.37c)

Here, the infimum is over smooth fields v and ρ solves weakly of the corresponding

Fokker-Planck equation (5.37b). The entropic interpolation is Pt(dx) = ρ(t, x)dx.

We next present a more general result on the connection between SBP and optimal

control. We consider the Markov kernel

qε(s, x, t, y)=(2πε)−n/2|M(t, s)|−1/2 exp

(
− 1

2ε
(y − Φ(t, s)x)′M(t, s)−1(y − Φ(t, s)x)

)
(5.38)

corresponding to the process

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t), (5.39)

and provide a stochastic control formulation of the Schrödinger bridge problem with

this kernel. Note that the kernel q in (5.38) is everywhere positive because of the

controllability assumption. As a consequence, ϕ(t, x) for 0 ≤ t < 1 satisfying (4.3b)

is also everywhere positive and smooth.

Motivated by the nondegenerate case in (5.36), we consider the following stochas-

tic control problem,

inf
u∈U

E
{∫ 1

0

‖u(t, xu)‖2dt

}
, (5.40a)

dxu(t) = A(t)xu(t)dt+B(t)u(t, xu)dt+
√
εB(t)dw(t), (5.40b)

xu(0) ∼ ρ0, xu(1) ∼ ρ1. (5.40c)

Here, U is the set of admissible Markov controls such that for each u ∈ U the controlled

process admits a weak solution in [0, 1] and the control has finite energy. By a

general version of Girsanov theorem [48, Chapter IV.4] and the contraction property
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of relative entropy [43], we have

H(Pxu ,Px0) ≤ E
{∫ 1

0

1

2ε
‖u(t, xu(t))‖2dt

}
,

where Pxu ,Px0 denote the measures induced by xu and x0 (zero control) on Ω, re-

spectively.

Let ϕ, ϕ̂ be as in (4.3b) with the Markov kernel corresponding to (5.39). We claim

that, under the technical assumptions that

i)
∫
Rn ϕ(0, x)µ0(dx) <∞

ii) H(µ1, ϕ̂(1, ·)) <∞,

the optimal solution to (5.40) is

u(t, x) = εB(t)′∇ logϕ(t, x). (5.41)

The assumption i) guarantees that the local martingale ϕ(t, x(t)), where x is the

uncontrolled evolution (5.39), is actually a martingale. The assumption ii) implies

that the control (5.41) has finite energy. For both statements see [63, Theorem 3.2],

whose proof carries verbatim. While these conditions i) and ii) are difficult to verify

in general, they are satisfied when both µ0 and µ1 have compact support (c.f. [63,

Proposition 3.1]).

Then, by the argument in [63, Theorem 2.1] and in view of the equivalence between

existence of weak solutions to stochastic differential equations (SDEs) and solutions

to the martingale problem (see [83, Theorem 4.2], [19, p. 314]), it follows that with

u(t, x) as in (5.41) the SDE (5.40b) has a weak solution. By substituting (5.41) in

the Fokker-Planck equation it can be seen that the corresponding controlled process

satisfies the marginals (5.40c). In fact, the density flow ρ coincides with the one-time

marginals of the Schrödinger bridge (4.3a).

Finally, to see that (5.41) is optimal, we use a completion of squares argument.

To this end, consider the equivalent problem of minimizing the cost functional

J(u) = E
{∫ 1

0

1

2ε
‖u(t)‖2dt− logϕ(1, x(1)) + log(ϕ(0, x(0))

}
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in (5.40a) (the boundary terms are constant over the admissible path-space probabil-

ity distributions, cf. (5.40c)). Using Itô’s rule, and the fact that u in (5.41) has finite

energy, a standard calculation [84] shows

J(u) = E
{∫ 1

0

1

2ε
‖u(t)‖2dt− d logϕ(t, x(t))

}
= E

{∫ 1

0

1

2ε
‖u(t)− εB(t)′∇ logϕ(t, x(t))‖2dt

}
,

from which we readily conclude that (5.41) is the optimal control law. On the other

hand, the Schrödinger bridge has the generator

x′A′∇(·) + ε∇ logϕ(t, x) ·BB′∇(·) +
ε

2
traceBB′H(·),

which corresponds to exactly the controlled process (5.40b) with control in (5.41).

Therefore, we conclude that the SBP with prior Markov kernel (5.39) is equivalent to

the optimal control problem (5.40).

As a consequence, the entropic interpolation Pt(dx) = ρ(t, x)dx can now be ob-

tained by solving

inf
(ρ,u)

∫
Rn

∫ 1

0

1

2
‖u(t, x)‖2ρ(t, x)dtdx, (5.42a)

∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ)− ε

2

n∑
i,j=1

∂2(a(t)ijρ)

∂xi∂xj
= 0, (5.42b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (5.42c)

where a(t) = B(t)B(t)′, see [47, 81]. Comparing (5.42) with (5.19) we see that the

only difference is the extra term

ε

2

n∑
i,j=1

∂2(a(t)ijρ)

∂xi∂xj

in (5.42b) as compared to (5.19b).
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5.4 Zero-noise limit

In this section we study the relation between OMT (OMT-wpd) and SBP. In

particular, we show that the OMT problem is the limit of the SBP as the noise

intensity goes to zero. We start with the case when the prior dynamics is Brownian

motion. Formulation (5.37) is quite similar to OMT (5.7) except for the presence of

the Laplacian in (5.37b). It has been shown [42, 73–75] that the OMT problem is,

in a suitable sense, indeed the limit of the Schrödinger problem when the diffusion

coefficient of the reference Brownian motion goes to zero. In particular, the minimizers

of the SBP converge to the unique solution of OMT as below.

Theorem 9 Given two probability measures µ0(dx) = ρ0(x)dx, µ1(dy) = ρ1(y)dy on

Rn with finite second moment, let PB,ε01 be the solution of the Schrödinger problem

with Markov kernel

qB,ε(s, x, t, y) = (2π)−n/2((t− s)ε)−n/2 exp

(
−‖x− y‖

2

2(t− s)ε

)
(5.43)

and marginals µ0, µ1, and let PB,εt be the corresponding entropic interpolation. Simi-

larly, let π be the solution to the OMT problem (3.3) with the same marginal distri-

butions, and µt the corresponding displacement interpolation. Then, PB,ε01 converges

weakly3 to π and PB,εt converges weakly to µt, as ε goes to 0.

To see the intuition, consider

dx(t) =
√
εdw(t)

whose Markov kernel is qB,ε in (5.43). Here w(t) is the standard Wiener process. The

SBP with the law of x(t) as prior, is equivalent to

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2ε
‖v(t, x)‖2ρ(t, x)dtdx, (5.44a)

∂ρ

∂t
+∇ · (vρ)− ε

2
∆ρ = 0, (5.44b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (5.44c)

3A sequence {Pn} of probability measures on a metric space S converges weakly to a measure P
if
∫
S fdPn →

∫
S fdP for every bounded, continuous function f on the space.
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Note that the solution exists for all ε > 0 and coincides with the solution of the

problem to minimize the cost functional∫
Rn

∫ 1

0

‖v(t, x)‖2ρ(t, x)dtdx

instead, i.e., “rescaling” (5.44a) by removing the factor 1/2ε. Now observe that the

only difference between (5.44) after removing the scaling 1/ε in the cost functional

and the OMT formulation (5.7) is the regularization term ε
2
∆ρ in (5.44b). Thus,

formally, the constraint (5.44b) becomes (5.7b) as ε goes to 0.

Next we present a general result that includes the case when the zero-noise limit

of SBP corresponds to OMT-wpd. This problem has been studied in [73] in a more

abstract setting based on Large Deviation Theory [85]. Here we consider the special

case that is connected to our OMT-wpd formulation.

Formally, (5.42b) converges to (5.19b) as ε goes to 0. This suggests that the

minimizer of the OMT-wpd might be obtained as the limit of the joint initial-final

time distribution of solutions to the Schrödinger bridge problems as the disturbance

vanishes. This result is stated next and can be proved based on the result in [73]

together with the Freidlin-Wentzell Theory [85, Section 5.6] (a large deviation princi-

ple on sample path space). In Appendix A.2, we provide an alternative proof which

doesn’t require a large deviation principle directly.

Theorem 10 Given two probability measures µ0(dx) = ρ0(x)dx, µ1(dy) = ρ1(y)dy

on Rn with finite second moment, let Pε01 be the solution of the Schrödinger prob-

lem with reference Markov evolution (5.39) and marginals µ0, µ1, and let Pεt be the

corresponding entropic interpolation. Similarly, let π be the solution to (5.23) with

the same marginal distributions, and µt the corresponding displacement interpolation.

Then, Pε01 converges weakly to π and Pεt converges weakly to µt as ε goes to 0.

An important consequence of this theorem is that one can now develop numerical

algorithms for the general problem of OMT with prior dynamics, and in particular

for the standard OMT, by solving the Schrödinger problem for a vanishing ε. This

approach appears particular promising in view of recent work [86] that provides an

effective computational scheme to solve the Schrödinger problem by computing the

51



pair (ϕ̂0, ϕ1) in Theorem 5 as the fixed point of an iteration. This is now being devel-

oped for diffusion processes in [51] (see Chapter 4). See also [87,88] for similar works

in discrete space setting, which has a wide range of applications. This approach to

obtain approximate solutions to general OMT problems, via solutions to Schrödinger

problems with vanishing noise, is illustrated in the examples of Section 5.6. It should

also be noted that OMT problems are known to be computationally challenging in

high dimensions, and specialized algorithms have been developed [7], [8]. The present

approach suggests a totally new computational scheme.

5.5 Generalizations

The density steering problems can be generalized along several different directions.

We next briefly mention the cases where i) the cost function contains a state penalty

term, and ii) the prior dynamics is nonlinear. Interested reader is referred to [81] for

i) and [47] for ii).

5.5.1 State penalty

Consider the optimal steering problem (5.40) with however, the cost function

E
{∫ 1

0

[‖u(t)‖2 + U(t, x(t))]dt

}
. (5.45)

The term U(·, ·) represents the penalty on the state vector. The case of particular

interest to us is when

U(t, x) = x′S(t)x

for some positive semi-definite matrix S(·). This special case will be discussed in

further details in Chapter 6.

When ε = 0, the problem resembles the OMT-wpd and the solution can be

obtained through coordinate transformation as in (5.24), see also [62]. When ε > 0,

the problem is shown to be equivalent to a SBP with killing, that is, the particles have

a possibility to disappear. Therefore, the optimal control strategy can be established

using the theory of Schrödinger bridges. See [64,81] for more details.
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5.5.2 Nonlinear dynamics

When the particles are governed by the general nonlinear dynamics

dx(t) = f(t, x, u)dt+ σ(t, x, u)dw(t),

how do we optimally steer the particles between two marginal distributions with

minimum control energy (5.2) or more general cost (5.45)? Apparently this problem

is more difficult than the case of linear dynamics. One cannot expect a solution to

always exist. In fact, it is not even clear if it is possible to steer a system from one

distribution ρ0 to another distribution ρ1.

In [47], we studied a special case with application to the cooling of oscillators.

The oscillators are governed by the generalized Ornstein-Uhlenbeck model of physical

Brownian motion [5] with external control u

dx(t) = v(t) dt, x(t0) = x0

Mdv(t) = −Dv(t) dt+ u(t)dt−∇xV (x(t))dt+ σdw(t), v(t0) = v0

where x(t), v(t) represent the position and velocity of the oscillators respectively,

and V is a potential function that plays an important role in this coupled system of

oscillators. The positive definite matrix M represents the mass and D is the damping.

Again, as before, w(t) is the white noise that models the thermal disturbance.

When the control input u is zero, the distribution of the state (x, v) satisfies the

Boltzmann distribution [89]

ρB(x, v) = Z−1
B exp

[
−2V (x) + v′Mv

2kTa

]
,

where Ta represents the temperature and ZB is a normalization factor. The goal of

cooling is to reduce the temperature Ta of the oscillators system by adding proper

feedback control u. This is achieved by controlling the distribution of the state (x, v).

See [47] for details.
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Figure 5.1: Marginal distributions

5.6 Examples

Several examples are provided here to highlight the theoretical framework. The

first one is on density interpolation on one dimensional space and the second one is

on imagine processing.

5.6.1 Densities interpolation

Consider now a large collection of particles obeying

dx(t) = −2x(t)dt+ u(t)dt

in 1-dimensional state space with marginal distributions

ρ0(x) =

0.2− 0.2 cos(3πx) + 0.2 if 0 ≤ x < 2/3

5− 5 cos(6πx− 4π) + 0.2 if 2/3 ≤ x ≤ 1,

and

ρ1(x) = ρ0(1− x).

These are shown in Figure 5.1. Our goal is to steer the state of the system (equiv-

alently, the particles) from the initial distribution ρ0 to the final ρ1 using minimum

energy control. That is, we need to solve the problem of OMT-wpd. In this 1-

dimensional case, just like in the classical OMT problem, the optimal transport map
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[h]

(a) OMT-wpd (b) OMT

Figure 5.2: Interpolations based on OMT-wpd and OMT

y = T (x) between the two end-points can be determined from4

∫ x

−∞
ρ0(y)dy =

∫ T (x)

−∞
ρ1(y)dy.

The interpolation flow ρt, 0 ≤ t ≤ 1 can then be obtained using (5.28). Figure 5.2a

depicts the solution of OMT-wpd. For comparison, we also show the solution of the

classical OMT in figure 5.2b where the particles move on straight lines.

Finally, we assume a stochastic disturbance,

dx(t) = −2x(t)dt+ u(t)dt+
√
εdw(t),

with ε > 0. Figure 5.3 depicts minimum energy flows for diffusion coefficients
√
ε = 0.5, 0.15, 0.05, 0.01, respectively. As ε → 0, it is seen that the solution

to the Schrödinger problem converges to the solution of the problem of OMT-wpd as

expected.

4 In this 1-dimensional case, (5.27) is a simple rescaling and, therefore, T (·) inherits the mono-
tonicity of T̂ (·).
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[h]
(a)
√
ε = 0.5 (b)

√
ε = 0.1

(c)
√
ε = 0.05 (d)

√
ε = 0.01

Figure 5.3: Interpolation with different ε

5.6.2 Images interpolation

We consider interpolation/morphing of 2D images. When suitably normalized,

these can be viewed as probability densities on R2. Interpolation is important in many

applications. One such application is Magnetic Resonance Imaging (MRI) where

due to cost and time limitations, a limited number of slices are scanned. Suitable

interpolation between the 2D-slices may yield a better 3D reconstruction.

Figure 5.4 shows the two brain images that we seek to interpolate. The data

is available as mri.dat in Matlab R©. Figure 5.5 compares displacement interpolants

with trivial prior dynamics at t = 0.2, 0.4, 0.6, 0.8, respectively, based on solving

a Schrödinger bridge problem with Brownian prior with diffusivity ε = 0.01 using

our numerical algorithm. For comparison, we display in Figure 5.6 another set of

interpolants corresponding to larger diffusivity, namely, ε = 0.04. As expected, we
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(a) t = 0 (b) t = 1

Figure 5.4: MRI slices at two different points

(a) t = 0.2 (b) t = 0.4 (c) t = 0.6 (d) t = 0.8

Figure 5.5: Interpolation with ε = 0.01

observe a more blurry set of interpolants due to the larger diffusivity.

(a) t = 0.2 (b) t = 0.4 (c) t = 0.6 (d) t = 0.8

Figure 5.6: Interpolation with ε = 0.04
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Chapter 6

Linear Quadratic case: covariance

control

In this chapter we specialize the density steering problems studied in Chapter 5 to

the case where both the initial distribution ρ0 and the terminal distribution ρ1 are

Gaussian. Since in this setting we focus on the covariance of the distributions, we

refer to it as the covariance control problem. We provide explicit expressions for the

solutions and examine their structure.

The density steering problems we are interested in have the dynamics

dx(t) = A(t)x(t)dt+B(t)u(t)dt+
√
εB(t)dw(t), (6.1)

where the pair (A(·), B(·)) is assumed to be controllable. The goal is to find a control

strategy with minimum energy

E{
∫ 1

0

‖u(t)‖2dt} (6.2)

driving the particles from initial distribution ρ0 at t = 0 to terminal distribution ρ1 at

t = 1. For the special case when both of the marginal distributions are Gaussian, the

existence and uniqueness of the solution follows directly from the results in Chapter

5. Here, however, we developed direct approaches to study this special case without

appealing to the material in Chapter 5. These new approaches also lead to explicit

expressions for the solutions.
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In Section 6.1 we study the case where ε 6= 0. This corresponds to the Schrödinger

bridge problem (SBP). The case of ε = 0, which can be viewed as a special example of

the optimal mass transport with prior dynamics (OMT-wpd), is discussed in Section

6.2. We also consider several extensions in the rest of this chapter.

6.1 Schrödinger bridge problem: ε 6= 0

Without loss of generality, we discuss the case ε = 1, that is, the controlled

evolution

dxu(t) = A(t)xu(t)dt+B(t)u(t)dt+B(t)dw(t). (6.3)

The same method carries through for any ε 6= 0. For simplicity, the marginal distri-

butions are assumed to have zero mean, namely,

ρ0(x) = (2π)−n/2 det(Σ0)−1/2 exp

(
−1

2
x′Σ−1

0 x

)
, (6.4)

and

ρ1(x) = (2π)−n/2 det(Σ1)−1/2 exp

(
−1

2
x′Σ−1

1 x

)
. (6.5)

The result for nonzero mean case is provided in Remark 17. For the ease of reference,

we provide the stochastic differential equation (SDE) formula for the prior dynamics

dx(t) = A(t)x(t)dt+B(t)dw(t) with x(0) = x0 (6.6)

where x0 is a random vector with distribution ρ0.

Let U be the family of adapted, finite-energy control functions such that (6.3) has

a strong solution and xu(1) is distributed according to (6.5). More precisely, u ∈ U
is such that u(t) only depends on t and {xu(s); 0 ≤ s ≤ t} for each t ∈ [0, 1], satisfies

E
{∫ 1

0

‖u(t)‖2 dt

}
<∞,

and affects xu(1) to be distributed according to (6.5). The family U represents ad-

missible control inputs which achieve the desired probability density transfer from ρ0

to ρ1. Thence, we formulate the following optimal steering problem:
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Problem 11 Determine whether U is non-empty and if so, determine

u∗ := argminu∈U J(u)

where

J(u) := E
{∫ 1

0

‖u(t)‖2 dt

}
.

From the result in Chapter 5 we know u∗ always exists. Here we give an alternative

proof by taking advantage of the Gaussian structure.

6.1.1 Optimality conditions

First we identify a candidate structure for the optimal controls, which reduces

the problem to an algebraic condition involving two differential Lyapunov equations

that are nonlinearly coupled through split boundary conditions.

Let us start by observing that this problem resembles a standard stochastic linear

quadratic regulator problem except for the boundary conditions. The usual varia-

tional analysis can in fact be carried out, up to a point, namely the expression for

the optimal control, in a similar fashion. Of the several ways in which the form

of the optimal control can be obtained, we choose a most familiar one, namely the

so-called [24] “completion of squares”1. Let {Π(t) | 0 ≤ t ≤ 1} be a differentiable

function taking values in the set of symmetric, n × n matrices satisfying the matrix

Riccati equation

Π̇(t) = −A(t)′Π(t)− Π(t)A(t) + Π(t)B(t)B(t)′Π(t). (6.7)

Observe that Problem 11 is equivalent to minimizing over U the modified cost func-

tional

J̃(u) = E
{∫ 1

0

u(t)′u(t) dt+ x(1)′Π(1)x(1)− x(0)′Π(0)x(0)

}
. (6.8)

Indeed, as the two end-point marginal densities ρ0 and ρ1 are fixed when u varies in

1Although it might be the most familiar to control engineers, the completion of the square
argument for stochastic linear quadratic regulator control is not the most elementary. A derivation
which does not employ Itô’s rule was presented in [90].
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U , the two boundary terms are constant over U . We can now rewrite J̃(u) as

J̃(u) = E
{∫ 1

0

u(t)′u(t) dt+

∫ 1

0

d (x(t)′Π(t)x(t))

}
.

Applying Itô’s rule (e.g., see [15]) we obtain

J̃(u) = E
{∫ 1

0

‖u(t) +B(t)′Π(t)x(t)‖2 dt+

∫ 1

0

trace (Π(t)B(t)B(t)′) dt

}
. (6.9)

Observe that the second integral is finite and invariant over U . Hence, a candidate

for the optimal control is

u∗(t) = −B(t)′Π(t)x(t). (6.10)

Such a choice of control will be possible provided we can find a solution Π(t) of (6.7)

such that the process

dx∗(t) = (A(t)−B(t)B(t)′Π(t))x∗(t)dt+B(t)dw(t), (6.11)

with x∗(0) = x0 a.s.

leads to x∗(1) with density ρ1. If this is indeed possible, then we have solved Problem

11. It is important to observe that the optimal control, if it exists, is in a state

feedback form. Consequently, the new optimal evolution is a Gauss-Markov process

just as the prior evolution (6.6).

Finding the solution of the Riccati equation (6.7) which achieves the density

transfer is nontrivial. In the classical linear quadratic regulator theory, the terminal

cost of the index would provide the boundary value Π(1) for (6.7). However, here

there is no boundary value and the two analyses sharply bifurcate. Therefore, we

need to resort to something quite different as we have information concerning both

initial and final densities, namely Σ0 and Σ1.

Let Σ(t) := E {x∗(t)x∗(t)′} be the state covariance of the sought optimal evolu-

tion. From (6.11) we have that Σ(t) satisfies

Σ̇(t) = (A(t)−B(t)B(t)′Π(t)) Σ(t) + Σ(t) (A(t)−B(t)B(t)′Π(t))
′
+B(t)B(t)′.

(6.12)
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It must also satisfy the two boundary conditions

Σ(0) = Σ0, Σ(1) = Σ1 (6.13)

and that Σ(t) is positive definite on [0, 1]. Thus, we seek a solution pair (Π(t),Σ(t))

of the coupled system of equations (6.7) and (6.12) with split boundary conditions

(6.13).

Interestingly, if we define the new matrix-valued function

H(t) := Σ(t)−1 − Π(t),

then a direct calculation using (6.12) and (6.7) shows that H(t) satisfies the Riccati

equation

Ḣ(t) = −A(t)′H(t)− H(t)A(t)− H(t)B(t)B(t)′H(t). (6.14)

This equation is dual to (6.7) and the system of coupled matrix equations (6.7) and

(6.12) can be replaced by (6.7) and (6.14). The new system is decoupled, except for

the coupling through their boundary conditions

Σ−1
0 = Π(0) + H(0) (6.15a)

Σ−1
1 = Π(1) + H(1). (6.15b)

We refer to these coupled equations as the Schrödinger system. Boundary conditions

(6.15) are sufficient for meeting the two end-point marginals ρ0 and ρ1 provided of

course that Π(t) remains finite. We have therefore established the following result.

Proposition 5 Suppose Π(t) and H(t) satisfy equations (6.7)-(6.14) on [0, 1] with

boundary conditions (6.15). Then the feedback control u∗ given in (6.10) is the solu-

tion to Problem 11.

Since (6.7) and (6.14) are homogeneous, they always admit the zero solution.

The case Π(t) ≡ 0 corresponds to the situation where the prior evolution satisfies

the boundary marginal conditions and, in that case, H(t)−1 is simply the prior state

covariance. In addition, it is also possible that Π(t) vanishes in certain directions.

Clearly, such directions remain invariant in that, if Π(t)v = 0 for a value of t ∈ [0, 1],
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then Π(t)v = 0 for all t ∈ [0, 1] as well. In such cases, it suffices to consider (6.7) and

(6.14) in the orthogonal complement of null directions.

Thus, in general, Problem 11 reduces to the atypical situation of two Riccati

equations (6.7) and (6.14) coupled through their boundary values. This might still,

at first glance, appear to be a formidable problem. However, (6.7)-(6.14) are homo-

geneous and, as far as their non singular solutions, they reduce to linear differential

Lyapunov equations. The latter, however, are still coupled through their boundary

values in a nonlinear way. Indeed, suppose Π(t) exists on the time interval [0, 1] and

is invertible. Then Q(t) = Π(t)−1 satisfies the linear equation

Q̇(t) = A(t)Q(t) +Q(t)A(t)′ −B(t)B(t)′. (6.16a)

Likewise, if H(t) exists on the time interval [0, 1] and is invertible, P (t) = H(t)−1

satisfies the linear equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ +B(t)B(t)′. (6.16b)

The boundary conditions (6.15) for this new pair (P (t), Q(t)) now read

Σ−1
0 = P (0)−1 +Q(0)−1 (6.17a)

Σ−1
1 = P (1)−1 +Q(1)−1. (6.17b)

Conversely, if Q(t) solves (6.16a) and is nonsingular on [0, 1], then Q(t)−1 is a solution

of (6.7), and similarly for P (t). We record the following immediate consequence of

Proposition 5.

Corollary 12 Suppose P (t) and Q(t) are nonsingular on [0, 1] and satisfy the equa-

tions (6.16) with boundary conditions (6.17). Then the feedback control

u∗(t) = −B(t)′Q(t)−1x(t) (6.18)

is optimal for Problem 11.

Thus, the system (6.16)-(6.17) or, equivalently, the system (6.7), (6.14), and (6.15),

appears as the bottleneck of the SBP. In Section 6.1.2, we prove that this Schrödinger

system always has a solution (Π(t), H(t)), with both Π(t) and H(t) bounded on [0, 1],
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that satisfies (6.7), (6.14), and (6.15) and that this solution is unique.

6.1.2 Existence and uniqueness of optimal control

Since (A(·), B(·)) is controllable, the reachability Gramian

M(s, t) :=

∫ s

t

Φ(s, τ)B(τ)B(τ)′Φ(s, τ)′dτ,

is nonsingular for all t < s (with t, s ∈ [0, 1]). As usual, Φ(t, s) denotes the state-

transition matrix of the dynamics A(·) determined via

∂

∂t
Φ(t, s) = A(t)Φ(t, s) and Φ(t, t) = I,

and this is nonsingular for all t, s ∈ [0, 1]. It is worth noting that for s > 0 the

reachability Gramian M(s, 0) = P (s) > 0 satisfies the differential Lyapunov equation

(6.16b) with P (0) = 0. The controllability Gramian

N(s, t) :=

∫ s

t

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ,

is necessarily also nonsingular for all t < s (t, s ∈ [0, 1]) and if, we similarly set

Q(t) = N(1, t), then Q(t) satisfies (6.16a) with Q(1) = 0.

However, as suggested in the previous section, we need to consider solutions

P (·), Q(·) of these two differential Lyapunov equations (6.16) that satisfy boundary

conditions that are coupled through (6.17). In general, P (t) and Q(t) do not need to

be sign definite, but in order for

Σ(t)−1 = P (t)−1 +Q(t)−1. (6.19)

to qualify as a covariance of the controlled process (6.3), P (t) and Q(t) need to

be invertible. This condition is also sufficient and Σ(t) satisfies the corresponding

differential Lyapunov equation for the covariance of the controlled process

Σ̇(t) = AQ(t)Σ(t) + Σ(t)AQ(t)′ +B(t)B(t)′ (6.20)

with

AQ(t) := (A(t)−B(t)B(t)′Q(t)−1). (6.21)
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The following proposition shows the existence and uniqueness of an admissible

pair (P−(t), Q−(t)) of solutions to (6.16)-(6.17) that are invertible on [0, 1]. Inter-

estingly, there is always a second solution (P+(t), Q+(t)) to the nonlinear problem

(6.16)-(6.17) which is not admissible as it fails to be invertible on [0, 1]. See Ap-

pendix A.3 for the proof.

Proposition 6 Consider Σ0,Σ1 > 0 and a controllable pair (A(t), B(t)). The system

of differential Lyapunov equations (6.16) has two sets of solutions (P±(·), Q±(·)) over

[0, 1] that simultaneously satisfy the coupling boundary conditions (6.17). These two

solutions are specified by

Q±(0) = N(1, 0)1/2S
1/2
0

(
S0 +

1

2
I ±

(
S

1/2
0 S1S

1/2
0 +

1

4
I

)1/2
)−1

S
1/2
0 N(1, 0)1/2,

P±(0) =
(
Σ−1

0 −Q±(0)−1
)−1

and the two differential equations (6.16), where

S0 = N(1, 0)−1/2Σ0N(1, 0)−1/2,

S1 = N(1, 0)−1/2Φ(0, 1)Σ1Φ(0, 1)N(1, 0)−1/2.

The two pairs (P±(t), Q±(t)) with subscript − and +, respectively, are distinguished

by the following:

i) Q−(t) and P−(t) are both nonsingular on [0, 1], whereas

ii) Q+(t) and P+(t) become singular for some t ∈ [0, 1], possibly not for the same

value of t.

65



Remark 13 We have numerically observed that the iteration

P (0)

↓
P (1) = Φ(1, 0)P (0)Φ(1, 0)′ +M(1, 0)

↓
Q(1) = (Σ−1

1 − P (1)−1)−1

↓
Q(0) = Φ(0, 1)(Q(1) +M(1, 0))Φ(0, 1)′

↓
P (0) = (Σ−1

0 −Q(0)−1)−1

using (6.17), converges to Q−(0), P−(0), Q−(1), P−(1), starting from a generic choice

for Q(0). The choice with a “−” is the one that generates the Schrödinger bridge as

explained below. It is interesting to compare this property with similar properties of

iterations that lead to solutions of Schrödinger systems in [86, 91] (see also Chapter

4).

Remark 14 Besides the expression in the proposition, another equivalent closed form

formula for Q±(0) is

Q±(0) = Σ
1/2
0

(
1

2
I + Σ

1/2
0 Φ(1, 0)′M(1, 0)−1Φ(1, 0)Σ

1/2
0 ±

(
1

4
I + Σ

1/2
0 Φ(1, 0)′M(1, 0)−1Σ1M(1, 0)−1Φ(1, 0)Σ

1/2
0 )1/2

)−1

Σ
1/2
0

Remark 15 Interestingly, the solution Π+(t) = Q+(t)−1 of the Riccati equation (6.7)

corresponding to the choice “+” in Q± has a finite escape time.

We are now in a position to state the full solution to Problem 11.

Theorem 16 Assuming that the pair (A(t), B(t)) is controllable and that Σ0,Σ1 > 0,

Problem 11 has a unique optimal solution

u?(t) = −B(t)′Q−(t)−1x(t) (6.22)
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where Q−(·) (together with a corresponding matrix function P−(·)) solves to the pair

of coupled Lyapunov differential equations in Proposition 6.

Proof Since Proposition 6 has established existence and uniqueness of nonsingular

solutions (P−(·), Q−(·)) to the system (6.16), the result now follows from Corollary

12.

Thus, the controlled process with optimal control (6.10) and Π(t) = Q−(t)−1, i.e.,

dx∗ = (A(t)−B(t)B(t)′Q−(t)−1)x∗(t)dt+B(t)dw(t) (6.23)

steers the beginning density ρ0 to the final one, ρ1, with the least cost. It turns out

that this controlled stochastic differential equation specifies the random evolution

which is closest to the prior in the sense of relative entropy among those with the two

given marginal distributions. This will be explained in Section 6.1.3.

Remark 17 The variant of Problem 11 where the two marginals have a non-zero

mean is of great practical significance. The formulae for the optimal control easily

extend to this case as follows. Assuming that the Gaussian marginals ρ0 and ρ1 have

mean m0 and m1, respectively, a deterministic term is needed in (6.23) for the bridge

to satisfy the means. The controlled process becomes

dx∗ = (A(t)−B(t)B(t)′Q−(t)−1)x∗(t)dt+B(t)B(t)′m(t)dt+B(t)dw(t) (6.24)

where

m(t) = Φ̂(0, t)′M̂(1, 0)−1(m1 − Φ̂(1, 0)m0)

and Φ̂(t, s), M̂(t, s) satisfy

∂Φ̂(t, s)

∂t
= (A(t)−B(t)B(t)′Q−(t)−1)Φ̂(t, s), Φ̂(t, t) = I

and

M̂(t, s) =

∫ t

s

Φ̂(t, τ)B(t)B(t)′Φ̂(t, τ)′dτ.

It is easy to verify that (6.24) meets the condition on the two marginal distributions.

To see (6.24) is in fact optimal, observe that Problem 11 is equivalent to minimizing
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the augmented cost functional

J̃(u) = E{
∫ 1

0

u(t)′u(t) dt+x(1)′Q−(1)−1x(1)−2m(1)′x(1)−x(0)′Q−(0)−1x(0)+2m(0)′x(0)}.

over U . On the other hand, we have

J̃(u) = E{
∫ 1

0

u(t)′u(t) dt+

∫ 1

0

d(x(t)′Q−(t)−1x(t)− 2m(t)′x(t))}

= E{
∫ 1

0

‖u(t) +B(t)′Q−(t)−1x(t)−B(t)′m(t)‖2dt

+

∫ 1

0

[trace
(
Q−(t)−1B(t)B(t)′

)
−m(t)′B(t)B(t)′m(t)]dt},

and thus

u(t) = −B(t)′Q−(t)−1x(t) +B(t)′m(t)

is indeed the optimal control strategy.

6.1.3 Minimum relative entropy interpretation of optimal control

In Chapter 5 we have showed that SBP can be recast as an optimal control

problem. In particular, Problem 11 is equivalent to an SBP. Therefore, the controlled

process under optimal control strategy has the property of minimizing its relative

entropy with respect to the prior process (6.6). Below we present a direct proof of

this property.

For the purposes of this section we denote by Ω = C([0, 1],Rn) the space of

continuous, n-dimensional sample paths of a linear diffusion as in (6.6) and by P
the induced probability measure on Ω. By disintegration of measure [42], one can

describe P as a mixture of measures pinned at the two ends of the interval [0, 1], that

is,

P(·) =

∫
Rn×Rn

Px0x1(·)P01(dx0dx1)

where Px0x1(·) is the conditional probability and P01(·) is the joint probability of

(x(0) = x0, x(1) = x1). The two end-point joint measure P01(·), which is Gaussian,

has a (zero-mean) probability density function gS01(x0, x1) with covariance

S01 =

[
S0 S0Φ(1, 0)′

Φ(1, 0)S0 S1

]
(6.25)
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where

S0 = E{x0x
′
0}

St = Φ(t, 0)S0Φ(t, 0)′ +

∫ t

0

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ.

The probability law induced by the controlled process under optimal control, mini-

mizes the relative entropy

H(P̃ ,P) :=

∫
Ω

log

(
dP̃
dP

)
dP̃

among those probability distributions on Ω that have the prescribed marginals. Evi-

dently, this is an abstract problem on an infinite-dimensional space. However, since

P̃(·) =

∫
P̃x0x1(·)P̃01(dx0dx1),

the relative entropy can be readily written as the sum of two nonnegative terms, the

relative entropy between the two end-point joint measures

∫
log

(
dP̃01

dP01

)
dP̃01

and ∫
log

(
dP̃x0x1(·)
dPx0x1(·)

)
dP̃ .

The second term becomes zero (and therefore minimal) when the conditional proba-

bility P̃x0x1(·) is taken to be the same as Px0x1(·). Thus, the solution is in the same

reciprocal class [69] as the prior evolution and, as already observed by Schrödinger [4]

in a simpler context, the problem reduces to the problem of minimizing relative

entropy of the joint initial-final distribution among those that have the prescribed

marginals.

Below we show that the probability law induced by (6.23) is indeed the minimizer

by verifying directly that the densities between the two are identical when conditioned

at the two end points, i.e., they share the same bridges, and that the end-point joint

marginal for (6.23) is indeed closest to the corresponding joint marginal for the prior

(6.6).
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In order to show that these two linear systems share the same bridges, we need

the following lemma which is based on [46].

Lemma 18 The probability law of the SDE (6.6), when conditioned on x(0) =

x0, x(1) = x1, for any x0, x1, reduces to the probability law induced by the SDE

dx = (A−BB′R(t)−1)xdt+BB′R(t)−1Φ(t, 1)x1dt+Bdw

where R(t) satisfies

Ṙ(t) = AR(t) +R(t)A′ −BB′

with R(1) = 0.

The stochastic process specified by this conditioning, or the latter SDE, will be

referred to as the pinned bridge associated to (6.6). Thus, in order to establish that

the probability laws of (6.23) and (6.6) conditioned on x(0) = x0, x(1) = x1 are

identical, it suffices to show that they have the same pinned bridges for any x0, x1.

All these are stated in the following theorem, and the proof is in Appendix A.4.

Theorem 19 The probability law induced by (6.23) represents the minimum of the

relative entropy with respect to the law of (6.6) over all probability laws on Ω that

have Gaussian marginals with zero mean and covariances Σ0 and Σ1, respectively, at

the two end-points of the interval [0, 1].

6.2 Optimal mass transport: ε = 0

We now consider the OMT-wpd problem for the special case where the marginals

are Gaussian distributions. The OMT-wpd solution corresponds to the zero-noise

limit of the Schrödinger bridges, which is of course a consequence of Theorem 10.

Therefore, by taking the zero-noise limit, we obtain explicit expressions for the optimal

control strategy.

Consider the reference evolution

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t) (6.26)
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and the two marginals

ρ0(x) = (2π)−n/2 det(Σ0)−1/2 exp

[
−1

2
(x−m0)′Σ−1

0 (x−m0)

]
, (6.27a)

ρ1(x) = (2π)−n/2 det(Σ1)−1/2 exp

[
−1

2
(x−m1)′Σ−1

1 (x−m1)

]
, (6.27b)

where, as usual, the system with matrices (A(t), B(t)) is controllable. As in Section

6.1, we derived a closed-form expression for the Schrödinger bridge, namely,

dx(t) = (A(t)−B(t)B(t)′Πε(t))x(t)dt+B(t)B(t)′m(t)dt+
√
εB(t)dw(t) (6.28)

with Πε(t) satisfying the matrix Riccati equation

Π̇ε(t) + A(t)′Πε(t) + Πε(t)A(t)− Πε(t)B(t)B(t)′Πε(t) = 0, (6.29)

Πε(0)=Σ
−1/2
0 [

ε

2
I+ Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (

ε2

4
I+ Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0

(6.30)

and

m(t) = Φ̂(1, t)′M̂(1, 0)−1(m1 − Φ̂(1, 0)m0), (6.31)

where Φ̂(t, s), M̂(t, s) satisfy

∂Φ̂(t, s)

∂t
= (A(t)−B(t)B(t)′Πε(t))Φ̂(t, s), Φ̂(t, t) = I

and

M̂(t, s) =

∫ t

s

Φ̂(t, τ)B(τ)B(τ)′Φ̂(t, τ)′dτ.

The probability law Pε(·) induced on path space by the stochastic process in (6.28)

is indeed the solution of the SBP with prior corresponding to the law induced by the

stochastic process in (6.26) and marginals (6.27).

Next we consider the zero-noise limit by letting ε go to 0. By taking ε = 0 in

(6.30) we obtain

Π0(0) = Σ
−1/2
0 [Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 , (6.32)
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and the corresponding limiting process

dx(t) = (A(t)−B(t)B(t)′Π0(t))x(t)dt+B(t)B(t)′m(t)dt, x(0) ∼ (m0,Σ0) (6.33)

with Π0(t),m(t) satisfying (6.29), (6.31) and (6.32). In fact Π0(t) has the explicit

expression

Π0(t) = −M(t, 0)−1 −M(t, 0)−1Φ(t, 0)
[
Φ′10M

−1
10 Φ10 − Φ(t, 0)′M(t, 0)−1Φ(t, 0)

−Σ
−1/2
0 (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2Σ

−1/2
0

]−1

Φ(t, 0)′M(t, 0)−1. (6.34)

As indicated earlier, Theorem 10 already implies that (6.33) yields an optimal

solution to the OMT-wpd (5.14). Here we give an alternative proof by completion of

squares.

Proposition 7 Given Gaussian marginal distributions as in (6.27), the optimal con-

trol law is

u(t, x) = −B(t)′Π0(t)x+B(t)′m(t), (6.35)

with Π0 in (6.29) and m in (6.31).

Proof We show first that u in (6.35) is a feasible control by proving that the corre-

sponding probability density function ρ satisfies the boundary condition (6.27), and

second, that this control u is the optimal one.

The controlled process (6.33) is linear with gaussian initial condition, hence x(t)

is a gaussian process. We claim that density of x(t) is

ρ(t, x) = (2π)−n/2 det(Σ(t))−1/2 exp

[
−1

2
(x− n(t))′Σ(t)−1(x− n(t))

]
where

n(t) = Φ̂(t, 0)m0 +

∫ t

0

Φ̂(t, τ)B(τ)B(τ)′m(τ)dτ

and

Σ(t) =M(t, 0)Φ(0, t)′Σ
−1/2
0

[
−Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 + (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

+ Σ
1/2
0 Φ(t, 0)′M(t, 0)−1Φ(t, 0)Σ

1/2
0

]2

Σ
−1/2
0 Φ(0, t)M(t, 0)
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for t ∈ (0, 1]. It is obvious that E{x(t)} = n(t) and it is also immediate that

lim
t→0

Σ(t) = Σ0.

Straightforward but lengthy computations show that Σ(t) satisfies the Lyapunov dif-

ferential equation

Σ̇(t) = (A(t)−B(t)B(t)′Π0(t))Σ(t) + Σ(t)(A(t)−B(t)B(t)′Π0(t))′.

Hence, Σ(t) is the covariance of x(t). Now, observing that

n(1) = Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)B(τ)B(τ)′m(τ)dτ

= Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)B(τ)B(τ)′Φ̂(1, τ)′dτM̂(1, 0)−1(m1 − Φ̂(1, 0)m0)

= m1

and

Σ(1) = M(1, 0)Φ(0, 1)′Σ
−1/2
0

[
(Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

]2

Σ
−1/2
0 Φ(0, 1)M(1, 0)

= Σ1,

allows us to conclude that ρ satisfies ρ(1, x) = ρ1(x).

For the second part, consider the OMT-wpd (5.14) with the augmented cost

functional

J(u) = E{
∫ 1

0

1

2
‖u(t)‖2dt+

1

2
x(1)′Π0(1)x(1)

−1

2
x(0)′Π0(0)x(0)−m(1)′x(1) +m(0)′x(0)}.

This doesn’t change the minimizer because the extra terms are constant under the

fixed boundary distributions. Since

J(u) = E{
∫ 1

0

1

2
‖u(t)‖2dt+

1

2
d(x(t)′Π0(t)x(t))− d(m(t)′x(t))}

= E{
∫ 1

0

1

2
‖u(t) +B(t)′Π0(t)x(t)−B(t)′m(t)‖2dt}+

∫ 1

0

1

2
m(t)′B(t)B(t)′m(t)dt,
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it is easy to see that u in (6.35) achieves the minimum of J(u).

6.3 Different input and noise channels

In this section we formulate the control problem to optimally steer a stochastic

linear system with different input and noise channels from an initial Gaussian distri-

bution to a final target Gaussian distribution. In parallel, we formulate the problem

to maintain a stationary Gaussian state distribution by constant state feedback for

time-invariant dynamics.

The mean value of the state-vector is effected only by a deterministic mean value

for the input process. Thus, throughout this section and without loss of generality we

assume that all processes have zero-mean and we only focus on our ability to assign

the state-covariance in those two instances.

6.3.1 Finite-horizon optimal steering

Consider the controlled evolution

dxu(t) = A(t)xu(t)dt+B(t)u(t)dt+B1(t)dw(t) (6.36)

where A(·), B(·) and B1(·) are continuous matrix functions of t taking values in Rn×n,

Rn×m and Rn×p, respectively. The goal is to steer the system from initial distribution

(6.4) at t = 0 to terminal distribution (6.5) at t = 1 with minimum effort.

As in Section 6.1, denote by U the family of adapted, finite-energy control functions

such that (6.36) has a strong solution and xu(1) is distributed according to (6.5).

Therefore, U represents the class of admissible control inputs. The existence of such

control inputs will be established in the following section, i.e., that U is not empty.

At present, assuming this to be the case, we formulate the following:

Problem 20 Determine u∗ := argminu∈U J(u).

With the same completion of the squares argument used in Section 6.1.1 we obtain

a sufficient conditions in Proposition 8 and show that a control-theoretic view of the

SBP [63] carries through in this more general setting.
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Proposition 8 Let {Π(t) | 0 ≤ t ≤ 1} be a solution of the matrix Riccati equation

Π̇(t) = −A(t)′Π(t)− Π(t)A(t) + Π(t)B(t)B(t)′Π(t). (6.37)

Define the feedback control law

u(x, t) := −B(t)′Π(t)x (6.38)

and let xu = x∗ be the Gauss-Markov process

dx∗(t) = (A(t)−B(t)B(t)′Π(t))x∗(t)dt+B1(t)dw(t), x∗(0) = x0 a.s. (6.39)

If x∗(1) has probability density ρ1, then u(x∗(t), t) = u∗(t), i.e., it is the solution to

Problem 20.

Below we recast Proposition 8 in the form of a Schrödinger system.

Let Σ(t) := E {x∗(t)x∗(t)′} be the state covariance of (6.39) and assume that the

conditions of the proposition hold. Then

Σ̇(t) = (A(t)−B(t)B(t)′Π(t)) Σ(t) + Σ(t) (A(t)−B(t)B(t)′Π(t))
′
+B1(t)B1(t)′

(6.40)

holds together with the two boundary conditions

Σ(0) = Σ0, Σ(1) = Σ1. (6.41)

Further, since Σ0 > 0, Σ(t) is positive definite on [0, 1]. Now define

H(t) := Σ(t)−1 − Π(t).

A direct calculation using (6.40) and (6.37) leads to (6.42b) below. We have therefore

derived a nonlinear generalized Schrödinger system

Π̇ = −A′Π− ΠA+ ΠBB′Π (6.42a)

Ḣ = −A′H− HA− HBB′H + (Π + H) (BB′ −B1B
′
1) (Π + H) (6.42b)

Σ−1
0 = Π(0) + H(0) (6.42c)

Σ−1
1 = Π(1) + H(1). (6.42d)
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Indeed, in contrast to the case when B = B1 (see Section 6.1), the two Riccati equa-

tions in (6.42) are coupled not only through their boundary values (6.42c)-(6.42d)

but also in a nonlinear manner through their dynamics in (6.42b). Clearly, the case

Π(t) ≡ 0 corresponds to the situation where the uncontrolled evolution already sat-

isfies the boundary marginals and, in that case, H(t)−1 is simply the prior state

covariance. We summarize our conclusion in the following proposition.

Proposition 9 Assume that {(Π(t),H(t)) | 0 ≤ t ≤ 1} satisfy (6.42a)-(6.42d). Then

the feedback control law (6.38) is the solution to Problem 20 and the corresponding

optimal evolution is given by (6.39).

The existence and uniqueness of solutions for the Schrödinger system is quite

challenging already in the classical case where the two dynamical equations are un-

coupled. It is therefore hardly surprising that at present we don’t know how to prove

existence of solutions for (6.42a)-(6.42d) A direct proof of existence of solutions for

(6.42) would in particular imply feasibility of Problem 20, i.e., that U is nonempty

and that there exists a minimizer. At present we do not have a proof that a minimizer

exists. However, in Section 6.3.3 we establish that the set of admissible controls U
is not empty and in Section 6.3.4 we provide an approach that allows constructing

suboptimal controls incurring cost that is arbitrarily close to infu∈U J(u).

6.3.2 Infinite-horizon optimal steering

Suppose now that A, B and B1 do not depend on time and that the pair (A,B)

is controllable. We seek a constant state feedback law u(t) = −Kx(t) to maintain a

stationary state-covariance Σ > 0 for (6.36). In particular, we are interested in one

that minimizes the expected input power (energy rate)

Jpower(u) := E{u′u} (6.43)

and thus we are led to the following problem2.

Problem 21 Determine u∗ that minimizes Jpower(u) over all u(t) = −Kx(t) such

2An equivalent problem is to minimize limT→∞
1
Tf

E
{∫ Tf

0
u(t)′u(t)dt

}
for a given terminal state

covariance as Tf →∞.
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that

dx(t) = (A−BK)x(t)dt+B1dw(t) (6.44)

admits

ρ(x) = (2π)−n/2 det(Σ)−1/2 exp

(
−1

2
x′Σ−1x

)
(6.45)

as the invariant probability density.

Interestingly, the above problem may not have a solution in general since not all

values for Σ can be maintained by state feedback. In fact, Theorem 24 in Section

6.3.3, provides conditions that ensure Σ is admissible as a stationary state covariance

for a suitable input. Moreover, as it will be apparent from what follows, even when

the problem is feasible, i.e., there exist controls which maintain Σ, an optimal control

may fail to exist. The relation between this problem and Jan Willems’ classical work

on the Algebraic Riccati Equation (ARE) [24] is provided after Proposition 10 below.

Let us start by observing that the problem admits the following finite-dimensional

reformulation. Let K be the set of all m× n matrices K such that the corresponding

feedback matrix A−BK is Hurwitz. Since

E{u′u} = E{x′K ′Kx} = trace(KΣK ′),

Problem 21 reduces to finding a m× n matrix K∗ ∈ K which minimizes the criterion

J(K) = trace (KΣK ′) (6.46)

subject to the constraint

(A−BK)Σ + Σ(A′ −K ′B′) +B1B
′
1 = 0. (6.47)

Now, consider the Lagrangian function with symmetric multiplier Π

L(K,Π) = trace (KΣK ′) + trace (Π((A−BK)Σ + Σ(A′ −K ′B′) +B1B
′
1))

which is a simple quadratic form in the unknown K. Observe that K is open, hence

a minimum point may fail to exist. Nevertheless, at any point K ∈ K we can take a
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directional derivative in any direction δK ∈ Rm×n to obtain

δL(K,Π; δK) = trace ((ΣK ′ +KΣ− ΣΠB −B′ΠΣ) δK) .

Setting δL(K,Π; δK) = 0 for all variations, which is a sufficient condition for opti-

mality, we get the form

K∗ = B′Π. (6.48)

To compute K∗, we calculate the multiplier Π as a maximum point of the dual

functional

G(Π) = L(K∗,Π) (6.49)

= trace ((A′Π + ΠA− ΠBB′Π) Σ + ΠB1B
′
1) .

The unconstrained maximization of the concave functional G over symmetric n × n
matrices produces matrices Π∗ which satisfy (6.47), namely

(A−BB′Π∗)Σ + Σ(A′ − Π∗BB′) +B1B
′
1 = 0. (6.50)

There is no guarantee, however, that K∗ = B′Π∗ is in K, namely that A − BB′Π∗

is Hurwitz. Nevertheless, since (6.50) is satisfied, the spectrum of A−BB′Π∗ lies in

the closed left half-plane. Thus, our analysis leads to the following result.

Proposition 10 Assume that there exists a symmetric matrix Π such that A−BB′Π
is a Hurwitz matrix and

(A−BB′Π)Σ + Σ(A−BB′Π)′ +B1B
′
1 = 0 (6.51)

holds. Then

u∗(t) = −B′Πx(t) (6.52)

is the solution to Problem 21.

We now draw a connection to some classical results due to Jan Willems [24]. In

our setting, minimizing (6.43) is equivalent to minimizing

Jpower(u) + E{x′Qx} (6.53)
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for an arbitrary symmetric matrix Q since the portion

E{x′Qx} = trace{QΣ}

is independent of the choice of K. On the other hand, minimization of (6.53) for

specific Q, but without the constraint that E{xx′} = Σ, was studied by Willems [24]

and is intimately related to the maximal solution of the Algebraic Riccati Equation

(ARE)

A′Π + ΠA− ΠBB′Π +Q = 0. (6.54)

Under the assumption that the Hamiltonian matrix

H =

[
A −BB′

−Q −A′

]

has no pure imaginary eigenvalues, Willems’ result states that A−BB′Π is Hurwitz

and that (6.52) is the optimal solution.

Thus, starting from a symmetric matrix Π as in Proposition 10, we can define Q

using

Q = −A′Π− ΠA+ ΠBB′Π.

Since, by Willems’ results, (6.54) has at most one “stabilizing” solution Π, the matrix

in the proposition coincides with the maximal solution to (6.54). Therefore, if our

original problem has a solution, this same solution can be recovered by solving for the

maximal solution of a corresponding ARE, for a particular choice of Q. Interestingly,

neither Π nor Q, which correspond to an optimal control law and satisfy (6.51), are

unique, whereas K is.

6.3.3 Controllability of state statistics

We now return to the “controllability” question of whether there exist admissible

controls to steer the controlled evolution

dx(t) = Ax(t)dt+Bu(t)dt+B1dw(t) x(0) = x0 a.s. (6.55)

to a target Gaussian distribution at the end of a finite interval [0, 1], or, for the sta-

tionary case, whether a stationary Gaussian distribution can be achieved by constant
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state feedback. From now on, we assume that A ∈ Rn×n, B ∈ Rn×m and B1 ∈ Rn×p,

are time-invariant and that (A,B) is controllable. In view of the earlier analysis, we

search over controls that are linear functions of the state, i.e.,

u(t) = −K(t)x(t), for t ∈ [0, 1], (6.56)

and where K is constant and A−BK Hurwitz for the stationary case.

We first consider finite horizon case. We assume that E{x0} = 0 while E{x0x
′
0} =

Σ0. The state covariance

Σ(t) := E{x(t)x(t)′}

of (6.36) with input as in (6.56) satisfies the differential Lyapunov equation

Σ̇(t) = (A−BK(t))Σ(t) + Σ(t)(A−BK(t))′ +B1B
′
1 (6.57)

and Σ(0) = Σ0. Regardless of the choice of K(t), (6.57) specifies dynamics that leave

invariant the cone of positive semi-definite symmetric matrices

S+
n := {Σ | Σ ∈ Rn×n, Σ = Σ′ ≥ 0}.

To see this, note that the solution to (6.57) is of the form

Σ(t) = Φ̂(t, 0)Σ0Φ̂(t, 0)′ +

∫ t

0

Φ̂(t, τ)B1B
′
1Φ̂(t, τ)′dτ

where Φ̂(t, 0) satisfies

∂Φ̂(t, 0)

∂t
= (A−BK(t))Φ̂(t, 0)

and Φ̂(0, 0) = I, i.e., Φ̂(t, 0) is the state-transition matrix of the system ẋ(t) =

(A−BK(t))x(t).

Assuming Σ0 > 0, it follows that Σ(t) > 0 for all t and finite K(·). Our interest

is in our ability to specify Σ(1) via a suitable choice of K(t). To this end, we define

U(t) := −Σ(t)K(t)′,

we observe that U(t) and K(t) are in bijective correspondence provided that Σ(t) > 0,
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and we now consider the differential Lyapunov system

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′. (6.58)

This should be compared with the linear system

ẋ(t) = Ax(t) +Bu(t). (6.59)

Reachability/controllability of a differential system such as (6.59) (or (6.58)), is

the property that with suitable bounded control input u(t) (or U(t)), the solution can

be driven to any finite value. Interestingly, if either (6.59) or (6.58) is controllable, so

is the other. But, more importantly, when (6.58) is controllable, the control authority

allowed is such that steering from one value for the covariance to another can be done

by remaining within the non-negative cone. This is stated as our first theorem below.

See [92] for the proof.

Theorem 22 The Lyapunov system (6.58) is controllable iff (A,B) is a controllable

pair. Furthermore, if (6.58) is controllable, then for any two positive definite matrices

Σ0 and Σ1 and an arbitrary Q ≥ 0, there is a smooth input U(·) so that the solution

of the (forced) differential equation

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′ +Q (6.60)

satisfies the boundary conditions Σ(0) = Σ0 and Σ(1) = Σ1 and Σ(t) > 0 for all

t ∈ [0, 1].

Remark 23 It is interesting to observe that, in the case when B = B1, steering the

state-covariance via state-feedback is equivalent to modeling the evolution of state-

covariances as due to an external input process. Specifically, given the Gauss-Markov

model

dx(t) = Ax(t)dt+Bdy(t)

and a path of state-covariances {Σ(t) | t ∈ [0, 1]} that satisfies (6.60) for some U(t),

the claim is that there is a suitable process y(t) that can account for the time-evolution
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of this state-covariance. Indeed, starting from the Gauss-Markov process

dξ(t) = (A−BK(t))ξ(t)dt+Bdw(t) (6.61)

dy(t) = −K(t)ξ(t)dt+ dw(t),

with E{ξ(0)ξ(0)′} = Σ0 and

K(t) = −U(t)′Σ(t)−1,

we observe that

dξ(t) = Aξ(t)dt+Bdy(t).

Therefore ξ(t) and x(t) share the same statistics. In the converse direction, the state

covariance of (6.61) satisfies (6.60).

We now consider the problem to maintain the state process of a dynamical system

at an equilibrium distribution with a specified state-covariance Σ via static state-

feedback

u(t) = −Kx(t). (6.62)

Due to linearity, the distribution will then be Gaussian. However, depending on the

value of Σ this may not always be possible. The precise characterization of admissible

stationary state-covariances is provided in Theorem 24 given below.

Let Sn denote the linear vector space of symmetric matrices of dimension n and

note that the map

gB : Sn → Sn : Y 7→ ΠR(B)⊥YΠR(B)⊥ (6.63)

is self-adjoint. Hence, the orthogonal complement of its range is precisely its null

space, which according to the lemma in Appendix A.5, is also the range of

fB : Rn×m → Sn : X 7→ BX ′ +XB′. (6.64)

Assuming that A − BK is a Hurwitz matrix, which is necessary for the state

process {x(t) | t ∈ [0,∞)} to be stationary, the (stationary) state-covariance Σ =
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E{x(t)x(t)′} satisfies the algebraic Lyapunov equation

(A−BK)Σ + Σ(A−BK)′ = −B1B
′
1. (6.65)

Thus, the equation

AΣ + ΣA′ +B1B
′
1 +BX ′ +XB′ = 0 (6.66a)

can be solved for X,

which in particular can be taken to be X = −ΣK ′. The solvability of (6.66a) is obvi-

ously a necessary condition for Σ to qualify as a stationary state-covariance attained

via feedback. Alternatively, (6.66a) is equivalent to the statement that

AΣ + ΣA′ +B1B
′
1 ∈ R(fB). (6.66b)

The latter can be expressed as a rank condition [93, Proposition 1] in the form

rank

[
AΣ + ΣA′ +B1B

′
1 B

B 0

]
= rank

[
0 B

B 0

]
. (6.66c)

In view of Lemma 37 (Appendix A.5), (6.66b) is equivalent to

AΣ + ΣA′ +B1B
′
1 ∈ N (gB). (6.66d)

Therefore, the conditions (6.66a)-(6.66d), which are all equivalent, are necessary for

the existence of a state-feedback gain K that ensures Σ > 0 to be the stationary state

covariance of (6.36).

Conversely, if Σ > 0 satisfies (6.66) and X is the corresponding solution to (6.66a),

then (6.65) holds with K = −X ′Σ−1. Provided A − BK is a Hurwitz matrix, Σ is

an admissible stationary covariance. The property of A − BK being Hurwitz can

be guaranteed when (A − BK, B1) is a controllable pair. In turn, controllability of

(A − BK, B1) is guaranteed when R(B) ⊆ R(B1). Thus, we have established the

following.

Theorem 24 Consider the Gauss-Markov model (6.36) and assume that R(B) ⊆
R(B1). A positive-definite matrix Σ can be assigned as the stationary state covariance
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via a suitable choice of state-feedback if and only if Σ satisfies any of the equivalent

statements (6.66a)-(6.66d).

Interest in (6.66d) was raised in [10] where it was shown to characterize state-

covariances that can be maintained by state-feedback. On the other hand, conditions

(6.66a)-(6.66c) were obtained in [93, 94], for the special case when B = B1, as be-

ing necessary and sufficient for a positive-definite matrix to materialize as the state

covariance of the system driven by a stationary stochastic process (not-necessarily

white). It should be noted that in [93], the state matrix A was assumed to be already

Hurwitz so as to ensure stationarity of the state process. However, if the input is gen-

erated via feedback as above, A does not need to be Hurwitz whereas, only A−BK
needs to be.

Remark 25 We now turn to the question of which positive definite matrices mate-

rialize as state covariances of the Gauss-Markov model

dx(t) = Ax(t) +Bdy(t), (6.67)

with (A,B) controllable and A Hurwitz, when driven by some stationary stochastic

process y(t). The characterization of admissible state covariances was obtained in [93]

and amounts to the condition that

AΣ + ΣA′ ∈ R(fB)

which coincides with the condition that Σ can be assigned as in Theorem 24 by state-

feedback. A feedback system can be implemented, separate from (6.67), to generate a

suitable input process to give rise to Σ as the state covariance of (6.67). Specifically,

let X be a solution of

AΣ + ΣA′ +BX ′ +XB′ = 0, (6.68)

and

dξ(t) = (A−BK)ξ(t)dt+Bdw(t)

dy(t) = −Kξ(t)dt+ dw(t)

with

K =
1

2
B′Σ−1 −X ′Σ−1. (6.69)
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Trivially,

dξ(t) = Aξ(t)dt+Bdy(t),

and therefore, ξ(t) shares the same stationary statistics with x(t). But if S = E{ξ(t)ξ(t)′},

(A−BK)S + S(A−BK)′ +BB′ = 0,

which, in view of (6.68)-(6.69), is satisfied by S = Σ.

6.3.4 Numerical computation of optimal control

Having established feasibility for the problem to steer the state-covariance to a

given value at the end of a time interval, it is of interest to design efficient methods

to compute the optimal controls of Section 6.3.1. As an alternative to solving the

generalized Schrödinger system (6.42), we formulate the optimization as a semidefinite

program (SDP), and likewise for the infinite-horizon problem.

We are interested in computing an optimal feedback gain K(t) so that the control

signal u(t) = −K(t)x(t) steers (6.36) from Σ0 at t = 0 to Σ1 at t = 1. The expected

control energy functional

J(u) := E
{∫ 1

0

u(t)′u(t)dt

}
(6.70)

=

∫ 1

0

trace(K(t)Σ(t)K(t)′)dt

needs to be optimized overK(t) so that (6.57) holds as well as the boundary conditions

Σ(0) = Σ0, and Σ(1) = Σ1. (6.71a)

If instead we sought to optimize over U(t) := −Σ(t)K(t)′ and Σ(t), the functional

(6.70) becomes

J =

∫ 1

0

trace(U(t)′Σ(t)−1U(t))dt

which is jointly convex in U(t) and Σ(t), while (6.57) is replaced by

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′ +B1B
′
1 (6.71b)

which is now linear in both. Thus, finally, the optimization can be written as an SDP
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to minimize ∫ 1

0

trace(Y (t))dt (6.71c)

subject to (6.71a)-(6.71b) and [
Y (t) U(t)′

U(t) Σ(t)

]
≥ 0. (6.71d)

This can be solved numerically after discretization in time and a corresponding (sub-

optimal) gain recovered as K(t) = −U(t)′Σ(t)−1.

For the infinite horizon case, as noted earlier, a positive definite matrix Σ is

admissible as a stationary state covariance provided (6.66a) holds for some X and

A + BX ′Σ−1 is a Hurwitz matrix. The condition R(B) ⊆ R(B1) is a sufficient

condition for the latter to be true always, but it may be true even if R(B) ⊆ R(B1)

fails. Either way, the expected input power (energy rate) is

E{u′u} = trace(KΣK ′) (6.72)

= trace(X ′Σ−1X),

expressed in either K, or X. Thus, assuming that R(B) ⊆ R(B1) holds, and in case

(6.66a) has multiple solutions, the optimal constant feedback gain K can be obtained

by solving the convex optimization problem

min {trace(KΣK ′) | (6.66a) holds} . (6.73)

Remark 26 In case R(B) 6⊆ R(B1), the condition that A − BK be Hurwitz needs

to be verified separately. If this fails, we cannot guarantee that Σ is an admissi-

ble stationary state-covariance that can be maintained with constant state-feedback.

However, it is always possible to maintain a state-covariance that is arbitrarily close.

To see this, consider the control

Kε = K +
1

2
εB′Σ−1
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for ε > 0. Then, from (6.65),

(A−BKε)Σ + Σ(A−BKε)
′ = −εBB′ −B1B

′
1

≤ −εBB′.

The fact that A−BKε is Hurwitz is obvious. If now Σε is the solution to

(A−BKε)Σε + Σε(A−BKε)
′ = −B1B

′
1

the difference ∆ = Σ− Σε ≥ 0 and satisfies

(A−BKε)∆ + ∆(A−BKε)
′ = −εBB′,

and hence is of the order of ε.

6.4 Covariance control with state penalty

In this section, we consider the optimal steering problem for the dynamics (6.1)

with the more general cost function

E
{∫ 1

0

[‖u(t)‖2 + x(t)′S(t)x(t)]dt

}
, (6.74)

where S(t) is positive semi-definite for all t ∈ [0, 1].

For the case ε > 0, the solution can be obtained by solving a Schrödinger system.

For the case ε = 0, we can compute the solution by taking the zero-noise limit of the

previous case.

For simplicity, we present the solution for ε = 1. It corresponds to a Markov

evolution with losses. Nevertheless, the Markov kernel q(s, x, t, y) is a positive ev-

erywhere, continuous function. By Theorem 5, the solution exists and is unique.

Moreover, it is not difficult to see that the factors ϕ(t, x) and ϕ̂(t, x) (see Chapter 4)

have the form

ϕ(t, x) = c(t) exp{−1

2
x′Π(t)x}

ϕ̂(t, x) = ĉ(t) exp{−1

2
x′H(t)x}.
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By substituting the above into the Schrödinger system (4.13) and separating vari-

ables, we arrive at the following two coupled Riccati equations with split boundary

conditions

− Π̇(t) = A′Π(t) + Π(t)A− Π(t)BB′Π(t) + S(t) (6.75a)

−Ḣ(t) = A′H(t) + H(t)A+ H(t)BB′H(t)− S(t) (6.75b)

with

Σ−1
0 = Π(0) + H(0) and Σ−1

1 = Π(1) + H(1) (6.75c)

and

c(t) = exp{1

2

∫ t

0

trace(BB′Π(τ))dτ}

ĉ(t) = exp

{
−
∫ t

0

trace

[
A(τ) +

1

2
BB′H(τ)

]
dτ

}
.

Thus, the problem boils down to finding a pair (Π(t),H(t)) satisfying (6.75). Such a

pair always exists due to the existence of the solution to the SBP. For the case when

S(t) ≡ 0, it has been shown in Section 6.1 that the solution of this system has an

explicit form. For general S(·), we can compute the optimal solution as described

below using an SDP formulation [81].

The goal is to compute a feedback gain K(t) so that the control signal u(t) =

−K(t)x(t) steers (6.1) from the initial state-covariance Σ0 at t = 0 to the final state-

covariance Σ1 at t = 1. Namely, we need to minimize

J = E
{∫ 1

0

[
‖u‖2 + x(t)′S(t)x(t)

]
dt

}
(6.76)

=

∫ 1

0

[trace(K(t)Σ(t)K(t)′) + trace(S(t)Σ(t))] dt

subject to the corresponding differential Lyapunov equation for the state covariance

Σ̇(t) = (A−BK)Σ(t) + Σ(t)(A−BK)′ +BB′ (6.77)
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satisfying the boundary conditions

Σ(0) = Σ0, and Σ(1) = Σ1. (6.78a)

If we replace K(t) by U(t) := −Σ(t)K(t)′, then

J =

∫ 1

0

[trace(U(t)′Σ(t)−1U(t)) + trace(S(t)Σ(t))]dt

becomes jointly convex in U(t) and Σ(t). On the other hand, the Lyapunov equation

(6.77) becomes

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′ +BB′ (6.78b)

and is now linear in both U and Σ. Thus, our optimization problem reduces to a

SDP to minimize ∫ 1

0

[trace(Y (t)) + trace(S(t)Σ(t))]dt (6.78c)

subject to (6.78a-6.78b) and [
Y (t) U(t)′

U(t) Σ(t)

]
≥ 0. (6.78d)

After discretization in time, (6.78a-6.78d) can be solved numerically and a (subopti-

mal) gain can be recovered as

K(t) = −U(t)′Σ(t)−1.

6.5 Covariance control through output feedback

In certain cases, precise measurements of the states are not available. The mea-

surements might be corrupted with noise. For instance, we can consider the system

dx(t) = Ax(t)dt+Bu(t)dt+B1dw(t)

dy(t) = Cx(t)dt+ dv(t),

where v(t) represents the measurement noise.
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In the standard linear quadratic gaussian control theory, one can obtain the best

estimation of the state using a Kalman filter and then design the controller based on

the estimated state. Here we take a similar approach. It turns out that, as expected,

our ability to steer the distribution of the state vector, as compared to what is possible

by noise free state feedback, is only limited by an extra inequality of admissible state-

covariances to exceed the error covariance of a corresponding Kalman filter; see [95]

for additional details.

6.6 Examples

We present three examples to illustrate the results. All the examples are related

to inertial particle systems on the phase space. In the first example, we study the

effect of reducing stochastic disturbance (see Section 6.1 and 6.2). In the second

example, we consider the case when the control input and disturbance enter the

system through different channels (see Section 6.3). In the third example, we consider

similar dynamics to the first example but add an extra penalty on the state (see

Section 6.4).

6.6.1 Schrödinger bridges to OMT

Consider a large collection of inertial particles

dx(t) = v(t)dt

dv(t) = u(t)dt+
√
εdw(t).

moving in a 1-dimension configuration space (i.e., for each particle, the position x(t) ∈
R). The position x and velocity v of particles are assumed to be jointly normally

distributed in the 2-dimensional phase space ((x, v) ∈ R2) with mean and variance

m0 =

[
−5

−5

]
, and Σ0 =

[
1 0

0 1

]

at t = 0. We seek to steer the particles to a new joint Gaussian distribution with

mean and variance

m1 =

[
5

5

]
, and Σ1 =

[
1 0

0 1

]
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at t = 1. The problem to steer the particles provides also a natural way to interpolate

these two end-point marginals by providing a flow of one-time marginals at interme-

diary points t ∈ [0, 1]. In particular, we are interested in the behavior of trajectories

when the random forcing is negligible compared to the “deterministic” drift.

Figure 6.1a depicts the flow of the one-time marginals of the Schrödinger bridge

with ε = 9. The transparent tube represents the 3σ region

(ξ(t)′ −m′t)Σ−1
t (ξ(t)−mt) ≤ 9, ξ(t) =

[
x(t)

v(t)

]

and the curves with different color stand for typical sample paths of the Schrödinger

bridge. Similarly, Figures 6.1b and 6.1c depict the corresponding flows for ε = 4 and

ε = 0.01, respectively. The interpolating flow in the absence of stochastic disturbance

(ε = 0), i.e., for the optimal transport with prior, is depicted in Figure 6.1d; the

sample paths are now smooth as compared to the corresponding sample paths with

stochastic disturbance. As ε ↘ 0, the paths converge to those corresponding to

optimal transport and ε = 0.

6.6.2 Different input and disturbance channels

Consider particles that are modeled by

dx(t) = v(t)dt+ dw(t)

dv(t) = u(t)dt.

Here, u(t) is the control input (forcing) at our disposal, x(t) represents position, v(t)

is the velocity (integral of acceleration due to input forcing), while w(t) represents

random displacement due to impulsive accelerations. The purpose of the example is

to highlight a case where the control is handicapped compared to the effect of noise.

Indeed, the displacement w(t) is directly affecting the position while the control effort

needs to be integrated before it impacts the position of the particles.

Another interesting aspect of this example is thatR(B) 6⊆ R(B1) since B = [0, 1]′

while B1 = [1, 0]′. If we choose

Σ1 =

[
1 −1/2

−1/2 1/2

]
(6.79)
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(a) ε = 9 (b) ε = 4

(c) ε = 0.01 (d) ε = 0

Figure 6.1: Interpolation with different ε

as a candidate stationary state-covariance, it can be seen that (6.66a) has a unique

solution X giving rise to K = [1, 1] and a stable feedback since A−BK is Hurwitz.

We wish to steer the spread of the particles from an initial Gaussian distribution

with Σ0 = 2I at t = 0 to the terminal marginal Σ1 at t = 1, and from there on, since Σ1

is an admissible stationary state-covariance, to maintain with constant state-feedback

control.

Figure 6.2 displays typical sample paths in phase space as functions of time. These

are the result of using the optimal feedback strategy derived following (6.71c) over

the time interval [0, 1]. The optimal feedback gains K(t) = [k1(t), k2(t)] are shown

in Figure 6.3 as functions of time over the interval [0, 1], where the state-covariance
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transitions to the chosen admissible steady-state value Σ1. The corresponding cost is

J(u) = 9.38. Past the point in time t = 1, the state-covariance of the closed-loop sys-

Figure 6.2: Finite-interval steering in phase space

Figure 6.3: Optimal feedback gains in finite-interval steering

tem is maintained at this stationary value in (6.79). Figure 6.4 shows representative

sample paths in phase space under the now constant state feedback gain K = [1, 1]

over the time window [1, 5]. Finally, Figure 6.5 displays the corresponding control

action for each trajectory over the complete time interval [0, 5], which consists of the

“transient” interval [0, 1] to the target (stationary) distribution and the “stationary”

interval [1, 5].
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Figure 6.4: Steady state trajectories in phase space

Figure 6.5: Control inputs

6.6.3 State penalty

We consider again inertial particles modeled by

dx(t) = v(t)dt

dv(t) = u(t)dt+ dw(t).

We wish to steer the spread of the particles from an initial Gaussian distribution with

Σ0 = 2I at t = 0 to the terminal marginal Σ1 = 1/4I in a optimal way such that the

cost function (6.76) is minimized.

Figure 6.6a displays typical sample paths {(x(t), v(t)) | t ∈ [0, 1]} in phase space,

as a function of time, that are attained using the optimal feedback strategy derived
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following (6.78c) and S = I. The feedback gains K(t) = [k1(t), k2(t)] are shown in

Figure 6.7 as a function of time. Figure 6.8 shows the corresponding control action

for each trajectory.

(a) S = I (b) S = 10I

Figure 6.6: State trajectories

Figure 6.7: Feedback gains

For comparison, Figure 6.6b displays typical sample paths when optimal control

is used and S = 10I. As expected, Σ(·) shrinks faster as we increase the state penalty

S which is consistent with the reference evolution loosing probability mass at a higher

rate at places where the state penalty U(x) is large.
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Figure 6.8: Control inputs
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Chapter 7

Robust transport over networks

In this chapter, we generalize our framework of density steering from Euclidean spaces

to graphs. On a graph, the mass on the nodes may represent products or other

resources, and the goal is to reallocate their distributions. Our method is based on

the Schrödinger bridge problem (SBP) with the Ruelle-Bowen (RB) measure as the

prior and it leads to a robust way of transporting mass on networks.

7.1 Markov chain

A Markov chain is a stochastic process on a discrete space with the property that

the next state of the process depends only on the current state. We denote by X the

underlying discrete space. We are interested in the case when the Markov chain has

finite states, that is, X has a finite number of elements. Without loss of generality,

we consider the finite state space

X = {1, . . . , n}. (7.1)

A Markov chain is defined as a sequence of random variables {X1, X2, . . . , Xt, . . .}
taking values in X , and the sequence fulfills the condition

Prob(Xt+1 = x | X1 = x1, X2 = x2, . . . , Xt = xt) = Prob(Xt+1 = x | Xt = xt)

for all t. Let

mt,ij = Prob(Xt+1 = j | Xt = i),
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then the matrix Mt = [mt,ij]
n
i,j=1 is a stochastic matrix, i.e., the sum of each row of Mt

is 1. The stochastic matrix determines the propagation of the probability distribution

of the associated Markov chain. Let µt ∈ Rn be the probability distribution of Xt,

then it satisfies

µt+1 = M ′
tµt.

One can also view a Markov chain as a random walk on a graph with nodes in X . In

this case, the stochastic matrix Mt describes the probability distribution of jumps of

the random walker at the t-th step.

When Mt is independent of t, we call the Markov chain time-homogenous. Under

some proper assumptions like the Markov chain is irreducible and aperiodic [96], the

distribution µt converges to the invariant measure, which is the left eigenvector µ of

M associated with the eigenvalue 1, i.e.,

µ = M ′µ.

Sometimes there is probability for the random walker to disappear. This pertains to

the Markov chain with “killing” or “creation”. The evolution matrix M in this case

might not be a stochastic matrix; its row sum might be different to 1.

7.2 Schrödinger bridges on graphs

We discuss a generalization of the discrete Schrödinger bridge problem (SBP)

considered in [86,91], where the “prior” is not necessarily a probability law and mass

is not necessarily preserved during the evolution. Consider a finite state space X over

a time-indexing set

T = {0, 1, . . . , N}.

Our goal is to determine a probability distribution P on the space of paths XN+1 in

such a way that it matches the specified marginal distributions ν0(·) and νN(·) and

the resulting random evolution is the closest to the “prior” in a suitable sense.

The prior law is induced by the time-homogenous Markovian evolution

µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1 (7.2)

for nonnegative distributions µt(·) over X with t ∈ T , as is explained in what follows.
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Throughout, we assume that mij ≥ 0 for all indices i, j ∈ X and for simplicity, for

the most part, that the matrix

M = [mij]
n
i,j=1

does not depend on t. In this case, we will often assume that all entries of MN are

positive. The rows of the transition matrix M do not necessarily sum up to one,

meaning that the “total transported mass” is not necessarily preserved. This is the

case, in particular, for a Markov chain with “creation” and “killing”. It also occurs

when M simply encodes the topological structure of a directed network with mij being

zero or one, depending on whether a certain transition is allowed. The evolution (7.2),

together with the measure µ0(·), which we assume positive on X , i.e.,

µ0(x) > 0 for all x ∈ X , (7.3)

induces a measure M on XN+1 as follows. It assigns to a path x = (x0, x1, . . . , xN) ∈
XN+1 the value

M(x0, x1, . . . , xN) = µ0(x0)mx0x1 · · ·mxN−1xN , (7.4)

and gives rise to a flow of the one-time marginal

µt(xt) =
∑
x 6̀=t

M(x0, x1, . . . , xN), t ∈ T .

The “prior” distribution M on the space of paths may be at odds with a pair of

specified marginals ν0 and νN in that one or possibly both,

µ0(x0) 6= ν0(x0), µN(xN) 6= νN(xN).

We denote by P(ν0, νN) the family of probability distributions on XN+1 having

the prescribed marginals. We seek a distribution in this set which is the closest to

the prior M in a suitable entropic sense.

Recall that, for P and Q probability distributions, the Kullback-Leibler distance

(divergence, relative entropy) H(P,Q) is nonnegative and equal to zero if and only

if P = Q [97]. This can be extended to positive measures that are not probability
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distributions.

Naturally, while the value of H(P,Q) may turn out negative due to the mismatch

between scalings, the relative entropy is always jointly convex. We view the prior M

(specified by M and µ0) in a similar manner, and consider the SBP:

Problem 27 Determine

M[ν0, νN ] = argmin{H(P,M) | P ∈ P(ν0, νN)}. (7.5)

In terms of notation, we denote by M[ν0, νN ] the solution to Problem 27 with

prior measure M and marginals ν0, νN . Provided all entries of MN are positive, the

problem has a solution, which is unique due to the strict convexity of the relative

entropy function. This is stated next.

Theorem 28 Assume that MN has all positive elements. Then there exist nonneg-

ative functions ϕ(·) and ϕ̂(·) on [0, N ] × X satisfying, for t ∈ [0, N − 1], the system

ϕ(t, i) =
∑
j

mijϕ(t+ 1, j), (7.6a)

ϕ̂(t+ 1, j) =
∑
i

mijϕ̂(t, i) (7.6b)

with the boundary conditions

ϕ(0, x0)ϕ̂(0, x0) = ν0(x0) (7.6c)

ϕ(N, xN)ϕ̂(N, xN) = νN(xN), (7.6d)

for all x0, xN ∈ X . Moreover, the solution M[ν0, νN ] to Problem 27 is unique and

obtained by

M[ν0, νN ](x0, . . . , xN) = ν0(x0)πx0x1(0) · · · πxN−1xN (N − 1),

where1

πij(t) := mij
ϕ(t+ 1, j)

ϕ(t, i)
. (7.7)

1Here we use the convention that 0/0 = 0.
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Equation (7.7) specifies one-step transition probabilities that are well defined.

The factors ϕ and ϕ̂ are unique up to multiplication of ϕ by a positive constant

and division of ϕ̂ by the same constant. The statement of the theorem is analogous

to results for the classical Schrödinger system (7.6) of diffusions that have been es-

tablished by Fortet, Beurling, Jamison and Föllmer [38–41]. The requirement for MN

to have positive entries can be slightly relaxed and replaced by a suitable condition

that guarantees existence of solution for the particular ν0 and νN . The case when M

is time varying can also be readily established along the lines of [91, Theorem 4.1]

and [86, Theorem 2].

Finally, to simplify the notation, let ϕ(t) and ϕ̂(t) denote the column vectors

with components ϕ(t, i) and ϕ̂(t, i), respectively, with i ∈ X . In matrix form, (7.6a),

(7.6b) and (7.7) read

ϕ(t) = Mϕ(t+ 1), ϕ̂(t+ 1) = M ′ϕ̂(t), (7.8a)

and

Π(t) = [πij(t)] = diag(ϕ(t))−1M diag(ϕ(t+ 1)). (7.8b)

7.2.1 Time-homogeneous bridges

We now consider the SBP when the marginals are idential, namely, ν0 = νN = ν.

In particular, we are interested in the case when the solution of the SBP corresponds

to a time-homogeneous Markov evolution. We begin by stating the celebrated Perron-

Frobenous theorem (see [98]), which will be needed later.

Theorem 29 (Perron-Frobenius) Let A = (aij) be an n× n matrix with nonneg-

ative elements. Suppose there exists N such that AN has only positive elements. Let

λA be the spectral radius of A, then

i) λA > 0 is an eigenvalue of A;

ii) λA is a simple eigenvalue;

iii) there exists an eigenvector v corresponding to λA with strictly positive entries;

iv) v is the only non-negative eigenvector of A;
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v) let B = [bij] be a n×n matrix with nonnegative elements. If aij ≤ bij, ∀i, j ≤ n

and A 6= B, then λA < λB.

Since MN has only positive elements by assumption, we conclude, by the above

Perron-Frobenous theorem, that M has a unique positive eigenvalue λM and it is equal

to the spectral radius. Let φ and φ̂ be the corresponding right and left eigenvectors,

then both of them have only positive components. If we normalize φ and φ̂ so that∑
x∈X

φ(x)φ̂(x) = 1,

then

ν̄(x) = φ(x)φ̂(x) (7.9)

is a probability vector. Furthermore, ν̄ has the following property.

Theorem 30 Let M be a nonnegative matrix such that MN has only positive ele-

ments, and M the measure on XN+1 given by (7.2) with µ0 satisfying (7.3). Then

the solution to the SBP

M[ν̄, ν̄] = argmin{H(P,M)|P ∈ P(ν̄, ν̄)}, (7.10)

where ν̄ is as in (7.9), has the time-invariant transition matrix

Π̄ = λ−1
M diag(φ)−1M diag(φ) (7.11)

and invariant measure ν̄.

Proof Since φ and φ̂ are right and left eigenvectors of M associated with the eigen-

value λM , the nonnegative functions ϕ and ϕ̂ defined by

ϕ(t, x) = λtMφ(x), ϕ̂(t, x) = λ−tM φ̂(x)

satisfy the Schrödinger system (7.6). By Theorem 28, the solution M[ν̄, ν̄] of the SBP

(7.10) has the transition matrix (see (7.7))

Π̄ = diag(ϕ(0))−1M diag(ϕ(1))

= λ−1
M diag(φ)−1M diag(φ),
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which is exactly (7.11). Moreover, since

Π̄′ν̄ = λ−1
M diag(φ)M ′φ̂ = ν̄,

it follows that ν̄ is the corresponding invariant measure.

We refer to this special Schrödinger bridge as the time-homogenous bridge associ-

ated with M . As we shall see in the next section, when M is the adjacency matrix of

a strongly connected, directed graph, the associated time-homogenous bridge turns

out to be the Ruelle-Bowen measure MRB [12, Section III]. This probability measure

has a number of beautiful properties. In particular, it gives the same probability to

paths of the same length between any two given nodes.

7.3 Ruelle Bowen random walks

In this section we explain the Ruelle-Bowen random walk [11] and some of its

properties. We follow closely Delvenne and Libert [12]. The RB random walk amounts

to a Markovian evolution on a directed graph that assigns equal probabilities to all

paths of equal length between any two nodes. The motivation of [12] was to assign a

natural invariant probability to nodes based on relations that are encoded by a graph

topology, and thereby determine a centrality measure, akin to Google Page ranking,

yet more robust and discriminating [12]. Our motivation is quite different. The RB

random walk provides a uniform distribution on paths. Therefore, it represents a

natural distribution to serve as prior in the SBP in order to achieve a maximum

spreading of the mass transported over the available paths. In this section, besides

reviewing basics on the RB random walk, we show that the RB distribution is itself

a solution to a SBP.

We consider a strongly connected aperiodic, directed graph

G = (X , E)

with nodes in X . The idea in Google Page rank is based on a random walk where a

jump takes place from one node to any of its neighbors with equal probability. The

alternative proposed in [12] is an entropy ranking, based on the stationary distribution

of the RB random walk [11, 99]. The transition mechanism is such that it induces a
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uniform distribution on paths of equal length joining any two nodes. This distribution

is characterized as the one maximizing the entropy rate [97] for the random walker.

Let us briefly recall the relevant concept. The Shannon entropy for paths of length t

is at most

log |{paths of length t}|.

Here |{·}| denotes the cardinality of a set. Hence, the entropy rate is bounded by the

topological entropy rate

HG = lim sup
t→∞

(log |{paths of length t}|/t).

Notice that HG only depends on the graph G and not on the probability distribution

on paths. More specifically, if A denotes the adjacency matrix of the graph, then the

number of paths of length t is the sum of all the entries of At. Thus, it follows that

HG is the logarithm of the spectral radius of A, namely,

HG = log(λA). (7.12)

We next construct the Ruelle-Bowen random walk. Since A is the adjacency

matrix of a strongly connected aperiodic graph, it satisfies that AN has only positive

elements for some N > 0. By Perron-Frobenius Theorem, the spectral radius λA is

an eigenvalue of A, and the associated left and right eigenvectors2 u and v, i.e.,

A′u = λAu, Av = λAv (7.13)

have only positive components. We further normalize u and v so that

〈u, v〉 :=
∑
i∈X

uivi = 1.

As in Section 7.2.1, it is readily seen that their componentwise multiplication

µRB(i) = uivi (7.14)

2We are now following the notation in [12] for ease of comparison. Hence we use u and v rather

than φ̂ and φ.
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defines a probability distribution that is invariant under the transition matrix

R = [rij], rij =
vj
λAvi

aij, (7.15)

namely,

R′µRB = µRB. (7.16)

The transition matrix R in (7.15) together with the stationary measure µRB in (7.14),

define the Ruelle-Bowen path measure

MRB(x0, x1, . . . , xN) := µRB(x0)rx0x1 · · · rxN−1xN . (7.17)

Proposition 11 The RB measure MRB (7.17) assigns probability λ−tA uivj to any path

of length t from node i to node j.

Proof Starting from the stationary distribution (7.14), and in view of (7.15), the

probability of a path ij is

uivi

(
1

λA
v−1
i vj

)
=

1

λA
uivj,

assuming that node j is accessible from node i in one step. Likewise, the probability

of the path ijk is

uivi

(
1

λA
v−1
i vj

)(
1

λA
v−1
j vk

)
=

1

λ2
A

uivk

independent of the intermediate state j, and so on. Thus, the claim follows.

Thus, the Ruelle-Bowen measure MRB has the striking property that it induces a

uniform probability measure on paths of equal length between any two given nodes.

We quote from [12] “Since the number of paths of length t is of the order of λtA (up

to a factor) the distribution on paths of fixed length is uniform up to a factor (which

does not depend on t). Hence the Shannon entropy of paths of length t grows as

t log λA, up to an additive constant. The entropy rate of this distribution is thus

log λA which is optimal” by the expression for HG in (7.12).

The construction of the RB measure is obviously a special case of the measure ν̄

in (7.9) in Section 7.2.1 when M is the adjacency matrix A of a graph. Therefore,
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the RB measure is the solution of the particular SBP when the “prior” transition

mechanism is given by the adjacency matrix! This observation is apparently new and

beautifully links the topological entropy rate to a maximum entropy problem on path

space. This is summarized as follows.

Proposition 12 Let A be the adjacency matrix of a strongly connected graph ape-

riodic G, M the nonnegative measure on XN+1 given by (7.2) with M = A and µ0

satisfying (7.3). Then, the Ruelle-Bowen measure MRB (7.17) solves the SBP (7.5)

with marginals ν0 = νN = µRB.

7.4 Robust transport on graphs

Once again we consider a strongly connected aperiodic, directed graph G with

n vertices and seek to transport a unit mass from initial distribution ν0 to terminal

distribution νN in at most N steps. We identify node 1 as a source and node n as a

sink. The task is formalized by setting an initial marginal distribution ν0(x) = δ1x(x)

the Kronecker’s delta. Similarly, the final distribution is νN(x) = δnx(x). We seek a

transportation plan which is robust and avoids congestion as much as the topology

of the graph permits. This latter feature of the transportation plan will be achieved

in this section indirectly, without explicitly bringing into the picture the capacity of

each edge. With these two key specifications in mind, we intend to control the flux so

that the initial mass spreads as much as possible on the feasible paths joining vertices

1 and n in N steps before reconvening at time N in vertex n. We shall achieve this

by constructing a suitable, possibly time-varying, Markovian transition mechanism.

As we want to allow for the possibility that all or part of the mass reaches node n

at some time less than N , we always include a loop in node n so that our adjacency

matrix A always has ann = 1. As explained in Section 7.3 that MRB gives equal

probability to paths joining two specific vertices, it is natural to use it as a prior in

the SBP with marginals δ1x, δnx so as to achieve the spread of the probability mass on

the feasible paths joining the source with the sink. Thus, we consider the following.

Problem 31 Determine

MRB[δ1x, δnx] = argmin{H(P,MRB)|P ∈ P(δ1x, δnx)}.
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By Theorem 28, the optimal, time varying transition matrix Π(t) of the above

problem is given, recalling the notation in (7.8), by

Π(t) = diag(ϕ(t))−1R diag(ϕ(t+ 1)), (7.18)

where

ϕ(t) = Rϕ(t+ 1), ϕ̂(t+ 1) = RT ϕ̂(t),

with the boundary conditions

ϕ(0, x)ϕ̂(0, x) = δ1x(x), ϕ(N, x)ϕ̂(N, x) = δnx(x) (7.19)

for all x ∈ X . In view of (7.15), if we define

ϕv(t) := λ−tA diag(v)ϕ(t), ϕ̂v(t) := λtA diag(v)−1ϕ̂(t),

then we have

ϕv(t) = Aϕv(t+ 1), ϕ̂v(t+ 1) = A′ϕ̂v(t), t = 0, . . . , N − 1.

Moreover,

ϕv(t, x)ϕ̂v(t, x) = ϕ(t, x)ϕ̂(t, x), t = 0, . . . , N − 1, x ∈ X .

Here, again, A is the adjacency matrix of G and v is a right eigenvector corresponding

to the spectral radius λA.

The above analysis provides another interesting way to express MRB[δ1x, δnx];

it also solves the SBP with the same marginals δ1x and δnx but with a different

prior transition matrix A, the adjacency matrix. Thus, we can replace the two-step

procedure by a single bridge problem. This is summarized in the following proposition.

Proposition 13 Let A be the adjacency matrix of a strongly connected aperiodic

graph G, M the nonnegative measure on XN+1 given by (7.2) with M = A and

µ0 satisfying (7.3). Then, the solution MRB[δ1x, δnx] of Problem 31 also solves the
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Schrödinger bridge problem

min{H(P,M)|P ∈ P(δ1x, δnx)}. (7.20)

The iterative algorithm of [86, Section III] can now be based on (7.20) to efficiently

compute the transition matrix of the optimal robust transport plan MRB[δ1x, δnx], or

equivalently, M[δ1x, δnx].

Remark 32 Observe that if AN has also zero elements, the robust transport described

in this section may still be feasible provided there is at least one path of length N

joining node 1 with node n, i.e., (AN)1n > 0.

As we discussed in the beginning of this section, the intuition to use MRB as a

prior is to achieve a uniform spreading of the probability on all the feasible paths

connecting the source and the sink. It turns out that this is indeed the case; the

solution MRB[δ1x, δnx] of Problem 31 assigns equal probability to all the feasible paths

of lengthsN joining the source 1 with the sink n. To see this, by (7.18), the probability

of the optimal transport plan MRB[δ1x, δnx] assigns on path x = (x0, x1, . . . , xN) is

MRB[δ1x, δnx](x) = δ1x(x0)
N−1∏
t=1

rxtxt+1

ϕ(t+ 1, xt+1)

ϕ(t, xt)

= δ1x(x0)
ϕv(N, xN)

ϕv(0, x0)

N−1∏
t=1

axtxt+1 .

Indeed,
∏N−1

t=1 axtxt+1 = 1 for a feasible path and 0 otherwise. Moreover, δ1x(x0)ϕv(N,xN )
ϕv(0,x0)

depends only on the boundary points x0, xN . We conclude that MRB[δ1x, δnx] assigns

equal probability to all the feasible paths. Finally, there are (AN)1n feasible paths of

length N connecting nodes 1 and n. Thus we have established the following result.

Proposition 14 MRB[δ1x, δnx] assigns probability 1/(AN)1n to each of the feasible

paths of length N connecting node 1 with node n.

7.5 OMT on graphs and its regularization

We consider the graph G = (X , E) and seek to transport a given probability

distribution ν0 to a specified destination νN , in N steps, by suitably distributing the
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probability mass along paths (x0, . . . , xN). We consider that there is a nontrivial cost

Uij for traversing an edge (i, j) at any given time3 and relate the classical Monge-

Kantorovich problem to a stochastic regularization that can be cast as a SBP.

We first consider minimizing the transportation cost

U(P ) :=
∑

{(x0,...,xN )}

ν0(x0)
N−1∏
t=0

pxtxt+1(t)

(
N−1∑
t=0

Uxtxt+1

)
.

over a transportation plan specified by a measure

P (x0, . . . , xN) = ν0(x0)
N−1∏
t=0

pxtxt+1(t), (7.21)

so as to be consistent with an end-point specified marginal

νN(xN) =
∑

x0,...,xN−1

P (x0, . . . , xN). (7.22)

Problem 33 Determine transition probabilities pxtxt+1 to minimize U(P ) subject to

(7.22).

This a discrete version of the Monge-Kantorovich Optimal Mass Transport (OMT)

problem. One approach (e.g., see [100]) is to first identify the least costly path(s)

(x0, x
∗
1, . . . , x

∗
N−1, xN) from any starting node x0 ∈ X to any ending node xN , along

with the corresponding end-point cost for a unit mass4,

Cx0xN = min
x∗1,...,x

∗
N−1

(
Ux0x∗1

+ . . .+ Ux∗N−1xN

)
.

This is a combinatorial problem but can also be cast as a linear program [101]. Having

a solution to this first problem, the OMT problem can then be recast as the linear

3For simplicity, we assume that this cost does not vary with time.
4We assume a self loop for each node with zero cost, i.e., Uxx = 0 for each x ∈ X .
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program

min
q

{∑
x0,xN

qx0,xNCx0xN | qx0,xN ≥ 0,
∑
x0

qx0,xN = νN(xN),
∑
xN

qx0,xN = ν0(x0)

}
.

(7.23)

The solution to (7.23) is the transport plan qx0,xN which dictates the portion of

mass that is to be sent from x0 to xN along the corresponding least costly path

(x0, x
∗
1, . . . , x

∗
N−1, xN). Alternatively, the MK problem can be directly cast as a linear

program in as many variables as there are edges [101].

An apparent shortcoming of the OMT formalism is the “rigidity” of the trans-

portation to utilize only paths with minimal cost from starting to ending node. Herein,

instead, we seek a mechanism that allows the usage of additional paths as a way to

provide robustness and reduce congestion. To this end, as an alternative to the OMT

problem, we propose to consider as our cost the Helmholtz free energy

F := U − TeffS (7.24)

where Teff is an effective “temperature” and S is the entropy of the transport plan

S = −
∑

x0,...,xN

P (x0, . . . , xN) log (P (x0, . . . , xN))

The temperature Teff serves the role of a regularization parameter, with higher tem-

perature corresponding to a larger spread of the distribution along alternative paths.

In the other direction, when Teff → 0, we recover the solution to the optimal mass

transport (cf. [42, 49,51,87]).

The roots of our formalism can be traced to thermodynamics and the connection

to SBP can be seen via the well-known correspondence between free energy and the

relative entropy between corresponding distributions. In more detail, let G = (X , E)

by a graph with n nodes and adjacency matrix A = [aij]
n
i,j=1, and let P in (7.21) a

probability law on N -step paths between nodes. Define B = [bij]
n
i,j=1 with

bij = aij exp

(
− 1

Teff

Uij

)
, (7.25)

110



when (i, j) ∈ E and zero otherwise, and the nonnegative measure

MU(x0, x1, . . . , xN) = bx0x1 · · · bxN−1xN

By direct substitution, it can be seen that

F(P ) = Teff H(P,MU). (7.26)

Thus, we are led to the following SBP.

Problem 34 Determine

MU [ν0, νN ] = argmin{H(P,MU) | P ∈ P(ν0, νN)}.

It is evident that a judicious selection of Uij’s (or time-varying Uij(t)’s more gen-

erally) and Teff , can influence the choice and spread of paths in effecting the transport

task. This can be done in accordance with the capacity or cost of transporting along

various edges. Moreover, the Uij’s can be used to reduce congestion by imposing

added cost on using critical nodes.

Besides the added flexibility in dictating preferences in the choice of paths, the

regularized transport problem is precisely a SBP between specified marginals ν0 and

νN with respect to a prior specified by B. Thus, the tools and ideas that we saw earlier

are applicable verbatim. The significance of the new formulation, as compared to the

OMT problem, stems from the fact that the SBP is computationally more attractive

as its solution can be computed iteratively as the fixed point of a map [51,87].

In a similar manner as in Section 7.4, where we showed the equivalence of Prob-

lems 31 and that in (7.20), Problem 34 is equivalent to Problem 35 given below.

To this end, we apply the Perron-Frobenius theorem. Now uB and vB are the left

and right eigenvectors of the matrix B with positive entries. They correspond to the

spectral radius λB of B, i.e.,

B′uB = λBu
B, BvB = λBv

B.

They are normalized so that 〈uB, vB〉 =
∑

i u
B
i v

B
i = 1. Then the vector µURB with en-

tries uBi v
B
i represents a probability distribution which is invariant under the transition
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matrix

RU = [rUij ] = λ−1
B diag(vB)−1B diag(vB),

with entries

rUij =
1

λB

vBj
vBi

exp

(
− 1

Teff

Uij

)
.

Thus, the stationary measure µURB defines a weighted Ruelle-Bowen path-space measure

MU
RB(x0, x1, . . . , xN) := µURB(x0)rUx0x1

· · · rUxN−1xN
, (7.27)

and we arrive at the problem below.

Problem 35 Determine

MU
RB[ν0, νN ] = argmin{H(P,MU

RB) | P ∈ P(ν0, νN)}.

The solution MU
RB[ν0, νN ] to Problem 35 is equal to the solution MU [ν0, νN ] to Prob-

lem 34. They have the same pinned bridges [46, 73]as the weighted RB path space

measure MU
RB. The nature of these pinned bridges become evident from the proba-

bility assigned to individual paths which is given next.

Proposition 15 The measure MU
RB (7.27) assigns probability

λ−tB exp

(
1

Teff

t−1∑
`=1

Ux`x`+1

)
uBi v

B
j

to any path of length t from node i to j.

Clearly, the path space measure MU
RB is no longer uniform on paths of equal

length, and the pinned bridges now are

Prob(x1, . . . , xn−1|x0, xN) ∼ exp

(
1

Teff

N−1∑
`=1

Ux`x`+1

)
.

This represents a Boltzmann distribution on the path space (cf. [12, Section IV]) and
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MU
RB minimizes free energy (often referred to as topological pressure) giving a value

F(MU
RB) = Teff log λB.

Remark 36 This framework can be applied to study transport problem over graph

which is not strongly connected. One can add fake links to the graph to make it

strongly connected. However, to make the flow on those fake edges negligible, each

fake edge comes with a large cost Uij.

7.6 Examples

Figure 7.1: Network topology

We present a simple academic example to illustrate our method. Consider the

graph in Figure 7.1 with the following adjacency matrix

A =



0 1 1 1 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1


.

We seek to transport a unit mass from node 1 to node 9 in N = 3 and 4 steps. We

add a self loop at node 9, i.e., a99 = 1, to allow for transport paths with different step

sizes.

The shortest path from node 1 to 9 is of length 3 and there are three such paths,

which are 1 − 2 − 7 − 9, 1 − 3 − 8 − 9, and 1 − 4 − 8 − 9. If we want to transport
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the mass with minimum number of steps, we may end up using one of these three

paths. This is not so robust. On the other hand, if we apply the Schrödinger bridge

framework with the RB measure MRB as the prior, then we get a transport plan with

equal probabilities using all these three paths. The evolution of mass distribution is

given by 
1 0 0 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0 0 0

0 0 0 0 0 0 1/3 2/3 0

0 0 0 0 0 0 0 0 1

 ,
where the four rows of the matrix show the mass distribution at time step t = 0, 1, 2, 3

respectively. As we can see, the mass spreads out first and then goes to node 9. When

we allow for more steps N = 4, the mass spreads even more before reassembling at

node 9, as shown below
1 0 0 0 0 0 0 0 0

0 4/7 2/7 1/7 0 0 0 0 0

0 0 1/7 1/7 2/7 0 1/7 2/7 0

0 0 0 0 0 1/7 1/7 2/7 3/7

0 0 0 0 0 0 0 0 1

 .

Now we change the graph by adding a cost on the edge (7, 9). In particular, we

consider the weighted adjacency matrix

B =



0 1 1 1 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0.5

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1


.

When N = 3 steps is allowed to transport a unit mass from node 1 to node 9, the
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evolution of mass distribution for the optimal transport plan is given by
1 0 0 0 0 0 0 0 0

0 1/5 2/5 2/5 0 0 0 0 0

0 0 0 0 0 0 1/5 4/5 0

0 0 0 0 0 0 0 0 1

 .

The mass travels through paths 1−2−7−9, 1−3−8−9 and 1−4−8−9, but unlike

the unweighted case, the transport plan doesn’t take equal probability for these three

paths Since we added a cost on the edge (7, 9), the probability that the mass takes

this path becomes smaller. The plan does, however, assign equal probability to the

two minimum cost paths 1− 3− 8− 9 and 1− 4− 8− 9 in agreement with Theorem

14. Similar phenomenon appears when we allow for more steps N = 4, with mass

evolution as shown below
1 0 0 0 0 0 0 0 0

0 1/2 1/3 1/6 0 0 0 0 0

0 0 1/6 1/6 1/4 0 1/12 1/3 0

0 0 0 0 0 1/6 1/12 1/3 5/12

0 0 0 0 0 0 0 0 1

 .

Next we consider the case where the underlying graph is not strongly connected.

In particular, we delete several links in Figure 7.1 to make it not strongly connected

and consider the graph in Figure 7.2. Again we want to transport a unit mass from

Figure 7.2: Network topology

node 1 to node 9. In order to do this, we add an artificial energy U0 to each non

existing link as discussed in Section 7.5. We display the results for N = 4 steps.
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When we take U0 = 2, the evolution of mass is
1 0 0 0 0 0 0 0 0

0.0415 0.4079 0.3416 0.0326 0.0462 0.0326 0.0326 0.0326 0.0326

0.0270 0.0349 0.1740 0.1477 0.2330 0.0603 0.0603 0.1614 0.1014

0.0116 0.0152 0.0199 0.0242 0.0163 0.1709 0.1709 0.2641 0.3069

0 0 0 0 0 0 0 0 1

 .

We can see that there are quite a portion of mass traveling along non existing edges.

If we increase the value to U0 = 8, then the mass evolution becomes
1.0000 0 0 0 0 0 0 0 0

0.0001 0.5995 0.4000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0000 0.0000 0.2000 0.1999 0.3994 0.0002 0.0002 0.1999 0.0004

0.0000 0.0000 0.0000 0.0001 0.0000 0.1999 0.1999 0.3995 0.2007

0 0 0 0 0 0 0 0 1.0000

 .

The portion of mass traveling along non existing edges is negligible. Eventually, all

the mass would be transported along feasible paths and the mass evolution becomes
1 0 0 0 0 0 0 0 0

0 3/5 2/5 0 0 0 0 0 0

0 0 1/5 1/5 2/5 0 0 1/5 0

0 0 0 0 0 1/5 1/5 2/5 1/5

0 0 0 0 0 0 0 0 1

 .
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Chapter 8

Conclusion and discussion

The theme of this work has been the modeling and control of a collection of identical

and indistinguishable dynamical systems. Equivalently, the setting may be seen as

modeling and controlling a single system with stochastic uncertainty. There are two

complementing viewpoints and goals. First, for the modeling problem, to determine

the most likely path that the dynamical systems have followed between known em-

pirical marginal distributions and, second, for the control problem, how to effect the

transition of the collection between specified marginals with minimal cost. Evidently,

the latter is an optimal control problem whereas the former relates to the latter via

Girsanov’s theory for the case of quadratic cost. The framework should be contrasted

with standard optimal control aimed at driving the state of a dynamical system from

one value to another with minimum cost. In the present setting, initial and final

states are thought to be uncertain and only required to abide by specified marginal

distributions.

We make contact with the theory of optimal mass transport (OMT) and the

theory of the Schrödinger bridge problem (SBP). Historically, OMT (Monge 1781)

and SBP (Schrödinger 1931/32) represent the first formulation of a deterministic and

a stochastic density steering problem, respectively. In this work we have consid-

ered various natural generalizations of OMT and SBP which, in particular, include

the problem to transport inertial particles, particles with killing, between end-point

distributions in continuous space as well as particles transported between discrete

end-point distributions on a graph. In the case of the SBP the cost can be conve-

niently expressed as an entropy functional, which encompasses the setting of discrete
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and continuous spaces within the same framework. There are important differences in

the absence of stochastic excitation (OMT) as well as in when control and stochastic

excitation influence the process along different directions in state space, and in those

cases there is a dichotomy between the control-theoretic viewpoint and a probabilistic

one.

The special case of linear dynamics and Gaussian marginals has been dealt in

detail with the optimal control given in closed form based on Riccati equations. For

the general case of arbitrary marginals it is shown that OMT and the SBP are closely

related and that the solution to OMT can be obtained as a limiting case. For the

general case, we focused on algorithmic aspects in addressing numerically such prob-

lems. In particular, it is shown that the geometry of positive cones and that of the

Hilbert metric play an important role.

At the other end, over discrete spaces, stochastic transport relates to Markov

chains and the classical Sinkhorn iteration. In particular, we have proposed a novel

approach to design robust transportation plans on graphs. It relies on the SBP for

measures on paths of the given network. Taking as prior measure the Ruelle-Bowen

random walker, the solution naturally tends to spread the mass on all available routes

joining the source and the sink. Hence, the resulting transport appears robust against

links/nodes failure. This approach can be adapted to weighted graphs to effectively

compromise between robustness and cost. Indeed, we exhibit a robust transportation

plan which assigns maximum probability to minimum cost paths and therefore appears

attractive when compared with OMT approaches. The transport plan is computed

by solving a SBP, for which an efficient iterative algorithm is available. In addition,

the concepts like entropy, free energy, and temperature we used in this chapter may

open a door to study robustness of graphs. In fact, this may impact the current

trends and interests of the controls community, leading to the development of useful

models for power flow and the interaction of subsystems through communication and

transportation networks.

There is a wide range of possible applications as well as extensions of the theory

that lay ahead. The problem of combining estimation and control in this new, non-

classical, setting is important for applications to sensing and control of micro-systems,

especially when thermal noise is a limiting factor. In particular, we expect that

the theory of the SBP will be especially important in the control of thermodynamic
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systems. Ideas from OMT and the SBP are increasing pertinent in control of networks

and geometric notions that characterize connectivity of graphs can be based on the

ease of solving relevant transport problems. This direction may provide new insights

and directions in the theory of networks. Finally, the inverse problem of identifying

flows that are consistent with empirical marginals, may be used to identify potential

that is responsible for density flows and corresponding physical laws.
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bilités de Saint-Flour XV–XVII, 1985–87 , Springer, 1988, pp. 101–203.
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Appendix A

Appendix

A.1 Proof of Proposition 4

The velocity field associated with u(t, x) = B(t)′∇ψ(t, x) is

v(t, x) = A(t)x+B(t)B(t)′∇ψ(t, x),

which is well-defined almost everywhere (as it will be shown below that ψ is indeed

differentiable almost everywhere). Since we already know from previous discussion

that Tt in (5.28b) gives the trajectories associated with the optimal transportation

plan, it suffices to show

v(t, ·) ◦ Tt = dTt/dt,

that is, v(t, x) is the velocity field associated with the trajectories (Tt)0≤t≤1. We next

prove v(t, ·) ◦ Tt = dTt/dt.

For 0 < t < 1, formula (5.35) can be rewritten as

g(x) = sup
y

{
x′M(t, 0)−1Φ(t, 0)y − f(y)

}
,

with

g(x) =
1

2
x′M(t, 0)−1x− ψ(t, x)

f(y) =
1

2
y′Φ(t, 0)′M(t, 0)−1Φ(t, 0)y + ψ(0, y).
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The function

f(y) =
1

2
y′Φ(t, 0)′M(t, 0)−1Φ(t, 0)y + ψ(0, y)

=
1

2
y′
[
Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M

−1
10 Φ10

]
y + φ(M

−1/2
10 Φ10y)

is uniformly convex since φ is convex and the matrix

Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M
−1
10 Φ10 =

(∫ t

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

−
(∫ 1

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

is positive definite. Hence, f, g, ψ are differentiable almost everywhere, and from a

similar argument to the case of Legendre transform, we obtain

∇g ◦ (M(t, 0)Φ(0, t)′∇f(x)) = M(t, 0)−1Φ(t, 0)x

for all x ∈ Rn. It follows

(M(t, 0)−1 −∇ψ(t, ·)) ◦
(
M(t, 0)Φ(0, t)′

[
Φ(t, 0)′M(t, 0)−1Φ(t, 0)x+∇ψ(0, x)

])
=M(t, 0)−1Φ(t, 0)x.

After some cancellations it yields

∇ψ(t, ·) ◦ Φ(t, 0)x+∇ψ(t, ·) ◦M(t, 0)Φ(0, t)′∇ψ(0, x)− Φ(0, t)′∇ψ(0, x) = 0.

On the other hand, since

T (x) = M
−1/2
10 ∇φ(M

−1/2
10 Φ10x) = M10Φ′01∇ψ(0, x) + Φ10x,

we have

Tt(x) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 T (x)

= Φ(t, 0)x+M(t, 0)Φ(0, t)′∇ψ(0, x),
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from which it follows

dTt(x)

dt
= A(t)Φ(t, 0)x+ A(t)M(t, 0)Φ(0, t)′∇ψ(0, x) +B(t)B(t)′Φ(0, t)′∇ψ(0, x).

Therefore,

v(t, ·) ◦ Tt(x)− dTt(x)

dt

= [A(t) +B(t)B(t)′∇ψ(t, ·)] ◦ [Φ(t, 0)x+M(t, 0)Φ(0, t)′∇ψ(0, x)]

− [A(t)Φ(t, 0)x+ A(t)M(t, 0)Φ(0, t)′∇ψ(0, x) +B(t)B(t)′Φ(0, t)′∇ψ(0, x)]

=B(t)B(t)′ {∇ψ(t, ·) ◦ Φ(t, 0)x+∇ψ(t, ·) ◦M(t, 0)Φ(0, t)′∇ψ(0, x)−Φ(0, t)′∇ψ(0, x)}

=0,

which completes the proof.

A.2 Proof of Theorem 10

The Markov kernel of (5.39) is

qε(s, x, t, y)=(2πε)−n/2|M(t, s)|−1/2 exp

(
− 1

2ε
(y − Φ(t, s)x)′M(t, s)−1(y − Φ(t, s)x)

)
.

Comparing this and the Brownian kernel qB,ε we obtain

qε(s, x, t, y) = (t− s)n/2|M(t, s)|−1/2qB,ε(s,M(t, s)−1/2Φ(t, s)x, t,M(t, s)−1/2y).

Now define two new marginal distributions ρ̂0 and ρ̂1 through the coordinates trans-

formation C in (5.24),

ρ̂0(x) = |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x),

ρ̂1(x) = |M10|1/2ρ1(M
1/2
10 x).

Let (ϕ̂0, ϕ1) be a pair that solves the Schrödinger bridge problem with kernel qε and

marginals ρ0, ρ1, and define (ϕ̂B0 , ϕ
B
1 ) as

ϕ̂0(x) = |Φ10|ϕ̂B0 (M
−1/2
10 Φ10x), (A.1a)

ϕ1(x) = |M10|−1/2ϕB1 (M
−1/2
10 x), (A.1b)
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then the pair (ϕ̂B0 , ϕ
B
1 ) solves the Schrödinger bridge problem with kernel qB,ε and

marginals ρ̂0, ρ̂1. To verify this, we need only to show that the joint distribution

PB,ε01 (E) =

∫
E

qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dxdy

matches the marginals ρ̂0, ρ̂1. This follows from∫
Rn
qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dy

=

∫
Rn
qB,ε(0, x, 1,M

−1/2
10 y)ϕ̂B0 (x)ϕB1 (M

−1/2
10 y)d(M

−1/2
10 y)

= |M10|1/2|Φ10|−1

∫
Rn
qε(0,Φ−1

10 M
1/2
10 x, 1, y)ϕ̂0(Φ−1

10 M
1/2
10 x)ϕ1(y)dy

= |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x) = ρ̂0(x),

and ∫
Rn
qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dx

=

∫
Rn
qB,ε(0,M

−1/2
10 Φ10x, 1, y)ϕ̂B0 (M

−1/2
10 Φ10x)ϕB1 (y)d(M

−1/2
10 Φ10x)

= |M10|1/2
∫
Rn
qε(0, x, 1,M

1/2
10 y)ϕ̂0(x)ϕ1(M

1/2
10 y)dx

= |M10|1/2ρ1(M
1/2
10 y) = ρ̂1(y).

Compare PB,ε01 with Pε01 it is not difficult to find out that PB,ε01 is a push-forward of

Pε01, that is,

PB,ε01 = C]Pε01.

On the other hand, let πB be the solution to classical OMT (3.3) with marginals

ρ̂0, ρ̂1, then

πB = C]π.

Now since PB,ε01 weakly converge to πB from Theorem 9, we conclude that Pε01 weakly

converge to π as ε goes to 0.

We next show Pεt weakly converges to µt as ε goes to 0 for all t. The corresponding
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path space measure µ can be expressed as

µ(·) =

∫
Rn×Rn

δγxy(·) π(dxdy),

where γxy is the minimum energy path (5.22) connecting x, y, and δγxy is the Dirac

measure concentrated on γxy. Similarly, the Schrödinger bridge Pε can be decomposed

[42] as

Pε(·) =

∫
Rn×Rn

Qxy,ε(·) Pε01(dxdy),

where Qxy,ε is the pinned bridge [46] (a generalization of Brownian bridge) associ-

ated with (5.39) conditioned on xε(0) = x and xε(1) = y, and it has the stochastic

differential equation representation

dxε(t) = (A(t)−B(t)B(t)′Φ(1, t)′M(1, t)−1Φ(1, t))xε(t)dt

+B(t)B(t)′Φ(1, t)′M(1, t)−1ydt+
√
εB(t)dw(t) (A.2)

with initial value xε(0) = x. As ε goes to zero, Qxy,ε tends to concentrate on the

solution of

dx0(t) = (A(t)−B(t)B(t)′Φ(1, t)′M(1, t)−1Φ(1, t))x0(t)dt

+B(t)B(t)′Φ(1, t)′M(1, t)−1ydt, x0(0) = x,

which is γxy. The linear stochastic differential equation (A.2) represents a Gaussian

process. It has the following explicit expression

xε(t) = γxy(t) +
√
ε

∫ t

0

Φ̃(t, τ)B(τ)dw(τ), 0 ≤ t < 1, (A.3)

where Φ̃ is the transition matrix of the dynamics (A.2), and xε(t) converges to y almost

surely as t goes to 1, see [46]. From (A.3) it is easy to see that the autocovariance

of xε(·) depends linearly on ε and therefore goes to 0 as ε → 0. Combining this

and the fact xε(·) is a Gaussian process we conclude that the set of processes xε(·) is

tight [31, Theorem 7.3] and their finite dimensional distributions converge weakly to

those of x0(·). Hence, Qxy,ε converges weakly to δγxy [31, Theorem 7.1] as ε goes to 0.

We finally claim that Pεt weakly converges to µt as ε goes to 0 for each t. To see
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this, choose a bounded, uniformly continuous1 function h and define

gε(x, y) := 〈Qxy,εt , h〉,

g(x, y) := 〈δγxy ,t, h〉

= h(γxy(t)),

where 〈·, ·〉 denotes the integration of the function against the measure. From (5.22)

it is immediate that g is a bounded continuous functions of x, y. Since Qxy,εt is a

Gaussian distribution with mean γxy(t) and covariance which is independent of x, y

and tends to zero as ε→ 0 based on (A.3), gε → g uniformly as ε→ 0. It follows

〈Pεt , h〉 − 〈µt, h〉 = 〈Pε01, g
ε〉 − 〈π, g〉

= (〈Pε01, g〉 − 〈π, g〉) + 〈Pε01, g
ε − g〉.

Both summands tend to zero as ε→ 0, the first due to weak convergence of Pε01 to π

and the second due to the uniform convergence of gε to g. This completes the proof.

A.3 Proof of Proposition 6

Apply the time-varying change of coordinates

ξ(t) = N(1, 0)−1/2Φ(0, t)x(t).

Then, in this new coordinates the dynamical system (6.6) becomes

dξ(t) = N(1, 0)−1/2Φ(0, t)B(t)︸ ︷︷ ︸
Bnew(t)

dw(t).

We will prove the statement in this new set of coordinates for the state, where the

state matrix Anew = 0 and the state equation is simply dξ(t) = Bnew(t)dw(t), and

then revert back to the original set of coordinates at the end. Accordingly,

Ṗnew(t) = Bnew(t)Bnew(t)′,

1To guarantee weak convergence, it suffices to have bounded, uniform continuous test functions
by Portmanteau Theorem [31].
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Q̇new(t) = −Bnew(t)Bnew(t)′,

along with Mnew(1, 0) = Nnew(1, 0) = I and

Σ0,new = N(1, 0)−1/2Σ0N(1, 0)−1/2, (A.4a)

while

Σ1,new = N(1, 0)−1/2Φ(0, 1)Σ1Φ(0, 1)′N(1, 0)−1/2. (A.4b)

The relation between Qnew(t) and Q(t) is given by

Qnew(t) = N(1, 0)−1/2Φ(0, t)Q(t)Φ(0, t)′N(1, 0)−1/2.

This can be seen by taking the derivative of both sides

Q̇new(t) = −N(1, 0)−1/2Φ(0, t)A(t)Q(t)Φ(0, t)′N(1, 0)−1/2

−N(1, 0)−1/2Φ(0, t)Q(t)A(t)′Φ(0, t)′N(1, 0)−1/2

+N(1, 0)−1/2Φ(0, t)Q̇(t)Φ(0, t)′N(1, 0)−1/2

= −N(1, 0)−1/2Φ(0, t)B(t)B(t)′Φ(0, t)′N(1, 0)−1/2

= −Bnew(t)Bnew(t)′.

In the next paragraph, for notational convenience, we drop the subscript “new”

and prove the statement assuming that A(t) = 0 as well as N(1, 0) = I. We will return

to the notation that distinguishes the two sets of coordinates with the subscript “new”

and relate back to the original ones at the end of the proof.

Since A(t) = 0, then Φ(t, x) = I for all s, t ∈ [0, 1]. Further, M(1, 0) = N(1, 0) =

I. Thus,

P (1) = P (0) + I

Q(1) = Q(0)− I.

Substituting in (6.17), we obtain that

Q(0)−1 + P (0)−1 = Σ−1
0

(Q(0)− I)−1 + (P (0) + I)−1 = Σ−1
1 .
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Solving the first for P (0) as a function of Q(0) and substituting in the second, we

have

Σ−1
1 = ((Σ−1

0 −Q(0)−1)−1 + I)−1 + (Q(0)− I)−1

= ((Σ−1
0 −Q(0)−1)−1 + I)−1(Q(0) + (Σ−1

0 −Q(0)−1)−1))(Q(0)− I)−1

= ((Σ−1
0 −Q(0)−1)−1 + I)−1(Σ−1

0 −Q(0)−1)−1Σ−1
0 Q(0)(Q(0)− I)−1

= (Σ−1
0 + I −Q(0)−1)−1Σ−1

0 (I −Q(0)−1)−1.

After inverting both terms, simple algebra leads to

(I −Q(0)−1)Σ0(I −Q(0)−1) + (I −Q(0)−1) = Σ1.

This is a quadratic expression and has two Hermitian solutions

I −Q(0)−1 = Σ
−1/2
0

(
−1

2
I ∓

(
Σ

1/2
0 Σ1Σ

1/2
0 +

1

4
I

)1/2
)

Σ
−1/2
0 . (A.5)

This gives that

Q(0) = Σ
1/2
0

(
Σ0 +

1

2
I ±

(
Σ

1/2
0 Σ1Σ

1/2
0 +

1

4
I

)1/2
)−1

Σ
1/2
0 .

To see that i) holds evaluate (in these simplified coordinates where there is no drift

and M(1, 0) = I)

Q−(t)−1 = (Q−(0)−M(t, 0))−1

= −M(t, 0)−1 −M(t, 0)−1(Q−(0)−1 −M(t, 0)−1)−1M(t, 0)−1

= −M(t, 0)−1 −M(t, 0)−1Σ
1/2
0

(
Σ0 +

1

2
I

−
(

Σ
1/2
0 Σ1Σ

1/2
0 +

1

4
I

)1/2

− Σ
1/2
0 M(t, 0)−1Σ

1/2
0

)−1

Σ
1/2
0 M(t, 0)−1

for t > 0. For t ∈ (0, 1], the expression in parenthesis

Σ0 +
1

2
I −

(
Σ

1/2
0 Σ1Σ

1/2
0 +

1

4
I

)1/2

− Σ
1/2
0 M(t, 0)−1Σ

1/2
0
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is clearly maximal when t = 1. However, for t = 1 when M(1, 0) = I, this expression

is seen to be
1

2
I −

(
Σ

1/2
0 Σ1Σ

1/2
0 +

1

4
I

)1/2

< 0.

Therefore, the expression in parenthesis is never singular and we deduce that Q−(t)−1

remains bounded for all t ∈ (0, 1], i.e., Q−(t) remains non-singular. For t = 0, Q(0)−1

is seen to be finite from (A.5). The argument for P−(t) is similar. Regarding ii), it

suffices to notice that 0 < Q+(0) < I while Q+(1) = Q+(0) − I < 0. The statement

ii) follows by continuity of Q+(t), and similarly for P+(t).

We now revert back to the set of coordinates where the drift is not necessarily

zero and where N(1, 0) may not be the identity. We see that

Q±(0) = N(1, 0)1/2(Q±(0))newN(1, 0)1/2

= N(1, 0)1/2Σ
1/2
0,new

(
Σ0,new +

1

2
I ±

(
Σ

1/2
0,newΣ1,newΣ

1/2
0,new +

1

4
I

)1/2
)−1

Σ
1/2
0,newN(1, 0)1/2

where Σ0,new,Σ1,new as in (A.4a)-(A.4b), which for compactness of notation in the

statement of the proposition we rename S0 and S1, respectively.

A.4 Proof of Theorem 19

We show that i) the joint distribution between the two end-points of [0, 1] for

(6.23) is the minimizer of the relative entropy, with respect to the corresponding

two-endpoint joint distribution of (6.6), over distributions that satisfy the endpoint

constraint that the marginals are Gaussian with specified covariances, and ii) the

probability laws of these two SDEs on sample paths, conditioned on x(0) = x0, x(1) =

x1 for any x0, x1, are identical by showing that they have the same pinned processes.

We use the notation

gS(x) := (2π)−n/2 det(S)−1/2 exp

[
−1

2
x′S−1x

]
,

to denote the standard Gaussian probability density function with mean zero and

covariance S.
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We start with i). In general, the relative entropy between two Gaussian distribu-

tions gS(x) and gΣ(x) is∫
Rn
gΣ(x) log

(
gΣ

gS

)
dx=

∫
Rn
gΣ log

(
det(S)1/2

det(Σ)1/2

)
dx+

1

2

∫
Rn
gΣ(x)(x′S−1x− x′Σx)dx

=
1

2
log(det(S))− 1

2
log(det(Σ)) +

1

2
trace(S−1Σ)− 1

2
trace(I).

If pΣ is a probability density function, not necessarily Gaussian, having covariance Σ,

then∫
Rn
pΣ(x) log

(
pΣ

gS

)
dx =

∫
Rn
pΣ(x) log

(
pΣ

gS

gΣ

gΣ

)
dx

=

∫
Rn
pΣ(x) log

(
pΣ

gΣ

)
dx+

∫
Rn
pΣ(x) log

(
gΣ

gS

)
dx (A.6)

where we multiplied and divided by gΣ and then partitioned accordingly. We observe

that ∫
Rn
pΣ(x) log

(
gΣ

gS

)
dx =

∫
Rn
gΣ(x) log

(
gΣ

gS

)
dx.

since log
(
gΣ

gS

)
is a quadratic form in x. Thus, the minimizer of relative entropy to

gS among probability density functions with covariance Σ is Gaussian since the first

term in (A.6) is positive unless pΣ = gΣ, in which case it is zero.

We consider two-point joint Gaussian distributions with covariances S01 as in

(6.25) with S0 = Σ0, and

Σ01 :=

[
Σ0 Y ′

Y Σ1

]
and evaluate Y that minimizes the relative entropy. To this end we focus on

trace(S−1
01 Σ01)− log det(Σ01). (A.7)

Since

S01 =

[
I

Φ(1, 0)

]
Σ0

[
I, Φ(1, 0)′

]
+

[
0 0

0 M(1, 0)

]
,

it follows that

S−1
01 =

[
Σ−1

0 + Φ′M−1Φ −Φ′M−1

−M−1Φ M−1

]
,
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where we simplified notation by setting Φ := Φ(1, 0) and M := M(1, 0). Then, the

expression in (A.7) becomes

trace
(
(Σ−1

0 + Φ′M−1Φ)Σ0 − Φ′M−1Y − Y ′M−1Φ +M−1Σ1

)
− log det(Σ0)− log det(Σ1 − Y Σ−1

0 Y ′).

Retaining only the terms that involve Y leads us to seek a maximizing choice for Y

in

f(Y ) := log det(Σ1 − Y Σ−1
0 Y ′) + 2 trace(Φ′M−1Y ).

Equating the differential of this last expression as a function of Y to zero gives

− 2Σ−1
0 Y ′(ΣT − Y Σ−1

0 Y ′)−1 + 2Φ′M−1 = 0 (A.8)

To see this, denote by ∆ a small perturbation of Y and retain the linear terms in ∆

in

f(Y + ∆)− f(Y )

= log det(I − (Σ1 − Y Σ−1
0 Y ′)−1(∆Σ−1

0 Y ′ + Y Σ−1
0 ∆′)) + 2 trace(Φ′M−1∆)

' − trace((Σ1 − Y Σ−1
0 Y ′)−1(∆Σ−1

0 Y ′ + Y Σ−1
0 ∆′)) + 2 trace(Φ′M−1∆)

= −2 trace(Σ−1
0 Y ′(Σ1 − Y Σ−1

0 Y ′)−1∆) + 2 trace(Φ′M−1∆)

Let now

Σ01 =

[
Σ0 Σ0ΦQ−(1, 0)′

ΦQ−(1, 0)Σ0 Σ1

]
where ΦQ−(1, 0) is the state-transition matrix of AQ−(t), i.e., it satisfies

∂

∂t
ΦQ−(t, s) = AQ−(t)ΦQ−(t, s), and

− ∂

∂s
ΦQ−(t, s) = ΦQ−(t, s)AQ−(s),

with ΦQ−(s, s) = I. We need to show that Σ01 here is the solution of the relative

entropy minimization problem above. By concavity of f(Y ), it suffices to show that
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Y = ΦQ−(1, 0)Σ0 satisfies the first-order condition (A.8), that is,

ΦQ−(1, 0)′(Σ1 − ΦQ−(1, 0)Σ0ΦQ−(1, 0)′)−1 = Φ(1, 0)′M(1, 0)−1

= Φ(1, 0)′(S1 − Φ(1, 0)S0Φ(1, 0)′)−1,

where St is as in (6.25) with S0 = Σ0. By taking inverse of both sides we obtain an

equivalent formula

Σ1ΦQ−(0, 1)′ − ΦQ−(1, 0)Σ0 = S1Φ(0, 1)′ − Φ(1, 0)Σ0. (A.9)

We claim

ΣtΦQ−(0, t)′ − ΦQ−(t, 0)Σ0 = StΦ(0, t)′ − Φ(t, 0)Σ0,

then (A.9) follows by taking t = 1. We now prove our claim. For convenience, denote

F1(t) = ΣtΦQ−(0, t)′ − ΦQ−(t, 0)Σ0

F2(t) = StΦ(0, t)′ − Φ(t, 0)Σ0

F3(t) = Q−(t)(ΦQ−(0, t)′ − Φ(0, t)′).

We will show that F1(t) = F2(t) = F3(t). First we show F2(t) = F3(t). Since

F2(0) = F3(0) = 0, we only need to show that they satisfy the same differential

equation. To this end, compare

Ḟ2(t) = ṠtΦ(0, t)′ − StA′Φ(0, t)′ − AΦ(t, 0)Σ0

= (ASt + StA
′ +BB′)Φ(0, t)′ − StA′Φ(0, t)′ − AΦ(t, 0)Σ0

= AF2(t) +BB′Φ(0, t)′,

with

Ḟ3(t) = Q̇−(t)(ΦQ−(0, t)′ − Φ(0, t)′) +Q−(t)(−AQ−(t)′ΦQ−(0, t)′ + A′Φ(0, t)′)

= (AQ−(t) +Q−(t)A′ −BB′)(ΦQ−(0, t)′ − Φ(0, t)′)

−Q−(t)A′(ΦQ−(0, t)′ − Φ(0, t)′) +BB′ΦQ−(0, t)′

= AF3(t) +BB′Φ(0, t)′,

140



which proves the claim F2(t) = F3(t). We next show that F1(t) = F3(t). Let

H(t) = Q−(t)−1(F3(t)− F1(t))

= −(Q−(t)−1 − Σ−1
t )ΣtΦQ−(0, t)′ +Q−(t)−1ΦQ−(t, 0)Σ0 − Φ(0, t)′

= P (t)−1ΣtΦQ−(0, t)′ +Q−(t)−1ΦQ−(t, 0)Σ0 − Φ(0, t)′,

then

Ḣ(t) = Ṗ (t)−1ΣtΦQ−(0, t)′ + P (t)−1Σ̇tΦQ−(0, t)′ −

P (t)−1ΣtAQ−(t)′ΦQ−(0, t)′ + Q̇−(t)−1ΦQ−(t, 0)Σ0

+Q−(t)−1AQ−(t)ΦQ−(t, 0)Σ0 + A′Φ(0, t)′

= −A′H(t).

Since H(0) = Q−(0)−1(F3(0) − F1(0)) = 0, it follows that H(t) = 0 for all t, and

therefore, F1(t) = F3(t). This completes the proof of the first part.

We now prove ii). According to Lemma 18, the pinned process corresponding

to (6.6) satisfies

dx = (A−BB′R1(t)−1)xdt+BB′R1(t)−1Φ(t, 1)x1dt+Bdw (A.10)

where R1(t) satisfies

Ṙ1(t) = AR1(t) +R1(t)A′ −BB′

with R1(1) = 0, while the pinned process corresponding to (6.23) satisfies

dx = (AQ−(t)−BB′R2(t)−1)xdt+BB′R2(t)−1ΦQ−(t, 1)x1dt+Bdw (A.11)

where R2(t) satisfies

Ṙ2(t) = AQ−(t)R2(t) +R2(t)AQ−(t)′ −BB′

with R2(1) = 0. We next show (A.10) and (A.11) are identical. It suffices to prove

that

A−BB′R1(t)−1 = AQ−(t)−BB′R2(t)−1 (A.12)

141



and

R1(t)−1Φ(t, 1) = R2(t)−1ΦQ−(t, 1). (A.13)

Equation (A.12) is equivalent to

R1(t)−1 = R2(t)−1 +Q−(t)−1.

Multiply R1(t) and R2(t) on both sides to obtain

R2(t) = R1(t) +R1(t)Q−(t)−1R2(t).

Now let

J(t) = R1(t) +R1(t)Q−(t)−1R2(t)−R2(t).

Then

J̇(t) = Ṙ1(t) + Ṙ1(t)Q−(t)−1R2(t) +R1(t)Q̇−(t)−1R2(t)+R1(t)Q−(t)−1Ṙ2(t)−Ṙ2(t)

= AJ(t) + J(t)AQ−(t)′.

Since

J(1) = R1(1) +R1(1)Q−(1)−1R2(1)−R2(1) = 0,

it follows that J(t) = 0. This completes the proof of (A.12). Equation (A.13) is

equivalent to

Φ(1, t)R1(t) = ΦQ−(1, t)R2(t).

Let

K(t) = Φ(1, t)R1(t)− ΦQ−(1, t)R2(t),

and then

K̇(t) = −Φ(1, t)AR1(t) + Φ(1, t)Ṙ1(t) + ΦQ−(1, t)AQ−(t)R2(t)− ΦQ−(1, t)Ṙ2(t)

= K(t)(A′ −R1(t)−1BB′).

Since

K(1) = Φ(1, 1)R1(1)− ΦQ−(1, 1)R2(1) = 0,

it follows that K(t) = 0 as well for all t. This completes the proof.
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A.5 Lemma on fB and gB

Lemma 37 Consider the maps fB and gB defined in (6.63)-(6.64). The range of fB

coincides with the null space of gB, that is,

R(fB) = N (gB).

Proof It is immediate that

R(fB) ⊆ N (gB).

To show equality it suffices to show that (R(fB))⊥ ⊆ N (gB)⊥. To this end, consider

M ∈ Sn ∩ (R(fB))⊥ .

Then

trace (M(BX +X ′B′)) = 0

for all X ∈ Rm×n. Equivalently, for Z = MB ∈ Rn×m, trace(ZX) + trace(X ′Z ′) = 0

for all X. Thus, trace(ZX) = 0 for all X and hence Z = 0. Since MB = Z = 0, then

MΠR(B) = 0 or, equivalently, MΠR(B)⊥ = M . Therefore ΠR(B)⊥MΠR(B)⊥ = M , i.e.,

M ∈ (R(gB)). Therefore,

(R(fB))⊥ ⊆ (R(gB)) = N (gB)⊥

since gB is self-adjoint, which completes the proof.
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