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Abstract

The Laser Interferometer Gravitational-wave Observatory (LIGO) has recently reported

the first two direct detections of gravitational waves, confirming yet another prediction

of general relativity and providing an arena for testing gravity in the strong-field, high-

velocity regime. These detections herald the beginning of the era of gravitational-wave

astronomy, in which frequent gravitational-wave observations will provide a means for

probing currently inaccessible regions of the universe and periods in its history.

In this dissertation, I focus on detecting and characterizing a stochastic gravitational-

wave background and long-lasting gravitational-wave transients, which will be important

components of this era for the information they can yield about the beginnings of the

universe and the objects contained within it. I implement a method for estimating the

parameters of a model of a stochastic gravitational-wave background and apply it to a

model based on core-collapse supernovae. Using the expected sensitivities of Advanced

LIGO and the Einstein Telescope, I estimate the detectability of such a background and

compare the results to simulations of core-collapse events. I also develop an unmodeled

all-sky search for long-lasting gravitational-wave transients and apply it to LIGO S5

and S6 data, setting the first upper limits on signals lasting between 10–500 s in the

40–1000Hz band.

Finally, I describe the implementation of a 3D array of seismometers in and around

the Homestake Mine, with the goal of mitigating seismic and Newtonian noise for future

generations of gravitational-wave detectors. A seismic radiometer algorithm is developed

and applied to simulated and real data; I demonstrate its ability to separate various

components of the seismic field and map their directional dependence. In order to

improve models of surface seismic waves in the radiometer algorithm, I use measurements

of Rayleigh waves from the Homestake array and perform parameter estimation to fit a

biexponential model of the Rayleigh wave eigenfunctions.
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Chapter 1

Gravitational waves and cosmology

1.1 Introduction

Over the past 30 years, cosmology has come into its own as an experimental science,

thanks to increasingly more precise electromagnetic observations of the universe. Detec-

tion and study of the Cosmic Microwave Background (CMB), coupled with observations

of Type Ia supernovae and large scale structure have facilitated the development of a

“standard model” of cosmology, the ΛCDM model. Coupled with inflation, this model

explains the abundance of light nuclei, the anisotropy of the CMB, and many other

cosmological and astrophysical phenomena.

We are just beginning a new phase in our study of the universe; not only can we “see”

the universe electromagnetically, but we can also “hear” the universe through observa-

tions of gravitational waves (GWs). Predicted by Einstein’s theory of general relativity,

these ripples in spacetime carry information about the earliest moments of the universe

and the most exotic objects contained in it. The quest for the direct detection of gravi-

tational waves began in the 1960s with Joseph Weber’s bar detectors, and has recently

been achieved by the large-scale interferometric detectors of the Laser Interferometer

Gravitational-Wave Observatory (LIGO) [1]; further detections of GWs will establish

the new era of gravitational-wave astronomy. This dissertation will describe analyses of

LIGO data with the goal of detecting long-lasting gravitational waves and estimating the

parameters of their sources, as well as improving future generations of gravitational-wave

detectors.

1
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The remainder of this chapter will provide an introduction to general relativity,

gravitational waves, and cosmology. In Sec. 1.2, general relativity will be introduced,

culminating in the Einstein field equations. Sec. 1.3 will provide an overview of gravita-

tional waves. Finally, Sec. 1.4 will describe the ΛCDM model of cosmology and where

gravitational waves fit into this model.

1.2 General relativity

In 1905, Einstein first proposed his theory of special relativity, which unified classical

Newtonian mechanics with Maxwell’s electrodynamics. This theory contended that the

laws of physics should be invariant across all inertial reference frames, and that the speed

of light should be the same for all observers and is the “universal speed limit.” One of

the results of special relativity is that space and time are not separate entities as we

commonly experience them, but are joined together in the construct of spacetime.

Special relativity is only valid under “special” circumstances; namely, when dealing

with a flat spacetime (represented by the Minkowski metric ηµν).

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.1)

In general, the metric is used to calculate the spacetime interval ds2 between two events;

in special relativity, it is given by:

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2. (1.2)

Here and in most of this section, we set c = 1.

At small enough scales, spacetime can be shown to be locally flat, and special rel-

ativity is applicable. However, the gravitational redshift, one of Einstein’s first steps

toward general relativity, implied that sufficiently extended regions of spacetime must

be curved [2]. Along with this, Newton’s laws of gravitation (Eqs. 1.3 and 1.4) are clearly
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not compatible with special relativity.

d2x

dt2
= −∂Φ

∂x
(1.3)

∇2Φ = 4πGρ (1.4)

Here, Φ is the gravitational potential, G is the gravitational constant, and ρ is the mass

density. The equations of motion given in Eq. 1.3 are not Lorentz-invariant, nor is the

gravitational potential given in Eq. 1.4. Eq. 1.4 also implies that changes in the density

ρ propagate to the potential Φ instantaneously, which violates the idea of a maximum

speed limit, one of the primary principles of relativity.

Einstein was able to resolve these issues in his theory of general relativity by realizing

that gravity is a result of curved spacetime caused by the presence of mass or energy. Or,

as John Wheeler said [3]: “Spacetime tells matter how to move, matter tells spacetime

how to curve.”

1.2.1 Equivalence principles

There are a few useful principles which provide qualitative insight into the workings of

general relativity and led Einstein along the path to its full development.

The weak equivalence principle

The weak equivalence principle states that the inertial mass mi and the gravitational

mass mg are equal.

mi = mg (1.5)

In Newtonian mechanics, a general force can be described by F = mia, while the grav-

itational force is given by Fg = mg∇Φ. This implies that the acceleration of an object

under the influence of gravity is independent of its mass.

At first glance, this does not seem especially surprising, but if we instead think of

gravitational mass as “gravitational charge,” it becomes more intriguing. For example,

a particle with electric charge q and mass m in an electric field E will experience an

acceleration a = (q/m)E, which is proportional to the ratio of its electric charge and

inertial mass. In the case of gravity, it just so happens that the ratio of gravitational
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charge to inertial mass is one.

The weak equivalence principle implies that a gravitational field cannot be differenti-

ated from a uniformly accelerated frame in small enough regions of spacetime. Imagine a

physicist in a small box, who has no contact with outside world, and is observing the mo-

tion of freely-falling particles under the influence of only gravitational forces. Because all

of the particles accelerate at the same rate (independent of mass), this physicist cannot

tell whether he or she is in a gravitational field or in an accelerating spaceship. Again,

this assumes that the experiments are restricted to “small enough” regions of spacetime.

This is certainly not the case for charged particles in an electromagnetic field, since there

exist particles with many different combinations of electric charge and mass.

The Einstein equivalence principle

Einstein expanded on the weak equivalence principle with the Einstein equivalence prin-

ciple, which states that the outcome of any local non-gravitational experiment is in-

dependent of the velocity of its freely-falling reference frame and its location in space

and time. Although inertial frames cannot be extensive (due to gravity), we can define

locally inertial frames that track the motion of freely-falling particles in small enough

regions of spacetime [4]. This implies that the laws of physics should reduce to those of

special relativity in these regions. As we will see in Sec. 1.2.2, this will allow the laws

of special relativity to be generalized to curved spacetime if they are formulated in a

generally covariant way.

One of the most famous predictions of the Einstein equivalence principle is that of

the gravitational redshift. This means that a photon emitted in a gravitational field will

be reduced in frequency if observed in a weaker region of a gravitational field than it

was emitted in. This can be seen through an analogy with two rockets, separated by

a distance d, and both moving with some acceleration a. The trailing rocket emits a

photon with wavelength λ0, which the leading rocket receives after some time ∆t = d/c

(assuming that the rockets are moving at a velocity much less than the speed of light).

When the leading rocket receives the photon, it will have picked up an additional velocity

∆v = a∆t. Due to the Doppler effect, the leading rocket will perceive the photon to be

redshifted by an amount
∆λ

λ0
=

∆v

c
=
ad

c2
. (1.6)
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The Einstein equivalence principle states that the same effect should occur in a

uniform gravitational field, since we cannot distinguish between a gravitational field and

a uniformly accelerated frame of reference. For example, imagine a photon of wavelength

λ0 emitted by an observer on the ground, which is perceived by an observer standing

on top of a tower of height d. This observer should also see a redshifted photon, just as

the observer in the leading rocket did. The amount of redshift in this situation can be

calculated with Eq. 1.6, replacing a with the gravitational acceleration ag.

There is also a strong equivalence principle, which generalizes the Einstein equiva-

lence principle from local “non-gravitational” experiments to any type of local experi-

ment, but it will not be discussed further here.

1.2.2 Formalism

Much of the formalism of general relativity is based around the mathematics of differ-

ential geometry and tensor calculus. The cornerstone of general relativity, the Einstein

field equations, are based around elementary concepts in these fields; the real genius of

Einstein was his realization that these ideas could be applied to space and time, and

that spacetime curvature is generated by mass and energy.

One of the fundamental principles involved in Einstein’s formulation of general rela-

tivity was the idea of general covariance, which states that the laws of physics should not

depend on the choice of coordinate system. This concept seems intuitive, considering

that coordinates are not actually a part of nature, but are constructs used by humans

to describe nature. As an example, consider some physical law Aµ = Bµ + Cµ defined

in one coordinate system, where the index µ runs over coordinates. If each side of the

equation is a tensor (i.e., it transforms in a specific way that will be discussed later), then

general covariance states that this law should have the same general form in any other

coordinate system (denoted by primes): A′µ = B′µ+C ′µ. This is an extremely powerful

statement and allows the generalization of physical laws formulated in one coordinate

system to any other coordinate system, but it is only true if each side of the equation

transforms as a tensor.

We begin our study of general relativity with a metric tensor gµν which, in general,

encapsulates the geometric structure of spacetime and defines an inner product for tan-

gent vectors. Unlike special relativity, we make no assumptions about the curvature (or
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lack thereof) of spacetime.

Affine connection

To proceed further, it is instructive to consider a freely-falling coordinate system ξµ in

which a particle is at rest. The equations of motion in this frame are given by

∂2ξλ

∂τ2
= 0, (1.7)

where τ is the proper time. Because the coordinate system is locally inertial, we use the

Minkowski metric to calculate the spacetime interval: ds2 = ηµνξ
µξν .

But how would we describe this particle’s motion in another coordinate system with

coordinates xµ? The equations of motion in the new coordinate system can be derived by

considering that ∂2ξλ

∂τ2
= ∂

∂τ

(
∂ξλ

∂xν
∂xν

∂τ

)
. This results in the following equations of motion:

∂2xλ

∂τ2
+
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
∂xµ

∂τ

∂xν

∂τ
= 0. (1.8)

This equation, which defines the paths that the world lines of freely-falling particles

follow, is known as the geodesic equation. The shortest path between two points is not

always a straight line; in a curved spacetime, it is a geodesic.

Of particular importance is the new term which has appeared in Eq. 1.8, proportional

to two first derivatives of the coordinates xµ. The coefficient multiplying these two first

derivatives is known as the affine connection of the transformation:

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
. (1.9)

In general, the affine connection gives a way of comparing tensors which lie in different

tangent spaces by parallel transporting them so that they are in the same tangent space.

This is not something we previously had to worry about in the flat, Euclidean geometry

of special relativity, but is crucial when working in a curved spacetime. In the 4D

Lorentzian spacetime of general relativity, the affine connection coefficients are also

known as Christoffel symbols. The label of “symbols” here emphasizes the fact that

these objects do not transform like tensors under general coordinate transformations.
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Rather, the Christoffel symbols must be recalculated when the coordinate system is

redefined.

Typically, we begin with a metric gµν and from there, calculate the Christoffel sym-

bols and other important aspects of the curvature. To do this, we consider the spacetime

interval in each coordinate system. For the coordinate system in which the particle is

freely-falling, the spacetime interval is given by

ds2 = ηµνdξ
µdξν . (1.10)

In the other coordinate system, the spacetime interval is

ds2 = gµνdx
µdxν . (1.11)

This gives a relation between the general metric gµν and the metric in the freely-

falling coordinate system:

gµν = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
(1.12)

Taking a derivative of gµν with respect to xλ and doing a few algebraic tricks allows us

to obtain the Christoffel symbols as a function of the metric.

Γλµν =
1

2
gσλ

(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
(1.13)

Covariant derivative

Going back to the principle of general covariance, it is evident that it will be very

useful to define physical laws in a coordinate-invariant way. We first consider a general

transformation of a vector (or a tensor of rank 1) from an unprimed coordinate system

to a primed one:

V ′µ =
∂x′µ

∂xν
V ν . (1.14)

For a tensor of arbitrary rank, each index transforms independently in the same way

as the vector’s single index did. To see this, we consider the transformation of a mixed

tensor of rank 3:

T ′µν
λ

=
∂x′µ

∂xη
∂xρ

∂x′ν
∂x′λ

∂xσ
T ηρ

σ. (1.15)
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One problem that we will run into right away, however, is that the partial derivative

operator is not generally covariant. This is apparent if we define a new tensor Bµν of

rank 2 as the partial derivative of a vector:

Bµ
ν =

∂

∂xµ
Aν . (1.16)

Then, after performing a general coordinate transformation, we obtain

B′µ
ν

=
∂

∂x′µ
A′ν

=
∂

∂x′µ

(
∂x′ν

∂xσ
Aσ
)

=
∂x′ν

∂xσ
∂xρ

∂x′µ
∂Aσ

∂xρ
+

∂2x′ν

∂xσ∂xρ
∂xρ

∂x′µ
Aσ.

(1.17)

The first term in Eq. 1.17 is what we would expect for a tensor transformation, but

the presence of the second term indicates that Bµν is not a tensor. Thus, the partial

derivative operator acting on a tensor generates an object that is not a tensor and is

not generally covariant. Intuitively, this makes sense: the partial derivative operator

acts essentially as a projection operator in the tangent direction, but the direction of the

tangent planes are also functions of the coordinates. This hints that the affine connection

may be helpful here, as it connects tangent spaces on a manifold.

We would like to define a new operator which acts similarly to the partial derivative,

but transforms like a tensor and is generally covariant. With a bit of insight and some

algebra, along with the assistance of the affine connection, we can obtain the covariant

derivative, shown here acting on a vector V ν :

∇µV ν = ∂µV
ν + ΓνµσV

σ. (1.18)

Here, ∂µ = ∂
∂xµ . Although neither the first nor second terms in Eq. 1.18 transform

independently as tensors, the non-tensorial components in the transformation cancel

each other out exactly; as a result, the sum of the terms does transform as a tensor.

This covariant derivative allows us to specify a derivative in a coordinate-invariant way

because it transforms tensors into tensors. We also note here that the covariant derivative

reduces to the ordinary partial derivative in a flat spacetime, since the Christoffel symbols
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are trivially zero in that case.

It is also useful to introduce the comma and semicolon notation for partial and

covariant derivatives. A comma indicates a partial derivative,

V ν
,µ = ∂µV

ν (1.19)

while a semicolon indicates a covariant derivative.

V ν
;µ = ∇µV ν = V ν

,µ + ΓνµσV
σ (1.20)

This brings to mind the “comma-goes-to-semicolon” rule, which states that to convert

an equation from its special relativistic version in a local inertial frame to a generally

covariant form valid in any coordinate system, we just replace the partial derivatives

with covariant derivatives, or equivalently, commas with semicolons. From this point

on, we will primarily use the comma and semicolon notation.

Curvature

Consider parallel transporting a vector around a closed loop. In Euclidean space, choose

any loop you like: in the end, the vector will point in the same direction as it did initially.

But now imagine doing the same thing around a closed loop on a sphere. As an example,

begin at the equator, move 90◦ clockwise, then up to the north pole, then back down

to the starting point along the initial line of longitude. The vector will now point 90◦

clockwise of its initial orientation. Thus, it is evident that the assumption of invariance

under parallel transport does not hold in a curved geometry.

The Riemann curvature tensor (sometimes known as the Riemann-Christoffel cur-

vature tensor, or just the curvature tensor) Rρσµν describes the amount of deviation

under parallel transport from that of Euclidean space. It can be constructed from the

commutator of two covariant derivatives acting on a vector.

[∇µ,∇ν ]V ρ = ∇µ∇νV ρ −∇ν∇µV ρ

= RρσµνV
σ

(1.21)

This commutator effectively measures the difference between parallel transporting a



10

vector halfway around a loop in one direction versus halfway around the loop in the

opposite direction. After a bit of algebra, we obtain the following expression for the

Riemann curvature tensor:

Rρσµν = Γρσν,µ − Γρσµ,ν + ΓρσµΓααν − ΓρσνΓααµ. (1.22)

Here, we have given the definition of the Riemann curvature tensor with the first index

raised; this tensor is commonly found in this form or with all lower indices. In Euclidean

space, the commutator of two covariant derivatives is zero (since the Christoffel symbols

and their derivatives are zero); the Riemann curvature tensor is trivially zero only in

this special case.

There are several useful properties of the Riemann curvature tensor, including sym-

metry and antisymmetry under interchange of certain indices and pairs of indices. How-

ever, we will not cover these properties other than to state the Bianchi identities, which

can be derived from them:

Rρσµν;λ +Rσλµν;ρ +Rλρµν;σ = 0. (1.23)

The Bianchi identities will be useful later when deriving the Einstein field equations.

The Ricci tensor Rµν can be formed from the Riemann curvature tensor by contract-

ing the first and third indices:

Rµν = gαβRαµβν (1.24)

It can be shown that all other contractions of indices of the Riemann curvature tensor

either give something proportional to the Ricci tensor, as defined here, or zero. This oc-

curs due to the properties of the Christoffel symbols which form the affine connection in

general relativity and is not the case for a curvature tensor formed from arbitrary connec-

tion coefficients. Thus, for our general relativistic purposes, this is the only meaningful

rank 2 tensor that we can derive from the Riemann curvature tensor.

Finally, the trace of the Ricci tensor is called the Ricci scalar, or scalar curvature:

R = Rµµ = gµνRµν . (1.25)
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1.2.3 The Einstein field equations

Now that we have developed some background in curvature, the real problem is to

determine how one might relate the curvature of spacetime to mass and energy. Put

another way, we would like to find some tensor generalization of Eqs. 1.3 and 1.4 to curved

spacetime. One straightforward modification would be to change the mass density ρ in

Eq. 1.4 to its tensor version, Tµν . The stress-energy tensor is most easily defined by

considering its components [2]:

T00 = mass-energy density (1.26)

Tj0 = density of jth component of momentum (1.27)

Tjk = j, k component of stress or

kth component of flux of jth component of momentum.
(1.28)

First, we consider the geodesic equation (Eq. 1.8) in the Newtonian limit: low velocity

and weak gravitational fields. In this limit, the following simplifications can be made:

dt

dτ
≈ 1

v � 1

gµν ≈ ηµν .

(1.29)

Using these relations, Eq. 1.8 reduces to

d2xi
dt2

= −Γi00

= −1

2
h00,i

(1.30)

Equating this with Eq. 1.3 implies that h00 = −2Φ, and thus, g00 = −(1+2Φ) in the

Newtonian limit. From this comparison, we should expect that the generally covariant

form of our equation will include second derivatives of the metric instead of the potential

Φ. We know that the Riemann curvature tensor is formed of second derivatives of the

metric since it contains derivatives of the Christoffel symbols, which themselves contain

first derivatives of the metric. However, it has too many indices compared to Tµν ;
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instead, we might consider the Ricci tensor, since it also contains second derivatives of

the metric and only has two indices.

At this point, we have something like

Rµν = αTµν , (1.31)

where α is a constant of proportionality. This seems reasonable (and was actually con-

sidered by Einstein at one point), but there is a problem with it: energy conservation [4].

This is enforced by requiring the divergence of the stress-energy tensor to be zero:

Tµν
;µ = 0. (1.32)

This indicates that the divergence of Rµν should also be zero (see Eq. 1.31). However,

this is not the case; if we contract two of the indices in the Bianchi identities (Eq. 1.23),

we obtain

Rµν
;µ =

1

2
R;ν . (1.33)

From this, we can see that Eq. 1.31 is not the equation we are looking for. However,

Eq. 1.33 clearly suggests a new idea for the left side of Eq. 1.31 which is divergence-free:

Rµν − 1
2Rgµν . Thus, we might consider

Rµν −
1

2
Rgµν = αTµν . (1.34)

Does this equation fulfill our requirements? First, it relates curvature to energy and

momentum in a tensor equation and it also holds under conservation of energy. We

required that the left-hand side of the equation should contain second derivatives of the

metric, and it does. Finally, we can show that it will reduce to Eqs. 1.3 and 1.4 in the

Newtonian limit if the constant of proportionality α is equal to 8πG.

This gives the final form of the canonical equations of general relativity, the Einstein

field equations.

Rµν −
1

2
Rgµν = 8πGTµν (1.35)

The left-hand side of Eq. 1.35 is often grouped into one object called the Einstein tensor;
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using this, the Einstein field equations may also be written as

Gµν = 8πGTµν . (1.36)

Given some distribution of mass and/or energy, the goal is typically to solve the field

equations for a metric. In certain cases, it is possible to solve the system of equations

exactly; in other cases, post-Newtonian approximations are made. These approximations

use expansions in small parameters which express the deviation of the theory from the

Newtonian limit.

Einstein also considered including a cosmological constant term proportional to the

metric in order to allow for a static universe. With the inclusion of this constant, the

field equations take on the form

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.37)

where Λ is the cosmological constant. At the time, it was thought that the universe was

static, although Hubble’s observations of the expanding universe would soon disprove

that theory. However, a universe with a cosmological constant may also be expanding,

so including this term was certainly not “the biggest blunder of Einstein’s life,” as he

put it.

We also note that the Einstein field equations may be rigorously derived from the

Einstein-Hilbert action (rather than the informal derivation given here) [4].

1.2.4 Tests of general relativity

In the field of physics, it may be that experimental results generate new theoretical

developments or that theoretical predictions drive new experimental work; in the case

of general relativity, it has primarily been the latter. It has taken many years for

measurement technology to become accurate enough for precision testing of Einstein’s

theory of general relativity. During this time, some challengers to general relativity

have arisen, but none have proved as compatible with observations (or as elegant) as

Einstein’s theory. Below, I will describe some well-known experimental tests of general

relativity.



14

Anomalous perihelion precession of Mercury

In 1859, Urbain Le Verrier discovered that the perihelion position of Mercury’s orbit was

precessing at a rate slightly different than that predicted by Newtonian mechanics [5].

The difference between prediction and observation was a mere 43 arcseconds per century,

but this was well above the experimental uncertainty of the observations. Several other

hypotheses were proposed, including unobserved dust between the Sun and Mercury,

and the presence of an undiscovered moon or planet; however, none of these objects

were ever found. Einstein explained this discrepancy in 1915 using his new theory of

general relativity to the level of ≈0.1% [2, 6].

The gravitational redshift

The gravitational redshift was described previously in Sec. 1.2.1. It was first experi-

mentally observed in 1959 by Pound and Rebka [7]. They used two samples of 57Fe: a

moving “source,” from which the emitted gamma rays would be slightly Doppler shifted,

and a stationary “receiver” either below or above the moving source (both configurations

were used). The experiment was designed such that when the gravitational redshift was

exactly matched by the Doppler shift due to the source motion, the emitted gamma

rays would have the required frequency for absorption by the receiver. They observed a

net fractional frequency shift of (−5.13± 0.51)× 10−15, compared to general relativity’s

prediction of −4.92× 10−15 [7].

Gravitational lensing

Gravitational lensing is the bending of light by a massive object. The existence of

this phenomenon becomes apparent when we consider that in a curved spacetime, light

should follow geodesics, rather than the Euclidean equivalent (a straight line). Thus,

as the presence of mass and energy causes spacetime to warp, the paths of light rays

should be bent, as well. This was first observed by Eddington during a solar eclipse in

1919 [8]. Gravitational lensing is also predicted by Newtonian gravity, but it is too weak

by a factor of two compared to observations.
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Frame dragging

Frame dragging is an effect where a rotating massive object distorts nearby spacetime

and causes inertial frames to be “dragged” along with the object’s rotation. The Gravity

Probe B experiment tested this phenomenon in 2004, using gyroscopes orbiting Earth

in a satellite [9]. In 2011, the results of the analysis were published and shown to

be compatible with general relativity within the relevant experimental and theoretical

uncertainties.

1.3 Gravitational waves

The recent direct detection of gravitational waves [10] can be heralded as another tri-

umph of general relativity. Gravitational waves can be thought of as small ripples in the

curvature of spacetime; they may be treated as small deviations from a flat metric and

are generally studied using perturbation theory. GWs were first predicted by Einstein

in 1916, but it is unlikely that he gave them much consideration; due to the incredibly

small strain amplitudes which were expected, GWs seemed far beyond the precision of

our measurement technologies until the last few decades. However, the fact that grav-

itational waves interact very weakly is also a benefit; any gravitational waves that we

may detect will reach us essentially untarnished. Because of this, gravitational waves

carry significant information about the astrophysical objects or cosmological mechanisms

which produced them.

As mentioned in Sec. 1.1, most of our knowledge of the universe up to this point is

based on electromagnetic observations, in spite of the fact that light couples relatively

strongly to matter. Further observations of weakly interacting gravitational waves are

expected to open a new window through which we may study the universe and the

objects contained in it.

In this section, I will discuss the prediction of gravitational waves from general rel-

ativity and the mechanics of how they are generated. I will also give a brief overview

of some of the most interesting sources of gravitational waves and some strategies for

detecting them.
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1.3.1 Linearized gravity and gauge conditions

Gravitational waves appear most clearly in general relativity when we consider a “lin-

earized gravity” framework, in which GWs are treated as perturbations around a flat

spacetime described by the Minkowski metric. This describes a scenario where the ob-

server is far from the actual source of gravitational waves and spacetime is essentially

flat, apart from the GW perturbations. The full metric in linearized gravity is given by

gµν = ηµν + hµν , (1.38)

where hµν is the GW perturbation. Under the requirement that the GW perturbation

is small (i.e., |hµν | � 1), terms beyond first-order in h can be dropped.

First, it is useful to calculate the Christoffel symbols, as they can be used to determine

the Riemann curvature tensor, the Ricci tensor, and the Ricci scalar. The Christoffel

symbols are given by Eq. 1.9 in general; using the assumptions of linearized gravity, we

obtain

Γαβγ =
1

2
(hαβ,γ + hαγ,β − hβγ,α) . (1.39)

The terms proportional to Γ2 in the Ricci tensor can be dropped, since they are

second-order in h. This gives

Rµν ' Γαµν,α − Γαµα,ν

' 1

2

(
hαν,µα + hµα

,α
ν −�hµν − h,µν

)
,

(1.40)

where � = ∂µ∂
µ is the d’Alembertian, and h = hαα is the trace of hµν . Finally, the

Ricci scalar is calculated from the Ricci tensor using Eq. 1.25:

R = hαβ
,αβ −�h (1.41)

This yields the Einstein field equations in linearized gravity:

hαν,µα + hµα
,α
ν −�hµν − h,µν + ηµνhαβ

,αβ − ηµν�h = 16πTµν (1.42)
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At this point, it is common to change variables to the trace-reversed perturbation

hµν ≡ hµν −
1

2
ηµνh, (1.43)

which has a trace h = −h. We note here that hµν contains the same information as hµν .

If we recalculate the metric in terms of hµν , this becomes clear.

gµν =

(
1− 1

2
h

)
ηµν + hµν (1.44)

Using the trace-reversed perturbation, the Einstein field equations can be written as

hνα
,α
µ + hµα

,α

ν −�hµν − ηµνhαβ
,αβ

= 16πTµν . (1.45)

Harmonic gauge

At this point, it is useful to fix the gauge by choosing a coordinate system. For the

problem at hand, the most common choice is the harmonic gauge (also called the de

Donder gauge or the Lorenz gauge), which imposes the requirement that

�xµ = 0 (1.46)

This can be equivalently formulated as

gαβΓµαβ = 0 (1.47)

or, in linearized gravity,

h
µν
,ν = 0. (1.48)

The formulation of this gauge given in Eq. 1.48 is analogous to the Lorenz gauge condition

for the four-potential in electromagnetism (Aµ,µ = 0).

In the harmonic gauge, only the third term in Eq. 1.45 is non-zero. The full Einstein

field equations become

�hµν = −16πGTµν , (1.49)
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while the vacuum equations are

�hµν = 0. (1.50)

Eqs. 1.49 and 1.50 are wave equations; this is the theoretical prediction of wave solutions

to Einstein’s field equations, or gravitational waves.

This simplest solutions to the vacuum equation are plane waves:

hµν = Re
[
Aµνe

ikαxα
]

(1.51)

where Aµν is the wave amplitude tensor and kα = (ω, kx, ky, kz) is the wave vector. For

non-trivial values of hµν , the field equations (Eq. 1.50) require that the wave vector is

a null vector; i.e., kαkα = 0, or k0 =
(
k2
x + k2

y + k2
z

)1/2. This can also be interpreted as

the requirement that gravitational waves should propagate at the speed of light.

Applying the harmonic gauge condition (Eq. 1.48) to the plane wave gives the re-

quirement that

Aµαk
α = 0, (1.52)

which is the requirement that the wave amplitude tensor is orthogonal to the wave

vector.

Transverse-traceless gauge

The wave amplitude tensor Aµν has 16 components in a 4D spacetime, but several

of the requirements that we have imposed have restricted the independence of these

components. Because the stress-energy tensor is symmetric in general, hµν should be

symmetric, and so should Aµν (see Eq. 1.49). This leaves us with 10 independent

components. The harmonic gauge condition applied to our GW (see Eq. 1.52) applies

four more constraints, leaving us with 6 independent components in Aµν .

However, the field equations and the harmonic gauge condition in linearized gravity

are still invariant under coordinate transformations like

x′µ = xµ + εµ (1.53)

h′µν = hµν − ∂µεν − ∂νεµ. (1.54)
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This freedom allows us to set four more gauge conditions, which will reduce the inde-

pendent degrees of freedom of Aµν to two. These conditions are typically chosen to

be

A0µ = 0 (1.55)

Aµµ = 0, (1.56)

commonly known as the transverse-traceless gauge. Note that Eq. 1.55 only represents

three independent constraints, since there is a redundancy with one of the constraints

from the harmonic gauge condition given in Eq. 1.52. We also note that in the transverse-

traceless gauge, hµν = hµν .

If we choose a coordinate system which has a GW propagating in the z-direction,

our wave amplitude tensor will look like

ATTµν =


0 0 0 0

0 ATTxx ATTxy 0

0 ATTxy ATTyy 0

0 0 0 0

 , (1.57)

where the TT superscripts indicate that we are working in the transverse-traceless gauge.

The orthogonality conditions from Eq. 1.52 require that the z components of Aµν are

zero, while one of our new gauge conditions (Eq. 1.55) sets the t components to be zero.

This leaves us with the three independent components shown in Eq. 1.57, however,

the traceless condition (Eq. 1.56) requires that Ayy is the opposite of Axx. This results

in a wave amplitude tensor with two independent components, which represent the two

independent polarizations of gravitational waves, commonly referred to as “plus” and

“cross” polarizations. Thus, the components of ATTµν may be renamed as

h+ = ATTxx (1.58)

h× = ATTxy . (1.59)

Any generic wave amplitude tensor ATTµν can be represented as a sum of the plus and
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cross polarizations:

ATTµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 = h+e
+
µν + h×e

×
µν . (1.60)

Here e+
µν and e×µν are the unit polarization tensors, given by

e+
µν = ex ⊗ ex − ey ⊗ ey (1.61)

e×µν = ex ⊗ ey + ey ⊗ ex (1.62)

in this particular case. Note that these expressions are not correct for an arbitrary

coordinate system; however, we always have the freedom to choose the z-axis of our

coordinate system to lie along the direction of GW propagation.

Qualitatively, a gravitational wave that is propagating perpendicularly to the plane

of a ring of test particles will cause the ring to deform into an ellipse first along one axis

and then the other, oscillating between these two configurations as a function of time.

This unique behavior is illustrated in Fig. 1.1; this signature of gravitational waves

lends itself to a interferometer-based strategy for GW detection (discussed further in

Sec. 1.3.4).

Finally, it is important to note that linearized gravity, however useful, is only an

approximate tool; while it may be quite accurate in some cases, it provides at best a

rough qualitative understanding in the strong-field and high-velocity regimes of gravity.

In these cases, the quantative behavior of the system can be best determined by complex

numerical calculations using post-Newtonian approaches based on perturbation theory

or numerical relativity.

1.3.2 Generation of gravitational waves

When considering the generation of gravitational waves from the motion of massive

objects, it is typical to use an analogy with electromagnetism, taking an object’s mass

to be its “gravitational charge.” Beginning with lowest order, it seems clear that there
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t

Figure 1.1: Effect of a passing gravitational wave (propagating into the page) with plus
polarization (top) and cross polarization (bottom) on a ring of freely-falling particles.
The effect is exaggerated for illustrative purposes.

can be no monopole gravitational radiation. In electromagnetism, monopole radiation

would require a charge to be created or destroyed; in gravitation, it would require mass

or energy to be created or destroyed. Obviously, neither of these are allowed.

The predominant form of radiation in electromagnetism is from the electric dipole,

where the dipole moment p for a collection of charges is given by

p =
∑
i

qixi, (1.63)

where the index i runs over individual particles with charge qi and position xi. The

power radiated by an electric dipole is proportional to the second time derivative of the

electric dipole moment p̈.

For gravitational radiation, the mass dipole moment is

d =
∑
i

mixi. (1.64)

If we consider the first time derivative of this expression (ḋ), we see that it is proportional

to the sum of the momenta of the particles. Due to conservation of momentum, ḋ = 0,

and thus, its second time derivative must also be zero. We could also consider an
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analogue to magnetic dipole radiation, however, we would find that conservation of

angular momentum precludes the production of gravitational radiation in this case.

Thus, there cannot be any gravitational radiation from a mass dipole.

However, there are no rules preventing quadrupole gravitational radiation. Similar

to dipole radiation, quadrupole radiation should be proportional to accelerations of the

quadrupole moment Iµν . We also expect that, like electromagnetism, the observed wave

amplitude should be inversely proportional to the distance from the source (R). Filling

in factors of G and c, we obtain

hµν =
2G

Rc4
Ïµν . (1.65)

Here, Iµν is the “reduced” or “trace-free” quadrupole moment, given by

Iµν =

∫
dV

(
xµxν −

1

3
δµνr

2

)
ρ, (1.66)

where ρ is the mass density. Eq. 1.65 can also be rigorously derived from Eq. 1.49 by

using the corresponding Green function for the d’Alembertian (see Refs. [2, 4]).

Following Ref. [11], we consider a simple case of a binary system comprising two point

masses, each with mass M . The masses are separated by a distance 2r0 and are orbiting

each other in the x-y plane with frequency f . In this case, the relevant components of

the reduced quadrupole moment tensor are

Ixx = 2Mr2
0

[
cos2 (2πft)− 1

3

]
(1.67)

Iyy = 2Mr2
0

[
sin2 (2πft)− 1

3

]
(1.68)

Ixy = Iyx = 2Mr2
0 sin (2πft) cos (2πft) . (1.69)

The zz component is a constant (arising only from the δµν term), thus disappearing

when we take time derivatives. Cross-terms involving z and x or y are zero.
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Using Eq. 1.65, we calculate the two polarization components:

h+ = hxx = −hyy =
32π2G

Rc4
Mr2

0f
2 cos (4πft) (1.70)

h× = hxy = hyx = −32π2G

Rc4
Mr2

0f
2 sin (4πft) (1.71)

It is interesting to note that the gravitational wave frequency is actually equal to

twice the orbital frequency f of the binary system.

1.3.3 Sources of gravitational waves

While the motion of everyday objects here on Earth should generate gravitational waves,

the masses involved are too small for these GWs to be detected (at present). This

becomes clear with a few examples.

Using Eq. 1.70, we can see that the maximum amplitude of a GW is

|h| = 32π2G

Rc4
Mr2

0f
2

= 2.60× 10−42

(
M

1 kg

)(
1 m

R

)( r0

1 m

)2
(

f

1 Hz

)2

.

(1.72)

For an astrophysical system, the orbital frequency can be derived from the masses and

their separation by using Kepler’s third law:

f2 =
GM

16π2r3
0

. (1.73)

Thus, for an astrophysical system, the GW amplitude is given by

|h| = 1.1× 10−54

(
M

1 kg

)2(1 m

R

)(
1 m

r0

)
(1.74)

For example, consider a binary system composed of two neutron stars, each with mass

1.4M�, separated by 10 km. If this system is at a distance of 10 Mpc from Earth, GWs

emitted by this binary pair would reach Earth with an amplitude of |h| ≈ 2.7× 10−21.

Now, imagine setting up a gravitational-wave generator in a terrestrial laboratory,

made of two spheres with masses of 1000 kg each, separated by a distance of 10m, and
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rotating at a frequency of 100Hz. This already seems like a difficult experiment to

construct, but perhaps not beyond the limit of human technology. It would be nice if

our detector could be in the same laboratory as the source, but to be in the wave zone,

our detector must be at least one wavelength away (in this case, 3000 km). Plugging our

numbers into Eq. 1.72, we get a GW amplitude of |h| ≈ 9× 10−40.

From this comparison, it is apparent that it will be much easier to detect astrophysical

GWs than those generated here on Earth. In the rest of this section, I will discuss some

astrophysical sources of gravitational waves. Some of these sources will be discussed in

greater detail in later chapters of this dissertation, in relation to analyses focused on

their detection.

Compact binary coalescences

Perhaps the most promising class of astrophysical GW sources is the coalescence of

compact binary systems. These systems may be composed of two neutron stars (NS-

NS), two black holes (BH-BH), or one neutron star and one black hole (NS-BH), and

are qualitatively similar to the point mass toy model used previously to estimate GW

amplitudes. One important fact about these systems was omitted in the toy model:

because gravitational waves carry energy (and momentum), the binary system must lose

orbital energy as it emits gravitational waves. This leads to shrinkage of the binary

system’s orbit, resulting in a higher orbital frequency. After enough time, the objects

approach each other, inspiral, and merge to form a single black hole. Following the

merger, there is expected to be a ringdown phase, in which the resulting black hole

emits gravitational waves due to decaying quasinormal modes [12–14].

These binary systems constantly produce GWs during their orbit, but the frequency

is too low to be detected by current interferometric GW detectors until the final inspiral,

merger, and ringdown. As these phases only last tenths of a second or less, these signals

are typically considered to be relatively short. A simulated GW waveform from a black

hole binary coalescence is shown in Fig. 1.2.

There are also some proposed scenarios where two black holes dynamically “capture”

each other to form a binary system with a highly eccentric orbit [16,17]. The eventual fate

of these binary systems is the same as in other cases where the binary system is formed

before the stars collapse to compact objects since the orbit is expected to circularize
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Figure 1.2: A simulated GW waveform from the inspiral, merger, and ringdown of a
binary black hole system. The black holes each have mass 30M� and no spin. The
full waveform is shown (top), along with a zoomed-in view of the final milliseconds,
highlighting the final plunge, merger, and ringdown. The simulation is based on an
effective-one-body model in numerical relativity [15].
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before the final inspiral; however, in the dynamical capture scenario, the spins of the

two objects may differ significantly, leading to modulation of the GW signal.

Isolated neutron stars

Isolated neutron stars are also expected to be proficient emitters of gravitational waves.

A rotating, spherically symmetric star would not produce gravitational waves since its

mass quadrupole moment would not vary with time; however, neutron stars may become

deformed due to a number of phenomena, including strong magnetic fields, seismic ac-

tivity, or accretion [18,19]. There are also several classes of instablities which may occur

in neutron stars and lead to normal mode oscillations, including r-modes [20, 21] and

f -modes [22]. These deformations and oscillations may create a quadrupolar asymmetry,

which then leads to GW emission as the neutron star rotates.

In general, the GW signals produced by isolated neutron stars are thought to be

relatively long. Depending on the cause of the deformation or the type of instability,

GW signals from isolated neutron stars may last for hours or days, or even be essentially

continuous, lasting for weeks or longer [19, 23]. These frequency of these signals is

expected to contain a characteristic modulation due to the Doppler shift from the motion

of the Earth.

Stellar collapse

Although the violent dynamics of core-collapse supernovae are still a subject of intense

research, it is generally expected that deviations from spherical symmetry occur during

these explosions, and should lead to production of gravitational waves. There are a

number of phenomena which may lead to emission of GWs during the core-collapse and

ensuing bounce, including asymmetric neutrino emission, neutrino-driven convection,

and standing accretion shock instability [18, 24]. If a protoneutron star remnant is

formed after the core bounce, it may emit GWs due to convection, rotational instabilities,

magnetic stresses, or other mechanisms associated with isolated neutron stars. Many

of the GW emission scenarios occuring during the core-collapse and bounce stages are

expected to produce GW signals lasting a few seconds or less [18], while those associated

with the resulting isolated neutron stars are expected to produce longer signals, as

previously discussed.
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Stochastic backgrounds

A stochastic background of gravitational waves is a persistent, universal background

which may be produced by an incoherent superposition of GWs from weak, individually

undetectable astrophysical sources, and/or by cosmological mechanisms. Such a back-

ground can be thought of as the gravitational analogue of the electromagnetic CMB. An

astrophysical background may be produced by a superposition of individual emitters of

GWs, including compact binary coalescences, magnetars, core-collapse supernovae, and

others [25]. A cosmological background may be produced by a number of phenomena, in-

cluding a pre-Big Bang cosmology [26–28], cosmic strings [29,30], or the amplification of

vacuum fluctuations during inflation [31,32]. Stochastic gravitational-wave backgrounds

will be covered in more detail in Chapter 3.

1.3.4 Detection of gravitational waves

The first strong experimental evidence for the existence of gravitational waves was ob-

tained from observations of the Hulse-Taylor binary system (PSR B1913+16) [33–35].

By observing the pattern of radio pulses from the binary system, Taylor and Weisberg

were able to determine many of the physical characteristics of the system, including the

component masses, orbit inclination, and orbital shape and period. Measurements of

the periastron passage over a period of six years indicated that the orbital period of the

binary was decreasing [34]. These measurements were found to be in close agreement

with the predicted energy loss due to gravitational-wave emission from general relativity

and provided the first strong experimental evidence for the existence of gravitational

waves. Fig. 1.3 shows observations of PSR B1913+16’s orbital period over a period of

30 years [35].

The first direct detection of gravitational waves was made recently, on September

14, 2015, by the Advanced LIGO detectors. More information on this GW detection

is given in Sec. 1.3.5. As we accumulate more direct GW observations, we may learn

much more about the dynamics of gravity in the strong-field and high-velocity regimes,

as well as the history of the universe. The rest of this subsection will discuss different

experimental methods of detecting gravitational waves.
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Figure 1.3: Measurements of the orbital period of the Hulse-Taylor binary system over
a period of thirty years. The observational data show remarkable agreement with the
general relativistic prediction (solid line) which includes energy loss due to gravitational
radiation. Figure reproduced from Ref. [35], with the permission of J. Weisberg; copy-
right 2010 AAS, reproduced with permission.

Resonant mass detectors

Joseph Weber built and operated the first resonant mass (or “bar”) detector for gravita-

tional waves in the early 1960s. A basic resonant mass detector is a large metal cylinder

with an accelerometer attached to one end; a passing gravitational wave should cause

a tidal force across the bar, which the accelerometer will pick up. However, reasonable

sensitivity to GWs is only achieved within a few Hz of resonant mode frequencies, which

are determined by the inherent properties of the bar.

In the late 1960s, Weber reported several observations of gravitational waves with

his resonant mass detector [36–38]. This led to the construction of several new resonant

mass detectors; however, none of the new experiments were able to replicate Weber’s

finding, nor were independent reanalyses of his data.

Further generations of resonant mass detectors were constructed in the 1980s and

http://dx.doi.org/10.1088/0004-637X/722/2/1030
http://dx.doi.org/10.1088/0004-637X/722/2/1030
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1990s. These include the ALLEGRO [39], NIOBE [40], NAUTILUS [41], and AU-

RIGA [42] detectors. Many of these detectors were cryogenically cooled to a few degrees

K in order to reduce thermal noise. There is also a spherical detector in Brazil, which

is cooled to temperatures as low as 20mK [43]. The best strain sensitivity achieved by

resonant bar detectors was around 10−21, which is comparable to that of a GW inter-

ferometer; however, the narrow frequency band over which this sensitivity applies is a

significant detriment.

Pulsar timing arrays

Pulsar timing arrays focus on using observations from many millisecond pulsars over long

periods of time to detect gravitational waves. Gravitational waves passing between a pul-

sar and the Earth should cause changes in the arrival times of the pulses at Earth (called

timing residuals). These experiments typically target gravitational waves with very low

frequency, e.g., 10−8–10−9 Hz, including stochastic gravitational-wave backgrounds and

mergers of supermassive black holes in galactic centers [19]. At these frequencies, the

timing residuals induced by GWs should be on the order of tens of nanoseconds; how-

ever, millisecond pulsars are typically very stable and can reach this level of reliability.

Currently operational pulsar timing arrays include the International Pulsar Timing Ar-

ray [44], the Parkes Pulsar Timing Array [45], the European Pulsar Timing Array [46],

and the North American Nanohertz Observatory for Gravitational Waves [47]. Some of

these recent experiments have attained strain sensitivities as low as 10−15 in the nHz

band [19].

Interferometry

Interferometric gravitational-wave detectors were conceived of in the 1970s and first

built in the 1990s. In an interferometer, a laser sends light into a beamsplitter, which

splits the light into two perpendicular paths, or “arms.” At the end of each arm, the light

strikes a mirror and reflects, traveling back toward the beamsplitter, where the light from

the two arms will recombine. If the arms are of equal length, constructive interference

will occur; however, if a gravitational wave is present, its quadrupolar nature should

cause one interferometer arm to effectively stretch and the other to shrink, causing some
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amount of destructive interference. Thus, the light intensity at the beamsplitter output

provides information about the amplitude of an incident gravitational wave.

While this idea of the arms stretching or shrinking is useful for understanding how

an interferometer works, it is not the whole story. In reality, a GW will also cause the

light waves in the interferometer to stretch or shrink (similar to the cosmological redshift

due to expansion of the metric). However, this leads to an accumulated phase difference

between the light in the two arms of the interferometer, which in the end still causes

interference at the output port. The more time the light spends in the interferometer

arms, the greater the phase it will accumulate; toward this end, interferometric GW

detectors feature Fabry-Pérot cavities for effectively increasing the interferometer arm

length by causing the laser light to take multiple trips down the arms. Some interferom-

eters also feature power recycling mirrors (to re-use light which exits the beamsplitter

toward the laser), as well as signal recycling mirrors at the output port to increase the

storage time of the interferometer, and thus, the accumulated phase.

The first-generation network of GW interferometers included the Laser Interferome-

ter Gravitational-wave Observatory (LIGO) [1,48], Virgo [49], GEO 600 [50], and TAMA

300 [51]. The initial version of LIGO operated three interferometers in total: two with

4-km arms and one with 2-km arms. These interferometers were mostly sensitive in a

frequency band from 40–2000Hz. Of the first-generation interferometers, LIGO achieved

the best sensitivity during its S6 science run, with a strain sensitivity of ≈2× 10−22 in

the 100–200Hz band [52].

The second generation of GW interferometers is just beginning observations, with

Advanced LIGO [52] collecting its first observational data from September 2015 to Jan-

uary 2016. Compared to initial LIGO, it features many significant upgrades, including

improved seismic isolation and increased laser power. When it reaches design sensitivity,

it is expected to be up to 10 times more sensitive than initial LIGO. Advanced LIGO

is also capable of probing lower frequencies, with considerable sensitivity down to 10Hz

(compared to 40Hz for initial LIGO). Advanced Virgo [53] is still in commissioning, but

is expected to come online in 2017. The underground detector KAGRA [54] (formerly

called LCGT) is being built in Japan by the collaboration which operated the TAMA

300 detector and features cryogenic cooling to reduce thermal noise. Along with these

detectors, plans are in place to construct a LIGO detector in India in the next ≈6 years,
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which will significantly improve source localization capabilities [55].

Future generations of GW interferometers are mostly in the proposal and design

stages at present. The Einstein Telescope [56,57] is an underground, triple-interferometer

proposal being coordinated by the European Gravitational Observatory. The Evolved

Laser Interferometer Space Antenna (eLISA) project has recently launched a pathfinder

mission to demonstrate their technology for a space-based interferometer [58,59]. Other

proposed space-based interferometers include the Big Bang Observer (BBO) [60,61], the

Advanced Laser Interferometer Antenna (ALIA) [61], and the DECi-hertz Interferometer

Gravitational wave Observatory (DECIGO) [62]. The space-based detectors will be able

to avoid the problem of seismic noise (the primary low-frequency noise source for GW

interferometers) altogether and are mostly focused on detecting extremely low frequency

gravitational waves and gravitational-wave backgrounds.

Chapter 2 of this dissertation will focus on GW interferometry with LIGO in more

detail.

1.3.5 GW150914

On September 14, 2015 at 09:50:45 UTC, the Advanced LIGO detectors made the first

direct detection of a gravitational-wave signal, called GW150914 [10]. The signal was

produced by the inspiral, merger, and ringdown of a black hole binary system with

masses of 36+5
−4M� and 29+4

−4M�, and a final black hole mass of 62+4
−4M� (all masses

in source frame). A total energy of 3.0+0.5
−0.5M�c

2 was emitted in gravitational waves,

making this one of the most energetic astrophysical events ever observed. The source

was measured to be at a luminosity distance of 410+160
−180 Mpc, corresponding to a redshift

of z = 0.09+0.03
−0.04. The signal has a characteristic “up-chirp” waveform, increasing in

frequency from 35–250Hz and reaching a maximum strain amplitude of 1.0 × 10−21.

Plots of the data from both LIGO detectors and the reconstructed waveforms are shown

in Fig. 1.4.

GW150914 was initially detected by a pipeline designed to search for generic tran-

sients. Using 16 days of coincident data collected between September 12 to October

20, its significance was estimated at 1 in 22,500 years, equivalent to 4.6σ. Subsequent

follow-up by a matched-filtering pipeline using binary black hole templates estimated its

significance at 1 in 203,000 years, or > 5.1σ. A second, independent matched-filtering
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Figure 1.4: GW150914, as detected by the H1 (left column) and L1 (right column)
Advanced LIGO detectors. Times shown are relative to 09:50:45 UTC on September 14,
2015. Top row: detector strain time-series. Middle row: reconstructed waveforms, using
numerical relativity, black hole binary template matching, and a sine-Gaussian wavelet
reconstruction. Bottom row: time-frequency plots of the strain data, clearly illustrating
the “chirp-up” signature of the waveform. Figure reproduced from Ref. [10] under the
Creative Commons Attribution 3.0 License.

pipeline also analyzed the data and detected GW150914 with similar significance.

Several companion papers have been published focusing on specific results which

can be inferred from the detection of GW150914. More details on the generic tran-

sients search and the matched filtering searches can be found in Refs. [63] and [64],

respectively. Information on the estimation of parameters and analyses of potential

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
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biases is in Ref. [65]. The overall BBH merger rate was estimated to be between 2–

400Mpc−3yr−1 [66]. Quantitative tests of general relativity using GW150914 were per-

formed in Ref. [67]; no evidence for violations of GR were found. The astrophysical

implications from the detection of GW150914 and its estimated parameters were ex-

plored in Ref. [68], including binary black hole formation mechanisms. Estimates of

the energy density in a stochastic gravitational-wave background from the inspiral and

merger of binary black hole systems were calculated in Ref. [69]. A follow-up search for

high-energy neutrinos around the time of GW150914 was performed with IceCube and

ANTARES, but no deviations from the expected background were found [70].

The detection of GW150914 definitively proves the existence of gravitational waves

and that black hole binaries can form and merge within a Hubble time [10].

1.4 Cosmology discussion

The idea of a “Big Bang” was first conceived in the 1920s and built on the theory of

general relativity. The basic idea is simple: an expanding universe should be smaller,

denser, and hotter in the past than it is today. If we carry this idea to its extreme and

look far enough back in time, the universe may have been as small as a single point,

otherwise known as a singularity. Due to the extremely large energies and small scales

associated with this time, the laws of physics as we know them would break down; thus,

it is difficult to make any speculations about the universe before the singularity.

In 1929, Hubble’s observations led to the conclusion that we live in an expanding

universe. Based on further observations and the eventual detection of the CMB in 1965,

the Big Bang theory has become more and more entrenched in modern cosmology. This

simple idea, coupled with basic thermodynamics and nuclear physics, has made a number

of predictions of cosmological phenomena which match observations to a remarkable level

of accuracy.

In this section, I will provide an overview of the standard model of cosmology, in-

cluding a cosmological timeline and a discussion of how gravitational waves fit into this

model.
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1.4.1 The standard cosmological model

The ΛCDM model is generally based on a hot Big Bang cosmology, and includes a

cosmological constant (indicated by Λ) and cold dark matter (CDM). In this model,

the expansion of the universe is parametrized by a scale factor a(t), and the universe

is assumed to be isotropic and homogeneous when viewed on a large enough scale (this

assumption is also referred to as the cosmological principle).

Friedmann-Lemaître-Robertson-Walker metric

Following Ref. [71], the spacetime interval for an isotropic, homogeneous universe can

be written as

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (1.75)

This is known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. Here, t,

r, θ, and φ are comoving coordinates, and k represents the curvature (+1 for positive

curvature, 0 for no curvature (flat), or −1 for negative curvature). We have taken c = 1

in this equation and throughout much of this section.

From here, we consider the Einstein field equations, including a cosmological constant

(see Eq. 1.37). The first step is to calculate the non-zero components of the Ricci tensor

and the Ricci scalar from the metric:

R00 = −3
ä

a
(1.76)

Rij = −
(
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
gij (1.77)

R = −6

(
ä

a
+
ȧ2

a2
+

k

a2

)
. (1.78)

Stress-energy tensor

Now, we must consider the stress-energy tensor Tµν . Because the FLRW metric is

symmetric and diagonal, the Einstein field equations require Tµν to be symmetric and

diagonal, as well. The assumption of isotropy also requires the spatial components of

Tµν to be equal. The simplest model which satisfies these requirements is that of a
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perfect fluid, defined by its rest energy density ρ and a pressure p. The corresponding

stress-energy tensor is

Tµν = diag (ρ,−p,−p,−p) . (1.79)

For simplicity, we assume the equation of state of the fluid to be

p = wρ, (1.80)

where w is a time-independent constant for a given fluid. With this equation of state,

conservation of energy gives a relation between the energy density and the scale param-

eter:

ρ ∝ a−3(1+w). (1.81)

Keep in mind that both ρ and a are functions of time. There are several different options

for w:

• w = 0: non-relativistic matter or “dust.” This makes sense because matter has

negligible pressure compared to its rest mass. This type of fluid will have ρ ∝ a−3;

thus, as the universe expands, the energy density of matter will change propor-

tionally to the volume.

• w = 1/3: radiation. This has an energy density of ρ ∝ a−4. The extra power of

a−1 comes from the cosmological redshifting of photons as the universe expands.

• w = −1: vacuum energy, or the cosmological constant, is often assumed to have

a negative pressure which drives the expansion of the universe. This has ρ =

constant.

• w = −1/2: curvature. There is not an easily intuitive explanation for this case,

but it gives ρ ∝ a−2.

Solving the field equations

Now that we have a metric and have derived the important curvature objects from it, and

we have a description of the stress-energy tensor in an isotropic, homogeneous universe,

we can work with the Einstein field equations. The 00 component of the field equations
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gives
ȧ2

a2
+

k

a2
=

8πG

3
ρ+

Λ

3
, (1.82)

while the trace of the spatial terms gives

2
ä

a
+
ȧ2

a2
+

k

a2
= −8πGp+ Λ. (1.83)

Taking the difference of these two equations yields information about the acceleration

of the universe’s expansion:

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.84)

It is typical to define the Hubble parameter, which encapsulates the expansion rate

of the universe, as

H ≡ ȧ

a
. (1.85)

The Hubble constant is defined as the present-day value of the Hubble parameter, and

is denoted as H0. The scale factor today is usually taken to be a0 = 1.

Ignoring the cosmological constant for a moment, we may rearrange Eq. 1.82 as

k =
8πG

3
ρ−H2

0 . (1.86)

We define the critical density ρc as

ρc =
3H2

0

8πG
(1.87)

so that if ρ is greater than, equal to, or less than ρc, the curvature will be positive, non-

existent (flat geometry), or negative, respectively. ρc is also referred to as the energy

density required to “close” the universe.

Density parameters

If we divide Eq. 1.82 by H2
0 , a unitless equation is obtained:

H2

H2
0

=
ρ

ρc
− k

H2
0a

2
+

Λ

3H2
0

. (1.88)
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If we consider the present-day form of this equation, we can takeH = H0 and a = a0 = 1.

We can also separate the energy density ρ into matter and radiation (ρ = ρm + ρr).

1 =
ρm
ρc

+
ρr
ρc
− k

H2
0

+
Λ

3H2
0

(1.89)

It is most common to define the unitless density parameters

Ωm =
ρm
ρc

(1.90)

Ωr =
ρr
ρc

(1.91)

Ωk = − k

H2
0

(1.92)

ΩΛ =
Λ

3H2
0

(1.93)

so that Eq. 1.89 becomes

1 = Ωm + Ωr + Ωk + ΩΛ. (1.94)

This requires Ω = Ωm + Ωr + ΩΛ = 1 for the universe to be flat (k = Ωk = 0).

Discussion

From this model, it is possible to predict the rate of expansion of the universe for different

types of “fluid.” If we assume that one type of “fluid” (matter, radiation, vacuum energy,

curvature) dominates at a particular time in the history of the universe, it is simple to

solve Eq. 1.82 and determine the time dependence of the scale factor [72].

In general, the universe is thought to have been initially radiation-dominated after

the Big Bang [73]. The energy density of radiation should fall off faster than that of

matter as the universe expands (since ρ goes as a−4 for radiation and a−3 for matter),

so at some point, the energy density of radiation should drop below that of matter.

This transition occurred a few tens of thousands of years after the Big Bang, and matter

remained the dominant form of energy in the universe until approximately 4 billion years

ago. Since then, vacuum energy, or “dark energy” has been the dominant form of energy.
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Fluid w ρ(a) a(t)

Matter 0 a−3 t2/3

Radiation 1
3 a−4 t1/2

Vacuum energy −1 constant eHt

Curvature −1
2 a−2 t

Table 1.1: Summary of different “fluids” used in the standard cosmological model. The
parameter w in the second column indicates the relation between pressure p and energy
density ρ in the fluid’s equation of state (see Eq. 1.80). The third column shows the
dependence of the energy density on the scale factor a, and the fourth column shows the
time dependence of the scale factor, assuming that each particular fluid is dominant.

1.4.2 ΛCDM model parameters

The ΛCDM model is very simple in that it only requires six parameters to be mea-

sured; all other parameters of interest may be derived from the measurements. The

six parameters which are measured depend on the experiment, but are typically the

following:

• Physical baryon density Ωbh
2: this is the unitless baryon density parameter mul-

tiplied by the square of the reduced Hubble constant h = H0/100 km s−1Mpc−1.

• Physical dark matter density Ωch
2: analogous to the physical baryon density, but

for cold dark matter.

• Vacuum energy density ΩΛ.

• Scalar spectral index (ns): inflation predicts a power-law form for primordial den-

sity fluctuations with this parameter as the spectral index.

• Reionization optical depth (τ): the optical depth at which reionization of hydrogen

occurred (more discussion of this in Sec. 1.4.3).

• Curvature fluctuation amplitude (∆2
R): amplitude of primordial curvature fluctu-

ations.

In Table 1.2, we list the current best values of these parameters from the 2015 Planck

results [74], along with some derived parameters of interest.
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Parameter Symbol Value

Physical baryon density Ωbh
2 0.02230± 0.00014

Physical dark matter density Ωch
2 0.1188± 0.0010

Vacuum energy density ΩΛ 0.6911± 0.0062

Matter density Ωm 0.3089± 0.0062

Age of the universe t0 (13.799± 0.021)× 109 yr

Reionization optical depth τ 0.066± 0.012

Reionization redshift zre 8.8+1.2
−1.1

Scalar spectral index ns 0.9667± 0.0040

Curvature fluctuation amplitude ∆2
R (2.14± 0.05)× 10−9

Table 1.2: Current best values for measured and derived parameters of the ΛCDM
cosmological model. All values taken from Ref. [74].

1.4.3 Cosmological timeline

This subsection will highlight some of the important events in the cosmological timeline.

Many of these occur due to “freeze-out” of certain nuclear or chemical processes as

the universe expands, cools, and decreases in matter and radiation density. At certain

temperatures, some important processes fall out of thermodynamic equilibrium, leading

to significant changes in the overall composition of the universe.

Here, I will discuss some of these transitions, along with other important events in

the history of the universe.

Grand unification

At the extremely high energy scales of the early universe, it is thought that all four

fundamental forces were of equal strength and unified into a single force. Before a Planck

time (5.4 × 10−44 s), it is expected that quantum gravitational interactions dominated;

as a result, general relativity and cosmology as we know them break down in these early

time periods and so far, most theories which attempt to describe this time are only

speculative. After a Planck time, the gravitational force is thought to have separated,

while the remaining three forces were still unified in the electronuclear force.
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At about 10−36 seconds, the strong force also separated, leaving only the electromag-

netic and weak forces unified [71]. The energy scale of this transition is about 1014 GeV.

Finally, the electromagnetic and weak forces separated at about 10−12 seconds and 1TeV,

due to spontaneous symmetry breaking.

Inflation

Non-inflationary cosmology (as described in Sec. 1.4.1) is very successful, but there are

a few important questions that it does not answer:

• Horizons: why does the CMB appear to be so isotropic (differences on the order

of 10−5)? In a matter or radiation-dominated universe without inflation, certain

parts of the universe would have never been in causal contact with each other, so

there is no reason that they should be in thermal equilibrium.

• Flatness: why does the universe appear to be so flat (k = Ωk = 0 within experi-

mental uncertainties)?

• Relics: a very hot early universe should have produced many heavy magnetic

monopoles, so why have we never observed any of these?

The most widely accepted theory which answers these questions is the theory of

inflation, first proposed by Alan Guth in 1981 [75]. In general terms, inflation was a

very rapid expansion of spacetime, during which the scale factor increased by a factor

of ≈1025, occurring approximately 10−36 seconds after the Big Bang. In most theories,

inflation is thought to be driven by the evolution of a scalar field, referred to as the

inflaton, in a potential. At the end of inflation, it is thought that oscillations of the

inflaton field around the bottom of its potential may have led to the production of

matter; this is commonly referred to as reheating [71].

Inflation’s answers to the three problems mentioned previously are as follows:

• Horizons: in an inflationary universe, the universe we observe today would have

been small enough to have been in causal contact and thermodynamic equilibrium

before inflation; thus, the high degree of isotropy that we observe today is expected.

• Flatness: because Ωk is proportional to a−2 (see Eq. 1.92), it should be reduced

by a factor of ≈10−50 compared to its value before inflation. The universe may
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not really be flat, but we only see a small part of it, which may appear locally flat

to us.

• Relics: based on expected production of magnetic monopoles during the GUT

transition, inflation is thought to have decreased the overall density of these relics

to the point where it is unlikely that we would observe any [72].

There is not currently one “best” theory of inflation which is commonly accepted,

however, the qualitative concept of inflation is still regarded as the best (and most sim-

ple) explanation for many of our observations of the universe. Guth’s original theory

of inflation considered a single scalar field which was initially trapped in a false mini-

mum [75] and eventually tunneled through to the true vacuum state. However, it was

found that this theory was problematic, as different parts of the universe may inflate at

different times, creating “bubbles” which would not be large enough to account for the

size of the currently observable universe.

Linde [76] and Albrecht and Steinhardt [77] independently proposed “slow-roll” in-

flation in 1982, which was based on the inflaton rolling down a potential hill with a

very slight slope toward the true vacuum state. There also exist many other theo-

ries, including chaotic inflation [78], in which multiple scalar fields exist, with random,

position-dependent values, and eternal inflation [79], in which inflation continues on

forever in certain parts of the universe.

It is expected that quantum mechanical fluctuations in the inflaton field should be

enlarged into classical density perturbations during inflation [80]. These inhomogeneities

are thought to form the basic seeds for the eventual formation of large-scale structures

in the universe. Along with these scalar perturbations, inflation is expected to generate

perturbations in the metric tensor, or gravitational waves. Gravitational waves at a

particular comoving scale should be “frozen in” until the Hubble parameter has become

comparable to their wavelength; after this point, they undergo redshifting due to the

expansion of the universe [80]. This may lead to a GW spectrum which is flat within

the Hubble length and goes as λ at larger wavelengths.
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Baryogenesis

After the end of inflation, the universe was still hot and dense enough for quarks to

roam freely. This state is typically described as a quark-gluon plasma. As the universe

expanded and cooled, quarks were eventually bound into baryons and mesons.

Theories of baryogenesis in the early universe seek to understand why there are

more baryons than antibaryons today. Clearly, we observe matter almost exclusively,

and while we cannot rule out the possibility that other galaxies composed entirely of

antimatter may exist, it seems unlikely.

Based on thermodynamic calculations and estimates for the amount of the matter in

the universe today, it is thought that there were approximately 109 +1 protons for every

109 antiprotons during the early universe [80]. Although it is possible that the universe

came into being with a baryon asymmetry, it is also possible that this asymmetry was

generated by certain processes in the early universe which had a preference for matter

over antimatter. The latter theory is generally preferred by cosmologists, as the notion

of overall symmetry is generally important throughout physics. Sakharov [81] defined

three conditions which a process must satisfy to produce an excess of baryons versus

antibaryons:

1. Baryon number (B) violation.

2. Charge-parity (CP ) violation.

3. Non-equilibrium conditions.

Interactions which violate CP symmetry have been observed in neutral kaon decays.

Along with this, the expansion of the universe would eventually drive certain processes

away from equilibrium, satisfying condition 3. However, no processes have ever been

observed which do not conserve baryon number. One possibility lies in the framework of

a grand unified theory; in these theories, baryons and leptons may potentially be treated

different states of a single entity. Although overall conservation of baryon and lepton

number (B+L) may be required, it may be possible to violate each one individually [80].

This is currently an open problem in cosmology and particle physics, and an area of active

research.
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Nucleosynthesis

Nucleosynthesis describes the process of the formation of light elements in the early

universe. Around 1 second after the Big Bang, the temperature of the universe cooled

to about 1010 K, which is approximately the energy scale of nuclear processes which

convert between neutrons and protons.

p+ ν ←→ n+ e+ (1.95)

p+ e− ←→ n+ ν (1.96)

Because the proton is lighter than the neutron (∆m = 1.3 MeV), Eqs. 1.95 and 1.96

require 1.8MeV and 0.8MeV to go from left to right, respectively. When the temperature

of the universe is around this energy level, there is a preference for these processes to

proceed from right to left.

These processes freeze out when the expansion rate of the universe becomes larger

than the reaction rate. Because the temperature distribution of photons follows a black-

body spectrum, the temperature of freeze-out is also highly dependent on the ratio of

baryons to photons η. For these nuclear reactions, freeze-out occurs at a temperature of

0.8MeV [71]. The equilibrium ratio of neutrons to protons at some temperature (in the

non-relativistic limit) can be estimated as

Nn

Np
= e∆mc2/kT , (1.97)

which gives a ratio of ≈1/6 at a temperature of 0.8MeV.

After this freeze-out occurs, it takes about two minutes for the temperature to de-

crease enough to allow deuterium to form.

n+ p −→ 2H + γ (1.98)

It is important to note that, during this time, a non-neglible fraction of the neutrons

decay (the neutron half-life is τn = 881 s), changing the ratio of neutrons and protons to

≈1/7. Formation of deuterium allows for the creation of heavier elements, including:
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• Tritium
2H + 2H −→ 3H + p (1.99)

• Helium-3

2H + p −→ 3He + γ (1.100)
2H + 2H −→ 3He + n (1.101)

• Helium-4

2H + 3H −→ 4He + n (1.102)
2H + 3He −→ 3He + p (1.103)

• Beryllium
3He + 4He −→ 7Be + γ (1.104)

• Lithium

3H + 4He −→ 7Li + γ (1.105)
7Be + n −→ 7Li + p (1.106)

Lack of stable isotopes at atomic numbers of 5 and 8 prevents significant formation of

heavier elements.

Assuming all neutrons go into forming 4He gives a helium mass fraction of 0.25

relative to hydrogen. Further calculations are needed to estimate other abundances;

some of these are given in Table 1.3 and are compared to observations.

The predicted abundances given in Table 1.3 depend both on the baryon-to-photon

ratio η and the effective number of neutrino species Nν ; because these parameters are

not narrowly restricted, the predictions given are only rough estimates. For the most

part, there is good agreement between the predictions and observations, with the sole

exception being 7Li. The most promising explanation for the dearth of this isotope

involves deep convection zones in stellar atmospheres, which may be capable of trapping

and burning 7Li [71,72].
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Element Predicted abundance Observed abundance
2H ≈3× 10−5 2.78+0.44

−0.38 × 10−5 [72]
3He ≈1× 10−5 (1.04± 0.06)× 10−5 [82]
4He ≈0.25 0.2477± 0.0029 [83]
7Li ≈3× 10−10 (2.37± 0.05)× 10−10 [84]

Table 1.3: Predicted light element abundances from Big Bang nucleosynthesis, compared
to observations. Abundances are given in terms of mass fraction relative to hydrogen.

This model of nucleosynthesis allows the placement of upper limits on gravitational-

wave energy density in the early universe. Light element abundances are effectively

determined by the freeze-out temperature of Eqs. 1.95 and 1.96, which is determined

by the point at which the expansion rate of the universe (represented by the Hubble

parameter) exceeds the reaction rate. Since the Hubble parameter is proportional to the

overall energy density of the universe, the freeze-out temperature is a function of the

overall energy density. Thus, significant energy density in a background of gravitational

waves would have an effect on the freeze-out temperature, and as the freeze-out temper-

ature increases, so does the ratio of neutrons to protons (up to a ratio of 1), which should

lead to the production of more light elements. As a result, observations of light element

abundances make it possible to put a limit on the total GW energy density [85,86]:

ΩBBN < 1.1× 10−5(Nν − 3). (1.107)

Analysis of WMAP data has constrained Nν < 4.4 [87], setting ΩBBN < 1.54 × 10−5.

Searches for a stochastic gravitational-wave background using LIGO data [88, 89] have

surpassed this bound in the LIGO frequency band, with a current best upper limit of

ΩGW < 5.6× 10−6 in the 41.5–169.25Hz band.

Recombination and the CMB

Initially, the universe was too hot for electrons and protons to be bound as neutral

hydrogen; instead, it was filled with a plasma of charged particles and hot radiation.

Because the ratio of baryons to photons was small (η ≈ 10−9), an appreciable density of

neutral hydrogen could not form until the universe cooled well below its binding energy



46

of 13.6 eV.

It is difficult to assign an exact time to this “recombination” of protons and elec-

trons into neutral hydrogen because it did not occur instantaneously. However, since

this transition defines the beginning of a new phase in the universe, we should require

that there is a negligible proportion of charged particles compared to neutral hydrogen.

This is thought to have occurred approximately 380,000 years after the Big Bang, at a

temperature of ≈3500 K, or 0.3 eV. This temperature can be derived from assuming a

blackbody spectrum for the photon energy distribution, with knowledge of η and the de-

sired ionization fraction of hydrogen. Due to the cosmological redshift, the CMB today

has a temperature of 2.7K, or 2.3× 10−4 eV.

Soon after recombination, the rate of Compton scattering of photons became com-

parable to the expansion rate of the universe, leading to freeze-out of this reaction. This

allowed photons to decouple from matter and “free-stream” through the universe without

interacting. The background of thermal radiation formed by these photons constitutes

the Cosmic Microwave Background. The prediction of the CMB and its features is one

of the most significant achievements of the standard Big Bang cosmological model.

The CMB was first observed in 1965 by Penzias and Wilson [90]. In recent years, it

has been studied extensively by space-based experiments, including the Cosmic Back-

ground Explorer [91], the Wilkinson Microwave Anisotropy Probe [92], and the Planck

satellite [93, 94]. These experiments have revealed the remarkable homogeneity of the

CMB (to the level of 10−5 in temperature); however, the slight anisotropies of the CMB

provide even more information about the universe.

Primary anisotropies in the CMB occur due to density fluctuations in the primordial

plasma. Areas of higher density form gravitational potential wells, which compress the

plasma in these regions. This compression is resisted by radiation pressure, and the

interaction between these two forces sets up oscillations in the plasma. The thermal

radiation is generally hotter in compressed regions and cooler in rarefied regions. These

hot and cold spots were “frozen-in” when decoupling occurred and can still be seen in

the CMB today.

Typically, the CMB anisotropy is characterized in terms of a multipole expansion

in spherical harmonics Ylm(θ, φ). There are several peaks in this spectrum, the angular

size of which is determined by the wavelength of the acoustic oscillation at the time of
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last scattering. The first peak corresponds to a mode that only had time to compress

before last scattering, the second peak corresponds to a mode that had time to compress

and expand once, and so on for the other peaks. The even peaks tend to be damped

compared to the odd peaks; this is because the even peaks correspond to rarefaction at

the time of last scattering, and the presence of baryons in gravitational potential wells

caused increased compression and decreased rarefaction (this is called “baryon drag”).

Measurements of these peaks are in excellent agreement with predictions; see Fig. 50

from Ref. [95] for an example.

Secondary anisotropies in the CMB mostly occur due to effects after decoupling. The

Sunyaev-Zel’dovich effect can distort the CMB through inverse Compton scattering off of

high-energy electrons. The Sachs-Wolfe effect occurs when photons are gravitationally

redshifted at the surface of last scattering (non-integrated effect) or by gravitational

potential wells after last scattering (integrated effect). Gravitational lensing of CMB

photons can occur due to large scale structure in the universe; this effect tends to blur

the acoustic peaks and can also modify the polarization.

The CMB contains polarization anisotropies at the level of 10−6 due to quadrupo-

lar anisotropies in the radiation intensity. In theory, this anisotropy can be generated

by scalar, vector, or tensor (gravitational-wave) perturbations; however, vector con-

tributions to the polarization are thought to be negligible. A quadrupole anisotropy

generated by scalar perturbations is expected to produce a curl-free polarization pattern

(called an E-mode), while gravitational waves should produce a divergence-free pattern

(called a B-mode). The E-mode polarization was first detected in 2002 by the Degree

Angular Scale Interferometer (DASI) [96]; further studies [97–100] have confirmed the

existence of this polarization and established its conclusive agreement with the standard

cosmological model.

Observations of B-mode polarization in the CMB may provide evidence for a grav-

itational-wave background in the early universe. The B-mode polarization has been

observed due to gravitational lensing by the South Pole Telescope [101] and at degree

angular scales by BICEP2 [102], although the BICEP2 result may possibly be contami-

nated by dust.
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First stars and reionization

Somewhere between a few hundred million and a billion years after the Big Bang, the

first stars begin to form. It is likely that these were very massive and metal-poor stars,

often referred to as Population III stars. This generation of stars produced the first

significant amounts of heavier elements, including carbon, oxygen, and iron.

The UV photons produced by these stars were energetic enough to reionize neutral

hydrogen. However, due to the expansion of the universe, the interaction rate between

these photons and atoms was significantly reduced compared to the early universe. Thus,

the universe remains mostly transparent today.



Chapter 2

Laser Interferometer

Gravitational-wave Observatory

The Laser Interferometer Gravitational-wave Observatory (LIGO) is a large-scale scien-

tific effort focused on the direct detection of gravitational waves. From 2002 to 2007, the

LIGO Scientific Collaboration (LSC) operated three kilometer-scale Michelson interfer-

ometers: one 4-km interferometer (H1) and one 2-km interferometer (H2) in Hanford,

WA, and another 4-km interferometer (L1) in Livingston, LA; this will be referred to as

the “initial” LIGO configuration. After a two-year period of upgrades to the “enhanced”

LIGO configuration and the decommissioning of H2, H1 and L1 collected data from 2009

to 2010, achieving their best strain sensitivity (≈2× 10−22 in a 100Hz frequency band)

during this time [52]. Photographs of the two LIGO observatories are shown in Fig. 2.1.

From 2010 to 2015, the LIGO detectors collected no science data, instead undergoing

a series of upgrades to become “Advanced LIGO.” The Advanced LIGO detectors recently

acquired their first observational data from September 2015 to January 2016. During

this observational run, the strain sensitivity was a factor of 2 or 3 better than the

enhanced LIGO sensitivity. However, this chapter will focus primarily on the initial

LIGO detectors, since the analyses presented in this dissertation utilized data collected

in the initial LIGO configuration. Henceforth, the initial LIGO detectors will simply be

referred to as the LIGO detectors.

In Sec. 2.1, I provide a description of the initial LIGO detectors and some of their

49
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Figure 2.1: Aerial view of the LIGO observatories at Hanford, WA (top) and Livingston,
LA (bottom). The laser and main optics are contained in the large buildings at the vertex
of the two beam tubes. Figure reproduced from Ref. [1]. Copyright IOP Publishing.
Reproduced with permission. All rights reserved.

http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0034-4885/72/7/076901
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most significant noise sources. Sec. 2.2 gives an overview of data analysis techniques and

observational results from the LSC. Finally, Sec. 2.3 briefly introduces Advanced LIGO

and discusses its first observational run.

2.1 Detector description

The LIGO detectors were modified power-recycled Michelson interferometers, designed

to be capable of detecting GWs over a frequency band of 40–7000Hz, and to be sensitive

to GW strain amplitudes as low as 10−21 [48]. They collected data during six science

runs which occurred between 2002 and 2010. Tab. 2.1 summarizes these science runs

and the strain sensitivities achieved during them.

Science Run Dates Strain Sensitivity

S1 [103] 23 August 2002 - 9 September 2002 2× 10−20 Hz−1/2

S2 [104] 14 February 2003 - 14 April 2003 3× 10−21 Hz−1/2

S3 [105] 31 October 2003 - 9 January 2004 2× 10−21 Hz−1/2

S4 [106] 22 February 2005 - 23 March 2005 5× 10−22 Hz−1/2

S5 [1] 5 November 2005 - 30 September 2007 3× 10−22 Hz−1/2

S6 [107] 7 July 2009 - 20 October 2010 2× 10−22 Hz−1/2

Table 2.1: Overview of the six LIGO science runs, including dates of operation and
strain sensitivity achieved. Strain sensitivities are estimated for the most sensitive 100Hz
frequency band (≈100–200Hz).

This section will give an overview of the LIGO detectors, including the different

subsystems and main sources of noise in the detectors.

2.1.1 Detector layout

The design goal of the initial LIGO detectors was to reach a strain sensitivity of 10−21,

corresponding to a length change of ≈10−18 m. In order to achieve this level of sensitivity,

the LIGO detectors feature several modifications compared to a standard Michelson

interferometer. A diagram of the LIGO detectors is shown in Fig. 2.2.

Each arm in a LIGO interferometer features a Fabry-Pérot cavity, which is a type of

resonant optical cavity. A Fabry-Pérot cavity is made of specially designed mirrors and
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input test masses. Figure and information reproduced from Ref. [1]. Copyright IOP
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mirror coatings which allow the laser light to resonate in the cavity. This causes the laser

light to circulate multiple times in an arm, effectively increasing the interferometer arm

length and the accumulated phase of the light (if a GW is present). For the initial LIGO

detectors, a GW signal at 100Hz would traverse the arms approximately 100 times [1].

The LIGO detectors have a intentional asymmetry of 355mm in length of their

two arms, called a Schnupp asymmetry [19]. This asymmetry is induced in the inner

Michelson interferometer formed by the beamsplitter and the input mirrors (see Fig. 2.2);

the two Fabry-Pérot cavities are identical in length. This is done so that the operating

point of the interferometer is on a dark fringe due to destructive interference; thus,

changes in the arm length will increase the power at the output port.

http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0034-4885/72/7/076901
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Another modification from a standard Michelson interferometer is the implementa-

tion of power recycling [108, 109]. Because the output of the GW channel is designed

to be on a dark fringe when there is no GW power in the interferometer, much of the

light incident on the beamsplitter returns toward the laser. Power recycling involves the

insertion of another partially transmitting mirror between the beamsplitter and the laser

so that much of this light is returned to the arms of the interferometer, thus “recycling”

some of the laser power. This technique significantly increases the light power stored in

the interferometer and reduces shot noise at the output.

The interferometer’s laser emits 10W of power from an Nd:YAG source [1] at a wave-

length of 1064 nm. It is stabilized in power by implementing a feedback loop between

a photodetector and the power amplifier and is stabilized in frequency by locking to a

reference cavity using the Pound-Drever-Hall (PDH) technique [110]. All spatial modes

other than the fundamental Gaussian are filtered out by a pre-mode cleaner and a mode

cleaner, both of which operate in vacuum. After the pre-mode cleaner, the laser beam

passes into the LIGO vacuum system, which houses the primary optical components

of the detector [1]. A vacuum of ≈10−8–10−9 Torr is maintained in this system, which

includes the 4 km-long, 1.2m-diameter beam tubes. The vacuum system also includes

approximately 200 baffles for trapping scattered light, which can significantly contami-

nate the detector readout.

The LIGO detectors employ a suspension system that aims to mitigate local envi-

ronmental and seismic effects. The mirrors are each suspended as a pendulum by a loop

of steel wire, which provides 1/f2 damping above the pendulum’s resonant frequency.

The pendula have a resonant frequency of 0.76Hz [19], which allows the mirrors to be

treated as freely-falling test masses in the GW band (40Hz and higher). This provides

an isolation factor of 2 × 104 at 100Hz, which is the most sensitive region of the fre-

quency band for the LIGO detectors [1]. Seismic noise is also reduced by the use of

isolation stacks formed of alternating layers of springs and metal slabs, which provide

f−8 attenuation above 10Hz [111]. The structures from which the mirror pendula hang

are mounted on these isolation stacks.

The input and end test masses are 10.7 kg cylinders of silica, 25 cm in diameter and

10 cm thick. The silica mass substrates are polished in order to minimize optical losses;
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surface deviations from sphericity are . 0.5 nm. They also feature low-absorption coat-

ings made of multiple dielectric layers, which aim to reduce thermal noise and distortion

of the mirror surface due to thermal lensing. However, this effect still occurs, especially

in the input test masses where the laser beam passes through the substrates. To coun-

teract this effect, a CO2 laser subsystem is used to heat the masses and actively control

the thermal lens [1].

There are several degrees of freedom in the LIGO interferometers which must be

precisely controlled to achieve high enough sensitivity to detect gravitational waves.

First, the length of each optical cavity in the interferometer must be kept at an integer

multiple of the laser’s wavelength in order to maintain resonance. These lengths are

sensed using a modified version of the PDH reflection scheme [112]. Error signals are

generated using heterodyne detection of radio-frequency sidebands at the REF, PO, and

AS ports shown in Fig. 2.2. The REF port gives a signal proportional to deviations in

the laser frequency relative to the average arm length, the PO port gives error signals

for the recycling cavity length and the Michelson phase, and the AS port gives an error

signal proportional to differential arm length changes [1]. The error signal from the REF

port is used as a feedback signal for frequency stabilization of the laser, while the REF,

PO, and AS error signals are used as feedback controls to drive coil-magnet actuators

which control the arm lengths. The pitch and yaw of each mirror are also controlled

using a hierarchy of feedback loops. These lengths and alignments must be carefully

maintained in order to keep the interferometer “locked” so that resonance is achieved

and science data can be collected.

2.1.2 Noise sources

The LIGO detectors are subject to a variety of instrumental and environmental sources

of noise. These noise sources are typically divided into two classes: displacement noise,

which causes changes in the cavity lengths, and sensing noise, which limits our ability to

measure the cavity lengths. A plot of the major displacement and sensing noise sources

in the LIGO H1 detector is shown in Fig. 2.3.

The remainder of this subsection will discuss some of the primary noise sources in

the LIGO detectors.
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Seismic noise

Seismic noise is the dominant noise source for the LIGO detectors below 45Hz; its

contribution to the detector noise spectrum sharply increases with decreasing frequency

and sets the lower limit of 40Hz for the GW band of the detectors. It is generated by

large-scale motions of the earth from seismic waves, earthquakes, ocean tides, and human

activity. Seismic noise causes motions of the test masses and is managed through the

use of pendula and isolation stacks. A related source of noise, called “gravity-gradient

noise,” or “Newtonian noise,” is generated by variations in the local gravitational field

due to seismic or atmospheric density perturbations. Newtonian noise was not a concern

for the initial LIGO detectors since there were other, more significant noise sources in

the relevant frequency band; however, it may become more problematic in future GW

detectors where these noise sources are reduced. This will be discussed further in Chap. 6.

Shot noise

Shot noise is a type of sensing noise in the LIGO detectors, and is the dominant noise

source above ≈100Hz. Although the laser power is carefully regulated, statistical fluc-

tuations in the number of photons emitted arise due to the particle nature of light. This

leads to variations in the readout power, which we interpret as length changes in the

interferometer arms.

For a GWwhich induces a strain h(t) = he−2πıfGWt in an interferometer, the resulting

phase change for a single beam of light is [11,108]

δφ =
hc

fGWλ
sin(2πfGWτs)e

−πıfGWτs , (2.1)

where λ is the wavelength of the laser and τs is the storage time of the light. In a

real Fabry-Pérot cavity, the output light is a combination of beams which have taken

different numbers of round trips through the cavity. Ref. [108] gives the result for this

case:

δφ =
hπGc

λ

τs

[1 + (2πfGWτs)2]1/2
. (2.2)

Here, G is the cavity gain. From here, we use basic uncertainty propagation and Poisson
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statistics to derive the expected strain noise in an interferometer due to shot noise:

σh,shot =

[
~λ
[
1 + (2πfGWτs)

2
]

∆ν

4πPBScτ2
s

]1/2

. (2.3)

Here, ∆ν is the measurement bandwidth and PBS is the laser power at the beamsplitter.

We note that σh,shot increases with frequency and decreases with increasing laser power.

Radiation pressure noise

Radiation pressure noise occurs in GW interferometers because photons transfer momen-

tum to the test masses when they are reflected; the resulting motion of the test masses

is a source of displacement noise. In the initial LIGO detectors, radiation pressure was

well below seismic noise and was not considered a significant noise source; however, this

may change for Advanced LIGO, since the laser power will be significantly increased.

In some time interval ∆t, the average number of photons passing through the beam-

splitter is

Nγ =
PBSλ∆t

4π~c
, (2.4)

with fluctuations
√
Nγ by Poisson statistics. The momentum imparted to a single test

mass by these fluctuations is

pmass =

(
4π~PBS∆t

cλ

)1/2

. (2.5)

From here, it is trivial to calculate the strain spectrum from the force, using F =

dp/dt = 4π2f2mx. We add an extra factor of 2, since each cavity contains two mirrors,

and an extra factor of N accounts for the number of trips taken by the light in the

cavity [11]. The end result is

σh,rad =
N

mf2L

√
2~PBS

π3cλ
, (2.6)

where m is the mirror mass. We note that σh,rad decreases with frequency and increases

with increasing laser power; this is the opposite behavior of that observed for shot noise.

Because of the counterplay between these two quantum noise sources, there is an optimal
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laser power PBS,opt which minimizes the total quantum noise at a particular frequency:

PBS,opt(f) =
πmLλf2

4Nτs

[
1 + (2πfτs)

2

2

]1/2

. (2.7)

Using this power results in the minimum achievable quantum noise for an interferometer,

called the “standard quantum limit:”

hSQL(f) =
1

πf

[
~N

mLcτs

√
1 + (2πfτs)2

2

]1/2

. (2.8)

This limit is only achievable at a single frequency at a time, since PBS,opt is a function

of frequency.

This quantum limit can be circumvented by the use of squeezed states of light, which

contain quantum-correlated photons [113]. Through the use of an optical parametric

amplifier, it is possible to decrease phase noise at the expense of amplitude noise, and

vice versa. Squeezing has been tested in both the GEO 600 and LIGO detectors and

has demonstrated a factor of 13 dB improvement below shot noise [113]. This technique

may be utilized to improve the sensitivity of future generations of GW interferometers.

Thermal noise

Thermal noise in GW interferometers arises due to mechanical losses and dissipation

in various parts of the detector. The most significant thermal noise in LIGO occurs

due to resonant modes in the test masses, in the test mass suspensions, and in the

optical coatings of the test masses. Since most of the energy is concentrated near the

resonant frequencies of these modes, all of these components are designed such that their

resonances are as far as possible from the most sensitive frequency band of the detector.

They are also engineered to have extremely low mechanical dissipation in order to reduce

thermal energy deposition.

In the mirror pendula, thermal noise arises due to flexing near the end of the sus-

pension wire [1], which is made as thin as possible in order to reduce this effect. While

the silica test masses themselves have extremely low mechanical losses, the dielectric

coatings on them have relatively high dissipation. This effect is amplified by the fact
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that these coatings are on the faces of the test masses which reflect the laser beam.

Overall, thermal noise is a significant noise source in the 40–100Hz band and near

resonant frequencies; in the lower and higher parts of the LIGO frequency band, seismic

noise and quantum noise are more problematic.

Other noise sources

Several other sources of noise have been identified in the LIGO detectors, although not

all of them are thoroughly or quantitatively understood. These include laser frequency

and amplitude noise, vibrational modes of the mirror pendula (called “violin modes”),

harmonics of the 60Hz power lines, charge build-up on the test masses, noise in the

actuation coils, and a variety of noise sources associated with the servo system which

controls many degrees of freedom in the interferometers [1]. Along with these sources,

there are also local environmental effects which can couple to the GW channel of the

detector. For example, airplanes passing within the vicinity of the detector, lightning

strikes, and stray magnetic fields can inject significant bursts of non-stationary noise

into the detector. To monitor these effects near the LIGO observatories, the detectors

are outfitted with a set of physical environmental monitors, including microphones, ac-

celerometers, seismometers, and magnetometers. The LIGO Detector Characterization

(DetChar) group uses the information from these monitors to identify and flag stretches

of data which may be contaminated by these effects [1].

2.2 Data analysis

Gravitational-wave signals are expected to encompass a wide range of characteristics,

owing to the variety of astrophysical and cosmological mechanisms which may produce

them. The duration of these signals may be anywhere from milliseconds to essentially

persistent, and they can be monochromatic, narrowband, or broadband in frequency.

Some types of astrophysical systems, like compact binaries, are well-modeled in nu-

merical relativity, and the expected GW signals from these sources are relatively well-

understood. However, other cases, like core-collapse supernovae, are more chaotic and

difficult to model; along with this, there may also be GW production mechanisms which

are presently unknown.
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Depending on the morphology and the availability of models for a particular GW

signal, different data analysis strategies may be optimal. For this reason, data analysis

within the LSC is divided into four main groups, each specializing in a different class

of GW signal. Here, I will discuss the potential sources and analysis strategies of each

group, as well as some of the published observational results.

Many of the recent analysis results include data from the Virgo detector [114], which

is a 3 km-long interferometer near Pisa, Italy. The LSC and Virgo collaborations have a

joint agreement which includes data sharing; the availability of data from three detectors

is immensely useful for improving overall sensitivity to GWs and localizing source sky

positions. The first-generation Virgo detector collected data in four science runs (referred

to as Virgo Science Runs (VSR) 1, 2, 3, and 4) between 2007 and 2011, before shutting

down operations for upgrades to the Advanced Virgo configuration.

2.2.1 Compact binary coalescences

The compact binary coalescence (CBC) search focuses on transient GW signals, lasting

O(1 s) or less, produced by the coalescence of neutron star-neutron star, neutron star-

black hole, and black hole-black hole binary systems. These binary systems continually

produce gravitational waves over their lifetime, but only enter the sensitive band of GW

interferometers during the final seconds of their inspiral, merger, and ringdown, when

they increase sharply in both amplitude and frequency. More discussion of compact

binary coalescences can be found in Sec. 1.3.3.

The main goal of the CBC data analysis group is to detect gravitational waves

produced by the coalescence of two compact objects, which has recently been accom-

plished [10]. They also hope to use future detections to estimate rates of compact binary

coalescences and to create a catalog of events for developing a better understanding of

the overall population of these binary systems. These signals can be used to test gen-

eral relativity (especially in the strong-field regime), post-Newtonian theory, and other

theories of gravity. Measurements of orbital eccentricity and black hole spins can also

provide significant insight into binary formation scenarios. Finally, CBC signals can be

used to gain a better understanding of the neutron star equation-of-state and gamma-ray

bursts produced during coalescences involving a neutron star [115].

CBC signals are the most well-understood source of GWs and there exist many
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numerical models of this type of waveform. A technique called “matched filtering” can

be used to search for known signal waveforms buried in well-behaved (nearly Gaussian)

noise [116]. This technique is qualitatively similar to doing a cross-correlation between

a model waveform (or “template”) and the data. However, the model waveform is not

known exactly; it depends on several parameters, including the masses and spins of the

two compact objects, the sky direction and inclination of the source, the distance to

the source, the polarization angle, and the ending time and phase of the inspiral. As a

result, a template bank of waveforms using different parameters is generated and used

to analyze the data. Due to computational limitations, the bank cannot be constructed

to fit every possible set of parameters exactly; instead, the template bank has parameter

spacings such that the loss of signal-to-noise ratio (SNR) due to template mismatch

should be < 5% [117].

Triggers are generated by filtering the time-series data from a single detector with

matched filters from the template bank designed to detect the expected signal. Each

trigger has an associated SNR, coalescence time, and other parameters associated with

the template. This is done with data from multiple detectors, and coincidence is required

between detectors in order to eliminate spurious triggers occurring due to instrumental

artifacts.

The CBC data analysis group also includes a strong focus on parameter estimation.

This analysis uses GW candidate triggers generated by the matched filtering search and

performs a full Bayesian analysis using Markov chain Monte Carlo (MCMC) techniques

to estimate and set limits on the properties of the GW source. This has been done using

both simulated signals and blind hardware injections [118], as well as for GW150914 [65].

Recently, two CBC analysis pipelines detected GW150914 with the highest signifi-

cance [10] of any LIGO analyses; more information on the analysis details can be found

in Ref. [64]. Results from this search were used to test general relativity [67] and to set

limits on the merger rates of binary black hole systems [66].

Past CBC analyses have also made significant contributions. A search for low mass

binary coalescences (2–25 M�) with LIGO S6 and Virgo VSR 2 and 3 data set upper

limits on merger rates for NS-NS, NS-BH, and BH-BH binaries [119]. There have also

been efforts to analyze the data at extremely low latency (on the order of minutes) so

that any significant triggers can be immediately sent to electromagnetic observatories
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for follow-up [120].

2.2.2 Gravitational-wave bursts

The LIGO burst analyses are geared towards detecting short-duration GW signals whose

waveform is not known. Many astrophysical mechanisms which may produce GWs are

not fully understood; as a result, the amplitude and frequency evolution of the GWs are

relatively uncertain. Potential sources of GW bursts include core-collapse supernovae,

black hole mergers, and seismic activity in neutron stars [1]. Until now, the burst group

has focused on GW signals lasting a few seconds or less; however, new developments

may enable them to extend the parameter space of their searches in the future.

To search for GW bursts whose precise waveform is not known, excess power methods

are used. This technique identifies triggers by finding periods of data which are not

consistent with regular detector noise; this requires careful usage of data quality flags

and consistency checks to avoid triggering on data artifacts. Most burst searches use a

time-frequency representation of the strain data and some form of clustering to localize

triggers in both time and frequency. Some burst analyses are incoherent, meaning that

triggers are first identified in individual detectors, and then a time coincidence between

multiple detectors is required for possible GW candidate events (in order to remove

triggers due to data artifacts). Other analyses are coherent, using either cross-correlation

or a coherent network analysis [115].

Even though precise signal waveforms are not known, burst searches still use sim-

ulated GW signals to estimate their sensitivity to GWs based on their morphologies,

frequency content, and amplitude. Many of these are ad hoc waveforms, meaning they

are not generated by simulating a specific astrophysical event, but are chosen to encap-

sulate various morphologies which real GWs could have. Sine-Gaussian bursts have been

used to test sensitivity to monochromatic signals, while Gaussian bursts and white noise

bursts are used to test broadband sensitivity. Black hole ringdown waveforms were also

used in a recent burst search [107].

A variety of astrophysical events are expected to produce both gravitational waves

and other energetic phenomena, including gamma-ray bursts and high-energy neutrinos.

Triggered burst analyses use observations of these phenomena to identify times and sky

directions which may contain GW signals. Observing an astrophysical event through
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both GWs and other phenomena would greatly enhance confidence in both the event

itself and in our astrophysical understanding of the process which generated it. The

burst and CBC groups analyzed LIGO S6 and Virgo VSR 2 and 3 data which coincided

with 154 gamma-ray bursts and placed lower bounds on the distance to the progenitor,

with some assumptions about the energy emitted [121]. There are also many cases where

electromagnetic observatories follow up on potential GW candidates; initial GW triggers

are generated using a low-latency pipeline which identifies significant triggers within

minutes [122,123]. GW triggers have been followed up on by the Swift experiment [124]

and the IceCube neutrino observatory [125]. A follow-up search for neutrino triggers was

also done for GW150914 by ANTARES and IceCube, although no significant neutrino

emission was detected [70].

There are also several all-sky burst searches, which make no assumptions about the

arrival time or sky direction of GWs. These searches tend to be more computationally

intensive due to the large amount of data they must process and the number of sky

directions they must consider. An all-sky burst analysis pipeline was actually the first

to detect GW150914 [63], although its significance was lower compared to CBC matched-

filtering analyses. Past all-sky searches have set limits on the rate of generic strong GW

bursts [107], and have also specifically targeted intermediate mass black-hole binaries

(100–450 M�) [126].

2.2.3 Continuous waves

The continuous waves search aims to detect long-lasting, narrowband gravitational waves

which may be emitted by rapidly rotating neutron stars. These neutron stars are ex-

pected to have a time-varying mass quadrupole moment due to elastic or magnetic

deformations, instabilities like r-modes, and free precession [127]. The waveform of this

signal type is expected to be nearly sinusoidal and relatively weak; as a result, it is ex-

pected that LIGO may only be able to detect these sources within our galaxy. However,

there are many observed pulsars within this range which are expected to be emitters of

continuous GWs; the ellipticity of these sources will determine the signal strength and

thus, their detectability.

The waveform of a GW signal from a rotating neutron star is a function of six

parameters: two for the source position, two for the source orientation, and two for
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the spin frequency and its derivative. For searches focused on a known pulsar, some of

these parameters can be estimated from electromagnetic observations; with this reduced

parameter space, it is possible to perform a more sensitive coherent search. However, for

all-sky searches without a specific target, no such simplification is possible. For short

datasets, it is still possible to perform a coherent search, but for datasets longer than a

few months, semi-coherent approximations are used due to computational limitations.

These semi-coherent searches are sensitive only to power and neglect the phase of the

signal [1].

The coherent searches are primarily designed for signal detection and parameter

estimation. They use a Bayesian method in the time-domain to form a joint likelihood

for all detectors involved in the searches. The incoherent/semi-coherent methods use

some form of strain power summing in each frequency bin; if any bins are found to

contain high SNR, they are often followed up on by coherent search methods.

Targeted searches for continuous GWs have focused on several known objects. Searches

directed towards the Crab pulsar and the Vela pulsar [128–130] have beaten the so-called

“spindown limit,” which is an indirect upper limit on the strain based on the assumption

that the slowing rotation of the pulsar is entirely due to GW emission. These searches

have also targeted other known pulsars [131], supernova remnants [132], the galactic

center [133], and the low-mass x-ray binary, Scorpius X-1 [134].

One all-sky search used LIGO S5 data to search for any periodic gravitational waves

in the 50–1100Hz range and set strain limits below 10−24 in a 200-Hz band [135]. An-

other search used an F-statistic to search Virgo VSR1 data from 100–1000Hz and cer-

tain regions of the frequency derivative space which were previously not explored, setting

strain upper limits in the most sensitive region of the frequency band of ≈ 5×10−24 [136].

Finally, another all-sky search targeted continuous waves from spinning neutron stars in

binary systems, and was sensitive to binary orbits with eccentricities as high as 0.9 [137].

2.2.4 Stochastic backgrounds

The stochastic search is geared towards detecting a random background of gravitational

waves, which may be produced by cosmological processes or the superposition of weak,
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individually unresolvable astrophysical sources. This stochastic gravitational-wave back-

ground (SGWB) is generally expected to be weak enough that it will be below the in-

trinsic noise of a single GW interferometer (at current sensitivities). Thus, stochastic

analyses are based around the cross-correlation of data from multiple detectors, in order

to enhance GW signals and suppress uncorrelated noise sources. Detector characteri-

zation work is very important for the stochastic group, in order to identify and remove

frequency bins containing correlated noise, which affects the search sensitivity and may

masquerade as a signal. The sensitivity of stochastic searches is also dependent on the

total integration time, so these analyses generally use as much data as possible.

Stochastic analyses characterize different GW backgrounds based on their frequency

spectrum of gravitational-wave energy density, ΩGW(f). There are many astrophysical

models which predict SGWB spectra for different sources, although most models predict

something similar to a power law in the frequency band of LIGO. These analyses divide

the data into segments and estimate the power in narrow frequency bins for each segment.

All of the data segments are eventually combined using a weighted average to give an

overall estimate of the GW power in each frequency bin. A typical segment size is 60 s,

with a frequency resolution of 0.25Hz.

The all-sky stochastic search is focused on detecting an isotropic background of grav-

itational waves coming from all directions on the sky; this is the gravitational analogue

of the electromagnetic Cosmic Microwave Background. This search has been performed

several times, most recently analyzing LIGO S6 and Virgo VSR 2 and 3 data. It has

set a limit on the total isotropic GW energy density of ΩGW < 5.6× 10−6 in the 41.5–

169.25Hz frequency band, which has surpassed the limit from Big Bang nucleosynthesis

in this band [88,89].

The directional stochastic searches are similar to the all-sky search, but instead

of integating over the entire sky isotropically, they use different mappings to look for

localized sources of unmodeled continuous GWs. The radiometer search [138] is designed

to look for point sources, and the spherical harmonics search looks for extended sources

with an arbitrary angular distribution [139, 140]. These searches have analyzed and set

limits on GW strain power across the entire sky. From the resulting sky maps, they

were also able to set limits on GWs coming from certain known astrophysical objects,

including Scorpius X-1 and the galactic center.
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The stochastic radiometer search has also been adapted into a search for “long-lasting

GW transients,” called the Stochastic Transient Analysis Multi-detector Pipeline. This

search constructs frequency-time maps of cross-correlation SNR and parses these maps

with image processing techniques to find groups of pixels which contain significant power

and may correspond to GWs. A targeted search using GRB triggers in S5 data has been

performed [141], as well as an all-sky search in S5 and S6 data [142]; this all-sky search

will be discussed in greater detail in Chap. 5. These searches have focused on transients

lasting a few seconds to a few hundred seconds so far, but may eventually be adapted

to even longer transient signals, lasting hours to weeks.

Finally, the stochastic group has used the detection of GW150914 to estimate the

SGWB energy density due to binary black hole coalescences [69]. More details on the

stochastic search and its analysis methods will follow in Chap. 3.

2.3 Advanced LIGO

The Advanced LIGO detectors began collecting their first observational data in Septem-

ber 2015, after a five-year period of upgrades and commissioning. Although the work

presented in this dissertation does not use Advanced LIGO data, this is a significant

development in the fields of cosmology, astronomy, gravitational waves, and general rel-

ativity, so it is worth discussing briefly. In this section, I will describe some of the

upgrades to the Advanced LIGO detectors and their expected sensitivity, discuss some

results from the first observing run, and mention developments expected in the future.

2.3.1 Upgrades

Significant upgrades have been made to the LIGO detectors in order to increase their

strain sensitivity by a factor of ≈10 (relative to the initial LIGO detectors) and to im-

prove their sensitivity in the 10–40Hz range, which was previously dominated by seismic

noise. One important change for the Advanced LIGO configuration is the introduction of

a signal recycling mirror between the beamsplitter and the detector readout. This cavity

increases the storage time of the interferometer and helps increase the sensitivity across

a broad range of frequencies [52]. The cavity length can also be adjusted, which allows

for some tuning of the interferometer’s frequency response. It can even be tuned for
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narrowband operation with improved sensitivity at a single frequency (that of a known

pulsar, for example), although the noise levels at other frequencies would be increased

in this configuration. Fig. 2.4 shows the Advanced LIGO sensitivity curve for several

different tunings and laser powers.
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Figure 2.4: Estimated Advanced LIGO sensitivity curves for different tunings of the
signal recycling cavity and different laser powers: the case of no signal recycling cavity
(solid blue), optimized for neutron star-neutron star inspirals (solid red), optimized for
30-30M� binary black hole inspirals (solid black), no detuning and low laser power
(dash-dot gray), no detuning and high laser power (dash-dot yellow), and a narrowband
tuning at 1 kHz (dash-dot orange).

The Advanced LIGO configuration can be seen in Fig. 2.5, with the signal recycling

cavity defined by the SRM, SR2, SR3, and ITM mirrors.

The laser power in Advanced LIGO has been significantly increased from the 4.5W

used in initial LIGO, in order to reduce shot noise at high frequencies. Once Advanced

LIGO reaches design sensitivity, the input laser power may be as high as 125W. Although
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Figure 2.5: Optical configuration of the Advanced LIGO detectors. ITM: input test
mass. ETM: end test mass. ERM: end reaction mass. PRM: power recycling mirror.
SRM: signal recycling mirror. CP: compensation plate. BS: beamsplitter. FI: Fara-
day isolator. PD: photodetector. Figure and information reproduced from Ref. [52].
Copyright IOP Publishing. Reproduced with permission. All rights reserved.

this increase in power also leads to increased radiation pressure noise, the weight of the

test masses have been significantly increased (from 10.7 kg to 40 kg) to counteract this

effect. A potential increase in test mass thermal noise is also to be expected from

higher laser power; however, this effect is mitigated by the usage of larger beam spots

on the mirrors. The arm cavity length measurement is essentially an average from all

photons in the beam, so a wider beam allows for averaging over more of the test mass

surface [52]. To suppress seismic noise, the test masses in Advanced LIGO are hung

from quadruple pendulum suspensions, with each pendulum providing 1/f2 suppression

above its resonant frequency.

Although the increased sensitivity of the Advanced LIGO detectors is obviously

http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
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beneficial for detecting gravitational waves, it also reveals new noise sources which were

less significant for initial LIGO. The detector sensitivity is approaching a regime where

certain non-local phenomena, including seismic activity and Schumann resonances, may

cause correlated noise between the detectors. Research is ongoing in both of these areas.

2.3.2 First observing run

Advanced LIGO’s first observing run (O1) began on September 18, 2015 at 15:00 UTC

and ended on January 12, 2016 at 16:00 UTC. The primary scientific result from this

period was the first direct detection of gravitational waves [10]. This event, called

GW150914, was observed on September 14, 2015 at 09:50:45 UTC, before the actual

beginning of O1. However, the detectors were locked and in the same configuration

as they would be for the observing run; the only difference was that the system for

alerting electromagnetic telescopes for follow-up of significant triggers was not in place.

More information about GW150914 can be found in Sec. 1.3.5. All currently published

results using O1 data utilize only the first 16 days of coincident data collected around

GW150914. The remainder of the data is still being studied by many of the data analysis

groups and will be published in the coming months.

The sensitivity of the Advanced LIGO detectors during O1 is shown in Fig. 2.6.

Above 200Hz, it is approximately a factor of two better than the best sensitivity achieved

by the enhanced LIGO detectors during S6; below 200Hz, the sensitivity increase is even

more dramatic. GW150914 would likely not have been detected during S6, since its

estimated SNR given the S6 sensitivity is ≈6 [143]. The design sensitivity of Advanced

LIGO is also shown; future upgrades may even be able to improve the sensitivity further.

2.3.3 Future plans

Advanced LIGO’s second observing run (O2) is expected to begin in the fall of 2016

and last for six months, while plans for the third observing run (O3) place its start in

late 2017, with a duration of nine months [144]. Advanced Virgo is expected to begin

observations in early 2017 and may join Advanced LIGO for part of O2.

Advanced LIGO expects to achieve design sensitivity by 2019 and plans to collect

data for extended periods of time after this. It may be possible to increase the sensitivity
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of the detectors by as much as a factor of two beyond the design sensitivity [143, 145]

by using squeezed light, increased mirror masses, and new materials to reduce thermal

noise, but this remains to be seen.

Plans to place the former H2 detector in India have recently been approved by the

Indian government; however, the earliest this detector is expected to come online is

2022, and it will take a few more years after that to achieve design sensitivity [144].

The Japanese GW interferometer, KAGRA, is expected to begin observations in 2018;

the addition of KAGRA and LIGO-India to the worldwide GW detector network will

significantly improve localization of GW sources.

http://dx.doi.org/10.1103/PhysRevLett.116.131103
http://dx.doi.org/10.1103/PhysRevLett.116.131103


Chapter 3

Searches for a stochastic

gravitational-wave background

A stochastic gravitational-wave background (SGWB) is expected to result from a su-

perposition of many weak and unresolved sources of gravitational waves. These may

be cosmological processes in the early universe or individual astrophysical emitters of

GWs. Detection of an SGWB holds the promise of insight into the earliest moments of

the universe (cosmological backgrounds) and formation rates and ensemble properties of

GW source populations (astrophysical backgrounds).

The layout of this chapter is as follows. Sec. 3.1 will describe some potential sources

of a stochastic gravitational-wave background. The LIGO stochastic search group has

developed a cross-correlation-based algorithm for analyzing long periods of LIGO data

with the goal of detecting an SGWB; this search method will be presented in Sec. 3.2.

In Sec. 3.3, I discuss a technique for estimating SGWB model parameters using the

results of searches for an isotropic SGWB, and show how it can be applied to models

with high-dimensional parameter spaces.

The star formation rate is a key component of astrophysical SGWB models; in

Sec. 3.4, I discuss an effort to estimate the star formation rate at high redshift us-

ing a hierarchical model of cosmic chemical evolution [146]. In particular, I use this

chemical evolution model to estimate the parameters of a high-mass mode of star for-

mation occurring at high redshift. Finally, in Sec. 3.5, I apply our parameter estimation

71
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method to an SGWB produced by stellar core-collapse and estimate its detectability by

Advanced LIGO and the Einstein Telescope.

3.1 Sources of stochastic gravitational-wave backgrounds

In general, a gravitational-wave background may be characterized in terms of how its

energy density is distributed in frequency. Keeping in line with traditional cosmological

definitions, we use a normalized energy density

ΩGW(f) ≡ 1

ρc

dρGW

d ln f
, (3.1)

where dρGW is the GW energy density contained in the frequency range between f and

f + df , and ρc is the critical density, defined in Eq. 1.87.

Fig. 3.1 shows ΩGW(f) for a variety of cosmological and astrophysical SGWB models

(solid lines). This includes SGWBs produced by binary neutron stars and binary black

holes [147], cosmic strings [29], axion inflation [148], slow-roll inflation [149], and a

stiff equation of state [150] (i.e., some energy with w > 1/3; see Eq. 1.81 and the

following text). Limits from Big Bang nucleosynthesis [85], CMB observations [151],

pulsar timing [152], and analyses of LIGO and Virgo data [88, 89] are shown, as well.

The CMB limits come from large-scale observations of temperature and polarization

fluctuations, as well as constraints on the effective number of neutrino species, while

the BBN limit comes from observations of the light element abundances (see Eq. 1.107).

Two of the most recent analyses of initial LIGO data have surpassed the BBN limit in

the LIGO band [88,89].

Note that the spectra of these models depend on their various parameters; the spec-

tra shown here are for a specific choice of model parameters intended to be generally

representative of the most realistic parametrization of each model. All of these models

can be well-approximated by a power law in the few Hz–few kHz region where the LIGO

detectors are most sensitive.

Any type of SGWB can be completely characterized by an appropriate choice of

ΩGW(f) under the assumptions that the background is isotropic, unpolarized, stationary,

and Gaussian [153]. Isotropy is a reasonable requirement for a cosmological SGWB,

based on observations of the CMB, but it is possible that an astrophysical SGWB could
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Figure 3.1: Landscape plot of SGWB energy density spectrum for various cosmological
and astrophysical models. Each curve represents a specific choice of parameters for that
particular model. Bounds from LIGO analyses are shown as thick black lines in their
respective frequency bands. Other bounds are from Big Bang nucleosynthesis (BBN)
constraints, CMB observations, and pulsar timing analyses. Figure reproduced from
Ref. [89] with permission. Copyright 2016 by the American Physical Society.

be distributed anisotropically across the sky. Regarding polarization, there is no obvious

reason why one GW polarization should contain more energy than the other, although

there are some models of axion inflation which predict a preference for one polarization

due to parity breaking [154]. Based on the expected age of potential SGWBs (Gyr),

it seems unlikely that they would vary on the timescale of LIGO observation periods;

thus, an SGWB should be effectively stationary. Finally, the assumption of Gaussianity

is safe assuming that the SGWB is produced by a large number of independent sources

of GWs; by the central limit theorem, the sum of these independent random variables

should be Gaussian-distributed.

http://dx.doi.org/10.1103/PhysRevLett.113.231101
http://dx.doi.org/10.1103/PhysRevLett.113.231101
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In this section, I will describe some potential sources of a stochastic gravitational-

wave background.

3.1.1 Cosmological models

Numerous models predict a cosmological SGWB produced by inflation-related phenom-

ena, cosmic strings, and other mechanisms in the early universe. Many of these mod-

els can be considered speculative, since there are large theoretical uncertainties in the

production mechanisms, and in some cases, physics beyond the Standard Model is re-

quired [85].

Inflationary models

A stochastic gravitational-wave background may be generated during inflation by a va-

riety of mechanisms, although most theories are related to initial fluctuations which are

greatly amplified during the rapid expansion of the universe. These may be zero-point

vacuum fluctuations, as well as fluctuations in the inflaton field or in the gravitational

field itself. Refs. [31] and [155] describe this amplification during standard slow-roll in-

flation. There are also models where the inflaton is a pseudoscalar axion [148]; this may

extend the duration of inflation, leading to significant non-Gaussianity and increased

GW amplitude. Another model predicts significant large-scale inhomogeneities pro-

duced by parametric resonance during preheating, a process which causes exponentially

increasing excitations of a quantum field and may lead to significantly enhanced particle

production [85]. The particle production process and the resulting inhomogeneities are

expected to generate gravitational waves [156–159]. For most of these models, the details

of the spectra are highly dependent on the form of the inflaton potential.

Cosmic strings

Cosmic strings are one-dimensional topological defects which are hypothesized to have

been generated during a symmetry-breaking phase transition in the early universe. They

may also be created by the expansion of fundamental strings due to inflation. Since

formation, the network of cosmic strings may have evolved by stretching, interacting,

oscillating, and evaporating. These interactions may have led to the formation of loops;
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kinks and cusps on the loops near the pinch-off point produce strong bursts of gravita-

tional waves. The superposition of these bursts across the cosmic string network could

produce an SGWB. The resulting spectrum has two main features: a low-frequency peak

and a flat spectrum at higher frequencies; the specific frequency ranges which correspond

to these components depends on the average string tension and loop size. This behavior

can be seen in the cosmic string spectrum shown in Fig. 3.1.

The overall GW energy density radiated by cosmic strings is primarily dependent

on the linear mass density of the string, µ. It can also be parametrized in terms of

a deficit angle, δ = 4πGµ, which represents the deviation from Euclidean geometry

caused by the presence of a string. If the symmetry breaking which led to cosmic string

formation occurred at a mass scale m, then µ is proportional to m2 [160]. No evidence

for GUT scale strings with δ ≈ 10−5 has been obtained from observations of large scale

structure and CMB anisotropy, but smaller strings could exist and produce gravitational

waves [160].

Pre-Big Bang cosmology

Pre-Big Bang cosmology describes a scenario based on string cosmology through which

the initial singularity in the standard cosmological model may be avoided [161]. In this

theory, the universe begins in the string perturbative vacuum [28], which is in a state

of accelerated expansion driven by dilatons. The expansion also leads to an increase in

curvature; eventually, higher-order corrections to the string action reduce or stop the

growth of curvature. The point of maximum curvature can be associated with the Big

Bang and the transition to the radiation-dominated epoch of the standard cosmological

model [27].

The model can be parametrized in terms of the string coupling parameter gs at the

transition point between the dilaton-driven and stringy phases and the total redshift

acquired during the expansion zs [26]. The GW energy density spectrum generally

has two characteristic features: an initial range where the amplitude increases with

frequency, and then an essentially flat region of the spectrum, with some slight oscillatory

behavior. However, these features depend some on the choice of model parameters.
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Phase transitions

The universe has undergone a number of phase transitions throughout its history, in-

cluding GUT scale symmetry breaking, electroweak symmetry breaking, and inflation.

These transitions are often dramatic events in the history of the universe and provide

an environment which is conducive to the production of gravitational waves [85].

During first-order phase transitions, the universe is in a false vacuum state; transition

to the true vacuum state may proceed through quantum tunneling in small volumes or

“bubbles” [162]. These bubbles quickly expand and eventually reach relativistic speeds

due to the pressure difference between their interior (true vacuum) and their exterior

(false vacuum). This process transfers the energy from the false vacuum into the kinetic

energy of the expanding bubble walls. Eventually, bubbles collide and release significant

amounts of energy, generating gravitational waves in the process. The GW spectrum

from this process depends primarily on two parameters: the ratio of the rate of change

of bubble nucleation to the expansion rate of the universe, and the temperature at which

the phase transition occurs.

3.1.2 Astrophysical models

An astrophysical SGWB may be produced by the superposition of many faint and un-

resolved individual sources of GWs. Such a background can be produced by a signif-

icant population of essentially any type of GW source, including supernovae, neutron

stars, and compact binary systems. Astrophysical SGWBs are generally expected to

contain more energy than cosmological backgrounds (except, perhaps, at relatively low

frequencies and very high frequencies); as a result, they may act as foregrounds to the

cosmological SGWBs in the frequency band of ground-based GW detectors. In order to

make an eventual detection of a cosmological SGWB, it may be necessary to carefully

analyze and subtract the astrophysical SGWB(s).

According to Ref. [25], the SGWB spectrum ΩGW(f) is primarily dependent on

the GW energy spectrum of an individual source dEGW/df . It is also necessary to

account for cosmological effects and the rate of occurrence of a particular source, through

the comoving star formation rate R∗(z) and the mass fraction of stars converted into

progenitors, λ.
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The complete formula is given as [25]:

ΩGW(f) =
8πG

3H3
0c

2
λf

∫ zsup

0
dz

R∗(z)

(1 + z)
√

ΩΛ + Ωm(1 + z)3

dEGW(fe)

dfe
. (3.2)

Here, f is the frequency in the detector frame, related to the emitted frequency (or

frequency in the source frame) fe by f = fe/(1 + z), and ΩΛ and Ωm are the current

dark energy and matter densities, respectively, normalized by the critical density ρc. The

upper limit of the integral (zsup) depends on the maximal redshift (zmax) considered in

the the star formation rate model and the maximal emission frequency of the source

(fmax):

zsup =

{
zmax if f < fmax

1+zmax
fmax
f − 1 otherwise.

(3.3)

With this framework and some astrophysical knowledge of a particular GW source, a

model can be formed for an astrophysical SGWB produced by an ensemble of these

sources. Below, I discuss a few astrophysical SGWB models.

Magnetars

Neutron stars with very strong magnetic fields may experience a magnetically-induced

quadrupolar deformation and emit gravitational waves as they rotate [163]. The grav-

itational-wave emission depends on the neutron star mass and amount of deformation,

along with the magnetic field strength and the initial rotational period of the neutron

star. The energy spectrum from a single magnetar is given by [25]:

dEGW

df
= Iπ2f3

[
5c2R6

192π2GI2

(
Bp
εB

)2

+ f2

]−1

, (3.4)

where I is the neutron star moment of inertia, R is its radius, and Bp/εB is the ratio of

the magnetic field strength at the poles to the to the ellipticity. The initial rotational

period of the neutron star fixes the maximum frequency of GW emission and sets the

upper limit of the redshift integral (see Eq. 3.3). The full GW spectrum is computed by

inserting the energy spectrum into Eq. 3.2.
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Binary coalescences

An SGWB may be formed from the superposition of weak and unresolved coalescences

of compact binaries. Under the assumption of a circular orbit and considering only

quadrupole radiation, the GW energy spectrum depends only on the chirp mass [147]:

dEGW

df
=

(Gπ)2/3

3
(M z

c )5/3f−1/3. (3.5)

Here M z
c = (1 + z)Mc is the observed redshifted chirp mass and Mc is the physical chirp

mass.

One refinement is needed to calculate the full GW energy density spectrum for this

model. Since there may be a significant delay between the formation of a binary system

and its merger, the rate of coalescences at redshift z is dependent on the star formation

rate at an earlier redshift. This accounted for by introducing a time delay term when

computing the observed rate of binary coalescences per volume from the star formation

rate (see Ref. [147] for more details).

3.2 LIGO stochastic search

The LIGO stochastic search strategy is primarily based around the cross-correlation

of data from multiple detectors to enhance GW correlations and suppress uncorrelated

noise. A thorough understanding of this search strategy is essential for the parameter

estimation work presented later in this chapter. In this section, I describe this cross-

correlation search framework and how it is applied to LIGO data.

3.2.1 Effect of a plane gravitational wave on an interferometer

We begin with a plane wave expansion for gravitational metric perturbations in the

transverse-traceless gauge at time t and position ~x [153]:

hab(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂hA(f, Ω̂) e2πıf(t−Ω̂·~x/c)eAab(Ω̂). (3.6)
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The sky direction Ω̂ is defined by an azimuthal angle φ and a polar angle θ, with the origin

at the center of the Earth. The index A runs over the two independent GW polarizations,

+ and ×, and the indices ab run over spatial coordinates; thus, eAab(Ω̂) represents the GW

polarization tensor for polarization A. Finally, h̃A(f, Ω̂) is a complex Fourier amplitude

for polarization A which satisfies the requirement that h̃A(−f, Ω̂) = h̃∗A(f, Ω̂) [153].

It is useful to define a coordinate system around the sky direction Ω̂. This is equiv-

alent to rotating the original coordinate system CCW around the ẑ-axis by φ and then

CCW around the new ŷ-axis by θ so that the final z-axis points in the direction of the

source, Ω̂. In order to make this coordinate system as general as possible, we also include

a possible CCW rotation of the source along the sky direction Ω̂ by an angle ψ, which

is commonly referred to as the source polarization angle. This results in

m̂ = (cos θ cosφ cosψ − sinφ sinψ) x̂+ (cos θ sinφ cosψ + cosφ sinψ) ŷ

− sin θ cosψ ẑ
(3.7)

n̂ = (− sinφ cosψ − cos θ cosφ sinψ) x̂+ (cosφ cosψ − cos θ sinφ sinψ) ŷ

sin θ sinψ ẑ
(3.8)

Ω̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ, (3.9)

such that {m̂, n̂, Ω̂} form a right-handed coordinate system.

General polarization tensors for a gravitational wave coming from any direction on

the sky Ω̂ can be written as:

e+
ab(Ω̂) = m̂⊗ m̂− n̂⊗ n̂

e×ab(Ω̂) = m̂⊗ n̂+ n̂⊗ m̂.
(3.10)

This may be compared to Eqs. 1.61 and 1.62, which give the polarization tensors for the

specific case of a GW propagating along the z-axis (φ = θ = ψ = 0).

Following [85], the detector tensor for interferometer I can be defined as

dabI (t) ≡ 1

2
[ûI(t)⊗ ûI(t)− v̂I(t)⊗ v̂I(t)] . (3.11)

Here, ûI(t) and v̂I(t) correspond to the directions of the two arms of the interferometer;

the time dependence comes about due to the motion and rotation of the Earth. This



80

formulation does not require the arms to be orthogonal, although this is the case for all

currently operating GW interferometers.

The antenna pattern functions define the directional sensitivity of an interferometer

to each GW polarization as a function of sky direction and source orientation [85]. These

functions are given by the product of the detector tensor with the GW polarization

tensors.

F+
I (φ, θ, ψ) = e+

abd
ab
I

=
1

2

(
1 + cos2 θ

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

(3.12)

F×I (φ, θ, ψ) = e×abd
ab
I

=
1

2

(
1 + cos2 θ

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ

(3.13)

The GW strain in interferometer I can be defined as the product of the GW plane

wave (Eq. 3.6) and the detector tensor (Eq. 3.11); after performing this operation and

taking a Fourier transform, we obtain

h̃I(f) =
∑
A

∫
S2

dΩ̂ h̃A(f)e−2πifΩ̂·~x/cFAI (Ω̂) (3.14)

We note that Eq. 3.6 and the resulting formalism describes an isotropic search which

integrates over the entire sky without preference; however, this may be adapted to

perform directional searches. The stochastic radiometer search [138,164] applies a delta

function in sky position to search for point sources of continuous gravitational waves,

while the spherical harmonics search [139, 140] integrates over extended regions of the

sky using a spherical harmonic decomposition.

3.2.2 Cross-correlation estimator

Using the formalism developed thus far, a cross-correlation estimator for GW power can

be constructed. The strain time-series in interferometer I may be written as

sI(t) = hI(t) + nI(t), (3.15)
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where hI(t) is the strain due to GWs and nI(t) is the strain due to noise sources. For

some observation time T (i.e., the amount of data being analyzed), a cross-correlation

estimator S for two detectors I and J can be defined in terms of the Fourier transforms

of each detector’s time-series:

S =
T

2

∫ ∞
−∞

dfs̃∗I(f)s̃J(f)Q̃(f). (3.16)

Here, s̃I is the Fourier transform of the strain time-series from detector I, Q̃ is a to-be-

defined filter function, and the star denotes complex conjugation.

Assuming that there is no correlated noise between the detectors (〈ñ∗I(f)ñJ(f)〉 = 0),

the expectation value of S depends only on
〈
h̃∗I(f)h̃J(f)

〉
:

µ = 〈S〉 =

∫ ∞
−∞

df

∫ ∞
−∞

df ′δT (f − f ′)
〈
h̃∗I(f)h̃J(f ′)

〉
Q̃(f ′). (3.17)

Here, δT (f − f ′) = sin(πfT )/(πf) is a finite-time approximation to the Dirac delta

function. The expectation value
〈
h̃∗I(f)h̃J(f)

〉
can be calculated based on the four

assumptions we have made about the SGWB (see Ref. [153] for more details); the end

result for µ is

µ =
3H2

0

20π2
T

∫ ∞
−∞

df |f |−3ΩGW(|f |)γ(|f |)Q̃(f). (3.18)

Here, γ(f) is the overlap reduction function, which quantifies the sensitivity reduction

which may occur if the two detectors are not colocated or coaligned [165]:

γ(f) ≡ 5

8π

∑
A

∫
S2

dΩ̂ e2πıfΩ̂·∆~xIJ/cFAI (Ω̂)FAJ (Ω̂). (3.19)

Here ∆~xIJ ≡ ~xI − ~xJ is the vector pointing from detector J to detector I.

In the small-signal limit (compared to the intrinsic detector noise), the variance of

S is calculated as σ2 ≈
〈
S2
〉
[153]:

σ2 ≈ T

4

∫ ∞
−∞

PI(|f |)PJ(|f |)|Q̃(f)|2, (3.20)

where PI(|f |) is the estimator for the one-sided noise power spectrum in detector I. This

quantity is normally calculated for time segment t by averaging PI from some number
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of adjacent time segments.

The final quantity of interest is the signal-to-noise ratio, or SNR, defined as SNR =

µ/σ. With the current definitions of µ and σ, the square of the SNR should be propor-

tional to

SNR2 ∝

(
Q̃(f), γ(|f |)ΩGW(f)

|f |3PI(|f |)PJ (|f |)

)2(
Q̃(f), Q̃(f)

) , (3.21)

where the parentheses represent the following inner product:

(A(f), B(f)) =

∫ ∞
−∞

dfPI(|f |)PJ(|f |)A(f)B(f). (3.22)

It is trivial to maximize this ratio by choosing Q̃IJ to be equal to the right-hand term

in the numerator of Eq. 3.21 (up to a constant); thus

Q̃(f) = N γ(|f |)ΩGW(|f |)
|f |3PI(|f |)PJ(|f |)

. (3.23)

Here, N is a normalization constant, generally chosen so that 〈S〉 = ΩαT . Using this

filter, the SNR is given by

SNR =
3H2

0

10π2

√
T

[∫ ∞
−∞

df
γ2(|f |)Ω2

GW(|f |)
f6PI(|f |)PJ(|f |)

]1/2

. (3.24)

The SNR is proportional to the square root of the observation time T ; thus, accumulating

more data increases the sensitivity of this estimator to an SGWB.

One interesting thing to note is that the optimal filter contains the energy density

spectrum ΩGW(f), which is not known a priori. However, most SGWB models are well

approximated by a power law in the LIGO band:

ΩGW(f) = Ωα(f/fref)
α, (3.25)

where Ωα is a constant and the reference frequency fref is normally taken to be 100Hz.

The analysis can be repeated for different values of α; often, stochastic analyses use

α = 0 for the flat spectrum expected of many cosmological models, and α = 2/3 or

α = 3 for astrophysical models (see Fig. 3.1).
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3.2.3 Search pipeline

To analyze data from a LIGO science run, stochastic analyses typically divide the data

into segments of a particular duration (often 60 s). A Fourier transform is applied to

each segment and coarse graining may or may not be applied to achieve the desired fre-

quency resolution. Typical frequency resolutions of these analyses are 1/4Hz or 1/32Hz,

although this may change for future analyses.

Next, the cross-correlation estimator S and its variance σ are calculated in each

time segment. A weighted average is used to combine the estimates for S and σ from

each segment into an overall estimate for the entire science run. The end result is an

estimator for ΩGW in each frequency bin. Any frequency bins where the magnitude of

the estimator exceeds its variance (SNR > 1) will warrant further study and may be

evidence of an SGWB. The overall energy density is also calculated by assuming a power

law with exponent α (see Eq. 3.25) and integrating over the entire frequency band of

the search.

3.3 Parameter estimation for SGWB models

Even without the detection of an SGWB, the information obtained from stochastic

searches can be used to constrain theoretical models, improving our understanding of

the universe and its history. This section will describe a Bayesian method which uses

stochastic search results to estimate and constrain SGWB model parameters.

This method can use the results of LIGO searches for an isotropic SGWB, as well as

expected sensitivity curves of future GW detectors. Using search results will reveal which

regions of the model parameter space are not consistent with the estimates for ΩGW from

that search, while the use of projected detector sensitivities will illustrate which regions

of the model parameter space we can expect to probe with new generations of detectors.

3.3.1 Formalism

Bayesian inference allows us to estimate a set of parameters ~θ for a particular model

given our data D and prior knowledge about the parameters. Bayes’ theorem is given
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as

P (~θ|D) =
P (D|~θ)P (~θ)

P (D)
, (3.26)

where P (~θ|D) is the posterior probability distribution of the parameters, P (~θ) is the

prior probability distribution of the parameters, P (D|~θ) is the likelihood, and P (D) is

the Bayesian evidence, which may be discarded as a normalization factor in parameter

estimation. The prior encapsulates our previous knowledge of the parameters (if any),

while the posterior represents our new knowledge after incorporating the data. The

likelihood function can be thought of as the device which allows us to quantitatively use

the data to move from the prior to the posterior and is the key feature in parameter

estimation.

By adjusting the integration limits of Eqs. 3.18 and 3.20, the stochastic cross-

correlation estimator and its variance can be calculated in a number of small frequency

bins. Assuming a flat GW energy density spectrum in each frequency bin, Si is an

estimator for Ω0 in the frequency bin fi, and σ2
i is the associated variance. Since the

goal is to constrain the parameters of an SGWB model, we compare the measured value

Si to the predicted GW energy spectrum of the model ΩM(fi). Because the estimator

is formed by averaging over many time segments over the course of a science run, it is

expected to be nearly Gaussian; thus, the following likelihood function can be used to

do this comparison [166]:

L(Si, σi|~θ) ∝ exp

[
−1

2

∑
i

(Si − ΩM(fi; ~θ))
2

σ2
i

]
. (3.27)

Here, the index i runs over frequency bins fi, and ~θ represents the set of model param-

eters.

The goal of parameter estimation is to determine the posterior distribution of the

parameters ~θ; using the posteriors, confidence intervals for the parameters ~θ may be

calculated. If a prior distribution for any of the parameters ~θ is known (potentially

from previous searches), it can be used to compute the posterior. In cases where a prior

distribution is not defined, uniform priors are used. In some cases, these priors may be

defined by theoretical or empirical limits; in other cases where our knowledge is more

speculative, the limits are chosen so as to encapsulate all of the significant posterior
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mass.

As an example, I apply this framework to a power law model (see Eq. 3.25) with two

parameters: the amplitude Ωα and the spectral index α. Because this model has only

two parameters, it is possible to perform this analysis by “brute force” calculation: the

likelihood function is simply evaluated at each point on a grid in the parameter space of

the model and used to calculate the evidence (or marginalized likelihood) and the pos-

terior distributions. From the posteriors, confidence intervals on the model parameters

may be estimated.

Using a 200 × 200 grid in the two-dimensional parameter space of the model, I

calculate the GW energy spectrum ΩGW(f) at each point and compare it to either

LIGO stochastic search results or projected detector sensitivities using Eq. 3.27. For

this example, I use the results of the S5 isotropic search as well as the expected design

sensitivities of the Advanced LIGO and Einstein Telescope detectors.

I use uniform priors with ranges Ωα ∈ [10−15, 10−5] and α ∈ [−10, 10], and a reference

frequency of fref = 100 Hz. The resulting posteriors are shown in Fig. 3.2; the regions

of parameter space to the left of the curves are consistent with the data or projected

sensitivity at 95% confidence. Thus, the S5 result allows us to eliminate the portion

of the parameter space to the right of the solid curve. For α = 0, this corresponds to

an upper limit on Ω0 < 7.8 × 10−6, compared to the limit from the full S5 analysis of

Ω0 < 6.9× 10−6 [88]. This difference likely arises from the fact that a larger parameter

space is used in this study.

For the projected sensitivities of Advanced LIGO and the Einstein Telescope, the

regions of parameter space to the right of the respective curves would be incompatible

with a null result at 95% confidence; thus, if these detectors do not observe an SGWB,

we can safely eliminate these regions of the parameter space.

However, this brute force approach can be quite computationally expensive for mod-

els with many parameters due to the large dimensionality of the parameter space. This

simple model required only 40000 likelihood evaluations using a 200 × 200 grid, but

a model with even four parameters would require 1.6 billion likelihood evaluations to

achieve a similar grid density. Because of this, it is necessary to pursue other techniques

for evaluating the likelihood function of more complex models.
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Figure 3.2: Two-dimensional parameter space of a simple power law model of an SGWB.
Regions to the right of the solid curve are not consistent with the results of the S5
isotropic search and can be eliminated at 95% confidence. Given the projected sensi-
tivities of Advanced LIGO and Einstein Telescope, we will be able to eliminate regions
of parameter space to the right of the respective curves, even without a detection of an
SGWB.

3.3.2 Nested sampling

For models with high-dimensional parameter spaces, we use nested sampling to efficiently

evaluate the multidimensional likelihood function. Nested sampling is a computational

technique for model comparison in Bayesian statistics which was developed by John

Skilling [167–169]. It is primarily intended to efficiently calculate the evidence; however,

it also produces estimates of the posterior distributions, which can be used for parameter

estimation.

The nested sampling procedure begins with some set of n live points in the model
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parameter space which are randomly sampled from the prior distribution. The likelihood

function is evaluated at each point, and the point with the lowest likelihood Lmin is

replaced by another point drawn from the prior. There exist many different methods for

selecting this new point, but one procedure which is often used is to select another of the

live points and then take a random step in each parameter to generate a new point. This

procedure is repeated over and over in order to sample the regions of parameter space

with the highest likelihood. The analysis is eventually terminated when the evidence

has been determined to some user-specified precision.

For SGWB parameter estimation, I have utilized a nested sampling algorithm called

MultiNest [170–173]. This algorithm features several improvements over a basic im-

plementation of nested sampling. Typically, the most time-consuming aspect of nested

sampling is replacing the point with L = Lmin by a new point with higher likelihood; if

the points are drawn randomly from a uniform distribution, it would take increasingly

longer as the set of live points increases in likelihood (i.e., as Lmin increases). For an

N -dimensional parameter space, MultiNest generates an approximate likelihood con-

tour with L = Lmin in the form of an N -dimensional ellipsoid in order to efficiently find

points in parameter space with L > Lmin.

MultiNest is also capable of sampling multimodal distributions and separating the

modes. To do this, it groups the live points into clusters, generating a separate ellipsoidal

bound for each cluster which is sufficiently separated from other clusters. The algorithm

can then evaluate the local evidence and separately constrain the parameters for each

mode.

A kernel density estimation function from the CosmoMC package [174] is utilized for

estimating posterior distributions based on the samples from MultiNest.

3.4 Star formation rates

A key component of an astrophysical SGWB model is the star formation rate (SFR)

since most, if not all astrophysical SGWBs are expected to be the product of some

stellar process or the dynamics of a stellar remnant. Here, I describe a study aimed

at estimating new models of the SFR for use with our SGWB parameter estimation

method.
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3.4.1 Observations of star-forming galaxies

In the mid-2000s, Hopkins and Beacom [175,176] compiled a large number of luminosity

density observations and used those to estimate the star formation rate up to z ≈ 6.

More recently, Behroozi et al. [177] have used Markov chain Monte Carlo methods on

observations up to z = 8 in an attempt to extract the SFR and reduce systematic

uncertainties. The resulting SFR is generally in agreement with that of Hopkins and

Beacom, although it peaks at a slightly lower redshift.

Recently, luminosity density measurements have been extended out to z ≈ 11 [178–

186], with a steep drop-off after z > 8. It is trivial to extract the star formation rate

under the assumption that it is proportional to the measured luminosity [187, 188].

However, there are well-known uncertainties related to measurements of the luminosity

density at high redshift, including correcting for dust attenuation in the far-UV portion

of the spectrum and the fact that surveys may miss faint galaxies which are products of

early star formation [146].

3.4.2 Gamma-ray burst rate

Another method for estimating the SFR, especially in low-luminosity galaxies, is based

around connecting the rate of gamma-ray bursts (GRBs) at high redshift to the SFR [189–

196]. The rate of GRBs (dṄ/dz) may be estimated from the SFR by

dṄ

dz
= F (z)

E(z)R∗(z)

〈fbeam〉
dV/dz

1 + z
, (3.28)

where F (z) is the fraction of bursts that can be seen at a given redshift, E(z) is the

fraction of stars that produce GRBs, 〈fbeam〉 is the fraction of GRBs which are observable

(due to beaming), dV/dz is the comoving volume element, and R∗(z) is the SFR [197–

199]. Note that F (z) depends on the experimental capability of observing the initial

burst of gamma rays and extracting a redshift from the afterglow [197].

Assuming that F (z) and 〈fbeam〉 are roughly constant, the GRB-producing fraction of

stars can be modeled as E(z) = E0(1+z)η. Ref. [199] estimated η ≈ 1.2 in their analysis,

implying that a larger fraction of stars produced GRBs in the past; they hypothesize

that the GRB rate may be related to cosmic metallicity.



89

This functional form and the relative abundance of accurate GRB and SFR measure-

ments at low redshift can be used to calculate the unknown quantities. The expected

number of GRB observations between redshifts z =1–4 can be calculated as:

N exp
1−4 = ∆t

∆Ω

4π

∫ 4

1
dz F (z)E(z)

R∗(z)

〈fbeam〉
dV/dz

1 + z

= A
∫ 4

1
dz R∗(z)(1 + z)η

dV/dz

1 + z
.

(3.29)

To calculate the unknown constant A, one may insert the actual number of GRB ob-

servations between redshifts of z =1–4, invert the equation, and solve for A. Then, this
can be extended to higher redshifts: in a given redshift range z1–z2, the average SFR is

proportional to the observed GRB rate, Nobs
z1−z2 .

〈R∗〉z1−z2 = Nobs
z1−z2

[
A
∫ z2

z1

dz (1 + z)η
dV/dz

1 + z

]−1

, (3.30)

This allows for the extrapolation of the SFR to higher redshifts based on GRB observa-

tions. For this study, we use observations from Ref. [199], which extend out to z ≈ 9.

3.4.3 SFR models

Using recent experimental results which estimate the star formation rate from these

methods, we have studied three different models for the star formation rate. For each

model, we use the well-measured data at low redshift [177] and add several data points

at high redshift from the corresponding references:

Model 1: The SFR estimated from GRB observations by the Swift experiment [199].

Model 2: The SFR from Model 1, scaled down by a factor of ≈2 at high redshift.

This is based on models from Refs. [200, 201] which argue that the GRB

rate saturates beyond z = 4 due to low metallicity.

Model 3: The SFR based on measurements of the luminosity function in high-redshift

galaxies [177].

We then use a least squares method to fit the data1 from the above references to a
1Fits performed by V. Mandic.
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functional form for the SFR developed by Springel and Hernquist [202]:

R∗(z) = ν
a exp(b(z − zm))

a− b+ b exp(a(z − zm))
(3.31)

The ν and zm parameters give the amplitude (in M�/yr/Mpc3) and redshift of the

maximal SFR, while b− a and b are related to the logarithm of the SFR’s slope at high

and low redshift, respectively. The resulting model parameters are shown in Tab. 3.1

and the SFRs are plotted in Fig. 3.3.

Although Model 3 has a higher peak (both in amplitude and redshift) than the

GRB-based star formation rates, the magnitude of b − a is significantly larger, leading

to a steeper downward slope with increasing redshift. As a result, Models 1 and 2 have

significantly increased star formation at high redshift compared to Model 3.

Model ν [M�/yr/Mpc3] zm a b
1 0.145 1.86 2.80 2.62

2 0.146 1.72 2.80 2.46

3 0.178 2.00 2.37 1.80

Table 3.1: Parameters of three models of the star formation rate (see text for more
details). Fit uncertainties on all parameters are on the order of a few percent (see
Ref. [146]).

3.4.4 Chemical evolution

Although our three SFR models are comparable at low redshift, they predict consid-

erable differences in the amount of star formation at high redshift. As a result, each

model should lead to significant differences in observable quantities, especially the stellar

metallicity and ionization fraction at different redshifts. To expand the domain of this

study and further analyze our SFR models, we use a hierarchical model of cosmic chem-

ical evolution, developed in Refs. [203–205]. We apply this chemical evolution model to

each of our SFR models in order to estimate several observable quantities and compare

them to observations.

In this chemical evolution model, baryons are divided into three reservoirs: stars (and

their remnants), the interstellar medium (ISM) or gas, and the intergalactic medium
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Figure 3.3: Plot of three SFR models versus redshift. The GRB-based SFRs (Models
1 and 2) indicate significantly more star formation at high redshift compared to the
luminosity function-based SFR (Model 3).

(IGM). The mass evolution of each reservoir is governed by set of differential equations

based on baryon accretion from the IGM to the ISM, baryon ejection from the ISM to

the IGM, the star formation process, which transfers baryons from the ISM into stars,

and mass ejection from stars to the ISM due to stellar winds and explosions. Along

with the mass evolution, the chemical evolution of the ISM and IGM are tracked as a

function of redshift. The chemical fluxes are derived from the mass fluxes with several

assumptions [205]:

1. The chemical composition of the accretion flow from the IGM to the ISM is the

composition of the IGM at redshift z.

2. Outflows from the ISM to the IGM have the same chemical composition as the

ISM at redshift z.
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3. The chemical composition of stars forming at redshift z is the same as that of the

ISM at redshift z.

4. Matter ejected into the ISM by stars is given by stellar yields.

Along with these assumptions, the chemical evolution model depends on the SFR, the

initial mass function, and stellar data, along with the minimum dark matter halo mass

in collapsed structures and the efficiency at which supernovae may power outflows from

these structures [205]. With this information, the model can track mass flows, individual

element abundances, and the ionization fraction over time. Other useful information,

including the optical depth and redshift of reionization may be extracted, as well.

Each of the three models for the star formation rate was studied in detail2 using

this chemical evolution model [146]. Model 1, which uses GRB-based data, results in

an excessive optical depth of τ = 0.150 compared to the WMAP value of τ = 0.089 ±
0.014 [206], although the redshift of reionization for this model, zre = 12.47, is close

to the 1σ limit of the WMAP value (zre = 11.1 ± 1.1). These values are based on an

assumption that the fraction of ionizing photons which escape from a galaxy is fesc = 0.2;

tests which used reduced escape fractions resulted in more reasonable optical depths, but

values for the redshift of reionization which were too low by 3–4σ.

These results motivate the use of Model 2, which is essentially a scaled-down version

of Model 1. The chemical evolution results for this model include a significantly better

fit to the optical depth, with τ = 0.087 (using fesc = 0.2); however, the redshift of

reionization remains quite low at zre = 8.62. Both Models 1 and 2 are relatively good

fits to overall metallicity observations and the rate of Type II supernovae [146].

Model 3 results in an optical depth of τ ≈ 0.063, about 2σ below the WMAP

value, and zre = 7.02, which is about 4σ below the WMAP value [206]. However, the

metallicity and rate of Type II supernovae are both in good agreement with observations

(see Ref. [146] for more details). To supplement the low-redshift star formation of Model

3, we consider the addition of a high-mass mode of star formation at high redshift. This

scenario would lead to increased optical depth and an earlier redshift of reionization,

while maintaining agreement with metallicity and SNII rate observations. This type of
2These studies were performed by E. Vangioni and K. A. Olive.
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star formation may comprise Population III stars: a population of massive and metal-

poor stars, hypothesized to have been the first generation of stars which formed at high

redshift.

We note here that more recent results from the Planck experiment [74] indicate a

lower optical depth and a later redshift of reionization than those used in this study;

this is discussed in further detail at the end of this section.

3.4.5 High-mass, high-redshift SFR

Because there are essentially no observational constraints on the star formation rate at

z > 11, we have considerable freedom to choose the parameters of this high-mass, high-

redshift SFR model. In order to estimate the high-mass, high-redshift SFR parameters,

I have scanned the parameter space of the model, calculated relevant quantities using

the hierarchical cosmic chemical evolution model, and minimized a χ2 function based

on the following constraints:

• Optical depth: I use the WMAP value for the optical depth of τ = 0.089 ±
0.014 [206]. I also use the redshift of reionization, zre = 11.1± 1.1, defined as the

point at which the ionization fraction reaches 50%.

• Metallicity: the overall metallicity (relative to solar metallicity) at redshifts of

z = 4 and z = 0. The observed values are taken to be Z(4) = 0.03 ± 0.01 and

Z(0) = 0.5± 0.5 [146].

• Individual element abundances: measurements of carbon and oxygen abundances

are used to break degeneracies in the overall metallicity. I use high-redshift mea-

surements of these quantities from the SAGA database [207,208].

• SFR at high redshift: I use five SFR measurements between z ≈ 6–10 from

Refs. [182,185] as a constraint.

The individual χ2 values are defined by taking the difference between the computed value

of a parameter and its observational value, divided by the observational uncertainty; the

overall χ2 value is the sum of the individual values. Note that these constraints are

evaluated for the combined SFR including Model 3 and the new high-mass mode.
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For this high-mass mode, I use a Salpeter initial mass function with a restricted mass

range from 36–100M�. I use the Springel and Hernquist functional form to model the

SFR (see Eq. 3.31); to estimate the model parameters, I have divided the 2D parameter

space in ν, zm into a 25× 25 grid and minimized the overall χ2 value in each bin using

a Nelder-Mead simplex method [209]. In each bin, ν and zm are not strictly fixed, but

are allowed to vary within the bin, while the a and b parameters are allowed to vary

between 0 and 30. The overall parameter space for ν and zm is restricted to ranges of

10−5–1M� and 5–20, respectively. These limits have proved sufficient to fully explore

the regions of interest within the parameter space. I repeat this procedure in the 2D a, b

parameter space, allowing ν and zm to vary within the previously stated limits.

Fig. 3.4 shows the minimal χ2 value in each bin for the ν, zm parameter space (top

panel) and the a, b parameter space (bottom panel). The 68% and 95% frequentist

confidence intervals are calculated around the minimal χ2 value using ∆χ2 values of

2.30 and 5.99, respectively, for a χ2 distribution with two degrees of freedom.

The best fit value is indicated by a star in the upper panel of Fig. 3.4. In the lower

panel, the χ2 function is nearly constant along the diagonal where a & b. There is

also a secondary region of low χ2 values around zm . 6, which corresponds to some

improvements in terms of the oxygen and carbon abundances. However, this region

comprises cases where the a and b parameters are close to 1, which causes the high-mass

mode of star formation to be very broad and extend to high redshift. The horizontal

feature around ν ≈ 3 × 10−4 M� corresponds to the limit where a = b and the SFR

becomes a constant equal to ν.

The best fit parameters for the high-mass SFR (with associated uncertainties) are

given in Tab. 3.2; however, there are no useful uncertainties for the a and b parameters

due to the degeneracy of the parameter space. We note that the functional form of the

SFR breaks down when a ≤ b, effectively eliminating that region of the parameter space.

We define a new model of the star formation rate, Model 4, as the sum of Model 3

and the high-mass SFR model; a plot of this star formation rate is shown in Fig. 3.5 in

solid blue, while the high-mass mode is shown in dashed black.

The high-mass mode is peaked around a redshift of z = 12, which should ensure that

the correct epoch of reionization is achieved. This makes sense because the low-mass

portion of Model 4 is already a good fit to the low-redshift SFR on its own.
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Figure 3.4: 2D maps of minimal χ2 in the ν, zm plane (top) and a, b plane (bottom).
68% (solid black) and 95% (dashed gray) confidence intervals are shown. The location
of the point of minimal χ2 is marked in the top panel with a star. In the bottom panel,
the χ2 value is nearly constant along the diagonal a & b. Reproduced from Fig. 5 in
Ref. [146], with permission.
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Model ν [M�/yr/Mpc3] zm a b
High mass 0.00218+0.38

−0.03 11.87+0.07
−0.99 13.81 13.36

Table 3.2: Best-fit parameters for the high-mass, high-redshift mode of star formation.
Uncertainties on ν and zm come from the 68% frequentist confidence intervals. There
are no useful uncertainties on the best-fit values of a and b due to the degeneracy of the
parameter space along a & b.
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Figure 3.5: Star formation rate versus redshift for Model 4 (solid blue) and a high-mass
mode of star formation (dashed black). Model 4 is the sum of Model 3 and the high-mass
mode.

Overall, the addition of the high-mass mode to Model 3 leads to excellent agreement

with the WMAP data in terms of optical depth and the redshift of reionization. The

low-redshift portion of this model was already a good fit to the metallicity data and

the results of the chemical evolution model indicate that the agreement with metallicity

observations is not strongly affected by the addition of the high-mass mode. However,
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there is some improvement with regards to oxygen and carbon abundances in metal-

poor stars (likely due to the use of these abundances in the χ2 function). The interested

reader should refer to Ref. [146] for more details.

3.4.6 Discussion

The “modified” star formation rates (Model 2 and Model 4) have been used in Ref. [210]

to study a stochastic gravitational-wave background due to stellar core-collapse to black

holes. However, they found that the detectability of such a background by Advanced

LIGO or the Einstein Telescope was not significantly different for either SFR model.

The recent detection of GW150914 [10], a GW signal produced by the coalescence

of two heavy black holes, each of mass M ≈ 30M�, suggests that the stochastic

gravitational-wave background due to binary black hole coalescence may be stronger

than previously suspected. Ref. [69] has used the star formation rate from Model 2 to

estimate limits on the energy density of such a background and to project when it might

be accessible by interferometric GW detectors.

Recent results from the Planck collaboration indicate a lower optical depth than

previously expected, with slightly larger uncertainties: τ = 0.066 ± 0.016 [74]. This

also leads to a later redshift of reionization: zre = 8.7+1.7
−1.4. As detailed in Ref. [211],

Model 3 is compatible with these results at the 1σ level; as a result, the necessity of

adding a high-mass, high-redshift component of the star formation rate (i.e., Model 4)

is significantly reduced. At the very least, use of the Planck results in this study would

likely lead to different best-fit parameters for the high-mass mode of star formation.

Overall, Model 2 is still a good fit to these new data; however, Model 1 is even less

compatible with these results than the previous measurements.

3.5 Parameter estimation for an SGWB from stellar core-

collapse

The violent and asymmetric process of stellar core-collapse is one of the most promising

potential sources of gravitational waves. There are many mechanisms which may pro-

duce gravitational waves during the collapse, including rotation during the collapse and

core bounce [212], neutrino-driven convection and standing-accretion-shock instability
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(SASI) [213–215], asymmetric neutrino emission [214–216], aspherical outflows [217–221],

and magnetic stresses [220,221].

Core-collapse simulations have become more advanced in recent years, and three-

dimensional simulations are becoming more common. These simulations are extremely

computationally intensive, and as a result, it is not currently possible to provide the full

general-relativistic treatment for all relevant processes during the collapse. However,

using simplified treatments of certain parts of the core-collapse process, the gravitational-

wave signature has been extracted from both 2D and 3D simulations [222–225].

From these simulations, many studies have estimated the stochastic gravitational-

wave background produced by these events due to both Pop. I/II and Pop. III stars [226–

237]. We propose to take a more systematic look at this model: in this section, I use

the parameter estimation techniques detailed in Sec. 3.3 and some of the star formation

rates from Sec. 3.4 to study the stochastic gravitational-wave background produced by

stellar core-collapse.

3.5.1 Core-collapse spectrum

Functional form

Since the dynamics of the core-collapse process are incredibly complex and not fully

understood, we use an empirical form to describe the frequency spectrum of GWs from

a single core-collapse event. This functional form was determined by Refs. [226, 233] to

be

f |h̃(f)| = G

πc4D
Eν 〈q〉

(
1 +

f

a

)3

e−f/b, (3.32)

where D is the distance from the star, Eν is the total energy emitted in neutrinos, 〈q〉
is the average value of the luminosity-weighted neutrino anisotropy, which encapsulates

the angular variance in neutrino emission, and a and b are empirical parameters without

a physical interpretation, both with units of Hz.

The GW energy spectrum emitted by a single source can be computed from f |h̃(f)|
[238] as

dE

df
(f) =

π2c3D2

G

(
f |h̃(f)|

)2
. (3.33)



99

For a core-collapse event, this gives

dE

df
(f) =

G

c5
E2
ν 〈q〉

2

(
1 +

f

a

)6

e−2f/b. (3.34)

Using this formula in Eq. 3.2, the spectrum of GW energy density for an SGWB produced

by stellar core-collapse is:

ΩGW(f) =
8πG

3H3
0c

2
fξ

∫
dz

R∗(z)

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

(
1 +

f(1 + z)

a

)6

e−2f(1+z)/b.

(3.35)

Because ΩGW is degenerate with regard to Eν , 〈q〉, and λCC, and the values of these

parameters are not well-known, we have combined them into a single scaling parameter,

ξ, which has units of m2/s:

ξ =
GλCC

c5
E2
ν 〈q〉

2 . (3.36)

Here, λCC is the mass fraction of stars which undergo core-collapse, which is also not

known a priori.

Overall, this model has three free parameters: a, b, and ξ. In general, the GW

energy density increases as a decreases; at frequencies above a few Hz, it essentially

scales proportionally to a−6. As b increases, the rate at which the exponential term in

Eq. 3.35 suppresses the GW energy density is decreased; this leads to an increase in

the overall energy density and pushes the peak of the spectrum to higher frequencies.

Finally, the GW energy density scales proportionally to ξ. Fig. 3.6 shows the GW energy

density for various parameter choices in order to illustrate their effects.

Fitting to simulations

Here, we have attempted to fit the functional form for f |h̃(f)| given in Eq. 3.32 to the

GW waveforms extracted from simulations of core-collapse supernovae3. This is done

in order to estimate realistic ranges on the a and b parameters for use in parameter

estimation.

The general procedure is as follows: from a given simulation’s waveform time-series,

compute the FFT and multiply by frequency to obtain f |h̃(f)|. Since we are primarily
3Most of the fits described here were performed by K. Crocker [239].
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Figure 3.6: ΩGW(f) for various parameter choices for a model of an SGWB produced
by stellar core-collapse. The units of a and b are Hz, while the units of ξ are m2/s. See
the text for more details on the effects of varying the model parameters.

interested in the lower frequency part of the signal, we do not consider frequencies

above 400Hz for our fit; this is because detector sensitivities decrease above ≈100Hz,
the stochastic search sensitivity goes as f−3, and the overlap reduction function (see

Eq. 3.19) decreases in overall amplitude with increasing frequency. We also resample

the waveform FFT using a logarithmic frequency spacing so that the low-frequency part

of the signal (which is of most interest to us) contributes comparatively to the high-

frequency part when performing the fit. We then fit our functional form (Eq. 3.32) to

the resampled waveform FFT using a least-squares approach.

We also note that several of the strain spectra from these simulations exhibit a low

frequency peak which is not well-described by the functional form we have chosen. As

a result, we ignore this feature in these fits and attempt to model it with a separate

functional form, described in the following section. An example of this peak can be seen
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in Fig. 3.7, which shows the s27fheat1.00 simulation from Ref. [223].
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Figure 3.7: Raw f |h̃(f)| (black) from the s27fheat1.00 simulation from Ref. [223], as-
suming a plus-polarized signal and a polar observer. The least-squares fit to the data
(excluding the low frequency peak at ≈60Hz) is shown in blue.

Most of the simulations used in this study were obtained from stellarcollapse.org

[240]; however, a few were obtained directly from their authors [224,225].

The first simulation that we use comes from Ref. [223], which studies the hydro-

dynamics of the post-bounce phase of the core-collapse process in a 27M� star. The

simulation is carried out in three dimensions and uses general relativity, along with

an energy-averaged neutrino leakage model which agrees well with full hydrodynamical

simulations of neutrino leakage. The full simulation process is repeated four times with

different neutrino heating rates and simulation durations. The top-left panel of Fig. 3.8

shows the strain from this simulation for a cross-polarized signal observed along the

polar axis of the star.

The second simulation comes from Ref. [241] and focuses on studying the angular

momentum dependence of a 12M� progenitor. This is a 2D simulation which assumes

axisymmetry and uses general-relativistic hydrodynamics. The simulation is performed

several times with varying values for the core angular momentum. The top-right panel
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of Fig. 3.8 shows the strain from this simulation for a plus-polarized signal observed

along the equatorial plane of the star.

Another simulation from Ref. [225] studies the collapse of four stellar progenitors with

masses between 12–25M� in two dimensions, assuming axisymmetry. It uses multifre-

quency neutrino transport with relativistic corrections and Newtonian hydrodynamics,

although some effects of strong-field gravity are accounted for using an effective poten-

tial. All models used in the simulation are non-rotating. The strain from this simulation

is shown in the bottom-left panel of Fig. 3.8 for a plus-polarized signal.

Finally, we consider a waveform from Ref. [224], which uses a two-dimensional model

and multi-group, three-flavor neutrino transport. These simulations were carried out for

six different progenitor masses between 8.1–27M� and use the neutrino hydrodynamics

codes Vertex-CoCoNuT [242] and Vertex-Prometheus [243, 244]. A plot of the strain

from one of these simulations is shown in the bottom-right panel of Fig. 3.8 for a plus-

polarized signal and an equatorial observer.

The simulated GW waveforms shown in Fig. 3.8 are only a small selection of those

included in our study; in total, more than 70 waveforms were studied in order to estimate

the ranges of the a and b parameters. From these studies, we have determined that the

following parameter ranges allow for reasonable fits of the GW strain spectra produced

by these simulations:

• a ∈ [5Hz, 150Hz]

• b ∈ [10Hz, 400Hz]

The ξ parameter is related to the overall SGWB energy density and is not tied to

the shape of the strain spectrum from an individual source; thus, we have not estimated

its range from this study.

Low-frequency peak

The low-frequency peak which we have observed in the simulations is of particular inter-

est because it tends to occur around 10–100Hz, which is in the most sensitive region of

the frequency band of Advanced LIGO and the Einstein Telescope. The LIGO stochastic

search will be especially sensitive to this feature, since the sensitivity of the stochastic

estimator for GW power goes as f−3 (see Eq. 3.18).
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Figure 3.8: Raw f |h̃(f)| strain spectra (black) and the resulting fits (blue) of our func-
tional form (Eq. 3.32) for four different simulations of core-collapse supernovae. Top-left:
s27fheat1.05 simulation from Ref. [223]. Top-right: A4O06.5 simulation from Ref. [241].
Bottom-left: B20-WH07 simulation from Ref. [225]. Bottom-right: u8.1 simulation from
Ref. [224].

Several papers have made note of this low-frequency peak in the GW spectrum and

attempted to identify its source. Ref. [224] indicates that a quasi-periodic signal around

100Hz arises due to prompt post-shock convection during the first tens of milliseconds

following core bounce. However, they rule out convection as the direct source of this

signal because the entropy and lepton gradients which drive the convection quickly dis-

perse, while the GW emission lasts for tens of milliseconds; instead, they speculate that

the convection leads to the development of acoustic waves which produce a GW signal

due to the resulting mass motions. Finally, they note that this signal always peaks
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near 100Hz in their simulations; there appears to be no significant dependence on the

properties of the progenitor.

Ref. [223] found that early GW emission due to prompt convection sets in at ≈10ms

after core bounce and lasts for about 30ms. They also note that the GW signal pro-

duced by prompt convection is particularly sensitive to the perturbations which drive the

convection; this is compatible with Ref. [224]’s statement that the signal from prompt

convection may depend on the width of the layer in which the convection occurs.

Finally, Ref. [245] found that the speed of core rotation during the collapse process

may impact the frequency of the signal from prompt convection. Simulations in which

the core was rapidly rotating led to the emission of spiral waves; the acoustic waves

which produce the low-frequency GW signal were Doppler shifted by emission on top

of the spiral waves, leading to a low-frequency peak closer to 200Hz. They also note

that accurate neutrino transport is a necessary component of these simulations in order

to have an reliable prediction for the GW signal; this agrees with similar results from

Ref. [224], which found significantly reduced GW emission at low frequencies when

simplified neutrino rates were used.

To summarize, there is significant evidence that the low-frequency peak is a realistic

feature of the GW signal produced during core-collapse; it is present in many different

simulations and there is a general agreement that the signal is related to prompt post-

bounce convection. Although it seems to vary for the different simulations, the peak

in the GW frequency spectrum tends to occur between ≈60–120Hz, or even as high

as 200Hz for the rapidly-rotating models of Ref. [245]. We also note that not all of

the simulations included in our study exhibited this peak; however, it seems that the

more modern simulations, which feature general relativistic hydrodynamics and neutrino

transport, generally include this feature.

To model this low-frequency peak in the strain spectrum, I use a Gaussian function:

f |h̃(f)| = A

D
e−

(f−µ)2

2σ2 . (3.37)

Here, µ and σ are the mean and standard deviation of the Gaussian, respectively, A is

the amplitude (in meters), and D is the source distance. This results in a GW energy
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spectrum of
dE

df
(f) =

π2c3A2

G
e−

(f−µ)2

σ2 (3.38)

and a GW energy density of

ΩGW(f) =
8π3c

3H3
0

fA′2
∫
dz

R∗(z)

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

e−
(f(1+z)−µ)2

σ2 . (3.39)

Here, I have combined the two scaling parameters A and λCC into A′ = Aλ
1/2
CC , with

units of m2/kg1/2.

This model of the low-frequency peak has three free parameters: µ, σ, and A′. The

µ parameter is the frequency at which the peak in the strain spectrum occurs and it

controls the effective upper bound of the resulting GW energy density spectrum. This is

because as the model is integrated over sources at different redshifts, the spectrum may

acquire power at lower frequencies (due to redshifting), but not at higher frequencies.

Referring to Eq. 3.37, σ defines the width of the Gaussian peak and has no effect on

the peak amplitude of the strain spectrum; however, when it is integrated over redshift

to calculate ΩGW, a wider peak results in an increased GW energy density since we

are effectively increasing the amount of GW energy emitted during a core-collapse by

making the strain spectrum more broad. A larger value of σ also allows for some amount

of GW energy density at frequencies above µ, while low values of σ result in a sharp

cutoff at f = µ. Finally, ΩGW(f) goes as A′2, so this is simply a scaling parameter. In

Fig. 3.9, I show the resulting GW energy density for this model of the low-frequency

peak, using various parameter choices in order to illustrate their effects.

Combined case

I also consider a combined case which includes both the low frequency peak and the

higher frequency functional form for the core-collapse spectrum. This results in an

energy spectrum of

dE

df
(f) =

ξ

λCC

[(
1 +

f

a

)3

e−f/b + πA′

√
c3

ξG
e−

(f−µ)2

2σ2

]2

. (3.40)

Using this spectrum to calculate the gravitational-wave energy density results in
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Figure 3.9: ΩGW(f) for various parameter choices for a low-frequency model of an
SGWB produced by stellar core-collapse. µ and σ are in units of Hz, while A′ is in units
of m/kg1/2. See the text for more details on the effects of varying the model parameters.

ΩGW(f) =
8πG

3H3
0c

2
fξ

∫
dz

{
R∗(z)

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

×

[(
1 +

f

a

)3

e−f/b + πA′

√
c3

ξG
e−

(f−µ)2

2σ2

]2}
.

(3.41)

The combined model has 6 free parameters: a, b, ξ, µ, σ, and A′. Refer to the previous

two sections, especially Figs. 3.6 and 3.9 and the surrounding text, for descriptions of

the parameters and their effect on ΩGW.
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3.5.2 Parameter estimation

Here, I utilize the parameter estimation framework described in Sec. 3.3 to systematically

study the SGWB model described in this section thus far. The goal of this study is to

project the sensitivity of Advanced LIGO and the Einstein Telescope to this model. For

Advanced LIGO, I use the estimated stochastic search sensitivity with the H1 and L1

detectors operating at design sensitivity for one year. For the Einstein Telescope, the

expected sensitivity assumes colocated detectors operating for one year. A plot of the

detector sensitivity curves is shown in Fig. 3.10; the SGWB sensitivity with the Einstein

Telescope is expected to be about a factor of 100 better than Advanced LIGO above

≈50Hz and even better at lower frequencies.
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Figure 3.10: Projected sensitivities of the LIGO stochastic search for Advanced LIGO
(solid) and the Einstein Telescope (dashed). In both cases, these projections are for the
design sensitivity of the detectors. The Einstein Telescope sensitivity assumes colocated
detectors; the sharp peaks in this curve are due to expected instrumental noise lines.

To perform this study, I scan the parameter space of each model; for each choice
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of parameters, I calculate the model spectrum ΩM(f) and compare it to the detector

sensitivity using Eq. 3.27. Since the goal is to project the sensitivity of future detectors

to this model, I set Si = 0 and simply compare ΩM to the projected sensitivity, σi.

Uniform priors are used for all parameters; these are liberally defined such that all

of regions of significant posterior mass are included.

High frequency

The priors for a and b are based on fitting the higher frequency functional form to

core-collapse simulations as previously described; these limits are 5Hz < a < 150Hz

and 10Hz < b < 400Hz. Limits on ξ are designed so that we are able to explore the

most interesting regions of parameter space. If ξ is too small, the SGWB will not be

detectable; too large and it will be unrealistically loud and clearly would have been

detected already. These limits are different for each detector; for Advanced LIGO, I use

a range of ξ = 106–1013 m2/s, and for ET, I use ξ = 102–109 m2/s.

This formulation of the SGWB model has only three free parameters, and since the

log-likelihood scales proportionally to ξ, this is effectively a two-dimensional problem.

As a result, brute force calculation is the simplest solution to determine the posterior

distributions. I scan a 200× 200 grid in the two-dimensional parameter space in a and

b (using a fixed value of ξ) and calculate the likelihood at each point. From here, it is

trivial to calculate the likelihood for different values of ξ at the fixed values of a and b.

Using this method, I have estimated the posterior distributions on the model param-

eters and calculated expected sensitivity contours in the parameter space of the model

at 95% confidence. Fig. 3.11 shows these contours for both Advanced LIGO and the

Einstein Telescope in the ξ–a plane and the ξ–b plane, after marginalizing over the third

parameter in each case.

In all panels, the area below the curves indicates the regions of parameter space

which are compatible with a null result; thus, if no SGWB is detected, it will be possible

to eliminate the regions of parameter space above the curves.

The posterior in the ξ–a plane tends to decrease with a at constant ξ because ΩGW(f)

essentially scales inversely to a at frequencies above 1Hz. This can be inferred from the

functional form of the spectrum given in Eq. 3.32. The contours in the ξ–b plane are

decreasing with b since as b increases, the GW energy spectrum is pushed to higher
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Figure 3.11: 95% sensitivity contours for model parameters of an SGWB from stellar
core-collapse. Contours are shown for Advanced LIGO (dotted) and for the Einstein
Telescope (dot-dash). The bottom panel translates the sensitivity on ξ into limits on Eν
and 〈q〉, assuming λCC = 0.01M−1

� . More details are provided in the text.

frequencies, away from the sensitive range of the detectors.

Marginalizing over both a and b gives the posterior distribution on ξ. We calculate

an expected sensitivity on this parameter by determining the value of ξ for which 95% of

the posterior mass is contained. This results in an expected sensitivity of 1.8×1011 m2/s

for Advanced LIGO and 3.9× 106 m2/s for ET.

In the bottom panel of Fig. 3.11, I have used these expected sensitivities on ξ to

invert Eq. 3.36 and plot the corresponding Eν–〈q〉 curves. For this calculation, I have

fixed λCC = 0.01M−1
� , based on expected masses required for core collapse and the use of

a modified Salpeter initial mass function. Taking 〈q〉 = 0.0045, as Refs. [226,233] do for
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collapse to a neutron star, I obtain neutrino energies of 2.5×1057 ergs and 1.2×1055 ergs

for ALIGO and ET, respectively. This gives an estimate of the average energy required

to be emitted in neutrinos during a core-collapse for this background to be detectable.

For both detectors, the resulting energy value is quite high; the best energy sensitivity

comes from ET and is about two orders of magnitude above expected neutrino energies

from supernovae (≈3× 1053 ergs [226,233]).

Low frequency peak

The priors for the low frequency peak are based on the previously described work with

the individual simulations. For most of the simulations, the low frequency peak seemed

to occur between 60–120Hz; however, there are some cases described in the literature

where this peak may occur as high as 200Hz due to rapid rotation during the collapse

process [245]. Thus, I have used a liberally defined prior on µ to be uniform in 30–200Hz.

Most of the waveforms that we studied from Ref. [223] had relatively narrow low-

frequency peaks, with typical widths between 40–60Hz. The low-frequency peaks in

the waveforms from Ref. [241] tended to be wider, with some as broad as 140Hz. As a

result, I have used a uniform prior on σ between 10–80Hz.

Because A′ is a scaling parameter like ξ, the prior limits must be carefully defined

using the same strategy as described for the limits on ξ in the previous section. This

results in ranges of A′ = 10−15–10−12 m/kg1/2 for Advanced LIGO and A′ = 10−17–

10−13 m/kg1/2 for ET.

I have performed a scan of the parameter space using an identical method to that

described in the previous section. Fig. 3.12 shows 95% sensitivities in two-dimensional

parameter spaces where I have marginalized over the third model parameter. Regions

of parameter space above each of the curves should be detectable by Advanced LIGO

(dotted) or the Einstein Telescope (dash-dot); if no detection is made, those parts of the

parameter space can be eliminated at 95% confidence.

In the A′–µ plane, the Advanced LIGO curve reaches a minimum near µ = 80Hz,

since this is where the stochastic search achieves its best sensitivity with this detector

(see Fig. 3.10). However, the Einstein Telescope is most sensitive near 1Hz, which is

not included in our parameter space for µ. As a result, this contour decreases with

decreasing µ.
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Figure 3.12: 95% sensitivity contours for low-frequency peak parameters. Contours are
shown for Advanced LIGO (dotted) and for the Einstein Telescope (dot-dash). The
bottom panel translates the expected sensitivity on A′ into limits on A and λCC. More
details are provided in the text.

For both detectors, the contours in the A′–σ parameter space decrease as σ increases.

This is because σ acts similarly to a scaling parameter for ΩGW(f), as previously dis-

cussed.

I have also marginalized over the µ and σ parameters to estimate an expected sen-

sitivity on A′ at 95% confidence: I obtained values of A′ < 1.4 × 10−14 m/kg1/2 for

Advanced LIGO and A′ < 1.4×10−15 m/kg1/2 for ET. In the bottom panel of Fig. 3.12,

I have used these expected sensitivities on A′ to calculate contours in the A–λCC param-

eter space. Taking λCC to be 0.01M−1
� gives sensitivities of A < 201.7m for Advanced

LIGO and A < 19.9m for the Einstein Telescope.
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I have studied the s27fheat1.00 simulation of Ref. [223] and the A1O05.5 simulation

of Ref. [241] in order to make a comparison to our expected sensitivities on A. For

each simulation, I compute the strain spectrum f |h̃(f)| and fit the functional form from

Eq. 3.32 to the simulation (not including the frequencies where the low-frequency peak

is prevalent). Next, I subtract this fit from the data and then fit the Gaussian functional

form given in Eq. 3.37 to the resulting low-frequency peak.

The best fits for this functional form corresponded to values of A = 0.18m for the

s27fheat1.00 simulation and A = 0.85m for the A1O05.5 simulation. These values

are approximately 3 and 2 orders of magnitude below the expected Advanced LIGO

sensitivity to A, respectively, and 2 and 1 orders of magnitude below the expected

Einstein Telescope sensitivity. Increasing the assumed value for λCC from 0.01M−1
� to

1M−1
� would improve the resulting sensitivities by a factor of 10; however, it seems

unrealistic to expect one core-collapse per solar mass of star-forming material. Even in

this extreme case, the expected sensitivities would still be larger than the values of A

given by the fits to the simulations. Thus, we do not expect Advanced LIGO or the

Einstein Telescope to be sensitive to these types of signals unless our assumptions about

the rate of core-collapse supernovae are relatively inaccurate.

We note that these expected sensitivities do not make any projections regarding the

detectability of gravitational-wave bursts produced by core-collapse supernovae. Rather,

we are projecting the sensitivity of the detectors to an SGWB composed of unresolvable

bursts for which the “average” individual event is similar to the simulated waveforms we

have considered.

Combined model

I have also performed a parameter estimation study for the combined model, which is

the sum of the low-frequency peak and the higher frequency model, as shown in Eq. 3.41.

In this case, the model has six parameters, and a brute force exploration of the model

parameter space is computationally infeasible. In order to study this model, I employ

the MultiNest algorithm, as detailed in Sec. 3.3.2. The same priors as given in the

previous two sections are used for all parameters.

Because the ranges on the ξ and A′ parameters span several orders of magnitude,

I have used logarithmic priors for these parameters. After calculating the posterior
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distributions, it is simple to convert from the posterior on the logarithmic parameter to

the posterior on the parameter itself.

P (x) = P (log10(x))
∂ log10(x)

∂x

= P (log10(x))
1

x ln(10)

(3.42)

Fig. 3.13 shows 95% confidence intervals in the b–a and A′–ξ planes for both Ad-

vanced LIGO and the Einstein Telescope. In the b–a plane, the region to the right of

the curves is enclosed by the contours; thus, these detectors should be sensitive to parts

of the parameter space to the left of their respective contours. This behavior is apparent

because a acts as an inverse scaling parameter in our model and b acts similar to a

scaling parameter.

In the A′–ξ plane, the region below the curves is enclosed by the contours, so these

detectors should be sensitive to areas of the parameter space above the contours. The

shape of the contours is immediately apparent since both of the parameters illustrated

here are scaling parameters.

The 2D posterior in the σ–µ plane spans most of the parameter space and does not

yield significant insights into these parameters; as a result, this posterior is not included

here.

In Tab. 3.3, I compare the expected sensitivities on the ξ and A′ parameters for the

combined model to those from the individual low- and high-frequency models. Coun-

terintuitively, the upper limits for the combined model tend to be lower; this likely

occurs because the combined model includes both low- and high-frequency contribu-

tions, increasing the overall GW energy density and improving the detectability of such

an SGWB. This can be seen most significantly for the case of the ξ parameter for Ad-

vanced LIGO: the combined model upper limits are four orders of magnitude below that

of the individual high-frequency model. This occurs because small values of b result in

a spectrum which is peaked at lower frequencies where Advanced LIGO has little sen-

sitivity, requiring extremely large values of ξ to be detectable. When the low-frequency

peak is added in, the SGWB is much more detectable in these cases and does not require

such extreme ξ values.
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Figure 3.13: Posterior distributions on combined model parameters in the b–a plane and
the A′–ξ plane. Confidence intervals are shown for Advanced LIGO (dotted) and the
Einstein Telescope (dot-dash).

Combined model with injection

In order to demonstrate the capabilities of our parameter estimation method, I have

analyzed a simulated SGWB based on this model of stellar core-collapse, including the
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Model ξ [m2/s] A′ [m/kg1/2]
ALIGO ET ALIGO ET

Low frequency — — 1.4× 10−14 1.4× 10−15

High frequency 1.8× 1011 3.9× 106 — —
Combined 3.0× 107 2.3× 105 1.1× 10−14 1.2× 10−15

Table 3.3: Comparison of upper limits on ξ and A′ for the combined model and the
individual low- and high-frequency models. The limits for the combined model are lower
compared to the individual models due to the overall increase in SGWB energy density
for the combined model.

empirical addition of the low-frequency peak in the form of a Gaussian function. For this

simulation, I have assumed 1 year of observation time and Einstein Telescope noise levels.

The parameters of this injected signal have been chosen so as to produce distinct low-

and high-frequency content and to be above the sensitivity of the Einstein Telescope.

These parameter choices are summarized in Tab. 3.4. A plot of ΩGW(f) for this model

can be seen in Fig. 3.15.

I use the same priors on all six parameters as described in the previous subsection

and again use MultiNest to study the high-dimensional parameter space of this model.

In Fig. 3.14, I show the resulting 2D posteriors in the b–a, σ–µ, and A′–ξ planes, af-

ter marginalizing over four of the parameters in each case. The color scale shows the

relative height of the posterior throughout the parameter space, while the solid white

line indicates the 95% confidence contours. The white star indicates the values of the

parameters which were chosen for the injection. In all cases, the posterior distribution

and resulting confidence contours are in good agreement with the injected values of the

parameters.

However, there is a more significant deviation from the injection parameters for the

case of the a and ξ parameters. The posterior distribution is more strongly peaked

at a ≈ 53Hz than at the injected value of 40Hz, and at ξ ≈ 3 × 105 m2/s than at

the injected value of 1 × 105 m2/s. This is likely due to a slight degeneracy between

these two parameters: as previously discussed, a acts as an inverse scaling parameter at

frequencies above a few Hz.
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Figure 3.14: Projected 2D posteriors for a simulated SGWB from stellar core-collapse,
recovered with the Einstein telescope. The color scale indicates the relative height of
the posterior throughout the parameter space, the solid white line indicates the con-
tours which enclose 95% of the posterior mass, and the white star indicates the injected
parameter values.

I have also extracted the maximum likelihood point sampled by MultiNest and plot-

ted the resulting SGWB spectrum, compared to the injected SGWB spectrum and the

Einstein Telescope sensitivity, in Fig. 3.15. There are no significant differences between

the injected and maximum likelihood spectra in the sensitive band of the detector.

For each parameter, I have marginalized over the other five parameters in order to

calculate 95% confidence intervals. These intervals are given in Tab. 3.4 and can be

compared to the injected values and the maximum likelihood values. In all cases, the

injected value of the parameter is within the resulting confidence interval; however, in
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Figure 3.15: Plot of ΩGW(f) for injected and maximum likelihood parameters for an
SGWB from stellar core-collapse, compared to the expected Einstein Telescope sensitiv-
ity. More details are provided in the text.

the case of a, it is somewhat close to the lower limit of the interval. This is likely due

to the slight degeneracy between a and ξ, as previously discussed.

Type a [Hz] b [Hz] ξ [m2/s] µ [Hz] σ [Hz] A′ [m/kg1/2]
INJ 40 120 1× 105 70 20 3× 10−14

ML 54.2 125.4 3.8× 105 70.0 19.9 3.0× 10−14

CI 36.6–65.7 114.3–134.5 (0.2–8.3)×105 65.3–73.3 18.3–21.4 (2.1–3.7)×10−14

Table 3.4: Injected (INJ) parameters of a simulated SGWB from stellar core-collapse,
along with maximum likelihood (ML) parameters and 95% confidence intervals (CI) from
the resulting parameter estimation. Maximum likelihood parameters are taken from the
point in parameter space found by MultiNest to have the highest likelihood.

3.5.3 Discussion

In this section, I have studied an SGWB produced by stellar core-collapse. I used an

empirical form developed by Refs. [226, 233] to model the GW spectrum produced by



118

such a background. Simulations of the core-collapse process were utilized to estimate the

potential ranges of the parameters for this model. Several of these simulations exhibited

a low-frequency peak near 100Hz which was not captured by the functional form of our

model; as a result, I modeled this peak separately using a Gaussian function. I studied

both of these models using the parameter estimation techniques detailed in Sec. 3.3

and projected the sensitivity of Advanced LIGO and the Einstein Telescope to them. I

also compared the expected sensitivities on the low-frequency peak to GW waveforms

produced from individual simulations of the core-collapse process and found that the

resulting limits were 1–3 orders of magnitude above the peak amplitudes derived from

fits to the simulations.

Finally, I combined the low- and high-frequency parts of the model into a single,

six-parameter model, performed parameter estimation using MultiNest, and compared

the resulting limits to those of the individual low- and high-frequency components. I

also added an injection of a simulated SGWB based on this model and demonstrated

that it was possible to accurately recover the parameters of the signal using the Einstein

Telescope sensitivity.



Chapter 4

Searches for long-lasting

gravitational-wave transients

In this chapter, we focus on the detection of long-lasting (or long-duration) transient

gravitational waves. The defining characteristic of this class of GW signals is a duration

lasting between a few seconds and a few weeks. Signals lasting longer than this may be

better classified as continuous or persistent, while shorter signals may be classified as

short-duration transients. This distinction is important because it drives the choice of

algorithm used for analyzing the data and attempting to detect these signals.

While matched filtering [116,119,246,247] is an effective technique in some searches

for short-duration GW transients, it requires that the astrophysical process behind the

emission of GWs is relatively well-understood. This is so that waveforms of simulated

GW signals can be produced to form a template bank for comparison with the data. How-

ever, in the case of long-lasting GW transients, knowledge of the astrophysical sources

and emission mechanisms is more speculative than for many other types of GWs.

The Stochastic Transient Analysis Multi-detector Pipeline (STAMP) is an adapted

form of the stochastic radiometer search [138,140,164], and is focused on the detection of

point sources of long-lasting GW transients. Similarly to the radiometer search, STAMP

is based on the cross-correlation of data from multiple GW interferometers. However,

STAMP searches are based around the construction of a spectrogram (or frequency-time

map) and the use of pattern recognition algorithms to identify possible GW signals. Also,

119
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STAMP analyses generally use a finer time resolution and coarser frequency binning

compared to the stochastic radiometer, due to the difference in targeted signal duration

and morphology.

The rest of this chapter will describe various aspects of STAMP and its objectives.

In Sec. 4.1, I will discuss some possible sources of long GW transients. Sec. 4.2 will

provide some of the details of the STAMP analysis framework and the cross-correlation

estimator for GW power around which the pipeline is based. In Sec. 4.3, I develop and

apply a flag for identifying and removing probable data artifacts in order to improve GW

search sensitivity. I will construct a new clustering algorithm and describe its use for

detecting GWs with STAMP in Sec. 4.4. Finally, Sec. 4.5 will discuss several adaptations

I have made to STAMP for use in all-sky searches.

4.1 Astrophysical sources

There exist several astrophysical mechanisms which are expected to produce long-lasting

gravitational-wave transients. Often, these transients are associated with stellar core-

collapse or instabilities in a stellar remnant, like a neutron star or black hole. A case

where the inspiral of a dynamically formed system of black holes may produce long-

lasting GW transients will also be discussed.

In general, the detection of long-lasting GW transients holds the promise of revealing

the astrophysical properties of the objects which produce them. Eventual detections

will also allow us to better understand the populations of these sources, including the

formation rates and scenarios for black holes and neutron stars. There is also significant

evidence which relates long-lasting gamma-ray bursts and core-collapse supernovae [248];

detection of a long-transient GW coincident with a long GRB would provide great insight

into the GRB mechanism, which is currently not well-understood.

4.1.1 Core-collapse supernovae

Several processes take place during a core-collapse supernova which may contribute

to the overall GW signature of these events. These processes include rotation during

the collapse and core bounce [212], neutrino-driven convection and standing-accretion-

shock instability (SASI) [213–215], asymmetric neutrino emission [214–216], aspherical
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outflows [217–221], and magnetic stresses [220,221]. Depending on the stellar properties

and the core-collapse mechanism, different processes may dominate over others [18,249].

If an explosion occurs during the supernova process, a protoneutron star (PNS) is left

behind and will cool on a Kelvin-Helmholtz timescale [250]. In certain scenarios, fallback

accretion [251] or a late-time hadron-quark phase transition [252] may occur, causing

the PNS to collapse and form a black hole. If the PNS survives, significant convection

may develop due to thermal and lepton gradients, potentially lasting for tens of seconds

and making it a source of long-lasting GW transients [216, 253–255]. Current models

estimate a GW strain of h ≈ 3×10−23 at a distance of 10 kpc for this process [255–257].

Several types of rotational instabilities may develop in PNSs in order to redistribute

energy and momentum to reach a minimal energy state [18]. It is thought that most

PNSs are born with a core in solid-body rotation and an outer region which is differ-

entially rotating [258]; magneto-rotational instabilities [259] and hydrodynamic shear

instabilities [260] will act to drive the system toward uniform rotation. These insta-

bilities, especially the latter, may lead to significant deformation of the PNS and the

emission of GWs [261]. There are also cases where a secular gravitational radiation-

reaction instability may develop, depending on the ratio of rotational kinetic energy to

gravitational energy. This may lead to a non-axisymmetric “bar-like” deformation and

cause significant emission of GWs lasting for ≈10–100 s [262,263].
Particularly massive stars may collapse directly to a black hole either without an

initial explosion or due to fallback accretion after a weak explosion. Gravitational waves

may be emitted due to asymmetric mass motions within the black hole’s accretion disk,

or due to asymmetric clumping of the disk. One model of a gravitational instability in

the outer accretion disk leads to disk fragmentation due to helium photodisintegration

cooling [264]. The inspiral of the fragments produces a GW signal lasting O(10–100 s)
with strain amplitudes as high as h ≈ 10−22 at 100Hz for a source at 100Mpc [264].

Another model proposes a scenario where the central black hole and the accretion disk

are linked by strong magnetic fields; spin-down of the black hole creates an instability in

the disk which drives strong magnetoturbulence, resulting in a time-varying quadrupole

moment and the emission of GWs [265–267]. This “accretion disk instability” model will

be commonly referred to as the “ADI model” throughout the remainder of the text.
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4.1.2 Neutron stars

Neutron stars may undergo a variety of phenomena which induce a time-varying quad-

rupole moment and the emission of gravitational waves. Pulsing neutron stars (pulsars)

sometimes experience “glitches,” during which the rotational frequency increases over ≈2
minutes, followed by a relaxation period lasting on the order of weeks [268–270]. The

underlying mechanism and physical process behind pulsar glitches is relatively unknown,

although it is a subject of current research. Ref. [271] assumes that the emitted GW

energy is comparable to the change in rotational energy and estimates that a glitch in a

pulsar at 1 kpc could produce a GW signal lasting ≈10 s, with a strain of h ≈ 8×10−24 at

3.8 kHz, although this is well below the Advanced LIGO detector noise at this frequency.

Seismic activity in the crust of highly-magnetized neutron stars is thought to be

responsible for flares from soft-gamma repeaters and anomalous X-ray pulsars. There

is expected to be an O(100 s)-long “ringdown” period of quasiperiodic oscillations after

one of these flares, which is a potential source of long-lasting GW transients [272].

There are also several classes of quasinormal mode oscillations which may occur in

neutron stars, including r-modes. R-modes are quasitoroidal oscillations which have

the Coriolis force as their restoring force; these modes are unstable with respect to

gravitational radiation-reaction and are expected to grow until reaching some saturation

amplitude. R-modes are generally expected to be a source of very long-lasting GW

signals (essentially continuous); however, in cases where the saturation amplitude is

sufficiently high, the timescale of GW emission may be much shorter, producing a long-

lasting GW transient signal [273].

4.1.3 Dynamically formed binary black holes

Dynamically formed binary systems comprising two black holes may be a potential

source of long-lasting GW transients. These binary systems are expected to have highly

eccentric orbits; although most binaries are expected to circularize during the inspiral

process, if there is any residual eccentricity, these waveforms may not be fit sufficiently

well by circular waveform template banks [274]. As the two black holes pass the point

of closest approach in their orbit, small bursts of GWs are emitted at low frequencies;

this has been observed in simulations of these systems [275] and provides a long-lasting,
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albeit non-continuous signal. A specially-designed excess-power based search may be

able to leverage this feature in order to detect such a signal once interferometric GW

detectors become more sensitive at the low frequencies where these bursts occur.

4.2 Analysis framework

The STAMP analysis strategy for detecting long-duration GW transients is based around

an excess-power statistic using the cross-correlation of data from two GW interferom-

eters. We first cross-correlate the data to form this excess-power statistic (discussed

further in Sec. 4.2.2) and then project it in the form of a frequency-time map (hence-

forth, ft-map; also known as a spectrogram). Then, pattern recognition algorithms are

utilized to pick out groups of pixels in the ft-maps which are significant and may corre-

spond to GW signals. Ft-maps of other relevant statistics are also formulated for data

quality and other analysis purposes.

4.2.1 A plane gravitational wave from a point source

The stochastic analysis framework described in Sec. 3.2 may be adapted by taking the

isotropic plane wave description of Eq. 3.6 and using a delta function over sky position

to consider a point source of GWs:

hab(t, ~x) =
∑
A

∫ ∞
−∞

df eAab(Ω̂)h̃A(f)e2πif(t−Ω̂·~x/c). (4.1)

Following the remainder of Sec. 3.2.1, an expression for the point source GW time-series

strain in detector I may be obtained by contracting Eq. 4.1 with the detector tensor

(Eq. 3.11):

hI(t) =
∑
A

∫ ∞
−∞

df h̃A(f)e2πif(t+Ω̂·~x/c)FAI . (4.2)

Using a discrete Fourier transform, the GW strain frequency spectrum in detector I is

given by:

h̃I(f) =
∑
A

h̃A(f) e−2πifΩ̂·~x/cFAI (Ω̂). (4.3)
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A cross-correlation of these spectra from two detectors will result in a term with two

Fourier amplitudes h̃A(f, Ω̂); thus, we define the one-sided power spectrum of GW strain

as

HAA′(t; f) = 2
〈
h̃∗A(t; f)h̃A′(t; f)

〉
. (4.4)

Assuming no correlations between the two GW polarizations, the sum over polarizations

gives the total GW power:

H(t; f) ≡ Tr (HAA′(t; f)) . (4.5)

This gives a single spectrum which is invariant under change of polarization bases.

4.2.2 Estimator for GW power

Taking the strain time-series sI(t) to be composed of gravitational-wave strain and noise

strain (as in Eq. 3.15), we can define an estimator for GW power Ŷ as

Ŷ (t; f ; Ω̂) ≡ 2Re
[
Q̃IJ(t; f ; Ω̂)s̃∗I(t; f)s̃J(t; f)

]
. (4.6)

Here, s̃I is the Fourier transform of the strain time-series in detector I, t is the start

time of the segment for which the Fourier transform is calculated, f is the frequency

bin, Ω̂ is the sky direction, and Q̃IJ is some to-be-determined filter function. For an

appropriately defined Q̃IJ , the estimator Ŷ should be real; thus, we consider only the

real part of the estimator.

Assuming that the noise components in different detectors are uncorrelated (and are

not correlated with the GW strain), the expectation value of this estimator is〈
Ŷ (t; f ; Ω̂)

〉
= 2Re

[
Q̃IJ(t; f ; Ω̂)

〈
h̃∗I(t; f)h̃J(t; f)

〉]
. (4.7)

Using Eqs. 4.3 and 4.4 gives

〈
Ŷ (t; f ; Ω̂)

〉
= 2Re

[
Q̃IJ(t; f ; Ω̂)

∑
AA′

1

2
HAA′(t; f)e−2πifΩ̂·∆~xIJ/cFAI (t; Ω̂)FA

′
J (t; Ω̂)

]
,

(4.8)
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where ∆~xIJ ≡ ~xI − ~xJ is the vector pointing from detector J to detector I. For unpo-

larized sources, we take HAA′(t; f) = 1
2H(t; f)δAA′ [18], which gives

〈
Ŷ (t; f ; Ω̂)

〉
= 2Re

[
Q̃IJ(t; f ; Ω̂)H(t; f)e−2πifΩ̂·∆~xIJ/c

∑
A

FAI (t; Ω̂)FAJ (t; Ω̂)

]
. (4.9)

Now, we may choose the filter function Q̃IJ to be

Q̃IJ =
e2πifΩ̂·∆~xIJ/c

εIJ(t; Ω̂)
, (4.10)

where εIJ(t; Ω̂) is the unpolarized pair efficiency, given by

εIJ(t; Ω̂) ≡ 1

2

∑
A

FAI (t; Ω̂)FAJ (t; Ω̂). (4.11)

With this definition for Q̃IJ , we obtain
〈
Ŷ
〉

= H(t; f); thus, Ŷ is an estimator for GW

power.

The variance of Ŷ is defined as

σ2
Y ≡

〈
Ŷ 2(t; f ; Ω̂)

〉
−
〈
Ŷ (t; f ; Ω̂)

〉2
, (4.12)

and can be estimated as (see [18,153])

σ̂2
Y =

1

2

(
NI(t; f)NJ(t; f)

∣∣∣Q̃IJ(t; f ; Ω̂)
∣∣∣2) (4.13)

in the small-signal limit, where NI(t; f) is the one-sided noise power spectrum for de-

tector I.

The power spectral density (or “auto-power”) in time segment t and frequency bin f

is defined as

P̂I(t; f) ≡ 2 |s̃I(t; f)|2 . (4.14)

However, this includes contributions from both signal and noise. In practice, we estimate

NI(t; f) using an average of the power spectra in time segments adjacent to t; henceforth,

this estimator will be denoted as P̂ adj
I (t; f). Using Eq. 4.14, we can calculate P̂ adj

I in
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time segment t0 and frequency bin f :

P̂ adj
I (t0; f) =

1

2n

t=t0+nδt∑
t=t0−nδt

P̂I(t; f)

− P̂I(t0, f)

 . (4.15)

Here n is a positive integer, usually taken to be between 4 and 8, and δt is the time resolu-

tion of the ft-map. This estimator is defined so that for many GW signal morphologies,

P̂ adj
I will not contain contributions from the signal. However, in some cases, especially

monochromatic signals, P̂ adj
I will contain signal contributions; this will increase the noise

estimate and reduce the overall SNR, making STAMP less sensitive to these types of

signals. We note that future work with STAMP may include new definitions of P̂ adj
I ,

possibly using the median rather than the mean, or including nearby frequency bins in

the estimate rather than just adjacent time segments in the same frequency bin.

Using Eqs. 4.12 and 4.15, the estimator for σ̂2
Y is calculated as

σ̂2
Y =

1

2

∣∣∣Q̃IJ(t; f ; Ω̂)
∣∣∣2 P̂ adj

I (f)P̂ adj
J (f). (4.16)

For analysis purposes, we typically look at the signal-to-noise ratio (SNR) of Ŷ , defined

as

SNR(t; f ; Ω̂) ≡ Ŷ (t; f ; Ω̂)

σ̂Y (t; f ; Ω̂)
. (4.17)

The theoretical distribution of the SNR statistic was calculated in [276]; it is given by

fSNR(x) =
N2N

22N−1ξ4N+2Γ2(N)

∫ ∞
0
|s|e−|sx|K0

(
Ns

ξ2

)
s2N−1ds, (4.18)

where N is the number of adjacent segments used to estimate P̂ adj, K0 is a modified

Bessel function of the second kind, and ξ is a factor which accounts for the effect of

windowing on the variance of the data. In Fig. 4.1, we show the distribution of SNR for

real time-shifted LIGO data from the S5 science run, and for Gaussian noise.

After constructing an ft-map of SNR, pattern recognition algorithms are used to
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Figure 4.1: Distribution of STAMP SNR statistic in real time-shifted LIGO data (blue),
Gaussian noise colored with the initial LIGO sensitivity curve (red), and the theoretical
distribution (black). The ft-map pixel size is 1 s × 1Hz. We have used N = 17, and ξ is
calculated empirically as 0.847. The real data matches Gaussian noise relatively well, but
some deviations are apparent beyond SNR ≈ 5. Deviations from the theoretical model
are likely due to signal processing effects, including high-pass filtering and zero-padding.

identify significant groupings of pixels. The resulting clusters are ranked using a multi-

pixel SNR statistic, SNRΓ:

SNRΓ ≡

∑
(t;f)∈Γ

Ŷ (t; f ; Ω̂)σ̂−2
Y (t; f ; Ω̂)

 ∑
(t;f)∈Γ

σ̂−2
Y (t; f ; Ω̂)

1/2
. (4.19)

Here, the summations run over pixels in the cluster, represented by Γ. This can be shown

to be a minimum-variance estimator for the GW power in the cluster Γ, assuming no

correlations between pixels in Ŷ [18].
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4.2.3 Frequency-time maps

In this subsection, we show some STAMP ft-maps for illustrative purposes. Fig. 4.2

shows SNR, Ŷ , and σ̂Y ft-maps for Gaussian noise and for Gaussian noise plus a simu-

lated ADI signal. The signal is visible as a bright, downward-curving track in the SNR

and Ŷ ft-maps. In the σ̂Y ft-map, it appears as several closely-spaced tracks due to

the use of adjacent segments in estimating P̂ adj, which is used to calculate σ̂Y . The

frequency variation in Ŷ and σ̂Y is due to the inherent noise spectrum of the LIGO

detector, which has its minimum between ≈100–200Hz.
Fig. 4.3 shows the auto-power and adjacent auto-power ft-maps for both detectors.

Again, the simulated signal is visible as a single bright track in the P̂H1 and P̂L1 ft-maps,

while it appears as several closely-spaced tracks in the P̂ adj
H1 and P̂ adj

L1 ft-maps due to the

use of adjacent segments.

4.2.4 Pattern recognition

One of the most important and interesting aspects of a STAMP search is the choice of

pattern recognition algorithm. This often depends on the morphology of the GW signal

of interest, as well as the computational resources available for the search.

The first pattern recognition algorithm developed for use with STAMP was the box

search. This algorithm is based around constructing rectangles in frequency-time space

and calculating the SNRΓ statistic (see Eq. 4.19) using the pixels in each rectangle.

Typically, the boxes are tiled to attain coverage of the entire ft-map. This algorithm is

useful for broadband signals and for relatively monochromatic signals.

The Radon algorithm has been used to search for line-like tracks in STAMP ft-

maps. It uses a Radon transform to integrate SNR along lines with different intercepts

and different slopes [278]. A linear ft-map track containing significant power will be

visible as a point in Radon space. The Hough algorithm extends the idea of the Radon

transform to polynomial tracks of arbitrarily high order [279].

The Locust algorithm is a gradient-driven wandering algorithm which uses local

maxima to chain pixels together into traces. It is generally sensitive to signals of arbitrary

shape; however, its dependence on the presence of local maxima and its relatively high

computational demands present some significant drawbacks.
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Figure 4.2: STAMP ft-maps for simulated Gaussian noise (left column) and Gaussian
noise plus a simulated GW signal from an accretion disk instability [265–267,277] (right
column). The simulated Gaussian noise is colored with the initial LIGO noise curve.
Top row: SNR ft-maps. Middle row: Ŷ ft-maps. Bottom row: σ̂Y ft-maps. On the
right, the σ̂Y estimate in the adjacent time segments is contaminated by the GW signal.
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Figure 4.3: STAMP ft-maps for simulated Gaussian noise (left column) and Gaussian
noise plus a simulated GW signal from an accretion disk instability [265–267,277] (right
column). The simulated Gaussian noise is multiplied by the initial LIGO noise curve.
Top row: P̂H1 ft-maps. Second row: P̂ adj

H1 ft-maps. Third row: P̂L1 ft-maps. Bottom
row: P̂ adj

LI ft-maps. The use of adjacent segments in the calculation of P̂ adj is apparent.
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The BurstCluster algorithm was first developed for use in the flare pipeline of the

LIGO burst group [280] and was adapted to STAMP by S. Kandhasamy. It is a density-

based clustering algorithm that connects different regions of the ft-map based on the

relative density of pixels which exceed a given threshold on SNR (seeds). This algorithm

is most effective at identifying “blob-like” signals which exhibit high densities of above-

threshold pixels. Narrowband, “track-like” signals do not usually have high enough seed

pixel density to be identified as significant by BurstCluster.

In Sec. 4.4, I will discuss the development of a new seed-based clustering algorithm

for use in STAMP analyses.

4.3 Data quality

The LIGO detectors are often affected by noise transients due to environmental effects or

instrumental problems, including mechanical vibrations, electromagnetic disturbances,

power shorts, misalignment of optical cavities, and more. These generate data artifacts,

or “glitches,” which pose a problem for analyses of gravitational-wave data. Glitches may

diminish the sensitivity of a GW search by raising the threshold required for a trigger to

be statistically significant. They may also be erroneously identified as GW candidates,

since they often contain significant power. As a result, it is important to identify and

remove glitches from the data in order to improve search sensitivity and increase our

confidence in GW candidates which do not resemble glitches.

An example glitch is shown in Fig. 4.4; the glitch is clearly visible as a single bright

column in the P̂H1 ft-map and as a sequence of alternating bright columns in the P̂ adj
H1 ft-

map. However, since glitches are caused by local effects, there is no significant structure

in the L1 auto-power ft-maps. This still leads to significant cross-power, as the glitch

can been seen in the SNR ft-map as a single column of black and white pixels at t ≈
22 s.

Several algorithms have been devised to identify periods of non-stationary noise in

LIGO data in order to remove glitches [281–288]. These periods are marked with LIGO

data quality flags so that they can be discarded [287–290]. However, analyses of LIGO

data with STAMP have indicated that many glitches remain in the data even with the

use of these flags.
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Figure 4.4: Ft-maps of a glitch in H1 at t ≈ 22 s. Top: SNR ft-map. Middle row: P̂H1
ft-map (left) and P̂ adj

H1 ft-map (right). Bottom row: P̂L1 ft-map (left) and P̂ adj
L1 ft-map

(right). The glitch is visible as a column of black and white pixels in the SNR ft-map
and a single bright column in the P̂H1 ft-map. It appears as a sequence of alternating
bright columns in the P̂ adj

H1 ft-map due to the use of adjacent segments in estimating the
noise auto-power. No structure is visible in the L1 ft-maps since the glitch is local to
the H1 interferometer. Horizontal black lines are frequencies which have been removed
due to the presence of contamination from power line harmonics.
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To combat this issue, we have developed a glitch-identification algorithm which acts

essentially as a consistency check between two GW interferometers [291]. This algorithm

compares the auto-power in each detector and checks whether it is consistent with our

expectations for a real GW signal; if not, it is marked as a potential glitch. This work

expands on [284], which demonstrates how physical environmental monitoring channels

can be used to identify long-lasting noise transients; here we are primarily interested in

identifying short noise transients in the presence of long-lasting GW signals. Along with

this, our algorithm only utilizes GW strain channels to identify noise transients, rather

than auxiliary environmental channels. Note that this algorithm checks the consistency

of raw data segments before any clustering procedure is applied, as opposed to checking

the consistency of GW triggers generated by an analysis. This section will describe this

glitch-identification algorithm in detail.

4.3.1 Formalism

The goal of this glitch identification algorithm is to discriminate between significant

power deposited in STAMP ft-maps due to GW signals and due to glitches. As discussed

in Sec. 4.2.2, we use the average auto-power in adjacent segments (P̂ adj
I ) as an estimate

of the auto-power due to detector noise alone. Thus, the difference between P̂I and P̂
adj
I

will give an estimate for the auto-power due to GWs in detector I:

P̂GW
I (t; f) =

P̂I(t; f)− P̂ adj
I (t; f)

εII
. (4.20)

Here, εII represents the antenna factor for detector I; it accounts for the direction-

dependent sensitivity of the interferometer (see 4.11). Using this normalization, we can

make a comparison between the GW auto-power in two GW detectors. The quantity Ξ̂

is defined as an estimator for the GW auto-power difference between detectors I and J :

Ξ̂(t; f) ≡
P̂I(t; f)− P̂ adj

I (t; f)

εII
−
P̂J(t; f)− P̂ adj

J (t; f)

εJJ
. (4.21)

By construction,
〈

Ξ̂(t; f)
〉

= 0 for well-behaved noise and for GW signals.

We would like to normalize Ξ̂(t; f) to a unitless quantity with near-unity variance.
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The variance of Ξ̂ can be calculated as

σ2
Ξ(t; f) ≡

〈(
P̂I(t; f)− P̂ adj

I (t; f)

εII
−
P̂J(t; f)− P̂ adj

J (t; f)

εJJ

)2〉

−

〈
P̂I(t; f)− P̂ adj

I (t; f)

εII
−
P̂J(t; f)− P̂ adj

J (t; f)

εJJ

〉2

.

(4.22)

This results in terms with four-point correlations like
〈
P̂I P̂

adj
J

〉
=
〈
s∗IsIs

∗,adj
J sadj

J

〉
. By

calculating the four-point correlations, we obtain an estimator for the variance:

σ2
Ξ(t; f) ≡

P̂ 2
I (t; f)− P̂ 2,adj

I (t; f)

ε2II
+
P̂ 2
J (t; f)− P̂ 2,adj

J (t; f)

ε2JJ
−

2ε2IJ
εIIεJJ

∣∣∣Ŷ (t; f)
∣∣∣2 . (4.23)

This allows us to construct a unitless signal-to-noise ratio for the Ξ̂ statistic, SNRΞ:

SNRΞ ≡
Ξ̂

σ̂Ξ
. (4.24)

Considering Eqs. 4.21, 4.22, and 4.24 qualitatively, the behavior of SNRΞ should be

different for real GW signals (Ŷ (t; f) > 0) and glitches (P̂I(t; f) > P̂J(t; f) or vice versa).

Loud glitches in detectors I and J should cause SNRΞ ≈ ±1, respectively, surrounded

by columns of SNRΞ ∓ 1, respectively (adjacent segments are affected by our noise

estimation technique). Real GW signals, however, should have SNRΞ ≈ 0, surrounded

by SNRΞ ≈ 0, although there should be slightly larger fluctuations in the time segments

adjacent to the signal. This behavior is qualitatively illustrated in Fig. 4.5, which shows

SNR and SNRΞ ft-maps for a glitch, well-behaved noise, and a simulated GW signal.

4.3.2 Algorithm design

To identify glitches, it is clear that we want to look for ft-map columns which contain

an excess of pixels with |SNRΞ| ≈ 1. We define F+(t) and F−(t) as the fraction of pixels

in time segment t with 0.95 < SNRΞ < 1.05 and −1.05 < SNRΞ < −0.95, respectively.

Based on the definition of SNRΞ (Eq. 4.24), F+ helps to identify glitches in detector I,

while F− identifies glitches in detector J . In Fig. 4.6, I show the distribution of SNRΞ

for time-shifted LIGO data, Gaussian noise, glitches, and simulated GW signals; this
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Figure 4.5: Ft-maps of SNR (left column) and SNRΞ (right column) for time-shifted
LIGO data. Top row: a likely glitch; the adjacent columns of SNRΞ ≈ +1 occur due
to our method of calculating P̂ adj. Middle row: nearly stationary noise. Bottom row:
stationary noise plus a relatively strong simulated GW signal. Figure reproduced from
Ref. [291], copyright IOP Publishing, reproduced with permission, all rights reserved.
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helps to illustrate the choice of parameters for the F thresholds.

However, using only F+ and F− to define this glitch-identification flag would result

in the loss of significant amounts of non-glitchy data. As seen in the top right panel of

Fig. 4.5, the use of adjacent segments for our estimates for the noise auto-power, P̂ adj,

causes |SNRΞ| ≈ 1 in ft-map columns adjacent to the glitch. In order to discriminate

between actual glitches and columns adjacent to glitches, I have implemented an “auto-

power stationarity ratio”:

RI(t) =
1

Nf

∑
f

P̂I(t; f)

P̂ adj
I (t; f)

. (4.25)

Here, I denotes the detector; this statistic is essentially a signal-to-noise ratio for the

auto-power statistic, averaged over all frequency bins in each time segment.

Using the F and R statistics, the glitch identification algorithm flags ft-map columns

as glitch-like if either of the following criteria are satisfied:

F+(t) > 0.027 and RI(t) > 2 and RJ(t) < 2 (4.26)

F−(t) > 0.027 and RJ(t) > 2 and RI(t) < 2 (4.27)

The final requirement in each case ensures that when there is significant power in both

detectors (i.e., RI(t) > 2 and RJ(t) > 2), the time segments will not be flagged. Al-

though real GW signals should not fail the F portion of the flag, this requirement helps

to ensure that signals will not be flagged since they will deposit power in both detec-

tors. The parameter values given were primarily chosen to optimize the efficiency of

this algorithm at flagging glitches, while still assuring the safety of GW signals. Fig. 4.7

shows scatter plots of our glitch identification parameters RI(t) and F+ for simulated

ADI signals (left) and time-shifted data and Gaussian noise (right). The upper right-

hand quadrant contains cases where both components of the glitch flag are satisfied and

the corresponding time segments would be flagged as glitch-like (neglecting the safety

feature mentioned previously).

4.3.3 Background study

To determine the effectiveness of this flag at identifying glitches, I have analyzed time-

shifted LIGO S5 data and Gaussian noise, both with and without the flag applied.



137

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

10
0

SNR
Ξ

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

10
0

SNR
Ξ

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

SNR
Ξ

 

 

Glitch
Neighboring columns

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

SNR
Ξ

 

 

Glitch
Neighboring columns

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

SNR
Ξ

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

SNR
Ξ

Figure 4.6: Histograms of SNRΞ ft-map pixels. Top row: 2200 s of clean time-shifted
LIGO S5 data (left) and Gaussian noise (right). Middle row: 2 s of data containing
glitches in H1 (left) and L1 (right). Bottom row: 40 s-long ADI injections at 30Mpc (left)
and at 5Mpc (right). Red bars indicate 0.95 < SNRΞ < 1.05. Figure reproduced from
Ref. [291], copyright IOP Publishing, reproduced with permission, all rights reserved.
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Figure 4.7: Scatter plots of injected ADI signals (left), time-shifted LIGO S5 data (right
red ×’s), and Gaussian noise (right green ◦’s) in the plane of our glitch identification
parameters RI(t) and F+. RJ(t) and F− are not shown here due to overall qualitative
similarities with the displayed parameters. Injection distances range from 5 – 40Mpc
with smaller distances corresponding to redder markers. The glitch identification thresh-
olds for each parameter are represented by solid black lines with the upper right quadrant
corresponding to the glitch-likely case. Figure reproduced from Ref. [291], copyright IOP
Publishing, reproduced with permission, all rights reserved.

The BurstCluster algorithm [280] was used to identify clusters of pixels containing

significant power in 120 s × 150Hz ft-maps (100 – 250Hz) with 4 s × 0.25Hz pixels. In

Fig. 4.8, I show plots of p-value (false alarm probability) versus SNRΓ for time-shifted

data and Gaussian noise with and without the glitch-likely flag. The results indicate

a significantly better agreement between time-shifted data and Gaussian noise when

the glitch-likely flag is applied. The largest SNRΓ due to a background noise trigger is

reduced by two orders of magnitude with the use of the glitch-likely flag; this significantly

increases the ability of the pipeline to identify real GW signals.

Having demonstrated our glitch-identification algorithm for the case of 4 s × 0.25Hz

pixels in the 100–250Hz band, we look at a few other special cases. An exhaustive ex-

ploration of the domain of utility of our algorithm is beyond the scope of this discussion

(and is probably not computationally feasible); thus, we examine cases which we expect

to be of primary interest for future STAMP analyses. In the top-left panel of Fig. 4.9,

http://dx.doi.org/10.1088/0264-9381/29/9/095018
http://dx.doi.org/10.1088/0264-9381/29/9/095018
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Figure 4.8: Plot of p-value versus SNRΓ using a density-based clustering algorithm to
identify groupings of pixels with significant power for time-shifted LIGO data (TS) and
Gaussian Monte Carlo noise (MC), with and without the use of our glitch identification
algorithm. The dashed cyan curve (MC with cut) overlaps directly with the green curve
(MC) because the glitch identification algorithm does not have any effect on the MC data.
For real time-shifted data, the glitch identification algorithm improves the sensitivity at
p = 0.1% by several orders of magnitude. Figure reproduced from Ref. [291], copyright
IOP Publishing, reproduced with permission, all rights reserved.

I show p-value versus SNRΓ for 1 s × 1Hz pixels in the 100–250Hz range. This demon-

strates that this glitch-identification flag can effectively clean even shorter segments of

data so as to achieve relatively good agreement with Gaussian noise.

The top-right panel of Fig. 4.9 shows p-value versus SNRΓ for 4 s× 0.25Hz in the 375–

525Hz band. Again, with the use of this algorithm, we achieve relatively good agreement

between cleaned time-shifted data and Gaussian noise. This is to be expected due to

the relative stationarity of the detector noise (primarily shot noise) at high frequencies.

The bottom-left panel in Fig. 4.9 shows p-value versus SNRΓ for 4 s × 0.25Hz pix-

els in the 40–100Hz frequency band. While the agreement between time-shifted data

and Gaussian noise is improved with the use of the glitch-identification algorithm, sig-

nificant disagreement remains due to non-stationary noise, which is more common at

lower frequencies in the LIGO detectors. This is illustrated in the bottom-right panel

of Fig. 4.9, which shows an SNRΞ ft-map from a period of low-frequency noise. The

http://dx.doi.org/10.1088/0264-9381/29/9/095018
http://dx.doi.org/10.1088/0264-9381/29/9/095018
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noise in this case appears to be due to quasi-continuous broadband noise rather than

infrequent glitches. This could potentially be mitigated by the use of additional vetoes

utilizing physical environmental monitors, including microphones and seismometers.

Not only should this flag be effective at identifying glitches, it should also rarely

flag well-behaved noise as glitch-like. Using simulated Gaussian noise colored with the

initial LIGO noise curve, I have estimated the false glitch rate of this flag to be less than

1× 10−3 day−1 in the frequency range of 100–250Hz [291].

4.3.4 Safety for GW signals

The final aspect which must be considered for this glitch-identification algorithm is its

safeness: the probability that it falsely identifies a time segment containing a GW signal

as glitch-like. I have tested the safeness of this flag by adding simulated GW signals

(based on the ADI model) to Gaussian noise. The signals are simulated in 312 different

sky directions, with 20 different noise realizations for each direction. This is done for

sources at distances between 1–50Mpc. For each injection, I recorded the fraction of

time segments satisfying the R(t) criterion in either detector, the F+(t) or F−(t) criteria,

and the relevant combination of both flags which corresponds to a glitch-like segment.

The results of this study can be seen in Fig. 4.10. For realistic and marginally-

detectable signals (d > 20Mpc), the fraction of flagged segments is negligible. When

the signal is very loud (d ≤ 5Mpc), the fraction of flagged segments becomes as high

as ≈3%; however, this is not a matter of significant concern since these signals are

unrealistically loud and it is not expected that their sources will be present at such close

distances.

I also considered a shorter (t ≈ 1 s) GW signal produced by accretion disk frag-

mentation [264, 277]. In this model, an accretion disk forms clumps due to helium

photodisintegration; as the clumps inspiral into the central black hole, a chirp-like GW

signal is produced. For typical pixel sizes used in current STAMP analyses, this signal

will be fully contained in only 1 or 2 ft-map columns, making it morphologically similar

to a glitch. Ft-maps of SNR and SNRΞ for a simulated accretion disk fragmentation

signal can be seen in Fig. 4.11.

As with the ADI signals, I have varied the sky location and distance, using multiple

realizations of noise. For a very loud signal at 1Mpc, the false dismissal probability is
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Figure 4.9: Top-left: p-value versus SNRΓ for the 100–250Hz band using 1 s × 1Hz
pixels; the relatively good agreement between Gaussian Monte Carlo (MC) and time-
shifted data (TS) suggests that even short segments of cross-correlated data can be
cleaned with our glitch identification flag. Top-right: plot of p-value versus SNRΓ for the
375–525Hz range with 4 s × 0.25Hz pixels. This frequency band exhibits good agreement
between Monte Carlo and time-shifted data due to the nearly stationary noise associated
with higher frequencies. Bottom-left: p-value versus SNRΓ for the 40–100Hz band
using 4 s × 0.25Hz pixels. While the glitch-identification flag dramatically improves the
agreement between Monte Carlo and time-shifted data, significant disagreement remains,
possibly due to non-stationary noise associated with this band. Bottom-right: an ft-
map of SNRΞ for time-shifted LIGO S5 data demonstrating the non-stationary noise
sometimes associated with low frequencies. Note that the MC with cut curve (dashed
cyan) overlaps with the MC curve (solid green) in the top row and the bottom-left
panel. Figure reproduced from Ref. [291], copyright IOP Publishing, reproduced with
permission, all rights reserved.
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Figure 4.10: Safety study for simulated ADI signals, using 312 sky directions, 20 noise
realizations per sky direction, and source distances from 1 – 50Mpc. The y-axis shows
the fraction of time segments containing a GW signal which were flagged by the two
individual components of the glitch flag, and by the full flag. The fraction of segments
flagged as glitch-like decreases at distances . 5Mpc because both detectors exceed the
threshold on R(t), triggering the safety feature and preventing the signal from being
flagged as glitch-like. Figure reproduced from Ref. [291], copyright IOP Publishing,
reproduced with permission, all rights reserved.

21%; however, at d > 2.4Mpc, it drops below 1%. Thus, the results are similar to the

ADI case: unrealistically loud signals may be frequently flagged, while more realistic

signals have a very low false dismissal probability.

Finally, I have demonstrated that this glitch-identification flag can be used to more

accurately reconstruct a GW signal by removing one or more glitchy time segments.

Fig. 4.12 shows a 700 s-long ADI signal which has been injected into a period of time-

shifted data containing a glitch (visible as a vertical column at t ≈ 490 s). I have used

the BurstCluster algorithm to recover the signal both without (bottom-left) and with

(bottom-right) the glitch identification algorithm applied. This demonstrates that it is

possible to improve the reconstruction of our signal by removing glitches, and that it is

possible to recover a long-lasting GW transient which is disrupted by a glitch.

http://dx.doi.org/10.1088/0264-9381/29/9/095018
http://dx.doi.org/10.1088/0264-9381/29/9/095018
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Figure 4.11: Ft-maps of SNR (left) and SNRΞ (right) for a ≈1 s accretion disk fragmen-
tation waveform at 1Mpc injected into Gaussian noise. The signal is contained in only
two ft-map columns and spans a large range of frequencies, making it morphologically
similar to a glitch. The pixel size is 1 s × 1Hz. Figure reproduced from Ref. [291],
copyright IOP Publishing, reproduced with permission, all rights reserved.

4.3.5 Comparison with LIGO data quality flags

The LSC’s detector characterization group has devised numerous data quality flags which

can be used to determine when the interferometer’s strain channel is contaminated or

corrupted by environmental or subsystem noise [287–290]. It is important to understand

how this glitch-identification algorithm compares to these flags and whether it provides

complementary information.

During the S5 science run, LIGO data quality flags were divided into four categories,

in order of severity. Category 1 flags indicate periods of data which are severely con-

taminated by known and identified processes. Data marked with Category 2 flags may

be analyzed, but various vetoes may be applied in post-processing of GW candidate

triggers. Category 3 and 4 flags are advisory flags which exert caution in the case of a

detection candidate. Detailed descriptions of these flags can be found in Refs. [281,288].

I have analyzed time-shifted LIGO data, using several combinations of LIGO data

quality flags to remove contaminated data, and compared it to the case where no data

quality flags are used, but the glitch-identification algorithm is applied. Fig. 4.13 shows

p-value versus SNRΓ for all of these cases.

http://dx.doi.org/10.1088/0264-9381/29/9/095018
http://dx.doi.org/10.1088/0264-9381/29/9/095018
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Figure 4.12: Ft-maps of an ADI signal injected into LIGO time-shifted data containing
a glitch (at t ≈ 490 s). Top-left: SNR ft-map. Top-right: SNRΞ ft-map. Bottom row:
recovery without (left) and with (right) the use of the glitch-identification algorithm.
The glitch-identification algorithm excludes the glitch from the reconstructed track, im-
proving the recovery of the signal. Figure reproduced from Ref. [291], copyright IOP
Publishing, reproduced with permission, all rights reserved.

The results indicate that our SNRΞ-based algorithm removes a large number of

glitches which are not already identified by the LIGO data quality flags. Clearly, the two

types of flags are complementary: the LIGO data quality flags identify and characterize

specific environmental and instrumental disturbances, while our glitch-identification flag

finds inconsistencies in auto-power between detectors.

http://dx.doi.org/10.1088/0264-9381/29/9/095018
http://dx.doi.org/10.1088/0264-9381/29/9/095018
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Figure 4.13: P -value versus SNRΓ for 1 s × 1Hz pixels of time-shifted (TS) LIGO S5
data with no flags applied (solid blue), with the SNRΞ-based flag applied (dashed red),
and with the LIGO data quality flags applied in succession (CAT0 representing no flags
applied, CAT1 representing the application of Category 1 flags, CAT2 representing the
application of Category 1 and 2 flags, etc.). The data are parsed in 120 s × 150Hz ft-
maps. Figure reproduced from Ref. [291], copyright IOP Publishing, reproduced with
permission, all rights reserved.

4.3.6 Conclusions

In this section, we have developed and tested a glitch-identification flag based on checking

auto-power consistency between detectors. It has proven to be effective at identifying

glitches and cleaning time-shifted LIGO data so that it approaches Gaussian noise, with

minimal losses in data and livetime. This flag is safe for realistic signals and, although

it flags some time segments containing very loud GW signals, it does not do so at a high

rate.

The glitch-identification algorithm as presented uses the entire frequency band to

calculate the R and F statistics. For analyses using large frequency bands, glitches may

be “diluted” due to the sheer number of pixels in each time segment, and not exceed

the thresholds set in Eqs. 4.26 and 4.27. Thus, it may be useful to calculate the glitch

statistics in multiple frequency bands in order to identify glitches which are relatively

localized in frequency. It may also be necessary to tune the glitch-likely thresholds for

http://dx.doi.org/10.1088/0264-9381/29/9/095018
http://dx.doi.org/10.1088/0264-9381/29/9/095018
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different analyses, depending on the frequency range used, the GW signals of interest,

and the overall characteristics of the data.

Finally, we note that this glitch-identification algorithm has been used successfully

in two STAMP-based analyses of LIGO data: a search for GWs coincident with long

gamma-ray bursts [141], and an all-sky search for long-lasting GW transients [142].

Although this algorithm is not inherently safe for cases where the source direction is not

known (since the antenna factors εII and εJJ will be incorrect), it has proven effective

and relatively safe for narrowband GW signals in an all-sky search (more details in

Chap. 5).

4.4 Seed-based clustering

As mentioned previously, the choice of pattern recognition algorithm is an important

decision for performing an analysis with STAMP. However, the GW signal morphology is

not always known a priori, which makes it difficult to choose the most effective algorithm.

Along with this, many of these algorithms have significant computational demands,

which must be accounted for when analyzing large datasets which may span hundreds of

days or more. In this section, I will develop a new seed-based clustering algorithm which

can be used in STAMP searches to identify arbitrarily-shaped groups of pixels containing

significant power and potentially corresponding to a GW signal. This algorithm has been

used in both of the STAMP analyses published by the LSC to date [141,142].

4.4.1 Algorithm description

The burstegard clustering algorithm [292] is designed to find GW signals of arbitrary

shape in STAMP ft-maps; typically, this algorithm is applied to the SNR ft-map, but

it could be extended to ft-maps of other statistics in the future. The algorithm depends

on five user-defined parameters:

• Pixel threshold : only pixels which exceed this threshold on SNR will be involved

in the clustering procedure.

• Minimum cluster size: a cluster must contain at least this many pixels to be saved

for further processing. This is useful for preventing clustering of small detector
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noise fluctuations.

• Clustering radius: pixels separated by a distance larger than this parameter will

not be clustered together. Distance is defined in units of bins in the ft-map.

• Time metric: size of the clustering ellipse in the time direction.

• Frequency metric: size of the clustering ellipse in the frequency direction.

The time and frequency metrics, along with the clustering radius, define an ellipse for

clustering to a particular pixel.

A general outline of the burstegard clustering procedure is as follows:

1. Identify all above-threshold pixels in the ft-map.

2. Starting in the bottom-left corner of the ft-map and moving from left-to-right

through the rows, we designate each pixel as the seed for a cluster. Any above-

threshold pixels that fall within the designated clustering ellipse (centered at the

current seed pixel) are added to the cluster.

3. Once all nearby above-threshold pixels are added to the cluster, we choose another

pixel from the cluster to be the seed and repeat this process. Pixels which are

already identified as being part of the cluster are excluded at this point in order

to eliminate redundancy and improve the computational speed.

4. When all pixels in the cluster have been used as the seed, the cluster cannot be

connected to anything else and is designated as complete. All pixels associated

with this cluster are excluded from further clustering.

5. If the total number of pixels in this cluster is greater than the minimum cluster

size designated by the user, the cluster is saved for further analysis.

6. Move to the next remaining above-threshold pixel in the ft-map and repeat this

process to begin a new cluster. This continues until all above-threshold pixels in

the ft-map have been used as a seed.

7. Calculate the cluster ranking statistic SNRΓ for each saved cluster. The user may

retain all of these clusters for further analysis, or only the cluster with the maximal

SNRΓ value.
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A flow chart of the process is shown in Fig. 4.14 for illustrative purposes.

The burstegard algorithm has been developed in the C++ programming language in

order to maximize computational speed and efficiency. Although the clustering proce-

dures are different and therefore, not directly comparable, burstegard is ≈100 times

faster than the Matlab-based BurstCluster algorithm.

4.4.2 Examples

To demonstrate the performance of the burstegard clustering algorithm, I have injected

two different simulated GW waveforms into Gaussian noise which is colored with the

initial LIGO noise spectrum. In each case, I have applied burstegard to the SNR ft-

map in an attempt to recover the signal. This procedure has been repeated with different

clustering parameters in order to demonstrate their effect on the signal recovery. The

standard clustering parameters used are as follows:

1. Pixel threshold : SNR = 1

2. Minimum cluster size: 80 pixels

3. Clustering radius: 2 pixels

4. Time metric: 1

5. Frequency metric: 1

The first injected signal is from an accretion disk instability [265–267,277]; the signal

manifests itself as a ≈240 s “chirp-down” track in the ft-map of cross-correlation SNR.

Fig. 4.15 shows the full SNR ft-map, along with signal recoveries using two different

parameter sets, and plots showing all identified clusters. The middle row shows the

recovery using the standard clustering parameters, while the bottom row uses a reduced

pixel threshold of SNR = 0.5. In the first case, there are fewer noise clusters identified,

but much of the signal is not recovered since the lower frequency tail is at a lower SNR

and does not exceed the required threshold. Using a reduced pixel threshold allows the

recovery of the entire signal, although many noise pixels are also included in the final

cluster. The overall significance of the signal is reduced due the inclusion of noise pixels,

as the SNRΓ is 103.6 in the first case and 85.9 in the second case, even though more
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Figure 4.14: Flow chart describing the burstegard clustering algorithm. Forming a
cluster around a seed pixel involves finding nearby above-threshold pixels using a clus-
tering ellipse, and recursively clustering around those pixels until no further connections
can be made. Cluster statistics are calculated for saved clusters only.
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of the signal is technically recovered. There are also significantly more noise clusters

identified when using a reduced pixel threshold (49, compared to two in the standard

case).

I also inject and recover a simulated signal from the inspiral of an eccentric binary

black hole (EBBH) system [275]. Fig. 4.16 shows the full SNR ft-map (the injection

is visible as a short, “chirp-up” track), along with signal recoveries and all identified

clusters. The middle row shows the recovery with the standard clustering parameters;

only one cluster is identified, with an SNRΓ of 126.1, however, the signal is not fully

recovered. In the bottom row, I have increased the clustering radius from two to three

pixels; this allows the clustering algorithm to jump over small gaps in the signal due to

noise fluctuations for a more complete recovery, however, more noise pixels are included

in the cluster, as well. The overall result is again a decrease in sensitivity, since the

maximal cluster in this case has an SNRΓ of 116.2. Along with this, there are also more

noise clusters identified in this case.

These examples demonstrate some of the strengths and weaknesses of the burstegard

clustering algorithm and the effects of modifying the clustering parameters.

4.5 All-sky searches with STAMP

Traditionally, gravitational-wave searches fall into one of two categories: targeted or

all-sky. Targeted searches focus on detecting gravitational waves which may be emitted

along with other astrophysical phenomena, like gamma-ray bursts or high-energy neu-

trinos. Detections of these phenomena by other observatories provide a sky direction

and time window in which to search for GWs. This typically reduces some of the un-

certainty in the signal parameter space since the sky direction is relatively well known,

and also lowers the computational requirements of the search by reducing the amount

of data which must be analyzed. The STAMP analysis pipeline, as described thus far, is

designed for targeted searches: the optimal filter Q̃IJ requires knowledge of the signal’s

sky location in order to use the correct time delay and antenna factors.

All-sky searches instead focus on analyzing as much data as possible and detecting

GWs which may come from any direction. These are typically excess-power searches,
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Figure 4.15: Recovery of a simulated ADI signal with the burstegard clustering algo-
rithm. Top: SNR ft-map. The signal is visible as a bright, “chirp-down” track. Middle
row: recovered cluster with the highest SNRΓ (left) and all clusters identified (right)
using the standard clustering parameters. Bottom row: same as middle row, but using
a reduced pixel threshold (0.5 instead of 1).
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Figure 4.16: Recovery of a simulated EBBH signal with the burstegard clustering
algorithm. Top: SNR ft-map. The signal is visible as a bright, “chirp-up” track. Middle
row: recovered cluster with the highest SNRΓ (left) and all clusters identified (right)
using the standard clustering parameters. Bottom row: same as middle row, but using
an increased clustering radius (3 pixels instead of 2).
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which are generally sensitive to any process which induces significant power in the de-

tectors; thus, all-sky searches are useful for detecting GWs from unknown or unmodeled

mechanisms. These searches usually sacrifice some degree of sensitivity (compared to

their targeted counterparts) for improved flexibility and computational efficiency, since

all-sky searches typically analyze considerably larger datasets.

In this section, I will describe several adaptations which I have developed and im-

plemented which facilitate an all-sky search with STAMP.

4.5.1 Clustering

The primary difficulty associated with all-sky searches is that the direction Ω̂ of a po-

tential GW signal is not known. For a targeted search pipeline like STAMP, this means

that the “wrong” sky direction may be chosen for the analysis, and as a result, the corre-

sponding filter Q̃IJ is not the optimal filter and the signal may actually induce negative

power. An example of this behavior is shown in Fig. 4.17; the signal is visible as a

track with alternating light and dark bands. The width and frequency of these bands is

related to the difference in the time delay between detectors for the true signal direction

and the direction chosen for the filter.

This situation is problematic because the clustering algorithms utilized in STAMP

are designed to only identify groups of pixels with positive SNR. There are two naive

solutions to this problem. First, we could repeat the STAMP analysis for a given chunk

of data many times, using a different sky direction for each iteration. Because the

filter Q̃IJ is an optimal filter, the case where we analyze the signal using the true sky

direction to construct the filter should result in a fully positive signal with maximal

SNRΓ, assuming that our clustering algorithm is well-suited to the task. Thus, we could

divide the sky into tiles and repeat the analysis for each tile, keeping only the cluster

with the highest value of SNRΓ in all tiles. However, analyzing the entire sky with 1◦

resolution requires 65160 tiles, which requires significant computational resources.

The second obvious solution is to pick a random sky direction, take the absolute

value of the SNR map, and run the normal clustering algorithm. However, this doubles

the number of above-threshold noise pixels and reduces the effectiveness of the clustering

algorithm significantly. The rest of this subsection will explore two alternative solutions

to this problem.
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Figure 4.17: SNR ft-map of a simulated ADI signal recovered with the wrong filter.
The signal was injected at (ra,dec) = (6h,30◦) and recovered with a filter designed for a
sky position of (ra,dec) = (15h,20◦).

The fastring algorithm

Because STAMP uses a two-detector baseline, many sky directions appear nearly identi-

cal, since the filter function Q̃IJ is primarily dependent on the signal time delay between

detectors (it also has some dependence on the antenna pattern functions FAI , but this

does not affect the resulting signal morphology in STAMP ft-maps since this is only a

scaling factor). The time delay is a function of source sky position and it can be shown

geometrically that there are “rings” of constant time delay on the sky for a two-detector

network.

In order to eliminate redundant sky positions and speed up an all-sky analysis, we

have developed the fastring algorithm. This routine divides the sky into tiles, calculates

the time delay for each tile, converts it to a phase delay (dependent on the maximum

frequency used in the analysis and the separation between the detectors), and groups

sky positions by similar phase delays. The tile size is determined by requiring that the

maximum phase error is less than π/4; we enforce this requirement at f = fmax since

this gives the largest phase error for a corresponding error in time delay.

Since each sky position in a group has essentially the same phase delay and filter
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function (up to a scaling factor), we can simply analyze one sky direction from each

group. This allows us to reduce the number of sky positions analyzed per ft-map from

65160 to a few hundred, although this number depends on the maximum frequency used

in the analysis and on the criteria for defining phase delays as similar.

Fig. 4.18 shows the recovered SNRΓ as a function of sky position for a simulated ADI

signal at (ra,dec) = (6h,30◦) using both brute force iteration and the fastring routine.

The recovered SNRΓ using fastring is within 20% of that from brute force iteration,

but uses only 8 sky positions instead of 316. Note that the white patch in the fastring

recovery contains three rings of nearly equal SNRΓ.
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Figure 4.18: Recovery of a simulated ADI signal using brute force iteration (left) and
the fastring method (right) to define sky positions. The resulting SNRΓ values are
very comparable in each ring, but the brute force method requires analysis of 316 sky
positions, while fastring uses only 8.

Searches using fastring must still analyze a few hundred sky positions per ft-map

to cover the entire sky; depending on the amount of data which must be analyzed for a

given search, this may still be computationally unrealistic.

The zebragard algorithm

Another solution to the all-sky problem relies on taking advantage of the signal mor-

phology shown in Fig. 4.17. When the wrong sky position is used to recover a signal, it

always results in a banded pattern of alternating positive and negative SNR. In order to
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take advantage of this structure, I have developed the zebragard clustering algorithm,

which is capable of recovering signals even when the wrong sky position is used for the

analysis. This algorithm uses the burstegard clustering strategy in several steps:

1. Cluster only above-threshold positive pixels using a reduced requirement on the

minimum number of pixels to form a cluster (≈20).

2. Re-cluster the resulting positive clusters using a slightly larger clustering radius

and a larger requirement on cluster size. This allows for connection of nearby

positive clusters which may be slightly disconnected due to noise fluctuations and

removes small noise clusters which may be identified during step 1.

3. Multiply the ft-map by -1 and repeat steps 1 and 2. This effectively clusters pixels

which were initially negative.

4. Take a positive cluster and try to connect it to all negative clusters using a large

clustering radius. Repeat this process for all possible connections between positive

clusters and negative clusters.

5. Combine any connected clusters into a single cluster. A higher requirement on

minimum cluster size is enforced at the end of this step.

6. Take the absolute value of the ft-map and calculate the cluster ranking statistic,

SNRΓ.

Note that in step 4, we do not try to connect positive clusters to other positive

clusters or negative clusters to other negative clusters. Also, although the burstegard

clustering algorithm is applied multiple times during the full zebragard procedure, the

number of pixels involved in each clustering step is considerably reduced (compared to

the full ft-map); as a result, the algorithm runs relatively quickly.

Fig. 4.19, shows a step-by-step example of the zebragard clustering strategy, follow-

ing the steps detailed above. Using this algorithm, it is possible to fully reconstruct the

signal, even though the wrong sky direction was used in the filter.

The example shown in Fig. 4.17 is a case where although the signal is partially

negative, most of the power is still apparent in the real part of the cross-correlation.

Depending on how the sky direction of the source differs from that used in the filter,
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Figure 4.19: Step-by-step example of zebragard clustering method. Top row: initial
clustering of positive pixels (left) and negative pixels (right). Middle row: secondary
clustering of positive pixels (left) and negative pixels (right). This step expands the
cluster radius and requires more pixels in each cluster. Bottom row: final results after
connecting positive and negative clusters. The cluster plot (left) and the SNR ft-map
(right, with absolute value applied) of the maximal resulting cluster are both shown.
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significant power may be deposited in the imaginary part of the cross-correlation and

will be lost when the real part is taken to calculate Ŷ (see Eq. 4.6). In these cases,

the zebragard clustering strategy may fail since the overall signal power may be low or

there may be large gaps between the bands. Because of this, it is often useful to analyze

each period of data with zebragard using multiple sky positions in order to ensure a

well-recovered signal (hopefully fewer than that required for fastring).

To test this, I have applied zebragard to several months of time-shifted LIGO data

and to data containing simulated ADI signals at various source distances. The results

of this study are shown in Fig. 4.20, in terms of false alarm probability versus distance

for a fixed signal recovery rate of 50%, using anywhere from 1 to 10 sky directions with

zebragard (sky directions chosen randomly for each ft-map). For cases where more

than one sky direction is used to analyze an ft-map, zebragard returns only the cluster

with the largest SNRΓ found across all sky directions.

Effectively, this plot shows the probability that a noise trigger has higher SNRΓ than

a recovered signal as a function of distance. At constant false alarm probability, curves

which are further to the right indicate higher sensitivity, meaning that we can detect the

signal when its source is further away. In general, increasing the number of sky directions

increases the sensitivity, but the relative gain diminishes beyond approximately 5 sky

directions. The computational time increases linearly with the number of sky directions

used in the analysis; thus, in order to balance sensitivity and computational efficiency, I

recommend using ≈5 sky directions for analyses with zebragard.

I have also considered whether there is an optimal way of choosing the sky directions

for analyzing the data. To answer this question, I have repeated the same study as

detailed above for testing the number of sky directions; however, I instead vary the

methods for choosing the sky directions. The methods tested are as follows:

• Random: a different set of sky directions is generated and used for analyzing each

ft-map.

• Time delay: the sky directions are chosen so that the set of possible time delays

is spanned (≈-10–10ms for the LIGO Hanford and Livingston detectors).

• Time delay (high sensitivity): same as the previous method, except we only use

directions where the antenna pattern functions indicate high sensitivity.
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Figure 4.20: Zebragard sensitivity as a function of number of sky directions used for a
40 second-long ADI waveform (left) and a 9 second-long ADI waveform (right). See text
for more details.

• Consistent random: one set of sky directions is randomly generated and used to

analyze all ft-maps.

For each method, 5 sky directions are used in total.

Fig. 4.21 shows the results of this study; again, curves which are further to the right

at constant false alarm probability indicate higher sensitivity. Overall, the methods

prove to be quite similar; although there are indications of some differences using the

longer waveform, these are not apparent for the shorter waveform. Thus, it seems that

for an all-sky search with potentially unknown GW waveform morphologies, there is

no significant difference between methods for choosing the sky directions when using

zebragard.

Finally, I compare the zebragard clustering strategy to the fastring method and to

a strategy using normal burstegard clustering on the absolute value of the SNR ft-map.

A plot of false alarm probability versus distance for a 40 second-long ADI waveform is

shown in Fig. 4.22. Overall, the fastring-based method is the most sensitive, but it

is only ≈10% more sensitive than zebragard with 5 sky directions, and takes about

50 times longer to run. Zebragard is also more sensitive than the absolute value-based

method and comparable in computational speed.



160

0 2 4 6 8 10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Distance [Mpc]

F
a
ls

e
 a

la
rm

 p
ro

b
a
b
ili

ty

40 second−long ADI waveform

 

 

Random
Time delay
Time delay, high sens.
Consistent Random #1
Consistent Random #2
Consistent Random #3

10 15 20 25

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Distance [Mpc]

F
a
ls

e
 a

la
rm

 p
ro

b
a
b
ili

ty

9 second−long ADI waveform

 

 

Random
Time delay
Time delay, high sens.
Consistent Random #1
Consistent Random #2
Consistent Random #3

Figure 4.21: Zebragard sensitivity as a function of the method for choosing the sky
directions. Five sky directions were used for each method. See text for more details.
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Figure 4.22: False alarm probability versus distance for analyses of a 40 second-long ADI
waveform using fastring, zebragard, and a method based on burstegard clustering of
the absolute value of the SNR ft-map.

Overall, zebragard with 5 sky directions appears to provide the best balance of

sensitivity and computational efficiency.
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4.5.2 Pre-processing of data

The STAMP analysis strategy has traditionally been separated into two phases: pre-

processing and analysis. First, the auto-power ft-maps for each detector and the cross-

correlation s̃∗I(f)s̃J(f) are calculated and saved into intermediate data files. Second,

these pre-processed data are loaded, the Ŷ , σ̂Y , and SNR ft-maps are calculated, and

the clustering is performed. This strategy allows the analysis to be performed multiple

times for different sky positions or choices of other analysis parameters without having

to do the pre-processing each time.

The time slide (or time shift) method is commonly used in gravitational-wave data

analysis to characterize the inherent detector noise [293]. In this method, one detector’s

time-series is shifted relative to the other by a set amount (typically at least larger than

the light travel time between detectors, and usually longer than the duration of the

signal being targeted) in order to remove gravitational-wave correlations from the data.

Thus, any triggers identified in the time-shifted data should be produced by detector

noise alone. This is typically repeated for multiple time shifts in order to study more

realizations of the detector noise. When the unshifted (or “zero-lag”) data are analyzed,

the significance of any triggers can be estimated in terms of a false alarm rate (FAR):

how often the detector noise alone would be expected to produce a trigger with SNRΓ

equal to or larger than a given value.

However, the previously discussed strategy for pre-processing would involve saving

an instance of pre-processed files for each time shift analyzed, since the cross-correlation

is calculated during the pre-processing. This is a problem for all-sky searches due to

the sheer quantity of data which is analyzed: hundreds of days of data and hundreds

or thousands of different time shifts. The amount of storage needed quickly adds up to

petabytes or more, and the pre-processing time could be several months.

As a result, I have modified the pre-processing strategy outlined above. Simply put,

only the FFTs are calculated in the pre-processing and the cross-correlation is now done

as the first step in the analysis phase; this requires only one set of pre-processed files for

an entire GW search since the time shifting procedure is now part of the analysis phase.

Extensive tests have been performed in order to confirm that the end result is identical

to the old pre-processing method.
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4.5.3 Data quality

The STAMP glitch identification flag discussed in Sec. 4.3 was designed and tested for a

targeted search where the sky direction of the GW source is known. For a search using

zebragard where random sky directions are used, it is probable that the εII and εJJ

factors will not match up with that of the true sky direction of the source, leading to an

incorrect estimation of the GW auto-power difference (see Eq. 4.21). In this way, GW

signals could be falsely labeled as glitches by this algorithm.

I have tested the safety of the glitch flag for simulated GW signals recovered with the

wrong sky direction using a method similar to that described in Sec. 4.3.4. Because the

glitch statistics are based on the fraction of “glitchy” pixels in each ft-map column, it

tends to prove safe for narrowband signals which do not make up a significant portion of

each column, assuming the overall frequency range of the ft-map is comparatively large.

However, this is not the case for more broadband signals like the EBBH waveforms.

Future searches which include waveforms similar to the EBBH signals may require a

modified form of the glitch identification algorithm in order to ensure safety for these

signals.

Fig. 4.23, shows the results of applying the glitch flag to an ADI waveform (left)

and an EBBH waveform (right) for an all-sky search where the source direction is not

known. The ADI waveform is narrowband and is not flagged as glitch-like for any signal

strengths used in this study. However, the EBBH signal is broadband and makes up

a large fraction of pixels in an ft-map column (see Fig. 4.16). As a result, it may be

identified as glitch-like when the sky direction is not known; up to 14% of the ft-map

columns containing an EBBH signal were flagged as glitch-like in this study, which may

seriously impact the sensitivity of an all-sky search for these signals.
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Figure 4.23: Fraction of ft-map columns containing signal which were identified as
glitch-like for an ADI waveform (left) and an EBBH waveform (right) when the signal
sky direction is not known. No portion of the ADI signal is flagged as glitch-like due
to its narrowband morphology (all data series overlap in this plot); however, the EBBH
waveform has up to 14% of its columns flagged as glitch-like, especially at closer distances
when the signal is louder. Different colors indicate different parametrizations of the glitch
flag.



Chapter 5

An all-sky search for long-duration

gravitational-wave transients in

LIGO S5 and S6 data

Thus far, searches for unmodeled bursts of GWs [107,294,295] have targeted source ob-

jects including core-collapse supernovae [249], neutron star to black hole collapse [296],

cosmic string cusps [297], binary black hole mergers [298–300], starquakes in magne-

tars [301], pulsar glitches [302], and signals associated with gamma-ray bursts [121].

These searches have been primarily focused on signals with a duration of ≈1 second or

less.

At the other end of the spectrum, searches for persistent stochastic gravitational-

wave backgrounds have also been conducted, including isotropic [88] and anisotropic

backgrounds [140]. However, this leaves the intermediate duration region of the un-

modeled GW parameter space relatively unexplored. Multiple proposed astrophysical

scenarios predict the emission of GW transients lasting from a few seconds to hundreds

of seconds, or even longer (see Sec. 4.1). The first search for unmodeled long-duration

GW transients used the STAMP analysis pipeline to analyze data from the LIGO S5

science run which was associated with GRB triggers from the Swift telescope.

In this chapter, I describe and apply a STAMP-based search for long-lasting GW

transients coming from all sky directions and all times during the LIGO S5 and S6

164
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science runs. The all-sky adaptations to STAMP (described in Sec. 4.5) are integral to

this search, including the zebragard clustering algorithm and the new pre-processing

strategy. Sec. 5.1 describes efforts to analyze the background distribution of triggers

due to detector noise, including the data analyzed, data quality efforts, and the overall

analysis strategy. In Sec. 5.2, 15 simulated GW signals are analyzed in order to estimate

the sensitivity of the search. The results of analyzing the unshifted (zero-lag) data and

the loudest events are presented in Sec. 5.3. Finally, I discuss and apply a procedure

for setting upper limits in Sec. 5.4 and wrap up with a brief discussion of the results in

Sec. 5.5 and a summary of the search in Sec. 5.6.

5.1 Background studies

A crucial part of any GW search is to understand the background of accidental triggers

due to detector noise; this is important for preventing false identification of noise triggers

as GW candidates and for improving the overall sensitivity of the search. To estimate

the false alarm rate (FAR), i.e., the rate of accidental triggers due to detector noise, we

introduce a non-physical time-shift between the H1 and L1 strain data before computing

the cross-correlation. Analysis of the time-shifted data proceeds identically to that of

unshifted data (more details in Sec. 5.1.3); assuming the number of hypothetical GW

signals is small, the data should not contain a correlated GW signal, so any triggers will

be generated by the detector noise. This process is repeated for multiple time-shifts in

order to gain a more accurate estimate of the FAR from detector noise.

In this section, I describe the data analyzed in this search, efforts to clean the data in

order to remove large data artifacts, details of the analysis, and the results of analyzing

the time-shifted data.

5.1.1 Data selection

During the fifth LIGO science run (S5, November 5, 2005 to September 30, 2007),

the 4 km and 2 km detectors in Hanford, WA (H1 and H2) and the 4 km detector in

Livingston, LA (L1) recorded data for nearly two years. The Virgo detector (V1) in

Pisa, Italy joined the LIGO detectors during this period and began its first science run

on May 18, 2007.
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After a two-year period of upgrades to H1 and L1 and the decommissioning of H2,

the sixth LIGO and second and third Virgo science runs were organized jointly from July

7, 2009 to October 10, 2010. During the entire period spanned by S5 and S6, the H1

and L1 detectors achieved the best strain sensitivity, reaching ≈2 ×10−23 Hz−1/2 around

150Hz in 2010 [303, 304]. Because of its reduced arm length, H2’s average sensitivity

was more than a factor of two lower than H1 in the 40–400Hz range. V1 sensitivity

varied over time, but was always lower than the sensitivity of H1 and L1 by a factor of

≈1.5–5 at frequencies higher than 60Hz. Along with this, the total amount of coincident

data for the H1-L1 pair was more than twice that of the H1-V1 and L1-V1 pairs added

together. As a result, Virgo data has not been included in this analysis since it would

have increased the overall sensitivity of the search by only a few percent or less at the

cost of analyzing significantly more data. Thus, this search focuses only on S5 and S6

data from the H1-L1 pair.

5.1.2 Data quality

LIGO data quality flags are used to remove portions of the S5 and S6 data which

have been contaminated by instrumental problems or environmental conditions that

decrease the sensitivity of the detectors and increase the rate of data artifacts. Some

of the phenomena which these data quality flags cover include hardware injections of

simulated signals, excitation of suspension thermal modes, power fluctuations in the

photon calibration laser, and severe glitching in the sideband frequencies used in the

PDH locking scheme. See the discussion in Sec. 4.3.5 and Refs. [287–290] for a further

description of the LIGO data quality flags. Overall, 5.8% and 2.2% of H1-L1 coincident

data are discarded for S5 and S6, respectively, due to our choices for Category 1 data

quality flags1.

Category 2 data quality flags are also used to veto possible GW candidate triggers

which are generated by a clearly identified noise source. For this purpose, we considered

all Category 2 flags which have been used by past modeled and unmodeled GW transient

searches [290]; however, we found that the most useful flags for our analysis were related

to malfunctions of the longitudinal control of the Fabry-Pérot cavities and to increases

in seismic noise.
1Data quality flag selection performed by M. A. Bizouard.
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We also apply two data cleaning techniques concurrently with the data processing.

First, we remove frequency bins which are known to be contaminated by instrumental

and environmental effects. This includes the resonant frequencies of the mirror suspen-

sions (341–349Hz and harmonics), 60Hz power line harmonics, and sinusoidal signals

injected for calibration purposes (399-405Hz). In total, we have removed 47 1Hz-wide

frequency bins from the S5 data and 64 1Hz-wide frequency bins from the S6 data.

Second, we apply the STAMP glitch identification flag discussed in Secs. 4.3 and 4.5.3,

in order to remove data artifacts. Both of these methods are applied before any triggers

are generated by the clustering algorithm.

However, preliminary analyses of the data revealed the presence of glitches in the H1

and L1 data which randomly coincide during the time-shifting procedure. The STAMP

glitch flag does not remove these glitches due to its built-in safety mechanism, which

prevents it from flagging segments where there is significant power in both detectors.

These glitches are typically much less than 1 s in duration, and as a result, nearly all

of their power is concentrated in a single 1 s time segment. To suppress these glitches,

I have developed a discriminant variable, SNRfrac, which measures the fraction of a

trigger’s SNRΓ deposited in each time segment (or ft-map column). Using studies of

the detector noise (see Sec. 5.1.3) and a set of simulated GW signals (see Sec. 5.2.1), I

found that eliminating any triggers with SNRfrac ≥ 0.45 optimized the search sensitivity

for all simulated waveforms studied in this search. This cut is applied in post-processing,

after the initial analysis which generates triggers using a clustering algorithm.

5.1.3 Background estimation

Analysis details

The Category 1 data quality flags that we use divide each science run into analysis

segments; we further divide each analysis segment into 500 s-long intervals which overlap

by 50% and span the entire dataset. As an example, there are 18837 analysis segments

in the S5 dataset with an average duration of about 1500 seconds each; this corresponds

to five 500-second, 50% overlapping ft-maps per analysis segment on average.

For each interval, we calculate the standard STAMP ft-maps, including SNR, Ŷ ,

and σ̂Y , with 1 s × 1Hz pixel resolution. We apply the zebragard clustering algorithm
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with 5 randomly chosen sky directions in order to generate triggers; the sky directions

are consistent across intervals within an analysis segment.

In terms of frequency content, we restrict the analysis to the 40–1000Hz band. The

lower limit is set due to the presence of seismic noise, which is the dominant low-frequency

noise source for current terrestrial GW detectors and rises sharply with decreasing fre-

quency. The upper limit is set to include the most likely regions of frequency space for

long-lasting GW transients, while keeping the computational requirements of the search

at an acceptable level. We note that the frequency range of our analysis includes the

most sensitive part of the LIGO frequency band, namely 100–200Hz.

In order to generate more realizations of detector noise, we utilize the time-shift

method, briefly described in Sec. 4.5.2. For a given time-shift i, the H1 data from

interval n are cross-correlated with L1 data from interval n + i. Since there may be

a time gap between two consecutive analysis segments, the actual time-shift applied in

this process is always at least 500 i seconds. The time-shifting method is also circular: if

n+ i > N , where N is the total number of 500 s intervals required to span the dataset,

then the H1 data from interval n are cross-correlated with L1 data from interval n+i−N .

It is important to note that the minimum time-shift duration is much longer than the

light travel time between the two detectors and also longer than the signal models we

consider (see Sec. 5.2.1) in order to prevent accidental correlations.

Using this method, I have analyzed 100 time-shifts to estimate the background due

to detector noise during S5, amounting to a total analyzed livetime of 84.1 years. I have

also studied 100 time-shifts of S6 data, with a total analyzed livetime of 38.7 years.

Background results

The cumulative rates of background triggers for the S5 and S6 datasets can be seen

in Fig. 5.1. After applying the SNRfrac and Category 2 data quality flags in post-

processing, the background distribution for time-shifted data is comparable to that re-

sulting from a study of simulated Gaussian detector noise, indicating that the resulting

data are relatively well-cleaned.

Looking at the “loudest” remaining triggers in the cleaned distributions from Fig. 5.1

(darkest gray), we would expect S5 detector noise to generate triggers with SNRΓ & 35

at a rate of 4 × 10−10 Hz, or once for every 79 years of data; for S6, we expect triggers
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Figure 5.1: The false alarm rate is shown as a function of the trigger ranking statistic
SNRΓ for 100 time-shifts of S5 data (top) and S6 data (bottom). Distributions are shown
before and after post-processing cuts are applied. Also shown is the FAR distribution
generated by a Monte Carlo simulation assuming Gaussian detector noise. Reprinted
figure with permission from Ref. [142], copyright 2016 by the American Physical Society.
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with SNRΓ & 37 to occur once for every 35 years of data. This study indicates that the

data cleaning methods are working as expected and can be applied to the zero-lag data;

any resulting high-SNRΓ triggers from that study should only be produced by GWs.

5.2 Search sensitivity

In this section, I describe the application of our search algorithm to time-shifted LIGO

data plus several simulated GW signals, in order to test the effectiveness of our search

at identifying and recovering GWs.

5.2.1 Waveforms

To assess the sensitivity of our search to realistic GW signals, we use 15 different sim-

ulated GW waveforms, classified into four different waveform “families.” Four of these

waveforms are based on an astrophysical model of a black hole accretion disk instabil-

ity [265–267,277]. The other 11 waveforms are not based on a model of an astrophysical

GW source, but are chosen to encapsulate various characteristics that long-transient GW

signals may possess, including their duration, frequency content, and bandwidth. These

ad hoc waveforms can be divided into three families: sinusoids with time-dependent

frequency content, sine-Gaussians, and band-limited bursts of white noise. I have devel-

oped simulations which produce the strain time-series for each of these signal types and

used them to generate the waveforms used in this search.

All simulated waveforms have 1 s-long Hann-like tapers applied to the beginning and

end of the waveforms in order to prevent data artifacts which may occur when the signals

have high intensity. In this section, I will provide a brief description of each GW signal

model and the sensitivity of our search algorithm to them.

Accretion disk instabilities

In our sensitivity study, we include four variations on the ADI model (described further

in Sec. 4.1.1). The parameters for the four waveforms are described in Table 5.1; we

note that although this set of waveforms does not span the entire parameter space of the

ADI model, it does encapsulate most of the possible variations in the signal morphology
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in terms of durations, frequency ranges and derivatives, and amplitudes2. While these

waveforms may not be precise representations of realistic signals, they capture the im-

portant features of many proposed models and produce long-lived spectrogram tracks.

A summary of these waveforms is shown in Tab. 5.1; Fig. 5.2 illustrates the different

signal morphologies with SNR ft-maps.

Waveform M[M�] a∗ ε Duration [s] Frequency [Hz]
ADI-A 5 0.30 0.050 39 135–166
ADI-B 10 0.95 0.200 9 110–209
ADI-C 10 0.95 0.040 236 130–251
ADI-E 8 0.99 0.065 76 111–234

Table 5.1: Parameters of ADI waveforms [265–267] used to test the sensitivity of the
search. Here, M is the mass of the central black hole, a∗ is the dimensionless Kerr spin
parameter of the black hole, and ε is the fraction of the disk mass that forms clumps.
Frequency refers to the ending and starting frequencies of the GW signal, respectively.
All waveforms have an accretion disk mass of 1.5 M�.

Sinusoids

The sinusoidal waveforms are characterized by a sine function with time-dependent fre-

quency content. The waveforms are described by:

h+(t) =
1 + cos2 ι

2
cos 2ψ cosφ(t)− cos ι sin 2ψ sinφ(t), (5.1)

h×(t) =
1 + cos2 ι

2
sin 2ψ cosφ(t) + cos ι cos 2ψ sinφ(t), (5.2)

where ι is the inclination angle of the source, ψ is the source polarization, and φ(t) is a

phase time-series, given by

φ(t) = 2π

(
f0t+

1

2

(
df

dt

)
t2 +

1

6

(
d2f

dt2

)
t3
)
. (5.3)

Two of the sinusoidal waveforms are completely monochromatic, two have a linear

frequency evolution with time, and two have a quadratic frequency evolution with time.
2Although amplitude depends on the distance to the source, it is also affected by the choice of model

parameters, including mass and disk clumpiness.
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Figure 5.2: SNR ft-maps of the four ADI waveforms used to test the STAMP all-sky
search sensitivity. Top-left: ADI-A. Top-right: ADI-B. Bottom-left: ADI-C. Bottom-
right: ADI-E. See Tab. 5.1 for more details.

This family of waveforms is summarized in Tab. 5.2 and displayed in Fig. 5.3. For the

monochromatic waveforms, some spectral leakage is apparent in neighboring frequency

bins. The central frequency bin of these signals is reduced in amplitude due to the use of

adjacent segments in the noise estimation, which includes contributions from the signal

in this case.
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Figure 5.3: SNR ft-maps of six sinusoidal signals used to test the sensitivity of the
STAMP all-sky search. Top row: monochromatic waveforms MONO-A (left) and
MONO-B (right). Middle row: linear waveforms LINE-A (left) and LINE-B (right).
Bottom row: quadratic waveforms QUAD-A (left) and QUAD-B (right). See Tab. 5.2
for more details.
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Waveform Duration [s] f0 [Hz] df
dt [Hz/s] d2f

dt2
[Hz/s2]

MONO-A 150 90 0.0 0.00
MONO-B 250 505 0.0 0.00
LINE-A 250 50 0.6 0.00
LINE-B 100 900 -2.0 0.00
QUAD-A 30 50 0.0 0.33
QUAD-B 70 500 0.0 0.04

Table 5.2: Parameters of sinusoidal waveforms used to test the sensitivity of the search.
Here, f0 is the initial frequency of the signal, df/dt is the frequency derivative, and
d2f/dt2 is the second derivative of the frequency.

Sine-Gaussians

The sine-Gaussian waveforms are essentially monochromatic signals multiplied by a

Gaussian envelope:

e−t
2/τ2 . (5.4)

Here, τ is the decay time, which defines the width of the Gaussian envelope. This set of

waveforms is summarized in Tab. 5.3 and illustrated in Fig. 5.4.

Waveform Duration [s] f0 [Hz] τ [s]
SG-A 150 90 30
SG-B 250 505 50

Table 5.3: Parameters of sine-Gaussian waveforms used to test the sensitivity of the
search. Here, τ is the decay time of the Gaussian envelope.

Band-limited white noise bursts

I have generated random white noise and used a 6th-order Butterworth band-pass fil-

ter to restrict the noise to a given frequency band. Each polarization component of

the simulated waveforms is generated independently so that the two components are

uncorrelated. This family of waveforms is summarized in Tab. 5.4 and illustrated in

Fig. 5.5.
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Figure 5.4: SNR ft-maps of two sine-Gaussian signals used to test the sensitivity of the
STAMP all-sky search. Left: SG-A waveform. Right: SG-B waveform. See Tab. 5.3 for
more details.

Waveform Duration [s] Frequency band [Hz]
WNB-A 20 50–400
WNB-B 60 300–350
WNB-C 100 700–750

Table 5.4: Parameters of band-limited white noise burst waveforms used to test the
sensitivity of the search.

5.2.2 Sensitivity study

Using the waveforms described in the previous section, we performed a sensitivity study

to determine the overall detection efficiency of this search as a function of waveform

amplitude. The procedure for this study is as follows:

1. For each waveform, randomly generate 1500 times between the beginning and end

of the dataset, such that the injected waveform would be fully included in at least

one 500 second-long analysis window. Consecutive injections are required to be at

least 1000 seconds apart.

2. For each of these injection times, generate a simulated signal with random sky

position, source inclination, and polarization angle.

3. Add the simulated signal to time-shifted data and perform the analysis as described
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Figure 5.5: SNR ft-maps of three white noise burst waveforms used to test the sensitivity
of the STAMP all-sky search. Top row: WNB-A (left) and WNB-B (right). Bottom:
WNB-C. See Tab. 5.4 for more details.

in Sec. 5.1.3.

4. The simulated signal is considered “recovered” if the following requirements are

met:

• The trigger was found between the known start and end time of the simulated

signal.

• The trigger was found within the known frequency band of the signal.

• The SNRΓ of the trigger exceeded a threshold determined by the loudest
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trigger found in the zero-lag dataset (without injections).

5. Repeat this procedure for 16 different amplitudes for each waveform in order to

fully characterize the search’s detection efficiency as a function of signal strength.

This procedure is performed independently for each of the S5 and S6 datasets3, and the

results are combined using a method which will be discussed in Sec. 5.4.

Figs. 5.6 and 5.7 show the efficiency (ratio of recovered signals to the total number

of injected signals) for the S5 and S6 datasets, respectively. The efficiency is plotted as

a function of either the distance to the source (for the ADI waveforms) or the root-sum-

squared strain amplitude (hrss) at Earth (for the ad hoc waveforms), defined as

hrss =

√∫
(|h+(t)|2 + |h×(t)|2) dt. (5.5)

In general, the pipeline is more sensitive to signals which have a higher efficiency at a

given distance or hrss.

Within each of the four waveform families, the pipeline efficiency has a significant

frequency dependence which traces the strain sensitivity of the LIGO detectors (see

Fig. 2.3). For example, the search is more sensitive to LINE-A than LINE-B, primarily

due to the fact that LINE-A is in the most sensitive portion of the LIGO band, while

LINE-B is at much higher frequencies where the detectors are less sensitive. Overall,

the search is more sensitive to all of the signal models in the S6 dataset (compared to

S5) due to the improvement in strain sensitivity for the enhanced LIGO configuration

used during S6.

In general, it may be more difficult to detect longer signals; if all waveforms are fixed

at a particular amplitude, the power will be more spread out for longer signals and may

fall below the detector noise (depending on the fixed amplitude chosen). Finally, the

rate of change of frequency for a waveform also influences its detectability for this search;

since STAMP uses adjacent time segments for estimating σ̂Y , signals whose frequency

changes slowly with time will deposit significant power in σ̂Y , resulting in reduced SNR.

This is particularly problematic for the monochromatic and sine-Gaussian waveforms.
3Parts of the sensitivity study were performed by M. A. Bizouard and S. Franco.
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Figure 5.6: Detection efficiency for different waveforms in S5 data as a function of
distance to the source (ADI waveforms) or the signal strength hrss (all others). We use
an SNRfrac threshold of 0.45 and a recovery threshold of SNRΓ = 29.65 as determined by
the loudest unshifted S5 trigger (see Tab. 5.5). Error bars are computed using binomial
statistics. Top-left: ADI waveforms. Top-right: sinusoidal waveforms. Bottom-left:
sine-Gaussian waveforms. Bottom-right: white noise burst waveforms. Reprinted figure
with permission from Ref. [142], copyright 2016 by the American Physical Society.

5.3 Loudest triggers

After studying the distribution of background triggers from time-shifted data and op-

timizing the SNRfrac veto using both background and simulated GW signals, the final

step in the analysis is to apply the search algorithm to the zero-lag data in order to

http://dx.doi.org/10.1103/PhysRevD.93.042005
http://dx.doi.org/10.1103/PhysRevD.93.042005
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Figure 5.7: Detection efficiency for different waveforms in S6 data as a function of
distance to the source (ADI waveforms) or the signal strength hrss (all others). We use
an SNRfrac threshold of 0.45 and a recovery threshold of SNRΓ = 27.13 as determined by
the loudest unshifted S6 trigger (see Tab. 5.5). Error bars are computed using binomial
statistics and are on the order of a few percent. Top-left: ADI waveforms. Top-right:
sinusoidal waveforms. Bottom-left: sine-Gaussian waveforms. Bottom-right: white noise
burst waveforms. Reprinted figure with permission from Ref. [142], copyright 2016 by
the American Physical Society.

search for GW candidates. The analysis proceeds identically to that of the time-shifted

data, as described in Sec. 5.1.3 (without the time-shifting, of course). I have run this

analysis and studied the resulting distributions of FAR versus SNRΓ for both S5 and

S6; these distributions are compared to the corresponding background distributions in

http://dx.doi.org/10.1103/PhysRevD.93.042005
http://dx.doi.org/10.1103/PhysRevD.93.042005
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Fig. 5.8. A slight deficit of triggers is present in the S6 zero-lag, but it remains within

one standard deviation of what is expected from the background.
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Figure 5.8: Distribution of FAR versus SNRΓ for zero-lag triggers from S5 (black circles)
and S6 (red triangles). The distributions are compared to the estimated background
distributions for S5 (solid black) and S6 (dashed red). We observe a slight deficit of
triggers in the S6 zero-lag that remains within one standard deviation of the expectation
based on the background. Also shown is the FAR distribution generated by a Monte
Carlo simulation assuming Gaussian detector noise (solid cyan). Reprinted figure with
permission from Ref. [142], copyright 2016 by the American Physical Society.

Here, I consider the significance of the “loudest” triggers from the S5 and S6 zero-lag

datasets, including calculation of both the FAR and FAP (false alarm probability) of

each trigger. The FAR is defined as

FAR (SNR?Γ) =
N(SNR?Γ)

Tbkg
, (5.6)

where N(SNR?Γ) is the number of background triggers with SNRΓ larger than a given

threshold SNR?Γ, and Tbkg is the total background livetime from all time-slides. The

FAP is the probability of observing at least N background triggers with SNRΓ higher

http://dx.doi.org/10.1103/PhysRevD.93.042005
http://dx.doi.org/10.1103/PhysRevD.93.042005
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than the threshold SNR?Γ:

FAP(N) = 1−
n=N−1∑
n=0

µnbkg

n!
e−µbkg . (5.7)

Here, µbkg is the number of background triggers expected from a Poisson process, defined

as

µbkg = Tobs × FAR (SNR?Γ), (5.8)

where Tobs is the zero-lag livetime. For the loudest triggers in each dataset, we take

N = 1 to estimate the FAP.

The most significant triggers from the S5 and S6 zero-lag analyses occurred with

false alarm probabilities of 54% and 92%, respectively. They also have respective false

alarm rates of 1.00 yr−1 and 6.94 yr−1. This shows that triggers of this significance

are frequently generated by detector noise alone, and thus, these triggers cannot be

considered GW candidates. More details on these triggers are shown in Tab. 5.5.

Dataset SNRΓ FAR [yr−1] FAP GPS time Dur. [s] Freq. [Hz]
S5 29.65 1.00 0.54 851136555.0 23.5 129–201
S6 27.13 6.94 0.92 958158359.5 23.5 537–645

Table 5.5: The most significant triggers from the S5 and S6 datasets. GPS times given
correspond to trigger start times.

Additional follow-up on these triggers indicated that no Category 2 data quality flags

in H1 nor L1 were active at the time of these triggers4. Examination of the ft-maps,

the whitened time-series around the time of the triggers, and the monitoring records

indicate that these triggers were due to a small excess of noise in H1 and/or L1, and

were not associated with a well-identified environmental or instrumental noise source.

5.4 Upper limits

Since no GW candidates were identified, I proceed to place upper limits on the rate of

long-duration GW transients at Earth, assuming an isotropic and uniform distribution
4This follow-up work was performed by M. A. Bizouard.
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of sources. I use two implementations of the loudest event statistic [305] to set upper

limits at 90% confidence. The first method uses the false alarm density formalism, which

accounts for both the background noise and the sensitivity of the search to simulated

GW signals. This method is only applicable for signals which are distance-calibrated;

in our case, this is true only for the ADI signals. The second method uses the search

pipeline’s efficiency to set loudest event statistic rate upper limits. In this section, I

describe both methods for calculating upper limits, associated uncertainties, and the

resulting upper limits from this search.

5.4.1 False alarm density and visible volume calculations

In order to constrain the rate and source density of the GW signals studied in this

search, I estimate the volume of the sky in which the search algorithm is sensitive to

these signals. For this, I use the visible volume [306,307]

Vvis(SNRΓ) =
∑
i

4πr2
i

(
dNinj

dr
(ri)

)−1

. (5.9)

Here, the index i runs over detected injections (determined by the detection threshold,

SNRΓ), ri is the distance to the ith detection, and dNinj/dr is the radial density of

injections.

The false alarm density (FAD) statistic is based on the visible volume and is useful

for comparing the results of searches over different datasets or even using different de-

tector networks [306–308]. It provides an estimate of the number of background triggers

expected given the visible volume and background livetime of the search. The classical

FAD is defined in terms of the FAR divided by the visible volume:

FADc(SNRΓ) =
FAR (SNRΓ)

Vvis(SNRΓ)
. (5.10)

In this way, the FAD accounts for the network sensitivity to GW sources as well as the

detector noise level and the accumulated livetime.

Following Ref. [308], we define a new FAD which produces a monotonic ranking of

triggers:

FAD(SNRΓ,i) = min (FADc(SNRΓ,i),FADc(SNRΓ,i−1)) , (5.11)
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where the index i runs over triggers in increasing order of SNRΓ. The resulting FAD

statistic may be used to combine results from searches over different datasets or with

different detector networks by calculating the time-volume productivity of the combined

search:

ν(FAD) =
∑
k

Vvis,k(FAD)× Tobs,k. (5.12)

Here, the index k runs over datasets or detector networks. The uncertainty on ν can be

calculated as

σν(FAD) =

√∑
k

T 2
obs,kσ

2
Vvis,k

(FAD) (5.13)

This combined time-volume product is eventually used to calculate final upper limits.

First, I have calculated Vvis and the FAD as a function of SNRΓ using the back-

ground distributions and the waveform sensitivity studies. Note that these quantities

are calculated individually for each signal model since the detection efficiency is different

for each waveform. Then, these quantities are used to estimate the FAD of the zero-lag

triggers; a detection threshold is set for the combined search based on the SNRΓ of the

“loudest event,” or in this case, the zero-lag trigger with the lowest overall FAD from

both datasets. The 90% confidence upper limits are calculated (following [305]) as

R90%,VT =
2.3

ν(FAD?)
, (5.14)

where ν is given by Eq. 5.12 and FAD? is the FAD of the loudest zero-lag trigger. The

factor of 2.3 in the numerator is the 90% upper limit on the Poisson rate for zero observed

events. The subscript VT indicates that these upper limits are in terms of number of

observations per volume per time.

This form for the upper limits does not account for the calibration uncertainty of

the detectors, which translates into an uncertainty on the visible volume. Statistical

uncertainties are also present from the sensitivity study, but are only on the order of a few

percent compared to the systematic uncertainties. These uncertainties are marginalized

over using a Bayesian formalism detailed in the next subsection.
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5.4.2 Bayesian formalism for FAD calculation

The observed astrophysical rate of triggers is given by

R =
N

ν(FAD?)
, (5.15)

where N is the number of triggers observed by the search, ν is the time-volume product

described in Eq. 5.12, and FAD? is the false alarm density of the most significant zero-lag

trigger. Although this search found no GW candidates, N is Poisson distributed, with

some underlying mean and variance µ. To properly handle the uncertainty associated

with the time-volume product, I have utilized a Bayesian formalism to account for un-

certainties in both quantities in the calculation of rate upper limits. Here, the goal is to

constrain the rate using the mean expected number of triggers, µ.

Given an observation of N triggers with a time-volume product of ν, a posterior

distribution for µ and ν can be calculated by using Bayes’ theorem.

P (µ, ν|N, ν) =
P (N, ν|µ, ν)P (µ, ν)

P (N, ν)
, (5.16)

where P (µ, ν|N, ν) is the posterior distribution, P (N, ν|µ, ν) is the likelihood, P (µ, ν)

are the priors, and P (N, ν) is the evidence. In this case, the evidence may be discarded,

since it is simply a normalization factor.

The priors on µ and ν are uniform:

µ ∈ [0, µmax] (5.17a)

ν ∈ [0, νmax]. (5.17b)

Here µmax and νmax are defined to be large enough that all of the significant posterior

mass is enclosed. Note that the choices of these limits vary for each signal model, since

they are dependent on the search sensitivity.

The likelihood function can be framed as the product of two separate distributions:

a Poisson distribution with mean µ and a Gaussian distribution with mean ν and sigma

σν (see Eq. 5.13). Assuming that µ and ν are uncorrelated random variables, the joint

probability density function is just the product of the two individual probability density
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functions:

P (N, ν|µ, ν) =
e−µµN

N !

e−(ν−ν)2/(2σ2
ν)

√
2πσν

. (5.18)

Thus far, this formalism has been laid out to calculate the posterior distribution as

a function of µ and ν. However, we are primarily interested in setting limits on the

rate, given as the ratio of µ and ν. The posterior distribution can be transformed into

a function of two new variables by multiplying the original posterior by the Jacobian

determinant of the transformation:

P (R, ν|N, ν) = P (µ, ν|N, ν)× |J |. (5.19)

Choosing the new variables to be R and ν (for simplicity) gives a Jacobian determinant

of

|J | =

∣∣∣∣∣∣∣∣
∂µ

∂R

∂µ

∂ν

∂ν

∂R

∂ν

∂ν

∣∣∣∣∣∣∣∣ = ν. (5.20)

This gives a posterior distribution of

P (R, ν|N, ν) = ν
e−µµN

N !

e−(ν−ν)2/(2σ2
ν)

√
2πσν

. (5.21)

Finally, marginalizing over ν gives the posterior distribution of R:

P (R|N, ν) =

∫ νmax

0
P (R, ν|N, ν) dν. (5.22)

Using this distribution, the 90% limit on R is given by R90%,VT, such that 90% of the

posterior mass is enclosed. This can be determined by numerically solving the following

equation:

0.9 =

∫ R90%,VT

0
P (R|N, ν) dR. (5.23)

The resulting upper limits are conservative since the associated uncertainties have

been included using this method.
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5.4.3 Efficiency calculation

For signal models without a physical distance calibration, I use the loudest event statistic

to calculate rate upper limits at 90% confidence based on the search pipeline’s efficiency:

R90%,T =
2.3∑

k

εk(SNR?Γ,k)× Tobs,k
. (5.24)

Here, the index k runs over searches (S5 and S6 in our case), and εk is the efficiency of

search k (for a given waveform) using a detection threshold SNR?Γ,k, which corresponds

to the loudest zero-lag trigger from search k. The resulting upper limits are in terms of

number of observations per time, as indicated by the subscript T. These upper limits

are a function of the signal strength (in terms of either source distance or hrss), because

the efficiency depends on signal strength.

Again, amplitude calibration uncertainty is the primary source of uncertainty for

these upper limits. In this case, I account for this uncertainty by adjusting the signal

amplitudes used in the sensitivity study (and shown in the efficiency curves in Figs. 5.6

and 5.7) upward by a multiplicative factor corresponding to the respective 1σ amplitude

calibration uncertainty.

5.4.4 Amplitude calibration uncertainties

During the S5 science run, the amplitude calibration uncertainty was measured to be

10.4% and 14.4% for the H1 and L1 detectors, respectively, in the 40–2000Hz frequency

band [309]. Assuming that the individual detector uncertainties are uncorrelated, the

quadrature sum gives a total calibration uncertainty of 17.8% on the amplitude, and

thus, an uncertainty of 53.4% on the visible volume. For S6, the amplitude calibration

uncertainty was measured at 4.0% for H1 and 7.0% for L1 in the 40–2000Hz band [310],

resulting in a total calibration uncertainty of 8.1% on the amplitude and 24.2% on the

visible volume. These uncertainties are included in both of the upper limit calculations

using the methods described in the previous subsections.
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5.4.5 Final upper limits

Here, I present final upper limits using the formalisms developed in the previous subsec-

tions. The upper limits given are conservative and include both statistical and system-

atic uncertainties as described previously. We again note that the dominant source of

uncertainty for both the FAD-based and efficiency-based upper limits is the amplitude

calibration uncertainty of the detectors.

The VT upper limits are only calculated for the ADI waveforms since they are the

only distance-calibrated waveforms used in this search. These upper limits are shown

in Tab. 5.6. For all waveforms, I have calculated loudest event statistic upper limits

in terms of the pipeline efficiency using Eq. 5.24. These upper limits are a function of

signal strength and are shown in Fig. 5.9.

Waveform Vvis [Mpc3] R90%,VT [Mpc−3yr−1]
S5 S6

ADI-A 1.8× 103 3.6× 103 9.4× 10−4

ADI-B 5.7× 104 9.1× 104 3.4× 10−5

ADI-C 7.8× 103 1.6× 104 2.2× 10−4

ADI-E 1.6× 104 3.2× 104 1.1× 10−4

Table 5.6: Rate upper limits on ADI waveforms calculated with Eq. 5.14. The visible
volume of each search is shown to illustrate relative search sensitivities and does not
include uncertainties (53% and 24% for all waveforms in S5 and S6, respectively). How-
ever, 1σ uncertainties on the visible volume are included in the resulting upper limits
using the Bayesian method described in Sec. 5.4.2.

5.5 Discussion

Given the absence of detection candidates in the search, I have calculated and presented

upper limits on the event rate for different GW signal families. Specifically, Figure 5.9

shows that, along with signal morphology, both the frequency and the duration of a signal

influence the search sensitivity. The hrss values for a search efficiency of 50% obtained

with S5 and S6 data are reported in Tabs. 5.7 and 5.8; for the ADI waveforms, the 50%

efficiency distance is also given. Although these limits cannot be precisely compared to
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Figure 5.9: Loudest event statistic upper limits for the 15 simulated GW signals used to
test the sensitivity of the search (calculated with Eq. 5.24). 1σ calibration uncertainties
are included by increasing the signal amplitudes by the corresponding multiplicative
factor. Top-left: ADI waveforms. Top-right: sinusoidal waveforms. Bottom-left: sine-
Gaussian waveforms. Bottom-right: white noise burst waveforms. Reprinted figure with
permission from Ref. [142], copyright 2016 by the American Physical Society.

the results of unmodeled short transient GW searches [107] because different waveforms

were used by the two searches, it is clear that in order for long transient GW signals to

be observed, it is necessary for the source to be more energetic: the total energy radiated

is spread over hundreds of seconds instead of a few hundred milliseconds.

http://dx.doi.org/10.1103/PhysRevD.93.042005
http://dx.doi.org/10.1103/PhysRevD.93.042005
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Waveform h50%
rss [Hz−1/2] distance50% [Mpc] EGW [M�c2]

ADI-A 1.8× 10−21 5.4 1.5× 10−7

ADI-B 1.9× 10−21 16.3 1.9× 10−7

ADI-C 3.6× 10−21 8.9 9.9× 10−7

ADI-E 2.3× 10−21 11.5 3.3× 10−7

MONO-A 1.3× 10−20 ... 3.1× 10−6

MONO-B 2.1× 10−20 ... 2.3× 10−4

LINE-A 3.9× 10−21 ... 4.9× 10−7

LINE-B 8.5× 10−21 ... 9.6× 10−5

QUAD-A 2.7× 10−21 ... 2.4× 10−7

QUAD-B 5.1× 10−21 ... 1.6× 10−5

SG-A 2.4× 10−20 ... 1.0× 10−5

SG-B 2.1× 10−20 ... 2.5× 10−4

WNB-A 7.2× 10−21 ... 5.5× 10−6

WNB-B 9.1× 10−21 ... 1.8× 10−5

WNB-C 2.1× 10−20 ... 5.0× 10−4

Table 5.7: Values of hrss and distance where the search achieves 50% efficiency for each
of the simulated GW signals studied in the S5 dataset. EGW is an estimate of the energy
released (given by Eq. 5.25) by a source located at the detection distance for the ADI
waveforms, or at 10 kpc for the ad hoc waveforms.

Energy estimates

We can estimate the amount of energy emitted by a source located at a distance r

where the search efficiency drops below 50% (h50%
rss ) using the quadrupolar radiation

approximation to estimate the energy radiated by a pair of rotating point masses:

EGW ≈ (h50%
rss )2r2π2f2

GW
c3

G
. (5.25)

Considering the mean frequency of each GW waveform, we obtain an estimate of

the energy that would have been released by a source that would be detected by this

search. For the ADI waveforms, the corresponding energy is between 9×10−8 M�c
2 and

6 × 10−7 M�c
2 (refer to Tabs. 5.7 and 5.8). For the ad hoc waveforms, we must fix a

fiducial distance at which we might expect to observe a signal. For instance, considering
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Waveform h50%
rss [Hz−1/2] distance50% [Mpc] EGW [M�c2]

ADI-A 1.4× 10−21 6.8 9.4× 10−8

ADI-B 1.7× 10−21 18.6 1.5× 10−7

ADI-C 2.9× 10−21 11.3 6.3× 10−7

ADI-E 2.0× 10−21 13.4 2.4× 10−7

MONO-A 1.2× 10−20 ... 2.4× 10−6

MONO-B 1.1× 10−20 ... 7.0× 10−5

LINE-A 3.1× 10−21 ... 3.1× 10−7

LINE-B 5.2× 10−21 ... 3.7× 10−5

QUAD-A 2.4× 10−21 ... 1.9× 10−7

QUAD-B 2.9× 10−21 ... 5.3× 10−6

SG-A 1.9× 10−20 ... 6.2× 10−6

SG-B 1.0× 10−20 ... 5.9× 10−5

WNB-A 5.5× 10−21 ... 3.2× 10−6

WNB-B 6.4× 10−21 ... 9.2× 10−6

WNB-C 1.3× 10−20 ... 1.7× 10−4

Table 5.8: Values of hrss and distance where the search achieves 50% efficiency for each
of the simulated GW signals studied in the S6 dataset. EGW is an estimate of the energy
released (given by Eq. 5.25) by a source located at the detection distance for the ADI
waveforms, or at 10 kpc for the ad hoc waveforms.

a Galactic source at 10 kpc, the emitted energy would be in the range 2×10−7–2×10−4

M�c2. This is still 2–4 orders of magnitude larger than the amount of energy estimated

in Ref. [254] (4× 10−9 M�c2) for protoneutron star convection over timescales of ≈30 s.

Future work

We note that the search for long-duration transient signals is also closely related to the

effort by LIGO and Virgo to observe a stochastic background of GWs. One or more

long-lived transient GW events, with a duration of days or longer, could produce an

apparent signal in either the isotropic [88, 89, 311] or directional [140] stochastic GW

searches. It was for this reason that this long-duration transient search pipeline was

originally developed [18]. A dedicated search for long-duration transient GW signals

which last for days or longer will be a necessary component in the effort to understand
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the origin of apparent stochastic background signals which may be observed by LIGO

and Virgo in the future [312].

After 2010, the LIGO and Virgo interferometers went through a series of upgrades [52,

53]. LIGO has just concluded its first observational campaign with its advanced config-

uration and will be joined by Virgo in 2017 [313]. The strain sensitivity of the advanced

detectors is expected to eventually reach a factor of 10 better than the first-generation

detectors. This development alone should increase the distance reach of our search by

a factor of 10, the energy sensitivity by a factor of 100, and the volume of space which

we can probe by a factor of 1000.

Improvements are also being made to this search pipeline; a technique for generating

triggers called “seedless clustering” has been shown to increase the sensitivity of the

search by 50% or more in terms of distance [314–319]. These improvements to the

search pipeline, coupled with the increased sensitivity of LIGO and Virgo, will drastically

improve the prospects for detecting long-duration transient GWs.

5.6 Conclusions

In this chapter, I have presented an all-sky search for long-lasting GW transients with

durations between a few seconds and a few hundred seconds. I performed the search

on data from the LIGO H1 and L1 detectors collected during the S5 and S6 science

runs, using a cross-correlation pipeline to analyze the data and identify potential GW

candidate triggers. To reject high-SNRΓ triggers due to detector noise, I developed a

discriminant cut based on the trigger morphology; along with this, LIGO data quality

flags were used to veto well-identified instrumental or environmental noise sources to

remove significant outliers. No GW candidates were identified in this search, and as a

result, I set upper limits on several types of simulated GW signals. These are the first

upper limits from an unmodeled all-sky search for long-transient GWs (see Tab. 5.6 and

Fig. 5.9).



Chapter 6

Seismic noise and

gravitational-wave detectors

Below ≈10Hz, seismic noise is currently the dominant noise source for terrestrial gravi-

tational-wave detectors (see Fig. 2.3). Seismic noise affects interferometric GW detectors

in two ways: first, ground motion due to seismic noise causes the interferometer support

structures and mirrors to move, effectively changing the length of the optical cavities

and inducing strain. Second, density fluctuations in the rock and in the atmosphere

due to seismic waves cause changes in the local gravitational field, which couple to the

mirrors and induce length changes in the arms of the interferometer; this is commonly

referred to as Newtonian noise or gravity-gradient noise.

For current gravitational-wave detectors, actual ground motion is the primary source

of seismic noise. Newtonian noise has never actually been observed in GW detectors, but

is predicted to be a limiting noise source for future GW detectors, which are expected

to have improved sensitivity at lower frequencies [320].

In this chapter, I will describe an experiment which aims to estimate the seismic and

Newtonian noise contributions at different depths underground using a three-dimensional

array of seismometers. I begin with an introduction to seismic waves in Sec. 6.1 and

a discussion of seismic noise in interferometric GW detectors in Sec. 6.2. In Sec. 6.3,

I describe the implementation of a three-dimensional seismic array in the Homestake

Mine in Lead, SD, along with associated details regarding station operation and data

192
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collection. In Sec. 6.4, I introduce a radiometer method for identifying directional sources

of seismic waves and separating them into their components. I apply this radiometer

method to simulations of seismic waves and to real data. Finally, in Sec. 6.5, I use

measurements of Rayleigh wave amplitudes to estimate parameters for a new model of

Rayleigh wave eigenfunctions. Sec. 6.6 summarizes the results of this chapter.

6.1 Seismic waves

Seismic waves are elastic waves which carry energy through the earth and are commonly

produced by an impulse, such as an earthquake or an explosion. These waves span a

range of frequencies, from the lowest free oscillations of the Earth at ≈3 × 10−4 Hz up

to a few Hz for seismic waves generated by earthquakes [321]. Anthropogenic activities

may create seismic waves at frequencies as high as 100Hz, although these frequencies are

quickly damped due to the length scale of anisotropies in the Earth’s crust. The overall

background of seismic noise generally peaks between 0.1–0.2Hz, which is commonly

referred to as the microseismic peak. This phenomenon arises due to the transfer of

energy between resonant standing waves on the ocean and the crust, which may be

driven by atmospheric pressure and wind [321].

Seismic waves may be generally divided into two classes: body waves and surface

waves. In this chapter, I will describe the main types of seismic waves and their proper-

ties.

6.1.1 Body waves

Body waves propagate through the interior of the earth and generally travel more quickly

than surface waves. There are two fundamental ways in which strain may be induced

in a body: volume change without a change of shape, and shape change without a

change in volume [321]. As a result, there are two classes of body waves: longitudinal

(compressional) waves and transverse (shear) waves. The longitudinal waves cause com-

pression and rarefaction along the direction of wave propagation, while the transverse

waves produce shear and rotation perpendicular to the direction of propagation.

Longitudinal waves are also referred to as P-waves (for primary) because they travel

more quickly than shear waves and are the first to arrive after an earthquake. In an
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isotropic medium, the P-wave speed may be described in terms of the Lamé parameters

λ and µ:

vp =

√
λ+ 2µ

ρ
. (6.1)

Here, the first Lamé parameter λ is related to the bulk modulus K of the material by

λ = K − 2

3
µ, (6.2)

and the second Lamé constant µ is the shear modulus of the medium, while ρ is its mass

density. P-wave velocities vary from 2–5 km/s in sedimentary rocks and may be as high

as 6 km/s in the upper crust [321]. Since P-waves are the first to arrive after a seismic

event, they are the most accurately measured type of seismic wave and are routinely

used to locate the epicenter of an earthquake.

Transverse waves are often called S-waves, which refers both to the fact that they

are the second type of seismic wave to arrive after an earthquake, and to the shearing

motion they produce perpendicular to the direction of wave propagation. The S-wave

velocity is given by

vs =

√
µ

ρ
. (6.3)

Since the bulk and shear moduli always take non-negative values, it follows that vp > vs;

this is the primary motivation for the naming convention of the two classes of seismic

body waves. On average, the S-wave velocity is approximately 60% of the P-wave ve-

locity, although this depends on the properties of the medium. S-waves may provide

significant insights into material rigidity and fluid content, since a perfect fluid has no

shear modulus [321].

In anisotropic media, P-waves may not be entirely longitudinal and S-waves may not

be entirely transverse. In this case, these waves may be referred to as “quasi-P” and

“quasi-S,” respectively.

6.1.2 Surface waves

Surface waves are seismic waves which travel relatively closely to the surface of the

Earth (compared to body waves). When a seismic event occurs within approximately a
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wavelength or so of the surface, a considerable fraction of the energy may be trapped

in a waveguide formed by the surface layers, resulting from the interference, reflection,

and refraction of waves interacting with the surface layer [321]. The existence of surface

waves can be derived from the equations of motion in a continuous medium:

ρ
∂2ui
∂t2

=
∂τij
∂xj

, (6.4)

where τij is the stress tensor, ui is the displacement in the ith direction, and xi is the

ith coordinate. We assume a simple relation between stress and strain in a material,

with one component due to volumetric strain and one due to shear strain:

τij = λεkkδij + 2µεij . (6.5)

Here, summation is implied over repeated indices; εij is the strain tensor, given by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.6)

This is also known as the strain-to-displacement relationship.

From these equations of motion, it can be shown that there are two possible types

of surface waves: Love waves, which comprise only a horizontally-polarized transverse

component, and Rayleigh waves, which contain a longitudinal component and a trans-

verse component in the vertical direction. The three displacement components for a

Love wave are given by

u1 = 0

u2 = l1(z, k, ω) cos(kx1 − ωt)

u3 = 0,

(6.7)

where the coordinate system is aligned such that x1 is the direction of wave propagation

and z = x3 is the vertical direction. Here, k is the wavenumber, ω is the angular fre-

quency, and l1 is the eigenfunction solution obtained by solving the equations of motion

with this functional form. For a homogeneous half-space, where the shear modulus is

constant, Love waves cannot be generated; rather, they require a surface layer of lower
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velocity. If the shear modulus is a function only of depth (i.e., µ = µ(z)), the result is a

first-order ordinary differential equation for l1:

− ρω2l1 = −µ(z)k2l1 +
∂

∂z

[
µ(z)

∂l1
∂z

]
. (6.8)

This equation can be numerically solved for a specific functional form of µ(z).

Rayleigh waves may be described by the following three displacement components:

u1 = r1(z, k, ω) cos(kx1 − ωt)

u2 = 0

u3 = r2(z, k, ω) sin(kx1 − ωt),

(6.9)

where r1 and r2 are the horizontal and vertical eigenfunctions, respectively.

Under the assumption that the material properties are only functions of depth (i.e,

λ = λ(z) and µ = µ(z)), the system of ODEs resulting from the use of this functional

form in the equations of motion can be solved. For the case of a homogeneous half-space,

the solutions are analytic:

r1 = C1e
−a1kz + C2e

−a2kz

r2 = C3e
−a3kz + C4e

−a4kz.
(6.10)

The C and a constants are parameters which depend on the material properties of the

crust in a given region.

One important feature of surface waves is their velocity dispersion: the surface wave

velocity is frequency-dependent. In general, lower frequency surface waves, which have

a longer wavelength and are more sensitive to deeper material, travel more quickly than

higher frequency waves.

Surface wave velocities are generally less than those of body waves, partially due

to the presence of lower density rock and sediments in the upper layers of the crust.

Rayleigh waves are the slowest of the surface waves, while Love waves may travel as

quickly as 0.9 vs [321].
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6.2 Seismic noise in GW interferometers

Seismic noise is a significant obstacle which is currently preventing terrestrial GW inter-

ferometers from achieving better sensitivity at low frequencies. The current generation of

GW interferometers is sensitive down to about 10Hz, and the next generation may reach

as low as 1Hz. As seismic noise due to ground motion is mitigated, Newtonian noise is

expected to provide a significant contribution to the low-frequency detector noise.

There is significant motivation for reducing seismic noise in GW interferometers in

order to achieve better low-frequency sensitivity. First, many models of a stochastic

gravitational-wave background predict considerable power at low frequency. This is

especially true for cosmological SGWBs, which should be produced in the very early

universe and would be significantly redshifted today. Along with this, some astrophysi-

cal SGWBs may have significant power around or even below 1Hz. The LIGO stochastic

search is also more sensitive at low frequencies, since the SNR described in Eq. 3.24 is

proportional to f−3. Increased sensitivity at lower frequencies may also lead to signifi-

cantly longer and more detailed observations of compact binary coalescences (currently

only the final chirp is in the LIGO band).

Several different strategies may be employed to mitigate seismic noise. In the LIGO

detectors, the test masses are suspended as pendula, which provides 1/f2 damping above

the resonant frequency. The interferometer support structures are mounted on isolation

stacks, which use active and passive vibration isolation in the form of alternating layers

of springs and metal slabs. More details on the initial LIGO configuration are available

in Sec. 2.1.1. The Advanced LIGO configuration features quadruple pendula for the

mirror suspensions, with each pendula providing 1/f2 damping, and an active isolation

system which uses seismometers and geophones to drive hydraulic actuators in order to

counteract ground motion [322].

However, the pendulum suspension is only practical for vibration isolation above

≈1Hz, since the resonant frequency of the pendulum is inherently tied to its length.

As an example, a pendulum with a resonant frequency of 0.1Hz would be almost 25m

long. Other methods of decreasing the resonant frequency of the pendulum, including

magnetic damping, may be explored for future GW detectors.

The strategies mentioned so far are most effective for dealing with ground motion due
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to seismic noise, rather than Newtonian noise. One option for dealing with Newtonian

noise is the construction of moats around each test mass. Hughes and Thorne [323]

studied this technique and suggested that to be effective, these moats should be ≈9–
15m deep and ≈20–35m in radius in order to suppress Rayleigh waves around 10Hz.

To suppress lower frequency seismic waves with longer wavelengths, the moats should

be wider and deeper. Hughes and Thorne also note that this strategy would be most

effective at suppressing shear waves, since they cannot travel through non-rigid media;

compressional waves could still be transmitted through the moats to some degree.

It may also be possible to mitigate Newtonian noise through an active noise can-

cellation technique called Wiener filtering [320, 324]. A Wiener filter uses correlations

between multiple sensors to estimate the data in another sensor at a different location;

the effectiveness of the filter depends on the data correlations, the frequency range of

interest, and optimization of the filter parameters [324]. For a GW interferometer, the

goal would be to use an array of seismometers to estimate the seismic field at each test

mass, convert to strain, and subtract that contribution from the strain data. Using data

from the DUGL array, Wiener filtering has achieved effectively an order of magnitude

of seismic noise suppression in the 0.05–1Hz band [324], with even better results ex-

pected from the new array at Homestake (see Sec. 6.3). We note that this suppression

is achieved with a seismometer as the target sensor; for use in an actual GW detector,

the transfer function and the couplings between the seismometers and the GW detector

would be different, so the given results are not directly transferable.

Because surface waves are the dominant type of seismic wave and are exponentially

attenuated with increasing depth, it is expected that an underground GW interferome-

ter would be subject to less overall seismic noise compared to a detector on the surface.

Going to depth should also suppress Newtonian noise from ground-atmosphere density

perturbations, which is expected to be significant [320]. With this goal in mind, the KA-

GRA collaboration is currently constructing a 3 km GW interferometer in the Kamioka

mine, which is expected to begin operation in 2018 [54]. However, a space-based de-

tector is the clearest strategy for completely eliminating seismic noise. This idea is

being pursued by the eLISA project, which has recently launched a pathfinder mission

to demonstrate their technology [58,59].

To test underground conditions for future generations of gravitational-wave detectors,
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we have planned and installed a three-dimensional array of seismometers in and around

the Homestake Mine in Lead, SD. This array will be described in the following section.

6.3 Three-dimensional seismic array at Homestake

The Homestake Mine in Lead, SD was one of the largest and deepest gold mines in

North America and has a rich history of scientific involvement. In the 1960s, scientific

experiments first came to the mine, including Ray Davis’ famous observation of solar

neutrinos, which led to the solar neutrino problem and the eventual discovery of neutrino

oscillations. The mine officially closed in 2002, but reopened in 2007 as the Sanford

Underground Research Facility (SURF) thanks to donations from T. Denny Sanford

and funding from the NSF. SURF currently features several dark matter and neutrino

experiments (primarily at the 4850-ft level), which benefit from the cosmic ray shielding

provided by thousands of feet of rock.

Since seismic surface waves are typically the largest source of seismic noise, going

underground may also provide significant benefit for gravitational-wave detectors, as

these waves are damped exponentially with depth. Being underground also reduces

the potential Newtonian noise due to atmospheric perturbations and interactions at the

ground-atmosphere interface. To investigate the effect of depth on seismic noise, an

array of seismometers was installed in the Homestake Mine and operated from 2008

to 2010 [325]; this experiment was called the Deep Underground Gravity Laboratory

(DUGL). Three stations were initially installed and three others were added soon after;

there were originally nine planned stations, but three were not used due to poor operating

conditions. In this section, I describe the second generation of this experiment, which

was developed in collaboration with geophysicists from Caltech and Indiana University,

and features a significantly expanded array in terms of aperture, depth, and number of

stations, as well as more robust and accurate data acquisition systems and improved

timing accuracy.

6.3.1 Array description

The current version of the seismic array at Homestake features 24 seismic stations in

total, with 15 underground stations and 9 surface stations. Six of the surface stations
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are on SURF property near the mine, while three others are on private land and are

further separated from the other stations in terms of horizontal distance. All of the

stations were installed between September 2014 and May 2015 and the array is expected

to collect data until December 2016, resulting in about 1.5 years of data for the entire

array. However, some surface stations may be removed in the fall of 2016 due to weather

concerns.

Station information

In Tab. 6.1, I have listed each station by its ID and provided the station type and a

short description of its location. Note that 4 stations were originally planned for the

4100 level, but only three were implemented due to difficulties installing power and

networking capabilities at one of the proposed sites. Due to the chronology of the

planning and installation process, the three stations on that level are named A4100,

C4100, and D4100; there is no B4100 station.

The coordinates of each station are given in Tab. 6.2; uncertainties for these coor-

dinates are on the order of ≈2m. The array layout is shown in Fig. 6.1. Underground

station locations were obtained from maps of the mine drifts based on work by mine

surveyors, while surface station coordinates come from GPS data.

6.3.2 Station configuration

Each seismic station includes a seismometer, a data acquisition system, and auxiliary

electronics related to power and timing. Nearly all of the equipment used in the ex-

periment has been rented from the Portable Array Seismic Studies of the Continental

Lithosphere (PASSCAL) instrument center, which is part of the Incorporated Research

Institutions for Seismology (IRIS).

Most stations use a Streckheisen STS-2 high-sensitivity broadband seismometer. The

following stations have potential moisture concerns and, as a result, use a more water-

resistant Guralp CMG-3T broadband seismometer: DEAD, ROSS, YATES, and 300.

Overall, the STS-2 seismometers are more robust and less “finicky” than the Guralps,

based on anecdotal evidence.

At each station, the seismometer is directly connected to a Quanterra Q330 datalog-

ger (shown in Fig. 6.2), which powers the seismometer and digitizes the analog data. The
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Figure 6.1: Homestake array layout, relative to YATES station (at origin). A zoomed-in
view with the underground stations labeled is shown on top (DEAD, SHL, and TPK
not pictured). All stations are shown in the lower plot, but only the surface stations are
labeled.



202

Station ID Station Type Station Description
DEAD Surface Private landowner’s yard in Deadwood
LHS Surface At Lead-Deadwood High School
ORO Surface Near Oro Hondo shaft
ROSS Surface Near Ross warehouse
RRDG Surface Rhyolite Ridge
SHL Surface Private landowner’s yard on Strawberry Hill
TPK Surface Private landowner’s yard near Terry Peak
WTP Surface Near Yates water treatment plant
YATES Surface Near Yates administration building
300 Underground 300 level, near side entrance
800 Underground 800 level, near Ross shaft
1700 Underground 1700 level, near Ellison shaft
A2000 Underground 2000 level, near ramp at Y intersection
B2000 Underground 2000 level, near Ross lunch room
C2000 Underground 2000 level, 7 ledge, A limb
D2000 Underground 2000 level, top of ramp
E2000 Underground 2000 level, north 9 ledge
A4100 Underground 4100 level, powder magazine west of Oro Hondo
C4100 Underground 4100 level, Bill Roggenthen’s room
D4100 Underground 4100 level, Yates station old locomotive barn
A4850 Underground 4850 level, 17 ledge
B4850 Underground 4850 level, roll-up door
C4850 Underground 4850 level, 4 Winze Wye
D4850 Underground 4850 level, Davis incline

Table 6.1: Station IDs and descriptions for the 24 seismic stations in the second-
generation Homestake 3D array.

Q330 is capable of remote telemetry using an ethernet connection or a radio antenna; in

this way, digitized data packets may be sent to a remote computer for further processing

and storage. Q330 datalogging parameters may be programmed using Willard,1 a GUI

interface provided by Quanterra. The Q330 can also save data to a local hard drive

through a serial connection; in the field, we use Quanterra PB14 Packet Balers, which

are rugged and water-resistant enclosures featuring a serial interface, a 20 GB hard drive,

and some limited networking capability. A photograph of a Baler is shown in Fig. 6.3.

In order to synchronize the data from the entire array to microsecond accuracy, each
1Willard is designed to run in Windows, but may be run in Linux using Wine.
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Figure 6.2: Photo of a Quanterra Q330 datalogger. The seismometer is connected
through one of the SENSOR ports on the left. A GPS antenna may be connected to
the GPS ANT port or an external GPS source may be connected to the EXT GPS
port. The Q330 is connected to a Baler via the SERIAL port and/or to a local network
through the QNET port. The Q330 is powered either via the POWER port or through
the QNET port. All connections (other than GPS ANT) are military-type; more details
can be found in the Q330 manual [326].

Figure 6.3: Photo of a Quanterra PB14 Packet Baler. The Baler is connected to a Q330
via the QNET + SERIAL port and receives its power through this connection. The
ATTN button is used to “wake” the Baler from its low-power state; when the Baler has
completed its boot cycle, the Q330 it is connected to will automatically begin transferring
data to it.
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Station ID Easting [m] Northing [m] Elevation [m] Install Date
DEAD -187 3386 -127.0 05/18/2015
LHS -1849 -572 59.0 05/19/2015
ORO -49 -967 -82.0 03/30/2015
ROSS -474 -796 3.0 11/19/2014
RRDG -1120 794 52.0 05/20/2015
SHL 3385 -3869 147.0 05/17/2015
TPK -3687 -1322 115.0 05/19/2015
WTP 730 200 -70.0 01/22/2015
YATES 0 0 0.0 11/19/2014
300 -421 -651 -119.9 01/13/2015
800 -582 -542 -275.0 01/15/2015
1700 -549 -64 -551.2 03/25/2015
A2000 -859 -135 -641.7 03/24/2015
B2000 -712 -344 -641.7 03/25/2015
C2000 -971 -81 -641.9 03/25/2015
D2000 -1389 101 -642.0 03/25/2015
E2000 -1609 442 -641.9 03/25/2015
A4100 -147 -813 -1282.5 01/21/2015
C4100 65 -110 -1282.7 01/21/2015
D4100 46 -955 -1282.6 01/21/2015
A4850 -857 -1313 -1509.8 04/02/2015
B4850 -516 -663 -1510.1 11/19/2014
C4850 -94 -657 -1510.4 11/19/2014
D4850 78 90 -1509.8 11/19/2014

Table 6.2: Locations of the seismic stations in the Homestake 3D array. We use the
UTM coordinate system in zone 13T; all locations are relative to the YATES surface
station. The YATES station has absolute coordinates of (Easting, Northing, Elevation)
= (599504, 4911750, 1625.0) m. Surface station locations are obtained from GPS data,
while underground coordinates are based on maps of the mine drifts. Uncertainties are
on the order of ≈2m.

station receives a GPS timing signal. The GPS timing and power configurations differ for

surface stations and underground stations and will be described further in the following

sections. In order to ensure uniformity across stations, the seismometers are carefully

oriented with respect to geodetic north. For the surface stations, this alignment was

accomplished with a compass (accounting for magnetic declination); underground, we

have used an survey-grade gyrocompass called an OCTANS [327].
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Surface stations

For the surface stations, we have placed the seismometers in holes which are approxi-

mately 4’ × 4’ wide and 3’ deep in order to reach bedrock. Each seismometer is situated

on a leveled concrete cylinder, which is about 6" tall and 1’ in diameter. The seismome-

ter is surrounded by a “vault” featuring an inner layer of foam board insulation and an

outer layer of timber in order to provide thermal and acoustic insulation; the edges of

the inner layer are sealed with insulating foam. A photograph of this arrangement at

the DEAD station (not including the inner insulating layer) can be seen in Fig. 6.4.

Figure 6.4: Seismometer vault enclosure at DEAD surface station. The timber enclosure
and the concrete cylinder are shown, but the layer of foam board insulation is not
pictured.

After installation of the seismometer, a sheet of plywood is screwed down to the top

of the timber vault and the hole is filled back in. Additional dirt is piled on top of the

vault in order to improve thermal and acoustic insulation. A sealed vault at the TPK

station can be seen in Fig. 6.5. The seismometer cable is inside of the blue conduit and

runs from the vault to the Q330 (not pictured). The conduit provides some level of

protection from the weather and from curious animals.
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Figure 6.5: Seismometer vault at TPK surface station, sealed with plywood. The seis-
mometer cable is inside of the blue conduit.

The Q330, Baler, and other electronics are contained in a mostly sealed enclosure

on the surface. For five of the surface stations, large doghouses were used as enclosures

since they provided some measure of ventilation, protection from the elements, and

water drainage capabilities (see Fig. 6.6). The other four surface stations used large

military-grade totes to hold the electronics.

All of the surface stations used GPS antennas connected to the GPS ANT port of the

Q330 to provide a timing signal. The GPS antennas were attached to the top of a ≈7’
tall wooden post in order to provide an unobstructed view of the sky. The GPS antenna

is visible in Fig. 6.6 as the small hemispherical object on the very top of the wooden

post (just above the green radio antenna). Overall, timing for the surface stations was

very consistent, generally within ± 5µs.

Each surface station was powered by two solar panels which were approximately 3’ ×
1’ and mounted to the wooden post. The panels were secured with guy lines and oriented

to maximize the surface area exposed to the sun over the course of a day. These panels

were connected to a power distribution box which connected to the Q330 and to a 55

A-h battery, which was used to store power for overnight operation and during cloudy

periods. Only a few of the surface stations (primarily WTP and DEAD) had difficulty
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Figure 6.6: Full RRDG station, including the sealed seismometer vault (under dirt pile),
electronics doghouse (beige igloo near center), solar panels (middle right, attached to
center of wooden post), GPS antenna (on top of wooden post), and radio antenna (green
cylinder just below GPS antenna).

due to lack of sun exposure.

The five surface stations located on the mine property (ORO, ROSS, RRDG, WTP,

YATES) included a radio antenna (mounted on the wooden post; shown as a horizontal

green cylinder in Fig. 6.6), which was connected to the QNET port of the Q330 and

transmitted data to a receiver antenna mounted on the SURF administration building.

This receiver was connected to a central computer in the administration building server

room which handled the incoming data packets and stored them in a database (see

Fig. 6.9). The LHS station also featured a radio antenna, which transmitted data to a

receiver inside Lead-Deadwood High School and then to a computer, which processed the

data from that station. The three remaining surface stations were on private property

and several kilometers from the mine, so telemetry was not possible. As a result, the

data were stored locally at each station using Balers and required manual retrieval.
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Underground stations

For the underground stations, the seismometers were situated on leveled granite tiles

which were securely attached to concrete slabs. We used existing concrete at stations

for which it was available and poured new concrete slabs at other stations. To pro-

vide thermal and acoustic isolation, each seismometer was surrounded by two “huts”

constructed of 1" thick foam insulation board (shown in Fig. 6.7).

Figure 6.7: Seismometer enclosure used for underground stations (C2000 station shown
here). The seismometer is on a leveled granite tile which is grouted to a concrete slab.
The two foam huts are sealed with insulating foam sealant. Each hut also includes a top
cover which is not in place in this picture.

The data acquisition system and other electronics at each station were usually set

on a table 5–10 feet from the seismometer in order to minimize electronic noise. They

were also covered with a plastic tub to reduce potential exposure to moisture and dust.

Fig. 6.8 shows an example of the underground electronics configuration at the B4850

station.

The underground stations all had access to AC power; however, the electronics were
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Figure 6.8: Data acquisition system and electronics for the underground sites (B4850
station shown here). The Q330 and Baler are shown on a wooden table along with a
power box (on top of Q330, to left of Baler) and a GPS transceiver (small black object
on top of Baler). The battery is in the purple tub on the ground.

directly connected to small (≈12 A-h) batteries. The batteries were kept in a high-

charge state using low-power “battery tenders” which were connected to AC power.

This configuration allowed for continued data collection for approximately a day in case

of dropouts in AC power due to mine construction work or any other unforeseen issues.

The batteries were typically placed in a plastic tub separate from the electronics in case

of corrosion.

A GPS timing signal was available at each underground station through a network

of optical cables, splitters, and transceivers which was connected to a GPS antenna

mounted on the roof of the SURF administration building. Each station featured a

GPS transceiver (visible in Fig. 6.8 as the small black box on top of the Baler; also

shown in Fig. 6.12) which connected directly to the EXT GPS port of the Q330. More

details about the GPS transceivers and the timing network in the mine are provided in

Sec. 6.3.4.
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All of the underground stations were directly connected to one of the mine’s networks

through an ethernet cable and transmitted data to the central computer. Each station

also featured a Baler for storing data locally in case of network connection issues.

For some of the underground stations (300, 800, A2000, B2000, A4100, and D4100),

we were able to use pre-existing sites from the original DUGL experiment.

6.3.3 Data acquisition

The central computer in the SURF administration building runs the Antelope real time

system for acquiring and storing seismic data [328]. The Q330s at each station send data

packets over the network which are collected by a q3302orb process. The data packets

from each station are then stored in a ring buffer which is managed by an orbserver

process. An orb2orb process may be used to send the data in the ring buffer to another

ring buffer operating on a separate machine. For this experiment, the orb2orb process

at SURF sends the data to another orbserver operating at UMN. The data are then

pulled from UMN to Caltech and IU using orb2orb processes at those locations. There

is also an instance of Antelope operating on a computer at Lead-Deadwood High School

in order to collect the LHS station data. Due to restrictions on the school district’s

network, these processes bypass the SURF computer and use orb2orb to send the data

directly to UMN’s orbserver. An orb2db process is used at both SURF and UMN to

write the data in the ring buffer to a local database. A chart describing the real-time

data flow of the experiment is shown in Fig. 6.9.

The orb2db processes are configured to write the data into “dayvolumes,” which

means that a single file is saved for each station and each channel every day. Along with

the seismic channels, there are many state-of-health channels for the seismometer, Q330,

and Antelope processes, which are described further in Tab. 6.3. Each dayvolume is saved

in miniSEED format and the following file naming convention is used for the dayvolumes:

{station_name}.{experiment_net_code}..{channel_name}.{year}.{day_of_year},

where the net code for this experiment is X62.

At UMN, we convert the miniSEED dayvolumes into gravitational-wave data frames

(.gwf files) following the specification in Ref. [329].
2The two periods in a row arise due to a null parameter value.
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Channel code Description
HHE East seismic channel (100 Hz)
HHN North seismic channel (100 Hz)
HHZ Vertical seismic channel (100 Hz)
LHE East seismic channel (1 Hz)
LHN North seismic channel (1 Hz)
LHZ Vertical seismic channel (1 Hz)
LCQ Q330 clock quality (percent)
LCE Q330 clock phase error (µs)
LCC GPS clock quality (percent)
LPL Q330 clock phase lock loop status
LCL Time since GPS lock was lost (seconds)
QBD Total number of Q330 reboots in last 24 hours
QBP Logical port buffer percent full from real-time status
QDG Data gaps (s)
QDL Current data latency (s)
QDR Current total input and output data rate (bits/s)
QEF Overall communications efficiency (percent)
QG1 Total number of data gaps in last hour
QGD Total number of data gaps in last 24 hours
QID Total number of Q330 IP address changes in last 24 hours
QLD Total number of comm link cycles in last 24 hours
QPD Total number of POCs received in last 24 hours
QRD Total number of bytes read in last 24 hours
QRT Current run time (s)
QTH Current throttle setting (bits/s)
QTP Ratio of seconds read to real-time clock
QWD Total number of bytes written in last 24 hours
VCO Voltage controlled oscillator value
VEA Antenna current (A)
VEC Main system current (A)
VEP Main system voltage (V)
VKI Main system temperature (◦C)
VM1 Mass position for channel 1
VM2 Mass position for channel 2
VM3 Mass position for channel 3
VPB Packet buffer
VTW Main system opto inputs

Table 6.3: Description of Q330 and Antelope seismic and state-of-health channels. Chan-
nel sampling rates are indicated by the first letter of the channel code, where H indicates
100Hz, L indicates 1Hz, V indicates 0.1Hz, and Q indicates 0.05Hz.
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Figure 6.9: Real-time data flow for Homestake seismic stations using telemetry. Steps
between stations and orbservers also include an instance of q3302orb in order to collect
data packets and put them in the ring buffer managed by the orbserver process. Due to
network restrictions, the orb2orb processes at SURF and LHS operate to push data to
UMN, while the orb2orb processes at Caltech and IU pull data from UMN. We also note
that data from the three remote surface stations (DEAD, SHL, and TPK) is periodically
extracted and manually added to the databases.

6.3.4 Underground GPS timing

In this section, I describe a GPS timing distribution system which allows the transporta-

tion of the GPS timing signal into the mine and to all of the seismic stations.

Timing distribution system

The timing system begins with a GPS antenna mounted on the roof of the SURF admin-

istration building and connected to a Q330 in the server room. This “master” Q330 is an

independent datalogger which is not connected to a seismometer; its primary purpose

is to convert the high-frequency GPS signal (received by the antenna) into its separate
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1PPS (1 pulse-per-second) and NMEA metadata components, which can be used as an

external timing signal by the other Q330s. The output from this Q330’s EXT GPS port

is fed into a GPS transceiver which converts the electric signal into an optical signal

(more details on the electronics are provided in the next subsection).

A network of optical splitters and GPS transceivers is used to send the GPS signal

down both the ROSS and YATES shafts and down the drifts on the 300, 800, 1700,

2000, 4100, and 4850 mine levels. At each station, a GPS transceiver is used to convert

the signal from optical to electrical. The electric signal is then sent into the Q330’s

EXT GPS port. A diagram of the timing distribution system in the mine is shown in

Fig. 6.10.

We note here that there is also a necessary conversion of the electrical GPS signal

between the TTL and RS-232 logic standards which occurs between the master Q330

and the first transceiver in the network, as well as between the transceiver and Q330

at each underground station. The master Q330 outputs the external GPS signal using

the RS-232 standard, which treats signals between −15V and −3V as a digital 1 and

signals between 3V and 15V as a digital 0. However, the GPS transceivers receive and

transmit TTL logic levels, which accepts 2–5V as digital 1 input and 0–0.8V as digital

0 input. Outputs are usually acceptable in the range of 2.7–5V for digital 1 and 0–0.5V

for digital 0.

As a result, we use powered converters at several places in the GPS timing chain.

We convert the GPS signal from the master Q330 from RS-232 to TTL before the first

GPS transceiver in the chain. The signal remains in TTL form throughout the rest of

the timing chain, but must be converted to RS-232 at each station before being sent to

the Q330’s EXT GPS port. An example of this process is shown in Fig. 6.11.

Electronics

The GPS transceivers and optical splitters were custom-made for this application by

Liteway, Inc. [330]. The splitters are passive (unpowered), so the two output signals

are halved in amplitude compared to the input. As a result, the signal cannot pass

through two consecutive splitters without dropping below required TTL logic levels;

thus, we include a GPS transceiver between consecutive splitters in order to boost the

signal. Several transceivers are part of the timing distribution system specifically for
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B2000C2000 A2000D2000E2000
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Splitter Q330

Key:

Figure 6.10: Flow chart of underground GPS timing distribution system for the Home-
stake 3D seismic array. The A4100 and C4100 stations originally received the timing
signal through the Ross shaft, but due to a broken fiber, the network was reconfigured so
that they receive timing from the 4850 level. RS-232 to TTL converters are not shown
in this diagram, but are present between the Q330 GPS master and its transceiver, and
between all transceivers and Q330s.
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Figure 6.11: Example of TTL to RS-232 conversion at the 4850 level. The small green
rectangles represent the converters.

this purpose, including the two transceivers which are in the chain immediately before

the signal travels down the Yates and Ross shafts (see Fig. 6.10).

The GPS transceivers (model number GPSX-1001) are designed to transmit, receive,

and repeat standard GPS NMEA and 1PPS signals using TTL logic. They take an elec-

trical or optical signal as input and may output either or both types of signals. The

functionality of the transceivers may be controlled by setting the dip switches appropri-

ately. Fig. 6.12 shows the front and back of a GPS transceiver.

The converters are from B & B Electronics and are capable of converting RS-232 to

TTL or vice versa [331]. Finally, we use custom-made cables between the Q330 and the

converter, and between the converter and the GPS transceiver.

6.3.5 Data quality monitoring

I have developed a web interface for low-latency monitoring of the incoming data from

the underground stations and surface stations with telemetry. This is done so that any

issues with the array can be identified and responded to quickly in order to prevent

significant data loss.

The miniSEED database of dayvolumes is continually updated by the Antelope orb2db

process as the orbserver ring buffer accumulates more data. I have developed a Python-

based package which loads in all available miniSEED data for the day in question and

produces a time-series plot of each channel. A cron job is set to run this code on an

hourly basis to produce plots of ten channels for each station: three seismic channels

(LHE, LHN, LHZ), the clock quality (LCQ) and timing error (LCE) channels, Q330
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Figure 6.12: Front and rear views of a GPS transceiver. The 1PPS and NMEA lights
blink when receiving the corresponding signal. The optical signal is input through the
Rx port and is output from the Tx port. The electrical 1 PPS and NMEA signals
are output (or input, depending on dip switch settings) through the BNC jack and the
terminal block, respectively.

voltage (VEP), temperature (VKI), and the three mass positions (VM1, VM2, and

VM3).

The plots are organized into folders by date and within the folders by station and

channel name. Several PHP scripts are used to operate the webpage. The home page

(index.php) obtains a list of dates for which plots are available (using the plot folder

names) and generates a month-by-month calendar of dates for which plots have been

made (see Fig. 6.13). Each date for which there are plots available is a link to a daily

page; dates for which plots are missing (either due to station malfunctions or network

issues) have a red background, the tint of which is determined by the number of missing

plots (more missing plots corresponds to a redder background).
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Figure 6.13: Main page of the Homestake data quality monitor. Calendars with links
are visible for months with available data. A table with guidelines indicating the normal
operating range for each channel is shown at the bottom.
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Each daily page is generated by another PHP script called day_overview.php. This

script takes in the day’s date as an argument from the URL, looks in the corresponding

folder, and generates links to all available plots for that date. The plots may be organized

by station (i.e., all channels for one station for that date) or by channel (a single channel

for all stations for that date). A screenshot of this configuration is shown in Fig. 6.14.

Figure 6.14: Screenshot of a daily page from the Homestake data quality monitor. The
station links are organized by depth and each link leads to a page which shows plots of
all channels for a particular station. The channel links are organized by channel type
and each link leads to a page which shows plots of a particular channel for all stations.

The links from the daily pages lead to another PHP script, show_plots.php, which

takes in arguments for the date, the type of page (station or channel), and the label

(station name or channel name, respectively). This code generates the webpage for

viewing the plots (either all channels for one station or one channel for all stations),

using the arguments passed through the URL.

The channel data are plotted in blue when within the normal operating range and

in red when the operating range thresholds are exceeded. This is done so that a user

who is checking the plots for any data quality issues can quickly identify channels which

may be out of range. Normal operating ranges are only defined for the state-of-health

channels and are shown in Tab. 6.4. These are generally based on information in the

Q330 and seismometer manuals, along with our strict requirements for timing accuracy.
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Channel Operating range
Clock quality 100%
Clock error -5µs < ∆t < 5µs
Voltage 11V < V < 18V

Temperature −20◦C < T < 50◦C
Mass position -4V < ∆Vm < 4V

Table 6.4: Normal operating ranges defined for the seismic stations in the Homestake
3D array. These state-of-health channels are plotted in red by the data quality monitor
when these ranges are exceeded (see Fig. 6.15).

Fig. 6.15 shows an example of the daily plots which were generated for the LHS

station on February 1, 2016. The timing error and timing quality channels briefly deviate

from their normal operating ranges (plotted in red), but in this case, the discrepancies

are not significant and are not a cause for concern.

This entire package, along with detailed instructions, is available in the UMN LIGO

SVN repository at https://support.physics.umn.edu/svn/ligo/Homestake_DQ.

6.3.6 Power spectra

For an overview of the data collected from the Homestake 3D seismic array, I have

calculated the amplitude spectral density (ASD) of seismic noise over long periods. This

has been done for different stations and different seismic channels (east, north, vertical)

and compared to expected limits on the seismic background noise from the Peterson

low- and high-noise models [332].

In Fig. 6.16, I have plotted the amplitude spectral density of ground displacement

using one year of data (from June 1, 2015–May 31, 2016), split into 400 second intervals.

All spectra shown use the vertical seismic channel. Note that the DEAD, SHL, and

TPK stations only used ≈3 months of data; no more data are currently available from

these stations since they do not have telemetry. The YATES station is also missing

several weeks of data during this time period due to power and communication issues.

The curves shown are the median amplitudes in each frequency bin; this is determined

based on the amplitudes resulting from the ASDs calculated from all 400 second intervals

which span the available data for each station. All available data are utilized, including

data which may contain noise transients.

https://support.physics.umn.edu/svn/ligo/Homestake_DQ
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Figure 6.15: Plots of all 10 channels used in the Homestake data quality monitor for
the LHS station for a single day. Most channels are plotted in all blue, indicating that
they are within the acceptable operating range, but the timing error and timing quality
have some brief spots of red where the normal ranges are exceeded. In this case, the
deviation is not extreme and is not of significant concern.

The top-left panel shows the ASD for several different stations to provide a direct

comparison of the noise level at different depths. All of the stations are in close agreement

in the middle range of frequencies, which corresponds to the microseismic peak. At

higher frequencies, there is significantly less noise with depth; above 0.5Hz, the C4100

and D4850 stations are nearly an order of magnitude quieter than other stations. At the

lowest frequencies, there is fairly good agreement between the stations, although a slight

trend of decreasing noise with depth is apparent; this may be due to larger temperature
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variations closer to the surface or may be a coincidence since this can also depend on the

quality of the concrete pad at each station. In some cases, the spectra fall relatively close

to the low-noise Peterson model, especially at low frequencies and between 0.4–0.9Hz.

For the surface stations (top-right panel) there is a wide range of variability; this is

due to differences in the local environment in terms of thermal insulation and proximity

to human activity. Differences in the microseismic peak (0.1–0.2Hz) are due to differ-

ences in the amount of data used in this analysis; the microseism experiences seasonal

variations and appears differently for stations which do not include the full year of data

(DEAD, SHL, TPK, and YATES).

The middle-left panel shows spectra for the 300, 800, and 1700 stations. The noise

levels are reduced with depth at higher and lower frequencies; the higher level of low-

frequency noise at the 800 station is likely due to its proximity to one of the mine shafts.

In the middle-right panel, I show spectra for the 2000-level stations. There is gen-

erally good agreement between the stations across all frequencies. B2000 experiences

increased noise, especially at high frequencies, likely due to its location near a lunch

room and a mine shaft.

Spectra for the 4100-level stations are shown in the bottom-left panel. The C4100

station appears to have the least noise at low frequencies, while the D4100 station

experiences the most high-frequency noise. These variations are not well-understood

based on station locations and expected proximity to human activity.

Finally, spectra for the 4850 level are shown in the bottom-right panel. Here, the

B4850 station experiences significantly increased high-frequency noise due to its location

near a large fan and ongoing construction. Above 1Hz, the other stations are in fairly

good agreement, although each station seems to have its own individual noise peaks in

the spectrum. This is likely due to the unique environment surrounding each station:

C4850 is in a storage room and very close to a rail line, and D4850 is very close to other

scientific experiments, ventilation equipment, and human activity. The A4850 station

seems to have more overall high-frequency noise than these two stations, which is not

well-understood since it is one of the most isolated stations in the entire array.

In Fig. 6.17, I show ASD histograms for the RRDG surface station (left column) and

the A4850 underground station (right column) as examples of a relatively good surface

station and our deepest and most isolated underground station. Here, I have taken all
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Figure 6.16: Median amplitude spectral densities for all Homestake stations; 1 year of
data is used except for DEAD, SHL, and TPK, for which only ≈3 months of data are
currently available, and YATES, which is missing data due to power and communication
issues. More details are provided in the text.
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of the ASDs calculated from the 400-second data intervals over 1 year and calculated

a histogram in each frequency bin to understand the overall variability of the noise

background. The white curve represents the median ASD (identical to those shown in

Fig. 6.16), the black curves represent the 95% confidence intervals in each frequency bin,

and the color scale shows the overall distribution. The Peterson low- and high-noise

models are shown in dashed gray.

The histograms display about two orders of magnitude of variation across all frequen-

cies for both the RRDG station and the A4850 station. The A4850 station measures

less noise in general and appears to have less overall variation than RRDG. There also

appears to be significantly more high-frequency noise in the RRDG station; this is likely

due to anthropogenically generated surface waves which are suppressed with depth.

Both stations stay within the low- and high-noise Peterson models most of the time;

in the 0.3–0.9Hz range, the A4850 station is actually below the low-noise model a sig-

nificant fraction of the time. There is also a considerable difference between the vertical

channel and the horizontal channels at low frequencies: at 0.01Hz and below for both

stations, the vertical channel is almost an order of magnitude lower than the horizontals.

6.4 Seismic radiometer

The stochastic radiometer technique, which is used to search for directional sources of a

stochastic gravitational-wave background and unmodeled sources of continuous gravita-

tional waves [138, 164], can be adapted to analyze seismic data. By applying this tech-

nique to seismic waves, we hope to identify significant components of the seismic field

and ascertain any potential directional dependence in the seismic environment around

Homestake.

In this section, I will discuss some of the models used in this technique, developed in

Ref. [333], demonstrate their application to simulated data and real data, and discuss

preliminary results and plans for further development.



224

Figure 6.17: Histograms of amplitude spectral density in each frequency bin for the
RRDG (left column) and A4850 (right column) stations. The plots are divided into
rows by channel: east (top), north (middle), and vertical (bottom). Median ASDs (solid
white), 95% confidence intervals for each frequency bin (solid black), and the Peterson
low- and high-noise models (dashed gray) are shown. See the text for more details.
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6.4.1 Formalism

Body waves

Beginning with body waves, the seismic field at location ~x and time t due to P-waves is

given by the following plane-wave expansion:

~p(~x, t) =

∫
dfdΩ̂P (f, Ω̂) Ω̂ e2πıf(t−Ω̂·~x/vp). (6.11)

Here, Ω̂ is the direction of wave propagation, f is the frequency, vp is the P-wave velocity,

and P (f, Ω̂) is the frequency- and direction-dependent P-wave amplitude.

The corresponding seismic field due to S-waves can be written as

~s(~x, t) =
∑
A

∫
dfdΩ̂SA(f, Ω̂) êA(Ω̂) e2πıf(t−Ω̂·~x/vs). (6.12)

Here, the indexA runs over the two independent S-wave polarizations (typically parametrized

as horizontal and vertical), êA(Ω̂) is the unit vector in the direction of polarization A,

vs is the S-wave velocity, and Sa(f, Ω̂) is the S-wave amplitude.

With this decomposition of the seismic field, two-point correlations between the P-

wave and S-wave amplitudes can be determined:〈
P ∗(f, Ω̂)P (f ′, Ω̂′)

〉
= δ(f − f ′)δ2(Ω̂, Ω̂′)HP (f, Ω̂) (6.13)〈

S∗A(f, Ω̂)SA′(f
′, Ω̂′)

〉
= δAA′δ(f − f ′)δ2(Ω̂, Ω̂′)HS,A(f, Ω̂) (6.14)〈

S∗A(f, Ω̂)P (f ′, Ω̂′)
〉

= 0. (6.15)

Here, the δs indicate Kronecker or Dirac delta functions, HP (f, Ω̂) indicates the power

spectral density in P-waves, and HS,A(f, Ω̂) indicates the power spectral density in S-

waves of polarization A. These correlations represent assumptions that waves at different

frequencies, from different directions, and with different polarizations are uncorrelated.

These assumptions may not hold in all cases since reflections can change the polarization

of a wave (a reflected P-wave can contain longitudinal and transverse components) and

due to the existence of quasi-P and quasi-S waves in anisotropic media.

The measured ground displacement in a single seismometer due to body waves can



226

be calculated as the sum of the P and S components. For seismometer i at a location

~xi, the measurement in channel α is

diα(~xi, t) = (~p(~xi, t) + ~s(~xi, t)) · α̂, (6.16)

where α̂ is the unit vector in the direction aligned with seismometer channel α. We

assume that the seismic noise floor is well above the instrument noise and do not consider

it here.

Cross-correlating data from channel α in seismometer i at location ~xi and channel β

from seismometer j at location ~xj gives

〈Yiαjβ〉 =

∫ T/2

−T/2
dt diα(~xi, t)djβ(~xj , t)

=

∫ T/2

−T/2
dt

∫
dfdΩ̂

(∑
A

HS,A(f, Ω̂)(êA(Ω̂) · α̂)(êA(Ω̂) · β̂)e2πıfΩ̂·∆~x/vs

+HP (f, Ω̂)(Ω̂ · α̂)(Ω̂ · β̂)e2πıfΩ̂·∆~x/vp

) (6.17)

Here, ∆~x = ~xi − ~xj . The time integral in this expression is trivial, and if the analysis is

performed in a small frequency bin ∆f , the frequency integral is also trivial. Using the

one-sided frequency spectrum also gives a factor of 2; the result of these operations is

〈Yiαjβ〉 = 2T∆f

∫
dΩ̂

(∑
A

HS,A(Ω̂)(êA(Ω̂) · α̂)(êA(Ω̂) · β̂)e2πıfΩ̂·∆~x/vs

+HP (Ω̂)(Ω̂ · α̂)(Ω̂ · β̂)e2πıfΩ̂·∆~x/vp

)
.

(6.18)

The amplitudes HS,A and HP are written here as functions of only Ω̂ since the analysis

is performed in a single frequency bin. These amplitudes can be parametrized in terms
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of a basis to study the directional distribution of the components of the seismic field:

HP (Ω̂) =
∑
n

PnQn(Ω̂) (6.19)

HS,A(Ω̂) =
∑
n

SA,nQn(Ω̂). (6.20)

Here, SA,n corresponds to the power in basis element n due to S-waves of polarization A

and Pn corresponds to the power in basis element n due to P-waves. For this analysis,

the pixel basis (QΩ̂0
(Ω̂) = δ(Ω̂− Ω̂0)) is used; however, another useful basis could be the

spherical harmonics basis, Qlm(Ω̂) = Ylm(Ω̂).

Using any basis, the following gamma functions may be defined, which capture the

direction dependence of the cross-correlation.

γP,n,iαjβ =

∫
dΩ̂Qn(Ω̂)(Ω̂ · α̂)(Ω̂ · β̂)e2πıfΩ̂·∆~x/vp (6.21)

γSA,n,iαjβ =

∫
dΩ̂Qn(Ω̂)(êA(Ω̂) · α̂)(êA(Ω̂) · β̂)e2πıfΩ̂·∆~x/vs (6.22)

With these gamma functions, the full cross-correlation can be written as

〈Yiαjβ〉 = 2T∆f (SH,aγSH ,a,iαjβ + SV,bγSV ,b,iαjβ + PcγP,c,iαjβ)

= Sdγd
(6.23)

Note that summation is implied for repeated indices. P-waves and S-waves may be

combined as written in Eq. 6.23 or divided into two separate analyses.

Using seismic data from the Homestake 3D array and the locations of the seismome-

ters, all of the quantities in Eq. 6.23 other than the coefficients SH,a, SV,b, and Pc can

be calculated. The goal of our analysis is to estimate these coefficients. In order to do

this, we define a likelihood function

L ∝ exp
[
(Y ∗i − γ∗idSd) Σ−1 (Yi − γidSd)

]
, (6.24)

where the index i runs over all pairs of seismometers and seismic channels and d runs

over seismic field components. The covariance matrix Σ becomes proportional to the

identity matrix under the assumption that all of the seismometers have a similar noise



228

floor which is stationary in time. In order to maximize this likelihood, the exponent

should be zero. Under this requirement, we obtain the following expression for the

coefficients:
~S = (γ†γ)−1γ†~Y . (6.25)

In practice, I have implemented a least-squares method to invert the matrix γ†γ and

determine ~S.

The velocities vp and vs are not known a priori ; we use vp = 5600m/s and vs =

3300m/s based on studies of the Homestake environment in Ref. [334].

Rayleigh waves

Extending this method to the case of Rayleigh waves, the resulting displacement field

may be described by

~r(~x, t) = e−z/α
(

cos(ωt− ~k · ~x)k̂ + ε sin(ωt− ~k · ~x)ẑ
)
, (6.26)

where z is the vertical coordinate, α is an unknown decay constant, ω is the angular

frequency, ~k is the wave vector, and ε is a unitless parameter which encapsulates the

relative amplitude of the vertical component to the horizontal component (typical values

are 0.5–1.5). The parameters α and ε must be determined in advance and are not

estimated by the seismic radiometer algorithm. Note that ~x describes the location where

the seismic field is being measured, rather than the x coordinate.

The formulation of Rayleigh waves described here differs from that shown in Eq. 6.10,

where a biexponential functional form is used for the amplitude eigenfunctions. The two

cases may be compatible in situations where the exponential coefficients in Eq. 6.10

are similar, but this cannot be assumed in general. I will first test the more simplistic

formulation described here, and in Sec. 6.5, I will implement and test the biexponential

functional form.

With this field, we calculate the following plane wave expansion for Rayleigh waves:

~r(~x, t) =

∫
dfdΩ̂ e−z/αR(f, Ω̂)e2πıf(t−Ω̂·~x/vr)

(
Ω̂ + εeıπ/2ẑ

)
. (6.27)

Here, vr is the Rayleigh wave velocity.
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The two-point correlation for Rayleigh waves is defined as〈
R∗(f, Ω̂)R(f ′, Ω̂′)

〉
= δ(f − f ′)δ2(Ω̂, Ω̂′)HR(f, Ω̂), (6.28)

where HR(Ω̂) is the direction-dependent power in Rayleigh waves. Analogous to the

body waves case, the cross-correlation estimator for Rayleigh waves is

〈Yiαjβ〉 = 2T∆f

∫
dΩ̂ e(zi+zj)/αHR(Ω̂) e2πıfΩ̂·∆~x/vr

×
[
(Ω̂ · α̂+ εeıπ/2ẑ · α)(Ω̂ · β̂ + εe−ıπ/2ẑ · β̂

]
.

(6.29)

Expanding this in some basis Qn(Ω̂)

HR(Ω̂) =
∑
n

RnQn(Ω̂) (6.30)

gives the following gamma functions:

γR,n,iαjβ =

∫
dΩ̂Qn(Ω̂)e2πıfΩ̂·~x/vr

[
(Ω̂ · α̂+ εeıπ/2ẑ · α̂)(Ω̂ · β̂ + εe−ıπ/2ẑ · β̂)

]
. (6.31)

Finally, the cross-correlation estimator can be written as a sum over the gamma functions

〈Yiαjβ〉 = 2T∆fe−(zi+zj)/αRnγR,n,iαjβ (6.32)

From here, we can apply the same likelihood treatment as for the body waves in order

to determine the basis element coefficients Rn. We use a Rayleigh wave velocity of vr =

2500m/s for this model [334].

6.4.2 Simulations

Based on the models described in the previous subsections, I have developed simulations

of P-waves, S-waves, and Rayleigh waves. In this subsection, I will simulate seismic

waves of different types, frequencies, and with different locations, and demonstrate their

recovery with the seismic radiometer algorithm. In all cases, I use a virtual array of 24

seismometers which correspond to the locations of the actual Homestake stations. The

cross-correlation is performed for all combinations of seismometers and channels.
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First, I have simulated a P-wave coming from (φ, θ) = (300◦,−30◦) with an amplitude

of 10−6 m, including Gaussian white noise with an amplitude of 10−4 m. The simulated

data have been analyzed using the pixel basis and the P-wave likelihood estimator.

Fig. 6.18 shows the directional distribution of Pn. The regions with the most recovered

power are indicated in red and match up well with the injected signal location; the dotted

black contour indicates the region which contains 95% of the total power (43 square

degrees). In general, the direction can be more tightly constrained for seismic waves

whose wavelength is less than the aperture of our array (see Fig. 6.1); based on expected

P-wave velocities, this corresponds to frequencies of a few Hz or more. However, I have

focused here on frequencies which may be expected to contain more overall seismic noise.

Summing up the power in all directions, I obtain an estimate for HP of 0.99× 10−12 m2,

which is in good agreement with the injected amplitude (squared).
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Figure 6.18: Recovery of a simulated P-wave using the seismic radiometer analysis. The
location of the injected seismic wave is denoted by a white star. The dotted black contour
indicates the directions which contain 95% of the total power.

Next, I repeat this procedure using a simulated S-wave with horizontal polarization
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and the S-wave likelihood estimator. The injected signal is coming from a direction of

(φ, θ) = (80◦, 20◦) with an amplitude of 10−6 m and I again add Gaussian white noise

with an amplitude of 10−4 m. The recovery across all directions is shown in Fig. 6.19

for both horizontal and vertical polarizations. I estimate that HS,H = 1.07 × 10−12 m2

and HS,V = 0.07 × 10−12 m2. This is in good accordance with expectations, although

the total power (HS,H +HS,V ) is slightly high. The dotted black contour indicates the

region which contains 95% of the total power; in this case, it corresponds to an area of

48 square degrees. Compared to the P-wave case, the recovered power is not quite as

accurate and the direction is less constrained; this likely occurs because S-waves have

twice as many degrees of freedom as P-waves.

Finally, I inject a Rayleigh wave with an amplitude of 10−6 m, a direction of (φ, θ) =

(210◦, 0◦), and parameters α = 1000m and ε = 1, adding Gaussian white noise with an

amplitude of 10−4 m. The known values of α and ε are used to perform the recovery

in this case; for an analysis of real data, it is necessary to make an estimate of realistic

values of these parameters. Fig. 6.20 shows the distribution of recovered power across

the sky; the white star denotes the direction of the injected signal and the dotted black

contour shows the directions which contain 95% of the total power, corresponding to 38

square degrees in this case. Summing over all sky positions, I obtain an estimate for HR

of 1.10× 10−12 m2, which is in fairly good agreement with the injected amplitude.

6.4.3 Analysis of real data

Next, I test the seismic radiometer algorithm using 1 hour of real data (beginning at GPS

time 1121335217) from the Homestake 3D array. The data chosen contain no explicit

seismic signal so that we can characterize the general background of seismic noise.

The noise data were analyzed with the P-wave, S-wave, and Rayleigh wave estimators

at 0.1, 0.2, 0.5, and 1Hz. For the Rayleigh wave analysis, I use ε = 1 based on analyses

from Ref. [335], which indicate that this a reasonable choice for this parameter, at least

near frequencies of 0.1Hz, and I test three values for α: 100, 1000, and 2000m. In

principle, the value of α should be frequency-dependent, but here I use the simplest

implementation of this model (same α for all frequencies) due to the fact that we only

have a general idea of what values α might take. Testing three different values of α

should provide some insight into whether a particular value is more appropriate for a
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Figure 6.19: Recovery of a simulated S-wave using the seismic radiometer analysis. The
top panel shows power in the horizontal polarization and the bottom panel shows power
in the vertical polarization. The injected signal is horizontally polarized and its direction
is denoted by a white star in the top panel. The dotted black contour in the top panel
indicates the directions which contain 95% of the total power.
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Figure 6.20: Recovery of a simulated Rayleigh wave using the seismic radiometer analy-
sis. The location of the injected signal is indicated by a white star and the dotted black
contour indicates the directions which contain 95% of the total power.

given frequency.

Fig. 6.21 shows the recovery for P-waves at 0.1Hz, 0.2Hz, 0.5Hz, and 1Hz. The

total power recovered across all directions is given in Tab. 6.5. Overall, most of the

power comes from 0.1Hz and 0.2Hz, likely due to the microseismic peak. There also

seems to be a preference for θ = 0 at all frequencies other than 0.5Hz.

In Fig. 6.22, I show the recovery for horizontally and vertically polarized S-waves at

0.1Hz and 0.2Hz; Fig. 6.23 shows the recovery at 0.5Hz and 1Hz. The total power in

each frequency and polarization is given in Tab. 6.5. At 0.1Hz and 0.2Hz, the horizontal

S-wave power is almost equal to the P-wave power, while the vertical S-wave power is

significantly less; at 0.5Hz and 1Hz, the power is considerably decreased and there is

more variability in the overall power in the two polarizations, implying that the noise

level at these frequencies is less significant. Overall, the horizontally polarized S-waves

have little θ dependence, which indicates that they may be picking up on surface waves.
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Figure 6.21: P-wave analysis of 1 hour of background noise with the seismic radiome-
ter algorithm. Recoveries are performed at 0.1Hz (top-left), 0.2Hz (top-right), 0.5Hz
(bottom-left), and 1Hz (bottom-right).

The vertical polarization seems to be more spread across different directions, which may

occur due to reflections off of the surface and other interfaces in the crust.

Fig. 6.24 shows the Rayleigh wave recovery at 0.1Hz and 0.2Hz with α = 100m,

1000m, and 2000m; Fig. 6.25 shows the same analyses at 0.5Hz and 1Hz. Again, the

most power is recovered at the lower frequencies (see Tab. 6.5 for more details) and the

analysis with α = 1000m seems to recover the most power across all frequencies, while

the analysis with α = 100m consistently recovers the least power. However, the overall

structure seems to be fairly consistent for different values of α at 0.1Hz and 0.2Hz; at

the higher frequencies, the case with α = 100m produces relatively different recoveries

compared to the other two cases. At the lower frequencies, especially 0.2Hz, there is

little θ dependence (as expected) since Rayleigh waves are surface waves and should not
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Figure 6.22: S-wave analysis of 1 hour of background noise with the seismic radiometer
algorithm. Recoveries are performed at 0.1Hz (top row) and 0.2Hz (bottom row) for
the horizontal (left column) and vertical (right column) polarizations.

be coming from depth.

6.5 Parameter estimation for Rayleigh wave eigenfunctions

One issue with the current Rayleigh wave model that I have implemented is that the

parameters ε and α are not known a priori. This model also features several simplifying

assumptions, including that the depth suppression is not frequency dependent and is

the same for the both the horizontal and vertical components, and that the vertical

and horizontal amplitudes are related by a constant coefficient which does not depend

on depth or frequency (see Eq. 6.26). In explicit terms, this model takes the Rayleigh

wave eigenfunctions (as described by Eq. 6.9) to be r1(z, k, ω) = r1(z) = e−z/α and
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Figure 6.23: S-wave analysis of 1 hour of background noise with the seismic radiometer
algorithm. Recoveries are performed at 0.5Hz (top row) and 1Hz (bottom row) for the
horizontal (left column) and vertical (right column) polarizations.

r2(z, k, ω) = r2(z) = εe−z/α, where α and ε depend on the material constants.

In this section, I aim to increase the complexity of our Rayleigh wave model by using

the biexponential form for the eigenfunctions given in Eq. 6.10. This functional form

mitigates some of the assumptions described previously and has proven to be a reasonable

approximation to the eigenfunctions even in somewhat heterogeneous media [336]. I will

use observations of Rayleigh waves in the Homestake 3D array to estimate the parameters

of these eigenfunctions at several frequencies.
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Figure 6.24: Rayleigh wave analysis of 1 hour of background noise with the seismic
radiometer algorithm. Recoveries are performed at 0.1Hz (left column)and 0.2Hz (right
column) using three different values of α: 100m (top row), 1000m (middle row), and
2000m (bottom row).
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Figure 6.25: Rayleigh wave analysis of 1 hour of background noise with the seismic
radiometer algorithm. Recoveries are performed at 0.5Hz (left column) and 1Hz (right
column) using three different values of α: 100m (top row), 1000m (middle row), and
2000m (bottom row).
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Recovered power (m2)
Recovery type 0.1 Hz 0.2 Hz 0.5 Hz 1 Hz
P-wave 4.8× 10−19 1.3× 10−17 3.8× 10−20 1.3× 10−22

S-wave horizontal 4.8× 10−19 1.6× 10−17 3.4× 10−21 1.5× 10−22

S-wave vertical 2.9× 10−20 3.4× 10−19 4.7× 10−20 1.0× 10−22

R-wave (α = 100 m) 7.8× 10−20 1.1× 10−18 1.5× 10−21 1.3× 10−23

R-wave (α = 1000 m) 4.0× 10−19 8.2× 10−18 3.8× 10−20 1.2× 10−22

R-wave (α = 2000 m) 3.4× 10−19 7.7× 10−18 3.7× 10−20 1.0× 10−22

Table 6.5: Total recovered power across all directions as a function of frequency for
P-waves, both S-wave polarizations, and three parametrizations of the Rayleigh wave
model. See the text for more details.

6.5.1 Rayleigh wave measurements

In simple terms, the Rayleigh wave eigenfunctions encapsulate how the Rayleigh wave

amplitudes change with depth and frequency, as well as how the horizontal amplitudes re-

late to the vertical amplitudes. I aim to understand this behavior by measuring Rayleigh

wave amplitudes generated by seismic events, using the data from the Homestake 3D

seismic array.

A time-series plot of a seismic event usually has at least two identifiable features:

the arrival of the first P-waves from the event, and the surface waves, which arrive

slightly later and are larger in amplitude. The S-wave feature may be visible between

the P-waves and surface waves, but is sometimes difficult to separate from the P-waves.

In Fig. 6.26, I show an example time-series from the 300 station for a 5.8 magnitude

earthquake which occurred off the coast of Oregon. The P-wave arrival is visible at

about 250 s as a large spike in the east and vertical channels. In the north channel, the

S-wave arrival is apparent just before 500 s, and is followed closely by the surface waves

at about 550 s. The velocity dispersion of the surface waves is clearly seen in the shape

of the time-series: the low-frequency surface waves arrive first and higher frequencies

arrive later, leading to an increasing frequency modulation of the surface wave portion

of the time-series.

The surface wave portion of the signal comprises both Love waves and Rayleigh

waves. These components can be separated by a rotation about the vertical axis from the
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Figure 6.26: Time-series plot of all seismic channels (from top to bottom: east, north,
vertical, as indicated by the channel names on the right) for the 300 station during
an earthquake. The y-axis is in units of m/s and indicates ground velocity. The P-
wave arrival is apparent as a large spike at approximately 250 s. The S-wave arrival is
primarily noticeable in the north channel just before 500 s. The surface waves begin
around 550 s and last for several minutes; the velocity dispersion is also readily apparent
in the time-series.

standard coordinate system defined by the seismometer channels (east, north, vertical)

into a coordinate system where one axis is aligned along the path of the seismic wave.

In this coordinate system, the Rayleigh wave has a compressional component in the

radial direction and a vertical shear component. The Love waves only have a horizontal

shear component, so these waves should be present only in the direction transverse to

the wave’s path. This requires that the location of the seismic event is known so that

we may calculate the geodesic path from the event’s epicenter to our array.

From here, I extract the horizontal and vertical Rayleigh wave amplitudes at different

frequencies and at different depths in order to determine the eigenfunctions. The full

procedure is given below for completeness.
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1. Load the data corresponding to a given seismic event and manually determine the

location of Rayleigh waves in the time-series.

2. Apply sin2 tapers to the beginning and end of the time-series to prevent artifacts

due to sharp edges when performing a Fourier transform.

3. Rotate from the east-north-vertical coordinate system to radial-transverse-vertical,

such that the radial axis is aligned with the direction of wave propagation.

4. Filter the time-series in the radial and vertical channels at a given frequency f0

by performing a Fourier transform, multiplying by a Gaussian function, and per-

forming an inverse Fourier transform. I used the following functional form for the

Gaussian: exp
[
−α(f − f0)2/f2

0

]
; I tested several values and chose α = 100 based

on the resulting filter’s capability to pick out well-defined wave packets within a

narrow frequency range.

5. Calculate an amplitude envelope for the radial and vertical time-series using a

Hilbert transform3 and find the maximum amplitude in each envelope.

6. Repeat this procedure for all stations in the array.

7. Calculate the average vertical amplitude for this event across all surface stations

and normalize both the horizontal and vertical channels by this value.

8. Repeat this procedure at several frequencies for the same seismic event.

9. Repeat this procedure for several seismic events.

Note that the eigenfunctions given in Eq. 6.10 are in terms of ground displace-

ment, while our data contain measurements of ground velocity. However, since I have

normalized the amplitudes relative to the surface verticals, this should cancel out any

additional coefficients which arise from the time derivative required to compute ground
3The Hilbert transform calculates the analytic representation of a signal by removing the negative

frequencies. This is done by using a transfer function which is 0 for f < 0, 1 at f = 0 and 2 for f > 0.
The result is a complex-valued signal whose magnitude is a smooth function which traces the extrema
of the original signal. Examples of this amplitude envelope can be seen in blue in the top panel of
Fig. 6.27.



242

velocity from ground displacement. As a result, it will still be possible to extract the

displacement eigenfunctions based on measurements of ground velocity amplitudes.

In Fig. 6.27, I show several time-series traces corresponding to a particular seismic

event and the resulting heatmap of wave velocity versus frequency. A raw time-series

trace is shown along with several filtered time-series and amplitude envelopes (solid

blue). The bottom panel shows a heatmap in terms of calculated wave velocity (based

on the geodesic distance to the event divided by the wave travel time) versus frequency.

The color scale indicates the amplitude (in terms of ground velocity) as shown in the

time-series traces. The velocity dispersion is clear in the heatmap, as evidenced by

the higher velocities (i.e., earlier arrival time) at lower frequencies compared to higher

frequencies.

For this analysis, I have used 14 seismic events between May 20–28, 2015, many of

which are generated by blasting in mines within the region. These events were identified

by Gary Pavlis using data from the Homestake 3D array, as well as several regional

seismic stations. Details of these events are shown in Tab. 6.6.

Event ID Date UTC Time Latitude Longitude
1 05/20/2015 21:41:32 43.8030 -105.4968
2 05/20/2015 23:03:02 44.3627 -106.0725
3 05/22/2015 16:40:53 43.8744 -105.4298
4 05/22/2015 20:23:44 43.9408 -105.4559
5 05/23/2015 21:23:46 43.8150 -105.5652
6 05/23/2015 23:33:32 43.5233 -104.5268
7 05/25/2015 18:27:49 44.1526 -105.2807
8 05/25/2015 19:13:30 44.2315 -105.3453
9 05/25/2015 20:00:26 43.9373 -105.3073
10 05/25/2015 20:13:27 43.8249 -105.4232
11 05/26/2015 20:03:36 43.6702 -105.4549
12 05/27/2015 20:35:50 43.9628 -105.5024
13 05/27/2015 22:56:36 43.8224 -105.5756
14 05/28/2015 00:28:00 43.9059 -105.4762

Table 6.6: Details of seismic events used to estimate parameters of Rayleigh wave eigen-
functions.

Not all of the stations have good data corresponding to each event; in total, I have

extracted approximately 300 amplitude measurements at each frequency from the 14
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Figure 6.27: Raw and filtered time-series traces and velocity heatmap corresponding to
a seismic event. The solid blue envelopes are produced by the Hilbert transform of the
time-series. The heatmap shows velocity versus frequency and the color scale indicates
the amplitude of ground velocity corresponding to the envelopes.
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events and 24 stations.

6.5.2 Parameter estimation

Method

Using the measurements extracted from seismic events, I performed parameter estima-

tion with MultiNest to fit the biexponential model described by Eq. 6.10. In this model,

the amplitudes are relative, so we have the freedom to normalize one of the coefficients;

thus, we set the parameter C1 to be 1. This leaves eight unknown parameters in total:

the coefficients C2, C3, and C4, the exponents a1, a2, a3, and a4, and the phase velocity

cp, which is needed to calculate the wavevector k in the exponential terms and is not

known a priori.

Uniform priors between 0 and 1 were used for all four a parameters. For the C pa-

rameters, uniform priors were used as well, but with different ranges for each parameter.

C2 was allowed to vary between -3–3; however, there is some degeneracy between C3

and C4. Specifically, C3 and C4 can be interchanged with no loss of generality as long as

a3 and a4 are interchanged as well. Preliminary studies indicated that in general, there

was a preference for the two parameters to have different signs such that their sum was

≈ 1; as a result, I have fixed the prior on C3 to be between 0–3 and the prior on C4 to

be between -3–0. Finally, the prior on cp was set to be uniform between 1000–4000m/s,

based on general knowledge of expected Rayleigh wave velocities.

I have used a likelihood function which is based on a χ2 comparison of the model

(for a given set of parameters) to the data.

L = exp

{
−
∑
i

[
(MH(C2, a1, a2, cp; zi)−Hi)

2 + (MV (C3, C4, a3, a4, cp; zi)− Vi)2
]}

(6.33)

Here, the index i runs over measurements; zi is the depth corresponding to measurement

i, and Hi and Vi are the normalized horizontal and vertical amplitudes from measure-

ment i. MH is the normalized horizontal amplitude at depth zi, generated from the

eigenfunction model with parameters C2, a1, a2, and cp (see Eq. 6.10, line 1). MV is the

normalized vertical amplitude at depth zi, generated from the eigenfunction model with

parameters C3, C4, a3, a4, and cp (see Eq. 6.10, line 2). Equal weighting was used for all



245

measurements. Note that an independent parameter estimation analysis was performed

for each frequency since the parameters are expected to be a function of frequency.

Results

I have performed this analysis at frequencies from 0.1Hz up to 1Hz in intervals of 0.1Hz.

For each frequency, I extracted the maximum likelihood point sampled by MultiNest

and used the resulting parameters to construct the eigenfunctions. The eigenfunction

parameters for all frequencies are summarized in Tab. 6.7.

Overall, the C2 parameter is close to zero at all frequencies, which makes the r1

eigenfunction act essentially as a single exponential; in general, this also allows large

variability in the a2 parameter to have little effect on the resulting amplitudes. This is

understandable given the measurements and the depth of our array; with a deeper array,

it might be possible to see the eigenfunction amplitudes cross zero and increase again,

which would necessitate the biexponential form.

Overall, the phase velocities mostly follow a decreasing trend with frequency up to

about 0.7Hz, as we would expect based on the velocity dispersion shown in Fig. 6.27.

At higher frequencies, the eigenfunctions do not provide a particularly good fit to the

measurements and the resulting phase velocities do not fit well with expectations. This

may be due to some degeneracy between the a parameters and the phase velocity: in the

future, it may be more effective to use four parameters which represent the product of the

a parameters with c−1
p , rather than treating the a parameters and cp as five independent

parameters.

To illustrate the results, I have plotted the mean amplitude measurement at each

depth along with its standard error, compared to the eigenfunctions generated using

the estimated parameters. Fig. 6.28 shows this comparison at frequencies between 0.1–

0.6Hz, while Fig. 6.29 shows the higher frequencies between 0.7–1.0Hz. The horizontal

data at 0.1Hz are quite messy and the resulting eigenfunction, although mostly within

the error bars, does not trace the behavior of the mean measurements very well. This is

likely due to the lack of significant seismic content below ≈0.2Hz (see Fig. 6.27, bottom
panel).

There is very good agreement between the measurements and the models at 0.2

and 0.3Hz. As the frequency increases, the horizontal models deviate more from the
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Frequency [Hz] C2 C3 C4 a1 a2 a3 a4 cp [m/s]
0.1 0.12 1.77 -0.78 0.99 0.21 0.12 0.32 1799
0.2 -0.07 2.36 -1.36 0.59 0.43 0.36 0.78 2599
0.3 -0.11 2.16 -1.14 0.63 0.94 0.30 0.79 2025
0.4 -0.05 2.46 -1.47 0.45 0.86 0.29 0.69 1795
0.5 0.07 2.31 -1.32 0.55 0.04 0.30 0.87 1781
0.6 0.001 2.92 -1.94 0.38 0.21 0.39 0.84 1997
0.7 0.04 2.09 -1.11 0.28 0.81 0.25 0.77 1620
0.8 -0.03 2.00 -1.00 0.37 0.76 0.28 0.86 2087
0.9 0.04 2.11 -1.12 0.11 0.63 0.16 0.46 1107
1.0 -0.05 1.95 -0.95 0.08 0.06 0.19 0.99 1208

Table 6.7: Parameters of Rayleigh wave eigenfunctions resulting from parameter esti-
mation with MultiNest.

measurements and generally predict lower amplitudes at depth than observed.At higher

frequencies, the horizontal measurements seem to plateau at the deepest levels; one

hypothesis for this behavior is that the Rayleigh wave amplitude drops below that of the

background noise at these frequencies. This may also occur due to the lack of seismic

content above ≈0.7Hz, as is evident in the example heatmap shown in Fig. 6.27.

Overall, the eigenfunctions provide a good fit to the data (based on a reduced χ2

calculation), other than the horizontals at 1Hz. A few of the vertical fits also have a

somewhat high reduced χ2, even though they trace the mean measurements quite well.

This may indicate that the errors have been underestimated.

Several features of the resulting eigenfunctions match well with expectations. First,

the depth suppression occurs on longer length scales for lower frequencies; i.e., lower

frequencies are suppressed less at depth compared to higher frequencies. Second, the

overall shape of the eigenfunctions agrees with that of Ref. [336]: the horizontals begin

dropping off immediately with depth, while the verticals actually increase slightly at

first and then begin to decrease. Finally, the ratio of horizontal to vertical amplitudes

at the surface is between 0.9–1.1 for all frequencies other than 0.1Hz [335].
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Figure 6.28: Rayleigh wave amplitude measurements (solid circles) and eigenfunction
models (dashed lines) for 0.1–0.6Hz. Measurements shown are mean measurements at
each depth and the error bars show the standard error on the mean. In some cases, error
bars are too small to be seen.
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Figure 6.29: Rayleigh wave amplitude measurements (solid circles) and eigenfunction
models (dashed lines) for 0.7–1.0Hz. Measurements shown are mean measurements at
each depth and the error bars show the standard error on the mean. In some cases, error
bars are too small to be seen.

6.5.3 Application to seismic radiometer

Using these eigenfunctions, the Rayleigh wave displacement field looks like

~r(~x, t) =
(
e−a1kz + C2e

−a2kz
)

cos(ωt−~k · ~x)k̂+
(
C3e

−a3kz + C4e
−a4kz

)
sin(ωt−~k · ~x)ẑ,

(6.34)

where the wavevector k is given by 2πf/cp. Following the previous calculation for

Rayleigh waves in Sec. 6.4, we obtain the following gamma functions:

γR,n,iαjβ =

∫
dΩ̂Qn(Ω̂)e2πıfΩ̂·~x/cp

[
(r1Ω̂ · α̂+ r2e

ıπ/2ẑ · α̂)(r1Ω̂ · β̂ + r2e
−ıπ/2ẑ · β̂)

]
,

(6.35)
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where we have abbreviated the eigenfunctions as r1 and r2; see Eq. 6.10. Finally, the

cross-correlation estimator is given as a sum over the new gamma functions:

〈Yiαjβ〉 = 2T∆fRnγR,n,iαjβ. (6.36)

I have implemented the model between 0.1–1Hz in the seismic radiometer analysis;

in Fig. 6.30, I show the Rayleigh wave recoveries of 1 hour of background noise at 0.1Hz,

0.2Hz, 0.5Hz, and 1Hz. Summing up the total power in all directions, I obtained (in

order of increasing frequency): 1.6 × 10−19 m2, 6.1 × 10−18 m2, 3.7 × 10−22 m2, and

1.2× 10−29 m2. These numbers are comparable to the initial Rayleigh wave analysis at

0.1Hz and 0.2Hz (see Tab. 6.5); however, they are significantly decreased at the higher

frequencies. Again, the recovery at 0.2Hz contains the most overall power, likely due to

the microseismic peak.

The overall distribution of power is in fairly good agreement with the old model, other

than at 1Hz. At 0.1Hz and 0.2Hz, we see little θ dependence, as expected; however,

this is not the case at the higher frequencies and is likely due to the lack of power at

those frequencies.

Overall, it is not obvious that the radiometer recoveries have been improved by the

implementation of the new Rayleigh wave model; however, it is a more robust and tech-

nically correct model. The previous model cannot account for the frequency dependence

of the eigenfunctions or the initial increase in the vertical eigenfunctions, both of which

are clearly displayed by our measurements of Rayleigh wave amplitudes. Further work

should be done to compare these results to other analyses which map the directional dis-

tribution of power and/or track the microseismic peak in order to obtain better criteria

for performing this comparison.

6.5.4 Discussion

I have shown that we can measure Rayleigh wave amplitudes and obtain relatively

good fits using a biexponential functional form for the eigenfunctions. Future work

may improve on the results shown here in several ways. First, a more sophisticated

algorithm for extracting Rayleigh wave amplitudes could improve the quality of the

resulting measurements. This could take the form of some sort of “clustering” across
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Figure 6.30: Analysis of 1 hour of background noise with the biexponential Rayleigh
wave model in the seismic radiometer algorithm. The analysis is performed at 0.1Hz
(top-left), 0.2Hz (top-right), 0.5Hz (bottom-left) and 1Hz (bottom-right).

different frequencies and/or stations in order to ensure that the same peak is used for

each measurement. Along with this, a more complete event catalog would allow for

a significant increase in the number of data points and likely result in more robust

measurements, as well as decreasing the effect of any spurious measurements which

might be present.

For this study, I have used nearby mine blasts as the source of Rayleigh waves;

however, it would also be useful to pursue a similar study using earthquakes. These

data are easily accessible through IRIS and will likely provide very clean and consistent

data across stations. However, these distant events often carry little information above

≈0.2Hz, since these frequencies are damped due to the heterogeneity of the material in

the surface layers. As a result, an earthquake analysis may prove challenging, since our
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array is better designed to probe the eigenfunctions of higher-frequency seismic waves,

whose structure changes appreciably over length scales comparable to our array depth.

6.6 Summary

In this chapter, I have focused on an effort to study seismic noise using a 3D array

of seismometers in the Homestake Mine with the goal of improving the sensitivity of

future interferometric GW detectors. I discussed the effect of seismic and Newtonian

noise on these detectors, as well as some methods for mitigating these noise sources. I

gave an overview of the recently installed 3D seismic array in the Homestake Mine and

described a web interface which I developed to monitor the status and quality of data

from the seismic stations in the array. To study the seismic data and decompose it into

different components, I introduced a seismic radiometer method which may be used to

identify directional sources of seismic waves or the seismic noise background. I used

this algorithm to analyze simulations of body and surface waves and a period of real

data from the array. Finally, I extracted measurements of Rayleigh wave amplitudes

from data collected at Homestake and performed parameter estimation to implement a

more complex model of Rayleigh waves, which was then added to the seismic radiometer

algorithm.

Future studies are expected to continue this work and eventually estimate strain

spectra due to seismic and Newtonian noise, following the theory outlined in Ref. [320].
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Conclusions

Within the last few months, LIGO has announced the first two direct detections of

gravitational waves [10, 337]. Advanced LIGO is expected to continually improve in

sensitivity during its upcoming observational runs, and additional detectors, including

Advanced Virgo and KAGRA, should come online in the next few years. The field of

gravitational-wave astronomy is just beginning and should yield an abundance of new

insights into the universe.

The central goal of this dissertation is the detection and characterization of long-

lasting GW signals, in terms of both a persistent background of gravitational waves and

long-lasting transient GW signals. These signals are expected to be integral components

of gravitational-wave astronomy for the important information they may yield about the

beginnings of the universe and the various objects contained within it.

Chap. 3 focused on efforts to detect and model a stochastic gravitational-wave back-

ground. I gave an overview of possible sources of such a background and described the

LIGO search strategy geared towards its detection. Using a Bayesian parameter estima-

tion method, I projected the sensitivity of Advanced LIGO and the Einstein Telescope to

an SGWB produced by core-collapse supernovae. I compared the results of this study to

GW waveforms produced by core-collapse simulations and found the resulting limits to

be 1–2 orders of magnitude higher than the expected strain from the simulations. Using

a model of cosmic chemical evolution model [146], I also fit a model of the star formation

rate at high redshift, since it is an important component of astrophysical SGWB models.

In Chap. 4, I described the STAMP search pipeline, a new search algorithm designed
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to detect GW signals lasting between tens and hundreds of seconds. This unmodeled

search pipeline uses an excess power method and image processing techniques to identify

significant groupings of energy and localize them in time and frequency. I have devel-

oped a new data quality method which significantly improves the sensitivity of STAMP

searches by identifying and removing instrumental artifacts from the data. I have also

developed two new clustering algorithms which parse the data and are able to identify

groupings of pixels of arbitrary shape which may correspond to GW signals. Finally, I

have implemented features in STAMP which make it capable of detecting long-lasting

transient GWs coming from any sky direction at any time.

In Chap. 5, I described the application of this STAMP all-sky search to LIGO S5

and S6 data, targeting signals with durations between 10–500 s. In total, I analyzed

over 400 days of data in the 40-1000Hz frequency band, with minimal assumptions

about the signal waveform, polarization, source direction, or time of occurrence. To

project the sensitivity of this search to real signals, 15 different simulated GW waveforms

were analyzed, including signals produced by a black hole accretion disk instability, and

several ad hoc waveforms. Using the results of the analysis, I set the first upper limits

from an all-sky search for unmodeled long-duration transient gravitational waves. An

analysis of the first Advanced LIGO data with this pipeline is currently underway, but

is outside the scope of this dissertation.

Finally, in Chap. 6, I considered the effect of seismic noise and Newtonian noise on

terrestrial interferometric GW detectors. Because these noise sources primarily affect

the lower end of LIGO’s frequency band, mitigating them will be particularly important

for detecting an SGWB, as well as increasing the length of time a binary coalescence

signal is in the sensitive band of the detectors. I described the planning and installation

of a three-dimensional array of seismometers in and around the Homestake Mine in

Lead, SD, with the goal of characterizing the seismic noise background in order to test

underground conditions for future generations of GW detectors. For this array, we have

implemented a novel timing network for transporting a GPS signal underground, as well

as a low-latency data quality interface for monitoring the overall state of most of the

seismic stations in the network. I also implemented and tested a seismic radiometer

algorithm for decomposing the seismic field into different components and studying its

directional distribution. Finally, I extracted measurements of Rayleigh wave amplitudes
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from the Homestake data and used these measurements to perform parameter estimation

in order to fit a model of Rayleigh wave eigenfunctions. Future studies will expand on

this work in order to estimate strain spectra from seismic and Newtonian noise, which

can be used for planning the next generation of gravitational-wave detectors.
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