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Abstract 

Cognitive deficits are some of the most debilitating and difficult to treat symptoms of 

schizophrenia. Goal maintenance is a facet of cognitive control that has been shown to be 

impaired in schizophrenia patients as well as their unaffected first-degree relatives. 

Previous fMRI activation studies found less activation in dorsolateral prefrontal cortex 

(dlPFC) in schizophrenia patients compared with healthy controls during the completion 

of a goal maintenance task. This dissertation consisted of a series of studies employing a 

large, multisite retest dataset of schizophrenia patients and healthy control subjects. 

These studies sought to replicate previous activation findings using a newer goal 

maintenance task, to use group independent component analysis (ICA) to determine if 

schizophrenia patients also exhibited dysfunctional functional connectivity or functional 

network connectivity (FNC) compared with healthy controls during the performance of 

that task, and to evaluate the test-retest reliability of each of these metrics, directly 

compare them, and assess the influence of subject group and data collection site on 

reliability estimates. It replicated previous activation study findings of reduced dlPFC 

activity during goal maintenance. It additionally found that the temporal association 

between a frontoparietal executive control network and a salience network was stronger 

in healthy controls than in schizophrenia patients and that the strength of this relationship 

predicted performance on the goal maintenance task. It also found that the task-

modulation of the relationship between left- and right-lateralized executive control 

networks was stronger in healthy controls than in schizophrenia patients and that the 
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strength of this task-modulation predicted goal maintenance task performance in healthy 

controls. Finally, reliability estimates found that ICA and tonic FNC had acceptable 

overall reliability and that they minimized site-related variance in reliability compared 

with dynamic FNC and general linear model. These results indicate that ICA and tonic 

FNC may provide better tools for group contrast fMRI studies examining schizophrenia, 

especially those that incorporate a multisite design. 
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Chapter 1: Background on Functional Connectivity, Reliability, and Goal 

Maintenance 

 

This chapter is intended to review background information about functional 

connectivity measures of functional magnetic resonance (fMRI) data, reliability theory, 

reliability considerations of fMRI methods, and how these concepts apply to studies of 

schizophrenia patients (SZ). It will review the disconnectivity hypothesis of 

schizophrenia and how functional connectivity methods have been brought to bear on that 

question. It will explain the theoretical underpinnings of independent component analysis 

(ICA) and review how it can be applied to questions about the neural underpinnings of 

cognitive deficits in SZ. It will lay the groundwork for the three subsequent chapters that 

describe the three fMRI studies that compose the body of this dissertation.  

 

Functional Connectivity 

Schizophrenia as a disconnectivity syndrome. There have been various theories 

about the nature of schizophrenia and its causes, especially with regard to specific levels 

of analysis (e.g., neurotransmitters, genes, social/developmental precursors, pre- or 

perinatal insults; Ritsner & Gottesman, 2011). One theory regarding the neural 

underpinnings of the symptomatology in schizophrenia is that schizophrenia is a 

syndrome of impaired or otherwise abnormal connectivity between brain regions (Friston 

& Frith, 1995). As opposed to other theories that specify discrete brain regions that show 

pathology, theories about disconnectivity hold that there are widespread impairments in 
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the coordination of neural networks. That is not to say that localized pathology does not 

exist; however, pathophysiology in discrete brain regions may not be able to offer a broad 

account of the various impairments and symptoms seen in patients with schizophrenia 

(Andreasen et al., 1999).  Other evidence from neuroanatomical studies show micro-

pathology of neural architecture in the brains of people with schizophrenia 

(Karbasforoushan & Woodward, 2012), which also involve altered neurotransmission 

(Lewis, Pierri, Volk, Melchitzky, & Woo, 1999). There are different methods of 

addressing and defining connectivity, such as diffusion tensor imaging for identifying 

white matter tracts. The current paper will focus on functional connectivity as measured 

by functional magnetic resonance imaging (fMRI).   

 

Functional connectivity as means of assessing disconnectivity. Functional 

connectivity refers to the relationship, or dependence, of the time courses of neuronal 

activity between different areas of the brain (Friston, Frith, Liddle, & Frackowiak, 1993). 

As opposed to neuronal activation studies, which aim to find discrete areas of cortex that 

respond to certain stimuli, functional connectivity studies intend to elucidate the ways in 

which disparate brain regions activate together. Functional connectivity should be 

distinguished from effective connectivity, which aims to determine if, and to what 

degree, one brain area influences or controls another (Friston, 2011). Functional 

connectivity only measures the temporal association between brain areas without 

discerning causality between the areas. Biswal, Yetkin, Haughton, and Hyde (1995) were 

the first to apply functional connectivity measures to resting state fMRI data, showing 

that activity in the sensorimotor region of one hemisphere during rest correlated with 
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activity in the opposite hemisphere. Since then, large numbers of studies have measured 

functional connectivity both during task and during rest. Usually, studies are most 

interested in low-frequency oscillations in the neural activity patterns, as higher-

frequency fluctuations are often associated with physiological signals of non-interest, 

such as cardiac activity and respiration (van den Heuvel & Hulshoff Pol, 2010). 

Researchers have identified a series of networks, starting with the “default mode 

network,” which routinely appear in studies of functional connectivity. The default mode 

network is so named because it consistently shows up in resting-state studies and 

typically shows negative correlations with task timelines. It is typically comprised of 

medial prefrontal cortex (PFC), posterior cingulate, precuneus, posterior parietal, and 

parts of the temporal lobe (Raichle et al., 2001).  Other networks such as the frontal-

parietal “executive” networks confirmed that functional connectivity measures could be 

used to discern task-relevant networks in addition to resting state networks. 

 The attribute of functional connectivity measures that make them attractive for 

studying schizophrenia is that they may be able to measure the disconnectivity underlying 

the symptomatology if the disconnectivity hypothesis is correct. Because functional 

connectivity aims to measure the association between brain regions, it can determine if 

schizophrenia patients’ brain networks act differently or are functionally organized 

differently from healthy controls. 

 

Types of functional connectivity measures in fMRI. There are a few methods 

of measuring functional connectivity in fMRI data, but the methods can be broken down 

for the most part into model-based methods and model-free methods (Li, Guo, Nie, Li, & 
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Liu, 2009). The model-based methods make some assumptions about the nature of the 

functional connectivity patterns, usually by defining the areas that can be included in the 

analysis beforehand. Model-free methods do not make that kind of assumption, although 

they do make other assumptions.  

 The first type of functional connectivity analysis method I will discuss is seed-

based correlation. This is the method Biswal et al. used in their initial fMRI functional 

connectivity study. Typically, this type of model-based functional connectivity analysis 

first defines a region of interest based on some a priori hypothesis or information 

(Margulies et al., 2010). The time series of that region is then extracted, and the 

researchers then quantify a measure of association between that extracted time series and 

the time series of all the other voxels or all the other regions of interest in the brain. 

Oftentimes this quantification of association is simply the Pearson product-moment 

correlation. What results is a map of the functional connectivity between the seed region 

of interest and the rest of the brain (van den Heuvel & Hulshoff Pol, 2010). There are 

variations in the methods researchers use to extract the time series of the region of 

interest as well as in the methods for defining association, but the overall methods of 

defining a seed and identifying the connectivity with that seed are constant within this 

method. One drawback of this method is that bias is introduced into the analysis by the 

choice of seed region.  

 The second type of analysis is independent component analysis (ICA). This 

model-free method identifies the underlying groups of voxels that activate coherently in 

fMRI data. A more complete explanation of ICA will follow in Section 2 of the current 

paper. The benefits of ICA over seed-based methods are mainly that it requires no seed 
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region or model time course of interest (as opposed to seed-based correlation and 

activation contrast methods such as a general linear model). ICA identifies components 

across the brain that cohere temporally without introducing bias from the selected seed 

region or regions.  

 The third type of functional connectivity analysis is graph theoretical analysis. 

Graph theoretical methods are not actually separate from seed-based methods or ICA, 

because they can be applied to the results of both of those methods. In essence, graph 

theory seeks to identify a graph made up of nodes and edges (van den Heuvel & Hulshoff 

Pol, 2010). The nodes represent different regions of interest in the brain, and the edges 

represent the functional connectivity between them. After this graph is identified, metrics 

can be calculated on the graph, such as how efficiently information travels around the 

graph and topological features of the graph. The graph can provide information about the 

structure of information processing in people’s brains. The nodes in these analyses can be 

determined a priori by an anatomical atlas, the results of previous studies, or a set of 

independent components.  

 Graph theoretical analyses typically find local and global descriptions of the 

graph, local having to do with the nodes of the graph and global having to do with the 

graph as a whole. Some of the terminology used in graph theory is distance, the minimum 

nmber of edges connecting two nodes; path, a series of connected nodes; and degree, the 

number of edges connecting to a node (Li et al., 2009). Some measures that are built on 

those terms are clustering coefficient, which is a local measure of whether nodes that are 

connected to a node are also connected to themselves; local and global efficiency 
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describe the ease of information travel throughout a network; and average path length, 

which is a global measure of how distributed the network is (Bullmore & Sporns, 2009).  

 As mentioned, the current paper’s central focus is on ICA, the reliability of the 

method, and its application to schizophrenia research. The choice of this topic was made 

because of ICA’s attractive features as an analysis tool and because there has been little 

synthesis of the ICA literature to date in schizophrenia research using fMRI. What 

follows is a detailed description of the method, followed by reviews of reliability studies 

using the method and schizophrenia studies using the method.    

 

Independent Component Analysis 

An explanation of independent component analysis. ICA is a member of a 

group of methods called blind source separation methods.  This term refers to methods 

which aim to elucidate the underlying signals in a mixture of data (Hyvärinen & Oja, 

1997).  These methods are ‘blind’ because they find those sources without the use of a 

priori information about the signals or how they are mixed. As will be shown, ICA can be 

applied to many different problems. 

 One example of a situation in which ICA is an appropriate method is the cocktail 

party problem (Brown, Yamada, & Sejnowski, 2001; Stone, 2002).  This famous example 

occurs when there is a group of N people in a room, each speaking to a fellow person.  

The resulting mixture of voice frequencies and amplitudes over time represents the 

observed data.  The goal of this problem is to separate this mixture of voices into a group 

of individual voices, one for each person.  To do this, one must record this room using N 

or more microphones in order to arrive at no less than N distinct mixtures of those voices.  
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Once these mixtures are obtained, ICA may be employed to separate the mixture into the 

constituent parts.   

 ICA, as its name suggests, assumes that the underlying source signals in a mixture 

are statistically independent of each other (to be discussed further below) (Stone, 2002).  

This is a reasonable assumption in most cases, such as the amplitude of voices in the 

cocktail party. Knowing the amplitude/frequency of one voice provides little information 

about other voices in the room.  If we make that assumption, then we can look for 

unrelated sources of variation within the mixture, and that is just what ICA does.   

 Additionally, the source signals are assumed to be non-normally distributed (or 

non-Gaussian)(Langlois, Chartier, & Gosselin, 2010).  Again, this assumption is tenable 

in most applications.  The reasons for this assumption will be discussed below. 

 Last, because of the way ICA attempts to find the independent sources underlying 

the mixture of sources, it is assumed that the matrix that represents the way the sources 

are mixed is invertible.  This means that there must exist as many mixtures of the source 

signals as there are source signals.  This will be explained in more detail shortly. 

 Because the goal of ICA is to identify underlying sources of a mixed data set, it 

resembles the more common methods of factor analysis and principle component analysis 

(PCA).  The assumptions of the ICA model just discussed make it different from both 

these methods.  Both factor analysis and PCA find sources that are uncorrelated.  

Although similar to independence, uncorrelatedness does not provide as strict a degree of 

unrelatedness as statistical independence does (Stone, 2002). This is because signals that 

are uncorrelated may still be related nonlinearly. With factor analysis, this results in 

factors that may be rotated in infinitely many ways to provide separate sets of factors that 
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are equally statistically significant.  ICA results in components that are uniquely defined, 

in that they may not be rotated to provide equivalent components. Any rotation will result 

in a set of components that are no longer statistically independent (Stone). 

 One way of thinking about linear orthogonality versus statistical independence is 

to imagine the linear versus nonlinear associations between signals (De Lathauwer, De 

Moor, & Vandewalle, 2000). Orthogonality between signals means that there is zero 

linear association between the signals (the Pearson’s correlation between them would 

equal zero). Independence means that there is no linear or nonlinear association between 

the signals. This idea is depicted in figure 1.2.  Another way of thinking about it is that 

the expected value of the product of two signals will equal the product of the expected 

values of the individual signals if the signals are orthogonal (Langlois et al., 2010).  This 

can be written as: 

! "1 ∗ "2 = 	! "1 ∗ 	! "2  

where E[] is the expected value. If the variables are statistically independent, the 

following will be true: 

! (1 "1 	∗ 	(2 "2 = 	! (1 "1 ∗ 	! (2 "2  

 where g1 and g2 can be any functions. 

 In practice, attempting to perform a PCA or factor analysis on a mixture of signals 

fails to produce those source signals (Stone, 2002).  What results is simply a set of 

linearly orthogonal mixtures.  

 The discussion of ICA requires talking about vectors and matrices of data.  A 

vector here refers to a collection of values arranged in a particular way, such as the vector 

s being composed of  
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s1  s2  s3  …   sn  

where s1 refers to the first data point and n refers to the number of data points.  

Here, s1 could refer to the amplitude of a voice in the first millisecond of a recording, 

which would make n equal to the number of milliseconds in the recording.  However, as 

will be demonstrated later, s1 could also refer to the darkness or lightness of the first pixel 

in a photographic image, which would make n equal to the number of pixels in that image 

(Bell & Sejnowski, 1995).  

Matrices are made up of multiple vectors. A matrix of multiple source signals 

would look like this: 

   s1
1 s2

1 s3
1 … sn

1 

   s1
2 s2

2 s3
2 … sn

2 

   s1
3 s2

3 s3
3 … sn

3 

   … … … … … 

   s1
m s2

m s3
m … sn

m 

where n is the number of data points in a source signal and m is the number of 

source signals. Therefore, sn
m refers to the nth data point of the mth source signal. 

If s is a vector of values representing one source signal, then S is the matrix of all 

source signals, with each signal representing one column.  Likewise, if x is a vector of 

values representing one mixture of those source signals, then X is the matrix of all the 

observed mixtures of those signals.  Therefore, X represents the observed data matrix.  

The underlying assumption of source separation is that the columns of X are in actuality 

mixtures (for our purposes linear mixtures) of the columns of S.  We can denote the 

“mixing” matrix that creates X as W. Therefore, we can construct this simple equation: 
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) = *+ 

 Note that neither W nor S is known in this equation.  It is evident that in order to 

arrive at the matrix of source signals S, we must first determine what the mixing matrix 

W is.  Then, we may take the inverse of W in order to “unmix” the observed data X back 

into S. 

+ = *,-) 

 Conceptually, to determine an unmixing matrix, we must identify some aspect of 

source signals that is not present (or is less present) in mixtures of those sources (Lee, 

Girolami, & Sejnowski, 1999).  Once a measure of this aspect is identified, it then 

remains to find an unmixing matrix that maximizes that measure.  Typically, non-

Gaussianity is used as this measure.  This is because the central limit theorem states that 

any mixture of independent variables will tend to be more normally distributed than 

either of the constituent parts (Hyvärinen & Oja, 2000).  Thus, by finding signals that are 

least normally distributed, we can identify likely candidates for non-mixtures.  We 

assume that these non-mixtures represent the original source signals. 

 This aspect of mixtures can be demonstrated using histograms of the respective 

variables and the mixture.  If two signals A and B are represented by histograms, then it 

becomes clear when the histogram of their sum is displayed that that mixture is more 

normally distributed than either of the original sources. Please refer to figure 1.1. 

 This fact is key to the principle of ICA.  Because we assume X = WS, every 

column of X is a linear combination of the columns of S. Therefore, each is more 

Gaussian than any of the columns of S. In fact, if we estimate the vector w-1 (in order to 

estimate one signal in S) to maximize the non-Gaussianity of w-1X, it will be least 
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Gaussian when it equals one of the columns of S, the original source signals.  Therefore, 

w-1X results in one independent component (Yang & Amari, 1997).   

 This process has two drawbacks.  The first is that each solution results in two sets 

of independent components, one positive and one negative.  It is impossible for an ICA 

algorithm to distinguish between these two solutions.  Therefore, it is sometimes 

necessary to change the sign of certain components. In practice, it is obvious when such 

an error occurs. An example is when isolating components of a mixed image, one 

component might appear negatively valued (Stone, 2002).  

 The second drawback has to do with the scaling of the resulting components.  

Most ICA algorithms require that the mixtures be scaled to have a mean of zero and a 

variance of one.  The resulting components thus lose the information of absolute 

magnitude. Again, in practice this fact does not prove to be troublesome as the magnitude 

is either arbitrary or can be inferred by applying the inverse of the whitening matrix to the 

appropriate component (Stone, 2002). 

 There are different methods of measuring, and thus maximizing, how non-

Gaussian a signal is.  The two most popular methods employ measures of the kurtosis and 

of the entropy of the source signals (Langlois et al., 2010).  We will focus on entropy, 

specifically negentropy, as a means of maximizing non-Gaussianity, as a demonstration.   

 Entropy is a measure of how much information is given by observing a random 

variable (Hyvarinen & Oja, 2000).  Variables with high entropy are more random and 

unpredictable.   

Entropy is measured as: 
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. / = 	− 1 / log1 / d/ 

 where f() is the probability density function for that variable.  

For a given variance structure, a Gaussian variable has the largest entropy.  Therefore, by 

comparing the entropy of a variable to a Gaussian variable with the same variance, we 

may obtain a measure of the degree of non-Gaussianity.  Specifically, we can use 

negentropy because it is always non-negative.  It is: 

6 / = 	. /789::;8< − 	. /  

 where yGaussian is a Gaussian random variable with the same variance structure as y 

and H() is the entropy of the variable.   

 However, negentropy itself is difficult to calculate because it requires knowledge 

of the probability density function for the variables.  There are methods of approximating 

negentropy that perform well and are much less complicated. Hyvarinen and Oja (2000) 

proposed using the following approximation: 

6 / ∝ [! ? / −	! ? @ ]B 

 where G() is any non-quadratic function and v is a standardized Gaussian 

variable. 

Typically, the hyperbolic tangent is used as G().  

 

FastICA algorithm. The algorithm employed in the demonstration below is the 

fastICA algorithm (Hyvarinen & Oja, 2000).  It consists of the following steps: 

1. Initialize wi (typically as a random variable) 

2. CD = ! E( CFE − 	! (G CFE C 
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3. C =	 C
H

CH
 

4. If not converged, go to step 2. 

In this algorithm, to converge means that the dot product of the old and new values of 

w is close to 1. This depends on the data being pre-whitened, which is part of a series 

of preprocessing steps to be discussed next. 

 

Preprocessing in ICA. The first step in preprocessing is to demean the data by 

subtracting the column means from the columns.  This results in a matrix X whose 

columns all have means equal to 0.  This step facilitates easier computation of the ICA 

algorithm (Langlois et al., 2010). 

 The next step is to whiten the data.  Whitening consists of linearly transforming 

the matrix X such that the columns are all orthogonal and all have variances of one.  That 

way, the covariance matrix of X equals the identity matrix.  One method of whitening is 

to first perform an eigenvalue decomposition of the covariance matrix of X such that the 

results are EDET, where E is a matrix of eigenvectors and D is the diagonal matrix of 

eigenvalues. Next, to whiten, we do: 

)IJC = KL,M/OKF) 

This transformation forces the mixing matrix to be orthogonal, making it easier to 

estimate due to the fact that orthogonal matrices contain approximately half the number 

of parameters to estimate compared with a random matrix (Hyvarinen & Oja, 2000). 

 It is also sometimes useful at this stage to examine the eigenvalues obtained while 

whitening in order to determine if dimension reduction is possible. This can greatly 
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reduce computational costs in the case of large datasets, such as those encountered in 

fMRI studies. 

 

Independent Component Analysis of fMRI Data 

ICA was first employed with fMRI data by McKeown and others in 1998 

(McKeown et al., 1998). In this seminal paper, the authors showed [1] that ICA can be 

successfully used to detect task-related components in fMRI data; [2] that although the 

task-related components that were derived using ICA shared the bulk of their mass with 

areas identified using more traditional fMRI analyses of those tasks, the ICA-derived 

components included spatially disparate regions that had not been associated with those 

tasks previously; and [3] that ICA outperformed PCA with regard to estimating the 

spatial extent and time course of components in that data set.  

There are some particulars of their study that serve to illustrate the challenges and 

considerations of applying the ICA procedure to fMRI data. The first is that McKeown 

chose to use spatial ICA (sICA) as opposed to temporal ICA (tICA). This means that the 

components that result from the analysis represent groups of voxels which are maximally 

spatially independent from other components, but which share a common time course. 

Another way of looking at it is that ICA decomposes the mixed fMRI data set into a set 

of images (the spatial maps of the components) that are linearly mixed in different ratios 

over the full time course of the scan (the relative contribution of a given image at each 

time point makes up its time course) (Calhoun, Adali, Pearlson, & Pekar, 2001). The 

alternative (tICA) derives a set of time courses, each with an associated spatial map, that 

linearly mix to form the whole time course (Calhoun, Adali, Pearlson, et al.). Although 
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McKeown argued for the use of sICA for fMRI data based on the fact that the spatial 

patterns sought for both the signal components and the noise components in fMRI data 

are typically sparse and localized (McKeown, 2003), the choice of whether to use sICA, 

tICA, or some other variation has been up to the individual researcher. However, sICA is 

the most common ICA method employed with fMRI data, partially due to the fact that 

there are many more observations in space (voxels) than in time. Some researchers have 

attempted to combine sICA and tICA methods to some extent (Calhoun, Eichele, & 

Pearlson, 2009; Seifritz et al., 2002; Stone, Porrill, Porter, & Wilkinson, 2002) or 

attempted to circumvent the problem by using 3-dimensional tensors as opposed to 

matrices (Beckmann & Smith, 2005); however, sICA is still the most widely used method 

with fMRI data.  

The second aspect of the McKeown study that illustrates a difficulty with 

applying ICA to fMRI data is that the authors performed ICA on each subject’s 

functional data individually. This aspect of the study does not become problematic until 

one wants to draw conclusions from the group’s components as a whole or to compare 

two separate groups. If each subject has her or his own mixing matrix calculated, then 

each subject will have a unique set of spatial maps and time courses. Additionally, the 

components that result from ICA are not ordered, further complicating the issue. Unlike a 

GLM analysis in which each regressor’s time course is defined by the researcher a priori, 

thus creating a natural means of comparing subjects, there is no natural way of deciding 

which components to compare between subjects/groups. Researchers were quick to 

suggest solutions to this problem, and they did so in various ways (Calhoun et al., 2009).  
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The first type of solution still employs individual ICAs, but subsequently a 

strategy is used to group the components based on similarity. The strategy is usually one 

of template matching (Calhoun, Adali, McGinty, et al., 2001) or a clustering algorithm 

(Esposito et al., 2005). Template matching involves assessing the spatial similarity of the 

components resulting from an ICA with a template, or map, of some regions of interest. 

Clustering techniques find groups, or clusters, of components that are most spatially 

similar to each other and dissimilar from other clusters. These strategies allow for good 

individualized decompositions for each subject, but they have been criticized because 

there is no guarantee that the components that are grouped together actually represent the 

same thing in different subjects (Margulies et al., 2010). With regard to template-

matching, the approach assumes that components of interest will actually match a set of 

templates and that those templates are appropriate (Margulies et al.). 

The second type of solution involves grouping the data from all subjects together 

and performing an ICA on that grouped data. This general method was first proposed by 

Calhoun and others (2001), and variations on that theme have arisen since then. In 

general, the method consists of concatenating subjects’ 4-dimensional functional data (3 

space dimensions X time) in the time dimension into a single data set. Then a single ICA 

is performed on the whole data set. This process results in a set of group component 

spatial maps and time courses. Calhoun’s method then involves back-reconstruction, 

which puts the group components back into subject space. By keeping the subject-

specific aspects of the components in reference to the group components, this method 

allows between-group interpretations more naturally than with a template-matching 

procedure. Because the concatenated group data set typically is quite large, performing an 
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ICA on it is computationally demanding. Typically, a series of PCA data reduction steps 

is performed prior to the ICA step in order to make computation possible. These PCA 

steps introduce potential problems into the analysis, which will be discussed later in this 

paper. 

Another form of group ICA is referred to as probabilistic ICA (pICA), and was 

introduced by Beckmann and Smith (2004). Whereas the typical model of group ICA 

enforces a deterministic decomposition of the fMRI functional data (the matrix 

multiplication of the unmixing matrix with the source matrix perfectly recreates the 

original data), pICA allows for probabilistic noise in the mixture. This makes a direct 

reconstruction of the original data impossible from the results of the pICA, but it may 

produce more robust group estimates (Beckmann & Smith, 2004). pICA has been 

implemented in the MELODIC software within the FSL package 

(http://www.fmrib.ox.ac.uk/fsl/).  

Typically, pICA is followed by a procedure known as dual regression (also 

known as spatio-temporal regression; Filippini et al., 2009). Dual regression is similar to 

back-reconstruction in that its aim is to compute the subject-specific features of the group 

level components. However, whereas back-reconstruction is more or less “undoing” the 

stages of the group ICA that produced the group level components by employing the 

unmixing matrix and the intermediate PCA steps to derive subject level data, dual 

regression does not use information from the group analysis itself to compute subject 

specific components. Instead, it consists of first performing a spatial regression with the 

group level component spatial maps as regressors and the subjects’ functional data as the 

predicted variable. The betas that result represent the individual time courses for that 
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subject. Then, a second, temporal regression is performed using the time courses 

calculated in the previous regression, again in the subjects’ functional data. The result of 

this second regression provides a set of spatial maps representing how closely related 

each voxel’s time course in the functional data is with the computed component time 

course.  

These two group ICA methods of “noise-free” ICA plus back-reconstruction 

(implemented in the GIFT software package, http://icatb.sourceforge.net/) and pICA plus 

dual regression are the most commonly used methods for ICA analysis of fMRI data. 

However, there are other methods such as tensor ICA (Beckmann & Smith, 2005) and 

approaches that would in effect perform a group ICA on each group of subjects 

individually as opposed to all in the same group (Celone et al., 2006).  

 The third aspect of the McKeown study (1998) that brings up an issue with ICA 

of fMRI data (although it is not specific to fMRI) is the fact that the authors extracted 144 

components from each of the subjects’ data (one for each time point in the data). The 

ICA algorithms typically require a number of components to be pre-selected in order to 

be extracted, and this number, known as dimensionality, is arbitrary. The choice of 

dimensionality is nontrivial, as demonstrated by Ma et al. (2007), who found that the ICA 

results varied significantly when the dimensionality is much less than the number of time 

points in the data (as is typical in ICA studies). There have been attempts to use 

techniques to estimate the number of components that should be extracted by the ICA 

algorithm, such as minimum description length criterion (MDL; Rissanen, 1978) and 

Laplace approximation, among others (Calhoun & Adali, 2012). These information 

theory-derived tools eliminate the need for the researcher to decide on an arbitrary 
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number of components, but it remains to be seen if these tools result in the “best” 

decomposition of fMRI data. In fact, the question of what is best changes with regard to 

the research question, as some researchers intentionally use high-dimensionality ICA to 

break up components spatially into smaller pieces (Kiviniemi et al., 2009).  

 The last aspect of the McKeown study that illuminates a consideration when 

doing ICAs with fMRI data is at what level to threshold the spatial maps that result from 

the ICA. The spatial maps that result from an ICA contain values that can be interpreted 

as each voxel’s contribution to the time course. McKeown z-transformed these values 

and set a threshold of |z| > 2, such that voxels with z values less than 2 and greater than 

negative 2 were zeroed. This process of applying a transformation (typically one that 

imposes a Gaussian distribution on the values) is very commonly done (Li et al., 2009; 

Zhao et al., 2004) and has been shown to inflate the type 1 error rate (Ma et al., 2007). 

Additionally the decision of at which point to cut is an arbitrary one. Using pICA, it is 

possible to estimate a null distribution based on the noise estimates of the analysis, but 

even then an arbitrary level of significance is required, where p < .05 (typically corrected 

for multiple comparisons and cluster thresholded) is the usual threshold. It remains to be 

seen what effect the chosen threshold has on the validity of ICA results in fMRI, but the 

choice does affect the reliability of the analysis (Poppe et al., 2013).  

 This section aimed to provide a summary of some of the challenges inherent in 

applying ICA to fMRI studies (particularly group studies) as well as many of the 

common solutions that have been proposed and implemented to address these challenges. 

The reader should take away from this section the idea that there is no singular method 

known as ICA when applied to fMRI data, and conclusions drawn about the validity and 
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reliability of ICA analyses must take into account the specific methodology used in each 

study.  

 

Reliability of fMRI Analyses 

Importance of reliability. Reliability is the property of tests that deals with how 

consistently a measurement is being made. Scientists can have no real confidence in the 

results of tests that cannot provide consistent results. Validity depends on it. Additionally, 

the extent to which two measures correlate also depends on the reliabilities of the two 

measures. If either of the measures has a low reliability, it sets an upper bound on how 

highly the two measures can be associated. In the field of neuroimaging, reliability is just 

as important. There have been relatively few investigations of reliability in fMRI, 

however, perhaps because it is commonly assumed to be sufficient because fMRI 

measures a physical property. However, as we shall see, this assumption is misplaced.  

 There are also multiple ways of thinking about reliability. Probably the most 

common way of describing reliability is to say that a test provides the same score on the 

same subject at two time points. This is test-retest reliability (TRT reliability). It is easily 

interpreted and is easily calculated, relatively. For fMRI research, TRT reliability is the 

primary form of reliability that has been studied thus far.  

 

Reliability considerations in fMRI. There are many sources of noise in fMRI 

research that can disrupt its TRT reliability. These come from sources at different levels 

of the analysis. The deepest levels of noise result from hardware inconsistencies and 

failures, such as b0 field inhomogeneity and thermal or other fluctuations in the scanner 
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room. The effects on reliability of these hardware problems has largely been ameliorated 

by the years of strict specification by scanner manufacturers, and so the sources of poor 

reliability in fMRI research largely stem from other sources, such as signal to noise ratio 

of the data due to scanner settings.  

 The data collected by fMRI is an indication of how much oxygenated blood is in 

any one area of the brain at a given time. The individual cells in the brain and 

surrounding tissues are summarized by volumetric pixels (voxels) typically ranging 

between 0.53 mm3 to 4.53 mm3 in volume. In essence, we get one "score" for each voxel 

at every timepoint of the scan. If a certain voxel is seen to have an increase in its score 

following a given stimulus (and which follows a plausible physiological response 

schedule), we may be inclined to believe that neurons in that voxel required more 

oxygenated blood because they increased their activities in response to a stimulus. 

However, there are always sources of noise that impede our ability to make those claims, 

because the increase in signal in a given voxel between two time points may be due to 

chance or to some other process rather than neurons' hemodynamic response.  

 Scan protocol settings such as the voxel size, the length of each acquisition, the 

echo time, and the angle of acquisition all influence the signal to noise ratio of the data. 

This SNR is an indication of how sure we are that the score we have for a voxel is 

indicative of oxygenated blood rather than to some source of noise in the data.  

 Classical test theory (CTT) can be used with fMRI data. Any observed score, such 

as the scores in each of our voxels after a scan, are made up of some true score and any 

error associated with it. In CTT the errors are thought of as random, such that the mean of 

the errors in a given data set is zero with some variance. Voxels with more noise 
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associated with them, then, will be less reliable than other voxels, because the errors are 

not systematic and so are not stable. Averaging over many scores should give a better 

indication of the true score because the random errors should in effect cancel each other 

out. This has implications for scanner settings, because changing the voxel size by 1mm3 

greatly changes the number of voxels in the data. This specific change has at least two 

effects. First, there are fewer total voxels if the size gets larger, but each of those voxels 

contains more cells. So, for a given volume of brain, averaging over that volume is less 

effective for reducing voxels' measurement error, because there are fewer voxels to 

contribute. However, each of those voxels should be contributing less specific error than 

their smaller volume counterparts. 

 In TRT reliability work that has been conducted thus far with regard to fMRI, the 

majority has been conducted with activation contrast studies. This means that the analysis 

method is to regress the time course of whatever stimulus was presented to the subjects 

onto those subjects' fMRI data. Each voxel gets another score. This time, the score 

represents how closely related to the task timeline the voxel's temporal pattern of 

activation was. If a voxel activated whenever a particular stimulus was presented, it will 

have a high score for that stimulus. Then, typically clusters of voxels are found whose 

relationship with a particular stimulus is greater than or less than either their typical 

(average) signal or than their relationship to some other signal. If these voxels' difference 

in relationship between the two stimuli (or between stimulus and mean) is more 

pronounced than would be expected by chance, then we say they are significantly related 

to the stimulus. This comparison of the relationship of voxel time course and stimulus 
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time course to the mean or to other stimulus time course is known as an activation 

contrast method.  

 When scientists investigate reliability in fMRI, they are typically interested in 

how consistent the resulting scores following statistical analysis are, rather than raw 

scores. This is akin to a researcher being interested in the reliability of the accuracy of a 

subject tested with a multi-item achievement test (accuracy being a summary statistic) 

rather than the consistency of any one item. Thus, researchers in fMRI typically examine 

the reliability of their statistical results after an activation contrast procedure. The main 

question of this method is, “Do the same areas of brain activate significantly to the same 

task at different time points?” 

 

Methods of measuring fMRI reliability. There are different choices for what a 

researcher might be interested in when assessing reliability. It should be noted here that 

the term “reliability” in this section is used rather broadly to mean general consistency of 

a measure. In subsequent chapters, reliability will refer to the specific property of the 

consistent measurement of individual differences such that individuals who score highly 

at one time point also score highly at a second time point.  

In activation contrast studies, there are three main categories. The first is whether 

the location of activation remains constant from time 1 to time 2. This consideration is 

usually measured by a spatial overlap statistic, such as the Dice coefficient (Dice, 1945), 

which measures the spatial overlap between two sets of data. It is defined as: 

PQR = 	
2	S	TUVWXY8Z
T1 + T2
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where SID is the Dice Similarity Index, V1 is the number of voxels above threshold in the 

first cluster, V2 is the number of voxels above threshold in the second cluster, and Voverlap 

is how many voxels are overlapping between them. This coefficient can vary between 0 

(no overlap) and 1 (perfect overlap). The similar Jaccard coefficient (Jaccard, 1901; 

Levandowsky & Winter, 1971) measures the same idea, and is a mathematical 

transformation of the Dice coefficient. Both coefficients are used in fMRI reliability 

studies to assess spatial overlap of significant clusters of voxels. 

 A stricter form of reliability is whether the magnitudes of voxel activations within 

a given cluster is reliable over time (Bennett & Miller, 2010). In order to measure this, 

researchers typically use an intra-class correlation coefficient (ICC)(Shrout & Fleiss, 

1979). This metric is measured in different ways, as defined by Shrout and Fleiss, but 

commonly it is defined as: 

Q\\ =
]^W_`WW<B

]^W_`WW<B + ]`;_a;<
B  

where ]^W_`WW<B  is the variance in scores between voxels, and ]`;_a;<B  is the variance 

within voxels. This shows how reliability is measures, in that if voxels vary much more 

between themselves than from one time point to another, the ICC and the reliability are 

high. The ICC typically ranges from 0 to 1, although other values are possible. 

Furthermore, there are a few ways to summarize ICCs when measuring reliability in 

fMRI data, each attempting to report the central tendency of the distribution of all ICCs 

in the voxel data (Bennett & Miller, 2010). One caveat for interpretation of the ICC 

between groups is that if one group is more heterogeneous than the other, or has more 
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heterogeneous voxel activity, it can have higher ICC values without actually having more 

consistent results (Weir, 2005).  

 A problem with both of the previous methods of assessing fMRI reliability is that 

they depend on the threshold used with the spatial maps (i.e., the determination of what is 

significant and what is not). In order to eliminate that problem, one could assess the ICC 

for all voxels in the brain, regardless of whether they are super-threshold. This method is 

the strictest in that it measures whether all voxels act the same at both time points 

regardless of whether they respond to the stimuli of the fMRI task or not. These three 

methods are used in activation contrast studies of reliability, but as will be shown, they 

are also used in the studies performed on functional connectivity metrics. Additionally, 

other metrics are used to assess reliability, but these three are the most common. 

 

Reliability in activation contrast studies. Bennet and Miller (2010) performed a 

literature review in which they summarized the results of activation contrast fMRI studies 

that looked at TRT reliability. They grouped their results according to whether the 

individual studies used spatial overlap measures, ICC, or some other reliability metric. 

They reviewed 63 papers total. With regard to spatial overlap studies, the metrics were 

converted into Dice coefficients and the minimum, mean, and maximum values were 

reported if available. The average of each of those three values was also reported. They 

found that the average of the mean spatial overlap in the reviewed studies was .48, mean 

minimum was .31, and the mean maximum was .67. Likewise, they did the same with 

ICC studies, and found that the average mean was .50, the mean minimum was .17, and 
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the mean maximum was .75. They did not summarize the studies using other reliability 

metrics.  

 Although there is no rule for what constitutes an acceptable reliability based either 

on Dice coefficients or ICC values, a minimum value of .4 ICC has been proposed 

(Cicchetti & Sparrow, 1981). Based on that criterion, activation contrast studies appear to 

have acceptable reliability on the whole. It is necessary to establish that, because it allows 

the comparison between functional connectivity reliability and activation contrast 

reliability. The interpretation of functional connectivity reliability thus will not be 

impeded by questions about fMRI reliability generally, as there is a precedent value for 

an alternative analysis of fMRI data. However, the “acceptability” of a measure’s 

reliability when that measure is used in group contrast studies depends on the size of the 

effect in question as well as the sample size of the study. As noted by Button and 

colleagues (2013) noted, unreliable studies in neuroscience (whatever the source of the 

unreliability) are wasteful and can increase type 2 errors as well as exaggerate the size of 

true effects. 

 

Considerations for reliability in ICA studies. There are a number of factors that 

could potentially influence the TRT reliability of ICA results and that are specific to the 

manner in which ICA is performed. Some of these factors are subject concatenation 

order, component number (model order), the type of ICA algorithm used, the patient 

status of the subjects, and how the subjects are engaged during the scan (i.e., task versus 

resting state).  
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 The first factor is subject concatenation order (SCO). This refers to the order in 

which subjects are placed into a temporal concatenation ICA. In actuality, SCO becomes 

a problem because of the PCA steps used prior to ICA for the purposes of data reduction. 

Depending on the size of the dataset, typically either two or three PCA steps are used to 

reduce fMRI data. If two steps are used, the first step typically reduces data within an 

individual subject. The second step then concatenates all the reduced data from all 

subjects and reduces that further. This process does not introduce effects caused by SCO. 

However, if three PCA steps are used to reduce data prior to ICA, which is the typical 

method, the second step forms subgroups of subjects and reduces the data of those 

subgroups. The third PCA step then acts on the concatenated reduced data from those 

subgroups. Because of the nature of this process, an individual subject or a group of 

subjects may have undue, or at least differential, influence on the final results depending 

on the subgroup in which she or he is placed. If the subjects were ordered differently, the 

results of the second PCA step, and therefore the results of the final ICA would be 

different. This has been demonstrated by (Zhang et al., 2010), who discussed SCO and 

the number of effective subject orders that are possible. There are fewer effective subject 

orders than total different subject orders, because the order of subjects within a subgroup 

at the second PCA step does not affect the results of the second PCA step. Zhang et al.  

showed that the repeatability of ICA results was affected by SCO, and they proposed 

subject order independent ICA (SOI-ICA). This method consists of performing a number 

of ICA analyses on the same set of data with varying effective subject orders. The results 

of these analyses are then combined to arrive at some central tendency of the resulting 

components, and thus the underlying true signals. A similar method has been proposed 
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(Wisner, Atluri, Lim, & MacDonald, 2013) to correct for SCO, which consists of 

performing many ICAs on the same set of data with varying subject orders and then 

performing a final, meta-ICA on the results of those ICAs. A question left open by 

Wisner and others was how many subject orders are necessary to achieve acceptable 

reliability, and this question was answered by Poppe et al. (2013). They found that 25 

subject orders were sufficient in both a resting-state sample and a task-based sample to 

provide adequate reproducibility of group spatial components.  

The second factor that may influence the TRT reliability of ICA results is the 

number of components (model order) that are specified to be derived in the ICA 

algorithm. Model order has been examined previously with regard to its effects on group 

difference metrics between patients with seasonal affective disorder and healthy controls 

(Abou Elseoud et al., 2011), as well as with regard to the robustness and potential validity 

of resulting components (Kiviniemi et al., 2009). Abou Elseoud found that the ability to 

detect group differences differed with different model orders, and the optimum model 

order was 70 components. Above 70, the effect stabilized such that there was no added 

benefit. This result may suggest that the reliability of the analysis is what is affected by 

the model order, with optimum reliability being achieved at 70 components. Kiviniemi et 

al. found that using a model order of 70 not only resulted in robust components, but these 

components represented a functional segmentation of the fMRI data. Poppe et al. (2013) 

examined the effect of model order on the spatial reproducibility of ICA components, and 

it was found that higher model orders produced the highest reproducibility scores in both 

task-based data and resting state data 70 and 60 components respectively.   
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Some researchers have attempted to ascertain what the optimal number of 

components might be for a given data set by using various algorithms.  Some of the 

methods currently in use are Minimum Description Length criteria, AIC, and Laplace 

approximation (Li, Adali, & Calhoun, 2007). However, the results of these algorithms 

have not been adequately assessed with regard to their effect on TRT reliability.  

The third factor that might influence reliability is how the spatial maps resulting 

from ICAs are thresholded. When using noisy ICA, it is possible to derive a Z score for a 

given voxel’s association with the timecourse of a component, and therefore there is 

some justification for using a threshold of about 1.96. However, that value is based on an 

ultimately arbitrary ‘significance’ idea that has little relevance for the spatial maps 

resulting from ICA.  

The fourth factor refers to the ICA algorithm itself. The two most commonly used 

methods of performing group ICA are “noisy” ICA and “noise-free” ICA. There have 

been some comparisons made between these two types (Erhardt et al., 2011), but it 

remains to be seen how the ICA algorithm type affects TRT reliability. 

The fifth factor that may influence TRT reliability in ICA is the form of back-

reconstruction used to arrive at individual time courses and spatial maps for each subject. 

The two most popular methods are referred to as dual regression and back reconstruction 

after GICA. A study recently compared these two methods of back-reconstruction 

(Erhardt et al., 2011), but again it remains to be seen what effect on reliability this choice 

has. 

Another factor that could influence the TRT reliability of ICA results has to do 

with the characteristics of the subjects themselves and how those characteristics are dealt 
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with in the analysis. For instance, control subjects’ data are likely more reliably measured 

to begin with than a group such as people with cocaine addiction or schizophrenia, and 

the results of analyses on controls’ data may also be more reliable. There is evidence that 

the TRT reliability of schizophrenia subjects is lower than that of healthy controls despite 

the same reliability between groups in the cognitive task performed in the scanner 

(Manoach et al., 2001). This finding could have implications for interpreting ICA results, 

because apparent group differences could arise either because a functional network is less 

active on average in schizophrenia patients relative to healthy controls or because that 

network is less reliably measures in patients relative to controls.  

The last factor I will discuss that could influence the TRT of group ICA results is 

the activity that subjects were engaged in at the scan time. The majority of FC studies in 

general are conducted using resting state scans. It is conceivable that the results of these 

studies are less reliable than the results of studies in which subjects performed a task in 

the scanner at both time points. The ‘resting state’ is typically an unconstrained time 

during which a subject may think about whatever pleases her or him. Although there may 

be some similarity both in what a given subject thinks about at two time points and in 

what two different subjects think about at the same time point, this similarity may be less 

than the similarity would have been had they been engaged in a structured cognitive task. 

A counterpoint may be that people may engage different cognitive or neural networks 

when performing the same task. Considering that the resting state has been 

disproportionately represented in the reliability literature of ICA, the reliability of ICA 

during a cognitive task is important to establish. The cognitive task that the current 

dissertation involves is a measure of the executive function known as goal maintenance.  
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Goal Maintenance 

Cognitive deficits are debilitating for schizophrenia patients (Heinrichs, 2005), 

and these deficits may represent biomarkers for schizophrenia (Snitz, MacDonald, & 

Carter, 2006). One cognitive process currently being studied as a potential imaging 

biomarker for treatment response in schizophrenia is goal maintenance. Goal 

maintenance refers to an executive process that encompasses the representation of task 

goals and rules, the maintenance and manipulation of information relevant to those goals, 

and the application of that information to guide behavior (Henderson et al., 2012). Both 

schizophrenia patients (Jones, Sponheim, & MacDonald, 2010; Servan-Schreiber, Cohen, 

& Steingard, 1996) and their nonpsychotic first-degree relatives (MacDonald, Pogue-

Geile, Johnson, & Carter, 2003) have demonstrated specific deficits on tasks measuring 

goal maintenance. 

 The establishment of goal maintenance as an imaging biomarker first requires that 

the reliability of activation patterns observed in fMRI data during the execution of a goal 

maintenance task must be established. The goal maintenance task to be used in this study 

is the dot pattern expectancy task (DPX). The establishment of DPX imaging as a reliable 

method will allow researchers to use the DPX results to define brain regions that 

represent reliable biomarkers of schizophrenia itself. It will give researchers a tool for 

assessing the specificity of activation differences during the DPX task in these brain 

regions to schizophrenia compared with other psychiatric illnesses. The identification of 

these brain regions that are differentially active during the DPX will allow the search for 

specialized pharmacological interventions for cognitive deficits to have a better-defined 



     
 
 

32 

 

target. Likewise, cognitively derived imaging biomarkers may serve as measures of 

progress in cognitive remediation or medication treatment protocols. To these ends, this 

dissertation will address the following seven specific aims: 

 

 Specific Aims 

(1) The dot pattern expectancy task (DPX) has never been used in an fMRI activation 

study that included schizophrenia patients. Therefore I will determine if a GLM 

analysis of the DPX replicates activation differences between SZ and HC 

observed using other goal maintenance measures. (Chapter 2) 

(2) There is ample evidence of disrupted functional connectivity in SZ, and the 

interaction of intrinsic connectivity networks has been hypothesized to subserve 

cognitive control (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008). 

Functional network connectivity (both tonic and dynamic; tFNC and dFNC, 

respectively; Jafri, Pearlson, Stevens, & Calhoun, 2008; Sakoǧlu et al., 2010) is 

well suited for measuring the temporal relationships among brain networks. The 

second aim will be to find relationships among ICA-derived brain networks that 

underpin goal maintenance ability in SZ and HC. (Chapter 3) 

(3) The dot pattern expectancy task (DPX) has been shown to be a reliable measure 

of goal maintenance in schizophrenia patients and healthy controls (Jones et al., 

2010). It remains to be seen if the activation differences observed in 

schizophrenia patients compared with healthy controls during the execution of the 

DPX are also reliable. A test-retest design will be employed to test the 

reproducibility and reliability of the results of a GLM analysis of the fMRI data 
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collected during the DPX task in both schizophrenia patients and healthy controls. 

(Chapter 4) 

(4) There is some evidence that the results of ICA analyses are reproducible and 

reliable, but a direct comparison between ICA and the more traditional GLM 

analysis method has not been done. This study will perform both types of analyses 

on a test-retest sample of schizophrenia patients and healthy controls, and it will 

directly compare the results. (Chapter 4) 

(5) No reliability studies currently exist of either tFNC or dFNC. The fifth aim of this 

dissertation will be to assess the test retest reliability of tFNC and dFNC in HC 

and SZ. (Chapter 4) 

(6) Schizophrenia patients routinely show differential activation and functional 

connectivity in many of the same brain regions, such as dorsolateral prefrontal 

cortex (dlPFC), the default mode network (DMN), and posterior parietal lobes. 

There is evidence that schizophrenia patients have reduced reliability of 

activation-based analyses in “cognitive” brain areas as opposed to those areas 

more associated with primary sensory regions (Manoach et al., 2001). If this 

result holds true using ICA, then it leads to the theoretic possibility that 

differences found between schizophrenia patients and healthy controls in these 

areas (to the exclusion of other areas) may represent a measurement confound 

causing the ability to detect group differences in those areas to be greater than in 

other areas. This study will attempt to discern any main effects of group and 

component on reliability as well as any group by component interactions. 

(Chapter 4) 
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(7) Some previous research has found that collecting fMRI data from different sites 

reduces overall reliability if measures are not taken to correct for the effect, 

whereas other studies have not found that to be the case. Those studies used 

activation analysis methods. It is possible that ICA is not as sensitive to site 

effects, because it is possible that any effect due to site will encompass one of the 

independent components that result from the analysis. This study will examine 

whether such site effects on reliability present a problem in a multisite reliability 

study of schizophrenia patients and healthy controls.  Additionally, it will 

compare such site effects in both GLM and ICA analysis methods. (Chapter 4) 
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Figure 1.1. Mixing of Variables Increases Normality 
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Figure 1.2.   Orthogonality Versus Independence 

 

Here, the two curves represent the values of sine and cosine from 0 to 2*Pi. The linear 

dependence, as measured by Pearson’s Product Moment Correlation is 0, indicating 

orthogonality. However, the distance correlation (Székely, Rizzo, & Bakirov, 2007), a 

measure of statistical dependence, between the two is non-zero. 
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Chapter 2: Reduced Frontoparietal Activity in Schizophrenia is Linked to a Specific 

Deficit in Goal Maintenance: a Multi-site Functional Imaging Study  

 

Foreword: This chapter was written in collaboration with Angus W. MacDonald, who 

edited and revised versions of the manuscript. Additionally, Deanna M. Barch, Cameron 

S. Carter, James M. Gold, J. Daniel Ragland, and Steven M. Silverstein provided edits 

and some text revisions on final versions of the manuscript. The text of this chapter has 

been published in Schizophrenia Bulletin and is being reproduced here and as Appendix 1 

with permission from Oxford University Press. The full citation of the published work is 

as follows: 

 

Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., Silverstein, S. M.,  

& MacDonald, A. W. (2016). Reduced Frontoparietal Activity in Schizophrenia Is  

Linked to a Specific Deficit in Goal Maintenance: A Multisite Functional Imaging 

Study. Schizophrenia Bulletin. In press. 

 

Abstract 

Patients with schizophrenia (SZ) previously demonstrated specific deficits in an 

executive function known as goal maintenance, associated with reduced middle frontal 

gyrus (MFG) activity. This study aimed to validate a new tool – the Dot Pattern 

Expectancy (DPX) task –  developed to facilitate multi-site imaging studies of goal 

maintenance deficits in schizophrenia or other disorders. Additionally, it sought to arrive 

at recommendations for scan length for future studies using the DPX. Forty-seven SZ and 
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56 healthy controls (HC) performed the DPX in 3-Tesla functional magnetic resonance 

imaging (fMRI) scanners at five sites. Group differences in DPX-related activity were 

examined with whole brain voxelwise analyses. SZs showed the hypothesized specific 

performance deficits with as little as one block of data. Reduced activity in SZ compared 

with HC was observed in bilateral frontal pole/middle frontal gyrus as well as left 

posterior parietal lobe. Efficiency analyses found significant group differences in activity 

using 18 minutes of scan data but not 12 minutes. Several behavioral and imaging 

findings from the goal maintenance literature were robustly replicated despite the use of 

different scanners at different sites. We did not replicate a previous correlation with 

disorganization symptoms among patients. Results were consistent with an 

executive/attention network dysfunction in the higher levels of a cascading executive 

system responsible for goal maintenance. Finally, efficiency analyses found that 18 

minutes of scanning during the DPX task is sufficient to detect group differences with a 

similar sample size. 

 

Introduction 
 

Cognitive deficits represent a debilitating and difficult to treat facet of 

schizophrenia, and they involve many aspects of cognition including memory, 

attention/concentration, and executive functioning (Gold & Harvey, 1993). Although 

these deficits remain largely unaffected by traditional psychotherapeutic and 

pharmacological interventions, recent initiatives in both these domains hold promise for 

effective treatments (Choi, Wykes, & Kurtz, 2013; Wykes, Huddy, Cellard, McGurk, & 

Czobor, 2011). Therapeutic efforts depend on accurate and reliable measures of deficits 
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in specific cognitive functions to chart treatment-related changes (Carter & Barch, 2007). 

The Cognitive Neuroscience Test Reliability and Clinical applications for Serious mental 

illness (CNTRaCS) Consortium was organized to develop and evaluate novel cognitive 

neuroscience-based measures of cognitive deficits in schizophrenia that tap specific 

brain-based mechanisms (Carter & Barch, 2007; Gold et al., n.d.). 

In addition to the cognitive domains of visual integration (Silverstein et al., 2015) 

and relational encoding and retrieval (Ragland et al., 2015),  CNTRaCS sought a valid 

measure for goal maintenance, which reflects the ability to retain and utilize relevant 

contextual information while pursuing a novel goal. For example, goal maintenance is 

required to overcome one’s habitual route home from work given an errand that must be 

completed on the way. It is more than remembering the errand; rather, it is keeping the 

context of the errand in mind to alter the overlearned habit. Deficits in goal maintenance 

can impede life functioning in multiple functional domains, including employment, 

education, socializing, and recreation because it is required to complete tasks that 

necessitate responses to be modified based on differing contexts. Specific deficits in goal 

maintenance have been observed in SZ (Jones et al., 2010; Servan-Schreiber et al., 1996) 

and their unaffected relatives (Delawalla, Csernansky, & Barch, 2008; MacDonald et al., 

2003).  

To measure goal maintenance, Cohen and Servan-Schreiber (Servan-Schreiber et 

al., 1996) modified the traditional AX-CPT paradigm by changing the expectancy of AX 

pairings. The Dot Pattern Expectancy task further modified this paradigm by using dot 

patterns instead of letters, thereby enabling parametric manipulation of item difficulty by 

varying the similarity of target and non-target stimuli (MacDonald, Goghari, et al., 2005). 
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The DPX also addresses the issue that overlearned representation of letters might reduce 

the sensitivity of the letter-based expectancy AX-CPT. Moreover, the DPX has been 

shown to reliably measure goal maintenance (Jones et al., 2010; Strauss et al., 2013) and 

has been optimized for use with SZ by reducing the length of the task while maintaining 

its reliability (Henderson et al., 2012). Maximizing the efficiency and reliability of DPX 

also enhances its treatment utility, as shorter measures are less cumbersome to administer 

and less prone to participant fatigue.   

Previous studies demonstrated that HC activated middle frontal gyrus (MFG) on 

trials of the expectancy AX task that required goal maintenance (Barch et al., 2001; 

MacDonald & Carter, 2003). Activation differences have been observed in this region 

when comparing HC with SZ (Barch et al., 2001; MacDonald, Carter, et al., 2005) and 

their unaffected relatives (Delawalla et al., 2008). Regions within MFG have been 

theorized to instantiate premotor representations based on external contextual cues 

accompanying stimuli (Koechlin, Ody, & Kouneiher, 2003), so hypoactivation in this 

region may indicate impairment in that ability. One previous report of DPX 

neuroimaging findings exists in HC (Lopez-Garcia et al., 2015), which showed activation 

of the same brain regions when completing the DPX as when performing the expectancy 

AX. However, the DPX has never been used to examine brain activation in SZ. 

Using tasks such as the DPX to examine cognition and brain activation changes to 

treatment response would be facilitated if the task could be used successfully across 

many sites. Early studies of multisite fMRI (Casey et al., 1998; Ojemann et al., 1998; 

Vlieger, Lavini, Majoie, & den Heeten, 2003) found good reproducibility between sites, 

as did later multisite studies that included SZ (Ford et al., 2009; Schneider et al., 2007). 
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Multisite imaging allows for greater sample sizes and more power to detect group 

differences and treatment effects. Thus, the current study involved five CNTRaCS sites 

and included standardized imaging protocols to reduce between-site differences. 

The use of imaging tasks to study treatment changes is also facilitated by having 

short and efficient protocols. Thus, to produce a more efficient and reliable measure of 

goal maintenance for evaluating treatment success, we sought to quantify a minimum 

length of fMRI scan capable of detecting group differences in goal maintenance. This is a 

practical question for future studies, as shorter scans may reduce participant fatigue, 

lower per subject costs, and allow for larger sample sizes. Therefore, the aims of the 

present study were threefold. First, we wished to replicate the finding of a specific deficit 

in goal maintenance in SZ compared with HC using this newly optimized DPX paradigm. 

Second, we wished to determine whether this task could be successfully implemented in a 

multisite context. Third, we wished to establish a recommended scan length to observe 

activation differences in groups of this size. 

 

Methods 

Subjects. Data were collected across five CNTRaCS sites. A complete 

methodology for the current study can be found in appendix 1. A complete subject 

recruitment protocol has been previously published (Henderson et al., 2012), and the 

current sample has been previously described (Ragland et al., 2015; Silverstein et al., 

2015). The final sample consisted of 103 subjects (56 HCs, 47 SZs). There were no 

significant differences between included and excluded controls or patients on 

demographic, behavioral, or symptom indices (p’s > .08). The final groups were 
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demographically similar on age, and they did not differ on any measured demographic 

variable with the exception of education (see table 2.1). Subject groups did not differ on 

average relative or absolute head movement after removing subjects with excessive 

movement (both p’s > .45). 

 

Dot pattern expectancy task and analysis. The Dot Pattern Expectancy task 

(DPX) has been described previously (Henderson et al., 2012; Jones et al., 2010). The 

task was performed in four blocks by each subject, with each trial consisting of a cue dot 

pattern followed by a probe dot pattern. One dot pattern was identified as a valid cue (‘A’ 

cue), and another as a valid probe (‘X’ probe). All other cues were invalid (‘B’ cues), and 

all other probes were invalid (‘Y’ probes). Besides the valid ‘AX’ target trials, three other 

possible combinations of cues and probes (‘AY’, ‘BX’, and ‘BY’) made up three distinct 

non-target trial types enabling the identification of a specific deficit in a subject’s ability 

to maintain goal-relevant information throughout a trial. Each block of the DPX task 

consisted of 40 trials: twenty-four AX (60%), six AY (15%), six BX trials (15%), and 

four BY (10%).   

 For the DPX behavioral data, we employed two primary analyses. Groups were 

first compared using an independent samples t test on d’-context (Servan-Schreiber et al., 

1996), a measure of general impairment on the DPX task. To establish a specific deficit, 

we fit a mixed effects logistic regression within a hierarchical model. Accuracy data were 

predicted using a small number of variables, with the minimum being the ‘group’ 

variable. Additional variables were added to the model, such as ‘trial type (i.e., AX, AY, 

BX, BY)’ and ‘site membership’ (i.e., which CNTRaCS site produced the data). Each 
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model was assessed using the Akaike Information Criterion (AIC) to determine the 

simplest model that predicted the data as well as or better than any other. Once a model 

was chosen, main effects and interactions of the variables were evaluated with a 

particular emphasis on ‘BX’ trial type and the comparison of ‘BX’ and ‘AY’ trials. 

  

fMRI data acquisition and preprocessing. Three CNTRaCS sites used Siemens 

Trio 3 Tesla scanners (Minnesota, Washington University, UC Davis), one site used a 

Siemens Allegra 3 Tesla system (Rutgers), and the fifth site employed a Phillips 3 Tesla 

scanner system (MPRC). Scanning details can be found in the appendix 1. The scan 

session included the collection of four, 180-volume scans during four blocks of the DPX 

task. Quality control “phantom” scans were also collected on each scanner at the time of 

each subject’s data collection. 

  Preprocessing using FMRIB Software Library (FSL v. 4.1.8)(Smith et al., 2004) 

included motion correction (Jenkinson, Bannister, Brady, & Smith, 2002), brain 

extraction (Smith, 2002), prewhitening (Smith et al., 2004), high-pass temporal filtering 

with sigma of 100 s; B0 field unwarping, spatial smoothing with a 5 mm FWHM 

Gaussian kernel, and spatial normalization and linear registration (Jenkinson & Smith, 

2001) to the MNI 152 standard brain. Subjects with poor data quality were removed from 

the analysis (see appendix 1 for details). 

 

General linear model. Following preprocessing, functional data were analyzed 

with a general linear model approach using the fMRI Expert Analysis Tool (FEAT) 

within the FSL software library. The following events from correct trials were modeled 
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for each subject: “A” Cues, “B” Cues, “AX” Probes, “AY” Probes, “BX” Probes, and 

“BY” Probes.  Cue Errors and Probe Errors were also modeled, although they were not 

used in further analyses. Variation in the neural response was accounted for using the 

default FMRIB Linear Optimal Basis Set (FLOBS)(Woolrich, Behrens, & Smith, 2004) 

included with FSL.  

 Whole-brain analyses were performed at the group level in a voxelwise GLM 

analysis within FEAT. The primary contrast of interest at this group level was a 

comparison of SZ with HC on the lower level contrast of B Cue activation minus A Cue 

activation, although within-group analyses were also conducted to determine typical 

activation patterns for each group. Based on goal maintenance literature (Blackman et al., 

n.d.; Cohen & Servan-Schreiber, 1992; Lesh et al., 2013; Lopez-Garcia et al., 2015;  

MacDonald, Cohen, Stenger, & Carter, 2000; MacDonald & Carter, 2003; MacDonald, 

Carter, et al., 2005; Niendam et al., 2014), the contrast of B cues with A cues was chosen 

because B trials require the ability to maintain goal-relevant information to overcome the 

prepotent “target” response in the event of an X probe. Site membership as well as 

estimates of the data smoothness, signal-to-fluctuation-noise ratio (SFNR), average 

relative movement, and average absolute movement were also included as explanatory 

variables in the analysis. Their inclusion was intended to assess the effect of, and control 

for cross-site differences. A threshold of z > 3.09 and whole-brain corrected cluster extent 

threshold of p < .05 were employed for all group-level tests.  
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Scan length analysis. Additionally, we analyzed the functional data in a stepwise 

fashion to determine how long a scan must be to detect group differences in brain 

activation patterns. Data were analyzed with two and three scans (12 and 18 minutes, 

respectively), and the results of these were compared with the full, four-scan data 

analysis (24 minutes). Qualitative analysis of the results was used to indicate whether the 

effects seen in the full data analysis were present in the reduced data analyses. 

Additionally, quantitative analyses using the Dice coefficient (Dice, 1945) were 

conducted to measure the extent of overlap. 

 

Results 

Behavioral results. To investigate sensitivity to context on the DPX, we 

calculated the signal-detection metric d’-context and compared HCs to SZs using an 

independent samples t-test. Figure 2.1a shows that HCs had significantly higher d’-

context scores (M = 3.38, SD = 0.77) than SZs did (M = 2.80, SD = 0.97; t(86.99) = 

3.30, p = .001). The mixed-effects logistic regression included group and trial type as 

fixed explanatory variables and subject as a random variable. As displayed in Figure 

2.1b, the interaction of group and trial type showed that compared with AY trials, HCs 

were significantly more accurate on BX trials than SZs (z = -3.16, p = .002).  

 To evaluate the association between psychiatric symptoms and performance on 

the DPX, we performed correlation tests between d’-context scores and BPRS positive 

(M = 9.6, SD = 5.3), negative (M = 7.2, SD = 2.3), and disorganization (M = 4.9, SD = 

1.7) subscale scores, as well as total BPRS scores (M = 40.3, SD = 10.1) for SZs. No 

significant correlations were observed in this sample (all tests: |r| < .19, p > .21). 
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Behavioral efficiency analysis results. The mixed effects logistic regression 

model used with the whole dataset was also applied in a stepwise manner with one, two, 

and three blocks of the DPX behavioral data. As illustrated in Figure 2.2, the significant 

group by trial-type effect (BX compared with AY trials) was present regardless of the 

number of blocks used (one block: z = -3.8, p < 0.001; two blocks: z = -3.8, p < 0.001; 

three blocks: z = -3.4, p < 0.001; four blocks: z = -3.2, p < 0.002).  

 

fMRI results. The fMRI analyses indicated there were no significant effects of 

site as measured by group level F tests of contrasts including CNTRaCS site as an 

explanatory variable. Additionally, no significant activation was observed in contrasts 

that included SFNR, smoothness, and relative or absolute movement estimates as 

explanatory variables. 

The exploratory whole-brain analyses yielded significant differences in activation 

in the contrast of “B” cues with “A” cues. SZ displayed activation in left MFG and 

bilateral lateral occipital lobes, whereas HC activated in various regions of the cortex 

(peak in right lateral occipital lobe). When comparing groups, HC activated more 

compared to SZ in right MFG/frontal pole, left posterior parietal lobe, and left 

MFG/frontal pole, as displayed in Figure 2.3. No significant correlations were observed 

between activation and BPRS subscale scores (all tests: |r| < .21, p > .16). Full statistical 

results are presented in supplementary table 1.1. 
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fMRI efficiency analysis. In an effort to determine the minimum necessary scan 

length to detect experimental effects in groups of this size on the DPX task, we conducted 

a series of step-wise analyses. In the “B” cues minus “A” cues contrast (illustrated in 

Figures 4 and S1), the results showed remarkable consistency across all three analysis 

conditions (Dice coefficients of 0.72, 0.73, and 0.89). However, in the HC > SZ contrast 

illustrated in supplementary figure 1.2, there were more varied results. There were no 

significant group differences in the 12-minute analysis. In the 18-minute analysis, there 

was some overlap in group differences in activation in the left frontal lobe with the 24-

minute analysis; however, the 18-minute results included left parietal activation not seen 

in the 24-minute analysis (Dice coefficient of 0.40). 

 To rule out the possibility that the efficiency results were driven by changes as the 

study progressed as opposed to the amount of data in the analysis, we performed a sliding 

window analysis. Specifically, we analyzed two blocks at a time according to the 

following chunks: first and second, second and third, third and fourth. Again, the 

significant activation associated with the “B” cues greater than “A” cues contrast retained 

its consistency and had Dice coefficients greater than .78 among them. The maps of HC 

and SZ activation to this contrast are presented in supplementary figure 1.3.  

 

Discussion 

 The Dot Pattern Expectancy task (DPX) was previously established as a reliable 

measure of goal maintenance that can discern specific deficits in SZ compared with HC 

(Henderson et al., 2012; Jones et al., 2010; Strauss et al., 2013). The current study is the 

first to employ fMRI and the DPX to determine the neural underpinnings of goal 
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maintenance deficits in SZ compared with HC and was able to do so across five sites with 

different scanners. The study replicated previous behavioral findings (MacDonald, 

Carter, et al., 2005) of a specific deficit in goal maintenance in SZ compared with HC 

and found the deficit to be consistent across blocks. The study also replicated the findings 

from previous research with drug-naïve patients performing the expectancy AX task 

(MacDonald, Carter, et al., 2005) who showed reduced activity in middle frontal cortex 

during goal maintenance. The current study showed lower activity in SZ compared with 

HC in an executive/attention network consisting of bilateral frontal pole/MFG as well as 

left posterior parietal lobe. Finally, a recommended scan length was estimated for future 

studies employing samples of a comparable size. 

 In terms of behavior, SZ demonstrated the hypothesized specific deficit in goal 

maintenance previously observed on the DPX (Henderson et al., 2012; Jones et al., 2010) 

and the expectancy AX ( MacDonald et al., 2003; MacDonald, Carter, et al., 2005; 

Servan-Schreiber et al., 1996). This group difference was first observed after only 6 

minutes (40 trials) and it remained throughout the administration (24 minutes; 160 trials 

total). This result suggests the DPX is sufficiently sensitive for efficient studies of goal 

maintenance in this population. Further, the analysis suggests this is not merely the result 

of differential effects of learning or fatigue, allowing us to examine the efficiency of the 

imaging analysis with knowledge that the behavioral effect was consistent over time. For 

reference, a previous imaging study of expectancy AX in schizophrenia patients 

(MacDonald, Carter, et al., 2005) had a task duration of 40 minutes as compared to 24 

minutes for the longest analyses conducted in the current study. 
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FMRI analyses showed that HC had larger activation differences between “B” 

cues and “A” cues compared with SZ in bilateral MFG. These results agree with previous 

literature with regard to the MFG’s importance in successfully utilizing goal maintenance 

and SZs’ deficits in that region. Hypofrontality in left (MacDonald & Carter, 2003) and 

right (MacDonald, Carter, et al., 2005; Perlstein, Dixit, Carter, Noll, & Cohen, 2003) 

MFG has been reported in SZ during the performance of the expectancy AX task. 

In addition to group differences in bilateral MFG, differences in superior/posterior 

parietal lobes were also detected. There are several possible mechanisms that could lead 

to the increased parietal activation during B cues compared with A cues. The dorsal 

visual stream has been associated with processing spatial relationships (including dot 

patterns; Vogels, Sary, Dupont, & Orban, 2002), and therefore HC’s increased activation 

to B cues may reflect increased processing related to identifying or categorizing the 

group of “B” patterns, that are less familiar, compared to patients. These regions are also 

associated with visuomotor control (Milner & Goodale, 2012), and an alternative 

explanation is that B cue-related activity may reflect the preparation needed to inhibit a 

prepotent response, activity that is reduced in schizophrenia. A third explanation, which 

is not entirely distinct, is that this difference in posterior parietal activation reflects its 

role in a more general executive functioning network (Blackman et al., n.d.; Minzenberg, 

Laird, Thelen, Carter, & Glahn, 2009). This region’s covariation with dorsolateral 

prefrontal cortex reflects the demands for the representation and maintenance of 

contextual goals. The relative contributions of visual cognitive, response preparation, and 

goal maintenance functions to the parietal activation observed during the DPX are in 

need of further clarification. Together with MFG, these regions are consistent with a 
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visuospatial reasoning and attentional control network (Dosenbach et al., 2007; Laird et 

al., 2011). This network is thought to be integral to top-down control and managing 

responses given changing demands. Left MFG and posterior parietal cortex compose an 

executive network has been associated with language tasks, as well as working and 

explicit memory tasks. SZ have demonstrated disrupted functional (Deserno, Sterzer, 

Wüstenberg, Heinz, & Schlagenhauf, 2012) and white matter connectivity (Wang et al., 

2013) in this network, and these changes were associated with deficits in working 

memory and performance IQ, respectively. Functional dysconnectivity in a frontoparietal 

network has previously been observed in SZ and their healthy first-degree relatives while 

performing the expectancy AX task (Poppe, Carter, Minzenberg, & MacDonald, 2015). 

Although the present study does not identify a network per se, it does implicate the same 

regions as being deficiently activated by SZ.  

 We also observed group differences in bilateral frontal pole, a region that has 

been shown to underpin the maintenance, monitoring, and processing of subgoals during 

a working memory task (Braver & Bongiolatti, 2002; Koechlin, Basso, Pietrini, Panzer, 

& Grafman, 1999). The frontal pole is theorized to perform this action as one facet of a 

cascading executive system whereby information from the environment provides 

contextual cues that are interpreted and acted upon to achieve some goal (Koechlin & 

Summerfield, 2007).  

 The results observed in the present study were robust to site effects. No 

significant effects of site were observed in the fMRI analyses. This finding highlights the 

practicality of combining imaging data from multiple sites, thereby allowing for larger 

sample sizes in fMRI patient studies. 
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 The efficiency analyses undertaken to establish a recommended scan length for 

future fMRI studies of the DPX task with similar sample sizes found that 18 minutes of 

scanning is required to observe group differences. However, the within-group task 

activation patterns seen in the full 24 minutes could be observed almost undiminished in 

half that time. It was further determined that these effects are unlikely due to changes in 

the scanning session over time, as there were few if any differences among a set of three 

sliding window analyses employing two blocks of data each. 

 

Limitations. Previous research (Lesh et al., 2013; A. W. MacDonald, Carter, et 

al., 2005) demonstrated an association between BOLD activation in dlPFC/MFG and 

disorganization symptoms in SZ, but no such association was observed in the current 

study. However, other studies of the AX-CPT in schizophrenia either did not observe a 

correlation between dlPFC activity and disorganization symptoms (MacDonald & Carter, 

2003; Niendam et al., 2014; Yoon et al., 2008) or did not report any such correlations 

(Barch et al., 2001; Holmes et al., 2005; Lesh et al., 2015; Perlstein et al., 2003). 

Likewise, no association between BOLD activation and accuracy on the DPX task was 

observed.  

 

Conclusions and future directions. The present study, the first imaging study of 

the DPX task in schizophrenia, provides support for the task as a cross-site probe of goal 

maintenance-related activity of the MFG and other related executive control regions. It 

replicated previous studies showing a specific deficit in goal maintenance in 

schizophrenia. The imaging analyses replicated previous findings of MFG hypoactivation 
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and also found significantly less parietal activation in addition to frontal regions when 

comparing SZ with HC on context-intensive trials of the DPX task. This was also a multi-

site study that incorporated data from five sites and different scanners and found no 

significant effects of site in the imaging analyses. The behavioral and imaging efficiency 

analyses showed that the DPX is an efficient tool for assessing goal maintenance ability 

in imaging studies. Of interest for future research are questions about the reliability of the 

BOLD activations and group differences observed in the current study, as well as whether 

there are functional connectivity differences that may explain performance on the DPX 

task. Also of import is whether there is plasticity in the regions or networks that underlie 

goal maintenance and whether such regions and networks may act as targets for training 

or pharmacological treatment in the future. Treatments such as cognitive remediation 

(Ramsay & Macdonald, 2015) or cognitive enhancing medication (Nikiforuk, Hołuj, Kos, 

& Popik, 2016) might be capable of ameliorating impaired network activity underlying 

goal maintenance deficits in SZ, which could then improve goal maintenance ability and 

functional outcomes. We hope this work is useful in future endeavors to answer those 

questions. 
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Table 2.1 Demographic and Clinical Characteristics. 

 Group  
 Patients Controls Test 

N 47 56  
Mean Age (yrs) 35.6 (12.1) 34.8 (11.9) t(101) = 0.33 
% Male 74.5 75 χ2(1) = 0.00 
% Caucasian 55.3 62.5 χ2(1) = 0.29 
% Right-Handed 85.1 83.9 χ2(1) = 0.00 
Mean Education (yrs) 13.9 (2.0) 15.3 (2.6) t(101) = -2.89* 
Premorbid 
Functioninga 

36.3 (9.6) 37.5 (10.6) t(99) = 0.58 

Mean Parental 
Education (yrs) 

14.0 (2.5) 13.8 (2.7) t(92) = 0.33 

BPRS Total 40.3 (10.1) n/a  
     Positive Symptomsb 9.6 (5.3) n/a  
     Negative 
Symptomsc 

7.2 (2.3) n/a  

     Disorganizationd 5.0 (1.7) n/a  
Antipsychotic Meds    
Typical/Atypical/None 2/44/1 n/a  
 
Note: BPRS refers to the Brief Psychiatric Rating Scale. Parenthetical numbers following 
means represent standard deviations. Asterisks following test statistics represent p < .05.  
a Wechsler Test of Adult Reading (Wechsler, 2001)  
a BPRS items 8, 9, 10, and 11. 
b BPRS items 13, 16, 17, and 18. 
c BPRS items 12, 14, 15, and 24. 
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Figure 2.1. DPX Behavioral Results. 
 

 
A. d’-context scores on the DPX task. B. Error rates separated by group, trial type. Error 

bars represent standard error of the mean.   
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Figure 2.2. Behavioral Efficiency Analysis. 
 

 
Error rates on the DPX task calculated from four amounts of data. The first figure 

represents only the first block (40 trials) of data, the second represents the first and 

second blocks (80 trials), et cetera.   
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Figure 2.3. Whole brain fMRI GLM results. 

 
Beta values represent B Cues - A Cues contrast. Regions with greater activation in HC 

than SZ (3 clusters). Cluster 1 had a peak voxel Z score of 4.28, volume = 11,056 mm3, 

and MNI coordinates (x,y,z) of 26, 54, 14. Cluster 2 had a peak voxel Z score of 4.43, 

volume = 30,664 mm3, and coordinates of -40, 4, 12. Cluster 3 had a peak voxel Z score 

of 4.31, volume = 23,408 mm3, and coordinates of -50, -40, 22.  
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Figure 2.4. fMRI Efficiency Analysis, B Cues – A Cues. 
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Top portion displays SZ activation (3 clusters). Cluster 1 had a peak voxel Z score of 

4.39, volume = 10,152 mm3, and MNI coordinates (x,y,z) of -50, 12, 42. Cluster 2 had a 

peak voxel Z score of 6.09, volume = 39,408 mm3, and coordinates of -44, -82, -10. 

Cluster 3 had a peak voxel Z score of 5.91, volume = 48,856 mm3, and coordinates of 38, 

-76, -16. The bottom displays HC activation(1 cluster). That cluster had a peak voxel Z 

score of 6.78, volume = 495,912 mm3, and coordinates of 46, -66, -14. The scan lengths 

that define the color of activation are cumulative, such that 18 minute data includes 12 

minute data, and 24 minute data includes the previous two.  

 
 
 
  

 

  



     
 
 

59 

 

Chapter 3: Tonic and Dynamic Functional Network Connectivity of Salience and 

Executive Networks: Relation to Goal Maintenance Deficits in Schizophrenia  

 

Foreword: This chapter was written in collaboration with Angus W. MacDonald and 

Deanna M. Barch, who provided edits and revisions to earlier drafts. The data collection 

methods in this chapter are largely redundant with those outlined in Chapter 2. Methods 

specific to this chapter can be found under within this chapter as well as in appendices 1 

and 2. 

 

Abstract 

Cognitive control deficits in schizophrenia patients (SZ) may be caused, at least in part, 

by neural dysconnectivity. Recently, the salience (SN) and executive control (ECN) 

networks have been proposed to facilitate cognitive control through complementary 

mechanisms, and SZ have shown abnormal connectivity in those networks. Some 

evidence suggests coordination between the ECN and SN is critical for cognitive control, 

in addition to functioning of the networks individually. This study is the first to examine 

the dynamic relationship between brain networks and their relationship with goal 

maintenance in SZ and healthy controls (HC). Fifty-four HC and 46 SZ performed the 

dot pattern expectancy (DPX), a goal maintenance task, while functional magnetic 

resonance images were acquired. Data underwent group independent component analysis 

followed by tonic (tFNC) and dynamic (dFNC) functional network connectivity to 

examine stationary and dynamic temporal relationships between networks. Groups 

differed on five tFNC connections, and tFNC strength between SN and right ECN 
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predicted DPX performance in SZ. dFNC between left and right ECN components was 

significantly related to the DPX task demands. Groups differed in connectivity strength 

here (HC>SZ), which predicted DPX performance in HC. These tFNC findings suggest 

SZ fails to signal salient task information from the SN to the ECN. Likewise, the 

dynamic coordination between left and right ECN during task completion predicted goal 

maintenance in HC and was deficient in SZ, which argues for the importance of the 

transitory interaction between multiple networks for successful cognitive control in HC 

and SZ. 

 

Introduction 

 Schizophrenia patients (SZ) exhibit deficits in various cognitive abilities, and 

these deficits represent some of the most debilitating and difficult to treat symptoms 

(Choi et al., 2013; Gold & Harvey, 1993). Schizophrenia is hypothesized to be a disorder 

of dysconnectivity, and this disrupted communication amongst brain regions is thought to 

cause the cognitive deficits observed in the disorder (see Zhou, Fan, Qiu, & Jiang, 2015 

for review). One construct encompassing many of the cognitive domains affected by 

schizophrenia is cognitive control, which includes several related control functions 

including directing attention to relevant stimuli, ignoring irrelevant events, retrieving 

important information from memory, and maintaining and utilizing that information to 

achieve some goal (Suchy, 2009). 

 Two large-scale networks have been theorized to underpin cognitive control: the 

salience (SN) and central executive (ECN) networks (Menon, 2011; Seeley et al., 2007). 

The SN is made up of regions including anterior insula, dorsal anterior cingulate cortex, 
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anterior prefrontal cortex, medial superior frontal cortex, and frontal operculum, and it is 

thought to detect and orient to meaningful stimuli and to mediate the flow of salient 

information to networks involved with attentional processing (Menon & Uddin, 2010). 

The ECN is composed of middle frontal gyrus (MFG) and lateral parietal cortices 

(Dosenbach et al., 2008), and it is theorized to update attention and exert top down 

control of behavior in response to feedback.  

ECN and SN have long been associated with working memory and cognitive 

control (Nowrangi, Lyketsos, Rao, & Munro, 2014) , and previous studies found that the 

strength of functional connectivity within them predicts performance and trait measures 

(Seeley et al., 2007; Song et al., 2008). Structures within the ECN and SN have been 

hypothesized to form a cognitive control loop that guides behavior during a task (Miller 

& Cohen, 2001), and SN structures play a critical role in activating the ECN and 

recruiting networks based on task demands (Sridharan, Levitin, & Menon, 2008).  

Patients with schizophrenia have demonstrated several deficits in these networks 

in previous research. Grey matter volume deficits in SN structures correlate with severity 

of reality distortion symptoms in SZ (L Palaniyappan, Mallikarjun, Joseph, White, & 

Liddle, 2011), and resting state functional connectivity between SN and ECN is reduced 

in SZ (Manoliu et al., 2014; Moran et al., 2013; Lena Palaniyappan, Simmonite, White, 

Liddle, & Liddle, 2013). Although the interplay between ECN and SN may be related to 

individual differences in cognitive control and to cognitive control deficits in SZ, few 

studies have examined this relationship during the completion of cognitive tasks or 

assessed how the relationship between these networks changes with task demands, such 

as goal maintenance.   
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  Goal maintenance refers to the ability to maintain, manipulate, and utilize 

context- and goal-relevant information during the performance of a task and has been 

shown to be impaired in SZ (Jones et al., 2010; Servan-Schreiber et al., 1996) and their 

unaffected first-degree relatives (Delawalla et al., 2008; MacDonald et al., 2003). 

Activation studies of healthy controls (HC) during goal maintenance tasks have found 

bilateral MFG activation (Barch et al., 2001; MacDonald & Carter, 2003). SZ have 

demonstrated reduced activity in left (MacDonald & Carter, 2003) and right (MacDonald, 

Carter, et al., 2005; Perlstein et al., 2003) MFG compared with HC during goal 

maintenance in activation studies. An independent component analysis (ICA) of goal 

maintenance found the time course of a left MFG and left posterior parietal lobe 

component was less related to the task demands in SZ than in HC (Poppe et al., 2015). 

These extant findings shed light on dysfunction within several regions involved with the 

ECN and SN, but not how these networks interact. In addition to FC, which finds brain 

networks based on temporal similarity, functional network connectivity (FNC) measures 

how those networks are themselves temporally related. Tonic FNC (tFNC; Jafri et al, 

2008) quantifies the stationary temporal relationship between networks across an entire 

scan, whereas dynamic FNC (dFNC; Sakoǧlu et al., 2010) measures how the relationship 

between networks changes over time. 

The tools of tFNC and dFNC are suited to answer questions about the ECN and 

SN and their involvement with goal maintenance deficits because they can measure both 

how networks are related across an entire scan (tFNC) and how that relation updates 

throughout a scan (dFNC). Both tFNC and dFNC have been employed in SZ imaging 

studies, although often these studies scan subjects at rest (Damaraju et al., 2014; He et al., 
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2015; Magnuson et al., 2015; Meda et al., 2012).  To our knowledge, no study has 

examined how networks interact in schizophrenia during goal maintenance. The present 

study goals were to assess tFNC and dFNC of networks derived using group ICA in SZ 

and HC during the Dot Pattern Expectancy task (DPX; MacDonald, Goghari, et al., 

2005), a measure of goal maintenance. It is expected that SZ will exhibit deficient tFNC 

and dFNC involving ECN and SN components and that the extent of dysconnectivity will 

predict impairment on the DPX task. 

 

Method 

Subjects. The data for the current study were collected under the protocol of the 

Cognitive Neuroscience Test Reliability and Clinical applications for Schizophrenia 

consortium (CNTRACS), which includes five data collection sites: University of 

California at Davis, Maryland Psychiatric Research Center at the University of Maryland 

(MPRC), Rutgers University, University of Minnesota, and Washington University in St. 

Louis. The protocol for subject recruitment has been detailed previously (Henderson et 

al., 2012), and the current sample is the same as that used in previous studies (Ragland et 

al., 2015; Silverstein et al., 2015). The final sample consisted of 100 subjects (54 HC, 46 

SZ). As displayed in supplementary table 1.1, groups did not differ on any demographic 

variable with the exception of education. Groups were not significantly different with 

regard to absolute or relative head movement after removing subjects (all p > .21). 

Specific inclusion/exclusion details for the current sample can be found in appendix 1. 
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Dot pattern expectancy task. Subjects performed four blocks of 40 trials of the Dot 

Pattern Expectancy task (DPX). Each trial was composed of cue-probe pairs of 500 ms 

duration with inter-stimulus intervals ranging from 2500 to 3500ms and inter-trial 

intervals ranging from 2500 to 12500ms. A particular dot pattern was designated as a 

valid cue (“A”) and all other cues were invalid (“B”). Likewise, one dot pattern was 

designated as a target probe (“X”) and all other probes were non-target (“Y”). Subjects 

were instructed to respond with a “target” button press in the event that an “A” cue was 

followed by an “X” probe and to respond with a “non-target” button press in all other 

circumstances. The three other possible combinations of cues and probes (“A-Y”, “B-X”, 

and “B-Y”) enabled the identification of a specific deficit in a subject’s ability to 

maintain goal-relevant information throughout a trial. Twenty-four trials (60%) were A-X 

trials, six trials (15%) were A-Y trials, six trials (15%) were B-X trials, and four trials 

(10%) were B-Y trials.  

 

fMRI data acquisition and preprocessing. Scanners used for data acquisition consisted 

of three Siemens Trio 3 Tesla scanners (Minnesota, Washington University, UC Davis), 

one Siemens Allegra 3 Tesla (Rutgers), and one Phillips 3 Tesla scanner (MPRC). A 

standard acquisition and preprocessing procedure was employed. Details can be found in 

appendices 1 and 2.  

 

Independent component analysis and functional network connectivity. Following 

preprocessing, functional data were analyzed with a meta-ICA pipeline described in 

detail in previous studies (Poppe et al., 2013; Wisner et al., 2013). Briefly, the approach 
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consists of running probabilistic group ICA multiple times within the Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components tool 

(MELODIC; Christian F. Beckmann & Smith, 2004), each time randomizing the subject 

order in which the data are entered into MELODIC. A final ICA is then performed with 

the results of the previous step used as input data. The choice for the number of 

repetitions of the lower level ICAs (25) as well as the number of components specified at 

each stage (60) was based on previous research demonstrating optimization using these 

parameters on various metrics (Poppe et al.).  

 The spatial maps resulting from the meta-ICA were then used in dual regression 

(Beckmann, Mackay, Filippini, & Smith, 2009) to produce subject-specific spatial maps 

and time courses for each of the 60 components. Artifactual and noise components were 

next identified by visual inspection and removed from subsequent analyses. These noise 

components represented head motion, white matter, and ventricular activity. Twenty-five 

components were removed, leaving 35 components in the following analyses. 

 

Task-relation of independent components. First, correlations were calculated between 

the subject-specific time courses for each component produced by dual regression and the 

time course of B cues from the DPX task for each subject. This resulted in 35 correlation 

coefficients per subject. These correlation coefficients were then Fisher-z transformed 

(Fisher, 1915), and one-sample t  tests were performed to determine which correlation 

values were significantly different from zero. The p values of these t tests were corrected 

for multiple comparisons by multiplying each p value by the number of tests (35). For all 

significant comparisons, independent samples t tests were performed between subject 
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groups to determine if groups differed in the extent to which the component correlated 

with the DPX task time course. The p values from these t tests were corrected by 

multiplying each value by the number of tests. 

 

Tonic functional network connectivity. The tFNC analysis was based on previous work 

(Jafri et al., 2008). The process involved calculating the maximal constrained lagged 

correlation between each pair of component time courses for each subject. First, time 

courses were interpolated using a cubic spline (Forsythe, Moler, & Malcolm, 1977) by a 

factor of four, allowing for sub-TR temporal precision. Next, Pearson product moment 

correlation coefficients were computed between each pair of components at each “level” 

of lag between -5 and 5 seconds. This resulted in 21 correlations for each pair of 

components, and the largest of those correlations in absolute magnitude was selected as 

the final correlation value between those two components for that subject. Correlation 

values were then transformed using a Fisher z transform to allow statistical procedures to 

be performed across subjects. 

 To determine which pairs of components were significantly correlated, one-

sample t tests were performed for each component pair across groups. The p values for 

these tests were corrected by multiplying by the number of component pairs (35 choose 2 

combinations, or 595), with p values that remained less than .05 being considered 

associated with significant differences.  To detect group differences on the magnitude of 

correlation between component time courses, independent samples t tests were performed 

between HC and SZ for each pair of components. The p value from each of these tests 
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was recorded and multiplied by 595 to correct for multiple comparisons. Those p values 

that remained less than .05 were determined to signify significant group differences. 

 To determine if tFNC predicted performance on the DPX task, tFNC values of 

any connection determined to be significantly different between groups were correlated 

with a measure of task performance called d’ Context (Servan-Schreiber et al., 1996). 

Correlation coefficients were also calculated between these tFNC values and psychiatric 

symptom measures in SZ. We next assessed whether tFNC connections with group 

differences were significantly correlated with psychotic symptom measures in SZ. 

 

Dynamic functional network connectivity. dFNC, based on the work of Sakoǧlu and 

colleagues (2010), is a method of evaluating how the relationship between any two 

components changes over the course of a scanning session. First, for each subject and 

each component pair, the optimal lag value obtained during tFNC is used to pre-lag the 

components relative to one another. Next, a sliding window approach is used to calculate 

correlation coefficients along the length of the scan. The width of this window was set at 

15 seconds, and the window moved 4 seconds at each step. This procedure is explained in 

supplementary figure 2.1. The dFNC analyses results in a set of correlations (one for each 

15 second sliding window) between each pair of networks identified in the initial ICA.   

To determine if variation in these dFNC values across the sliding windows of the 

task were related to the DPX task, a task demands metric was produced. First, the boxcar 

function of B cue onsets from the DPX task was convolved with a double gamma 

hemodynamic response function. Next, a moving average of this B-cue timeseries was 

computed with the same parameters as the sliding window utilized in dFNC. This B-Cue 
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task demand time-series for each subject was then correlated with each component pair’s 

dFNC values. This resulted in 595 correlation values for each subject, each indicating the 

extent to which each component pair’s dFNC values ere associated with that subject’s B-

Cue task demands. One sample t tests were conducted across subjects for each of these 

595 component pairs, and the p values from these t tests were multiplied by 595 to 

correct for multiple comparisons. Any tests whose p values remained less than .05 were 

considered statistically significant. Independent samples t tests were conducted between 

subject groups for any component pair that was determined to be statistically significant 

in the previous step. The p values from these tests were multiplied by the number of 

independent samples t tests conducted to correct for multiple comparisons.  

In order to ensure that results were not spurious, a resampling technique was used to 

produce a null distribution of p values. This distribution was created by randomizing the 

task strength function that was matched with each set of dFNC values, such that one 

subject’s dFNC values were correlated with another subject’s task demands values. This 

process was repeated 10,000 times. The obtained p value from the independent samples t 

test described above was then compared to this distribution of p values. 

We next assessed if performance on the DPX task was related to the extent to which 

dFNC was correlated with B-Cue task demands. First, the correlation coefficients 

between dFNC and task demands were transformed with a Fisher z transform and then 

correlated with the d’ context values described previously. Last, we determined if the 

extent to to which dFNC correlated with task demands was itself correlated with BPRS 

symptom measures in SZ.  
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Results 

Task-relation results. As presented in table 3.1 and in supplementary figure 2.2, 

19 components were found to be significantly linearly related to the DPX B-cue task time 

line across subject groups. Groups did not differ significantly on any of these components 

after multiple comparison correction (all corrected p > .05). 

 

Tonic functional network connectivity results. Of all component connections, 

556 (93%) had tFNC values that were significantly different from zero, as presented in 

figure 3.1. Due to the high proportion of significant connections, all connections were 

tested for group differences in tFNC magnitude. As shown in table 3.2 and figure 3.2, 

five connections were found to be significantly different between HC and SZ. In all 

cases, the FNC values were positive and HC had higher magnitude FNC than SZ did.  

Each of the connections that showed group differences was tested to determine if 

the strength of the connection was correlated with d’ Context, a signal detection measure 

of task performance on the DPX task. These correlations were conducted in each subject 

group separately, resulting in ten total correlation tests. Of the five connections, only the 

connection between a right ECN component and a SN component was significantly 

correlated with d’ Context after correcting for multiple comparisons, and this relationship 

only existed in SZ, as displayed in figure 3.3A. All other correlations were non-

significant (all corrected p’s > .05). No connection was significantly related to BPRS 

symptom measures (all p’s > .05). 
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Dynamic functional network connectivity. There was only one connection that 

was significantly related to the DPX task demands metric after multiple comparisons 

correction. As shown by the green connection in figure 3.2, this connection involved 

components 9 and 34, which are left and right ECN components involving bilateral MFG 

and bilateral posterior parietal lobes (Brodmann areas 6, 7, 8, and 40). The average 

correlation between these components’ dFNC and DPX task demands was 0.03 with a 

standard deviation of 0.08 (t(99) = 4.07, p (corrected) < .05). A resampling procedure 

showed that the obtained r value was smaller than 9993 out of 10,000 values in the null 

distribution, corresponding to a p value of .0007. As shown in supplementary figure 3.3, 

HC (M = .05, SD = .08) had significantly higher correlations in this connection than did 

SZ (M = .01, SD = .08; t(98) = 2.28, p = .012). As displayed in figure 3.3B, task 

performance was predicted by the extent to which the dFNC of this connection correlated 

with the DPX task time course for HC but not for SZ. The dFNC between the ECN 

components did not correlate with any BPRS symptom measures in SZ (all p’s > .05).  

 

Discussion 

The current study utilized group ICA as well as tonic and dynamic functional 

network connectivity to probe the neural underpinnings of goal maintenance performance 

in schizophrenia. This represents the first study to examine the dynamic interrelationships 

between brain networks and assess their task-relatedness in schizophrenia during the 

performance of the DPX task. Measuring the associations between networks and how 

those associations changed over the course of the scan allowed an examination of how 

the ECN and SN operated during a goal maintenance task. The results of the current 



     
 
 

71 

 

study shed new light on how ECN and SN operate in HC and how that operation is 

disrupted in SZ.  

 

Task-relatedness. Nineteen components’ time courses were found to be 

significantly related to the DPX task timeline in both groups, including left and right 

ECN components; however, groups did not differ in the extent of task-relatedness of any 

of these components. These results differ from those of Poppe and colleagues (2015), 

who found that the extent to which a right ECN component correlated with a goal 

maintenance task’s timeline was significantly reduced in SZ relative to HC. Although SZ 

in the current study did exhibit a lower correlation between right ECN and the DPX task 

timeline than HC, the difference in correlation was non-significant. This discrepancy may 

owe to differences in task characteristics between the expectancy AX task and the DPX 

task, in that the dot patterns in the DPX engaged the more spatial right hemisphere than 

did the letters in the AX task. Additionally, analysis procedures differed somewhat 

between the two studies, the largest difference being the utilization of separate analysis 

software employing different ICA algorithms. Considering the FNC results in the current 

study, the lack of any one component’s significant group difference in task-relatedness 

may demonstrate that temporal relationships between networks are more important to 

task performance than the activity of any singular region or network. This idea may also 

help to explain the seemingly contradictory findings of hyper- and hypofrontality in SZ 

activation studies. 
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Tonic functional network connectivity. Five connections between eight 

components were found to be significantly different between subject groups. In each 

case, the strength of the connection was higher in HC than in SZ. Of note, a connection 

between right ECN and a SN component was found to be significantly stronger in HC 

than SZ. Recent findings have highlighted the importance of communication between 

ECN and SN. Cohen and colleagues (2014) found that functional connectivity between 

ECN and SN increased during high cognitive control conditions of a working memory 

task. White and others (2010) found a strong direct connection between ECN and SN in 

both SZ and HC but did not find group differences. Wallis and colleagues (2015) found 

the SN to be transiently active during specific portions of a working memory task, which 

led them to conclude that the SN is more dynamic in its role in ongoing cognitive control. 

The results of the current study suggest that SZ may have deficits in representing salient 

stimuli and conveying that information to ECN for processing. 

Although previous studies have theorized that the SN (especially insula) is 

responsible for switching between the antagonistic ECN and DMN (Menon & Uddin, 

2010; Sridharan et al., 2008), the results of the present study do not support that view. For 

example, the tFNC connection between SN and posterior DMN (components 40 and 4 

respectively) was one of the few that was not significantly different from zero across 

groups.  

 The unilateral ECN connection with SN may derive from the theorized specificity 

of functioning of the right prefrontal cortex compared with left. There is evidence for a 

process-based organizational structure for the prefrontal cortex in addition to the domain-

based structure of primarily verbal functions associated with left hemisphere and spatial 
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functions associated with right hemisphere (Ambrosini & Vallesi, 2015; Stuss, 2011). In 

this model, the left PFC has a task-setting role in which it is transiently engaged in 

forming and selecting task rules and disregarding irrelevant stimuli, whereas the right 

PFC has a monitoring role in which it is maintaining representations important to the task 

demands. Given this role for right PFC, the association between right ECN and SN may 

indicate a continuous conveyance of salient information to the right ECN for processing.  

 

Dynamic functional network connectivity. The dFNC analysis determined that 

the coordination between left and right ECN components was significantly related to the 

DPX task timeline, and the strength of this correlation was significantly lower in SZ than 

in HC. This suggests that SZ had difficulty coordinating the activity of the two CENs to 

meet task demands. As indicated by the task accuracy results, the root of this difficulty 

may lie in the dysconnectivity between right ECN and SN.  

Previous studies have found associations between right and left ECN. Assaf and 

colleagues (2010) found that the strength of tFNC between left and right ECN predicted 

performance on a semantic memory task in healthy subjects, while Arbabshirani and 

Calhoun (2011) found an increase in the variability of tFNC in SZ compared with HC. 

However, as the current study demonstrates, the overall correlation between left and right 

CENs may not be critical for cognitive control, but rather it is the transient coordination 

of the two networks when needed by task demands.  

 

FNC correlated with task accuracy. The strength of the connection in the 

current study between SN and right ECN was correlated with performance on the DPX 
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task in SZ but not in HC.  Meanwhile, the extent to which the dFNC between left and 

right CENs correlated with the DPX task timeline predicted task performance in HC, but 

not in SZ. This set of results implies that SZ have difficulty both communicating salient 

information to ECN and also processing that information within ECN. The lack of 

significant dFNC task performance prediction may mean that SZ’s dysfunctional tFNC 

between ECN and SN so disrupted their goal maintenance capability that the effect of 

dFNC between ECN components was suppressed. In other words, one speculative 

hypothesis is that adequate stable communication of salience from SN to ECN is a 

necessary but not sufficient prerequisite for accurate DPX performance, and if that 

threshold is passed then performance depends on the dynamic cooperation of left and 

right CENs during task completion. Thus, if at least some individuals with schizophrenia 

had impairments in the connectivity between SN and ECN, it may have precluded the 

ability to see the contribution of connectivity between left and right ECN to performance. 

 

Conclusions and future directions. The current study is the first to examine the 

dynamic associations between brain networks derived using group ICA of fMRI data 

collected from SZ and HC during the performance of the DPX task. It was found that SZ 

possessed significantly lower tFNC between right ECN and SN and that those values 

predicted task performance on the DPX task in SZ but not HC. The dFNC analysis 

revealed that the extent to which dFNC between left and right ECN was correlated with 

the DPX task time course was significantly lower in SZ than in HC. This correlation 

predicted task performance in HC but not SZ. These results suggest that both stable 

connectivity between ECN and SN as well as dynamic cooperation between left and right 
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ECN contribute to top down cognitive control during goal maintenance. Of interest for 

further research are questions of the reliability of these FNC results. Additionally, a 

future direction may be to make the tFNC between right ECN and SN a target for training 

or pharmacological treatment.  
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Table 3.1. Components Significantly Correlated with Time Course of DPX B Cues 
Across Groups. 
 

Comp. Regions Brodmann 
Areas 

 Mean 
Correlation  t  p Value  Adjusted 

p Value 

28 R,L Occipital 17,18 0.11 14.42 4.5*10-26 1.6*10-24 

13 R,L Sup Parietal, Lateral 
Occipital 7,40 0.10 15.55 2.5*10-28 8.9*10-27 

24 R,L Occipital, Lingual G 18,19 0.08 12.22 1.7*10-21 6.1*10-20 
18 R,L Superior Occipital 7,19 0.06 10.28 2.7*10-17 9.6*10-16 

34† 
R Middle FG, 
Angular/Posterior 
Supramarginal G 

6,8,40 0.06 7.94 3.2*10-12 1.1*10-10 

51 L Inferior/Middle 
Temporal Lobe 20,21,37 0.04 6.47 3.8*10-09 1.3*10-07 

3 L Postcentral G 2,3,40 0.04 4.97 2.9*10-06 1.0*10-04 

56 R Inferior/Middle 
Temporal Lobe 20,21,37 0.04 6.13 1.8*10-08 6.4*10-07 

9† 
L Middle FG, 
Angular/Posterior 
Supramarginal G 

6,8,40 0.03 4.85 4.7*10-06 1.6*10-04 

43 R,L Frontal Pole 10 0.02 4.80 5.6*10-06 2.0*10-04 
5 R,L SFG  6 0.02 3.58 5.4*10-04 1.9*10-02 

22 R,L Middle Temporal G 21,22,39 -0.05 -8.18 9.7*10-13 3.4*10-11 

17 Anterior Cingulate 
Cortex, Paracingulate 9,10 -0.04 -8.90 2.7*10-14 9.5*10-13 

44 R,L Temporal Pole 21,38,47 -0.03 -6.33 7.1*10-09 2.5*10-07 

52 R,L Frontal Pole/Sup 
Frontal 8 -0.03 -5.75 1.0*10-07 3.5*10-06 

25 Anterior Cingulate 
Cortex, Paracingulate 10,24,32 -0.03 -5.44 3.9*10-07 1.4*10-05 

7 R,L 
Precentral/Postcentral G 3,5,6 -0.02 -3.72 3.3*10-04 1.1*10-02 

27 Posterior Cingulate 
Cortex 23,24,31 -0.02 -3.50 6.9*10-04 2.4*10-02 

50 Frontal Medial Cortex 10,32 -0.02 -3.75 3.0*10-04 1.0*10-02 

Note: DPX, dot pattern expectancy task; R, right; L, left; S, superior; F, frontal; G gyrus; 
Comp, component. P values correspond with one-sample t tests suggesting these 
correlations are significantly different from zero. Adjusted p values have undergone 
Bonferroni correction for multiple comparisons. Components in the top half of the table 
are positively correlated with the DPX task; components in the bottom half are negatively 
task-related. 
†, Hypothesized to be task-related a priori 
 
  



     
 
 

77 

 

Table 3.2. Component Connections with Groups Differences in Tonic Functional 
Network Connectivity 
 

        tFNC Value       

 Comp. Region BA HC SZ t p Adj. p 

                  

1       
0.40 

(0.17) 
0.25 

(0.13) 4.82 5.2*10-6 0.0031 

  2 
Intracalcarine C, 
Lingual G 18           

  3 Postcentral G 2,3,40           

2       
0.46 

(0.17) 
0.33 

(0.15) 4.11 8.2*10-5 0.049 
  3 Postcentral G 2,3,40           
  18 Occipital 18,19           

3       
0.44 

(0.18) 
0.29 

(0.15) 4.41 2.7*10-5 0.016 
  6 Precentral G  3,4,6           
  18 Occipital 18,19           

4       
0.37 

(0.15) 
0.19 

(0.17) 5.74 1.1*10-7 6.4*10-5 
  22 Superior Temporal G 21,22,39           
  36 Insula 13           

5       
0.47 

(0.16) 
0.34 

(0.14) 4.16 6.9*10-5 0.041 

  34 

Middle Frontal G, 
Angular/Posterior 
Supramarginal G 6,8,40           

  40 

Insula, Frontal 
Operculum, Superior 
Frontal G 13,8           

Note: C, cortex; G, gyrus; BA, Brodmann area; HC, healthy control; SZ schizophrenia 
patient; tFNC, tonic functional network connectivity; Adj. p, p values adjusted for 
multiple comparions; Comp., component. 
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Figure 3.1.  Functional network connectivity during the DPX task in SZ and HC. 

 

The heatmap represents the pairwise strength of the connection between component time 

courses, with warmer colors representing stronger positive connections. Black cells 

represent those connections whose strength was not significantly different from zero. The 

dendrogram above the plot was produced based on the tFNC between components with 

height of the dendrogram representing dissimilarity, and the colored bar beneath it 

represents groupings produced from that dendrogram. The network groupings, which 

roughly correspond with those of Ray and colleagues (Ray et al., 2013), are abbreviated 
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as follows:  E/I 1, Emotion/Interoception 1; E/I 2, Emotion/Interoception 2; SM 1, 

Primary Sensorimotor; SM 2, Secondary Sensorimotor; VIS, Visual; EXEC, 

Cognitive/Executive; DM, Default Mode. The colors of the component numbers indicate 

whether each component’s time course was positively (red), negatively (blue), or 

uncorrelated with the DPX task time course. SZ and HC were combined in this analysis 

because its intention was to identify which connections would be examined for group 

differences.  
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Figure 3.2. Group differences in tonic and dynamic functional network connectivity. 

 

Red arrows represent pairs of components between which tFNC differed significantly 

between groups. The arrows flow from the preceding component to the following 

component. Width of the red arrows represents the strength of the correlation, and all 

correlations are positive in magnitude. The green connection represents the pair of 

components whose dFNC significantly correlated with the DPX task time course for B 

Cues between groups. Groups also differed significantly in the strength of this 
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correlation, with healthy controls showing stronger positive correlation. The colors of the 

component numbers indicate whether each component’s time course was positively (red), 

negatively (blue), or uncorrelated with the DPX task time course. The colored sections 

containing groups of components refer to the groupings produced in figure 3.1.  Maps are 

presented in radiological view, so images are reversed left to right. 
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Figure 3.3. Functional Network Connectivity Predicts Task Performance 

 

A. tFNC between right ECN and SN predicts task performance in SZ. The degree to 

which the right central executive network correlated with the salience network predicted 

DPX task performance in schizophrenia patients as measured by d’ Context. B. Task 

modulation of left and right ECN dynamic FNC predicts task performance in HC. The 

extent that HC were able to coordinate the left and right ECN with the time course of B 

cues on the DPX task itself predicted task performance in HC but not SZ. 
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Chapter 4: Test-Retest Reliability of GLM, ICA, tFNC, and dFNC in Schizophrenia 

Patients and Healthy Controls: a Multi-site Imaging Study  

 

Foreword: This chapter was written in collaboration with Angus W. MacDonald, who 

provided edits and revisions to earlier drafts. The data collection methods in this chapter 

are largely redundant with those outlined in Chapter 2 as well as in appendices 1 and 2. 

Methods specific to this chapter can be found within this chapter’s method section. 

 

Introduction 

 There has been an increase in the last decade of the number of fMRI studies 

employing ICA to examine group differences between schizophrenia patients (SZ) and 

healthy controls (HC). There is also a growing trend of utilizing multisite data collection 

methodology to increase sample sizes in those studies. An important consideration when 

designing such a study is the reliability of the measure used to compare subject groups. It 

was the goal of the present study to assess and compare the reliability of four fMRI data 

analysis methods and to ascertain how susceptible each method is to data collection site 

effects and subject group effects. 

 The general linear model (GLM) is a common method of ascertaining which 

clusters of voxels in the brain show activity that fits a hypothesized pattern, usually the 

time course of a task performed in the MR scanner.  In a review of GLM reliability 

studies, Bennett and Miller (2010) found that the average reliability was in the “fair” 

range (about .50; Cicchetti & Sparrow, 1981; Fleiss, 1986), but there was a significant 

range of reliability estimates in the studies they reviewed. Some possible factors 
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influencing the reliability of GLM analyses in their review were the complexity of the 

task performed by subjects (i.e., finger tapping versus a working memory task), the 

sample size, whether the design was block or event related, the retest interval, and details 

of the analytic method such as which statistic from the GLM is chosen. What remains to 

be seen is how the reliability of GLM compares with that of other analysis techniques in 

the same sample and how those reliability estimates are affected by multiple data 

collection.  

 One such alternative data analysis technique is ICA, which finds patterns of 

voxels that share a similar time course of activity. There have been comparatively fewer 

studies of the reliability of ICA, and there have been especially few studies of task-based 

ICA. The studies that have used the intraclass correlation (ICC) to assess reliability of 

ICA have generally found fair reliability across components whether at rest (Blautzik et 

al., 2012; Guo et al., 2012; Wisner et al., 2013; X.-N. N. Zuo et al., 2010) or during a task 

(Poppe et al., 2013). However, no study has examined how the reliability of ICA changes 

across data collection sites or in patients with schizophrenia. 

 Two additional analysis techniques for which no reliability studies exist to our 

knowledge are tonic (tFNC; Jafri et al., 2008) and dynamic (dFNC; Sakoǧlu et al., 2010) 

functional network connectivity. These techniques examine the extent to which the time 

courses of components resulting from ICA, or any other clustering technique, are related. 

tFNC examines this relationship between pairs of components across the entire scan and 

results in a single value for each component pair representing the strength of their 

connection. dFNC calculates how the temporal relationship between component pairs 

changes over the course of a scan by calculating correlation coefficients within a sliding 
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window. This results in a series of estimates of connection strength between component 

pairs along the course of an fMRI scan. 

One complication of performing fMRI analyses with the intent to compare SZ 

with HC is that if the reliability of the measure is different in the two groups, it could lead 

to difficulty discerning true group effects. This results because reliability sets an upper 

bound on the observed relationship between variables. There is some reason to believe 

that schizophrenia patients may produce less reliable data than healthy controls. One 

piece of evidence is the finding of Manoach et al. (2001) that schizophrenia patients had 

less reliable activation data than healthy controls in “higher order cognitive” regions but 

equally reliable data in primary visual and other sensory regions. Maiza et al. (2011) 

found no differences between schizophrenia patients and healthy controls in regions 

underlying early language processing, potentially supporting the results of Manoach et al. 

It is possible that patient groups in general are less reliable, based on the findings of 

reduced test-retest reliability in an activation study comparing stroke patients and healthy 

controls (Chen & Small, 2007) as well as a resting state functional connectivity study of 

children with and without attention deficit hyperactivity disorder (Somandepalli et al., 

2015). 

In addition to multiple subject groups, analyzing data from multiple sites with 

different scanners may affect the reliability of a measurement. Multi-site studies are an 

effective way of increasing power in neuroimaging studies; however, differences in 

scanner technology and other methodological details have the potential to affect group 

comparisons in these studies. These site-specific factors add noise to the analysis model 

that can reduce the ability to discern real effects of interest. For instance, a large multi-
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site study examining 10 sites found low between-site reliability before taking steps in the 

analysis to control these effects (Friedman et al., 2008). Likewise, Wurnig et al. (2013) 

also found important site differences in a large multi-site study. However, other studies 

(Gountouna et al., 2010; Yendiki et al., 2010) failed to find significant site differences in 

reliability. It is unknown how the interaction of site effects and multiple subject groups 

affect the reliability of fMRI data analysis techniques. 

In addition to site and subject group effects, there exists the potential for a 

measurement confound if certain brain regions are measured more reliably than others. 

Akin to the psychometric confound (Chapman & Chapman, 1973), this confound would 

make brain regions that are measured more reliably more likely than other regions to 

show group differences given no true difference between those brain regions. This 

circumstance could result in apparently specific deficits in the activity or functional 

connectivity of a certain region, but it might actually only reflect the ability to measure 

that region better than others. Some evidence for differences in the reliability of some 

brain regions over others in HC comes from a study that created reliability maps based on 

voxel time courses during a change detection task (Simak, Liou, Zhigalov, Liou, & 

Cheng, 2012). They found that group results showed greatest reliability in primary visual, 

dlPFC, posterior parietal lobe, and areas of the DMN. These regions are commonly 

implicated in activation and functional connectivity studies comparing SZ with HC. If 

these regions are indeed measured more reliably than others, it raises the question of 

whether these apparent specific effects are actually indicative of a global difference 

between SZ and HC.  
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The first goal of the present study was to estimate the reliability of GLM, ICA, 

tFNC, and dFNC in the same multisite dataset including SZ and HC while those subjects 

performed a cognitive task. The second goal was to examine the variability of those 

reliability estimates across data collection sites to measure how sensitive each metric is to 

site effects. The third goal was to make a direct comparison of the four analysis methods 

on both the overall magnitude of their reliabilities and their variability across data 

collection sites and subject groups. The final goal was to examine whether the reliability 

of GLM and ICA differed across different brain regions. 

 

Method 

Subjects. Subjects were recruited as part of the Cognitive Neuroscience Test 

Reliability and Clinical applications for Schizophrenia consortium (CNTRACS), which is 

made up of five sites. Data were collected at two time points, approximately three weeks 

apart. Data collection and subject recruitment methodology for this sample and the 

CNTRACS project has been previously published (Henderson et al., 2012; Poppe et al., 

2016; Ragland et al., 2015; Silverstein et al., 2015). In addition to exclusion criteria 

described in appendix 1, subjects without two sets of complete data (one from each time 

point) were excluded from further analysis. 

 The final sample consisted of 86 subjects (45 HC, 41 SZ) with no significant 

differences between included and excluded subjects on demographic, behavioral, or 

symptom indices (p’s > .06).  The final groups did not differ on any measured 

demographic variable except education (see Table 4.1). After removing subjects with 
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excessive movement (see appendix 1 for details), groups did not differ on average 

absolute or relative head movement (both p’s > .06). 

 

Dot pattern expectancy task. The Dot Pattern Expectancy task (DPX) is a test of 

the goal maintenance aspect of executive control and has been described (Henderson et 

al., 2012; Jones et al., 2010). Four DPX blocks were performed by each subject at each 

time point, with each trial consisting of a cue dot pattern followed by a probe dot pattern. 

One dot pattern was identified as a valid cue (‘A’ cue), and another as a valid probe (‘X’ 

probe), with all other cues and probes being invalid (‘B’ cues and ‘Y’ probes, 

respectively). This creates four trial types based on different combinations of valid and 

invalid cues and probes (‘AX’, ‘AY’, ‘BX’, and ‘BY’).  Each block of the DPX task 

consisted of 40 trials: twenty-four AX (60%), six AY (15%), six BX trials (15%), and 

four BY (10%).   

 

fMRI data acquisition and preprocessing. Three CNTRaCS sites used Siemens 

Trio 3 Tesla scanners (Minnesota, Washington University, UC Davis), one site employed 

a Phillips 3 Tesla scanner system (MPRC), and the fifth site used a Siemens Allegra 3 

Tesla system (Rutgers). The procedure of each scanning session was as follows: a 

localizer scan, a 3D T1-weighted anatomical scan (1 mm3 isotropic voxels), a 2D T2-

weighted scan, a field map, and the functional EPI sequences. The functional scans were 

T2*-weighted gradient echo EPI sequences, with TR = 2000 ms, TE = 30 ms, flip angle = 

77 degrees, 32 contiguous AC-PC aligned axial slices, voxel size = 3.5 x 3.5 x 4.0 mm. 

Each scan session included the collection of four, 180-volume scans during four blocks of 
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the DPX task. Preprocessing used FMRIB Software Library (FSL v. 4.1.8) and included 

motion correction, brain extraction, prewhitening, high-pass temporal filtering with sigma 

of 100 s; B0 field unwarping, spatial smoothing with a 5 mm FWHM Gaussian kernel, 

and spatial normalization and linear registration to the MNI 152 standard brain. Subjects 

with excessive movement, scanner artifacts, or otherwise poor data quality were removed 

from the analysis (see appendix 1 for details). 

 

General linear model. The GLM analysis was performed identically as described 

in a previous report of the current time 1 data (Poppe et al., 2016) and was performed 

separately at each time point. All GLM analyses were conducted using fMRI Expert 

Analysis Tool (FEAT) using fMRIB’s linear optimized basis functions (Woolrich et al., 

2004). Whole-brain analyses were performed at the group level, and the contrasts of 

interest were a comparison of SZ with HC on the lower level contrast of B Cue activation 

greater than A Cue activation and also on the lower level contrast of B Cue activation 

itself.  

 

Independent component analysis. 

 Meta-ICA procedure. The ICA consisted of a “meta” procedure in which several 

lower-level group ICAs were performed using randomized subject orders and a final ICA 

is then conducted using the results of the lower levels (Wisner et al., 2013). The input 

data for these lower level ICAs were the four temporally concatenated scans of each 

subject. Two meta-ICA procedures were completed: one for each time point. The number 

of lower level ICAs (25) as well as the number of components to specify in each group 



     
 
 

90 

 

ICA (60) was suggested by previous research (Poppe et al., 2013). For display purposes 

and for some subsequent analyses, spatial maps resulting from the meta-ICA were 

thresholded using a normalized threshold of 0.4 (Poppe et al., 2013).  

  

Dual regression. Following the meta-ICA, the 60 unthresholded spatial maps 

were used in dual regression to produce subject-specific spatial maps and time courses. 

For the purposes of reliability estimation, only time 1 maps were used in this dual 

regression for both time 1 and time 2 data. This was to allow a direct comparison of the 

same components when calculating reliability.  

  

Task relationship. Following dual regression, the group maps were visually 

examined to exclude artifactual components. The subject-specific time-courses produced 

by dual regression were next used to calculate Pearson correlations between component 

time courses and the time course of B cues of the DPX task after convolving that time 

course with a double gamma hemodynamic response function. These correlation 

coefficients were then Fisher z-transformed and t tests were conducted across groups at 

each time point to determine which components’ time courses were significantly related 

to the DPX task time course.  

 

Tonic functional network connectivity. Tonic Functional Network Connectivity 

(tFNC) was performed in the same manner as in chapter 3. Briefly, the following steps 

were taken: 1) subject-specific time courses resulting from dual regression were 

interpolated four times, 2) time courses were allowed to slide in time five seconds in each 
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direction relative to one another, 3) a Pearson’s product moment correlation coefficient 

was calculated at each amount of lag between components, 4) the absolute maximum 

correlation was chosen to represent the tFNC between each component pair. This resulted 

in a tensor of tFNC values of size N Components x N Components x N Subjects.   

 

Dynamic functional network connectivity. Dynamic Functional Network 

Connectivity (dFNC) was calculated as in chapter 3. First, the lag values calculated in 

tFNC were used to “pre-lag” component time courses relative to one another. Next, a 

sliding window was used to calculate a series of correlations between each component 

pair. The width of the window was 15 seconds, and it advanced 4 seconds with each step. 

To measure the task-modulation of the relationship between any two components, a “task 

demands” variable was created by calculating a moving average of the time course of B 

Cues of the DPX task after that time course had been convolved with a double gamma 

hemodynamic response function. The dFNC values for a component pair were then 

correlated with the task demands variable. This process resulted in a tensor of task 

modulation correlation coefficients of size N Components x N Components x N Subjects. 

 

Reliability analyses. 

 GLM reliability. To assess the reliability of GLM results, two procedures were 

employed. The first was to assess spatial overlap of results between time points by 

calculating Dice coefficients (Dice, 1945) between group contrasts. The second 

procedure involved calculating intraclass correlation coefficients (ICC) for each voxel 

within the mask for time 1 B Cue > 0 group contrast map and taking the average of those 



     
 
 

92 

 

values. This analysis was also performed using the map of voxels significant in the group 

B Cue > A Cue group contrast. The specific form of ICC used in this study is as follows:  

bcP − !cP

bcP + d − 1 !cP + d(6cP − !cP)g

 

where BMS is the between-subjects mean square, JMS is the between-judges mean 

square, EMS is the residual mean square, k is the number of ratings, and n is the number 

of subjects (Shrout & Fleiss, 1979). This formula corresponds with the consistency 

ICC(2,1) formula in Shrout and Fleiss (1979), and to ICC2 in the R package psych’s ICC 

function (Revelle, 2010). Subject-level contrast maps were used to calculate these GLM 

ICC values, which were calculated separately for each subject group (HC and SZ) as well 

as for each CNTRACS site. Data from the Rutgers site was excluded from all reliability 

analyses involving site membership because only eight subjects came from that site (4 

HC, 4 SZ). 

  

ICA reliability. To assess spatial overlap of group components derived from each 

time point, a matrix of Dice coefficients was created representing the spatial overlap of 

components between time points. Voxelwise ICC calculations were also performed using 

subject-specific maps resulting from dual regression in voxels within time 1 thresholded 

group spatial maps. These ICCs were calculated separately for subject group and for each 

CNTRACS site. Only non-artifact components whose time courses were significantly 

correlated with the task time course of B Cues were included in reliability analyses.  

 An additional analysis was performed to assess the extent to which components 

associated with different functions differed in reliability. First, components were sorted 
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into four groups: executive, default mode, visual, and other. Next, an ANOVA was 

performed on the average of voxel ICC values with subject group and component group 

as predictor variables.  

  

tFNC reliability. ICCs were calculated for tFNC values of each connection 

between non-artifact components, and were calculated separately for each subject group 

and each CNTRACS group. These ICCs were then averaged across component 

connections. Additionally, ICCs were averaged across components with the highest tFNC 

values in an attempt to determine what the reliability of an analysis might be that defined 

a graph based in highest tFNC values. Likewise, correlation coefficients were calculated 

between tFNC values and tFNC reliability separately for each subject group to determine 

if there is a relationship between tFNC strength and reliability. 

  

dFNC reliability. To assess the reliability of the correlations between dFNC and 

the DPX task, ICCs were computed using these Fisher’s z-transformed (Fisher, 1915) 

correlations for each connection between non-artifact components (as in the tFNC 

reliability computations) and then averaged. dFNC reliability was also estimated using 

30-second and 60-second sliding windows to determine how this parameter affects 

reliability.  

 

Comparison of reliability amongst analysis methods. To compare the 

magnitudes of reliabilities of the four analysis methods, an analysis of variance 

(ANOVA) was performed with ICC as the dependent variable and analysis method as the 
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independent variable. Two similar models were fit to determine if subject groups and 

CNTRACS sites, respectively, differed in average reliability. Tukey’s range test (Tukey, 

1949) was used to assess which variables were significantly different in the event of a 

significant omnibus test. 

To assess if analysis methods differed with regard to the variability of reliability 

across sites, a Levene’s test of variance homogeneity (Levene, 1960) was performed on 

ICC calculations of each analysis method. Given a significant omnibus test, further 

pairwise tests were performed between analysis methods to determine which methods 

were significantly more variable than the others. Additional Levene’s tests were 

computed employing subject group and CNTRACS site as grouping variables in order to 

test whether observed differences in variance between analysis methods were driven by 

those variables. 

 

Results 

GLM results and reliability. The Time 1 GLM group contrast of HC > SZ and B 

Cues > A Cues resulted in significant activation in bilateral frontal pole as shown in 

figure 4.1. The corresponding analysis at Time 2 did not result in significant activation, 

which produced a Dice coefficient of zero for that comparison. In the B Cues > 0 average 

activation contrast (across subject groups), activation was found in bilateral occipital 

lobes, bilateral superior parietal lobes, and left postcentral gyrus at both time points. The 

dice coefficient for this contrast was 0.77. With regard to reliability, the average ICC of 

voxels within the HC > SZ mask of B Cues > A Cues was .15 for HC and .09 for SZ, 

corresponding to “poor” reliability (Cicchetti & Sparrow, 1981; Fleiss, 1986). These 
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results are presented in figure 4.2. However, there was variability across sites and across 

subject groups, with ICCs ranging from -0.30 to 0.41. Full results are presented in table 

4.2 and displayed in figure 4.3. For the B Cues > 0 average activation map, the ICC for 

HC was .19 and for SZ was .33. 

 

ICA and task relationship. The group ICA at time 1 resulted in 37 non-artifact 

components, and the same analysis at time 2 resulted in 36 non-artifact components. The 

Dice comparison of time 1 maps with time 2 maps produced a matrix of coefficients with 

a strong diagonal, indicating a nearly one-to-one correspondence of the components 

produced by each analysis, suggesting good reproducibility. The average of the 

maximum Dice value in each column of this matrix was .57. These results are presented 

in figure 4.4. 

 The analysis of task-relatedness of the components, taken as a whole, at time 1 

resulted in 11 components positively correlated with the B Cues time course in HC and 5 

negatively correlated, as is presented in figure 4.5. When the same analysis was 

completed with time 1 components dual regressed in time 2 functional data, the same 11 

components were found to be positively correlated with the DPX task in HC, and 4 

components were negatively correlated. For SZ, at time 1 there were 7 positively 

correlated components and 6 negatively task-related components. At time 2, there were 5 

positive and 4 negative. The average ICC of task-relatedness across non-artifact 

components was 0.224 for HC and 0.250 for SZ, indicating poor reliability. However, 

when considering the dichotomous choice of whether a component was task-related or 
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not, the kappa statistic for that decision was 0.86 for HC and 0.42 for SZ (strong and 

weak, respectively; McHugh, 2012).   These results are displayed in figure 4.6. 

 As presented in table 4.2, the average voxelwise reliability of the task-related 

group ICA spatial maps across sites was 0.686 for HC and 0.667 for SZ, corresponding to 

“fair” reliability (Cicchetti & Sparrow, 1981; Fleiss, 1986). When broken down by site, 

these values remained fairly consistent (ranging from .52-.70). These results are 

displayed in figure 4.3.  

 To assess the variability of reliability across components, we performed an 

ANOVA of average ICC predicted by subject group and by component group (i.e., 

executive, default mode, visual, or other). This ANOVA resulted in a significant main 

effect of component group, F(3,66) = 5.82, p = .001, whereas neither the main effect of 

subject group nor the interaction of component group with subject group were significant, 

both p’s > .05. Tukey’s HSD post hoc tests revealed that executive components (M = .74, 

SD = .01) were significantly more reliable than the group of components that were not 

executive, default mode, or visual (M = .55, SD = .12), p = .01. Executive components 

did not differ significantly from either default mode or visual components, both p’s > .05. 

These results are presented in figure 4.7.     

 

Tonic FNC reliability. To assess reliability of tFNC connection strength, ICCs 

were calculated for each connection between non-artifact components. As presented in 

table 4.2, the average of these ICCs across sites for HC was 0.560 and for SZ was 0.503, 

corresponding to “fair” reliability. Across sites, there was little variability (see table 4.2 

for ICCs for individual sites). These values are displayed in figure 4.3.   
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 To determine the relationship between tFNC magnitude and reliability, correlation 

coefficients were computed between these variables and average ICCs were computed for 

connections above various thresholds of tFNC magnitude. There were significant positive 

relationships between tNFC magnitude and ICC in both HC (r = .48, p < .001) and SZ (r 

= .33, p < .001). Table 4.3 and figure 4.8 present these results. 

 

Dynamic FNC reliability. To measure the reliability of the dynamic FNC 

analysis, ICCs were calculated based on the strength of the correlation between dFNC 

value and the task demands variable for each connection between non-artifact 

components. The average ICC across connections for HC was .014 and for SZ was .003, 

corresponding to “poor” reliability. Table 4.2 and figure 4.3 present these results as well 

as ICCs broken down by CNTRACS site. 

 Because of the relatively narrow window size employed in the current dFNC 

analysis, it was repeated with a window of 30 seconds and 60 seconds. Reliability 

estimates failed to improve using this wider window of 30 seconds (MHC = .00, SDHC = 

.15; MSZ = .00, SDSZ =.16) or 60 seconds (MHC = .01, SDHC = .15; MSZ  = .01, SDSZ = .16), 

p of both main effects and interaction > .05.  

 

Comparison of reliability across methods. The average reliability was 

significantly different between methods and across subject groups and CNTRACS sites, 

F(3,28) = 108.8, p < .001. Tukey’s range test revealed that GLM and dFNC were each 

significantly less reliable than both ICA and tFNC (p’s < .001) and that dFNC was less 

reliable than GLM (p < .001). ICA and tFNC did not differ in reliability (p = .99). These 
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results are presented in figure 4.2. The ANOVA models with subject group and 

CNTRACS were not significant (Fs < 0.02, ps > .98).  

 The Levene’s test of homogeneity of variance showed that there were significant 

differences between analysis methods in the amount of variance in their ICCs, F(3,28) = 

7.10, p < .005. Post-hoc pairwise comparisons between methods showed that GLM had 

significantly higher variance in reliability across sites and subject groups compared with 

ICA and dFNC (p’s < .02) but did not differ from tFNC (p = .07). tFNC had more 

variability than dFNC (p < .01), but ICA did not differ from tFNC or dFNC (p’s > .21).     

 

Discussion 

 In order to assess and compare the reliability of GLM, ICA, tFNC, and dFNC, we 

calculated ICCs of those techniques using a large, multisite fMRI dataset including HC 

and SZ performing the DPX task. This represents the first study to directly compare the 

reliability of these metrics and the first study to assess the reliability of either FNC 

method. We found that GLM and dFNC had generally poor reliability whereas ICA and 

tFNC had fair, and in some regions good, reliability. Additionally, GLM showed higher 

variability across data collection site and subject groups compared with ICA and dFNC, 

suggesting these other analysis methods may be less sensitive to site effects when 

analyzing data from multisite studies. Finally, we found that frontoparietal “executive” 

components had higher reliability than other components in the ICA analysis, which may 

introduce a measurement confound for fMRI analyses.  

 

Reliability estimation. 
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 GLM reliability. We found that GLM analysis results were in the “poor” range 

according to calculated voxelwise ICCs (Cicchetti & Sparrow, 1981; Fleiss, 1986).  

Although the obtained mean ICCs for HC and SZ were lower than the mean ICC reported 

in a recent review of activation fMRI studies (Bennett & Miller, 2010), they were within 

the range of obtained reliability estimates of studies included in that review. Some 

reasons for lower reliability in the present study compared with the average in that review 

derive from the task and study design in the current study. The task in the present study 

involved executive functioning and a fast event-related design, whereas several of the 

tasks reviewed previously were simple (e.g., finger tapping). Of note, in the current study 

higher reliability estimates were obtained in the simpler contrast of B Cues > 0 as 

opposed to the more specific (but more interpretable) contrast of B Cues > A Cues. 

Additionally, nearly all studies in that review used a block design as opposed to an event-

related design when creating contrast images. The use of a block design is more likely to 

produce more robust effects in fMRI analyses when compared with fast event related 

designs. Last, all studies included in that review were single-site studies. As the results of 

the current study show, GLM reliability varied significantly across study sites. Overall, 

these results suggest that for complicated cognitive tasks, beta-maps from GLM analyses 

may not be the best choice for an imaging biomarker. This is in part because the 

maximum correlation between a measure and another variable is determined by the 

reliability of that measure. It is comparatively more difficult to observe an association 

between an imaging biomarker and another variable such as psychotic symptoms or 

diagnosis given a measure with poor reliability than one with high reliability. 
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 The spatial overlap of GLM results assessed by the Dice statistic showed a high 

overlap for activation associated with B Cues. This overlap was greater than the average 

overlap reported by Bennett and Miller (2010). However, in the more specific contrast of 

B Cues minus A Cues, we failed to observe significant activation at the second time 

point, which resulted in a Dice coefficient of zero.  Again, the effect of higher 

reproducibility for the more general activation contrast is in line with the idea that more 

specific, complex contrasts are likely to have a smaller signal to noise ratio than more 

general analyses. The failure to observe significant activation in the B Cues > A Cues 

contrast at the second time point reflects the relatively poor reliability of this specific 

GLM contrast.  

 

 ICA reliability. With regard to ICA reliability, we found that the average 

reliability of task-related components was in the “fair” range (Cicchetti & Sparrow, 

1981). These results suggest that ICA coherence values are sufficiently reliable to use for 

examining group differences and individual differences between HC and SZ in multisite 

task-based studies. The ICC values obtained in this study compare favorably to those 

reported in previous test-retest studies of ICA (Blautzik et al., 2012; Guo et al., 2012; 

Jeong, Choi, & Kim, 2012; Wisner et al., 2013). However, all these studies utilized 

resting state data. Given the limitations of the current study listed in the GLM reliability 

section, the relatively high reliability obtained from ICA in both HC and SZ is 

encouraging for task-based ICA studies of group differences and for the use of this 

analytic method for individual differences research, such as identification of a biomarker. 

These results complement the findings of Zuo and Xing (2014) who found that ICA was 
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one of the most reliable methods in their analyses (although they did not assess GLM, 

tFNC, or dFNC).  

 We also found the task-relatedness of ICA components to be highly reliable. HCs 

had higher reliability than SZs with regard to the identification of task related 

components. This may indicate that SZs are inconsistent in how they approach or react to 

the DPX task from one time point to another, perhaps due to underlying cellular 

processes or cytoarchitecture (Harrison, 2000). These results are promising for the utility 

of task-based ICA in identifying biomarkers for schizophrenia. One criticism of resting 

state functional connectivity studies is that subject behavior is unconstrained, which 

limits the behavioral interpretations that can be made based on the results of such studies 

compared with GLM activation studies. These results show that largely the same set of 

networks was found to be task-related at both time points. 

 Finally, we found that frontoparietal “executive control” components had 

significantly higher reliability compared with other components that were not visual or 

default mode components. Executive components did not differ from visual or default 

mode components, and this effect did not depend on subject group. These results are in 

line with those of Zuo and Xing (2014), who found that executive, default mode, and 

visual components were the most reliably measured in a resting state functional 

connectivity study. It is not clear why these particular regions are measured more reliably 

than other regions. It is possible that these regions are more stably connected 

functionally, such that the time courses of voxels within these regions are more 

temporally correlated. Another explanation for the results of the current study is that 

these particular regions are associated with performing the DPX task, which results in 
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more robust measurements than more transiently active networks. It is true that executive 

and visual components were found to be positively correlated with the DPX task in this 

study and that default mode components were found to be negatively correlated. It is 

common in the fMRI literature to find positive correlations with task in executive and 

visual components/regions while finding negative task correlations in default mode 

regions. However, that does not explain why Zuo and Xing also found these networks to 

be the most reliable in their resting state ICA.  

An alternative explanation is that the relatively higher reliability of the 

measurements in these regions is why they are found to be task-related and found to 

differ between groups more often than other regions are. This measurement confound 

would make it more likely to observe group differences in these regions compared with 

other regions given the same underlying true group difference amongst regions. Regions 

involved with the frontoparietal executive network and the default mode network 

consistently emerge in group contrasts between schizophrenia patients and healthy 

controls in both task activation studies (Minzenberg et al., 2009) and resting state 

functional connectivity studies (Sheffield & Barch, 2016). Additionally, they are 

involved in some of the leading putative functional connectivity intermediate phenotypes 

of schizophrenia (Cao, Dixson, Meyer-Lindenberg, & Tost, 2016). A less obvious but 

similar effect can be seen in the GLM reliability results shown in figure 4.5. It will be 

important to more thoroughly examine the nature of this effect in order to mitigate its 

effects on the interpretation of clinical fMRI studies.  
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 tFNC reliability. The present study represents the first reliability study of both 

tFNC and dFNC. The average reliability of the magnitude of tFNC connections was 

found to be fair across all non-artifact components. These results suggest that tFNC is 

sufficiently reliable to use for examining group differences and individual differences 

between HC and SZ in multisite task-based studies. We also found a linear relationship 

between the strength of a dFNC connection and its reliability, meaning that weak 

connections were less reliably measured than strong connections. This effect may have to 

do with the ICC calculation, in that high ICCs require high interindividual variance and 

low intraindividual variance. If there is not much variance between individuals, the 

reliability will be low even if there is consistency within individuals. Figure 4.8C shows 

the relationship between the variance and the mean of tFNC magnitude, which suggests 

the low reliability of weak tFNC connections is likely due to the restricted variance in 

their measurement. 

 

dFNC reliability. The reliability of the degree to which dFNC values were task-

modulated by the DPX task was found to be poor. The poor reliability observed with 

dFNC indicates caution should be employed when utilizing this method. There was little 

variability across sites and across subject groups when using this method, so more 

research is necessary to determine the source of the poor reliability.  

To determine the effect of window size on dFNC reliability, we increased the 

window to 30 seconds and 60 seconds and repeated the dFNC analyses and reliability 

computation. We did not observe a change in reliability estimate when the window size 

was increased. More research is needed to determine what factors contribute to the low 
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reliability of task modulation of dFNC results, and whether changes to the analytic 

methods or research design will be needed to improve reliability. This work is important 

because dFNC may reveal an important aspect of connectivity dynamics in the brain that 

provide a window into psychopathology (Damaraju et al., 2014). 

 

Reliability comparison between methods. We found that ICA had the highest 

ICCs across sites and subject groups, and dFNC had the lowest. tFNC had higher 

reliability than GLM and dFNC, and GLM had higher reliability than dFNC. These 

results suggest that ICA and tFNC provide the most power to detect group differences 

between HC and SZ, and they are the best candidates for biomarkers of schizophrenia. 

This is because they allow better measurement of individual differences amongst 

subjects. One explanation for the lower reliability of GLM compared with ICA and tFNC 

is that physiological noise may contribute to measures of GLM more than in ICA unless 

special noise extraction is done. This is because an ICA is capable of isolating artifactual 

BOLD signals such as those associated with respiration or movement and separating 

those signals from those of non-artfact components. With a naïve GLM analysis, those 

artifacts remain in the data and contribute to voxels’ timecourses, adding noise to the 

data. More research is needed to determine how effective noise-removal strategies are to 

increasing test-retest reliability. 

 In addition to absolute magnitude of reliability, we also examined the variability 

of reliability across data collection sites and subject groups. We found that GLM had the 

highest variability in reliability and tFNC had the second highest. ICA and dFNC were 

the most stable in their reliability estimates across sites and subject groups. These results 
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suggest that GLM and tFNC may be more susceptible and ICA less susceptible to site 

and group effects, which has implications for multisite imaging studies or that include 

clinical groups. Specifically, for multisite fMRI studies, especially those including 

clinical samples in addition to healthy controls, it may be more effective to use an ICA 

based analysis method as opposed to GLM.  

 

Limitations and future directions. The current study included four analysis 

types in its comparison, however many more approaches have been used . It would be 

informative to re-analyze these data using other common analysis methods (e.g., seed-

based correlation, graph theoretical methods, dynamic causal modeling) and compare 

test-retest reliability among them. The sample in this study included HC and SZ 

performing a complex cognitive task. Future research might explore the reliability of 

these methods in particular in the resting state. Such research may also choose to include 

other clinical samples to determine if the general trend of reduced reliability in SZ is 

present to the same degree in other populations.  
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Table 4.1. Subject Demographics 

 
  Group   

  Patients Controls Test 
N 46 54   
Mean Age (yrs) 36.4 (12.1) 35.7 (12.1) t(84) = 0.01 
% Male 70.7 77.8 χ2(1) = 0.25 

% Caucasian 53.7 62.2 χ2(1) = 0.34 

% Right-Handed 85.4 84.4 χ2(1) = 0.00 
Mean Education (yrs) 13.9 (2.0) 15.5 (2.6) t(84) = -3.34* 
Mean Parental 
Education (yrs) 13.6 (2.3) 14.1 (2.8) t(76) = 0.73 

BPRS Total 38.7 (8.0) n/a  
     Positive 
Symptomsa 9.0 (4.7) n/a  
     Negative 
Symptomsb 7.2 (2.4) n/a  
     Disorganizationc 4.7 (1.2) n/a   

       
Note: BPRS refers to the Brief Psychiatric Rating Scale. Parenthetical numbers 
following means represent standard deviations. Asterisks following test 
statistics represent p < .05.   
a BPRS items 8, 9, 10, and 11. 

    b BPRS items 13, 16, 17, and 18. 
    c BPRS items 12, 14, 15, and 24. 
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Table 4.2. Reliability of Analysis Methods 

 

    Site 

  
Baltimore   UC Davis   Minnesota   

Washington 
University   Overall 

Method HC SZ   HC SZ   HC SZ   HC SZ   HC SZ 

GLM 
 

0.12 
0.4
0 

 
0.15 

0.2
8 

 
0.37 0.25 

 
0.09 0.40 

 
0.19 

0.3
3 

ICA 
 

0.52 
0.6
1 

 
0.70 

0.5
7 

 
0.58 0.61 

 
0.60 0.54 

 
0.69 

0.6
7 

tFNC 
 

0.67 
0.5
6 

 
0.63 

0.6
8 

 
0.56 0.51 

 
0.50 0.54 

 
0.56 

0.5
0 

dFN
C   -0.06 

0.0
0   0.03 

0.0
0   -0.04 

-
0.02   -0.03 0.00   0.01 

0.0
0 
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Table 4.3. tFNC Reliability by Magnitude of tFNC 
 

  Group 
Section of 

Data HC SZ 
Top 5% 0.70 0.62 
Top 10% 0.68 0.60 
Top 25% 0.66 0.57 
Top 50% 0.63 0.54 
Top 75% 0.60 0.52 

Bottom 50% 0.49 0.47 
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Figure 4.1. GLM Activation Spatial Maps. 

 
 

These images represent voxels significantly active in contrasts of B Cues (left) and B 

Cues minus A Cues (right). Purple represents activity from the first time point, and 

yellow represents activity from the second time point.  
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Figure 4.2. Average Reliability of Analysis Methods. 

 
 

The bars represent the overall reliability of each group and each analysis method across 

data collection sites. Three asterisks (***) represents a significant difference between 

analysis methods (across groups) at the level of p < .001. 
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Figure 4.3. Average Reliability Separated by CNTRACS Site. 

 
 

This figure shows reliability of each analysis method and each subject group broken 

down by data collection site. Overall reliability is included for comparison.  
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Figure 4.4. Spatial Overlap of ICA Results. 

 
 
This figure shows the Dice overlap metric between thresholded group components at 

each time point. The higher the value, the more the components overlapped, where a Dice 

value of 1 indicates a 1 to 1 spatial relationship. The presence of a diagonal of relatively 

high Dice values indicates the ICA decomposition at each time point were spatially 

similar to each other at the group level.  
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Figure 4.5. Spatial Maps of ICA and GLM Reliability. 
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These figures show the obtained voxelwise ICC values for GLM and ICA separated by 

subject group. The GLM contrast in this figure is B Cues > 0. The ICA maps include all 

non-artifact components.  
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Figure 4.6. Relationship between ICA Results and DPX B Cue Time Course. 

 

The figure contains every component that was found to be positively related to the B 

Component Image HC1 HC2 HC_ICC SZ1 SZ2 SZ_ICC

5 0.12* 0.11* 0.33 0.14* 0.11* 0.27

10 0.06* 0.04* 0.43 0.04* 0.04 0.46

13 0.05* 0.05* 0.26 0.07* 0.04 0.52

15 0.1* 0.09* 0.34 0.08* 0.08* 0.74

19 0.04* 0.03* 0.17 0.01 0.03 0.49

25 0.05* 0.05* 0.46 0.03* 0.04* 0.35

28 0.04* 0.05* 0.3 0.03 0.03 0.42

36 0.04* 0.04* 0.18 0.03 0.03 0.15

43 0.05* 0.04* 0.56 0.04* 0.04* 0.3

58 0.11* 0.08* 0.36 0.08* 0.08* 0.5

60 0.04* 0.04* 0.49 0.01 0.01 0.29
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Cues of the DPX task by at least one subject group at at least one time point. The data 

includes the average correlation with the B Cues of the DPX task for time points one and 

two as well as the ICC of those correlation values.   
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Figure 4.7. Average Reliability of ICA Separated by Component Type. 

 

 

This figure shows the reliability of groups of components based on these categories: 

executive, default mode, visual, and other. Components within the “Other” category  

represent all non-artifact components not included in the other three categories and 

include such regions as motor cortex, ventral and medial PFC, temporal lobes, and 

subcortical regions.   
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Figure 4.8. Relationship between tFNC Magnitude and Reliability. 

 

 
A) This shows the reliability of tFNC connections that surpass certain thresholds of tFNC 

magnitude (as measures at time 1). For example, the “Top 5%” section includes the 

highest 5% of tFNC connections. B) This is a basic scatterplot between tFNC magnitude 

at time 1 and reliability as measured by ICC. C) This shows the relationship between the 



     
 
 

119 

 

average magnitude of tFNC per connection and the variance of tFNC magnitude per 

connection divided by subject group.   
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Chapter 5: Overall Summary, Conclusions, and Future Directions 

 

 This series of studies had the collective goal of investigating the neural 

underpinnings of goal maintenance deficits in schizophrenia patients while estimating the 

test-retest reliability of the data analysis methods used in that investigation. Establishing 

a tool’s reliability is an important step in quantifying its validity. If a measure is found to 

have high reliability, a researcher can be more confident in its results. However, as was 

the case in the present dissertation, differential reliability amongst brain regions might 

lead to erroneous conclusions from the results of fMRI analysis methods, even if 

reliability is relatively high across regions. 

 The first study demonstrated a replication of previous goal maintenance fMRI 

activation studies in schizophrenia patients while also providing a rationale for examining 

functional connectivity using the same data set. Study two found differential functional 

network connectivity between schizophrenia patients and healthy controls between 

networks previously implicated in top down cognitive control. It also showed that this 

connectivity between brain regions predicted task accuracy on the DPX task in both 

subject groups. Study three provided estimates for the reliability of GLM, ICA, tFNC, 

and dFNC in both subject groups both across data collection sites and broken down by 

site. It also examined differences in reliability between ICA components, which 

suggested the possibility of a measurement confound.  

 

Study 1 Summary and Conclusions: GLM Analysis 
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 The results of this study were important for replicating previous findings with 

other goal maintenance tasks as well as for providing a rationale for study 2. This was the 

first fMRI study to test group differences between SZ and HC while subjects performed 

the DPX task. The replication of previous findings of hypoactivation in MFG in SZ 

compared with HC suggests that the DPX is measuring the same construct as the 

expectancy AX-CPT while doing so in a more efficient way. These findings also bolster 

the idea that MFG is integral in cognitive control.  

However, a major limitation of this study was the inability to detect significant 

correlations between GLM activation results and either DPX task performance or 

psychosis symptom severity. As was noted in chapter 1 of this dissertation, poor 

reliability in a measure limits the possible correlation between that measure and another 

variable. This possibility represented justification for examining the reliability of GLM as 

an analysis method of DPX fMRI data. Another explanation for the failure to observe 

correlations with symptom measures involves the specific symptom measure used in this 

study. In previous studies that observed such correlations between BOLD activity and 

disorganization symptoms (e.g., A. W. MacDonald, Carter, et al., 2005), a composite 

measure including the BPRS as well as SANS/SAPS was used as opposed to only the 

BPRS in the current study. Other studies that failed to find such correlations also used the 

BPRS only. In the current sample, the disorganization subscale of the BPRS had a 

Cronbach’s alpha of .46 (whereas the positive symptom subscale had alpha = .71). It is 

possible that the disorganization subscale of the BPRS is insufficiently reliable on its own 

to allow detection of symptom/activation correlations. 
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 This study additionally arrived at a minimum scan length to observe group 

activation differences. This result is helpful for future studies that use the DPX in 

imaging studies that include SZ, because it can potentially reduce the cost inherent in 

such studies as well as the discomfort of participants. However, given the reliability 

estimates obtained in study 3, longer scans are recommended to increase reliability. 

 Finally, the activation patterns observed to be different between SZ and HC 

included MFG and posterior parietal lobe. These two regions routinely appear in 

functional connectivity studies and have long been theorized to constitute an “executive” 

network that is involved in cognitive control and has been previously found to be 

differentially active in SZ compared with HC (e.g., Poppe et al., 2015). These activation 

results did not allow a direct testing of the functional connectivity of this network, which 

provided a clear rationale for study 2. 

 A future direction for this study might be to examine the specificity of these 

effects to SZ. The first step might be to determine if hypoactivation in MFG and posterior 

parietal is present in individuals with bipolar disorder with psychotic features or if this 

pattern of activation is specific to SZ. 

 

Study 2 Summary and Conclusions: ICA Analyses 

 The examination of the same dataset as in study 1 using ICA allowed for an 

assessment of functional connectivity. This study marked the first to employ ICA, tFNC, 

and dFNC of DPX imaging data. The tFNC results included five connections that were 

stronger in HC compared with SZ. Of these, one involved an executive component 

including regions implicated in study 1. The strength of this component’s connection 
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with a salience network, which included anterior insula, frontal operculum, paracingulate 

cortex, and superior frontal regions, predicted DPX task performance in SZ (but not HC). 

Additionally, the lag feature of tFNC showed that the salience network preceded the 

executive network. These results provide support for the notion that the salience network 

in some way “tags” relevant information and forwards it to the executive network to 

guide behavior. The fact that HC’s task performance was not predicted by this 

connection’s strength may indicate that this communication from salience network to 

executive network represents a hurdle that must be cleared, but once cleared other neural 

functions are also required for cognitive control.  

 In the dFNC analysis, only the connection between left and right excutive 

components was found to be significantly task modulated across groups, and that 

connection was differentially task modulated between groups. The degree to which the 

connection between left and right executive components was task modulated predicted 

task performance in HC but not SZ. This is an intriguing finding, as it is showing that the 

degree to which left and right executive components coordinate during key portions of 

the DPX task is important for successful task performance. This finding shows that 

constant synchrony between these two components is not necessary or helpful, but rather 

coordination during key parts of the task. 

 One major limitation of this study was the failure to observe ICA task-relationship 

differences between SZ and HC in right executive component as in previous research 

(Poppe et al., 2015). This failure may stem from the differential attributes of the DPX and 

expectancy AX tasks, but it could also result from any of the various sample and study 

design differences between the two studies. However, it may also reflect the findings of 
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the tFNC and dFNC analyses, indicating that task modulation of connections between 

bilateral executive components may be more important than the activity of the executive 

components correlating with the task themselves.  

 Future directions in this domain involve a closer examination of the salience 

network and the two executive networks. Dynamic causal modeling may be a good 

choice for this examination. Another direction may be to examine these connections 

during different tasks or even during the resting state. If the explanations I have proposed 

are correct, tasks or activities that do not require cognitive control should not produce 

group differences in tFNC between the salience network and executive, and the strength 

of that connection should not predict task performance.   

 

Study 3 Summary and Conclusions: Reliability Analyses 

The need for reliability studies of fMRI data analysis methods cannot be 

overstated. It is largely unknown how several factors affect the reliability of even widely 

used metrics (such as preprocessing options on GLM analyses) and healthy controls, let 

alone how such factors interact with clinical samples. As there has never been a 

reliability study of tFNC or dFNC, this study was important to do. Likewise, to my 

knowledge there has never been a direct comparison of the reliability of GLM and ICA in 

schizophrenia patients during a cognitive task, much less one that allowed for testing 

multisite effects on reliability. The results of the study were surprising but hopefully 

useful for future studies. 

  This study found that GLM had generally poor reliability and that it was also 

highly variable across data collection sites. Likewise, dFNC had very poor reliability 
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(essentially zero). tFNC had fair reliability across sites, but it also showed some 

variability across sites. ICA had the highest reliability and was stable across sites. These 

results suggest that ICA and tFNC are sufficiently reliable analysis methods across sites 

and subject groups, and it showed that ICA reliability was not sensitive to site effects. 

This point suggests that ICA may be a more appropriate analysis method when 

combining data from different sites, as is becoming a more common practice.  

Perhaps the most important finding was that executive components were 

measured significantly more reliably than other components, besides visual and default 

mode components. Given that executive networks and the default mode network are 

some of the most commonly found networks to be found dysfunctional in SZ whether at 

rest or during task, it is entirely possible that differential reliability is causing a 

measurement confound that is at least augmenting the relative difference between subject 

groups compared with with other networks. A future direction would be to conduct a 

more direct analysis of differential reliability amongst brain regions to determine how 

much of a measurement confound may exist.  

One limitation of the current study is that other common measures of fMRI data 

were not included and that only task-based data were available to be studied. Although 

these facts reduce the interpretations that can be made based on the results of this study, I 

feel that its results will still be helpful for researchers hoping to use any of the four 

methods included in the study.  

In general, I hope that the material contained in this dissertation is helpful to 

researchers going forward. 
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Appendix 1. Supplement to Study 1 

 

Method 

Subjects. Data were collected as part of the Cognitive Neuroscience Test 

Reliability and Clinical applications for Schizophrenia consortium (CNTRaCS), which is 

made up of five sites: University of California at Davis, Maryland Psychiatric Research 

Center at the University of Maryland (MPRC), Rutgers University, University of 

Minnesota, and Washington University in St. Louis. Informed consent was obtained from 

all participants at each site, and the study was approved by the institutional review board 

of each respective site. Diagnoses (or lack thereof) were confirmed using the Structured 

Clinical Interview for DSM-IV, patient and non-patient editions (First, Spitzer, Gibbon, 

& Williams, 2002; First, Spitzer, Gibbon, & Williams, 2002). Groups were matched on 

sex, age, handedness, SES based on the Hollingshead 

Index (Hollingshead & Redlich, 1958), and estimated premorbid intelligence (using 

Wechsler Test of Adult Reading; WTAR (Wechsler, 2001)). 

Data collection was attempted on 120 subjects (60 HCs, 60 SZs). Of these 120 

subjects, 2 were excluded due to excessive movement (average relative movement > 0.37 

mm; 1 HC, 1 SZ), 6 were excluded due to minimal task competence (2 HCs, 4 SZs) using 

the following criteria: error rates greater than 90% on A-X, A-Y, or B-X trials or error 

rate greater than 50% on B-Y trials. Four subjects were excluded due to inability to 

understand the task (4 SZs), 3 were excluded due to poor image quality (3 SZs), and 2 

were excluded due to poor effort or refusal to continue (1 HC, 1 SZ).   
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Dot pattern expectancy task and analysis. Each trial in the DPX consisted of a 

cue followed by a probe, with each cue and each probe lasting 500 milliseconds. Trials 

were jittered such that inter-stimulus intervals ranged from 2.5 seconds to 3.5 seconds 

and inter-trial intervals ranged from 2.5 seconds to 12.5 seconds. 

 The fact that the majority of trials were AX trials was designed to induce a 

prepotent response to an A cue, namely that the subject will expect an X probe to follow. 

In the rare event that an A cue is followed by a Y probe, the subject must overcome the 

prepotent response and respond to that trial as a non-target trial. It is expected that people 

with intact goal maintenance have relatively more difficulty with AY trials for this 

reason. On the other hand, BX trials should prove more difficult for people with impaired 

goal maintenance, because they fail to maintain the non-target context throughout the 

trial, responding target to the X probe. BY trials acted as a validity check, as subjects 

who make many errors in this condition likely did not understand the task or were not 

paying attention. 

 

fMRI data acquisition and preprocessing. The scanning session consisted of a 

localizer scan to define the anterior commissure-posterior commissure (AC-PC) line for 

subsequent scans, a 3D T1-weighted anatomical scan (1 mm3 isotropic voxels), a 2D T2-

weighted scan, a field map, and the functional EPI sequences. The functional scans were 

T2*-weighted gradient echo EPI sequences, with TR = 2000 ms, TE = 30 ms, flip angle = 

77 degrees, 32 contiguous AC-PC aligned axial slices, voxel size = 3.5 x 3.5 x 4.0 mm. 
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Confirmatory ROI GLM analysis. A previous fMRI study of the expectancy 

AX task in schizophrenia patients (MacDonald, Carter, et al., 2005) found significant 

group differences in activation for B Cue versus A Cue trials in three brain regions: right 

and left MFG and right IFG. The coordinates and volumes reported in that study were 

used to construct spherical regions of interest (ROIs) for small volume corrections. 

Activation data were extracted from these regions separately for each subject and 

included in an independent samples t-test, with the expectation that HCs would exhibit 

significantly greater activation relative to SZs in B cues compared to A cues. 

 

Special considerations for multi-site analyses. To assess and mitigate site 

differences in image quality across sites, several procedures were employed. First, 

phantom data were collected during the scanning session for every subject at every site. 

Differences in scanner performance across sites and over time were thus able to be 

assessed easily. Next, metrics of scan quality were measured and compared across sites, 

including signal to fluctuating noise ratio, estimated spatial smoothness, and absolute and 

relative movement. A common threshold was set and extreme data were removed from 

further analysis. Sites were directly compared on these QA metrics, and these (as well as 

site itself) were also included in the group-level GLM contrasts as covariates of non-

interest. In this way, effects of interest that were driven by site effects may be assessed 

and partially controlled.    

 

Results 
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DPX task speed/accuracy trade-off. To determine if SZs’ poorer accuracy was 

due to a tradeoff between speed and accuracy, response times were compared overall and 

on specific trial types. In all cases, SZs had slower reaction times than HCs (overall: 

t(80.69) = 3.30, p = .001; AX: t(86.20) = 3.24, p = .002; AY: t(78.70) = 2.41, p = .02; 

BX: t(80.65) = 3.30, p = .001; BY: t(75.75) = 3.51, p < .001), but neither group 

demonstrated significantly slower times on correct versus incorrect trials (all ps > .28). In 

fact, SZs were (non-significantly) slower on incorrect trials than correct ones. An 

ANOVA model with reaction time as the DV and group, trial type, and accuracy as 

predictor variables found significant main effects for all predictor variables (accuracy: 

F(1, 697) = 3.97, p = .047; trial type: F(3, 697) = 7.83, p < .001 ; group: F(1, 697) = 

45.77, p < .001) but failed to show significant interactions between any predictor 

variables with the exception of accuracy and trial type (p < .001).  These results suggest 

SZs were not prioritizing speed over accuracy more than HCs were. 

 

Confirmatory ROI fMRI results. Confirmatory ROI analyses consisted of 

extracting data from voxels within a priori ROI masks and comparing groups using 

Welch’s independent samples t-tests in the contrast of B cues versus A cues. In the right 

MFG mask, HCs displayed significantly more activation (B > A cues) compared with 

SZs, t(90.02) = 2.47, p = .016, Cohen’s d = 0.52. Likewise, in the left MFG mask, HCs 

showed significantly more B cue activation compared with SZs, t(96.85) = 2.33, p = 

0.022, Cohen’s d = 0.47. Groups did not differ significantly in the right IFG mask, 

t(97.82) = -1.71, p = 0.09 , Cohen’s d = 0.35. These data are presented in supplementary 



     
 
 

155 

 

figure 1.4. There were no significant correlations between any ROI activation and either 

BPRS symptoms or task performance (all p’s > .05). 

 To assess the effect of site in these analyses, all of the ANOVAs predicting 

BOLD activation within each mask used both subject group and CNTRaCS site. In no 

case was there a significant main effect of site (p’s>.06) or a site by group interaction 

(p’s>.18). The main effect of group status remained significant in left MFG (F(1, 93) = 

4.98, p = .03) whereas the group difference was attenuated in right MFG (F(1, 93) = 2.52, 

p=.12) and remained non-significant in right IFG (F(1, 93) = 0.18, p = .67). 
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Supplementary Table 1.1. Clusters of Significant Activation in fMRI Analysis. 
 
          MNI Coordinates 

Contrast Cluster 
Peak Voxel 

Z Score 
Cluster Volume 

(mm3) Anatomical Regions X Y Z 
SZ > 0 1 4.39 10,152 

    
    

L  Middle Frontal Gyrus  -50 12 42 

    

L  Inf Frontal Gyrus pars 
opercularis  -48 12 20 

    
L  Sup Frontal Gyrus  -28 2 66 

    

L  Inf Frontal Gyrus pars 
triangularis  -50 32 16 

 
2 6.09 39,408 

    
    

L  Lateral Inf Occipital Cortex  -44 -82 -10 

    
L  Occipital Pole -24 -98 -10 

    
L  Lateral Sup Occipital Cortex -30 -84 22 

    

L  Temporal Occipital Fusiform 
Cortex -44 -54 -16 

    
L  Pos Temporal Fusiform Cortex -34 -38 -24 

    
L  Pos Supramarginal Gyrus -48 -48 44 

    
L  Angular Gyrus -48 -54 38 

    

L  Inf Temporal Gyrus 
temporooccipital part -50 -60 -20 

    
L  Occipital Fusiform Gyrus -32 -70 -12 

    
L  Precuneous Cortex -12 -72 40 

 
3 5.91 48,856 

    
    

R  Lateral Inf Occipital Cortex 38 -76 -16 

    
R  Lateral Sup Occipital Cortex 24 -74 40 
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R  Occipital Fusiform Gyrus 30 -84 -14 

    

R  Temporal Occipital Fusiform 
Cortex 44 -52 -16 

    
R  Occipital Pole 26 -98 8 

    
R  Angular Gyrus 40 -50 36 

    
R  Pos Supramarginal Gyrus 52 -42 46 

HC > 0 1 6.78 495,912 
    

    
R  Lateral Inf Occipital Cortex 46 -66 -14 

    
R  Occipital Fusiform Gyrus 42 -68 -16 

    
L  Lateral Inf Occipital Cortex -38 -80 -12 

    
L  Occipital Fusiform Gyrus -34 -82 -12 

    
R  Lateral Sup Occipital Cortex 28 -74 36 

    
L  Pos Supramarginal Gyrus -46 -48 50 

    

R  Temporal Occipital Fusiform 
Cortex 30 -42 -24 

    

L  Temporal Occipital Fusiform 
Cortex -40 -60 -14 

    
R  Middle Frontal Gyrus 32 16 54 

    
R  Superior Frontal Gyrus 24 20 54 

    
L  Lateral Sup Occipital Cortex -28 -84 18 

    
L  Frontal Pole -42 38 22 

    
R  Frontal Pole 28 54 18 

    
L  Central Opercular Cortex -40 -4 12 

    
L  Middle Frontal Gyrus -32 14 50 

    
R  Pos Supramarginal Gyrus 52 -44 48 

HC > SZ 1 4.28 11,056 R  Frontal Pole 26 54 14 

    
R  Paracingulate Gyrus 12 50 24 

    
R  Middle Frontal Gyrus 24 28 36 

    
R  Ant Cingulate Gyrus 10 32 16 
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2 4.31 23,408 L  Parietal Operculum Cortex -50 -40 22 

    
L  Pos Supramarginal Gyrus -62 -46 24 

    
L  Pos Superior Temporal Gyrus -62 -22 2 

    
L  Postcentral Gyrus -62 -14 24 

    
L  Lateral Inf Occipital Cortex -56 -64 -2 

    
L  Supracalcarine Cortex -22 -58 14 

    
L  Lateral Sup Occipital Cortex -38 -70 18 

    
L  Ant Supramarginal Gyrus -60 -32 32 

    

L  Inf Temporal Gyrus 
temporooccipital part -46 -52 -4 

    
L  Planum Temporale -40 -34 6 

 
3 4.43 30,664 L  Central Opercular Cortex -40 -4 12 

    
L  Frontal Pole -38 40 24 

    
L  Sup Frontal Gyrus -14 0 62 

    
L Supplementary Motor Cortex -16 -14 42 

    
Ant Cingulate Gyrus 0 8 24 

    
L  Pos Cingulate Gyrus -4 -20 34 

    
L  Sup Pos Temporal Gyrus -52 -12 -8 

    
R  Ant Cingulate Gyrus 2 -8 32 

    
L  Precentral Gyrus -6 -16 54 

    
L  Planum Polare -52 2 -6 

 
Note: “SZ” refers to schizophrenia patients; “HC” refers to healthy controls. “L” and “R” refer to “left” and “right” hemisphere, 
respectively. “Ant” refers to “anterior,” “Pos” refers to “posterior,” “Inf” refers to “inferior,” and “Sup” refers to “superior”. “MNI” 
refers to the Montreal Neurological Institute.
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Supplementary Figure 1.1. fMRI Efficiency Analysis. 
 

 

This figure shows average significant activation irrespective of group status on the B 

Cues – A Cues contrast for scan lengths of 12, 18, and 24 minutes, highlighting the 

ability to observe similar activation at 12 minutes of data that is observed using 24 

minutes. 

Supplementary Figure 1.2. fMRI Efficiency Analysis, B Cues – A Cues. 
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Regions with significantly greater activation in HCs than SZs, made up of 3 clusters. 

Cluster 1 had a peak voxel Z score of 4.28, a volume of 11,056 mm3, and MNI 

coordinates (x,y,z) of 26, 54, 14. Cluster 2 had a peak voxel Z score of 4.43, a volume of 

30,664 mm3, and coordinates of -40, 4, 12. Cluster 3 had a peak voxel Z score of 4.31, a 

volume of 23,408 mm3, and coordinates of -50, -40, 22. The scan lengths that define the 
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color of activation are cumulative, such that the 18 minute data includes the 12 minute 

data, and the 24 minute data includes the previous two. 
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Supplementary Figure 1.3. fMRI Efficiency Analysis. 
 

 
 
This figure shows significant activation in the B Cues – A Cues contrast using a sliding 

window approach to show that the efficiency results described previously are not the due 

to changes in the scans over time but rather due to the amount of data used. The green 

activation represents an analysis using the first two scans (12 minutes) of data, the blue 

represents the second two scans (12 minutes), and the purple represents the last two scans 

(12 minutes). The bronze shadow represents the same contrast using all four scans (24 

minutes). 
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Supplementary Figure 1.4. Confirmatory fMRI GLM results. 
 

 
Beta values are taken from the B Cues – A Cues contrast. Brain images show the size and 

location of ROIs derived from previous research (A. W. MacDonald, Carter, et al., 2005). 
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Appendix 2. Supplement to Study 2 

Method 

Subjects. Data were collected on a total of 120 subjects (60 HC, 60 SZ), of which 

we excluded two subjects for excessive movement (relative movement > 0.37mm; 1 HC, 

1SZ), six subjects for sub-threshold task performance using previously reported criteria 

(Henderson et al., 2012; 2 HC, 4 SZ), four subjects for inability to understand task 

instructions (4 SZ), three subjects for poor imaging data quality (3 SZ), and two subjects 

for poor effort/refusal to continue (1 HC, 1SZ). Additionally, three subjects were 

excluded because they had fewer than four usable imaging scans (2 HC, 1 SZ). The final 

sample consisted of 100 subjects (54 HC, 46 SZ). Included HC did not differ from 

excluded HC on demographic variables (all p > .16), nor did included SZ differ from 

excluded SZ on these or symptom measures (all p > .11). 

 

fMRI data acquisition and preprocessing. Scanning protocol included a 

localized to align scans with AC-PC line, a 3D T1-weighted anatomical scan (1 mm3 

isotropic), a T2-weighted scan, a field map, and T2*-weighted whole brain gradient echo 

EPI functional scans. These functional scans had the following parameters: TR = 2000 

ms, TE = 30 ms, flip angle = 77°, 32 AC-PC aligned axial slices, voxel size = 3.43 x 3.43 

x 4.0 mm. Four scans of 180 functional volumes were collected during four blocks of the 

DPX task. Quality control “phantom” scans were also collected on each scanner at the 

time of each subject’s data collection. 

  Preprocessing using FMRIB Software Library (FSL v. 4.1.8; Smith et al., 2004) 

included motion correction using MCFLIRT (Jenkinson et al., 2002), brain extraction 
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using BET (Smith, 2002), grand-mean intensity normalization of the entire 4D dataset by 

a single multiplicative factor, high-pass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma=50.0s); B0 field unwarping, spatial smoothing 

with a 7 mm FWHM Gaussian kernel, and spatial normalization and linear registration to 

the MNI 152 standard brain using FLIRT (Jenkinson & Smith, 2001). Motion regression 

was then performed by conducting a multiple regression whereby the six motion 

parameters calculated for each subject’s data during motion correction were used to 

predict the functional data. The residuals from this regression were retained and used for 

subsequent analyses of the functional data. Data for each of the four, 6-minute blocks of 

the DPX task were then concatenated temporally, producing one functional data set for 

each subject. 

 

Tonic functional network connectivity. We also sought to ascertain whether 

subject groups differed with regard to the amount components lagged behind one another. 

To do this, the average amount of lag was calculated for each component pair within each 

group. Next, for each component pair we subtracted the SZ mean value from the HC 

mean value. To determine if one group had more lag than the other, a sign test (Zar, 

2010) was performed on this array of difference values. 

 

Results 

Tonic functional network connectivity. 

To determine if groups differed with regard to the amount of lag between 

component pairs, a binomial test was conducted. In 359 out of 595 cases, SZ had larger 
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lag values compared with HC. A binomial test comparing this rate to 0.5 resulted in a 

95% confidence interval of 0.56 to 0.64 and a p value less than .001, rejecting the null 

hypothesis that the probability of SZ having a larger lag than HC was 0.5.  

 

Dynamic functional network connectivity. Because of the significant 

correlations between tFNC and d’ context in SZ and between dFNC/task timeline with d’ 

context in HC, it suggested that the association between right ECN and SN may act as a 

prerequisite for the two ECN to coordinate to meet task demands. To test this, SZ whose 

tFNC values between right ECN and SN were greater than one standard deviation below 

the mean for SZ were removed from the analysis. As displayed in supplementary figure 

2.4, the correlation between the task modulation of the two ECN with d’ context was 

repeated, and SZ then showed an equivalent relationship with task performance as did 

HC. 
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Supplementary Table 2.1. Sample Demographics. 
 

 Group  
 SZ HC Test 

N 46 54  
Mean Age (yrs) 35.8 (12.1) 34.9 (11.9) t(98) = 0.38 
% Male 73.9 75.9 χ2(1) = 0.00 
% Caucasian 56.5 61.1 χ2(1) = 0.07 
% Right-Handed 84.8 85.2 χ2(1) = 0.00 
Mean Education 
(yrs) 

14.0 (2.0) 15.3 (2.6) t(98) = -2.93* 

Mean Parental 
Education (yrs) 

13.9 (2.5) 13.8 (2.7) t(89) = 0.09 

BPRS Total 40.3 (10.3) n/a  
     Positive 
Symptomsa 

9.4 (5.2) n/a  

     Negative 
Symptomsb 

7.2 (2.3) n/a  

     
Disorganizationc 

5.0 (1.7) n/a  

Note: BPRS, Brief Psychiatric Rating Scale; SZ, schizophrenia patients; HC, healthy 
controls. Parenthetical numbers following means represent standard deviations. Asterisks 
following test statistics represent p < .05.   

a BPRS items 8, 9, 10, and 11. 
b BPRS items 13, 16, 17, and 18. 
c BPRS items 12, 14, 15, and 24. 
  



     
 
 

168 

 

Supplementary Figure 2.1. Demonstration of dynamic functional network 
connectivity. 
 

 
 

The top portion shows the time courses associated with two components for a single 

subject. The two blue rectangles represent two example time windows within which 

correlation coefficients are measured. The bottom portion shows the dFNC between those 

two components and also the task demands. The bottom black line represents dFNC and 

shows that when the two components’ timecourses are more similar, dFNC is higher. The 

bottom red line represents the task time course of B cues after having been convolved 
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with a hemodynamic response function and after a moving average has been applied. A 

correlation coefficient is calculated between the task demands and the dFNC to assess 

task modulation of the dFNC between these two components. 
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Supplementary Figure 2.2. Task-related component maps. 

 

These nineteen components’ time courses were significantly related to the DPX task’s B  
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Cue time course across groups. Numbers to the upper left of each map represents the 

arbitrary index of that component. Warm colors representing component spatial maps 

indicate components that were positively correlated with the task time course, and blue 

colors indicate negative correlations. Within each type (positive and negative), 

components are ordered by the extremity of the correlation value, with the most extreme 

values at the top left. Maps are presented in radiological view, so images are reversed left 

to right.  
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Supplementary Figure 2.3. Task modulation of dynamic functional network  

connectivity between ECN components. 

 

This figure shows the extent to which dFNC, measured between the two executive  

components, correlated with the DPX task’s B Cue time course for each subject  

group. The brain image shows the two frontoparietal component spatial maps. This map 

is in radiological view, so left and right are reversed. 
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Supplementary Figure 2.4. DPX Performance Predicted by dFNC in Schizophrenia 

Patients. 

 

 
This figure shows a dashed blue line that represents the correlation between the task 

modulation of the dynamic relationship between left and right ECNs with d’ Context in 
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schizophrenia patients after removing those patients with tFNC strength between ECN 

and SN greater than one standard deviation below the mean.  


