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Abstract

In recent years, there has been a significant increase in the applications dealing with

dynamic, high-dimensional, heterogeneous data streams. For example, in the domains

such as healthcare, activity recognition, aviation systems, etc. multiple sensors provide

a record of many continuous and discrete parameters over long periods of time, and the

objective is to monitor behavior of the objects, discover meaningful patterns or detect

anomalous events.

In spite of a vast literature on data mining and machine learning techniques, these

problems have continued to remain difficult. Primarily this is due to a challenge of

proper characterization of the interdependencies between multiple data sources, being

a mixture of continuous and discrete type. Moreover, for applications that deal with

data monitoring or unusual behavior detection, the additional challenge is a design of

discovery algorithms aimed at extracting patterns, trends, anomalies in unsupervised

settings where data is commonly noisy and even partially unobservable.

In this work, we propose a suite of models and methods for the analysis of such data

by using a Dynamic Bayesian Network (DBN) representation. DBN is a general tool for

establishing dependencies between variables evolving in time, and is used to represent

complex stochastic processes to study their properties or make predictions on the future

behavior. The main challenge in using DBN is to identify a model structure, learn its

parameters with estimation guarantees and perform efficient inference. Our work has

made advances in addressing the above problems, especially in the context of anomaly

detection, by proposing several frameworks for anomaly detection in multivariate time

series data and building efficient algorithms for learning and inference.

In the first part of the thesis, we present a framework for modeling dynamic discrete

sequences based on a hidden semi-Markov model (HSMM). We chose HSMM due to

its inherent ability to model durations in addition to latent state transitions based

on the observed sequences, where such modeling is frequently used in the areas such

as activity recognition or object monitoring. An important aspect of using HSMM is

the parameter learning and inference. For this purpose, we introduce a novel spectral

algorithm to perform inference in HSMM. Unlike expectation maximization (EM), our
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approach correctly estimates the probability of a given observation sequence based on a

set of training sequences. Moreover, the algorithm provides estimation guarantees and

is computationally efficient.

In the second part, we consider modeling and anomaly detection in the continuous

multivariate time series data. For this purpose, we present a framework where each

data object is represented using a vector autoregressive (VAR) model. A similarity

neighborhood graph is then constructed based on the constructed VAR models and

anomaly detection is then applied to identify abnormal events. A key step in the above

framework is the estimation of the parameters in the VAR model, usually formulated

as a least-squares optimization problem with a regularization based on the norms such

as Lasso, group Lasso, order weighted Lasso, etc. We study the properties of such

optimization problem and establish bounds on the non-asymptotic estimation error of

the VAR parameters.

Finally, in the last part, we combine the ideas of the semi-Markov modeling of

discrete sequences and autoregressive modeling of continuous data, and represent the

multivariate heterogeneous time series data of the flight using semi-Markov switching

vector autoregressive (SMS-VAR) model. Detection of anomalies is then based on mea-

suring dissimilarities between the model’s prediction and data observation.

The evaluation of the proposed frameworks is done on the NASA flight dataset,

containing over a million of flights, representing 35 different aircrafts. For each flight,

the data has a record of over 300 parameters, sampled at 1 Hz, including sensor readings,

control inputs and weather information. The objective is then to detect anomalous flight

segments due to mechanical, environmental, or human factors. Extensive experimental

results on this dataset illustrate that the proposed frameworks can detect various types

of anomalies along with the key parameters involved and outperforms the current state-

of-the-art approaches.
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Chapter 1

Introduction

Given data about some process or phenomenon, such as speech, a protein sequence, or a

stock market, one might be interested in constructing a representative model in order to

study its properties or to make predictions about its future behavior. One of the most

general models one could build is to construct the underlying probability distribution

which generated the data. Such distribution would establish the relationship between

various parameters of the phenomenon as well as govern its evolution in time. For the

ease of use and to visualize and study such relationships, Bayesian Networks (BNs) [6]

are usually constructed, which are simply a graphical way to represent the static depen-

dencies between the variables. To characterize a temporal component of the process, the

dynamics is added to BNs and these models are then called Dynamic Bayesian Networks

(DBNs) [7]. For example, consider Figure 1.1, which illustrates a DBN of some abstract

process evolving across three time steps. Within each time stamp, the circles denote

the variables representing the model and the black arrows show the static relationship

among them. The blue arrows, on the other hand, represent the dynamics and show

how the system evolves in time.

The main objective of this work is the DBNs for multivariate, heterogeneous time

series data. We are interested in the models that can efficiently represent the dynamics

of the system with multiple, interdependent parameters evolving over a long period of

time. Such data frequently arises in aviation [8], industrial [9], medical [10] or economic

[11] domains, characterized by high dimensional, high throughput systems recording

large amounts of data in a short period of time. In modeling such data, we focus

1
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Figure 1.1: Dynamic Bayesian Network presentation of an abstract process evolving
across three time steps. The circles represent the variables of the model and the arrows
show dependencies between the variables.

specifically on the models enabling accurate short- and long-term forecasting as well

as the models which are useful for analyzing the properties of the underlying system

and studying the complex relationships in the data. Moreover, we are interested in

the efficient algorithms to estimate the DBN models as well as to perform fast online

computations of the probabilistic queries in the constructed models. Given the large

amounts of data generated by the systems, often contaminated by noise, the algorithms

need to be robust, scalable, computationally efficient and with estimation guarantees.

1.1 Existing Approaches

There are three key problems associated with using DBNs: (i) structure learning, which

focuses on finding the graph structure (e.g., the tree-like structure within each time

stamp in Figure 1.1) that encodes the conditional dependence and indepedence in the

data; (ii) parameter learning, which computes the parameters of the probability dis-

tributions specified by DBN and (iii) inference, consists of answering various queries

about the underlying process, which are usually marginal or posterior probabilities of

the variables of interest.

The structure learning is usually addressed using three main approaches. The
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constraint-based structure learning approach [12, 13] tries to test for conditional de-

pendence and independence in the data and then find a network that best explains

these dependencies and independencies. This method is known to be sensitive to fail-

ures in individual independence tests, for example if one of the tests returns a wrong

answer then the constructed network no longer represents the data it models. The sec-

ond approach is a score-based structure learning [14, 15], which addresses the learning

as a model selection problem. In particular, a set of possible network structures is first

identified and then a scoring function measuring how well the model fits the data is

applied to select the best fitting model. The disadvantage of the score-based approach

is that it poses a search problem that may have to search a very large space of struc-

tures, making it computationally infeasible. Finally, the hybrid approach [16, 17] uses

both the conditional independence tests to reduce the space of candidate structures and

scores to identify the optimal structure among them.

Once the DBN structure is determined, the next step is to estimate the parameters

of the distribution specifying the model. There are usually two main approaches for this:

one based on Maximum Likelihood (ML) or Maximum a Posteriori (MAP) estimation,

which do a point estimate, and the other using a full Bayesian approach. In the ML

approach [6] it is assumed that we have access to the training data D and that the

model is specified in terms of a set of parameters Θ defining the underlying probability

distribution. The likelihood p(D|Θ) is constructed and then Θ̂ is found which maximizes

the likelihood over the parameter space

Θ̂ml = arg max
Θ

p(D|Θ).

If a prior knowledge about the model parameters is known, then a MAP approach can

be employed, which aims at finding the parameter Θ̂map, which maximizes the posterior

p(Θ|D)

Θ̂map = arg max
Θ

p(Θ|D) = arg max
Θ

p(D|Θ)p(Θ)

p(D)
= arg max

Θ
p(D|Θ)p(Θ),

where p(Θ) is the prior distribution on the model parameters reflecting our prior knowl-

edge on Θ. Also observe that in the last equality we dropped the term p(D) since it has

no functional dependence on Θ.
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Both ML and MAP estimations return only a single and specific value of the pa-

rameter, Θ. In contrast, in full Bayesian estimation the objective is to compute the

posterior distribution

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
.

The advantage of the Bayesian approach over the point estimators is that we get a prob-

ability distribution p(Θ|D), which completely specifies all the possible model parameters

and it is up to us to decide which one to select (e.g., we may choose the expected value

of this distribution if the variance is small enough). On the other hand, the Bayesian

approach is computationally infeasible in many cases since it requires the computation

of p(D) =
∫

Θ p(D|Θ)p(Θ)dΘ, an intractable integration for many practical scenarios [6].

In situations when the given training data D does not have a record of all the relevant

parameters and some of the variables might be hidden from the observer, a standard

approach is to use the Expectation Maximization (EM) [18, 19] algorithm. It is an

iterative approach whose main functionality can be described as follows. Denote by D
the data about the observed variables and by Z the set of hidden variables in the DBN

model. If we did have access to the data about these variables, then our objective would

be to determine the parameters which maximize the (log) likelihood log p(D, Z|Θ) of

the data. However, since we do not have access to Z directly, what we can do is to

maximize the expectation of log p(D, Z|Θ)

EZ [log p(D, Z|Θ)] =
∑

Z

log p(D, Z|Θ)p(Z|D, Θ̂) = Q(Θ, Θ̂),

where Θ̂ is some initial estimate of the parameters. Note that the resulting expectation

can be viewed as a function Q(Θ, Θ̂), parameterized by Θ. Now, similarly as in ML

approach, we maximize the expectation of the likelihood

ˆ̂
Θ = arg max

Θ
Q(Θ, Θ̂),

where
ˆ̂
Θ is now a new parameter estimate. This procedure is then repeated until

convergence, i.e., given an initial estimate of the parameters at iteration k, Θ̂k, we repeat

the following two steps (expectation (E) and maximization (M)) until convergence

• E step: given Θ̂k and D, compute p(Z|D, Θ̂k);
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• M step: compute Q(Θ, Θ̂k) and get Θ̂k+1 = arg max
Θ

Q(Θ, Θ̂k).

Finally, the third important problem associated with DBNs is inference, i.e., com-

puting the probabilistic queries of the variables of interest. The approaches for this

problem usually fall into two main categories: the exact inference and approximate

inference. For the exact inference, the Junction Tree algorithm [7] is commonly used,

which helps to decompose the global computations of joint probability into a linked set

of local computations by converting a DBN into a tree-structured graph. In this ap-

proach, the DBN is first converted into a Junction tree (also called Clique tree) [20] and

then a sum-product algorithm [21] is applied to compute the quantities of interest. The

exact inference approach suffers from high computational and space requirements since

their complexity is exponential in the tree-width [6] of the network. For this reason,

for the networks with large tree-width, approximate inference approaches are usually

applied.

The approximate inference approaches can be classified into stochastic and deter-

ministic approximations. The stochastic approximation methods are based on numerical

sampling and are generally known as Monte Carlo techniques. The main idea is to ap-

proximate the intractable probability distribution with samples, e.g., approximating the

population mean with an average of the data points drawn from the corresponding prob-

ability distribution. A popular class of sampling algorithms are based on Markov Chain

Monte Carlo (MCMC) methods, which perform sampling from a probability distribution

based on constructing a Markov chain that has a desired distribution as its steady-state.

Examples of MCMC approaches are the Metropolis-Hastings algorithm [22, 23], Gibbs

sampling [24], slice sampling [25], etc. The deterministic approaches, based on varia-

tional inference techniques [19, 26], in contrast to the sampling approaches, are based

on approximating the target probability distribution with another distribution analyt-

ically. The main idea is to first pick a family of approximating distribution, which

is parameterized by certain parameters. Then, the parameters are varied such that

the approximation is close to the target, which is then used as a proxy to make the

probabilistic queries of interest.

Unfortunately, for an arbitrary process or phenomenon, identifying the structure of

the network, learning its model parameters with estimation guarantees and performing

efficient inference are challenging and in many cases intractable problems [19]. For
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example, the estimation of the optimal DBN structure for a complicated process with

limited and noisy data is usually an intractable problem [6]. Moreover, the data might

not have a record of all the relevant parameters and some of the variables might be

unobserved. In this case, DBNs with latent variables are employed, for which the

structure identification becomes even a more non-trivial task. The parameter estimation

problem is again a challenging task, especially when a part of the data related to latent

variables is missing. The approaches based on EM [18] are the most widely employed for

these scenarios, however, these are iterative approaches crucially relying on initialization

with limited convergence or estimation guarantees. Even when we have access to all

the data about a process, some existing techniques for computing the model parameters

still lack theoretical guarantees for the obtained estimates. For example, when modeling

time series data, the parameter estimator is usually formulated as a linear regression

on correlated and dependent data [27] and the statistical analysis of the solution of a

general regularized regression is still missing. Finally, the exact inference problem for

arbitrary DBNs is computationally intractable [7]. Approximate inference approaches

based on sampling or variational methods have been proposed to alleviate the problem

[28], however, as we discussed above, these techniques are based on approximating

probability distribution and can still be computationally prohibitive.

1.2 Our Work

In this work we attempt to advance the current state of the art in closing the gap to the

goal of being able to model a probability distribution with provable guarantees for struc-

ture identification, parameter learning and inference. In particular, we have proposed

a spectral algorithm for learning and inference in hidden semi-Markov model (HSMM)

[29]. This algorithm, in contrast to EM, is non-iterative, computationally efficient and

has provable estimation guarantees. We have also studied the problem of estimation of

structured vector auto-regressive (VAR) models for time series data where the struc-

ture can be captured by any suitable norm, e.g., Lasso [30], group Lasso [31], order

weighted Lasso [32], sparse group Lasso, etc. For this type of models we have proved

[33] non-asymptotic error bounds and established the relationship between accuracy of

estimated parameters and the number of required samples (size of the training data).
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The main application area of our work is the anomaly detection in aviation systems

and the specific process that we study is the flight of aircraft. In this context, the goal is

to detect anomalous flight segments, due to mechanical, environmental, or human factors

in order to identifying operationally significant events and provide insights into the flight

operations and highlight otherwise unavailable potential safety risks and precursors to

accidents. For this application, we have proposed a number of approaches for detection

of safety events based on HSMM [34, 29], VAR [35] and switching VAR models [36].

The primary motivation for our choice of this application area is the realization of

the importance of the aviation safety. In particular, it is estimated that by 2040 the

United States alone can expect an increase of more than 60% in the commercial air

traffic [37]. The anticipated air traffic growth can lead to increased congestions on the

ground and in the air, creating conditions for possible incidents or accidents. Noting

this problem, air transportation authorities are engaged in research and development

of the Next Generation Air Transportation System [38, 39], the initiative to improve

air traffic control system by increasing its capacity and utilization. A part of this

effort is devoted to the processing and analysis of the air traffic flight information, also

known as Flight Operations Quality Assurance (FOQA) data, to detect issues in aircraft

operation, study pilot-automation interaction problems, propose corrective actions or

design new training procedures.

The currently deployed automated methods for the analysis of FOQA data are usu-

ally exceedance-based approaches [40, 41], which monitor the normal operation of the

flight using predefined ranges on the parameters and any deviations outside of these

ranges are flagged as anomalies. Although this approach is simple and fast, it is limited

since the method examines each feature independently of the others, ignoring potential

correlations among the parameters. Moreover, since the thresholds need to be defined

upfront, this method can fail to discover previously unknown abnormal events.

The main source of data in our work is the real NASA flight dataset [42]. It contains

over a million of flights of 35 aircrafts from a partner airline company. For each flight,

the data has a record of 186 parameters, sampled at 1 Hz, including sensor readings

control inputs and weather information. A diagram in Figure 1.2 shows some of the

flight data parameters and the relationships among them. They key characteristics of

these data can be summarized as follows
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Figure 1.2: Diagram showing flight data parameters and the relationships among them.
The inputs (environment and control parameters) determine the behavior of the aircraft
and their effects are registered by the sensors, which are the outputs of the system.

• Multivariate

• Variable length

• Heterogeneous

• Unlabeled.

Specifically, each flight is represented as a multivariate time series. Since each of them

has a different duration, the length of multivariate time series varies. Moreover, some of

the flight parameters are continuous (e.g., some environment and sensor measurements)

while others are discrete (e.g., some of the control parameters), therefore the data is

heterogeneous. Finally, the dataset has no ground truth information, i.e., it is not

known which of the flights are normal and which are anomalous. Consequently, given

the above description it is clear that the task of anomaly detection in such settings is

challenging.
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We approach the above problem by breaking it into subproblems, solving them and

then combine the results to get a solution to the original problem. First, in Chapter 2

we present a method for anomaly detection in discrete sequences based on HSMM. The

key problems which also need to be addressed in using HSMM are parameter learning

and inference. For this purpose, in Chapter 2 we also present a spectral algorithm for

inference in these type of models. Next, in Chapter 3 we consider the same problem

using only the continuous features and propose a vector autoregressive model-based

anomaly detection framework. The key step in this framework is the estimation of the

VAR model, which is usually done by solving a regularized least-squares optimization

problem. In Chapter 4 we present a theoretical analysis studying the properties of this

optimization problem from the statistical point of views, i.e., under which conditions on

the data the VAR estimation problem is guaranteed to produce the accurate estimates.

Finally, in Chapter 5, we propose the anomaly detection method for heterogeneous

flight data, which is based on semi-Markov switching vector autoregressive (SMS-VAR)

modeling and relies on the earlier developed ideas of HSMM and VAR.

We note that our proposed anomaly detection techniques are not limited to aviation

safety domains and can be also used in other areas such as network intrusion detection

[43], fraud detection [44], public and healthcare domain anomaly detection [45], etc.

Moreover, the HSMM, for which we designed efficient spectral algorithm for learning

and inference, is a popular modeling framework in many areas, including activity recog-

nition [46], speech synthesis [47], modeling web browsing behavior [48], etc. The VAR

model, whose structured estimation was analized in this work, is a widely used model-

ing framework, whose applications range from describing the behavior of economic and

financial time series [49] to modeling the dynamical systems in the control theory [50]

to estimating brain function connectivity [51] and many others. Finally, the switching

VAR model merges ideas from HSMM and VAR to enable modeling of systems whose

dynamics can transition in a discrete manner from one linear operating regime to an-

other. Such ideas found applications in economics [52], healthcare [53], signal processing

[54], etc.



Chapter 2

Hidden semi-Markov Model:

Discrete Data Modeling

In this chapter we present the work which addresses the problem of modeling dynamic

discrete flight data and in Section 2.2 we show how hidden semi-Markov model (HSMM)

can be used to perform anomaly detection in such data. In Sections 2.3 and 2.4 we

derive efficient non-iterative spectral algorithm for inference in HSMM. We present

experimental results in Section 3.4, comparing the proposed spectral algorithm with

EM on synthetic and real flight data.

2.1 Introduction

The discrete data usually correspond to the pilot actions which control the behavior of

the aircraft. Pilot actions have certain unique aspects which make the modeling typical

behavior as well as detecting anomalies a challenge. While the actions are chosen from a

fixed alphabet of possible actions, the typical/normal actions are neither totally ordered

nor memoryless. The actions can be considered weakly ordered in a specific phase of a

flight, and certain set of actions are common in certain phases, such as take-off, cruise,

and landing. Further, the duration between subsequent actions may vary, and there

may not be any action in every discrete time-step, e.g., every second. To capture such

weakly ordered actions with variable durations we proposed to use hidden semi-Markov

models (HSMMs) [55], [56].

10
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HSMM is an extension of a simpler hidden Markov model (HMM) [57], whose main

drawback as a model for pilot actions is that it encourages fast hidden state switches.

Subsequent pilot actions usually have a time interval, and such intervals constitute

normal behavior. Therefore, it is difficult for HMM to model such intervals as being in

the same latent state for prolonged periods of time. HSMM, on the other hand addresses

this problem by introducing additional hidden variable which controls duration of the

hidden state. With this modifications, the HSMM allows arbitrary distributions of state

durations, thus improving modeling of pilot actions.

The problem of detecting anomalies in the pilot actions has attracted the attention of

many researchers. For example, Budalakoti et al. [58] addressed the problem of anomaly

detection by clustering the training action sequences using k-medoids algorithm into

groups based on the normalized longest common subsequence (LCS) similarity measure.

The anomaly score was based on the similarity measure of a test sequence to the closest

cluster medoid.

Anomaly detection algorithm based on Dynamic Bayesian Networks was proposed

by Saada et al. [59], where hidden variables correspond to pilot actions and observable

variables model the instruments data. Unfortunately, the authors proposed to train

their model using sequences which contained information about manually annotated

hidden nodes, which is impractical for many realistic scenarios.

Srivastava [60] addressed the problem of anomaly detection in pilots actions by using

Hidden Markov Models. The observations are modeled using N -dimensional binary

vector corresponding to binary switches in an aircraft cockpit. Since the number of

possible switches could be large, to learn the model, they first perform clustering of

the training data to get a smaller class of discrete observations and then apply HMM

over the reduced data. However, as we already mentioned, HMM has a restriction to

geometric distribution of persistence in the same hidden state, thus limiting its ability

to properly model the pilots actions.

2.2 Description of Anomaly Detection Approach

The presented approach uses normal sequences to learn a model that captures normal

behavior. For any test sequence, the likelihood of the sequence to have come from the
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model is used to determine if the sequence is anomalous or not. In particular, high

likelihood sequences are deemed normal, whereas low-likelihood sequences are detected

as anomalous.

A popular Markovian approach for modeling discrete sequences is the Hidden Markov

Model (HMM). Assume that a given set of discrete sequences corresponds to a normal

landing flight phase. The hidden states could represent different stages that the pilot

goes through in order to land the aircraft, e.g., initial descent, touch down, and braking

on the runway. In any given stage, say initial descent, the pilot performs certain actions.

For example, during the initial descent, the pilot reduces throttle, lowers the flaps, and

uses the ailerons and elevator to stabilize the aircraft. On the other hand, in the braking

stage, the pilot uses breaks as well as rudder to keep the aircraft in the middle of the

runway. In HMM, the hidden states can correspond to these stages, and the actions

taken in these stages are observable.

One drawback of the standard HMM as a model for pilot actions is that it encour-

ages fast hidden state switches [57], i.e., the probability of staying in the same state

decreases geometrically fast. Subsequent pilot actions usually have a time interval, and

such intervals constitute normal behavior. HMM is incapable of directly handling such

intervals, and it is difficult to capture such intervals as being in the same latent state for

prolonged periods of time due to the geometric distribution of persistence in the same

state.

To address the above limitation of HMM, we propose to use Hidden Semi-Markov

Model (HSMM), which is shown in Figure 2.1, where xt ∈ {1, . . . , nx} represents a

hidden state and ot ∈ {1, . . . , no} represents an observation at time step t. Moreover,

HSMM introduces one additional hidden variable, d ∈ {1, ..., nd}, which controls the

duration of the hidden state x.

The operation of HSMM can be described as follows. Assume that dt−1 = 1, then

at time step t the hidden variable x transitions to a new state, according to the state

transition distribution p(xt|xt−1). The time duration of this state is determined by

p(dt|xt), and the observation is drawn according to p(ot|xt). For the subsequent time

steps, the state xt remains the same as long as dt ≥ 1. Once the duration counter is

decreased so that dt = 1, a transition to a new state is made. As is clear from the

specification, HSMM are inherently capable of modeling persistence in a latent state,



13

ot−1 ot ot+1

xt−1 xt+1xt

Figure 1: Hidden Markov Model

One popular Markovian approach for modeling discrete sequences is the Hidden Markov Model (HMM).
An example of such model is shown in Fig. 1, where xt ∈ {1, . . . , M} represents a hidden state and
ot ∈ {1, . . . , N} represents an observation at time step t.

The use of HMM to model the true distribution, which generated the normal sequences of pilot’s actions
is appealing. To justify this choice, assume that the given set of S discrete sequences in (1) corresponds to a
landing flight phase. The hidden states could then represent M stages that the pilot goes through in order
to land the aircraft, such as initial descent, touch down and breaking on the runway. While staying in some
stage, the pilot performs certain set of actions. For example, while in the initial descent, the pilot’s actions
would be to reduces throttle, lower the flaps and use the ailerons and elevator to stabilize the aircraft. On
the other hand, while in the breaking stage, the pilot’s actions would be to use breaks as well as rudder to
make sure the aircraft stays in the middle of the runway.

In the above example, out of N possible pilot’s actions, some could be unique to certain landing stages
(e.g., lower flaps), while others (e.g., move elevator up) could be shared among different stages.

One major drawback of a standard HMM to model pilot’s actions is that it encourages fast hidden state
switches. In other words, the probability of staying in the same state decreases exponentially fast, i.e., HMM
has geometric state-duration distribution.

To address this limitation, we proposed to use Hidden Semi-Markov Model (HSMM), which is shown in
Fig. 2. HSMM introduces one more hidden variable d ∈ {1, . . . , dmax} which controls the duration of the
hidden states, here dmax denotes the longest possible duration in any state.

ot−1 ot ot+1

dt−1 dt dt+1

xt−1 xt+1xt

Figure 2: Hidden Semi-Markov Model

The full description of the HSMM includes the specification of the following model parameters(collectively
denote by λ): duration probabilities

p(dt|xt, dt−1) =

�
p(dt|xt) if dt−1 = 1

δ(dt, dt−1 − 1) if dt−1 > 1
(3)

transition probabilities

2

Figure 2.1: Modeling discrete data using hidden semi-Markov model (HSMM).

which is suitable for human action modeling.

The process of detecting anomalies can be described as follows (see Figure 2.2 for an

illustration). Consider a database of discrete sequences, {S1, . . . ,SN}, each representing

a series of actions taken by a pilot during normal operations of an airplane. In the

database, the i-th sequence of length Ti, i = 1, . . . , N is denoted as Si = {oi1, . . . , oiTi}.
To determine if a test sequence Stest = {otest1 , . . . , otestT } is anomalous, we compute the

anomaly score based on the joint likelihood of the observed data. In practice, to avoid

numeric underflow problems and to make this measure independent of the sequence

length T , we use the normalized log-likelihood:

L(Stest) =
log p(Stest)

T
=

log p(otest1 , . . . , otestT )

T
. (2.1)

To determine specific locations in the sequence which make it anomalous and to detect

anomalies in an action stream, we use the conditional probability of the current action

ot, given the observations received so far, i.e.,

M(otestt ) = p(otestt |otest1 , . . . , otestt−1). (2.2)

From a graphical model perspective, HSMM is specified by three conditional proba-

bility tables (CPTs): the observation/emission probability p(ot|xt) and the state tran-

sition and the duration probabilities given by:

p(dt|xt, dt−1) =




p(dt|xt) if dt−1 = 1

δ(dt, dt−1−1) if dt−1 > 1
(2.3)

p(xt|xt−1, dt−1) =




p(xt|xt−1) if dt−1 = 1

δ(xt, xt−1) if dt−1 > 1
, (2.4)
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Figure 2.2: Anomaly detection framework using HSMM modeling.

where δ(a, b) denotes the Dirac delta function: δ(a, b) = 1 if a = b and 0 otherwise. In

addition, one can consider suitable prior probabilities p(x0) and p(d0).

As we showed in (2.1), the anomaly detection procedure requires a computation of

the log-likelihood of data, log p(otest1 , . . . , otestT ) (or, equivalently, the conditional prob-

ability p(otestt |otest1 , . . . , otestt−1)). Traditionally, these quantities were computed using a

two-stage approach. First, the HSMM parameters are estimated using methods which

usually follow the initial idea due to Rabiner [57] based on the modifications of the

Baum-Welch algorithm [61], which are all variants of the expectation maximization

(EM) framework, presented in [18]. Once the parameters are estimated, we can then

perform inference using, e.g., the forward-backward algorithm of Yu et al. [62]. How-

ever, since EM, in general, has no guarantees in estimating the parameters correctly and
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can suffer from slow convergence, such methods can be inefficient and/or inconsistent.

The focus of our work is to develop a provably correct spectral algorithm for computing

p(Stest).

2.3 Spectral Algorithm for Inference

The key problems which need to be addressed in using HSMM is learning, i.e., estimating

model parameters and inference, i.e., computing the probability of an observed and

latent variable sequence. The methods proposed for learning are usually a variant of

the expectation maximization (EM) [18] algorithm. Then, for example, a forward-

backward algorithm of [62] can be used to perform inference. However, since EM has no

guarantees in estimating parameters correctly, has slow convergence and whose accuracy

depends on the initialization, such methods can be inefficient and inconsistent.

In recent years, there has been an increased interest in spectral algorithms, which

provide computationally efficient, local-minimum-free, provably consistent algorithms

for parameter estimation and/or inference. For example, Anandkumar et al. [63], [64]

have proposed spectral methods for learning the parameters of a wide class of tree-

structured latent graphical models, including Gaussian mixture models, topic models,

and latent Dirichlet allocation. Hsu et al. [65] have proposed an efficient spectral algo-

rithm for inference in HMMs. The algorithm learns a so called observable representation

and uses it to do inference on observable variables. The approach, however, was specific

to HMMs and not easily extendable to other latent variable graphical models. Parikh

et al. [66] have introduced a spectral algorithm to perform inference in latent tree

graphical models with arbitrary topology, and later in [67] a general spectral inference

framework for latent junction trees.

We utilize the framework of [67] and introduce a novel spectral algorithm for infer-

ence in HSMMs. Since we address a more specific problem than [67], our results shed

more light into the details of the spectral framework for HSMMs, allow for a sharper

analysis, and yield a significantly more efficient algorithm than the general framework

in [67].

There are two main technical contributions in our development of spectral algorithm

for HSMM. First, by exploiting the homogeneity of HSMMs we make our algorithm more
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efficient and accurate than if we directly follow the recipe in [67] for general graphs. In

particular, our approach ensures that the number of matrix multiplications and inverses

is fixed and independent of sequence length. Second, we show that the order of tensors

in estimated observable representation depends only logarithmically on the maximum

length of latent state persistence.

In what follows, we introduce notations in Section 2.3.1. In Sections 2.3.2 and 2.3.4

we present HSMM inference from a tensor product perspective. Finally, in Sections

2.3.6 and 2.3.7 two versions (basic and efficient) of the spectral algorithm are presented

and their properties are discussed.

2.3.1 Notations

In this section, we cover basic facts about tensor algebra, a detailed tutorial on tensors

can be found in [68] or [69]. A tensor is defined as a multidimensional array of data,

which will be denoted by boldface Euler script letters, e.g., X
m1,...,mN

∈ RIm1×···×ImN ,

which is N -mode tensor of dimensions Im1 × · · · × ImN . A specific mode is denoted by

the subscript variable mi, whose dimension is Imi .

Any tensor can be matrisized (or flattened) into a matrix. This mapping can be done

in multiple ways, the only requirement is that the number of elements is preserved and

the mapping is one-to-one. If we split the modes into two disjoint sets, one corresponding

to rows and the other to columns, e.g., {m1, . . . ,mN} = {p1, . . . , pK} ∪ {q1, . . . , qL},
then a matrisization of X is denoted by a corresponding capital boldface letter, e.g.,

X
p1,...,pKq1,...,qL

∈ RIp1 ···IpK×Iq1 ···IqL .

Tensor Multiplication Multiplication of two tensors is performed along specific

modes. For this, we flatten each tensor to a matrix, perform the usual matrix multi-

plication and transform the result back to a tensor. The multiplication is denoted by a

symbol × with an optional subscript representing the modes along which the operation

is performed, e.g.,:

Z
p1,...,pK ,r1,...,rM

= X
p1,...,pK ,q1,...,qL

×q1,...,qL Y
q1,...,qL,r1,...,rM

,

where Y
q1,...,qL,r1,...,rM

∈ RIq1×···×IqL×Ir1×···×IrM and the resulting tensor on the left hand

side is of the form Z
p1,...,pK ,r1,...,rM

∈ RIp1×···×IpK×Ir1×···×IrM . Observe that in the above,

we can flatten the tensors X and Y in multiple different ways as long as the matrix
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multiplication remains valid. For example, we could assign the multiplication modes in

both tensors to columns, in this case the matrix product becomes Z = XYT . Alterna-

tively, the tensor Y could be matrisized with the multiplication modes corresponding to

rows, resulting in the product Z = XY.

An important fact about tensor multiplication is that in a series of tensor multi-

plications the order is irrelevant as long as the multiplication is performed along the

matching modes, e.g,

X
sp
×s
(
Y
tr
×r Z

rs

)
=

(
X
sp
×s Z

rs

)
×r Y

tr
.

If we let the matrisized tensors to be X ∈ RIp×Is , Y ∈ RIt×Ir and Z ∈ RIr×Is , then the

above can be verified to be true since

X (YZ) =
(
XZT

)
YT .

Note that to reduce clutter, in many places we will drop the multiplication subscripts.

The implied modes of multiplication can then be inferred from the subscripts of the

tensors. Specifically, when two tensors are multiplied, we first check their modes and

then multiply along the modes which are common to both of them. For example, in the

product X
pqr
× Y
qsr

, the implied multiplication is performed along the common modes, i.e.,

q and r.

Tensor Inversion We also discuss the operation of tensor inversion. Tensor inverse

X−1 is always defined with respect to a certain subset of modes and can be written as

follows:

X
p1,...,pK ,q1,...,qL

×q1,...,qL X−1

p1,...,pK ,q1,...,qL
= I
p1,...,pK ,p1,...,pK

,

where the inversion is performed along the modes q1, . . . , qL, and I
p1,...,pK ,p1,...,pK

denotes

an identity tensor, whose elements are everywhere zero, except I(i1, . . . , iK , i1, . . . , iK) =

1. To perform inversion, we first convert tensor to a matrix, i.e., matrisize tensor. If

the modes to be inverted along are associated with columns of the matrix, we com-

pute the right matrix inverse, so that these modes get eliminated after the product.

Otherwise, if those modes associated with rows, we compute left matrix inverse. Ob-

viously, for the full rank square matrices both choices would produce the same re-

sult. For example, in the above equation the matrisized tensor might be of the form
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X
p1,...,pKq1,...,qL

∈ RIp1 ···IpK×Iq1 ···IqL , therefore, we would compute the right matrix inverse

so that the modes q1, . . . , qL are eliminated. If the matrisized X has full row rank,

then the inverse can be computed, otherwise we could only compute its pseudo-inverse.

Tensorizing the matrix X−1 gives us the desired tensor inverse.

Mode Duplication Observe that in the above, the tensor I
p1,...,pK ,p1,...,pK

has dupli-

cate modes. In general, if a tensor has duplicate modes, the corresponding sub-tensor

can be interpreted as a hyper-diagonal. For example, if for a tensor X
pq

we construct a

tensor X
pppq

, which has its mode p duplicated three times, then for a fixed index i, the

sub-tensor X(:, :, :, i) is a hypercube with elements X(:, i) on the diagonal.

Mode duplication enables us to multiply several tensors along the same mode. For

example, if we need to multiply tensors X
sp

, Y
pr

and Z
tp

along the mode p, then a simple

product of the form

X
sp
×p Y

pr
×p Z

tp

cannot be done since any product of two tensors along the mode p would eliminate it,

preventing any further multiplications. In general, if there are N multiplications along

the specific mode, then there are must be cumulatively 2N number of times such a

mode is encountered in the participating tensors. In our example, we might duplicate

the mode p in, say, tensor Z to have

X
sp
×p
(
Y
pr
×p Z

tpp

)
,

so that there are two multiplications over mode p and cumulatively there are four

times such a mode is encountered in the participating tensors. To reduce clutter, we

sometimes do not explicitly show the duplicated variables in the subscripts; the implied

mode repetition will be evident from the context or explicitly stated in cases when there

is a confusion. For example, the identity tensor will often be written as I
p1,...,pK

.

2.3.2 Problem Formulation

We start by considering the matrix forms of the HSMM parameters and writing the com-

putations in tensor notation, as introduced in Section 2.3.1. Specifically, p(dt|xt, dt−1 =

1) is denoted as D ∈ Rnd×nx , p(xt|xt−1, dt−1 = 1) is denoted as X ∈ Rnx×nx , and
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p(ot|xt) as O ∈ Rno×nx . We make the following assumptions on the HSMM parameters:

Assumptions

A1. X is full rank and has non-zero probability of visiting any state from any other

state.

A2. D has a non-zero probability of any duration in any state.

A3. O is full column rank and, as a consequence, nx ≤ no.

We provide some comments on the above assumptions. We note that the assumption

A1 can be relaxed to allow zero entries (while still ensuring full rank structure) and thus

prevent certain states to be directly reachable from other states; however, this would

require more involved analysis based on the mixing time of the corresponding Markov

chain [70], and is not pursued in this work. Also, observe that the assumption of nx ≤ no
is needed in order to ensure that hidden states are identifiable, although recent work

is showing that such an assumption can be relaxed in some cases [71]. Intuitively, it

means that the number of different observations coming from each state is large enough,

so that one hidden state can be differentiated from the other.

To express the joint probability p(o1, . . . , oT ) for any possible observation sequence

in tensor form, we utilize the junction tree algorithm [7]. The resulting tree is shown in

Figure 2.3 and it corresponds to the graphical model of HSMM in Figure 2.1. Recall,

that the junction tree is a tree-structured representation of an arbitrary graph enabling

efficient inference. It can be constructed by forming a maximal spanning tree from

the cliques of the graph. The cliques then represent vertices in the junction tree and

the edges connecting the vertices are labeled with variables common to two cliques it

connects. The set of variables on the edges are referred to as separators. For example,

in Figure 2.3 the cliques Xt and Dt have two variables in common, xt−1 and dt−1, and

which define the sepatator between Xt and Dt.
We proceed by representing the clique CPTs of the junction tree as tensors. For

example, the clique Xt, containing the CPT of p(xt|xt−1, dt−1) is represented as tensor

X
xt|xt−1dt−1

. For ease of exposition, the tensor’s modes are named based on the variables

on which the tensor depends. We also keep the conditioning symbol |, for clarity.

Similarly, we represent the clique Dt with its CPT p(dt|xt, dt−1) as tensor D
dt|xtdt−1

, and
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otxt

xt

dtxtdt−1xtxt−1dt−1dt−1xt−1dt−2 xtdt−1xt−1dt−2xt−1xt−2dt−2

xt−1

ot−1xt−1 Ot

XtDt

Ot−1

Xt−1

xt−1dt−1

Dt+1

Figure 2.3: Junction Tree for Hidden Semi-Markov Model. The ovals represent cliques,
which are denoted by capital blackboard bold variables; the rectangles denote separa-
tors. Symbols within the shapes represent the variables on which the corresponding
potentials depend.

Ot containing p(ot|xt) as tensor O
ot|xt

.

If we denote the joint probability of the observed sequence p(o1, . . . , oT ) as P
o1,...,oT

then the message passing for the junction tree algorithm in Figure 2.3 can be represented

as tensor multiplications:

P
o1,...,oT

=
∏

t

D
dt−1|xt−1xt−1dt−2

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1

×xt O
ot|xt

)
, (2.5)

where, for simplicity, we denoted by
∏
t the tensor product over multiple time steps.

Note that in (2.5) the neighboring tensors are multiplied along the modes which

are the separator variables between two corresponding neighboring cliques in Figure

2.3. Therefore, as we discussed in Section 2.3.1, if a certain mode of a tensor is to

participate multiple times in products with other tensor, the mode must be duplicated

for the expression to remain correct. It can easily be seen from the junction tree that the

number of times the mode is duplicated depends on the number of times such a variable

appears in separators adjacent to the clique. For example, the tensor X
xtxt|xt−1dt−1dt−1

has a mode xt−1 appearing once in the separator connecting Xt and Dt in Figure 2.3,

while xt appears a total of two times - once in the separator connecting Xt and Ot, and

once in the separator connecting Xt and Dt+1. Finally, dt−1 appears in the separator

between Dt and Xt, and between Dt+1 and Xt. Applying the same reasoning to tensors

D and O results in the expression (2.5).
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2.3.3 Summary of Results

In this work, we represent expression (2.5), which is defined in terms of unknown model

parameters, in a different form, called observable representation, where all the factors

can be estimated directly from data using certain sample moments without knowledge

of model parameters. Such an observable form is derived in Sections 2.3.4 and 2.3.5.

Based on the obtained representation, we propose in Section 2.3.6 a simple spectral

algorithm, which requires estimating X, D and O for all the time stamps t. This es-

timation process is expensive as it involves costly tensor operations to be performed

at each time index t. Moreover, the accurate estimation of these tensors requires large

number of training sequences which might not be available, leading to inaccurate and

unstable computations. However, exploiting the homogeneity property of HSMMs, i.e.,

the fact that the probability distributions, which the above tensors represent, are inde-

pendent of time index t, we derive computationally more efficient and accurate spectral

algorithm in Section 2.3.7 requiring estimation of only three tensors for all the time

stamps t. Although the computational complexity of inference, i.e., the evaluation of

expression (2.5), is not affected by the introduced modifications, the overall algorithm

becomes faster and more accurate. In Section 2.4 we return to the results of Sections

2.3.4 and establish the conditions under which the derived observable representation

exists. In particular, our analysis shows that the number of dimensions of the required

sample moments has logarithmic dependence on the longest state persistence nd. Such

conclusion is in contrast to the analysis, which would follow from the work of [67], in

which case the required number of dimensions in the estimated sample moments would

have had linear dependence on nd. The exponential reduction in the size of the sam-

ple moments represents significant improvement in algorithm’s efficiency and accuracy.

Finally, we evaluated the proposed algorithm using synthetic and real datasets and com-

pared its performance with the traditional EM approach. The main conclusion from

such evaluations is that for large enough datasets the spectral method gets similar or

better performance than EM, while at the same time being orders of magnitude faster

than EM.
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2.3.4 Observable Form Representation

Observe that the computation of the joint probability in (2.5) requires knowledge of

the unknown model parameters. Our goal is to change the tensor representation such

that P
o1,...,oT

can be written in terms of the quantities directly computable from data.

To that end, we follow [67] and between every two factors in (2.5) introduce an identity

tensor with the modes corresponding to the modes along which the multiplication is

performed. For example, consider a part of (2.5) after introducing identity tensors:

× I
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 I
xt−1dt−1

×xt−1dt−1

×xt−1dt−1
(

X
xtxt|xt−1dt−1dt−1

×xt Ixt×xt Ootxt

)
×xtdt−1 I

xtdt−1
×, (2.6)

where all the identity tensors have duplicated modes which are not shown.

Now rewrite each of the identity tensors in (2.6) as a multiplication of some factor

times its inverse. For example,

I
xt

= F
ωxtxt

×ωxt F
−1

ωxtxt
,

for some invertible factor F
ωxtxt

, whose modes are xt and ωxt . Note that the choice of

mode xt is fixed and is determined by the modes of the identity tensor I
xt

, while the

mode ωxt is not fixed and we have a freedom in selecting it. Moreover, observe that

since the tensor inversion is done along the mode ωxt and the matrix F has its rows

associated with mode ωxt , we need to ensure such a matrix has full column rank for the

inverse to exist and for the product F−1F to be the identity matrix (see Section ?? for

more details on tensor inversion). Based on the above discussion, we choose tensor F

such that (i) ωxt are the observed variables, (ii) F
ωxtxt

is invertible and (iii) we interpret

the factor F
ωxtxt

as corresponding to a conditional probability distribution, i.e., p(ωxt |xt)
and therefore write F

ωxt |xt
.

After expanding each of the identity tensors, regrouping the factors and recalling

that in a series of tensor multiplication the order is irrelevant, we can identify three
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modified tensors:

D̃
ωxt−1dt−2ωxt−1dt−1

= F−1

ωxt−1dt−2 |xt−1dt−2
×xt−1dt−2 D

dt−1|xt−1xt−1dt−2
×xt−1dt−1 F

ωxt−1dt−1 |xt−1dt−1

X̃
ωxt−1dt−1ωxtωxtdt−1

= F−1

ωxt−1dt−1 |xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ωxt |xt

)
×xtdt−1 F

ωxtdt−1 |xtdt−1

Õ
ωxtot

= F−1

ωxt |xt
×xt O

ot|xt
.

Note that although each of the above tensors depends only on the observed variables

ω, how to estimate them is not clear yet: the expressions on the right depend on

the unknown model parameters, while the tensors on the left do not correspond to

valid probability distributions (due to the presence of inverses F−1), and so cannot be

estimated from data using sample moments. For example, D̃
ωxt−1dt−2ωxt−1dt−1

is not a tensor

form of p(ωxt−1dt−2 , ωxt−1dt−1).

Next, we discuss the choice of the observable set ω in the factors F. From Figure 2.3

we can see that there are three types of separators which depend on xt−1dt−1, xtdt−1

and xt, consequently, there are three types of identity tensors which we introduced in

(2.6), i.e., I
xt−1dt−1

, I
xtdt−1

and I
xt

. Therefore, we need to define three types of observable

sets ωxt−1dt−1 , ωxtdt−1 and ωxt . There could be multiple choices for these sets, one of

them is ωxt−1dt−1 = ωxtdt−1 = {ot+1, ot+2, . . .} for all t (see Figure 2.4 for an illustration).

Ideally, we want these sets to be of minimal size, since they need to be estimated from

observations. The detailed description of how many and which of these observations to

select to get a minimal set is deferred until Section 2.4, where we also show that we can

set ωxt = ot.

In what follows, we define ORt := {ot+1, ot+2, . . .}, to emphasize that this is a fixed

set of observations whose length is yet to be determined, starting after time stamp t and

going to the right (or forward in time) in the graphical model in Figure 2.1. With these

definitions, setting ωxt−1dt−1 = ORt , ωxtdt−1 = ORt , ωxt−1dt−2 = ORt−1 and ωxt = ot, we

can now rewrite (2.5) in the form:

P
o1,...,oT

=
∏

t

D̃
ORt−1

ORt

×ORt

(
X̃

ORtotORt

×ot Õ
otot

)
. (2.7)

Comparing (2.5) and (2.7) we see that the above equation expresses the joint probability

distribution in the observable form. As noted above, we cannot yet use this formula
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xtxt−1xt−2 xt+1

dt−2 dt−1 dt dt+1

ot−2 ot−1 ot ot+1

ORt

ORt−1
OLt−1

OLt

Figure 2.4: Conditional independence in HSMM. The figure depicts two sets of rela-
tionships: OLt and ORt are independent conditioned on xt−1dt−1, similarly, OLt−1 and
ORt−1 are conditionally independent given xt−1dt−2. We defined OLt = {. . . , ot−2, ot−1}
and ORt = {ot+1, ot+2, . . .}.

in practice since we do not know how to compute the transformed tensors. In what

follows, we show how to estimate such tensors directly from data, without the need for

the model parameters.

2.3.5 Estimation of Observable Tensors

In this Section we express each of the tensors in (2.7) in the form suitable for estimation

directly from the observed sequences.

Computation of Tensor D̃
ORt−1ORt

Consider the tensor from Section 2.3.4

D̃
ORt−1ORt

= F−1

ORt−1 |xt−1dt−2
×xt−1dt−2 D

dt−1|xt−1xt−1dt−2
×xt−1dt−1 F

ORt |xt−1dt−1
, (2.8)

whose modes are the observable variables ORt−1 and ORt . To estimate this tensor from

data, consider OLt−1 , a set of the observed variables such that OLt−1 and ORt−1 are

independent, conditioned on xt−1dt−2 (see Figure 2.4):

p(OLt−1 ,ORt−1) =
∑

xt−1dt−2

p(OLt−1 |xt−1dt−2)p(ORt−1 |xt−1dt−2)p(xt−1dt−2). (2.9)
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The above conditional independence relationship can be written in tensor form:

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 F
ORt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

, (2.10)

where tensor K represents the marginal p(xt−1, dt−2). Note that, though not shown, the

modes xt−1 and dt−2 need to appear twice in K, since it interacts with both other terms

(see the discussion on mode duplication in Section 2.3.1). The set OLt−1 is defined in

a way similar to ORt but with the set of observations starting at time stamp t− 2 and

going to the left (or backward in time), i.e., OLt−1 := {. . . , ot−3, ot−2} (see Figure 2.4).

Next, we express the inverse of the tensor F
ORt−1

|xt−1dt−2

from (2.10) and substitute

back to (2.8). For this, we observe that in (2.8) the tensor F−1 is inverted with respect

to mode ORt−1 , therefore, we do the following:

M
OLt−1ORt−1

×ORt−1
F−1

ORt−1 |xt−1dt−2
= F

OLt−1 |xt−1dt−2
×xt−1dt−2 I

xt−1dt−2
×xt−1dt−2 K

xt−1dt−2

F−1

ORt−1 |xt−1dt−2
= M−1

OLt−1ORt−1

×OLt−1
F

OLt−1 |xt−1dt−2
×xt−1dt−2 K

xt−1dt−2
, (2.11)

where M−1

OLt−1ORt−1

is inverted with respect to mode OLt−1 . Next, substituting (2.11) back

to (2.8), we get

D̃
ORt−1ORt

= M−1

OLt−1ORt−1

×OLt−1
F

OLt−1 |xt−1dt−2
×xt−1dt−2 K

xt−1dt−2
×xt−1dt−2 D

dt−1|xt−1xt−1dt−2
×xt−1dt−1 F

ORt |xt−1dt−1

= M−1

OLt−1ORt−1

×OLt−1
M

OLt−1ORt

, (2.12)

where we have eliminated all the latent variables by multiplying the last four terms on

the first line.

Observe that the tensors M
OLt−1ORt−1

and M
OLt−1ORt

represent valid joint probability

distributions over a subset of observations p(OLt−1 ,ORt−1) and p(OLt−1 ,ORt), respec-

tively, and though they are defined with respect to unknown model parameters (as, for

example, in (2.9)), we can readily estimate them from data. For example, M
OLt−1ORt

is a

tensor, where each entry is computed from the frequency of co-occurrence of tuples of

the observed symbols {. . . , ot−3, ot−2, ot+1, ot+2, . . .}. Ideally, we want a small number
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Figure 2.5: Graphical representation of the HSMM spectral algorithm for inference in
Algorithm 1. As compared to junction tree in Figure 2.3, the cliques and separators
are now defined in terms of the tensors, which are defined with respect to the observed
data. The expressions in the parenthesis show the observable representation of the
corresponding tensors.

of observation symbols since we need to estimate their co-occurrence frequency from

the training data. A precise characterization of how many and which of these symbols

suffices for the analysis will be done in Section 2.4.

Computation of Tensor X̃
ORtotORt

The form of this tensor was established at the beginning of Section 2.3.5 to be:

X̃
ORtotORt

= F−1

ORt |xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ot|xt

)
×xtdt−1 F

ORt |xtdt−1

. (2.13)

Consider the following conditional independence relationship (see Figure 2.4):

M
OLtORt

= F
OLt |xt−1dt−1

×xt−1dt−1 F
ORt |xt−1dt−1

×xt−1dt−1 K
xt−1dt−1

, (2.14)

where K
xt−1dt−1

= K
xt−1dt−1xt−1dt−1

and we omitted the duplicated modes.

We express the inverse of tensor F
ORt |xt−1dt−1

from the above equation

F−1

ORt |xt−1dt−1
= M−1

OLtORt

×OLt
F

OLt |xt−1dt−1
×xt−1dt−1 K

xt−1dt−1
,

where tensor F
ORt |xt−1dt−1

is inverted with respect to mode ORt , while M
OLtORt

is inverted
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with respect to mode OLt . Substituting back to (2.13), we get

X̃
ORtotORt

= M−1

OLtORt

×OLt
F

OLt |xt−1dt−1
×xt−1dt−1 K

xt−1dt−1
×xt−1dt−1

×xt−1dt−1
(

X
xtxt|xt−1dt−1dt−1

×xt F
ot|xt

)
×xtdt−1 F

ORt |xtdt−1

.

Considering the last five factors and multiplying them together, we obtain

M
OLtORtot

= F
OLt |xt−1dt−1

×xt−1dt−1 K
xt−1dt−1

×xt−1dt−1

(
X

xtxt|xt−1dt−1dt−1
×xt F

ot|xt

)
×xtdt−1 F

ORt |xtdt−1

.

Finally, (2.13) can now be written as

X̃
ORtotORt

= M−1

OLtORt

×OLt
M

OLtORtot
, (2.15)

where the right hand side can now be estimated directly from data, without the need

for the model parameters.

Computation of Tensor Õ
otot

Finally, we consider the tensor

Õ
otot

= F−1

ot|xt
×xt O

ot|xt
. (2.16)

The conditional independence relationship can take the form

M
otot+1

= F
ot|xt
×xt F

ot+1|xt
×xt Kxt .

Expressing the inverse of F
ot|xt

F−1

ot|xt
= M−1

otot+1

×ot+1 F
ot+1|xt

×xt Kxt ,

and substituting in (2.16), we get

Õ
otot

= M−1

otot+1

×ot+1 F
ot+1|xt

×xt Kxt ×xt O
ot|xt

= M−1

otot+1

×ot+1 M
otot+1

. (2.17)
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2.3.6 Basic Version of Spectral Algorithm

The basic version of the spectral HSMM algorithm to compute P
o1,...,oT

entirely using the

observed variables can be described as a two step process: in the learning step, compute

D̃
ORt−1

ORt

, X̃
ORt−1

otORt

and Õ
otot

for each t using (2.12), (2.15) and (2.17) from the training

data. In the inference step, use (2.7) to compute p(Stest). Algorithm 1 shows its basic

version and Figure 2.5 shows the graphical representation of this algorithm in terms of

the transformed junction tree of Figure 2.3.

As an example, consider the learning step of the algorithm and the computation of

tensor in (2.12), i.e.,

D̃
ORt−1ORt

= M−1

OLt−1ORt−1

×OLt−1
M

OLt−1ORt

.

For a fixed t, we estimate each entry of M
OLt−1ORt−1

from the frequency of co-occurrence of

tuples of the observed symbols {. . . , ot−3, ot−2, ot+1, ot+2, . . .} in the given dataset (the

sets OLt−1 and ORt−1 were defined at the beginning of Section 2.3.5). Next, following

our discussion after the equation (2.11), we invert M−1

OLt−1ORt−1

along the modes OLt−1 .

For this, we matrisize the tensor so that the modes OLt−1 are associated with columns

and ORt−1 with rows in matrix M
ORt−1OLt−1

(see Section 2.3.1 for the discussion on ten-

sor matrisization and inversion). Finally, we compute the right inverse of the matrix

to obtain M−1

ORt−1OLt−1

. Similarly, we estimate the tensor M
OLt−1ORt

using the correspond-

ing co-occurrences of the observed symbols. Matrisizing the result, so that the rows

correspond to the modes OLt−1 and the columns to ORt , we get the matrix M
OLt−1ORt

.

The multiplication M−1

ORt−1OLt−1

· M
OLt−1ORt

= D̃
ORt−1ORt

produces a matrix, which is then

converted to a tensor to get the final result in (2.12).

In the inference step we perform tensor multiplications for each t running along the

length of the testing sequence. The only nuance here is that before multiplying the

tensor Õ
otot

with others, the second mode ot, whose dimension is no is collapsed into a

scalar. This operation is denoted as Õ
otot

∣∣∣
ot=otestt

, which means that based on the value of

the tth symbol in testing sequence, we select the column corresponding to the element

otestt . For example, if Õ
otot
∈ R10×10 and otestt = 3 then Õ

otot

∣∣∣
ot=otestt

∈ R10×1, a third

column in the original matrix.
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Algorithm 1 Basic Spectral Algorithm for HSMM inference

Input: Training sequences: Si = {oi1, . . . , oiTi}, i = 1, . . . , N .
Testing sequence: Stest = {otest1 , . . . , otestT }.
Output: p(Stest)

Learning phase:
for all t do

Estimate D̃
ORt−1ORt

, X̃
ORtotORt

and Õ
otot

from data {S1, . . . ,SN} using equations (2.12),

(2.15) and (2.17).
end for

Inference phase:
p(Stest) = 1
for t = T down to t = 1 do

p(Stest) = p(Stest)× D̃
ORt−1ORt

×ORt

(
X̃

ORtotORt

×ot Õ
otot

∣∣∣
ot=otestt

)

end for

Analyzing (2.12), (2.15) and (2.17), we see that the computational complexity of the

learning phase of the algorithm is determined by the tensor inverses and multiplications.

For example, if in (2.12) we denote |OR| = |OL| = ` (in Section 2.4 we will show that

` = d1 + lognd
lognx

e), then M
OLt−1ORt−1

∈ Rn`o×n`o and M
OLt−1ORt

∈ Rn`o×n`o . The computational

complexity of the multiplications and inversions would then be O(n3`
o ). Performing this

computations for all t and assuming that the length of the sequences is T , would result

in O
(
n3`
o T
)
. Additionally, with N training examples there will be a cost of O (`NT )

to estimate the sample moments M, which is based on counting the co-occurrences of

certain observable symbols. In the inference phase of the algorithm, we perform a series

of tensor multiplications with the cost of O(n3`
o T ).

2.3.7 Efficient Version of Spectral Algorithm

Note that for large ` the accurate estimation of tensors M for each t will require large

number of training sequences which might not be available, leading to inaccurate and

unstable computations. Observe, however, that for example the estimated sample-

based tensors M
OLt−1ORt

in (2.12) for each t estimate the same population quantity due
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to homogeneity of HSMM. Thus, a novel aspect of our work is the improvement of the

accuracy and efficiency of the basic algorithm 3 by exploiting the homogeneity property

of HSMM and estimating the tensors X̃, D̃ and Õ in the batch, by pooling the samples

across different t and then averaging the result. Thus, we compute only three tensors

for all t, as opposed to computing these tensors for each t.

We show the details for computing the tensors D̃ in the batch form. The derivations

for other tensors X̃ and Õ can be computed in a similar manner. Recall from (2.12) the

form of D̃
ORt−1ORt

, and consider the following alternative expression, based on the sum

over all t:

D̃ =

(∑

t

M
OLt−1

ORt−1

)−1

×OL

(∑

t

M
OLt−1

ORt

)
, (2.18)

where OL denotes a generic mode of the averaged tensor M, corresponding to OLt−1 for

all t. Note that in practice, instead of summation, we use averaging to avoid numerical

overflow problems. It is equivalent to the considered expression in (2.18), since the term
1
T then cancels out. Since

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 F
ORt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

, (2.19)

the first term inside brackets can be rewritten as:

∑

t

F
OLt−1 |xt−1dt−2

×xt−1dt−2 F
ORt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

(a)
=
∑

t

F
ORt−1

|xt−1dt−2

×xt−1dt−2 F
OLt−1

xt−1dt−2

(b)
= F

OR2
|x2d1

×
(∑

t

F
OLt−1

xt−1dt−2

)
, (2.20)

where in (a) we combined the two factors, i.e., F
OLt−1

xt−1dt−2

= F
OLt−1 |xt−1dt−2

×xt−1dt−2
K

xt−1dt−2xt−1dt−2
and in (b) we used the homogeneity property of HSMM, i.e., the fact

that F
ORt−1

|xt−1dt−2

does not depend on time stamp t, and extracted one of the common

factors, in fact, the first factor. Note that the term F
OLt−1

xt−1dt−2

, on the other hand,

does depend on t since the factor K
xt−1dt−2

, which represents the probability p(xt−1, dt−2),

changes as the time stamp t changes.
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Similarly, since

M
OLt−1ORt

= F
OLt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

,

(2.21)

rewrite the second term in (2.18) as

∑

t

F
OLt−1 |xt−1dt−2

×xt−1dt−2 K
xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

=
∑

t

F
OLt−1

xt−1dt−2

×xt−1dt−2 D
dt−1|xt−1xt−1dt−2

×xt−1dt−1 F
ORt |xt−1dt−1

=

(∑

t

F
OLt−1

xt−1dt−2

)
× D
d2|x2x2d1

×x2d2 F
OR3
|x2d2

, (2.22)

where we used the transformations similar as in (2.20), i.e., the fact that the factors

D
dt−1|xt−1xt−1dt−2

and F
ORt |xt−1dt−1

are homogeneous, independent of t. Now if we multiply

the inverse of (2.20) with (2.22), we get

F−1

OR2
|x2d1

×
(∑

t

F
OLt−1

xt−1dt−2

)−1

×
(∑

t

F
OLt−1

xt−1dt−2

)
× D
d2|x2x2d1

× F
OR3
|x2d2

(2.23)

= F−1

OR2
|x2d1

×x2d1 D
d2|x2x2d1

×x2d2 F
OR3
|x2d2

= D̃
OR2

OR3

= D̃
ORt−1ORt

, (2.24)

where in (2.23) we used the fact that the order in which tensors are multiplied is irrele-

vant and also the fact that the terms in parenthesis are invertible. This is due to the fact

that the set of observations OLt−1 for all t is selected so as to make each of the summand

invertible (see Section 2.4 for the details about the choice of OLt−1). Moreover, in (2.24)

we used the definition of D̃
ORt−1

ORt

D̃
ORt−1ORt

= F−1

ORt−1 |xt−1dt−2
× D
dt−1|xt−1dt−2

× F
ORt |xt−1dt−1

,

together with the homogeneity property of HSMM.

Therefore, we can conclude that the batch form of the tensor takes the form:

D̃ =

(∑

t

M
OLt−1

ORt−1

)−1

×OL

(∑

t

M
OLt−1

ORt

)
. (2.25)
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Algorithm 2 Efficient Spectral Algorithm for HSMM inference

Input: Training sequences: Si = {oi1, . . . , oiTi}, i = 1, . . . , N .
Testing sequence: Stest = {otest1 , . . . , otestT }.
Output: p(Stest)

Learning phase:
Estimate D̃, X̃ and Õ from data {S1, . . . ,SN} using equations (2.25), (2.26) and
(2.27).

Inference phase:
p(Stest) = 1
for i = T down to i = 1 do
p(Stest) = p(Stest)× D̃×

(
X̃× Õ|o=otesti

)

end for

Similar derivations can be carried out to obtain the rest of the tensors in the batch

form:

X̃ =

(∑

t

M
OLtORt

)−1

×OL

(∑

t

M
OLtORtot

)
(2.26)

Õ =

(∑

t

M
otot+1

)−1

×o
(∑

t

M
otot+1

)
. (2.27)

where in the last expression the mode o corresponds to the mode ott+1 after averaging

of tensor M
otot+1

for all t.

Analyzing (2.25), (2.26) and (2.27), we see that the computational complexity of

the learning phase of the algorithm is now O
(
(n2`
o + `N)T

)
, mainly determined by the

tensor additions and the estimation of the sample moments M. The number of inverses

and multiplications is now fixed and independent of sequence length T . Specifically,

there will be three tensor multiplications and inversions for a total cost of O(n3`
o ). The

computational complexity of the inference phase is O(n3`
o T ), which is the same as for

Algorithm 1.

Note that such a batch tensor computation significantly improves the accuracy of

the resulting spectral algorithm. In part, this is due to the fact that we now use more

data to estimate the tensors as compared to the original form (2.7). The estimates

obtained in this form have lower variance, which in turn ensures that the inverses we
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compute in (2.25), (2.26) and (2.27) are more stable and accurate.

2.4 Rank Analysis of Observable Tensors

In this Section we present a careful technical analysis to establish logarithmic depen-

dence of the number of modes in the tensor on maximum latent state persistence. Recall

that in Section 2.3.5, when we derived the equations (2.12), (2.15) and (2.17), we glossed

over the question of the existence of tensor inverses M−1

OLt−1ORt−1

, M−1

OLtORt

and M−1

otot+1

. In this

section, our task is to analyze the rank structure of these tensors and impose restrictions

on the sets OL and OR to ensure that the rank conditions are satisfied. For example,

consider equation (2.12) and expand all its terms using (2.10) to get

D̃
ORt−1ORt

= F−1

ORt−1 |xt−1dt−2
× F−1

OLt−1 |xt−1dt−2
× K−1

xt−1dt−2
× K
xt−1dt−2

× F
OLt−1 |xt−1dt−2

×

× D
dt−1|xt−1xt−1dt−2

× F
ORt |xt−1dt−1

,

where we dropped the multiplication subscripts and some of the duplicated modes,

which can be inferred from the context. Observe, that in order for the above equation

to produce (2.8), the terms in the middle must multiply out into identity tensor

I
xt−1dt−2

= K−1

xt−1dt−2
×xt−1dt−2 K

xt−1dt−2

I
xt−1dt−2

= F−1

OLt−1 |xt−1dt−2
×OLt−1

F
OLt−1 |xt−1dt−2

.

(2.28)

Moreover, recall that F
ORt−1 |xt−1dt−2

was originally introduced as part of the identity tensor

I
xt−1dt−2

= F−1

ORt−1 |xt−1dt−2
×ORt−1

F
ORt−1 |xt−1dt−2

, (2.29)

therefore, we can conclude that for (2.12) to exist, the identity statements in (2.28) and

(2.29) must be satisfied. These statements have implications for the ranks of K
xt−1dt−2

,

F
OLt−1 |xt−1dt−2

and F
ORt−1 |xt−1dt−2

, which in turn determine the length of the observation

sequences OLt−1 and ORt−1 .

Since K
xt−1dt−2

represents a distribution p(xt−1dt−2), its matrisized version is a diagonal

matrix with p(xt−1dt−2) on the diagonal. Using assumptions A1 and A2, it can be
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concluded that the diagonal elements in this matrix are non-zero and it has rank nxnd,

it is thus invertible and so the first equation in (2.28) is satisfied.

Next, consider the second equation in (2.28) and recall from Section 2.3.1 that if we

matrisize the tensor as F
OLt−1 |xt−1dt−2

∈ Rn
|OLt−1 |
o ×nxnd then F must have full column rank

nxnd for the proper inverse to exist, implying n
|OLt−1 |
o ≥ nxnd. Similarly, F

ORt−1 |xt−1dt−2
in (2.29) must have rank nxnd. As a consequence of the above, the tensor

M
OLt−1ORt−1

= F
OLt−1 |xt−1dt−2

× F
ORt−1 |xt−1dt−2

× K
xt−1dt−2

(2.30)

will have rank nxnd and, in general, is rank-deficient.

The argument above can also be used to show that M
OLtORt

has rank nxnd since in

(2.14) the tensors K
xt−1dt−1

, F
OLt |xt−1dt−1

and F
ORt |xt−1dt−1

all have rank nxnd. Similarly,

M
otot+1

will have rank nx because in (2.17) the rank of the participating tensors K
xt

, F
ot+1|xt

and F
ot|xt

is nx. In particular, note that the tensor F
ot|xt

is the observation matrix O ∈
Rno×nx of the model and it has rank nx according to assumption A3. This conclusion

also justifies our choice for ωxt = ot at the end of Section 2.3.4.

The key unknowns now are the sets of the observed variables OR and OL that must

be appropriately selected for the corresponding tensors to have rank nxnd. Recall that

we defined ORt−1 = {ot, ot+1, . . .}. As one of the new key results of our work, we

established that if we select the observations ot non-sequentially with gaps that grow

exponentially with the state size nx then the following result holds for all t:

Theorem 1 Let the number of observations be |ORt−1 | = ` and define the set of indices

S =
{

max
[
t, t+(nd−1)− (nix−1)

]
| i = 0, . . . , `− 1

}
, such that ORt−1 = {ok|k ∈ S}

then the rank of tensor F
ORt−1

|xt−1dt−2

is min[n`x, nxnd].

As a consequence of this result, to achieve the rank nxnd we will require ` = d1 +
lognd
lognx

e observations, since we need to ensure n`x ≥ nxnd and we want the minimal `

which satisfies this. The span of the selected observations is nd, while their number is

only logarithmic in nd. For example, consider the estimation of tensor M
OLt−1

ORt−1

for an

HSMM with nx = 3 and nd = 20. In this case ` = 4 and ORt−1 = {ot, ot+11, ot+17, ot+19}
and OLt−1 = {ot−21, ot−19, ot−13, ot−2}, where the set OLt−1 is defined similar to ORt−1
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ot

nd nd

ORt−1OLt−1

ot+19ot+17ot+11ot−2ot−13ot−21 ot−19

Figure 2.6: Observations required to estimate tensor M in (2.30) from data for HSMM
with nx = 3 and nd = 20.

in Theorem 1 but for the indices to the left of time stamp t − 1. Figure 2.6 illustrates

this example. We note that the requirement for the span of the selected observations to

be nd, which is a maximum state persistence, is to ensure that for a given time stamp t,

we select the observations far enough to the right and left of it so that those observations

are likely to be sampled from different hidden states.

In order to prove the above Theorem, we will focus our analysis on the tensor

F
ORt+1

|xtdt
instead of F

ORt−1
|xt−1dt−2

. This specific choice was only done to ensure the

compactness in our notations, however the HSMM homogeneity property enables us to

transfer this result for tensors for any t. Note that

F
ORt+1

|xtdt
= F

ORt−1
|xt−2dt−2

= F
ORt−1

|xt−1dt−2
×xt−1dt−2 X

xt−1dt−2|xt−2dt−2
, (2.31)

where the first equality is due to the homogeneity property of the model and in the

second equality we embedded the HSMM transition matrix into tensor X
xt−1dt−2|xt−2dt−2

with mode dt−2 duplicated. It can be shown that the matricized tensor X
xt−1dt−2|xt−2dt−2

∈
Rnxnd×nxnd has rank nxnd, i.e., it is full rank. Therefore, the rank structure of F

ORt+1
|xtdt

determines the rank structure of F
ORt−1

|xt−1dt−2
.

The rest of Section 2.4 is devoted to the proof of Theorem 1. We first establish

the rank structure of tensor F
ORt+1

|xtdt
for sequential set of observations ORt+1 and then

analyze the rank structure for the observations which were selected non-sequentially.

2.4.1 Rank Structure of Tensor F in (2.31)

Define by XRt+1 = {xt+2, xt+3, . . .}, the sequence of hidden states corresponding to

ORt+1 = {ot+2, ot+3, . . .}. Then using conditional independence property of the graph-

ical model in Figure 2.1, namely, that the variables ORt+1 and xtdt are independent
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given XRt+1 , we can write:

F
ORt+1

|xtdt
= Q

ORt+1
|XRt+1

× T
XRt+1

|xtdt
, (2.32)

for some tensors Q and T, representing the appropriate probability distributions.

Denoting ` = |ORt+1 | = |XRt+1 |, it can be verified, that the matrisized form of Q in

(2.32) can be written as Q = ⊗`O ∈ Rn`o×n`x , i.e., a Kronecker product of the observation

matrix O with itself ` times. According to the assumption A3, rank(O) = nx and nx ≤
no, and using the rank property of the Kronecker product, we infer that rank(Q) = n`x.

Combining the above conclusion with the fact that the matrisized form of the other

two tensors in (2.32) is F ∈ Rn`o×nxnd and T ∈ Rn`x×nxnd , to ensure invertibility of F,

we need to select a set of variables XRt+1 so that rank
(

T
XRt+1

|xtdt

)
= nxnd with the

condition that n`x ≥ nxnd. Thus, the problem of the analysis of the rank structure of

tensor F
ORt+1

|xtdt
translates to the problem of rank structure of matrix

T
XRt+1

|xtdt
(2.33)

In what follows, we assume that XRt+1 = {xt+2, . . . , xt+`+1} are sequential and so we

would be interested in determining ` which makes rank
(

T
XRt+1

|xtdt

)
= nxnd. Later, the

sequential assumption will be removed and we show how to select such variables in a

more efficient way.

Computation of Factor T in (2.33)

In order to study the rank structure of T
XRt+1

|xtdt
we will have to understand the mech-

anism how this matrix is constructed and how the rank changes as the size of XRt+1

increases. We start by considering the following conditional independence relationships

from the model in Figure 2.1:

p(xt+3, xt+2|xt+1, dt+1) =
∑

dt+2

p(xt+3|xt+2, dt+2) p(dt+2|xt+2, dt+1)p(xt+2|xt+1, dt+1)

(2.34)

p(xt+3, xt+2, xt+1|xt, dt) =
∑

dt+1

p(xt+3, xt+2|xt+1, dt+1) p(dt+1|xt+1, dt)p(xt+1|xt, dt) .

(2.35)
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Using the model’s homogeneity property, we see that the quantity underlined in (2.34)

is the same as the one in (2.35). Moreover, equation (2.34) can then be thought of

as transforming p(xt+1|xt, dt) into p(xt+2, xt+1|xt, dt), while the expression in (2.35) is,

in effect, transforms p(xt+2, xt+1|xt, dt) into p(xt+3, xt+2, xt+1|xt, dt). Thus (2.34) and

(2.35) encode the following chain of transformations:

p(xt+1|xt, dt)→ p(xt+2, xt+1|xt, dt)→ p(xt+3, xt+2, xt+1|xt, dt).

Based on the above considerations, we can rewrite (2.34) and (2.35) in the tensor

form as follows:

T
xt+3,xt+2|xt+1,dt+1

= T
xt+3,xt+2|xt+2,dt+2

×xt+2dt+2 V
xt+2,dt+2|xt+1dt+1

(2.36)

T
xt+3,xt+2,xt+1|xt,dt

= T
xt+3,xt+2,xt+1|xt+1,dt+1

×xt+1dd+1
V

xt+1,dt+1|xtdt
, (2.37)

where V
xt+2,dt+2|xt+1,dt+1

= V
xt+1,dt+1|xt,dt

= D
xt+1,dt+1|xt+1,dt

×xt+1dt X
xt+1,dt|xt,dt

. The homo-

geneity property allows us to rewrite the above as

T
xt+2,xt+1|xt,dt

= T
xt+1,xt|xt,dt

×V (2.38)

T
xt+3,xt+2,xt+1,xt+1|xt,dt

= T
xt+2,xt+1|xt,dt

×V. (2.39)

Our next step is to represent the above tensor equations in the matrix form. First,

consider tensor V, its matricized form can be written as:

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

(2.40)

where D
xt+1,dt+1|xt+1,dt

∈ Rnxnd×nxnd and X
xt+1,dt|xt,dt

∈ Rnxnd×nxnd . Next, consider the

equations (2.38) and (2.39), its matrix version is of the form:

T
xt+2,xt+1|xt,dt

= T
xt+1,xt|xt,dt

V (2.41)

T
xt+3,xt+2,xt+1|xt,dt

= T
xt+2,xt+1,xt|xt,dt

V, (2.42)

here T
xt+1,xt|xt,dt

∈ Rn2
x×nxnd , T

xt+2,xt+1|xt,dt
∈ Rn2

x×nxnd , and similarly T
xt+2,xt+1,xt|xt,dt

∈

Rn3
x×nxnd , and matrix T

xt+3,xt+2,xt|xt,dt
∈ Rn3

x×nxnd .
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Summarizing the above derivations, we can describe the following algorithmic ap-

proach for analyzing T
XRt+1

|xtdt
as XRt+1 increases. We begin with T

xt+1|xt,dt
= [X I · · · I] ∈

Rnx×nxnd , where the first block X ∈ Rnx×nx corresponds to dt = 1, and the subsequent

(nd − 1) blocks of I ∈ Rnx×nx correspond to dt > 1 for which xt+1 = xt. We then use

(2.41) to get T
xt+2,xt+1|xt,dt

. However, notice that in (2.41) the matrix T
xt+1,xt|xt,dt

has a du-

plicated mode xt, therefore, we need to restructure T
xt+1|xt,dt

, which can be accomplished

with:

T′
xt+1,xt|xt,dt

= T
xt+1|xt,dt

� E,

where E = [I · · · I] ∈ Rnx×nxnd and � denotes a Khatri-Rao product (row-wise Kro-

necker product)1 . Then, we use (2.42) to transform T
xt+2,xt+1|xt,dt

into T
xt+3,xt+2,xt+1|xt,dt

where, again a preliminary step is to restructure the matrix as follows:

T′
xt+2,xt+1,xt|xt,dt

= T
xt+2,xt+1|xt,dt

� E.

Algorithm 3 summarizes the above constructions for a general case. T
XRt+1

|xtdt
The following Theorem characterizes the rank structure of matrix T

XRt+1
|xtdt

in the

output of the Algorithm 3. The proof can be found in Appendix 2.A.1.

Theorem 2 The rank of the output matrix T
XRt+1

|xtdt
in Algorithm 3 is min(`nx, nxnd).

Applying now Theorem 2 to equation (2.32) in matrix form

F
ORt+1

|xtdt
= Q

ORt+1
|XRt+1

× T
XRt+1

|xtdt
,

where rank(Q) = n`x we can now conclude the following result:

Corollary 3 To achieve the full column rank for F
ORt+1

|xtdt
∈ Rn`o×nxnd, i.e. to ensure

that the rank of tensor F
ORt+1

|xtdt
is nxnd, the number of observations ` in ORt+1 =

{ot+2, ot+3, . . . , ot+`+1} must be equal to the maximum state persistence i.e., ` = nd.

1 Let P =


p1

p2

...
pn

 ∈ Rm×n and Q ∈ Rk×n then P � Q =


p1 ⊗Q
p2 ⊗Q

...
pn ⊗Q

 ∈ Rmk×n, where ⊗ is a

Kronecker product.
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Algorithm 3 Computation of T in (2.33)

Input: p(dt|xt, dt−1) and p(xt|xt−1, dt−1) - duration and transition distributions, ` -
the number of sequential hidden states represented by XRt+1 .
Initialization:

p(xt+1|xt, dt)→ T
xt+1|xt,dt

p(dt+1|xt+1, dt)→ D
xt+1,dt+1|xt+1,dt

p(xt+1|xt, dt)→ X
xt+1,dt|xt,dt

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

, E = [I · · · I]

for i = 1 to `− 1 do

T′
xt+i, ... ,xt+1,xt|xt,dt

= T
xt+i, ... ,xt+1|xt,dt

� E (2.43)

T
xt+i+1, ... ,xt+2,xt+1|xt,dt

= T′
xt+i, ... ,xt+1,xt|xt,dt

V (2.44)

end for

Efficient Computation of Factor T in (2.33)

In Corollary 3 we established that the required number of observations in ORt+1 =

{ot+2, ot+3, . . . , ot+`+1} is ` = nd. Therefore, the sizes of the estimated quantities D̃ ∈
Rn

nd
o ×n

nd
o and X̃ ∈ Rn

nd
o ×n

nd
o ×no in Algorithm 3 will have exponential dependency on

nd. When maximum state persistence is large, the estimation of such quantity becomes

impractical. Fortunately, we can modify Algorithm 3 to significantly reduce the number

of observations. The idea is to apply the step (2.44) multiple times in-between the

applications of step (2.43). Recall that in the previous construction we established

that ` = nd consecutive observations are sufficient, e.g., ORt+1 = {ot+2, . . . , ot+`+1}.
In contrast, in the proposed approach, every time we add an observation, say ot+τ ,

we skip certain number δ of time steps before adding another observation ot+τ+δ, so

that the observations are non-consecutive. As we illustrate next, the span of these

non-consecutive observations is still nd but the number of them is only logarithmic in
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Algorithm 4 Efficient computation of T in (2.33)

Input: p(dt|xt, dt−1) and p(xt|xt−1, dt−1) - duration and transition distributions, ` -
the number of sequential hidden states represented by XRt+1

Initialization:

p(xt+1|xt, dt)→ T
xt+1|xt,dt

p(dt+1|xt+1, dt)→ D
xt+1,dt+1|xt+1,dt

p(xt+1|xt, dt)→ X
xt+1,dt|xt,dt

V = D
xt+1,dt+1|xt+1,dt

X
xt+1,dt|xt,dt

, E = [I · · · I]

c = 1
for i = 1 to `− 1 do

T = T V (2.45)

if i == (nx)c − 1 or i == `− 1 do

T = T� E (2.46)

end if
c = c+ 1

end for

nd. The proposed approach still achieves the full rank structure of F
ORt+1

|xtdt
but with

smaller number of data points. Algorithm 4, which is a simple modification of Algorithm

3, summarizes the above procedure.

The following result establishes the rank structure of the matrix T
XRt+1

|xtdt
in the output

of the Algorithm 4. The proof can be found in Appendix 2.A.2.

Theorem 4 The rank of the output matrix T
XRt+1

|xtdt
in Algorithm 4 is min(n`x, nxnd).

Note that based on the above theorem, Algorithm 4 increases the rank at every step

exponentially rather than linearly. In order for T
XRt+1

|xtdt
to achieve the rank nxnd we
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will now require ` = d1 + lognd
lognx

e observations, since we need to ensure n`x = nxnd.

Observe that the span of the selected observations is still nd, while the number of the

observations is only logarithmic in nd. The following Corollary summarizes the above

conclusions.

Corollary 5 To achieve the full column rank for F
ORt+1

|xtdt
∈ Rn`o×nxnd, i.e. to ensure

that the rank of tensor F
ORt+1

|xtdt
is nxnd, the number of observations ` in ORt+1 must

be equal to ` = d1 + lognd
lognx

e, since we need to ensure n`x = nxnd.

Theorem 4 together with Corollary 5 now proves the Theorem 1 stated earlier.

2.5 Experiments

In this section we evaluated the performance of the proposed algorithm both on synthetic

as well as real datasets and compared its performance to a standard EM algorithm.

2.5.1 Synthetic Data

Using synthetic data, we compared the estimation accuracy and the runtime of the

spectral algorithm with EM. For this, we defined two HSMMs, one with no = 3, nx =

2, nd = 2 and another with no = 5, nx = 4, nd = 6. For each model, we gener-

ated a set of Ntrain = {500, 1000, 5000, 104, 105} training and Ntest == 1000 testing

sequences, each of length T = 100. The accuracy of estimating likelihood for each test-

ing sequence was measured using the relative deviation from the true likelihood, i.e.,

εi =
|p̂(Stesti )−p(Stesti )|

p(Stesti )
for i = 1, . . . , 1000. Given 1000 such values, we then computed the

final score, which is the root-mean-square error (RMSE) across all the testing sequences,

RMSE =
√

1
Ntest

∑Ntest
i=1 ε2i .

Figure 5.2 shows results, where the top row of graphs corresponds to the model

no = 3, nx = 2, nd = 2 and the bottom row is for model no = 5, nx = 4, nd = 6. The left

column of graphs shows the progression of RMSE across EM iterations for both models;

the middle column shows the dependence of testing error on the number of training

samples and the right column shows the running times. It can be observed from plots

(b) and (e) in Figure 5.2 that with the small training set, EM achieves smaller errors,
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Figure 2.7: Performance of the spectral algorithm and EM on synthetic data generated
from HSMM with no = 3, nx = 2, nd = 2 (top row) and no = 5, nx = 4, nd = 6 (bottom
row). (a), (d): Error for EM across different iterations for various training datasets. The
straight lines show the performance for spectral method. (b), (e): Average error and one
standard deviation over 100 runs for EM after convergence and spectral algorithm across
different number of training data. (c), (f): Runtime, in seconds, for both methods.

while as the number of training samples increases, the spectral method becomes more

accurate, outperforming EM. Also, comparing the plots (a), (b) with (d) and (e), we

can conclude that for larger models, i.e., whose no, nx and nd are larger, the spectral

method requires more data in order to achieve same or better accuracy than EM. This

is expected since the sizes of estimated tensors grow with the model size. Moreover, the

plots (c) and (f) in Figure 5.2 show that spectral method is several orders of magnitude

faster than EM.

Given the above results, we can conclude that (i) for small datasets EM is a preferable

algorithm, (ii) for large data, the spectral algorithm is a better choice, since it achieves

higher accuracy and (iii) across all datasets the spectral algorithm requires significantly

less computations as compared to EM.

2.5.2 Application to Aviation Safety Data

We also compared the performance of the spectral algorithm and EM on real NASA

flight dataset [42], containing over 180000 flights of 35 aircrafts from a defunct mid-

western airline company. For each flight, the data has a record of 186 parameters,
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Figure 2.8: Evaluation of the spectral algorithm and EM on aviation safety data. (a)
and (b): Normalized joint loglikelihood computed by spectral algorithm (a) and EM (b)
for a set of 200 test flights, with 100 normal and 100 anomalous. HSMM parameters:
no = 9, nx = 8, nd = 40 (c): The Receiver Operating Characteristic (ROC) curve,
illustrating classification accuracy of the algorithms. Area Under Curve (AUC) for
spectral algorithm is 0.91 and for EM is 0.89.

sampled at 1 Hz, including sensor readings and pilot actions. We considered a problem

of anomaly detection in aviation systems [58, 72, 8] and used HSMM to detect abnormal

flights based on pilot actions. Our idea is based on the observation that a flight can

be partitioned into a number of phases, e.g., initial descent, touch down, or braking

on the runway, and where within each phase the pilot performs certain actions. For

example, during the initial descent, the pilot reduces throttle, lowers the flaps, and uses

the ailerons and elevator to stabilize the aircraft. On the other hand, in the braking

stage, the pilot uses brakes as well as rudder to keep the aircraft in the middle of the

runway. Using HSMM as a model, we represented the flight phases as hidden states and

the pilot actions as the observations from these states (see [34] for more details).

In our experiments, we focused on a part of flight related to the approach phase

(15 − 60 minutes in duration before the touch down on the runway) for a subset of

flights landing at the same airport. We chose 9 pilot commands, among which are

“selected altitude”, “selected heading”, ”selected throttle level”, etc. A simple data

filter, based on the histogram of the pilot actions, was applied to select 10020 normal

flights for training. A test set contained 200 flights, with 100 of them being similar to

the training set and the rest were selected from the flights rejected by the filter. Most

of abnormal flights contained low occurrence events, such as fast descent, unusual usage

of air brakes, etc., and few significant anomalies, e.g., the aborted descent in order to

delay the flight. The length of the considered sequences varied anywhere from 500 to
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Figure 2.9: Comparison of AUC scores for EM and spectral algorithm for various model
parameters when evaluated on aviation safety data. Both algorithms achieve similar
high accuracy across different models.

4000 seconds.

Parameters

no = 9

nx = 8

nd = 40

no = 9

nx = 7

nd = 30

no = 9

nx = 6

nd = 20

no = 9

nx = 5

nd = 10

Running Time
Spectral 6.8 hours 6.4 hours 6.4 hours 6.3 hours

EM > 2 days > 2 days > 2 days > 2 days

Table 2.1: Comparison of running time for EM and spectral algorithm for multiple model
parameters. Spectral algorithm is several orders of magnitude faster as compared to
EM, offering significant computational savings.

We applied EM and spectral algorithm to compute the normalized joint log-likelihood

1

Ti
log p(o1, o2, . . . , oTi),

for i = 1, . . . , 200, where oi are the observed pilot actions. Figure 2.8 shows the results.

The high-likelihood sequences were considered normal and low-likelihood ones classified

as anomalous (see plots (a) and (b)). Both algorithms achieved similar detection accu-

racy, with the spectral algorithm having the Area Under Curve (AUC) score of 0.91 and

the EM had AUC = 0.89. On the other hand, the computational time of the spectral

algorithm was orders of magnitude smaller as compared to EM (see plot (c) on Figure

2.8). We also compared performance of both algorithm on the same flight data while

varying the dimensionality of the HSMM parameters (see Figure 2.9 and Table 2.1). We
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can see that although the performance of EM and spectral algorithm is similar across

many models, the latter offers significant computational savings.



Appendix

2.A Analysis of Tensor Rank Structure

2.A.1 Analysis of Algorithm 3

In this Section, we provide analysis of the Algorithm 3 and study the rank structure

of matrix T in order to prove Theorem 2. To understand the analysis, it is important

to know how the structure of matrix T
XRt+1

|xtdt
evolves across iterations. For this, we

present in Figure 2.A.1 a schematic description of a few steps of the algorithm. For

the analysis we will need to establish certain auxiliary results.

Lemma 6 Let A ∈ Rm×n be a matrix with no all-zero columns then rank (I�A) =

rank (A� I) = n, where � denotes Khatri-Rao product and I ∈ Rn×n.

Proof Let K = (I�A) ∈ Rmn×n. By definition of Khatri-Rao product, K(:, j) =

ej ⊗ A(:, j), for j = 1, . . . , n, which consists of zeros, except for rows (j − 1)m +

1, . . . , (j − 1)m+m, containing the column A(:, j). Here ⊗ denotes Kronecker product

and ej is everywhere zero except for position j which is 1. As long as there is no all-zero

columns in A, each column of K is independent of each other and therefore the rank is

n. Moreover, since the matrix A� I is a row-permuted version of A� I, their ranks are

the same.

Lemma 7 Define a block-row matrix M = [A1 A2 · · · Ak] ∈ Rm×kn, where each Ai ∈
Rm×n. Define by rj , j = 1, . . . , n the rank of matrix [A1(:, j) · · · Ak(:, j)] composed of

jth columns of A’s, and let E = [I I · · · I] ∈ Rn×kn, where I ∈ Rn×n. Then the rank of

matrix W = M�E ∈ Rmn×kn, obtained using a Khatri-Rao product, is min(mn,
∑

j rj).

46
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(2.44)	
  

(2.43)	
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Figure 2.A.1: Schematic representation of Algorithm 3. This example illustrates the
HSMM with nx = 5 and nd = 10. The non-zero matrix elements are displayed as dots.

Proof First note that M � E and E �M are row permuted version of each other,

so they have the same rank. Therefore, consider W′ = E �M = [I�A1 · · · I�Ak].

Also, note that ej ⊗ [A1(:, j) · · · Ak(:, j)], j = 1, . . . , n is a matrix which consists of

zeros except for rows (j − 1)m + 1, . . . , (j − 1)m + m where it contains the columns

[A1(:, j) · · · Ak(:, j)]. The rank of these columns is rj and all other columns in W are

independent of them due to the structure of the Khatri-Rao product. Therefore, each

set of such columns adds rj to the total rank. Since the overall rank of W cannot exceed

either the number of rows or columns, we conclude that rank(W) = min(mn,
∑

j rj).
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Lemma 8 Let V = {v1, . . . ,vn} be a set of linearly independent vectors. Define u =
∑n

i=1 civi, where coefficients ci 6= 0, i = 1, . . . , n. Define U to be a strict subset of V ,

i.e., U ⊂ V , then a set of vectors u ∪ U is independent.

Proof Define {1, . . . , n} = α ∪ ᾱ, where α denotes a subset of indices for vectors

corresponding to U . Then we can write u =
∑

i:i∈α civi +
∑

j:j∈ᾱ cjvj .

Assuming the opposite, i.e., u∪U are dependent, we can write k0u+
∑

i:i∈α kivi = 0

where k0 6= 0 and some of ki, i ∈ α are also must be non-zero. Substituting the definition

of u and rearranging the terms, we get:

k0

∑

i:i∈α
(ci + ki)vi + k0

∑

j:j∈ᾱ
cjvj = 0.

Since cj 6= 0, j ∈ ᾱ, the above equation claims the linear dependence of vectors in V ,

which is a contradiction of our assumption and so u ∪ U are independent.

We are now ready to analyze Algorithm 3. It can be verified that (2.40) is of the

form:

V =




Ψ

I
. . .

I

0 · · · 0



∈ Rnxnd×nxnd where Ψ =




diag [D(1, :)]X
diag [D(2, :)]X

...

diag [D(nd, :)]X



∈ Rnxnd×nx ,

(2.47)

where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note

that we can also write Ψ = (D � I)X . Observe that the rank of V is nxnd because the

nx(nd− 1)× nx(nd− 1) block diagonal matrix delineated in (2.47) and the last nx× nx
block matrix diag [D(nd, :)]X in Ψ together comprising nxnd independent columns of V.

Note that diag [D(nd, :)]X has rank nx because X is full rank and D(nd, :) is non-zero,

which follows from assumptions A1 and A2. As a side note observe that the requirement

to have D(nd, :) non-zero implies that there is a non-zero probability of maximum state

persistence.
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In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration

i in (2.43) and (2.44) as

T
xt+i, ... ,xt+1|xt,dt

= [A
(i)
1 · · · A(i)

nd
]

T′
xt+i, ... ,xt+1,xt|xt,dt

= [B
(i)
1 · · · B(i)

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [C
(i)
1 · · · C(i)

nd
].

Moreover, utilizing the structure of matrix V from (2.47), the operations involved in

step (2.44) are as follows:

[
C

(i)
1 C

(i)
2 C

(i)
3 · · · C(i)

nd

]
=
[
[B

(i)
1 · · · B(i)

nd
]Ψ B

(i)
1 B

(i)
2 · · · B

(i)
nd−1

]
. (2.48)

With the above information we can now present the proof of Theorem 2:

Proof of Theorem 2 At the start of the algorithm, we have T
xt+1|xt,dt

= [X I · · · I] =

[A
(1)
1 · · ·A

(1)
nd ], which has rank nx. The rank of matrix

[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

for l =

1, . . . , nx is rl = 2 since among all the columns only two of them are independent.

Therefore, according to Lemma 7, the result of operations in (2.43), has rank
∑

l rl =

2nx. Moreover, we note that since [B
(1)
1 B

(1)
2 · · · B

(1)
nd ] = [X � I I� I · · · I� I], it can

be seen that its 2nx independent vectors can be formed by the columns [B
(1)
1 B

(1)
2 ], so

that the rank of
[
B

(1)
1 (:, l) · · ·B(1)

nd (:, l)
]

for l = 1, . . . , nx is 2.

Next, since the rank of V is nxnd, the operations in (2.44) produce the matrix

[C
(1)
1 C

(1)
2 · · · C

(1)
nd ] with the rank still being 2nx. Moreover, the columns of C

(1)
1 are

linearly dependent on the rest of the columns, [C
(1)
2 · · · C

(1)
nd ], due to (2.48). However,

the rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

is now rl = 3 for l = 1, . . . , nx. To understand this,

note that

[B
(1)
1 B

(1)
2 · · · B1

nd
] = [X�I I�I · · · I�I]

[C
(1)
1 C

(1)
2 C

(1)
3 · · · C(1)

nd
] = [C

(1)
1 X�I I�I · · · I�I],

where, according to (2.48), C
(1)
1 = [B

(1)
1 · · ·B

(1)
nd ]Ψ. As we established before, the rank of

the matrix
[
C

(1)
2 (:, l) · · ·C(1)

nd (:, l)
]

=
[
B

(1)
1 (:, l) · · ·B(1)

nd−1(:, l)
]

is rl = 2. Moreover, it can

also be checked that C
(1)
1 (:, l) is independent of

[
C

(1)
2 (:, l) · · ·C(1)

nd (:, l)
]

due to Lemma

8. Clearly, then the cumulative rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

is 3 for l = 1, . . . , nx.
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To generalize, if at the iteration i the rank of
[
A

(i)
1 · · ·A

(i)
nd

]
is inx while the rank of

[
A

(i)
1 (:, l) · · ·A(i)

nd(:, l)
]

is (i+1), then the operations in step (2.43) produce
[
B

(i)
1 · · ·B

(i)
nd

]

having rank (i+1)nx due to Lemma 7. The step in (2.44) keeps the rank of
[
C

(i)
1 · · ·C

(i)
nd

]

at (i+1)nx due to the full rank structure of V. At the same time, this step increases the

rank of
[
C

(i)
1 (:, l) · · ·C(i)

nd(:, l)
]

to (i+ 2) due to Lemma 8, i.e., independence of C
(i)
1 (:, l)

from
[
C

(i)
2 (:, l) · · ·C(i)

nd(:, l)
]

with the latter having the rank (i + 1). Therefore, each

iteration increases the rank of matrix T by nx and so after 2 ≤ ` ≤ nd steps the rank

of the resulting matrix T
XRt+1

|xtdt
is `nx.

Note that if ` = 1 then the Algorithm 3 is not executed and returns the trivial

T
xt+1|xt,dt

with rank nx. On the other hand, if ` > nd then the rank of T
XRt+1

|xtdt
is nxnd

since this is the number of columns in that matrix and so is the maximum achievable

rank.

2.A.2 Analysis of Algorithm 4

In this Section we analysis of the Algorithm 4 in order to prove Theorem 4. Similarly as

in Section 2.A.1, it is instructive to visualize the progress of Algorithm 4. Figure 2.A.2

shows a schematic description of a few steps of the algorithm.

We are now ready to present the proof of Theorem 4.

Proof of Theorem 4 For the proof, we refer back to Algorithm 3 and the proof

of Theorem 2. Recall, that at iteration i = 1, the result of step (2.43) is a ma-

trix [B
(1)
1 · · ·B

(1)
nd ] ∈ Rn2

x×nxnd , whose rank is 2nx, since
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

=

[X I · · · I] ∈ Rnx×nxnd for l = 1, . . . , nx had two independent columns. Then, the trans-

formations in step (2.44) produced
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

for l = 1, . . . , nx with rank

3nx.

Note that if nx > 2 then
[
A

(1)
1 (:, l) · · ·A(1)

nd (:, l)
]

potentially can have a rank up to nx,

while in Algorithm 3 we only have it equal to 2. It turns out that if we apply step (2.44)

multiple times and use Lemma 8, we can increase the rank of
[
C

(1)
1 (:, l) · · ·C(1)

nd (:, l)
]

for

l = 1, . . . , nx to nx.

Specifically, consider the step (2.45). Then at iteration i = 1 we have [A
(1)
1 · · ·A

(1)
nd ] =
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.
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(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.

16

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 70

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 70

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 190

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 70

0 20 40

0

20

40

60

80

100

120

nz = 190

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 190

0 20 40

0

20

40

60

80

100

120

nz = 810

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 20 40

0

20

40

60

80

100

120

nz = 190

!" #"

!" #"

$%&'()*+","

$%&'()*+"-"

&./"0123"

&./"0143"

&./"0123"

&./"0143"

T
xt+1|xt,dt

T
xt+2,xt+1|xt,dt

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 50

!"

!"

!

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 50

!

E

V

T
xt+2,xt+1|xt,dt

T
xt+3,xt+2,xt+1|xt,dt

V

E

T�
xt+1,xt|xt,dt

T�
xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

Figure 5: Schematic representation of Algorithm 3

where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.

16

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 70

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 70

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 190

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 70

0 20 40

0

20

40

60

80

100

120

nz = 190

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 190

0 20 40

0

20

40

60

80

100

120

nz = 810

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 20 40

0

20

40

60

80

100

120

nz = 190

!" #"

!" #"

$%&'()*+","

$%&'()*+"-"

&./"0123"

&./"0143"

&./"0123"

&./"0143"

T
xt+1|xt,dt

T
xt+2,xt+1|xt,dt

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 50

!"

!"

!

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 50

!

E

V

T
xt+2,xt+1|xt,dt

T
xt+3,xt+2,xt+1|xt,dt

V

E

T�
xt+1,xt|xt,dt

T�
xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

Figure 5: Schematic representation of Algorithm 3

where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.

16

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 70

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 70

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 190

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 70

0 20 40

0

20

40

60

80

100

120

nz = 190

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 190

0 20 40

0

20

40

60

80

100

120

nz = 810

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 295

0 20 40

0

20

40

60

80

100

120

nz = 190

!" #"

!" #"

$%&'()*+","

$%&'()*+"-"

&./"0123"

&./"0143"

&./"0123"

&./"0143"

T
xt+1|xt,dt

T
xt+2,xt+1|xt,dt

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 50

!"

!"

!

0 5 10 15 20 25 30 35 40 45 50

0

5

nz = 50

!

E

V

T
xt+2,xt+1|xt,dt

T
xt+3,xt+2,xt+1|xt,dt

V

E

T�
xt+1,xt|xt,dt

T�
xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

T�
xt+2,xt+1,xt|xt,dt

Figure 5: Schematic representation of Algorithm 3
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V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
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where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.
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Figure 5: Schematic representation of Algorithm 3

where diag [D(i, :)] is the diagonal matrix with ith row from D on the diagonal. Note that we can also write Ψ =
(D ⊙ I) X . Observe that the rank of V is nxnd because the nx(nd−1)×nx(nd−1) block diagonal matrix delineated
in (39) and the last nx × nx block matrix diag [D(nd, :)] X in Ψ together comprising nxnd independent columns of
V. Note that diag [D(nd, :)] X has rank nx because X is full rank and D(nd, :) is non-zero, which follows from
statements 1 and 2 in Assumptions 4.1). As a side note observe that the requirement to have D(nd, :) non-zero implies
that there is a non-zero probability of maximum state persistence.

In analyzing the Algorithm 3, it would be useful to denote the matrices at iteration i in (37) and (38) as

T
xt+i, ... ,xt+1|xt,dt

= [Ai
1 · · · Ai

nd
]

T�
xt+i, ... ,xt+1,xt|xt,dt

= [Bi
1 · · · Bi

nd
]

T
xt+i+1,...,xt+2,xt+1|xt,dt

= [Ci
1 · · · Ci

nd
]

Moreover, utilizing the structure of matrix V from (39), the operations involved in step (38) are as follows:
�
Ci

1 Ci
2 Ci

3 · · · Ci
nd

�
=
�
[Bi

1 · · · Bi
nd

]Ψ Bi
1 Bi

2 · · · Bi
nd−1

�
(40)

The following theorem shows the rank structure of the output matrix from Algorithm 3.

Theorem 6.4 Assuming that 2 ≤ L ≤ nd, the rank of the output matrix T
XRt+1

|xtdt

in Algorithm 3 is Lnx.
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Figure 2.A.2: Schematic representation of Algorithm 4. This example illustrates the
HSMM with nx = 5 and nd = 10. The non-zero matrix elements are displayed as dots.
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[B
(1)
1 · · ·B

(1)
nd ] and for l = 1, . . . , nx the two independent columns are

[
B

(1)
1 (:, l) B

(1)
2 (:, l)

]
=

[X (:, l) I(:, l)]. The result of step (2.45) gives us then three independent columns

[
C

(1)
1 (:, l) C

(1)
2 (:, l) C

(1)
3 (:, l)

]
=
[
C

(1)
1 (:, l) X (:, l) I(:, l)

]
,

where C
(1)
1 = [X I · · · I]Ψ. The independence follows from Lemma 8. The repeated

application of step (2.45) one more time gives four independent columns

[
C

(2)
1 (:, l) C

(2)
2 (:, l) C

(2)
3 (:, l) C

(2)
4 (:, l)

]
=
[
C

(2)
1 (:, l) C

(1)
1 (:, l) X (:, l) I(:, l)

]
,

where C
(2)
1 = [C

(1)
1 · · ·C

(1)
nd ]Ψ. Observe that since the number of rows is nx, we can

increase the rank at most up to nx. Therefore, if in the beginning we had two indepen-

dent columns and we want to get nx independent columns, we would need to apply the

step (2.45) nx − 2 times, so as to have the matrix [C
(nx−2)
1 (:, l) · · · C

(nx−2)
nd (:, l)] with

rank nx.

If we now apply step (2.46) it will give us [A
(1)
1 · · · A

(1)
nd ] ∈ Rn2

x×nxnd with rank n2
x

due to Lemma 7. Continuing in this manner, we can again repeatedly apply the step

(2.45) to create a matrix with a rank at most n2
x, since there are n2

x rows and assuming

that nxnd ≥ n2
x. The number of times we need to apply (2.45) is now n2

x − nx since we

need to go from nx to n2
x independent columns.

In general, the step (2.45) needs to be applied ncx − nc−1
x , in order to obtain ncx

independent columns. The application of step (2.46) then creates T with rank nc+1
x .

Note, that since T has nxnd columns, the maximum achievable rank is nxnd.

Observe that the above proof also provided the method for selecting the non-

sequential observations XRt+1 . Specifically, since the set of observations XRt+1 = {ot+2, . . .}
must start from observation ot+2 and |XRt+1 | = `, we denote s = t+ 2. Then, ith added

observation is os+(nd−1)−(nix−1) for i = 0, . . . , `− 2 and the `th observation is os = ot+2.

For tensor F
ORt+1

|xtdt
to achieve rank nxnd we need to add ` = d1 + lognd

lognx
e observations.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tin-

cidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac

habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc ele-

mentum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin,
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felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin

tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

2.B Initial and Final Parts of HSMM

In this Section we present the derivations for the initial and final steps of HSMM, which

were omitted from the main text. Specifically, this amounts to computing the factor X

for two parts of the model, corresponding to Xroot and XT in Figures 2.B.1 and 2.B.2.

The derivations for all other parts of HSMM were presented in the main text and this

supplement.

o1 o2

x1

d1 d2

x2

o3

x3

d3

x1o1

x2o2

d1x1x2

x1

x2

d1x2 d1d2x2 d2x2 d2x2x3

x3

x3o3

Xroot X3

O3

D3

O2

O1

Figure 2.B.1: Part of HSMM corresponding to the initial time stamps and the related
part of junction tree.
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xT oT
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dT−2dT−1xT−1dT−2xT−2xT−1

xT−1

xT−1oT−1

dT−1xT−1dT−2xT−1

XT−1 XT

OTOT−1

DT

Figure 2.B.2: Part of HSMM corresponding to the final time stamps and the related
part of junction tree.

To begin, recall the expression for the joint likelihood of the observed sequence:

P
o1,...,oT

=
∏

t

D
dt−1|xt−1dt−2

×xt−1dt−1

(
X

xt|xt−1dt−1

×xt O
ot|xt

)
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and rewrite the above expression by keeping only the initial and final factors:

P
o1,...,oT

=

(
O
o1|x1

×x1
(

X
x2x2|x1d1

×x2 O
o2|x2

))
×x2d1 D

d2|x2x2d1
× · · ·

· · · × D
dT−1|xT−1xT−1dT−2

×xT−1dT−1

(
X

xT |xT−1dT−1

×xT O
oT |xT

)
. (2.49)

Introduce the identity tensors into (2.49), regroup the terms and extract the factors X:

X̃
ωx1ωx2ωx2d1

= F
ωx1 |x1

×x1
(

X
x2x2|x1d1

×x2 F
ωx2 |x2

)
×x2d1 F

ωx2d1 |x2d1
(2.50)

X̃
ωxT−1dT−1

ωxT
= F−1

ωxT−1dT−1
|xT−1dT−1

×xT−1dT−1

(
X

xT |xT−1dT−1

×xT F
ωxT |xT

)
. (2.51)

Defining the observable sets ωx1 = o1, ωx2 = o2 and ωx2d1 = OR3 we can rewrite (2.50)

as follows:

X̃
o1o2OR3

= F
o1|x1

×x1
(

X
x2x2|x1d1

×x2 F
o2|x2

)
×x2d1 F

OR3
|x2d1

. (2.52)

Note that since all the factors participating in (2.52) are valid probability distri-

butions, the resulting factor, i.e., X̃
o1o2OR3

is also a valid probability distribution, so it

can be estimated directly from data. This is in contrast to the derivations we made for

other parts of the model, where we had to perform additional transformations such as,

for example in (2.12), in order to bring to the form, which could be estimated from the

data samples.

In order to estimate (2.51), we compare it to the similar factor we considered in the

main paper:

X̃
ωxt−1dt−1ωxtωxtdt−1

= F−1

ωxt−1dt−1 |xt−1dt−1
×xt−1dt−1

(
X

xtxt|xt−1xt−1dt−1
×xt F

ωxt |xt

)
×xtdt−1 F

ωxtdt−1 |xtdt−1

,

(2.53)

and observe that the last factor F
ωxtdt−1 |xtdt−1

in (2.53) is a conditional probability distri-

bution, which has the following marginalization property

F
ωxtdt−1 |xtdt−1

×ωxtdt−1 1
ωxtdt−1

= 1
xtdt−1

, (2.54)

where 1 is the tensor, which has all elements equal to 1. The above can also be written in

the scalar notations,
∑

ωxtdt−1
p(ωxtdt−1 |xtdt−1) = 1 for each value of xtdt−1. Therefore,
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if we apply (2.54) to (2.53), we get X̃
ωxt−1dt−1ωxt

, which is the time-shifted version of

X̃
ωxT−1dT−1

ωxT
. Therefore, to compute (2.51), we estimate the tensor in (2.15), i.e.,

X̃
ORtotORt

= M−1

OLtORt

×OLt
M

OLtORtot
,

and marginalize out the right set of modes, corresponding to ORt . Alternatively, we can

use the batch estimate

X̃ =

(∑

t

M
OLtORt

)−1

×OL

(∑

t

M
OLtORtot

)
,

and similarly perform the marginalization. This concludes our derivations. Quisque

ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dic-

tumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum

wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat

quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet

nisl. Vivamus quis tortor vitae risus porta vehicula.



Chapter 3

Vector Autoregressive Model:

Continuous Data Modeling

In this chapter, our objective is to develop a framework to identify operationally sig-

nificant events in the flight data, composed from multivariate continuous time series.

We are specifically interested in the scenarios when no information about the labels of

the flights is available (i.e., which flights are normal and anomalous). To detect the

abnormal flights, it is necessary to define a distance measure to compare the flights.

And since the flights are represented as multivariate time series, possibly with different

lengths, it is unclear how to compare such data objects.

3.1 Introduction

For the continuous data, inspired by viewing the flight data in Figure 1.2 as coming

from a dynamical system with certain inputs (corresponding to environment and some

control variables) and outputs (corresponding to sensor measurements) and by utilizing

ideas from the system identification literature [50], we propose to represent such data as

a vector autoregressive model (VAR) (note that the VAR model with exogenous (input)

variables is also referred as VARX). Note that the VARX modeling enables us to exploit

the relationships between the data parameters and compare the flights with different

durations. Moreover, our approach allows online anomaly detection, i.e., analyzing data

as it is coming in and compute anomaly score for each time stamp.

56
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We note that in literature, the problem of anomaly detection based on continuous

data was addressed by several researchers. In particular, [73] considered a problem of

detecting abnormal fuel consumption in jet engines. Their method is based on using

regression models to estimate the consumed fuel and compare it to the actual recorded

level to detect the abnormal behavior. The proposed method is a supervised approach

in which model training requires anomaly-free data, which might limit its practical

application in cases when the labeled data is unavailable, as is the case in the present

work.

In the work of [72] the authors addressed a general aircraft anomaly detection prob-

lem. Their approach is based on using a specially designed linear regression model to

describe the aerodynamic forces acting on an aircraft. The constructed model accounts

for the flight-to-flight and aircraft-to-aircraft variability, which enables the fitting of a

single model to the entire dataset. Hotelling T2 statistics is then used on the residuals

to detect anomalies. However, the postulated aerodynamics regression model requires

significant domain knowledge and careful design, limiting its generalization and usage

in other anomaly detection problems. On the other hand, the current VARX-based

approach requires only basic knowledge about the considered parameters to define a

model and can easily be extended to other anomaly detection domains.

Das et. al. [74] proposed multiple kernel learning approach for heterogeneous anomaly

detection problems (MKAD). The method constructs a kernel matrix as a convex combi-

nation of a kernel over discrete sequences using normalized longest common subsequence

[58] and a kernel based on symbolic aggregate approximation (SAX) representation [75]

of the continuous time series. One-class SVM [76] is then used to construct a separating

hyperplane to detect anomalies. This method was applied to the FOQA dataset [8] and

showed high accuracy in discovering operationally significant aviation safety events.

3.2 Description of Anomaly Detection Approach

Our approach for analyzing multivariate time series utilizes ideas from system iden-

tification [50] and model-based sequential data clustering [77], [78]. In particular, we

represent each flight with a Vector AutoRegressive eXogenous model (VARX) [79], [80],

which can capture the dependencies among different time series over time. To avoid
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Figure 3.1: Anomaly detection framework using VARX modeling.

deviations due to data noise and outliers, we focus on a robust VARX model, which

considers a robust Huber loss [1] instead of a square loss, and develop an efficient method

for estimating model parameters based on iterative re-weighted least squares. A dis-

tance between flights is defined in terms of residuals of modeling one flight’s data using

another flight’s VARX model, with suitable normalization and symmetrization. The

flight-by-flight distance matrix can then be used in any nearest-neighbor based anomaly

detection method [81]. Flowchart of the proposed framework is shown in Figure 3.1.

It is important to emphasize a few key aspects of our framework: (i) the VARX mod-

eling enables us to exploit the relationships between the data parameters and compare

the flights with different durations, (ii) our approach allows online anomaly detection,

i.e., analyzing data as it is coming in, in contrast to dynamic programming based meth-

ods such as DTW or LCS (longest common subsequence) [82], which need the entire

time series for analysis, and (iii) the framework is scalable, due to the inherent parallel

nature of most computations.

In what follows we present the details of the proposed framework and for this pur-

pose, we discuss in details each module from the flowchart digram in Figure 3.1.
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3.2.1 Model Construction

We propose to view the aviation data as coming from a dynamical system with certain

inputs and outputs. A standard approach for modeling such system in the system

identification literature [50] is a vector autoregressive model with exogenous variables

(VARX):

yk =A1yk−1 + . . .+Apyk−p +B1uk−1 + . . .+Bquk−q + εk, (3.1)

where A ∈ Rn×n and B ∈ Rn×m are the matrices of coefficients, y ∈ Rn is the vector of

outputs corresponding to the sensor measurements on the aircraft, u ∈ Rm is the vector

of inputs corresponding to environmental and control features, ε ∈ Rn is the vector of

zero-mean white noise, and k = max(p+ 1, q + 1), . . . , T , where T denotes the length of

time series. The subscripts p and q determine the lag for y and u, respectively. For future

references, we denote the data of each flight, consisting of inputs and outputs, in the

dataset of N flights as F i, so that F ik =
{
yik, u

i
k

}
, where k = max(p+ 1, q + 1), . . . , Ti

and i = 1, . . . , N .

Without the loss of generality and to simplify the notations, in the following we

consider a first order VARX model

yk = Ayk−1 +Buk−1 + εk. (3.2)

The key step of our anomaly detection framework is the estimation of such a model

for each flight, which amounts to computing the coefficient matrices A and B, and in

what follows, we discuss the procedure for estimation of these parameters. For this

purpose, we assume that the length of some flight is T timestamps, then it follows

that k = 2, . . . , T (since we consider a first order VARX model) and we can write the

expression in (3.2) in the following form




y2

...

yT


 = A




y1

...

yT−1


+B




u1

...

uT−1


+




ε2
...

εT


 ,
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which can also be compactly written as

Y2:T = AY1:T−1 +BU + E,

Y2:T =
[
A B

] [Y1:T−1

U

]
+ E.

Next, applying the vectorization operation to the above, we get

vec(Y2:T ) =
[
Y T

1:T−1 ⊗ I UT ⊗ I
] [vec(A)

vec(B)

]
+ vec(E)

y = Zβ + ε, (3.3)

where vec(·) is matrix vectorization, i.e., the operation of stacking the columns of a

matrix into a vector, y ∈ Rn(T−1), Z = [Y T
1:T−1 ⊗ I UT ⊗ I] ∈ Rn(T−1)×(n2+nm),

β =

[
vec(A)

vec(B)

]
∈ R(n2+nm) and I ∈ Rn×n is the identity matrix. The symbol ⊗ denotes

the Kronecker product operation [83]. In the above we used a fact that vec(PQ) =

(QT ⊗ I)vec(P ), for matrices with appropriate dimensions.

To estimate the vector of unknowns β we formulate the following regularized robust

least squares optimization problem

min
β

H
[
y − Zβ

]
+ λ||β||22, where Hi [ri] =




r2
i if |ri| ≤ K
K (2|ri| −K) if |ri| > K

.

(3.4)

Hi [ri] is the Huber loss function [1], ri = [y − Zβ]i for i = 1, . . . , n(T−1) is the residual,

K is a tuning threshold influencing resistance to outliers, usually selected as a multiple

of the standard deviation of residuals, and λ > 0 ∈ R is the regularization parameter.

Figure 3.2 shows an example of the Huber loss function for K = 5. As can be seen,

whenever the absolute value of the residuals are smaller than K, the applied penalty is

quadratic, however, for the residuals exceeding K or −K only linear penalty is applied.

In this way, the outliers with large residual values do not have too much influence on

the resulting solution.

The reason we have used the robust form of the least squares is to prevent possible

data noise and outliers from distorting the computed solution, which can happen if a
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Figure 3.2: Illustration of the Huber loss function [1]. Blue dashed line represents
quadratic cost r2

i and red line is the Huber loss. Vertical black lines show the constants
−K and K (K = 5), which mark the transition of the loss function from quadratic to
linear penalty.

simple quadratic cost function is used instead. It can be shown [84] that (3.4) can easily

be solved using regularized iterative re-weighted least squares

min
β
||W (y − Zβ) ||22 + λ||β||22, (3.5)

where W is the diagonal weighting matrix, whose i-th diagonal element is

Wii(ri) =





1 if |ri| ≤ K
K
|ri| if |ri| > K

.

Observe also that we have included a regularization parameter λ to improve generaliza-

tion of the constructed model [85] as well as to prevent possible ill-conditioning of the

matrix Z, which can lead to inaccurate solution β. The ill-conditioning usually happens

in cases when time series, representing sensor measurements, become highly correlated

among each other, leading to rank-deficient Z. Finally, note that matrix Z in (3.5) can

become very tall in cases when T is large and standard approaches of estimating β based

on regular QR decomposition [86] become impractical. For this purpose, in practice,

we use the approach of [87] based on Tall and Skinny QR (TSQR), which enables to

perform QR of a tall matrix in a block-by-block sequential manner.
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Note that instead of the least squares regression based on Huber loss function,

one can employ other robust methods, for example, least median squares [88] or least

trimmed squares regression [2]. The main advantage of these type of algorithms is

that they achieve the highest breakdown point of 50%, i.e., the minimum percentage of

data which needs to be corrupted to make the regression technique to break down. On

the other hand, these approaches are known to be computationally expensive, whose

complexity grows exponentially with the problem dimensionality. In practice, their

solutions are usually obtained using various heuristics, which are based on the search

of the subsets of data that minimize the optimization criterion [88]. In Section 3.4

we present comparison study, which showed that for the considered anomaly detection

problem, the least squares regression based on Huber loss still performs better than the

other alternatives.

3.2.2 Distance matrix

Having computed the models for each flight, the next step in the proposed anomaly

detection framework is to construct the distance matrix D ∈ RN×N among the N

flights. The idea is based on computing each element Dij using the residuals of the

model built on the data of flight i evaluated on the data from flight j, for i = 1, . . . , N

and j = 1, . . . , N .

Specifically, let Âi and B̂i be the estimated parameters of the model in (3.2), com-

puted using data from flight i. Evaluate this model on data from flight j by computing

the residuals rijk = yjk − ŷik, where ŷik = Âiyjk−1 + B̂iujk−1, k = 2, . . . , Tj , is the one-step

prediction of the estimated model and yjk, u
j
k are the data of flight j of length Tj . Note

that in general rijk 6= rjik . Next, we utilize the computed residuals rijk to construct a

scalar dissimilarity measure Dij between flight i and j. The idea is to treat the residu-

als rijk ∈ Rn as Tj − 1 vectors in n-dimensional space and compute their center of mass.

Intuitively, the closer the point to this center, the more likely it represents the distance

between similar flights. Measuring the closeness to the mean using Euclidean distance

has a drawback in that it assumes that the points are distributed in spherical manner

around the center, which is usually not the case in many practical scenarios. A better

approach is to use Mahalanobis distance [89], which is a generalization of the Euclidean

distance, and it accounts for the variance along each dimension as well as the covariance
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between the dimensions, thus, more accurately measuring the proximity to the mean.

Thus, at each time stamp we compute

mij
k =

√
(rijk − µrijk )TCij−1(rijk − µrijk ), (3.6)

where Cij is the sample covariance matrix

Cij =
1

Tj − 1

T∑

k=2

(rijk − µrijk )(rijk − µrijk )T ,

and µ
rijk

= 1
Tj−1

∑T
k=2 r

ij
k is the sample mean. Finally, the dissimilarity measure Dij

is then computed by combining the mij
k ’s, e.g., using the standard deviation Dij =

1
Tj−1

∑T
k=2(mij

k − µmijk )2, where µ
mijk

is the mean.

Besides the standard deviation, other summary statistics can also be used but we

observed that it performed well in practice, adequately capturing variability in the resid-

uals. Specifically, during experiments we noticed that for the flights i and j which are

similar, the residuals usually stayed small throughout the flight. On the other hand,

when comparing normal and anomalous flights, the residuals also remained small except

for some segments which contained large deviations (e.g., see right upper plot in Figure

3.2). Detection of such flights can be viewed as a separate outlier detection problem in

one dimensional time-series, in which one can use various sophisticated approaches, e.g.,

based on support vector regression [90], using mixture transition distribution approach

of [91] or using median information from the neighborhood [92] to identify outliers.

However, we found that a summary statistic such as standard deviation, which uses a

sum of quadratic deviations, is sufficiently sensitive to outliers and had a good perfor-

mance in our experiments, therefore can serve as an adequate dissimilarity measure Dij .

Note also that the distance matrix D obtained in this way is not symmetric, however,

it can be symmetrized in a number of ways [78], e.g., by averaging Dij = 1
2(Dij +Dji).

3.2.3 Anomaly detection

The estimated distance matrix can now be used to detect outliers, which correspond to

the anomalous flights in our case. For this purpose we utilize the local outlier factor

(LOF) approach of [3]. Intuitively, LOF is based on comparing the local density of a

point with the density of its neighbors using the pairwise distances between the points.
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Specifically, LOF proceeds by computing for a given constant k and distance matrix

D, the set of k-nearest neighbors for each flights F i, i = 1, . . . , N . Denote this set as

SNNk(F i). The distance from flight F i to its k-th nearest neighbor is denoted as dk(F
i).

Next, we define a reachability distance from flight F j to flight F i to be

rdk(F
i, F j) = max(dk(F

j), Dij),

i.e., it is an actual distance between two flights but at least dk(F
j), so that all flights

within a set SNNk(F j) are treated as equidistant. Using this information we can now

compute local reachability density of flight F i

lrd(F i) = 1/

(∑
f∈SNNk (F i) rdk(F

i, f)

|SNNk(F i)|

)
.

3.3 Overview of Compared Algorithm

In this Section we present an overview of the algorithms, which we used in the com-

parison study in Section 3.4 to evaluate the proposed algorithm in detecting aviation

safety events. The four baseline algorithms we considered were the MKAD, the current

state of the art approach in detecting anomalous flight events, which was used in two

versions, one based on continuous data only and one with a mixture of discrete and

continuous parameters. And the two approaches based on DTW, one of them is based

on voting and the other based on the covariance weighting.

3.3.1 Dynamic Time Warping

Dynamic time warping (DTW) [93] is a popular method to optimally align two univari-

ate time series of possibly unequal length by warping each of them until they match.

The size of the smallest alignment (or warping path) is then considered to be the dis-

tance between two sequences. Note that the computation of the alignment is based

on some local distance measure, which compares an element from one sequence to an

element from another sequence, and here we assume that such measure is a Euclidean

distance. For our problem, we let F ik =
{
yik, u

i
k

}
, k = 1, . . . , Ti and F jl =

{
yjl , u

j
l

}
,

l = 1, . . . , Tj denote the multivariate time series data from flights i and j. Denote by

f , f = 1, . . . , n + m, the index of a specific dimension in the time series. Then the
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DTW distance between two sequences is denoted as DTW
[
F i(f), F j(f)

]
and the local

distance measure is of the form
(
F ik(f)− F jl (f)

)2
for all k and l.

Since DTW was proposed for univariate sequences but our work is concerned with

comparison of multivariate time series, in what follows, we propose two extensions,

enabling anomaly detection among multivariate time series based on DTW. In these

approaches, we follow the main idea of the proposed framework in Fig. 3.1 and construct

distance matrix using DTW rather than VARX. Applying the LOF method, discussed

in Section 3.2.3, to such a matrix reveals the anomalous flights.

Anomaly Detection using Vote-based DTW

In the vote-based DTW, we construct m+ n distance matrices Df between the flights

corresponding to each feature f = 1, . . . , n+m, i.e., Df
i,j = 1

Ti+Tj
DTW

[
F i(f), F j(f)

]
.

We then apply LOF to each distance matrix Df , resulting in n + m lists of anomaly

scores for each of N flights, sorted in decreasing order, so that the top flight is the most

anomalous. The final score is then decided based on the voting, i.e., flight i is considered

anomalous if it was flagged τ times as anomalous. The number τ ∈ (1, . . . n + m) is

determined empirically and in our experiments we used τ = n+m
2 , i.e., a majority-based

voting.

We note that an alternative approach is to combine n + m matrices Df (e.g., by

averaging) and then apply LOF on the resulting matrix to identify outliers. However,

this approach might decrease the chances of identifying anomalies because the combina-

tion of n+m matrices Df can wash out the extreme values Df
ij , thus hiding potentially

anomalous flights.

Anomaly Detection using Covariance-based DTW

Using the ideas from [94] we propose the covariance-based DTW. Recall that in a

univariate DTW we use a scalar local distance measure based on Euclidean distance(
F ik(f)− F jl (f)

)2
. In the covariance-based DTW, we propose to use a weighted vector-

based distance measure, i.e., ‖F ik − F
j
l ‖2W , where W is a weighting matrix. A possible

choice for W can be a matrix constructed based on the inverse covariance of the time

series F i and F j . Specifically, let CF i denote a covariance of multivariate time series
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F i and CF j be a covariance of F j , then we set W = (CF i + CF j )
−1.

The anomaly detection procedure then proceeds as follows. For each pair of flights,

we compute a distance matrix using multivariate DTW, i.e., Di,j = 1
Ti+Tj

DTWW

[
F i, F j

]

based on local distance measure ‖F ik−F
j
l ‖2W and then, as before, apply LOF to identify

the anomalous flights.

3.3.2 Multiple Kernel Anomaly Detection

The Multiple Kernel Anomaly Detection (MKAD) [74] is designed to detect anoma-

lies in the heterogeneous multivariate time series, where both discrete and contin-

uous features are present. The ability to incorporate discrete features is advanta-

geous for anomaly detection since it enables modeling switching sequences of the flight

and the order of the switching can provide additional information to identify abnor-

mal system behavior. Specifically, if we assume that the time series F i and F j now

include both continuous and discrete sequences, then the operation of MKAD can

be described as follows. First, construct the kernel of the form K
(
F i(f), F j(f)

)
=

αKd

(
F i(f), F j(f)

)
+ (1 − α)Kc

(
F i(f), F j(f)

)
, where Kd is a kernel over discrete se-

quences and Kc is a kernel over continuous time series and α ∈ [0, 1] is a weight,

which is usually set to α = 0.5. For discrete sequences, the normalized longest com-

mon subsequence (LCS) is used, i.e., Kd

(
F i(f), F j(f)

)
= |LCS(F i(f),F j(f))|√

TiTj
, where

|LCS(F i(f), F j(f))| denotes the length of LCS. For continuous sequences, the kernel

Kc

(
F i(f), F j(f)

)
is inversely proportional to the distance between symbolic aggregate

approximation (SAX) representation [75] of continuous sequences F i(f) and F j(f). The

constructed kernel K ∈ RN×N , where N is the number of flights, is then used in one-

class support vector machine (SVM) [76] to construct a hyperplane to separate rarely

seen (anomalous) flights from frequently seen (normal) flights. One-class SVM adapts

the traditional SVM methodology to the one-class classification problem. In particular,

after transforming the flight time series via kernel to a high-dimensional feature space,

the algorithm treats the origin as the only member of the anomalous class. A hyperplane

is then constructed to maximally separate the data from the origin. Consequently, the

flights which are located on that side of the boundary closest to the origin are classified

as anomalous while all other flights are treated as normal.
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In our testing procedures, we employed two versions of MKAD, one with α = 0,

which corresponds to using continuous features only and one with α = 0.5, correspond-

ing to an algorithm capable of dealing with heterogeneous data.

3.4 Experiments

In this section we present the evaluation results of the proposed framework on the FOQA

flight dataset from a partner airline company, containing over a million flights, each

having a record of about 300 parameters, including sensor readings, control inputs and

weather information. We have selected flights with landings at the same destination

airport and the aircrafts of the same fleet and type, so that we eliminate potential

differences related to aircraft dynamics or landing patterns. Data analysis focused on a

portion of the flight below 10000 feet until touchdown, corresponding to the approach

and landing phases, usually having the highest rates of accidents [95].

We evaluated the proposed algorithm using two methodologies. In the first one

(Section 3.4.1), using information provided by the airline company’s exceedance-based

algorithm, we picked a set of flights with known anomalous events and a set of flights

containing no such events. Knowing data labels, we evaluated the performance of the

algorithm quantitatively, using receiver operating characteristic (ROC) analysis [96].

In the second approach (Section 3.4.2), we tested the framework in a more realistic

scenario when there is no information about which flights are normal or anomalous.

The presented analysis is only qualitative since no ground truth is available and the

discoveries were validated by the domain experts, including a retired pilot with over 35

years of flying experience.

The performance of our VARX-based anomaly detector was compared with MKAD

[74] for continuous data and for heterogeneous data, as well as with two methods based

on DTW, i.e., the vote-based DTW and the covariance-based DTW. Out of 300 pa-

rameters originally present in the dataset, we have selected 54 continuous features for

VARX, DTW and MKAD, while for MKAD for heterogeneous data we additionally

included 23 discrete parameters. We have implemented the proposed algorithm and

DTW in Python and the framework’s easily parallelizable structure was exploited by

distributing the computations across the computer cluster with up to 1800 cores. In all
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the experiments we have used a first-order VARX model for flight representation. The

implementation of MKAD was provided by the NASA colleagues.

We note that the standard assumption in VARX modeling is the stationarity of

the data. Specifically, this requires a constant mean and variance of each time series

while covariance should depend only on the time difference between two time stamps and

independent of the shift along the time series. In practice, however, this is rarely satisfied

and the data exhibits non-stationarity. A popular method to introduce stationarity is

to perform differencing of individual time series [97]. Usually, first or second order

differencing suffices and a practical criteria to check the stationarity is to compute

the autocorrelation function and ensure that it damps down quickly. In all of our

experiments, before building the VARX model, we normalized individual time series by

subtracting mean and applying first order differencing.

3.4.1 Labeled data

In this study, we have selected 10 flights which had high pitch rate at landing (denote

these flights as D1), 10 flights with a go-around event (denote as D2), 10 flights with a

large vertical acceleration at touch down (denote as D3) and 100 anomaly-free flights

(D4). The D1 flights have fast angle change of the aircraft’s nose and are considered

operationally significant since this can lead to a bouncing on the runway or tail strike,

causing significant structural damage and threaten flight safety. The D2 flights are the

ones which abort their normal landing, fly back up to a certain altitude and try to repeat

the landing again. These flights are considered operationally significant anomalies since

they could be executed in response to an emergency or unsafe conditions in the air or on

the runway. Finally, the D3 flights are also of interest since large vertical acceleration

at the moment of contact with runway could be due to hard landing, which are also

operationally significant events.

Anomaly: High pitch rate at landing

The results of detecting high pitch rate flights in the dataset consisting of D1 and D4

flights are shown in Figure 3.1. It can be seen that the VARX algorithm performed

better as compared to others with DTW algorithm based on voting having the worst

performance. The two right plots in Figure 3.1 examine one of the anomalous flights as
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it was detected by VARX algorithm. The residuals remained small but after the time

stamp 450 they started increasing, signaling the abnormal behavior. In the correspond-

ing time series at the bottom we can notice a high increase and drop of the pitch angle

(greater than 3◦/sec) right before the touch down.
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Figure 3.1: Detection of high pitch rates at landings. The left plot shows the ROC curve
for detecting 10 anomalous in 110 flights, with 100 of them being normal. The AUC
for VARX is 0.93, AUC for MKAD continuous is 0.69, AUC for MKAD heterogeneous
is 0.64, AUC for DTW covariance is 0.63 and finally AUC for DTW majority is 0.4.
The right two figures show the example of VARX-based algorithm detecting abnormal
behavior. The top plot shows the combined residuals during one of the anomalous flights
and the bottom figure shows the corresponding history of pitch angle measurements with
markings of the anomalous segment.

Anomaly: Go-around

Figure 3.2 shows the accuracy of detecting the go-around flights in the dataset containing

D2 and D4 flights. Observe that for this type of anomalies the AUC for all five methods

is higher as compared to the flights with high pitch rate at landings. This occurred since

several flight parameters deviated significantly from their normal behavior during the

go-around event, with the deviation being more pronounced, thus easing the detection

task. An example of such flight is shown at the right side of Figure 3.2, where around

time stamp 600 the altitude increases to about 4000 feet. The corresponding model’s

residuals for VARX method are also shown which have a sharp jump when the go-around

is initiated.
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Figure 3.2: Detection of the go-around flights. Left plot shows the ROC curve anomaly
scores for detecting 10 anomalous in 110 flights, with 100 of them being normal. The
AUC for VARX is 0.95, AUC for MKAD continuous is 0.74, AUC for MKAD hetero-
geneous is 0.89, AUC for DTW covariance is 0.94 and finally AUC for DTW majority
is 0.94. The right plots show the combined residuals for one of the anomalous flights
as detected by VARX and the corresponding flight altitude with markings showing the
start of the go-around event.

Anomaly: Large vertical acceleration at touch down

Finally, the accuracy of detecting the flights with large vertical acceleration at touch

down in the dataset containing D3 and D4 flights are shown in Figure 3.3. It can be

seen that the performance of VARX-based method was slightly better than DTW and

MKAD with DTW covariance-based approach performing the worst. The right plots

show the detection of one of the anomalous flights by VARX algorithm. Throughout

the landing, the combined residuals remained low. However, during the touch down,

the vertical acceleration increased rapidly, possibly indicating a hard landing, which led

to a spike in the residuals and thus this flight was flagged as anomalous.

Comparison studies

In this Section we also present the results of the comparison studies which justify several

design choices we have made earlier in Section 3.2.

VARX estimation losses. Using the labeled data representing the same three types

of anomalies as before, we compared three approaches for estimating the VARX pa-

rameters: least squares based on robust Huber loss [1], ordinary least squares (OLS)
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Figure 3.3: Detection of large vertical acceleration at touch down. ROC curve for
detecting 10 anomalous in 110 flights, with 100 of them being normal is shown in left
plot. The AUC for VARX is 0.84, AUC for MKAD continuous is 0.70, AUC for MKAD
heterogeneous is 0.68, AUC for DTW covariance is 0.44 and finally AUC for DTW
majority is 0.73. The right top plot shows the combined residuals for VARX algorithm
during one of the anomalous flights and the bottom figure shows the corresponding
history of acceleration measurements with red oval showing the anomaly.

and least trimmed squares regression (LTS) [2]. Table 3.1 shows the AUC scores for

the three datasets for each of the estimation methods. As can be seen, OLS

High pitch rate at landing Go-around Large vert. accel. at touch down

OLS 0.950 0.980 0.851

Huber 0.952 0.957 0.863

LTS 0.914 0.921 0.783

Table 3.1: Comparison of three algorithms (OLS, Huber-based [1] regression and least
trimmed squares regression (LTS) [2]) for VARX parameter estimation on each of the
three labeled flight datasets, each consisting of 110 flights (100 normal and 10 anoma-
lous). The results are shown in terms of the anomaly detection performance using the
area under ROC curve (AUC) scores. LOF method was used as the anomaly detector.

and Huber-based least squares performed similarly with the method using Huber loss

achieving slightly more accurate results on two of the datasets. On the other hand,

the estimation based on LTS was less accurate, which could be explained by the fact

that the considered VARX estimation problem is high dimensional and the algorithm

involves considerable combinatorial search [2].

Density-based anomaly detection methods. We have also performed experiments
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to justify our choice of LOF as the outlier identification technique in our anomaly

detection framework. In particular, after computing the flight-by-flight distance matrix,

in the final step of our framework (see Figure 3.1) we applied three alternative anomaly

detectors and compared the resulting detection accuracy. The three considered methods

were LOF, DBSCAN [4], a popular density-based clustering algorithm, and an approach

based on nearest-neighbor (NN) [5], in which flight’s abnormality is determined by the

distance to the first nearest neighbor in the flight-by-flight neighborhood graph. We

tested these methods on the same three labeled flight datasets as before, and the results

are shown in Table 3.2, where we have used prediction accuracy as the measure of

performance. It can be seen that all the methods performed similar to each other with

the LOF achieving slightly better results than the others on two of the datasets.

High pitch rate at landing Go-around Large vert. accel. at touch down

DBSCAN 0.918 0.973 0.927

NN 0.927 0.982 0.945

LOF 0.936 0.983 0.936

Table 3.2: Comparison of three anomaly detection algorithms (LOF [3], DBSCAN [4]
and nearest-neighbor (NN) based approach [5]) on each of the three labeled flight
datasets, each consisting of 110 flights (100 normal and 10 anomalous). The re-
sults are shown in terms of the anomaly detection performance using accuracy =
true positive + true negative

positive + negative . Huber-based loss function was used to estimate VARX pa-
rameters.

3.4.2 Unlabeled data

In this study we selected 20000 flights with no information available about which of

them are normal and anomalous. We tested the proposed VARX-based algorithm and

compared its performance with the other four methods. For each method, we examined

the top 100 flights with the highest anomaly scores to determine the flights containing

operationally significant events. In Table 5.2 we present a summary of the discovered

anomalies, which were also examined and validated by the experts.
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VARX MKAD continuous MKAD heterogeneous DTW covariance

go-around (35) go-around (10) go-around (17) go-around (30)
high speed in approach (6) high speed in approach (2) high pitch at touch down (1) delayed braking (1)

low pitch at landing (1) delayed braking at landing (1) high speed in approach (2) high rate of descent (1)
bounced landing (1) high rate of descent (3) low speed at touch down (1) bank cycling in approach (1)

delayed braking at landing(1) bank cycling in approach(1) low path in approach (1) bounced landing (1)
high path in descent (1) high pitch at touch down (1) flaps retracted in approach (1) DTW majority

high pitch at touch down (19) autoland warning (3) unusual usage of AP (26) go-around (37)
holding pattern (3) short flare time (4) unusual usage of FD (27) high speed in approach (2)

altitude deviation (1) high pitch at landing (1)
wake turbulence (1) bank cycling (1)

Table 3.3: The anomalies discovered in the top 100 anomalous flights, ranked by each
of the five anomaly detection methods in the set of 20000 unlabeled flights.

Discussion of the results

Among the top 100 flights, we found that the most common type of anomaly was

the go-around flights. These results confirm our earlier tests where we established

high detection accuracy of this type of flights. In total there were 61 go-arounds in

the examined set of flights and although MKAD could only detect 10 of them using

continuous features and 17 based on both types of data, the other approaches identified

over 30 such flights, with VARX and DTW vote-based methods detecting the largest

number of them. Figure 3.4 shows the scores for the four approaches, where the red

circles mark the go-around flights. It can be seen that although all methods placed these

flights in the upper part of their anomaly lists, the VARX-based and DTW approaches

detected them with higher accuracy as compared to MKAD.

On the other hand, after examining other non-go-around flights from the MKAD

output, we found a number of operationally significant anomalies, which are discussed

next. The detected anomalous flights which had high speed in approach or high pitch

at touch down and some of the go-around flights were the same for continuous and

heterogeneous MKAD. On the other hand, due to the use of discrete parameters (various

autopilot and guidance system modes, not used in the other methods) heterogeneous

MKAD also detected 26 flights which used flight path angle, a rarely used vertical

autopilot mode, and 27 flights where the flight director was turned off for over 2 minutes

during the approach, which is an unusual behavior since, typically, flight director is used

throughout the approach to assist the pilot with vertical and horizontal cues even when

the autopilot is not engaged. Moreover, presence of discrete flight parameters improved

MKAD performance in detecting additional go-around flights as compared to a scenario
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Figure 3.4: Distribution of the anomaly scores for 20000 flights computed by VARX
algorithm (upper left), DTW covariance-based approach (upper right) and MKAD based
on continuous parameters (lower left) and heterogeneous data (lower right). Red circles
in all plots denote all 61 go-around flights in the selected 20000 flights.

when only continuous features are used.

The anomaly detection based on DTW had a good performance in detecting go-

around flights. All the discovered events had a common feature of being anomalous in

a single parameter, thus missing more complex events which were better detectable by

VARX and MKAD approaches.

The anomalous flights detected by VARX-based algorithm had abnormal events

containing in a single parameter, such as go-arounds, high speed in approach, high pitch

rate, etc., as well as in multiple features, such as altitude deviation and wake turbulence.

In the following Section we discuss in details two examples of the previously unknown

anomalies involving multiple parameters.
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Previously unknown anomalies detected by VARX method
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Figure 3.5: Altitude deviation anomaly. The left column shows the distribution of
residuals during the flight and the altitude profile, with glide slope for reference. The
right column presents the zoomed-in part of the flight. The top plot shows few key
control modes during the event and the bottom one shows the corresponding flight
altitude. Note that the control modes are shown for reference and were not used in
VARX-based approach.

Altitude Deviation. Figure 3.5 shows the flight that had altitude deviation

anomaly, which we explain next. From the upper left plot, showing the history of

the residuals, we can see that the event occurred around time stamp 600, the time when

the aircraft was capturing the glide slope (see lower left plot). Now examining the two

plots on the right, we can see that the plane was descending to the selected altitude of

3000 feet, however it was not leveling as expected and the pilot engaged the altitude

hold mode too late with the aircraft being well below the required altitude. Around time



76

stamp 615 the aircraft started the ascent to correct the altitude discrepancy. At this

time altitude hold mode was switched off and glide slope mode was turned on. However,

since the inertia was too high the airplane continued climbing for a few seconds and

then immediately started descending as it captured the glide slope. This part of the

flight is associated with abrupt acceleration and deceleration, which usually leads to an

uncomfortable experience for the passengers.
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Figure 3.6: Wake turbulence anomaly. Left column shows combined residuals across
the flight and the corresponding trajectory with markings of landing and anomalous
segment. Right column shows few key control modes during the event and the corre-
sponding zoomed-in part of the flight altitude. Note that the control modes are shown
for reference and were not used in VARX-based approach.

Wake turbulence. Another example of the discovered operationally significant

event is shown in Figure 3.6 where the flight experienced a wake turbulence anomaly. It

can be seen that the event happened in the 550−650 seconds time range and is marked

by the square on the flight trajectory. The aircraft was in the final approach phase with
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the selected altitude reduced from 3000 to 2000 feet. At this time the pilot engaged the

altitude hold mode but after about 20 seconds the aircraft experienced large swings in

altitude forcing the pilots to turn off altitude hold mode, followed by disengagement of

autopilot and auto speed controls. Once the aircraft was diverted to a holding pattern,

the turbulence stopped. On the second pass there was no sign of turbulence and the

airplane landed. Our hypothesis of a turbulence is also reinforced by the fact that the

flight occurred in the evening, around 8 pm, which is usually a time of increased traffic

volume. The turbulence may have been due to a preceding aircraft. However, FOQA

data does not contain any information about the surrounding aircrafts.

Discussion of the results

The above analysis showed that the proposed VARX-based approach can be considered

as complementary to the MKAD algorithm. Our method is particularly suited for the

detection of anomalies which are accompanied with rapid changes in the parameters,

e.g., go-around flights marked by fast acceleration and engine spool-up, or flights which

have high pitch rates at landing, etc. On the other hand, the proposed method is prone

to miss anomalies manifested in abnormal behavior of the discrete features, e.g., unusual

sequence of autopilot modes, which are better detected by MKAD algorithm utilizing

its kernel over discrete sequences using LCS. On the other hand, the comparison with

the other baseline algorithms based on DTW revealed the advantage of VARX-based

approach, which discovered previously unknown, complex anomalous events involving

multiple parameters. The VARX modeling naturally exploits the correlation between

the features, which is not achieved by a simple techniques based on DTW, whose dis-

covered anomalies usually were caused by a single parameter.



Chapter 4

Estimating Structured Vector

Autoregressive Model

In this chapter we study the properties of the VAR estimation problem. Recall that in

the previous chapter one of the key steps in the proposed anomaly detection approach,

shown in Figure 3.1, was the construction of the VAR model for each flight, where the

corresponding estimation problem was shown in (3.5). In that formulation the matrix

Z and vector y are composed from the output of the VAR model (3.2), which causes the

correlations between the rows and columns of matrix Z and rows of vector y. Existing

theoretical results, e.g., [98], [99], which establish sample complexity and bounds on

the estimation error of a solution of linear regression problems like (3.5) do not hold,

since they rely on independent and identically distributed data samples. In this chapter

we present results for characterizing sample complexity and error bounds in estimating

structured vector autoregressive models. In particular, in Section 4.2 we present the

estimation problem for the structured VAR model. The main results on the estimation

guarantees are established in Section 4.3. The experimental results testing the derived

bounds are shown in Section 4.4.

4.1 Introduction

To estimate parameters of VAR (or VARX) model, one usually transforms it into an

appropriate set of linear equations and then solves a linear regression formulation using

78
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regularized least-squares problem, e.g., ridge regression [100] or lasso [30]. The statistical

guarantees such as sample complexity and error bounds of the estimated solution were

developed under the conditions of independent and identically distributed samples [98],

[99]. However, since in our case the data are coming from vector autoregressive process,

the samples are spatially and temporally correlated. Therefore, there is a need to

establish guarantees in the case of computing VAR models using regularized estimators.

In our work we show that the sample complexities and error bounds are, somewhat

surprisingly, of the same order as if the samples were independent. The constants in the

order are of course different and rely on the covariance structures of the noise as well

as the characteristics of the time series model.

In recent literature, the problem of estimating structured VAR models has been

considered for the special case of L1 norm. For example, [101] analyzed a constrained

estimator based on the Dantzig selector [102], and established the recovery results for the

special case of L1 norm. [103] considered a regularized VAR estimation problem under

Lasso and Group Lasso penalties and derived oracle inequalities for the prediction error

and estimation accuracy. However, their analysis is for the case when the dimensionality

of the problem is fixed with respect to the sample size. Moreover, they employed an as-

sumption on the dependency structure in the VAR, thus limiting the sample correlation

issues mentioned earlier. The work of [104] studied regularized Lasso-based estimator

while allowing for problem dimensionality to grow with sample size, utilizing suitable

martingale concentration inequalities to analyze dependency structure. [105] considered

L1 VAR estimation for first order models (d = 1) assuming ‖A1‖2 < 1, and the analysis

was not extended to the general case of d > 1. In recent work, [106] considered a VAR

Lasso estimator and established the sample complexity and error bounds by building on

the prior work of [105]. Their approach exploits the spectral properties of a general VAR

model of order d, providing insights on the dependency structure of the VAR process.

However, in line with the existing literature, the analysis was tailored to the special case

of L1 norm, thus limiting its generality.

Compared to the existing literature, our results are substantially more general since

the results and analysis apply to any norm R(·). One may wonder—given the popularity

of L1 norm, why worry about other norms? Over the past decade, considerable effort

has been devoted to generalize L1 norm based results to other norms [107, 108, 109, 110].
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Our work obviates the need for a similar exercise for VAR models. Further, some of

these norms have found key niche in specific application areas e.g., [111, 112]. From a

technical perspective, one may also wonder—once we have the result for L1 norm, why

should not the extension to other norms be straightforward? A key technical aspect

of the estimation error analysis boils down to getting sharp concentration bounds for

R∗(ZT ε), where R∗(·) is the dual norm of R(·), Z is the design matrix, and ε is the noise

[109]. For the special case of L1, the dual norm is L∞, and one can use union bound

to get the required concentration. In fact, this is exactly how the analysis in [106] was

done. For general norms, the union bound is inapplicable.

Our analysis is based on a considerably more power tool, generic chaining [113],

yielding an analysis applicable to any norm, and producing results in terms of geometric

properties, such as Gaussian widths [114], of sets related to the norm. Results for specific

norms can then be obtained by plugging in suitable bounds on the Gaussian widths [115,

116]. We illustrate the idea by recovering known bounds for Lasso and Group Lasso,

and obtaining new results for Spare Group Lasso and OWL norms. Finally, in terms of

the core technical analysis, the application of generic chaining to the VAR estimation

setting is not straightforward. In the VAR setting, generic chaining has to consider a

stochastic process derived from sub-exponential martingale difference sequence (MDS).

We first generalize the classical Azuma-Hoeffding inequality applicable to sub-Gaussian

MDSs to get an Azuma-Bernstein inequality for sub-exponential MDSs. Further, we

use suitable representations of Talagrand’s γ-functions [113] in the context of generic

chaining to obtain bounds on R∗(ZT ε) in terms of the Gaussian width w(ΩR) of the

unit norm ball ΩR = {u ∈ Rdp|R(u) ≤ 1}. Our estimation error bounds in the VAR

setting are exactly of the same order as Lasso-type models in the i.i.d. setting implying,

surprisingly, that the strong temporal dependency in the VAR setting has no adverse

effect on the estimation.

Without the loss of generality, we consider a VAR model of order d with no exogenous

variables, i.e., a model of the form, where we changed slightly our notations as compared

to the ones used in Section 3.2.1

xt = A1xt−1 +A2xt−2 + · · ·+Adxt−d + εt , (4.1)

where xt ∈ Rp denotes a multivariate time series, Ak ∈ Rp×p, k = 1, . . . , d are the
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parameters of the model, and d ≥ 1 is the order of the model. In this work, we assume

that the noise εt ∈ Rp follows a Gaussian distribution, εt ∼ N (0,Σ), with E(εtε
T
t ) = Σ

and E(εtε
T
t+τ ) = 0, for τ 6= 0. The VAR process is assumed to be stable and stationary

[79], while the noise covariance matrix Σ is assumed to be positive definite with bounded

largest eigenvalue, i.e., Λmin(Σ) > 0 and Λmax(Σ) <∞.

In the current context, the parameters {Ak} are assumed to be structured, in the

sense of having low values according to a suitable norm R(·). We consider a general

setting where any norm can be applied to the rows Ak(i, :) ∈ Rp of Ak, allowing the

possibility of different norms being applies to different rows of Ak, and different norms

for different parameter matrices Ak, k = 1, . . . , d. Choosing L1-norm ‖Ak(i, :)‖1 for all

rows and all parameter matrices is a simple special case of our setting. We discuss

certain other choices in Section 4.2.1, and discuss related results in Section 4.4. In order

to estimate the parameters, one can consider the standard regularized least-squares

estimator. Unfortunately, the samples xt are not independent, having strong dependence

across time and correlated across dimensions. As a result, existing results from the rich

literature on regularized estimators for structured problems [117, 118, 119] cannot be

directly applied to get sample complexities and estimation error bounds in VAR models.

4.2 Structured VAR Model

In this section we formulate structured VAR estimation problem and discuss its prop-

erties, which are essential in characterizing sample complexity and error bounds.

4.2.1 Regularized Estimator

To estimate the parameters of the VAR model, we transform the model in (4.1) into

the form suitable for regularized estimator. Specifically, let (x0, x1, . . . , xT ) denote the

T +1 samples generated by the stable VAR model in (4.1), then stacking them together
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we obtain



xTd

xTd+1
...

xTT




=




xTd−1 xTd−2 . . . xT0

xTd xTd−1 . . . xT1
...

...
. . .

...

xTT−1 xTT−2 . . . xTT−d







AT1

AT2
...

ATd




+




εTd

εTd+1
...

εTT




which can also be compactly written as

Y = XB + E, (4.2)

where Y ∈ RN×p, X ∈ RN×dp, B ∈ Rdp×p, and E ∈ RN×p for N = T−d+1. Vectorizing

(column-wise) each matrix in (4.2), we get

vec(Y ) = (Ip×p ⊗X)vec(B) + vec(E)

y = Zβ + ε,

where y ∈ RNp, Z = (Ip×p⊗X) ∈ RNp×dp2 , β ∈ Rdp2 , ε ∈ RNp, and ⊗ is the Kronecker

product. The covariance matrix of the noise ε is now E[εεT ] = Σ⊗IN×N . Consequently,

the regularized estimator takes the form

β̂ = argmin
β∈Rdp2

1

N
||y − Zβ||22 + λNR(β), (4.3)

where R(β) can be any vector norm, separable along the rows of matrices Ak. Specifi-

cally, if we denote β = [βT1 . . . β
T
p ]T and Ak(i, :) as the row of matrix Ak for k = 1, . . . , d,

then our assumption is equivalent to

R(β)=

p∑

i=1

R
(
βi
)
=

p∑

i=1

R

([
A1(i, :)T. . .Ad(i, :)

T
]T)

. (4.4)

To reduce clutter and without loss of generality, we assume the norm R(·) to be the

same for each row i. Since the analysis decouples across rows, it is straightforward to

extend our analysis to the case when a different norm is used for each row of Ak, e.g.,

L1 for row one, L2 for row two, K-support norm [120] for row three, etc. Observe that

within a row, the norm need not be decomposable across columns.

Observe that the estimation problem (4.3) exhibits strong dependence between the

samples (x0, x1, . . . , xT ), violating the i.i.d. assumption on the data. In particular, this
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leads to the correlations between the rows and columns of matrix X (and consequently

of Z). To deal with such dependencies, following [106], we utilize the spectral repre-

sentation of the autocovariance of VAR models to control the dependencies in matrix

X.

4.2.2 Stability of VAR Model

Since VAR models are (linear) dynamical systems, for the analysis we need to establish

conditions under which the VAR model (4.1) is stable, i.e., the time-series process does

not diverge over time. For understanding stability, it is convenient to rewrite VAR

model of order d in (4.1) as an equivalent VAR model of order 1




xt

xt−1

...

xt−(d−1)




=




A1 A2 . . . Ad−1 Ad

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0




︸ ︷︷ ︸
A




xt−1

xt−2

...

xt−d



+




εt

0
...

0




(4.5)

where A ∈ Rdp×dp. Therefore, VAR process is stable if all the eigenvalues of A satisfy

det(λIdp×dp −A) = 0 for λ ∈ C, |λ| < 1. Equivalently, if expressed in terms of original

parameters Ak, stability is satisfied if det(I −∑d
k=1Ak

1
λk

) = 0 (see Appendix 4.A for

more details).

4.2.3 Properties of Data Matrix X

In what follows, we analyze the covariance structure of matrix X in (4.2) using spectral

properties of VAR model (see Appendix 4.B for additional details). The results will

then be used in establishing the high probability bounds for the estimation guarantees

in problem (4.3).

Define any row of X as Xi,: ∈ Rdp, 1 ≤ i ≤ N . Since we assumed that εt ∼ N (0,Σ),

it follows that each row is distributed as Xi,: ∼ N (0, CX), where the covariance matrix
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CX ∈ Rdp×dp is the same for all i

CX =




Γ(0) Γ(1) . . . Γ(d− 1)

Γ(1)T Γ(0) . . . Γ(d− 2)
...

...
. . .

...

Γ(d− 1)T Γ(d− 2)T . . . Γ(0)



, (4.6)

where Γ(h) = E(xtx
T
t+h) ∈ Rp×p. It turns out that since CX is a block-Toeplitz matrix,

its eigenvalues can be bounded as (see [121])

inf
1≤j≤p
ω∈[0,2π]

Λj [ρ(ω)] ≤ Λk[CX]
1≤k≤dp

≤ sup
1≤j≤p
ω∈[0,2π]

Λj [ρ(ω)], (4.7)

where Λk[·] denotes the k-th eigenvalue of a matrix and for ρ(ω) =
∑∞

h=−∞ Γ(h)e−hiω,

where i =
√
−1 and ω ∈ [0, 2π]. ρ(ω) is the spectral density, i.e., a Fourier transform of

the autocovariance matrix Γ(h). The advantage of utilizing spectral density is that it

has a closed form expression (see Section 9.4 of [122])

ρ(ω)=

(
I−

d∑

k=1

Ake
−kiω

)−1

Σ



(
I−

d∑

k=1

Ake
−kiω

)−1


∗

,

where ∗ denotes a Hermitian of a matrix. Therefore, from (4.7) we can establish the

following lower bound

Λmin[CX] ≥ Λmin(Σ)/Λmax(A) = L, (4.8)

where we defined Λmax(A) = max
ω∈[0,2π]

Λmax(A(ω)) for

A(ω)=

(
I −

d∑

k=1

ATk e
kiω

)(
I −

d∑

k=1

Ake
−kiω

)
, (4.9)

see Appendix 4.B.1 for additional details.

In establishing high probability bounds we will also need information about a vector

q = Xa ∈ RN for any a ∈ Rdp, ‖a‖2 = 1. Since each element XT
i,:a ∼ N (0, aTCXa), it

follows that q ∼ N (0, Qa) with a covariance matrix Qa ∈ RN×N . It can be shown (see

Appendix 4.B.3 for more details) that Qa can be written as

Qa = (I ⊗ aT )CU (I ⊗ a), (4.10)
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where CU = E(UUT ) for U =
[
XT

1,: . . . XT
N,:

]T
∈ RNdp which is obtained from matrix

X by stacking all the rows in a single vector, i.e, U = vec(XT ). In order to bound

eigenvalues of CU (and consequently of Qa), observe that U can be viewed as a vector

obtained by stacking N outputs from VAR model in (4.5). Similarly as in (4.7), if we

denote the spectral density of the VAR process in (4.5) as ρX(ω) =
∑∞

h=−∞ ΓX(h)e−hiω,

ω ∈ [0, 2π], where ΓX(h) = E[Xj,:X
T
j+h,:] ∈ Rdp×dp, then we can write

inf
1≤l≤dp
ω∈[0,2π]

Λl[ρX(ω)] ≤ Λk[CU ]
1≤k≤Ndp

≤ sup
1≤l≤dp
ω∈[0,2π]

Λl[ρX(ω)].

The closed form expression of spectral density is

ρX(ω) =
(
I −Ae−iω

)−1
ΣE

[(
I −Ae−iω

)−1
]∗
,

where ΣE is the covariance matrix of a noise vector and A are as defined in expression

(4.5). Thus, an upper bound on CU can be obtained as Λmax[CU ] ≤ Λmax(Σ)
Λmin(A) , where we

defined Λmin(A) = min
ω∈[0,2π]

Λmin(A(ω)) for

A(ω) =
(
I −AT eiω

) (
I −Ae−iω

)
. (4.11)

Referring back to covariance matrix Qa in (4.10), we get

Λmax[Qa] ≤ Λmax(Σ)/Λmin(A) = M. (4.12)

We note that for a general VAR model, there might not exist closed-form expressions

for Λmax(A) and Λmin(A). However, for some special cases there are results establishing

the bounds on these quantities (e.g., see Proposition 2.2 in [106]).

4.3 Regularized Estimation Guarantees

Denote by ∆ = β̂−β∗ the error between the solution of optimization problem (4.3) and

β∗, the true value of the parameter. The focus of our work is to determine conditions

under which the optimization problem in (4.3) has guarantees on the accuracy of the

obtained solution, i.e., the error term is bounded: ||∆||2 ≤ δ for some known δ. To

establish such conditions, we utilize the framework of [109]. Specifically, estimation

error analysis is based on the following known results adapted to our settings. The first

one characterizes the restricted error set ΩE , where the error ∆ belongs.
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Lemma 9 Assume that

λN ≥ rR∗
[

1

N
ZT ε

]
, (4.13)

for some constant r > 1, where R∗
[

1
NZ

T ε
]

is a dual form of the vector norm R(·), which

is defined as R∗[ 1
NZ

T ε] = sup
R(U)≤1

〈
1
NZ

T ε, U
〉
, for U ∈ Rdp2, where U = [uT1 , u

T
2 , . . . , u

T
p ]T

and ui ∈ Rdp. Then the error vector ‖∆‖2 belongs to the set

ΩE=

{
∆ ∈ Rdp

2
∣∣∣R(β∗+∆) ≤ R(β∗)+

1

r
R(∆)

}
. (4.14)

The second condition in [109] establishes the upper bound on the estimation error.

Lemma 10 Assume that the restricted eigenvalue (RE) condition holds

||Z∆||2
||∆||2

≥
√
κN, (4.15)

for ∆ ∈ cone(ΩE) and some constant κ > 0, where cone(ΩE) is a cone of the error set,

then

||∆||2 ≤
1 + r

r

λN
κ

Ψ(cone(ΩE)), (4.16)

where Ψ(cone(ΩE)) is a norm compatibility constant, which is defined as Ψ(cone(ΩE)) =

sup
U∈cone(ΩE)

R(U)
||U ||2 .

Note that the above error bound is deterministic, i.e., if (4.13) and (4.15) hold, then

the error satisfies the upper bound in (4.16). However, the results are defined in terms

of the quantities, involving Z and ε, which are random. Therefore, in the following

we establish high probability bounds on the regularization parameter in (4.13) and RE

condition in (4.15).

4.3.1 High Probability Bounds

In this Section we present the main results of our work, followed by the discussion on

their properties and illustrating some special cases based on popular Lasso and Group

Lasso regularization norms. In Section 4.3.4 we will present the main ideas of our proof

technique, with all the details delegated to the Appendices 4.C and 4.D.
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To establish lower bound on the regularization parameter λN , we derive an upper

bound on R∗[ 1
NZ

T ε] ≤ α, for some α > 0, which will establish the required relationship

λN ≥ α ≥ R∗[ 1
NZ

T ε].

Theorem 11 Let ΩR = {u ∈ Rdp|R(u) ≤ 1}, and define w(ΩR) = E[ sup
u∈ΩR

〈g, u〉] to be

a Gaussian width of set ΩR for g ∼ N (0, I). For any ε1 > 0 and ε2 > 0 with probability

at least 1− c exp(−min(ε22, ε1) + log(p)) we can establish that

R∗
[

1

N
ZT ε

]
≤
(
c2(1+ε2)

w(ΩR)√
N

+ c1(1+ε1)
w2(ΩR)

N2

)

where c, c1 and c2 are positive constants.

To establish restricted eigenvalue condition, we will show that inf
∆∈cone(ΩE)

||(Ip×p⊗X)∆||2
||∆||2 ≥

ν, for some ν > 0 and then set
√
κN = ν.

Theorem 12 Let Θ = cone(ΩEj ) ∩ Sdp−1, where Sdp−1 is a unit sphere. The error

set ΩEj is defined as ΩEj =
{

∆j ∈ Rdp
∣∣∣R(β∗j + ∆j) ≤ R(β∗j ) + 1

rR(∆j)
}

, for r > 1,

j = 1, . . . , p, and ∆ = [∆T
1 , . . . ,∆

T
p ]T , for ∆j is of size dp× 1, and β∗ = [β∗T1 . . . β∗Tp ]T ,

for β∗j ∈ Rdp. The set ΩEj is a part of the decomposition in ΩE = ΩE1 × · · · × ΩEp

due to the assumption on the row-wise separability of norm R(·) in (4.4). Also define

w(Θ) = E[sup
u∈Θ
〈g, u〉] to be a Gaussian width of set Θ for g ∼ N (0, I) and u ∈ Rdp.

Then with probability at least 1− c1 exp(−c2η
2 + log(p)), for any η > 0

inf
∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥ ν,

where ν =
√
NL− 2

√
M− cw(Θ)− η and c, c1, c2 are positive constants, and L and M

are defined in (4.8) and (4.12).

4.3.2 Discussion

From Theorem 12, we can choose η = 1
2

√
NL and set

√
κN =

√
NL−2

√
M−cw(Θ)−η

and since
√
κN > 0 must be satisfied, we can establish a lower bound on the number

of samples N

√
N >

2
√
M + cw(Θ)√

L/2
= O(w(Θ)). (4.17)



88

Examining this bound and using (4.8) and (4.12), we can conclude that the number of

samples needed to satisfy the restricted eigenvalue condition is smaller if Λmin(A) and

Λmin(Σ) are larger and Λmax(A) and Λmax(Σ) are smaller. In turn, this means that

matrices A and A in (4.9) and (4.11) must be well conditioned and the VAR process

is stable, with eigenvalues well inside the unit circle (see Section 4.2.2). Alternatively,

we can also understand (4.17) as showing that large values of M and small values of

L indicate stronger dependency in the data, thus requiring more samples for the RE

conditions to hold with high probability.

Analyzing Theorems 11 and 12 we can interpret the established results as follows.

As the size and dimensionality N , p and d of the problem increase, we emphasize the

scale of the results and use the order notations to denote the constants. Select a number

of samples at least N ≥ O(w2(Θ)) and let the regularization parameter satisfy λN ≥
O
(
w(ΩR)√

N
+ w2(ΩR)

N2

)
. With high probability then the restricted eigenvalue condition

||Z∆||2
||∆||2 ≥

√
κN for ∆ ∈ cone(ΩE) holds, so that κ = O(1) is a positive constant.

Moreover, the norm of the estimation error in optimization problem (4.3) is bounded by

‖∆‖2 ≤ O
(
w(ΩR)√

N
+ w2(ΩR)

N2

)
Ψ(cone(ΩEj )). Note that the norm compatibility constant

Ψ(cone(ΩEj )) is assumed to be the same for all j = 1, . . . , p, which follows from our

assumption in (4.4).

Consider now Theorem 11 and the bound on the regularization parameter λN ≥
O
(
w(ΩR)√

N
+ w2(ΩR)

N2

)
. As the dimensionality of the problem p and d grows and the

number of samplesN increases, the first term w(ΩR)√
N

will dominate the second one w2(ΩR)
N2 .

This can be seen by computing N for which the two terms become equal w(ΩR)√
N

= w2(ΩR)
N2 ,

which happens at N = w
2
3 (ΩR) < w(ΩR). Therefore, we can rewrite our results as

follows: once the restricted eigenvalue condition holds and λN ≥ O
(
w(ΩR)√

N

)
, the error

norm is upper-bounded by ‖∆‖2 ≤ O
(
w(ΩR)√

N

)
Ψ(cone(ΩEj )).

4.3.3 Special Cases

While the presented results are valid for any norm R(·), separable along the rows of Ak,

it is instructive to specialize our analysis to a few popular regularization choices, such

as L1 and Group Lasso, Sparse Group Lasso and OWL norms.
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Lasso To establish results for L1 norm, we assume that the parameter β∗ is s-sparse,

which in our case is meant to represent the largest number of non-zero elements in

any βi, i = 1, . . . , p, i.e., the combined i-th rows of each Ak, k = 1, . . . , d. Since L1

is decomposable, it can be shown that Ψ(cone(ΩEj )) ≤ 4
√
s. Next, since ΩR = {u ∈

Rdp|R(u) ≤ 1}, then using Lemma 3 in [109] and Gaussian width results in [115],

we can establish that w(ΩR) ≤ O(
√

log(dp)). Therefore, based on Theorem 4.3 and

the discussion at the end of Section 4.3.2, the bound on the regularization parameter

takes the form λN ≥ O
(√

log(dp)/N
)

. Hence, the estimation error is bounded by

‖∆‖2 ≤ O
(√

s log(dp)/N
)

as long as N > O(log(dp)).

Group Lasso To establish results for Group norm, we assume that for each i =

1, . . . , p, the vector βi ∈ Rdp can be partitioned into a set of K disjoint groups, G =

{G1, . . . , GK}, with the size of the largest group m = max
k
|Gk|. Group Lasso norm

is defined as ‖β‖GL =
∑K

k=1 ‖βGk‖2. We assume that the parameter β∗ is sG-group-

sparse, which means that the largest number of non-zero groups in any βi, i = 1, . . . , p

is sG. Since Group norm is decomposable, as was established in [107], it can be shown

that Ψ(cone(ΩEj )) ≤ 4
√
sG. Similarly as in the Lasso case, using Lemma 3 in [109],

we get w(ΩRGL
) ≤ O(

√
m+ log(K)). The bound on the λN takes the form λN ≥

O
(√

(m+ log(K))/N
)

. Combining these derivations, we obtain the bound ‖∆‖2 ≤
O
(√

sG(m+ log(K))/N
)

for N > O(m+ log(K)).

Sparse Group Lasso Similarly as in Section 4.3.3, we assume that we have K dis-

joint groups of size at most m. The Sparse Group Lasso norm enforces sparsity not

only across but also within the groups and is defined as ‖β‖SGL = α‖β‖1 + (1 −
α)
∑K

k=1 ‖βGk‖2, where α ∈ [0, 1] is a parameter which regulates a convex combina-

tion of Lasso and Group Lasso penalties. Note that since ‖β‖2 ≤ ‖β‖1, it follows that

‖β‖GL ≤ ‖β‖SGL. As a result, for β ∈ ΩRSGL
⇒ β ∈ ΩRGL

, so that ΩRSGL
⊆ ΩRGL

and thus w(ΩRSGL
) ≤ w(ΩRGL

) ≤ O(
√
m+ log(K)), according to Section 4.3.3. As-

suming β∗ is s-sparse and sG-group-sparse and noting that the norm is decomposable,

we get Ψ(cone(ΩEj )) ≤ 4(α
√
s + (1 − α)

√
sG)). Consequently, the error bound is

‖∆‖2 ≤ O
(√

(αs+ (1− α)sG)(m+ log(K))/N
)

.
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OWL norm Ordered weighted L1 norm is a recently introduced regularizer and is de-

fined as ‖β‖owl =
∑dp

i=1 ci|β|(i), where c1 ≥ . . . ≥ cdp ≥ 0 is a predefined non-increasing

sequence of weights and |β|(1) ≥ . . . ≥ |β|(dp) is the sequence of absolute values of β,

ranked in decreasing order. In [116] it was shown that w(ΩR) ≤ O(
√

log(dp)/c̄), where

c̄ is the average of c1, . . . , cdp and the norm compatibility constant is Ψ(cone(ΩEj )) ≤
2c2

1

√
s/c̄. Therefore, based on Theorem 4.3, we get λN ≥ O

(√
log(dp)/(c̄N)

)
and the

estimation error is bounded by ‖∆‖2 ≤ O
(

2c1
c̄

√
s log(dp)/(c̄N)

)
.

We note that the bound obtained for Lasso and Group Lasso is similar to the bound

obtained in [103, 106, 104]. Moreover, this result is also similar to the works, which

dealt with independent observations, e.g., [123, 107], with the difference being the con-

stants, reflecting correlation between the samples, as we discussed in Section 4.3.2. The

explicit bound for Sparse Group Lasso and OWL is a novel aspect of our work for

the non-asymptotic recovery guarantees for the VAR estimation problem with norm

regularization, being just a simple consequence from our more general framework.

4.3.4 Proof Sketch

In this Section we outline the steps of the proof for Theorem 11 and 12, all the details

can be found in Appendix 4.C and 4.D.

Bound on Regularization Parameter Recall that our objective is to establish for

α > 0 a probabilistic statement that λN ≥ α ≥ R∗[ 1
NZ

T ε] = sup
R(U)≤1

〈
1
NZ

T ε, U
〉
, where

U = [uT1 , . . . , u
T
p ]T ∈ Rdp2 for uj ∈ Rdp and ε = vec(E) for E in (4.2). We denote

E:,j ∈ RN as a column of noise matrix E and note that since Z = Ip×p ⊗ X, then

using the row-wise separability assumption in (4.4) we can split the overall probability

statement into p parts, which are easier to work with. Thus, our objective would be to

establish

P
[

sup
R(uj)≤rj

1

N

〈
XTE:,j , uj

〉
≤ αj

]
≥ πj , (4.18)

for j = 1, . . . , p, where
∑p

j=1 αj = α and
∑p

j=1 rj = 1.

The overall strategy is to first show that the random variable 1
N

〈
XTE:,j , uj

〉
has
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sub-exponential tails. Based on the generic chaining argument, we then use Theo-

rem 1.2.7 from [113] and bound the expectation E

[
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
]

. Finally,

using Theorem 1.2.9 in [113] we establish the high probability bound on concentration

of sup
R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
around its mean, i.e., derive the bound in (4.18).

We note that the main difficulty of working with the term
〈
XTE:,j , uj

〉
is the com-

plicated dependency between X and E:,j , which is due to the VAR generation process

in (4.2). However, if we write
〈
XTE:,j , uj

〉
=
∑N

i=1Ei,j , (Xi,:uj) =
∑N

i=1mi, where

mi = Ei,j(Xi,:uj) and we can interpret this as a summation over martingale difference

sequence [79]. This can be easily proven by showing E(mi|m1, . . . ,mi−1) = 0. The

latter is true since in mi = Ei,j(Xi,:uj) the terms Ei,j and Xi,:uj are independent since

εd+i is independent from xd−k+i for 0 ≤ i ≤ T − d and 1 ≤ k ≤ d (see (4.1)).

To show that
∑N

i=1Ei,j , (X:,iuj) has sub-exponential tails, recall that since εt in (4.1)

is Gaussian, Ei,j and Xi,:uj are independent Gaussian random variables, whose product

has sub-exponential tails. Moreover, the sum over sub-exponential martingale difference

sequence can be shown to be itself sub-exponential using [124], based on Bernstein-type

inequality [125].

Restricted Eigenvalue Condition To show
||(Ip×p⊗X)∆||2

||∆||2 ≥ 0 for all ∆ ∈ cone(ΩE),

similarly as before, we split the problem into p parts by using row-wise separability

assumption of the norm in (4.4). In particular, denote ∆ = [∆T
1 , . . . ,∆

T
p ]T , where ∆j is

dp×1, then we can represent the original set ΩE as a Cartesian product of subsets ΩEj ,

i.e., ΩE = ΩE1 × · · · × ΩEp , implying that cone(ΩE) = cone(ΩE1) × · · · × cone(ΩEp).

Therefore, our objective would be to establish

P

[
inf

uj∈Θj
||Xuj ||2 ≥ νj

]
≥ πj , (4.19)

for each j = 1, . . . , p, where Θ = cone(ΩEj )∩ Sdp−1 and we defined uj =
∆j

||∆j ||2 , since it

will be easier to operate with unit-norm vectors. In the following, to reduce clutter, we

drop the index j from the notations.

The overall strategy is to first show that ‖Xu‖2 − E(‖Xu‖2) is a sub-Gaussian

random variable. Then, using generic chaining argument in [113], specifically The-

orem 2.1.5, we bound E
(

inf
u∈Θ
||Xu||2

)
. Finally, based on Lemma 2.1.3 in [113] we
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establish the concentration inequality on inf
u∈Θ
||Xu||2 around its mean, i.e., derive the

bound in (4.19).

4.4 Experimental Results

In this Section we present the experiments on simulated and real data to demonstrate

the obtained theoretical results. In particular, for L1 and Group L1, Sparse Group L1

and OWL we investigate how error norm ‖∆‖2 and regularization parameter λN scale

as the problem size p and N change. Moreover, using flight data we also compare the

performance of the regularizers in real world scenario.
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Figure 4.1: Results for estimating parameters of a stable first order sparse VAR (top row)
and group sparse VAR (bottom row). Problem dimensions: p ∈ [10, 600], N ∈ [10, 5000],
λN
λmax

∈ [0, 1], K ∈ [2, 60] and d = 1. Figures (a) and (e) show dependency of errors on
sample size for different p; in Figure (b) the N is scaled by (s log p) and plotted against
‖∆‖2 to show that errors scale as (s log p)/N ; in (f) the graph is similar to (b) but for
group sparse VAR; in (c) and (g) we show dependency of λN on p (or number of groups
K in (g)) for fixed sample size N ; finally, Figures (d) and (h) display the dependency
of λN on N for fixed p.
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Figure 4.2: Results for estimating parameters of a stable first order Sparse Group Lasso
VAR (top row) and OWL-regularized VAR (bottom row). Problem dimensions for
Sparse Group Lasso : p ∈ [10, 410], N ∈ [10, 5000], λN

λmax
∈ [0, 1], K ∈ [2, 60] and d = 1.

Problem dimensions for OWL: p ∈ [10, 410], N ∈ [10, 5000], λN
λmax

∈ [0, 1], s ∈ [4, 260]
and d = 1. All results are shown after averaging across 50 runs.

4.4.1 Synthetic Data

Using synthetically generated datasets we evaluate the obtained theoretical bounds for

estimation VAR under Lasso, Sparse Group Lasso, OWL and Group Lasso regulariza-

tions.

Lasso To evaluate the estimation problem with L1 norm, we simulated a first-order

VAR process for different values of p ∈ [10, 600], s ∈ [4, 260], and N ∈ [10, 5000].

Regularization parameter was varied in the range λN ∈ (0, λmax), where λmax is the

largest parameter, for which estimation problem (4.3) produces a zero solution. All the

results are shown after averaging across 50 runs.

The results for Lasso are shown in the top row of Figure 4.1. In particular, in Figure

4.1.a we show ‖∆‖2 for different p and N for fixed λN . When N is small, the estimation

error is large and the results cannot be trusted. However, once N ≥ O(w2(Θ)), the

RE condition in Lemma 10 is satisfied and we see a fast decrease of errors for all p’s.
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In Figure 4.1.b we plot ‖∆‖2 against rescaled sample size N
s log(pd) . The errors are now

closely aligned, confirming results of Section 4.3.3, i.e, ‖∆‖2 ≤ O
(√

(s log(pd))/N
)

.

Finally, in Figures 4.1.c and 4.1.d we show the dependence of optimal λN (for fixed

N and p, we picked λN achieving the smallest estimation error) on N and p. It can be

seen that as p increases, λN grows (for fixed N) at the rate similar to
√

log p. On the

other hand, as N increases, the selected λN decreases (for fixed p) at the rate similar

to 1/
√
N .

Sparse Group Lasso To evaluate the estimation problem with Sparse Group Lasso

norm, we constructed first-order VAR process for the following set of problem sizes

p ∈ [10, 400], s ∈ [10, 200], sG ∈ [2, 20] and N ∈ [10, 5000]. The parameter α was set

to 0.5. Results are shown in Figure 4.2, top row. Similarly as in main paper, we can

see that the errors are scaled by N
(αs+(1−α)sG)(m+log(K)) . Moreover, the λN parameter is

decreasing when number of samples N increases. On the other hand, as the problem

dimension p increases, the selected λN grows at the rate similar to
√

log p.

OWL To test the VAR estimation problem under OWL norm we constructed a first-

order VAR process with p ∈ [10, 410], s ∈ [4, 260] and N ∈ [10, 5000]. The vector of

weights c was set to be a monotonically decreasing sequence of numbers in the range

[1, 0). Figure 4.2, bottom row, shows the results. It can be seen from Figure 4.2-f that

when the errors are plotted against c̄N
s log(p) , they become tightly aligned, confirming the

bounds established in Section 3.3.4 in the main paper for the error norm. As shown

in Figure 4.2-g,h the selected regularization parameter λN grows with the problem

dimension p and decreases with the number of samples N

Group Lasso For Group Lasso the sparsity in rows of A1 was generated in groups,

whose number varied as K ∈ [2, 60]. We set the largest number of non-zero groups in

any row as sG ∈ [2, 22]. Results are shown in the bottom row of Figure 4.1, which have

similar flavor as in Lasso case. The difference can be seen in Figure 4.1.f , where a close

alignment of errors occurs when N is now scaled as N
sG(m+log(K)) . Moreover, the selected

regularization parameter λ increases with the number of groups K and decreases with

N .
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Lasso OWL Group Lasso Sparse Group Lasso Ridge

32.3(6.5) 32.2(6.6) 32.7(6.5) 32.2(6.4) 33.5(6.1)

32.7(7.9) 44.5(15.6) 75.3(8.4) 38.4(9.6) 99.9(0.2)

Table 4.1: Mean squared error (row 2) of the five methods used in fitting VAR model,
evaluated on aviation dataset (MSE is computed using one-step-ahead prediction errors).
Row 3 shows the average number of non-zeros (as a percentage of total number of
elements) in the VAR matrix. The last row shows a typical sparsity pattern in A1 for
each method (darker dots - stronger dependencies, lighter dots - weaker dependencies).
The values in parenthesis denote one standard deviation after averaging the results over
300 flights.

4.4.2 Real Data

We have also performed evaluation tests on real data to compare the accuracy of the

VAR estimation using various penalized formulations based on five norms: L1, OWL,

Group, Sparse Group and Ridge (square of L2). Although ‖·‖22 is not a norm, we included

its results for reference purposes as it is frequently used in practice. In terms of data, we

used the NASA flight dataset from [42], consisting of over 100,000 flights, each having

a record of about 250 parameters, sampled at 1 Hz. For our test, we selected 300 flights

and picked 31 parameters most suitable for the prediction task (shown in Table 4.2)

and focused on the landing part of the trajectory (duration approximately 15 minutes).

For each flight we separately fitted a first-order VAR model using five approaches and

performed 5-fold cross validation to select λ, achieving smallest prediction error. For

Sparse Group we set α = 0.5, while for OWL the weights c1, . . . , cp were set as a

monotonically decreasing sequence. Table 4.1 shows the results after averaging across

300 flights.

From the table we can see that the considered problem exhibits a sparse structure

since all the methods detected similar patterns in matrix A1. In particular, the anal-

ysis of such patterns revealed a meaningful relationship among the flight parameters

(darker dots), e.g., normal acceleration had high dependency on vertical speed and
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1 Altitude

2 Corrected angle of attack

3 Brake temperature

4 Computed airspeed

5 Drift angle

6 Engine temperature

7 Low rotor speed

8 High rotor speed

9 Engine oil pressure

10 Engine oil quantity

11 Engine oil temperature

12 Engine pre-cooler outlet temperature

13 Fuel mass flow rate

14 Lateral acceleration

15 Longitudinal acceleration

16 Normal acceleration

17 Glide slope deviation

18 Ground speed

19 Localization deviation

20 Magnetic heading

21 Burner pressure

22 Pitch angle

23 Roll angle

24 HPC exit temperature

25 Angle magnitude

26 Angle true

27 Total fuel quantity

28 True heading

29 Vertical speed

30 True airspeed

31 MACH

Table 4.2: 31 features selected for structured VAR estimation on real flight data.

angle-of-attack, the altitude had mainly dependency with fuel quantity, vertical speed

with aircraft nose pitch angle, etc. The results also showed that the sparse regularization

helps in recovering more accurate and parsimonious models as is evident by compar-

ing performance of Ridge regression with other methods. Moreover, while all the four

Lasso-based approaches performed similar to each other, their sparsity levels were dif-

ferent, with Lasso producing the sparsest solutions. As was also expected, Group Lasso

had larger number of non-zeros since it did not enforce sparsity within the groups, as

compared to the sparse version of this norm.
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4.A Stability of VAR Model

A VAR process is stable if all the eigenvalues of A, defined in (4.5), are smaller than

1, i.e., eigenvalues of A must satisfy det(λIdp×dp −A) = 0 for λ ∈ C, |λ| < 1, |λ| 6= 0.

Specifically, write

λIdp×dp −A =




Iλ 0 . . . 0 0

0 Iλ . . . 0 0

0 0 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 Iλ




−




A1 A2 . . . Ad−1 Ad

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0




=




Iλ−A1 −A2 . . . −Ad−1 −Ad
−I Iλ . . . 0 0

0 −I . . . 0 0
...

...
. . .

...
...

0 0 . . . −I Iλ




.

Now multiply last (d-th) block-column by 1
λ and add to (d − 1)-st block-column.

Next, multiply the result in (d− 1)-st block-column by 1
λ and add to (d− 2)-nd block-

column. Continuing in this manner, we will arrive at

Q =

[
λIp×p −A1 − 1

λA2 − . . .− 1
λd−1Ad M

0 λIp(d−1)×p(d−1)

]
,

where matrix M ∈ Rp×p(d−1) denotes the result of some of the column operations. Since

97
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such column operations leave the matrix determinant unchanged, we have

det(λIdp×dp −A) = det(Q) = det(λIp×p −A1 −
1

λ
A2 − . . .−

1

λd−1
Ad) · det(λIp(d−1)×p(d−1))

= det(Ip×p −
1

λ
A1 −

1

λ2
A2 − . . .−

1

λd
Ad) · λpd.

Therefore, stability of VAR model in (4.5) requires det(I −∑d
k=1Ak

1
λk

) = 0 to be

satisfied for |λ| < 1, |λ| 6= 0. Equivalently, det(I−∑d
k=1Akz

k) = 0 must be satisfied for

z ∈ C, |z| > 1, or det(I −∑d
k=1Akz

k) 6= 0 must hold for |z| ≤ 1. Quisque ullamcorper

placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum

dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer

tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean

placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac

pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl.

Vivamus quis tortor vitae risus porta vehicula.

4.B Properties of Data Matrix X

In this Section we provide additional details about the covariance structure of VAR

matrix X as was originally presented in Section 4.2.3. Recall that our VAR process is

defined as

xt = A1xt−1 + . . .+Adxt−d + εt, t = 0,±1,±2, . . . , (4.20)

where noise εt follows a Gaussian distribution, i.e., εt ∼ N (0,Σ), moreover, the distri-

bution of xt is a zero-mean Gaussian, i.e., xt ∼ N (0,Γ(0)), where Γ(h) = E(xtx
T
t+h).

Now consider the noise and data matrices from the formulation (4.2)

X =




xTd−1 xTd−2 . . . xT0

xTd xTd−1 . . . xT1
...

...
. . .

...

xTT−2 xTT−3 . . . xTT−d−1

xTT−1 xTT−2 . . . xTT−d




. (4.21)

In this Section our objective is to establish the probability distribution of rows of X.
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4.B.1 Single row of X

The autocovariance matrix of the original VAR process of order d in (4.20) is defined as

Γ(h) = E[xtx
T
t+h]. Fourier transform of autocovariance matrix is called spectral density

and is denoted as (for i =
√
−1)

ρ(ω) =

∞∑

h=−∞
Γ(h)e−hiω, ω ∈ [0, 2π]. (4.22)

Inverse Fourier transform of the spectral density gives back the autocovariance matrix:

Γ(h) =
1

2π

∫ 2π

0
ρ(ω)ehiωdω, h ∈ 0,±1,±2, . . . (4.23)

For our VAR model in (4.20), the spectral density has a closed form expression [122]

ρ(ω) =

(
I −

d∑

k=1

Ake
−kiω

)−1

Σ



(
I −

d∑

k=1

Ake
−kiω

)−1


∗

∈ Rp×p, (4.24)

where ∗ is the Hermitian of a matrix.

Let Xi,: be any row vector of matrix X in (4.21), then

CX =




Γ(0) Γ(1) . . . Γ(d− 1)

Γ(1)T Γ(0) . . . Γ(d− 2)
...

...
. . .

...

Γ(d− 1)T Γ(d− 2)T . . . Γ(0)



∈ Rdp×dp. (4.25)

Note that CX is a block-Toeplitz matrix and so we can use the following property [121]

inf
1≤j≤p
ω∈[0,2π]

Λj [ρ(ω)] ≤ Λk[CV ] ≤ sup
1≤j≤p
ω∈[0,2π]

Λj [ρ(ω)], for 1 ≤ k ≤ Kp. (4.26)

Using (4.24), we can compute the lower bound. For this we use the following relation-

ships: for any M , ||M ||2 =
√

Λmax(MTM), and if M is symmetric, ||M ||2 = Λmax(M).

Similarly, for any nonsingular M , ||M−1||2 = 1√
Λmin(MTM)

, and if M is symmetric,
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||M−1||2 = 1
Λmin(M) . Since ρ(ω) is symmetric, we have

Λmax[ρ(ω)] =

∣∣∣∣∣∣

∣∣∣∣∣∣

(
I −

d∑

k=1

Ake
−kiω

)−1

Σ



(
I −

d∑

k=1

Ake
−kiω

)−1


∗∣∣∣∣∣∣

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣

∣∣∣∣∣∣

(
I −

d∑

k=1

Ake
−kiω

)−1
∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

||Σ||2

≤ Λmax(Σ)

Λmin

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] (4.27)

and the upper bound

Λmin[ρ(ω)] =




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣





(
I −

d∑

k=1

Ake
−kiω

)−1

Σ



(
I −

d∑

k=1

Ake
−kiω

)−1


∗


−1
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2




−1

≥



∣∣∣∣∣

∣∣∣∣∣I −
d∑

k=1

Ake
−kiω

∣∣∣∣∣

∣∣∣∣∣

2

2

||Σ−1||2



−1

≥ Λmin(Σ)

Λmax

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] . (4.28)

Therefore, the CX has the following bounds on its eigenvalues

Λmin(Σ)

Λmax

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] ≤ Λk[CX] ≤

≤ Λmax(Σ)

Λmin

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)] ,

for 1 ≤ k ≤ dp, and ω ∈ [0, 2π].

Denoting Λmin(A) = Λmin

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)]

for ω ∈ [0, 2π]

and similarly Λmax(A) = Λmax

[(
I −∑d

k=1A
T
k e

kiω
)(

I −∑d
k=1Ake

−kiω
)]

for ω ∈ [0, 2π],

we can compactly write the above as

Λmin(Σ)

Λmax(A)
≤ Λk[CX] ≤ Λmax(Σ)

Λmin(A)
, (4.29)

for 1 ≤ k ≤ dp. From the above we extract the lower bound and denote it as

Λk[CX] ≥ Λmin(Σ)

Λmax(A)
= L. (4.30)
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4.B.2 All the rows of X

Consider a model obtained from the rows of matrix X (see (4.21)), i.e.,




xd−i+1

xd−i
...

xi




=




A1 A2 . . . Ad−1 Ad

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0







xd−i

xd−i−1

...

xi−1




+




εd−i+1

0
...

0



.

Written in a compact form, the above expression takes the form

Xj,: = AXj−1,: + Ej , for j = 1, . . . , N,

which can be thought to be the transformations of the form

X1,: =




xd−1

xd−2

...

x0



→ X2,: =




xd

xd−1

...

x1



→ · · · → XN,: =




xN+d−2

xN+d−3

...

xN−1



.

Let

U =




X1,:

...

XN,:


 ∈ RNdp, (4.31)

be a vector composed from the output of the above VAR model during N steps. Then

CU ∈ RNdp×Ndp is the covariance matrix of vector U

CU = E(UUT ) = E




X1,:

...

XN,:



[
XT

1,: . . . X
T
N,:

]
=




E[X1,:X
T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]



.

(4.32)

To establish the bounds on the eigenvalues of CU , we denote the spectral density of the

corresponding VAR process as

ρX(ω) =
∞∑

h=−∞
ΓX(h)e−hiω, ω ∈ [0, 2π],
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where ΓX(h) = E[Xj,:X
T
j+h,:]. Since CU is a block-Toeplitz matrix, we can employ the

same relationship as we used in Section 4.B.1

inf
1≤l≤dp
ω∈[0,2π]

Λl[ρX(ω)] ≤ Λk[CU ] ≤ sup
1≤l≤dp
ω∈[0,2π]

Λl[ρX(ω)], for 1 ≤ k ≤ Ndp. (4.33)

In the following we establish the closed form expression of spectral density ρX. For this

we write

ρX(ω) =
∞∑

h=−∞
ΓX(h)e−hiω

=

∞∑

h=−∞
E[Xj,:X

T
j+h,:]e

−hiω for any j

=
∞∑

h=−∞
E

[ ∞∑

k=0

AkEj−k,:

( ∞∑

s=0

AsEj+h−s,:

)T]
e−hiω

=
∞∑

h=−∞
E

[ ∞∑

k=0

AkEj−k,:

( ∞∑

s=0

As−hEj−s,:

)T]
e−hiω

=

∞∑

h=−∞

∞∑

k=0

AkΣE

(
Ak−h

)T
e−hiω

=

∞∑

h=−∞

∞∑

k=0

AkΣE

(
Ak−h

)T
e−hiω+kiω−kiω

=

∞∑

h=−∞

∞∑

k=0

Ake−kiωΣE

(
Ak−he−(k−h)iω

)∗

=
∞∑

k=0

Ake−kiωΣE

∞∑

r=0

(
Are−riω

)∗

=
(
I −Ae−iω

)−1
ΣE

[(
I −Ae−iω

)−1
]∗
, (4.34)

where we have used the fact that
∑∞

k=0 Ake−kiω =
(
I −Ae−iω

)−1
.
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Now, using (4.33), (4.34), the results from Section 4.B.1 and the fact that the co-

variance matrix ΣE has the form

ΣE =




Σ 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0



,

we can establish the following bounds

Λmin(ΣE)

Λmax [(I −AT eiω) (I −Ae−iω)]
≤ Λk[CU ] ≤ Λmax(ΣE)

Λmin [(I −AT eiω) (I −Ae−iω)]
.

Since Λmax(ΣE) = Λmax(Σ), the upper bound becomes

Λmax[CU ] ≤ Λmax(Σ)

Λmin [(I −AT eiω) (I −Ae−iω)]
,

for ω ∈ [0, 2π]. Denoting Λmin(A) = Λmin

[(
I −AT eiω

) (
I −Ae−iω

)]
for ω ∈ [0, 2π],

we can compactly write the above as

Λmax[CU ] ≤ Λmax(Σ)

Λmin(A)
. (4.35)

4.B.3 Linear combination of rows of X

Consider a vector q = Xa ∈ RN for any a ∈ Rdp. Since each element XT
i,:a ∼

N (0, aTCXa), it follows that q ∼ N (0, Qa) with a covariance matrix Qa ∈ RN×N ,
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which is defined as

Qa = E(qqT ) = E




XT
1,:a
...

XT
N,:a



[
aTX1,: . . . a

TXN,:

]

=




aTE[X1,:X
T
1,:]a aTE[X1,:X

T
2,:]a . . . aTE[X1,:X

T
N,:]a

aTE[X2,:X
T
1,:]a aTE[X2,:X

T
2,:]a . . . aTE[X2,:X

T
N,:]a

...
...

. . .
...

aTE[XN,:X
T
1,:]a aTE[XN,:X

T
2,:]a . . . aTE[XN,:X

T
N,:]a




=




aT 0 . . . 0

0 aT . . . 0
...

...
. . .

...

0 0 . . . aT







E[X1,:X
T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]







a 0 . . . 0

0 a . . . 0
...

...
. . .

...

0 0 . . . a




= (IN×N ⊗ aT )




E[X1,:X
T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]




(IN×N ⊗ a).

We denote the covariance matrix in the middle as

CU = E(UUT ) = E




X1,:

...

XN,:



[
XT

1,: . . . X
T
N,:

]
=




E[X1,:X
T
1,:] E[X1,:X

T
2,:] . . . E[X1,:X

T
N,:]

E[X2,:X
T
1,:] E[X2,:X

T
2,:] . . . E[X2,:X

T
N,:]

...
...

. . .
...

E[XN,:X
T
1,:] E[XN,:X

T
2,:] . . . E[XN,:X

T
N,:]



.

(4.36)

Thus, we established that q ∼ N (0, Qa), where Qa = (I ⊗ aT )CU (I ⊗ a).

In what follows, we compute trace(Qa) and ||Qa||2 for the covariance matrix Qa. It

can be seen that the trace of Qa is given by

trace(Qa) = NaTCXa, (4.37)
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where CX is defined in (4.6). Next, we compute upper bound on ||Qa||2 as follows

||Qa||2 = ||(I ⊗ aT )CU (I ⊗ a)||2
≤ ||I ⊗ a||22 ||CU ||2
= ||a||22 Λmax(CU ), (4.38)

where the last equality follows since ||I ⊗ a||22 = Λmax

(
(I ⊗ aT )(I ⊗ a)

)
= Λmax

(
I ⊗

aTa
)

= ||a||22. We used a property of Kronecker product which states that for matrices

with suitable dimensions, (A⊗B)(C ⊗D) = (AC ⊗BD).

To establish Λmax(CU ), we use the results from Section 4.B.2, expression (4.35),

which enable us to conclude that the upper bound of the largest eigenvalue of matrix

CU is given by

Λmax(CU ) ≤ Λmax(Σ)

Λmin(A)
.

Therefore, the bound on the covariance matrix ||Qa||2 in (4.38) is now given by

||Qa||2 ≤ ||a||22
Λmax(Σ)

Λmin(A)
= M. (4.39)

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tin-

cidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac

habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc ele-

mentum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin,

felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin

tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

4.C Bound on Regularization Parameter

To establish lower bound on the regularization parameter λN , we derive an upper bound

on R∗[ 1
NZ

T ε] ≤ α, for some α > 0, which will establish the required relationship

λN ≥ α ≥ R∗[ 1
NZ

T ε]. We will also utilize the notions of Gaussian width and covering

net.
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Definition 13 For any set S and for a vector of independent zero-mean unit variance

Gaussian variables g ∼ N (0, I), the Gaussian width of the set is defined as

w(S) = Eg[sup〈g, u〉
u∈S

]. (4.40)

Denote E:,j ∈ RN as a column of matrix E and vector U = [uT1 , . . . , u
T
p ]T ∈ Rdp2 , where

ui ∈ Rdp. Note that since Z = Ip×p ⊗X, and ε = vec(E), we can observe the following

sup
R(U)≤1

〈
1

N
ZT ε, U

〉
= sup

R(U)≤1

1

N

〈
(
Ip×p ⊗XT

)
vec(E), U

〉

= sup
R([uT1 ,...,u

T
p ]T )≤1

1

N

(
〈
XTE:,1, u1

〉
+, . . . ,+

〈
XTE:,p, up

〉
)

=
1

N

(
sup

R([uT1 ,...,u
T
p ]T )≤1

〈
XTE:,1, u1

〉
+, . . . ,+ sup

R([uT1 ,...,u
T
p ]T )≤1

〈
XTE:,p, up

〉
)

=
1

N

(
sup

R(u1)≤r1

〈
XTE:,1, u1

〉
+, . . . ,+ sup

R(up)≤rp

〈
XTE:,p, up

〉
)

=
1

N

p∑

j=1

sup
R(uj)≤rj

〈
XTE:,j , uj

〉
(4.41)

where
∑p

j=1 rj ≤ 1 and rj ≥ 0.

Our objective is to establish a high probability bound of the form

P

[
sup

R(U)≤1

〈
1

N
ZT ε, U

〉
≤ α

]
≥ π

where 0 ≤ π ≤ 1, i.e., upper bound should hold with at least probability π. Using (4.41)

and assuming that α =
∑p

j=1 αj , we can rewrite the above probabilistic statement as
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follows

P

[
sup

R(U)≤1

〈
1

N
ZT ε, U

〉
≤ α

]
= P

[
1

N

p∑

j=1

sup
R(uj)≤rj

〈
XTE:,j , uj

〉
≤

p∑

j=1

αj

]

≥ P

[{
sup

R(u1)≤r1

1

N

〈
XTE:,1, u1

〉
≤ α1

}
and (4.42)

. . . and

{
sup

R(up)≤rp

1

N

〈
XTE:,p, up

〉
≤ αp

}]

≥
p∑

j=1

P
[

sup
R(uj)≤rj

1

N

〈
XTE:,j , uj

〉
≤ αj

]
− (p− 1). (4.43)

In the above derivations we used the observation that if

{
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
≤ αj

}
,

for each j hold, then the event

{
∑p

j=1 sup
R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
≤∑p

j=1 αj

}
also holds

but the reverse is not always true, implying that the probability space related to the

event{
∑p

j=1 sup
R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
≤∑p

j=1 αj

}
is larger.

Therefore, based on (4.42), we see that we need to establish the following concen-

tration bound

P
[

sup
R(uj)≤rj

1

N

〈
XTE:,j , uj

〉
≤ αj

]
≥ πj , (4.44)

for each j = 1, . . . , p.

In the following our objective would be to first establish that the random variable
1
N

〈
XTE:,j , h

〉
has sub-exponential tails, where h ∈ Rdp, ‖h‖2 = 1 is a unit norm vector.

Based on the generic chaining argument we then use Theorem 1.2.7 in [113] and bound

the expectation of the supremum of the original variable 1
N

〈
XTE:,j , uj

〉
, i.e., bound

E

[
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
]

. Finally, using Theorem 1.2.9 in [113] we establish the high

probability bound on how sup
R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
concentrates around its mean.
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4.C.1 Martingale difference sequence

We start by writing

〈
XTE:,j , h

〉
= 〈E:,j , Xh〉 =

N∑

i=1

Ei,j , (X:,ih) =

N∑

i=1

mi,

where mi = Ei,j(Xi,:h), i = 1, . . . , N . Observe that mi is a martingale difference

sequence (MDS), which can be shown by establishing that E(mi|m1, . . . ,mi−1) = 0 (see

[79]). We can introduce a set {E1,:, E2,:, . . . , Ei−1,:} = {εTd , εTd+1, . . . , ε
T
T } and write

E
[
mi|m1, . . . ,mi−1

]
= E

[
E
[
mi|m1, . . . ,mi−1, E1,:, . . . , Ei−1,:

]]
,

using the technique of iterated expectation. Note that the set {E1,:, E2,:, . . . , Ei−1,:}
contains more information than the set {m1, . . . ,mi−1} and conditioning on it has fixed

all the past history of the sequence until time stamp i. Since mi = Ei,j(Xi,:h), the

terms Ei,j and Xi,:h are now independent. The independence follows since every row of

matrix X is independent of the corresponding row of matrix E:

E =




εTd

εTd+1
...

εTT−1

εTT




, X =




xTd−1 xTd−2 . . . xT0

xTd xTd−1 . . . xT1
...

...
. . .

...

xTT−2 xTT−3 . . . xTT−d−1

xTT−1 xTT−2 . . . xTT−d




,

which can be verified by noting that the noise vector εd+i is independent from xd−k+i

since (d + i) > (d − k + i) for 0 ≤ i ≤ T − d and 1 ≤ k ≤ d. In other words, the

information contained in xd−k+i does not contain information from the noise εd+i (see

(4.2)). Moreover,

E
[
mi

]
= E

[
Ei,j(Xi,:h)

]
= E

[
Ei,j

]
E
[
Xi,:h

]
= 0, (4.45)

due to the zero-mean noise E
[
Ei,j

]
= 0. Consequently, we have shown that the condi-

tional expectation E
[
mi|m1, . . . ,mi−1, E1,:, . . . , Ei−1,:

]
= 0 and therefore

E
[
mi|m1, . . . ,mi−1

]
= 0,

proving that mi = Ei,j(Xi,:h), i = 1, . . . , N is a martingale difference sequence.
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Next, to show that 1
N

〈
XTE:,j , h

〉
= 1

N

∑N
i=1mi has sub-exponential tails, we first

show that mi is sub-exponential random variable and then use the proof argument

similar to Azuma-type [126] and Bernstein-type [125] inequalities to establish that a

sum over sub-exponential martingale difference sequence is itself sub-exponential.

4.C.2 Sub-exponential tails of 1
N

〈
XTE:,j, h

〉

The MDS mi is sub-exponential since it is a product of two Gaussians. Indeed, recall

that Eij and Xi,:h are both Gaussian random variables, independent of each other.

Employing a union bound enables us to write for any τ > 0

P
[
|mi| ≥ τ

]
= P

[
|Eij(Xi,:h)| ≥ τ

]

≤ P
[
|Eij | ≥

√
τ
]

+ P
[
|Xi,:h| ≥

√
τ
]

≤ 2e−c1τ + 2e−c2τ

≤ 4e−cτ ,

for some suitable constants c1 > 0, c2 > 0 and c > 0.

To establish that 1
N

∑
imi is sub-exponential, we note that the sub-exponential norm

‖·‖ψ1 (see [125], Definition 5.13) of mi can be upper-bounded by a constant. We denote

by κ > 0 the largest of these constants, i.e.,

κ = max
i=1,...,N

‖mi‖ψ1 = max
i=1,...,N

‖Xi,:h‖ψ1 .

Now, using Lemma 5.15 in [125], the moment generating function of mi satisfies the

following result: for s such that |s| ≤ η
κ and for all i = 1, . . . , N

E
[
esmi

]
≤ ecs2κ2 , (4.46)

where c and η are absolute constants. Next, using Markov inequality, we can write for

any ε′ > 0

P

[
N∑

i=1

mi ≥ ε′
]

= P

[
exp

(
s
N∑

i=1

mi

)
≥ exp(sε′)

]

≤
E
[
exp

(
s
∑N

i=1mi

)]

exp(sε′)
. (4.47)
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To bound the numerator, we use (4.46) and write for |s| ≤ η
κ utilizing the iterated

expectation

E

[
exp

(
s

N∑

i=1

mi

)]
= E

[
exp(smN ) exp

(
s

N−1∑

i=1

mi

)]

= Em1,...,mN−1

[
EmN |m1,...,mN−1

[
exp(smN ) exp

(
s

N−1∑

i=1

mi

)]]

= Em1,...,mN−1

[
EmN |m1,...,mN−1

[
exp(smN )

]
exp

(
s
N−1∑

i=1

mi

)]

using (4.46)

≤ exp(cs2κ2)Em1,...,mN−1

[
exp

(
s
N−1∑

i=1

mi

)]

≤ exp(cs2κ2) exp(cs2κ2)Em1,...,mN−2

[
exp

(
s

N−2∑

i=1

mi

)]

...

≤ exp(Ncs2κ2)

Substituting back to (4.47), we get for |s| ≤ η
κ

P

[
N∑

i=1

mi ≥ ε′
]
≤ exp(−sε′ +Ncs2κ2). (4.48)

We now select s to minimize the right hand side of (4.48). For this, note that if

the minimum is achieved for an s, which satisfies |s| ≤ η
κ , then we simply minimize

−sε′ + Ncs2κ2 and get s = ε′

N2cκ2
. On the other hand, if the minimum is achieved for

an s outside the range |s| ≤ η
κ , we pick the one on boundary s = η

κ . Thus, choosing

s = min
(

ε′

N2cκ2
, ηκ

)
, we obtain

P

[
N∑

i=1

mi ≥ ε′
]
≤ exp

(
−min

(
ε′2

4cNκ2
,
ηε′

2κ

))
.

Finally, setting ε′ = Nε, for a suitable constant c > 0, we get

P

[
1

N

N∑

i=1

mi ≥ ε
]
≤ exp

(
−cmin

(
Nε2

κ2
,
Nε

κ

))
.
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Repeating the above argument for − 1
N

∑N
i=1mi, we obtain same bound and a combi-

nation of both of them gives the required concentration inequality for the sum over the

martingale difference sequence

P

[
1

N

∣∣∣∣∣
N∑

i=1

mi

∣∣∣∣∣ ≥ ε
]

= P

[
1

N

∣∣∣∣∣
〈
XTE:,j , h

〉
∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−cmin

(
Nε2

κ2
,
Nε

κ

))
.

(4.49)

4.C.3 Establishing bound on the mean of supremum of 1
N

〈
XTE:,j, uj

〉

To establish a high probability bound on E

[
sup

R(uj)≤rj

1
N

〈
XTE:,j , uj

〉
]

, we use a generic

chaining argument from [113], in particular Theorem 1.2.7 in [127]. For this, we de-

fine (Yuj )uj∈R(uj)≤rj = 1
N

〈
XTE:,j , uj

〉
and (Yvj )vj∈R(vj)≤rj = 1

N

〈
XTE:,j , vj

〉
to be two

centered random symmetric process, indexed by a fixed vectors uj and vj , respectively.

They are centered due to (4.45) and they are symmetric since, for example, the pro-

cess (Yuj )uj∈R(uj)≤rj has the same law as process
(
− (Yuj )uj∈R(uj)≤rj

)
(see the results

established in (4.49)). Consider now the absolute difference of these two processes

∣∣∣(Yuj )uj∈R(uj)≤rj − (Yvj )vj∈R(vj)≤rj

∣∣∣ =
1

N

∣∣∣∣∣
〈
XTE:,j , uj − vj

〉
∣∣∣∣∣

= ‖uj − vj‖2
1

N

∣∣∣∣∣

〈
XTE:,j ,

uj − vj
‖uj − vj‖2

〉 ∣∣∣∣∣.

Using now the bound obtained in (4.49), we get

P

[
1

N

∣∣∣∣∣

〈
XTE:,j ,

uj − vj
‖uj − vj‖2

〉 ∣∣∣∣∣ ≥ ε
]

=P

[
‖uj − vj‖2

1

N

∣∣∣∣∣

〈
XTE:,j ,

uj − vj
‖uj − vj‖2

〉 ∣∣∣∣∣ ≥ ‖uj − vj‖2ε
]

=P

[
1

N

∣∣∣∣∣
〈
XTE:,j , uj − vj

〉
∣∣∣∣∣ ≥ τ

]
≤ 2 exp

(
−cmin

(
Nτ2

‖uj − vj‖22κ2
,

Nτ

‖uj − vj‖2κ

))
,

where τ = ‖uj − vj‖2ε. Then, according to Theorem 1.2.7 in [127], we obtain the

following bound on the expectation of the supremum of the difference between the
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processes

E

[
sup

R(uj)≤rj ,R(vj)≤rj

1

N

∣∣∣∣∣
〈
XTE:,j , uj

〉
−
〈
XTE:,j , vj

〉
∣∣∣∣∣

]

≤ c
(
γ1

(
Sj ,
‖uj − vj‖2

N

)
+ γ2

(
Sj ,
‖uj − vj‖2√

N

))
, (4.50)

where c is a constant, fi(Sj , di), i = 1, 2, are the majorizing measures, which are defined

in [113], Definition 1.2.5; d1 =
‖uj−vj‖2

N and d2 =
‖uj−vj‖2√

N
are the distance measures

on the set Sj defined for all vectors s ∈ Sj : R(s) ≤ rj . The definition of majorizing

measure is as follows, for α > 0

γα(Sj , d) = inf sup
t

∑

k≥0

2
k
α∆(Ak(t)), (4.51)

where inf is taken over all possible admissible sequences of the set Sj ; ∆(Ak(t)) denotes

the diameter of element Ak(t) with respect to the distance metric d defined as

∆(Ak(t)) = sup
t1,t2∈Ak(t)

d(t1, t2), (4.52)

and Ak(t) ∈ Ak is an element of an admissible sequence in generic chaining, see Defini-

tion 1.2.3 in [113] for a detailed discussion on how Ak are constructed.

Observe that from definition of a diameter ∆(·) in (4.52) and majorizing measure in

(4.51) we can immediately see that for any constant c > 0

γα (Sj , cd) = cγα (Sj , d) , (4.53)

since inf sup
t

∑
k≥0 2

k
α sup
t1,t2∈Ak(t)

cd(t1, t2) = c inf sup
t

∑
k≥0 2

k
α sup
t1,t2∈Ak(t)

d(t1, t2). More-

over, in the next result we establish the following useful Lemma which would enable us

to bound the γ1 with the square of γ2.

Lemma 14 Given a metric space (Sj , d), we have

γ1(Sj , ‖.‖2) ≤ γ2
2(Sj , ‖.‖2). (4.54)
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To prove this Lemma, we define d(s, t) = ‖s− t‖2. We use the traditional definition

of majorizing measure γ′α(Sj , d) from [128], equation (1.2):

γ′α(SJ , d) = inf sup
s∈S

(∫ ∞

0

(
log

1

µ(Bd(s, ε))

)1/α

dε

)
,

where Bd(s, ε) is the closed ball of center t and radius ε based on the distance d and

the infimum is taken over all the probability measure µ on Sj .

Note that γ′α(Sj , d) relates to the majorizing measure γα(Sj , d) used in (4.50) as (see

[128], Theorem 1.2)

K(α)−1γα(Sj , d) ≤ γ′α(Sj , d) ≤ K(α)γα(Sj , d),

where K(α) is a constant depending on α only. As a result, it is enough to show that

γ′1(Sj , d) ≤ γ′22(Sj , d). The required relationship is then established as follows

γ′1(Sj , d) = inf sup
t

(∫ ∞

0

(
log

1

µ(Bd(t, ε))

)
dε

)

≤ inf sup
t

(∫ ∞

0

(
log

1

µ(Bd(t, ε))

)1/2

dε

)2

= γ′2
2
(Sj , d).

And this completes the proof. Now using Theorem 2.1.1 in [113], and the definition of

γα(Sj , d) in (4.51) we can establish that

γ2

(
Sj ,
‖.‖2√
N

)
=

1√
N
γ2(Sj , ‖.‖2) using (4.53)

≤ 1√
N

E
[

sup
R(z)≤rj

〈g, z〉
]

using Theorem 2.1.1 in [113]

= rj
1√
N

E
[

sup
R(u)≤1

〈g, u〉
]

= rj
1√
N
w(ΩR), (4.55)

where the third equality follows since E
[

sup
R(z)≤rj

〈g, z〉
]

= rjE
[

sup
R(u)≤1

〈g, u〉
]

for z = rju,

and in the last line we used the description of Gaussian width in Definition 13. Using
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Lemma 14 and (4.53) above, we also get

γ1

(
Sj ,
‖.‖2
N

)
=

1

N
γ1 (Sj , ‖.‖2) using (4.53)

≤ 1

N
γ2

2 (S, ‖.‖2) using Lemma 14

≤ r2
j

1

N2
w2(ΩR) using (4.55)

≤ rj
1

N2
w2(ΩR), (4.56)

where in the last line we used the fact that rj < 1. Finally, substituting (4.55) and

(4.56) into (4.50) and using Lemma 1.2.8 in [127], we get

E

[
sup

R(uj)≤rj ,R(vj)≤rj

1

N

∣∣∣∣∣
〈
XTE:,j , uj

〉
−
〈
XTE:,j , vj

〉
∣∣∣∣∣

]
= E

[
sup

R(uj)≤rj

∣∣∣∣∣
1

N

〈
XTE:,j , uj

〉
∣∣∣∣∣

]

≤ crj
(
w(ΩR)√

N
+
w2(ΩR)

N2

)
.

(4.57)

4.C.4 Establishing high probability concentration bound

Next, in order to establish the high probability concentration of the supremum of the

random variable 1
N

〈
XTE:,j , uj

〉
around its mean, we use Theorem 1.2.9 from [113]. For

any ε1 > 0 and ε2 > 0, we have

P

[
sup

R(uj)≤rj

∣∣∣∣∣
1

N

〈
XTE:,j , uj

〉
∣∣∣∣∣ ≥ E

[
sup

R(uj)≤rj

∣∣∣∣∣
1

N

〈
XTE:,j , uj

〉
∣∣∣∣∣

]
+ ε1D1 + ε2D2

]

≤ c exp(−min(ε22, ε1)). (4.58)

where Di ≤ γi(Sj , d), i = 1, 2, where γi(Sj , d) are as defined in the discussion after

(4.50). Therefore, using the result (4.57), the concentration inequality (4.58) can now

be written as

P

[
sup

R(uj)≤rj

∣∣∣∣∣
1

N

〈
XTE:,j , uj

〉
∣∣∣∣∣ ≥

(
c2(1 + ε2)rj

w(ΩR)√
N

+ c1(1 + ε1)rj
w2(ΩR)

N2

)]

≤ c exp(−min(ε22, ε1)). (4.59)
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To adapt to the form required in (4.44), we reverse the direction of inequality

P

[
sup

R(uj)≤rj

∣∣∣∣∣
1

N

〈
XTE:,j , uj

〉
∣∣∣∣∣ ≤

(
c2(1 + ε2)rj

w(ΩR)√
N

+ c1(1 + ε1)rj
w2(ΩR)

N2

)]

≥ 1− c exp(−min(ε22, ε1)). (4.60)

4.C.5 Overall bound

Now we can combine the results obtained in (4.60) for each j = 1, . . . , p using the fact

that
∑p

j=1 rj ≤ 1 and using the form of the overall bound in (4.42). Therefore, we get

P

[
sup

R(U)≤1

〈
1

N
ZT ε, U

〉
≤
(
c2(1 + ε2)

w(ΩR)√
N

+ c1(1 + ε1)
w2(ΩR)

N2

)]

≥ 1− c exp(−min(ε22, ε1) + log(p)).

This concludes our proof on establishing the bound on the regularization parameter.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tin-

cidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac

habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc ele-

mentum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin,

felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin

tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

4.D Restricted Eigenvalue Condition

To establish restricted eigenvalue (RE) condition, we need to show that
||(Ip×p⊗X)∆||2

||∆||2 ≥√
κN , κ > 0, for all ∆ = β̂ − β∗, ∆ ∈ cone(ΩE), where cone(ΩE) denotes a cone of an

error set

ΩE =
{

∆ ∈ Rdp2
∣∣∣R(β∗ + ∆) ≤ R(β∗) + 1

cR(∆)
}

. To show
||(Ip×p⊗X)∆||2

||∆||2 ≥
√
κN for

all ∆ ∈ cone(ΩE), we will show that inf
∆∈cone(ΩE)

||(Ip×p⊗X)∆||2
||∆||2 ≥ √ρ, for some ρ > 0 and

then set κN = ρ.

Note that the error vector can be written as ∆ = [∆T
1 ,∆

T
2 , . . . ,∆

T
p ]T , where ∆i is of

size dp × 1. Also let β∗ = [β∗T1 β∗T2 . . . β∗Tp ]T , for β∗i ∈ Rdp, then using our assumption
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in (4.4) that the norm R(·) is decomposable, we can represent original set ΩE as a

Cartesian product of subsets ΩEi , i.e., ΩE = ΩE1 × ΩE2 × · · · × ΩEp , where

ΩEi =

{
∆i ∈ Rdp

∣∣∣R(β∗i + ∆i) ≤ R(β∗i ) +
1

c
R(∆i)

}
,

which also implies that cone(ΩE) = cone(ΩE1)× cone(ΩE2)× · · · × cone(ΩEp). Also, if

||∆||2 = 1, then we denote ||∆i||2 = δi > 0, so that
∑p

i=1 δ
2
i = 1. With this information,

we can write

inf
∆∈cone(ΩE)

||(Ip×p ⊗X)∆||22
||∆||22

= inf
∆∈cone(ΩE)
||∆||2=1

||(Ip×p ⊗X)∆||22

= inf
∆∈cone(ΩE)
||∆||2=1

||X∆1||22 + ||X∆2||22 + . . .+ ||X∆p||22

=

p∑

i=1

inf
∆i∈cone(Ωei )
||∆i||2=δi

||X∆i||22. (4.61)

Our objective is to establish a high probability bound of the form

P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥ ρ
]
≥ π

where 0 ≤ π ≤ 1, i.e., lower bound should hold with at least probability π. Note that

if we square the terms inside the probability statement above, the probability of the

resulting expression does not change since the squared terms are positive. Therefore,
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using (4.61) and assuming that ρ2 =
∑p

i=1 ρ
2
i we can rewrite the above as follows

P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥ ρ
]

= P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||22
||∆||22

≥
p∑

i=1

ρ2
i

]

= P

[
p∑

i=1

inf
∆i∈cone(ΩEi )

||∆i||2=δi

||X∆i||22 ≥
p∑

i=1

ρ2
i

]
using (4.61)

≥ P

[{
inf

∆1∈cone(ΩE1
)

||∆1||2=δ1

||X∆1||22 ≥ ρ2
i

}
and

. . . and

{
inf

∆p∈cone(ΩEp )

||∆p||2=δp

||X∆p||22 ≥ ρ2
i

}]

≥
p∑

i=1

P

[
inf

∆i∈cone(ΩEi )

||∆i||2=δi

||X∆i||22 ≥ ρ2
i

]
− (p− 1)

=

p∑

i=1

P

[
inf

∆i∈cone(ΩEi )

||∆i||2=δi

||X∆i||2 ≥ ρi
]
− (p− 1)

Then, taking square root, we get

p∑

i=1

P

[
inf

∆i∈cone(ΩEi )

||∆i||2=δi

||X∆i||2
||∆i||2

≥ ρi
||∆i||2

]
− (p− 1)

=

p∑

i=1

P

[
inf

ui∈cone(ΩEi )∩S
dp−1
||Xui||2 ≥

ρi
δi

]
− (p− 1) (4.62)

where we defined ui = ∆i
||∆i||2 and Sdp−1 is a unit sphere. Therefore, if we denote

Θi = cone(ΩEi) ∩ Sdp−1, we need to establish a lower bound of the form

P

[
inf
ui∈Θi

||Xui||2 ≥ ρ′i

]
≥ πi, (4.63)

where ρ′i = ρi
δi

. In the following derivations we set Θ = cone(ΩEi) ∩ Sdp−1 and u = ui

for all i = 1, . . . , p since the specific index i is irrelevant.
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4.D.1 Bound on the infimum of ||Xu||2
Using results from Appendix 4.B we can establish that Xu ∈ RN is a Gaussian random

vector, i.e., Xu ∼ N (0, Qu), where covariance matrix Qu = (IN×N ⊗uT )CU (IN×N ⊗u),

CU is defined in (4.36), and u ∈ Θ is a fixed vector.

To establish inf
u∈Θ
||Xu||2, we invoke a generic chaining argument from [113], specif-

ically Theorem 2.1.5. For this we let (Zu)u∈Θ = ||Xu||2 − E(||Xu||2) and (Zv)v∈Θ =

||Xv||2 − E(||Xv||2) be two centered symmetric random processes. They are centered

since, for example, E
[
(Zu)u∈Θ

]
= E(||Xu||2)− E(||Xu||2) = 0, and they are symmetric

due to the later result shown in (4.65).

Sub-gaussianity of the process Zu − Zv.
We can show that the process difference

(Zu)u∈Θ − (Zv)v∈Θ = ‖u− v‖2
(∥∥∥∥X

u− v
‖u− v‖2

∥∥∥∥
2

− E
(∥∥∥∥X

u− v
‖u− v‖2

∥∥∥∥
2

))
(4.64)

is a sub-Gaussian random process. This is indeed the case since we can establish that

for Z = ||X u−v
‖u−v‖2 ||2 − E(||X u−v

‖u−v‖2 ||2), the sub-gaussian norm ‖Z‖ψ2 ≤ K for some

constant K > 0 (see [125], Definition 5.7). To show this, let ξ = u−v
‖u−v‖2 and apply

concentration of a Lipschitz function of Gaussian random variables. Specifically, observe

that Xξ ∼ N (0, Qξ) is distributed same as
√
Qξg ∼ N (0, Qξ), where g ∼ N (0, IN×N ).

Therefore, we can write

P
[
|‖Xξ‖2 − E(‖Xξ‖2)| > τ

]
= P

[ ∣∣∣‖
√
Qξg‖2 − E(‖

√
Qξg‖2)

∣∣∣ > τ
]
.

Moreover, note that ‖
√
Qξg‖2 is a Lipschitz function with constant ‖

√
Qξ‖2 since we

can write
∣∣∣‖
√
Qξg1‖2 − ‖

√
Qξg2‖2

∣∣∣ ≤ ‖
√
Qξ(g1 − g2)‖2 ≤ ‖

√
Qξ‖2 ‖g1 − g2‖2. Using

the concentration of a Lipschitz function of Gaussian random variables, we can obtain

for all τ > 0

P
[
|‖Xξ‖2 − E(‖Xξ‖2)| > τ

]
= P

[ ∣∣∣‖
√
Qξg‖2 − E(‖

√
Qξg‖2)

∣∣∣ > τ
]

≤ 2 exp

(
− τ2

2‖Qξ‖2

)

≤ 2 exp

(
− τ2

2M

)
, (4.65)
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where ||Qξ||2 ≤ ||ξ||22 Λmax(Σ)
Λmin(A) = Λmax(Σ)

Λmin(A) = M (see (4.39)), and which shows that ‖Xξ‖2
is sub-Gaussian with constant K =

√
M.

Now, using (4.65) we can establish the sub-Gaussian tails of (4.64). Define τ ′ =

‖u− v‖2τ and write

P
[ ∣∣∣‖u− v‖2

(
‖Xξ‖2 − E(‖Xξ‖2)

)∣∣∣ > ‖u− v‖2τ
]

= P
[
|(Zu)u∈Θ − (Zv)v∈Θ| > τ ′

]

≤ 2 exp

(
− τ ′2

2‖u− v‖22M

)
. (4.66)

Establishing bound on E
(

inf
u∈Θ
||Xu||2

)
Using the results established in (4.66) and

Theorem 2.1.5 in [113], we can conclude that the distance measure on the set Θ is

d(u, v) = ‖u − v‖2 for u, v ∈ Θ. Moreover, we can now obtain an upper bound on the

expectation of the supremum of the process difference |Zu − Zv|

E

(
sup
u,v∈Θ

∣∣∣Zu − Zv
∣∣∣
)

= E

(
sup
u,v∈Θ

∣∣∣ ||X(u− v)||2 − E(||X(u− v)||2)
∣∣∣
)

= E
(

sup
u∈Θ

∣∣∣ ||Xu||2 − E(||Xu||2)
∣∣∣
)

using Lemma 1.2.8 in [113]

≤ E
[
sup
u∈Θ
〈g, u〉

]

≤ cw(Θ), (4.67)

where g ∼ N (0, I), w(Θ) is the Gaussian width of set Θ and c is a constant.

Since we are interested in the bound on inf
u∈Θ
||Xu||2, we can extract from (4.67) the

lower bound on the expectation of the infimum of the process. Specifically, note that

(4.67) can be written as

E
(∣∣∣∣ inf

u∈Θ
||Xu||2 − inf

u∈Θ
E(||Xu||2)

∣∣∣∣
)
≤ E

(
sup
u∈Θ

∣∣∣∣ ||Xu||2 − E(||Xu||2)

∣∣∣∣
)
≤ cw(Θ),

leading to

−cw(Θ) ≤ E
(

inf
u∈Θ
||Xu||2 − inf

u∈Θ
E(||Xu||2)

)
≤ cw(Θ).

The lower bound then takes the form

E
(

inf
u∈Θ
||Xu||2

)
≥ inf

u∈Θ
E(||Xu||2)− cw(Θ) (4.68)
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Note that the vector Xu is distributed as Xu ∼ N (0, Qu), which is the same as a vector
√
Qug ∼ N (0, Qu) for g ∼ N (0, I). Therefore, using results of Lemma I.2 from [129],

we can extract the following inequality

∣∣∣
√

trace(Qu)− E(‖
√
Qug‖2)

∣∣∣ ≤ 2
√

Λmax(Qu).

Moreover, based on our discussion, the same inequality holds for the random vector Xu

since E(‖√Qug‖2) = E(‖Xu‖2)

∣∣∣
√

trace(Qu)− E(‖Xu‖2)
∣∣∣ ≤ 2

√
Λmax(Qu).

which leads to a lower bound on the expectation of the norm

E(‖Xu‖2) ≥
√

trace(Qu)− 2
√

Λmax(Qu). (4.69)

We will lower-bound the first term on the right hand side of (4.69) and upper bound the

second one. In particular, using (4.37) we write trace(Qu) = NuTCXu for any u ∈ Θ

and bound

trace(Qu) = NuTCXu = N ||C
1
2
Xu||22

≥ N inf
u∈Θ

uTCXu

≥ N inf
u∈Rdp

uTCXu = NΛmin(CX)

≥ N Λmin(Σ)

Λmax(A)
= NL. (4.70)

Moreover, using (4.39), we bound

||Qu||2 ≤ ||u||22
Λmax(Σ)

Λmin(A)
=

Λmax(Σ)

Λmin(A)
= M. (4.71)

Therefore, substituting (4.71) and (4.70) into (4.69), we get

E(‖Xu‖2) ≥
√
NL− 2

√
M.

Since E(‖Xu‖2) is bounded from below, we can write

inf
u∈Θ

E(‖Xu‖2) ≥
√
NL− 2

√
M. (4.72)
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Finally, substituting (4.72) in (4.68) gives us

E
(

inf
u∈Θ
||Xu||2

)
≥
√
NL− 2

√
M− cw(Θ). (4.73)

Establishing concentration inequality of inf
u∈Θ
||Xu||2.

Now from Lemma 2.1.3 in [113] and the results in [109] we extract the form of the high

probability concentration inequality of inf
u∈Θ
||Xu||2 around its mean, for τ > 0

P
[

inf
u∈Θ
||Xu||2 ≤ E

(
inf
u∈Θ
||Xu||2

)
− τ
]
≤ c1 exp(−c2τ

2).

In order to bring the above expression into the form of (4.63), we write

P
[

inf
u∈Θ
||Xu||2 ≥ E

(
inf
u∈Θ
||Xu||2

)
− τ
]
≥ 1− c1 exp(−c2τ

2).

Substituting the bound on the expectation from (4.73) gives us

P
[

inf
u∈Θ
||Xu||2 ≥

√
NL− 2

√
M− cw(Θ)− τ

]
≤ c1 exp(−c2τ

2). (4.74)

4.D.2 Overall bound

Observe that in (4.74) we established a bound for each ui = ∆i
||∆i||2 of the form

P


 inf

∆i∈cone(ΩEi )

||∆i||2=δi

||X∆i||2
||∆i||2

≥ ||∆i||2 ρ′i


 ≥ 1− c1 exp(−c2η

2
i ),

where ρ′i =
√
NL−2

√
M−cw(Θ)−ηi. Then using the fact that ρi = ρ′iδi, ρ

2 =
∑p

i=1 ρ
2
i ,∑p

i δ
2
i = 1 and setting ηi = η for all i = 1, . . . , p, we get

ρ2 =

[√
NL− 2

√
M− cw(Θ)− η

]2 p∑

i=1

δ2
i =

[√
NL− 2

√
M− cw(Θ)− η

]2

.

Taking the square root of the above and using (4.62) we finally get

P

[
inf

∆∈cone(ΩE)

||(Ip×p ⊗X)∆||2
||∆||2

≥
√
NL− 2

√
M− cw(Θ)− η

]
≥ 1− pc1 exp(−c2η

2).

(4.75)
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Establishing bound on N .

Now setting η = ε
√
NL for 0 < ε < 1, the right hand side of the inequality inside the

probability statement in (4.75) must be equal to

√
κN =

√
NL− 2

√
M− cw(Θ)− ε

√
NL = ε′

√
NL− 2

√
M− cw(Θ),

for some positive constant ε′. Since κN > 0, it follows that we require

ε′
√
NL > 2

√
M + cw(Θ),

or equivalently

√
N >

2
√
M + cw(Θ)

ε′
√
L

= O(w(Θ)).

This concludes our proof on establishing the restricted eigenvalue conditions. Quisque

ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dic-

tumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum

wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat

quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet

nisl. Vivamus quis tortor vitae risus porta vehicula.



Chapter 5

Semi-Markov Switching Vector

Autoregressive Model:

Heterogeneous Data Modeling

In this chapter we consider the problem of anomaly detection in full flight data, con-

sisting of continuous and discrete parameters (see Figure 1.2). The goal is, similarly as

before, to detect anomalous flight segments, due to mechanical, environmental, or hu-

man factors in order to identifying operationally significant events and provide insights

into the flight operations and highlight otherwise unavailable potential safety risks and

precursors to accidents. For this purpose, we propose a framework which represents each

flight using a semi-Markov switching vector autoregressive (SMS-VAR) model, based on

the combination of the ideas for modeling discrete data (HSMM) and continuous data

(VAR). Detection of anomalies is then based on measuring dissimilarities between the

model’s prediction and data observation.

For this purpose, in Section 5.2 we present a detailed model description and param-

eter learning algorithm based on EM. In Section 5.3 we present the anomaly detection

framework, which is based on the dissimilarity of one-step ahead predicted and filtered

phase distributions, showing advantage over the standard likelihood-based approach.

Finally, in Section 5.5 we provide extensive evaluations on synthetic and real data,

including 20000 unlabeled flights, showing SMS-VAR outperforming many base line

123
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algorithms and accurately detecting different types of anomalies.

5.1 Introduction

To model heterogeneous flight data, consisting of a mixture of discrete and continuous

parameters, we propose to merge the ideas of HSMM and VAR and use switching vector

autoregressive model [130]. These are models which alternatively known as hybrid

models, state-space models with switching, jump-linear systems, etc. [131], [132]. In

these type of models, the system evolves according to a certain dynamics until it switches

to another dynamics. The switching is usually discrete and is defined in terms of a

(semi-) Markovian process.

The problem of anomaly detection based on heterogeneous data was addressed by

several researchers. For example, the work of [133] presented a model-based framework

to identify flight human-automation issues using switches data and sensor measure-

ments. The anomaly is identified if there is a difference between inferred intents of the

automation and the observed pilot actions. The limitation of this approach is that it

assumes the data is noise-free and does not account for parameter uncertainties. More-

over, it is not clear how the algorithm performs on large flight data, since the presented

evaluations are limited to a few examples.

The work of Li et. al. [134] proposed to detect anomalies in the flight data based on

continuous and discrete features using a clustering approach, called ClusterAD. Their

idea is to represent each flight as a vector, by concatenating all feature across time. Af-

ter dimensionality reduction, the data is clustered based on Euclidean distance measure

to identify outliers and groups of similar flights. A potential issue with this approach

is a misalignment between time series from different flights. Since the size of the vec-

tors needs to be the same for all flights, forcing such equality can introduce spurious

dissimilarities, increasing false positives in the detected anomalies. Moreover, the study

in [135] revealed that ClusterAD does not perform well on discrete anomalies as com-

pared to MKAD. Partially, this is due to the use of Euclidean similarity measure on

heterogeneous data vectors, making it less effective in finding discrete anomalies.

Another approach for heterogeneous anomaly detection in aviation systems based
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on multiple kernel learning (MKAD) was proposed by Das et. al. [74]. The method con-

structs a kernel matrix as a convex combination of a kernel over discrete sequences and

continuous time series. One-class SVM [76] is then used to detect anomalies. Although

the method usually shows good performance results, it lacks scalability since the kernel

matrix has to be updated for each new flight.

Summarizing the above literature and comparing to the proposed switching vector

autoregressive model, we can make several remarks. First, our method is unsupervised,

thus it does not require a training set of labeled normal flights. Moreover, our framework

works with data, where each data sample can be of variable length. As compared to data-

driven methods, our framework is model-based and therefore can be computationally

more efficient in the detection stage by not requiring to recompute the model for each

test flight. At the same time, the model construction requires only basic knowledge

about the considered parameters and can easily be extended to other anomaly detection

domains.

To motivate our proposed approach, consider Figure 5.1, showing a real flight data

and a model to represent it. On the left we plot a part of flight related to landing

and show time series of several pilot switches (from top: thrust, altitude, autopilot,

flight director, localizer) as well as some of the sensors (altitude, pitch angle, airspeed,

longitudinal acceleration, fuel flow). The switches act as controls, determining the

behavior of aircraft and sensors measure the effects of the controls on the system. A

combination of the switches set by a pilot determines the aircraft’s behavior for a certain

period of time after which a different combination of switches defines another flight

period and so on. Within each flight period, called a phase (shown in red on the left in

Figure 5.1), the aircraft’s dynamics usually remains consistent and steady, while across

phases the dynamics change.

As an example, consider a lower right plot in Figure 5.1, showing aircraft’s path as

it descends from 10000 feet to a runway. The descent is interrupted by some event,

causing it to fly back to a certain altitude, make a circle and repeat the landing. The

path is partitioned into phases shown with different colors and numbers. For instance,

phase 5 corresponds to a steady descent, where aircraft constantly loses altitude while

maintaining its airspeed. This phases is interrupted by phase 2 of duration about 50

seconds, caused by a switch off in auto thrust system and activating hold altitude switch.
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Figure 5.1: Representing heterogeneous flight data using SMS-VAR model. Left plot
shows time evolution of several pilot switches, phase and sensor measurements during
aircraft’s landing. Top right plot shows the proposed model to represent such data. The
bottom right graph shows the trajectory of aircraft, where its path is partitioned into
phases. The value of the phases is obtained after constructing SMS-VAR on such data
and running Viterbi algorithm to recover most probable phase path.

In phase 2 the aircraft levels off by steadily increasing its pitch angle and losing airspeed.

Thus, if a flight is partitioned into multiple phases, determined by the pilot controls

(switches), then the continuous dynamics of each phase can be represented separately

by its own model. We propose to model such data with a dynamic Bayesian network

- semi-Markov switching vector autoregressive (SMS-VAR) model, shown on the right

plot of Figure 5.1. We note that our motivation comes from a rich literature of systems

identification [50], where a standard approach for modeling continuous system dynamics

(in our case the flight’s sensor measurements) is a vector autoregressive model (VAR)

[79]. However, as we discussed above, using a single VAR model for the entire flight
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is inappropriate, thus we employ multiple VARs. A change from one VAR process to

another, i.e., the switching behavior, is modeled with a hidden variable xt, representing

a flight phase.

To model the dynamics of flight switches, we convert their representation from binary

categorical into discrete, i.e., at each time stamp t a vector of zeros and ones (values of

switches at t) is converted into an integer. We call the resulting variable a flight mode mt

and represent it using semi-Markov model (SMM) [136]. SMM is an extension of a simple

Markov chain, allowing to model arbitrary state durations. A simple Markov chain has

implicit geometric state duration distribution [137], causing fast state transitions and is

inappropriate for our case. SMM fixes this by introducing a variable dt which controls

the duration of mode mt (see Section 5.2.1 for more details).

5.2 Semi-Markov Switching VAR

In this Section we formally introduce the SMS-VAR model and show details about the

parameter learning algorithm.

5.2.1 Model Specification

xt xt+1 xt+2

yt yt+1 yt+2yt−1

xt−1

dt−1 dt dt+1 dt+2

mt−1 mt mt+1 mt+2

yt−1ytxt

xt−1xtmtdt−1 xtxt+1mt+1dt xt+1xt+2mt+2dt+1xt

xt xt+1

ytyt+1xt+1 yt+1yt+2xt+2

mtdt−1

mtmt−1dt−1

mtdt−1

mt+1mtdt mt+2mt+1dt+1

dt−1mtdt dtmt+1dt+1 dt+1mt+2dt+2

mt+1dt mt+2dt+1

mt+1dt mt+2dt+1

Dt Dt+1 Dt+2

Mt+2

Xt+2

Yt+2Yt+1

Xt+1

Mt+1Mt

Xt

Yt

xt+1

xt+2

Figure 5.1: Left: Dynamic Bayesian Network of Semi-Markov Switching Vector Autore-
gressive Model (SMS-VAR). Right: Junction Tree for SMS-VAR. Ovals represent graph
cliques, denoted by calligraphic letters Dt,Mt,Xt, and Yt, rectangles denote separators.
Symbols within shapes show variables on which the corresponding objects depend.
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In this work we propose to model the flight of an aircraft using semi-Markov switch-

ing vector autoregressive model (SMS-VAR), whose Dynamic Bayesian Network (DBN)

is shown in Figure 5.1. From the graphical model perspective, SMS-VAR has four classes

of variables: continuous sensor measurements yt ∈ Rny , discrete phase xt ∈ {1, . . . , nx},
discrete mode, mt ∈ {1, . . . , nm} and a positive real variable dt ∈ Z≥0, determining

the time duration of the mode and phase in a particular state. The SMS-VAR model

is then fully defined by specifying the probability distributions which govern the time

evolution of the above four variables. In particular, the probability distribution of mode

transition is modeled as

p(mt|mt−1, dt−1) =




p(mt|mt−1) if dt−1 = 1

δ(mt,mt−1) if dt−1 > 1
, (5.1)

where δ(a, b) denotes the Dirac delta function: δ(a, b) = 1 if a = b and 0 otherwise. In

essence, in this expression dt−1 works as a down counter for mode persistence, i.e., when

dt−1 > 1, the mode is forced to remain unchanged: mt = mt−1. On the other hand, when

dt−1 = 1, a new mode state mt is determined by sampling from p(mt|mt−1) ∈ Rnm×nm ,

which is a 2-dimensional multinomial distribution. Note that to disallow self-transitions

and ensure that mode changes to another state whenever dt−1 = 1, we set all the

diagonal entries in p(mt|mt−1) to zero.

The duration variable dt is modeled as

p(dt|mt, dt−1) =




p(dt|mt) if dt−1 = 1

δ(dt, dt−1 − 1) if dt−1 > 1
, (5.2)

which means that as long as dt−1 > 1, we simply set dt = dt−1 − 1. On the other hand,

for dt−1 = 1, the new duration dt is determined by sampling from p(dt|mt), based on

the current value of mode mt. In this work we assume that

p(dt|mt) := P (dt = k|mt) =
λkmte

−λmt

k!

is a Poisson distribution with λmt > 0 and k = 0, 1, 2, . . .. Observe that dt together

with mt define a semi-Markov process [136] (top two chains shown in the left plot of

Figure 5.1), which has more flexibility in modeling mode durations as opposed to a
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simple Markov process, whose implicit mode duration is constrained to a geometric

distribution [137].

The phase xt is distributed according to the following transition model

p(xt|xt−1,mt, dt−1) =




p(xt|xt−1,mt) if dt−1 = 1

δ(xt, xt−1) if dt−1 > 1
. (5.3)

Here p(xt|xt−1,mt) ∈ Rnx×nx×nm is a 3-dimensional multinomial distribution of xt: for

each value of the mode mt, there is a separate transition matrix defining the distribution

of xt, given xt−1: p(xt|xt−1). It is invoked whenever the counter dt−1 = 1, otherwise the

phase is forced to stay in the same state. We note that in contrast to the mode distri-

bution in (5.1), here we allow self-transitions even when dt−1 = 1, i.e., p(xt|xt−1,mt) for

each mt can have non-zero diagonal. The idea behind this modeling step comes from

the motivation to enable long-lasting phase persistence. In other words, although the

mode can switch quickly to another state, the phase, on the other hand, has a flexibility

to either remain unchanged or transition to another phase. In fact, this property of

our model is precisely what enables to compress many mode states into a single phase,

allowing the use of only a few VAR processes to model the data.

Finally, the sensor measurements are modeled using first-order VAR process:

yt = Axtyt−1 + εxt , (5.4)

where Axt ∈ Rny×ny is the VAR transition matrix and εxt ∼ N (0,Σxt) is a Gaussian

noise, uncorrelated in time t. The probability distribution of yt then takes the form

p(yt|yt−1, xt) ∝ Ce−
1
2

(yt−Axtyt−1)TΣ−1
xt (yt−Axtyt−1), (5.5)

for some normalization constant C. Note that for each value of the phase variable xt,

there is a separate VAR process with its own transition matrix and noise characteristics,

which determines the time evolution of the vector y. In this work we assume that Σxt

is identity, thus the only unknown parameter in (5.5) is a transition matrix Axt . Each

VAR process is assumed to be stable [79], i.e., all the eigenvalues of Axt have magnitude

less than 1.

We remark on several important points about our model. (i) Note that SMS-VAR

is similar but different from Markov switching autoregressive model [138], also known
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in literature as hybrid, switching state-space models or jump-linear systems [139]. The

main difference is that the switching dynamics is governed by a hierarchy of observed,

mt, and unobserved, xt semi-Markov processes, rather than a single unobserved Markov

process. (ii) We could have defined our model without a phase xt, where the mode

mt would directly determine the active VAR process. However, whenever any of the

switches change its state, there would be a transition to a different VAR. This is a bad

design since the transitions would be too frequent and the number of VARs would be

too large. Including phase xt, which depends on mode mt and duration dt, enables

data compression since not every switch change would result in the phase change. This

behavior is observed on the left of Figure 5.1, where phase 5 is insensitive to a change in

auto thrust at t = 50, similarly phase 1 at t = 1200 stays same, although some switches

change. (iii) Preliminary evaluations of the flight dataset based on correlogram [79]

revealed that sample autocorrelation functions of the time series exhibit a fast decay

beyond the first lag. i.e., there are no long-range interaction between two events far away

from each other. Therefore, the use of first-order dependency in our model is adequate

to represent the data. Based on this, we position SMS-VAR as a short-memory model

[140] and the proposed anomaly detector in Section 5.3 specifically targets short-term

anomaly events.

5.2.2 Parameter Learning

Given data D = {F 1, . . . , FN}, consisting of N multivariate time series in the form F i =

{d̄i1, . . . , d̄iTi , m̄i
1, . . . , m̄

i
Ti
, ȳi1, . . . , ȳ

i
Ti
}, (bar over the variable means that it is observed),

our objective here is to estimate the parameters of SMS-VAR model:

Θ = {p(mt|mt−1), p(xt|xt−1,mt), λmt , Axt}. (5.6)

Since the data related to hidden phase Xi = {xi1, . . . , xiTi} is unobservable, the

standard approach is to use Expectation-Maximization (EM) algorithm [18]. The idea

is to find Θ, which maximizes likelihood of all the observed and unobserved data

p
(
F 1:N , X1:N

∣∣∣Θ
)

. Assuming that we have an initial estimate of parameters Θ0, the

EM algorithm consists of iterating the following two steps until convergence:

• E-step: Q(Θ,Θk)=EX1:N

[
log p

(
F 1:N, X1:N

∣∣∣Θ
)∣∣∣∣F 1:N,Θk

]
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•M -step: Θk+1 = arg max
Θ

Q(Θ,Θk).

Note that the E-step is executed for each flight independently, while in M -step the

resulting probability information from all flights is collected to update the model pa-

rameters.

Also, observe that the execution of EM for the considered model can be challenging

since the nodes in DBN are of mixed data type, complicating the inference in E and

optimization in M steps. However, exploiting the fact that dt,mt and yt are observable,

we can compute both steps very efficiently.

E-step Given the parameter specifications in Section 5.2.1, the E-step can be effi-

ciently computed using Junction Tree algorithm [7]. Specifically, based on the DBN

structure of the model on the left plot of Figure 5.1, we construct its junction tree (JT),

shown on the right plot of Figure 5.1. JT is simply a tree-structured representation

of the graph, which helps to decompose the global computations of joint probability

p
(
F 1:N , X1:N

∣∣∣Θ
)

into a linked set of local computations.

Each oval node in junction tree in Figure 5.1, representing cliques in the graph of

SMS-VAR, is initialized with a value of the corresponding probability distribution. For

example, a node Dt is initialized with the value of duration distribution p(m̄t|m̄t−1, d̄t−1)

in (5.2). Similarly,Mt, Xt, and Yt are initialized by evaluating (5.1), (5.3) and (5.5) on

the data.

After all theN trees are initialized with the data D = {F 1, . . . , FN}, the operation of

Junction Tree algorithm to compute E-step consists of propagating messages forward in

time (form t = 1 to t = Ti) and backward in time (form t = Ti to t = 1). For example,

at iteration k, the result of forward propagation is the computation of likelihood of

data p(F 1:N |Θk), while the backward propagation computes p(xt, xt+1|F 1:N ,Θk) and

p(xt|F 1:N ,Θk) for each t.

The important practical aspect of the above calculations is to prevent numerical

underflow, occurring during message propagation when many small numbers multiplied

together. To avoid this, we performed all operations in log-scale and at each time stamp

t normalized the messages to have their probability mass sum to one (using log-sum-exp

function).
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M-step The result of E-step is now used to update the parameter estimates Θ in

(5.6). We note that since phase xt is the only unobservable part of the model, the only

parameters that are re-estimated are phase transition distribution p(xt|xt−1,mt) and

VAR transition matrices Axt . The other parameters, i.e., mode and duration distribu-

tions, depend on variables which are completely observable and estimated directly from

data once and never re-estimated during EM iterations.

To estimate phase transition distribution p(xt|xt−1,mt), it can be shown that op-

timization problem arg max
Θ

Q(Θ,Θk) amounts to estimating for each value of mt the

transition matrix p(xt|xt−1) by multiplying matrices p(xt, xt+1|F 1:FN ,Θk) across those

time steps t at which mt matches the mode value m̄t in the data.

The solution of arg max
Θ

Q(Θ,Θk) for Axt can be shown to be equivalent to a solu-

tion of a least-square problem for each xt ∈ {1, . . . , nx}. Specifically, using p(xt|F 1:N ,Θ)

from the results of E-step, we weight each sample vector ȳt with a scalar wt = p(xt|F 1:N ,Θ)

for one of the xt: ȳ′t = wtȳt. Then for each weighted data sequence ȳ′t, . . . , ȳ
′
Ti

,

i = 1 . . . , N we can stack the vectors as in expression (5.4) in a matrix form and

write the following system of equations
[
ȳ′T2 ȳ′T3 . . . ȳ′TTi

]T
=
[
ȳ′T1 ȳ′T2 . . . ȳ′TTi−1

]T
ATxt .

In compact notations above can be written as Yi = MiB, where Yi,Mi ∈ RLi×ny and

B = ATxt ∈ Rny×ny for Li = Ti − 1. Now stacking together the equations for all N data

sequences, we get [Y T
1 , . . . , Y

T
N ]T = [MT

1 , . . . ,M
T
N ]TB, which again can be compactly

written as a matrix equation Y = MB, where Y,M ∈ RL×ny for L =
∑N

i=1 Li. Now

vectorizing (column-wise) each matrix in Y = MB, we get

vec(Y ) = (Iny×ny ⊗M)vec(Y )

y = Zβ,

where now y ∈ RLny , Z = (Iny×ny ⊗M) ∈ RLny×n2
y , β ∈ Rn2

y and ⊗ is the Kronecker

product. Consequently, β (rows of Axt stacked in a vector) is estimated by solving

arg min
β

1

L
‖y − Zβ‖22. (5.7)

Note that matrix Z in (5.7) can become very tall in cases when there are many data

sequences N , each of large length Ti. The standard approaches of estimating β, based



133

on regular QR decomposition [86], become impractical. For this purpose, in practice,

we use the approach of [87] based on Tall and Skinny QR (TSQR), which enables to

perform QR of a tall matrix in a block-by-block manner.

To summarize, the execution of the above two steps can be computed in a very

efficient, parallel manner. For instance, E step is completely separable across flights

and although M step (main computation is (5.7)), requires synchronization, it can also

be distributed with the use of parallel QR [87].

5.3 Description of Anomaly Detection Framework

Given a dataset of N unlabeled flights our objective is to detect which of them deviate

from the normal behavior the most. Since there is no a-priori knowledge on which

flights belong to which category, we cannot build a separate model for each class. Our

approach is to construct a single SMS-VAR model using all flight data and then evaluate

the built model on all the flights to detect anomalies (see Figure 5.1 for an illustration).

Assuming that the fraction of anomalous flights in the dataset is small, we expect that

the constructed model mostly represents a typical normal aircraft behavior and is not

significantly influenced by the abnormal data. See Section 5.5.1 for further discussion

of this point.

Evaluation of the constructed model on the flights is a critical step of the approach

since it determines the detection accuracy of the framework. One simple and straightfor-

ward choice is the computation of likelihood of each flight. For example, given estimated

model parameters Θ, we can compute the likelihood of the data of flight i (dropping i

related to the numbering of time series to avoid clutter)

p(F ) = p(d̄1:T , m̄1:T , ȳ1:T ) = (5.8)

= p(d̄1, m̄1, ȳ1)
T∏

t=2

p(d̄t, m̄t, ȳt|d̄1:t−1, m̄1:t−1, ȳ1:t−1)

where `t = p(d̄t, m̄t, ȳt|d̄1:t−1, m̄1:t−1, ȳ1:t−1) is the likelihood of observation at t given

data seen so far. At each time stamp we can monitor the flight and flag down the times

when probability drops to small values, signaling of anomalous activity. However, as we

subsequently show in Section 5.5, this metric did not perform well as compared to the

approach we propose in this work and discuss below.
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Figure 5.1: Anomaly detection framework using SMS-VAR modeling.

Our proposed method to monitor flight behavior is based on evaluating a discrepancy

between one-step ahead predicted and the filtered phase distribution, i.e., after data

observation. Specifically, assume that the current phase distribution xt over {1, . . . , nx}
is p(xt|d̄1:t, m̄1:t, ȳ1:t). Then we can propagate this probability one step forward using

estimated model parameters to get prior estimate of phase distribution at t+ 1 (see left

plot of Figure 5.1 for details):

p(xt+1|d̄1:t, m̄1:t, ȳ1:t) = (5.9)

=
∑

dt+1,mt+1,xt,yt+1

p(dt+1,mt+1, xt, xt+1, yt+1|d̄1:t, m̄1:t, ȳ1:t)

=
∑

dt+1,mt+1,xt,yt+1

p(xt|d̄1:t, m̄1:t, ȳ1:t) p(dt+1|mt+1, d̄t)×

× p(mt+1|m̄t, d̄t) p(xt+1|xt,mt+1, d̄t) p(yt+1|ȳt, xt+1).

At time t+1 we observe data m̄t+1, d̄t+1, ȳt+1, and so the posterior (filtered) distribution
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of the phase changes to

p(xt+1|d̄1:t+1, m̄1:t+1, ȳ1:t+1) = (5.10)

=
p(d̄t+1, m̄t+1, xt+1, ȳt+1|d̄1:t, m̄1:t, ȳ1:t)∑
xt+1

p(d̄t+1, m̄t+1, xt+1, ȳt+1|d̄1:t, m̄1:t, ȳ1:t)
,

where we computed

p(d̄t+1, m̄t+1, xt+1, ȳt+1|d̄1:t, m̄1:t, ȳ1:t) = (5.11)

=
∑

xt

p(d̄t+1, m̄t+1, xt, xt+1, ȳt+1|d̄1:t, m̄1:t, ȳ1:t)

=
∑

xt

p(xt|d̄1:t, m̄1:t, ȳ1:t) p(d̄t+1|m̄t+1, d̄t)×

× p(m̄t+1|m̄t, d̄t) p(xt+1|xt, m̄t+1, d̄t) p(ȳt+1|ȳt, xt+1).

Next, given (5.9) and (5.10), i.e., the distribution of the hidden phase before and

after observations at time t+ 1, we compare these two distributions and measure their

difference. For this purpose, we use Kullback–Leibler (KL) divergence, which is defined

as

Dt+1

[
p(xt+1|F1:t)

∣∣∣
∣∣∣p(xt+1|F1:t+1)

]
= (5.12)

=
∑

xt+1∈{1,...,nx}

p(xt+1|F1:t) log
p(xt+1|F1:t)

p(xt+1|F1:t+1)
,

where F1:t is a shorthand for {d̄1:t, m̄1:t, ȳ1:t}, and similarly for F1:t+1. Observe from

(5.9) and (5.11) that information about all the observed variables, d̄t, m̄t and ȳt par-

ticipate in the computation of the phase distribution. The prior p(xt+1|F1:t) reflects

the model’s belief based on data seen so far about the probability of which phase (i.e.,

VAR process) currently is active. After data observation, if the posterior p(xt+1|F1:t+1)

shows a different phase distribution, then the distance measure (5.12) captures this by

producing a large Dt. On the other hand, when both distributions are similar, it means

the observed data are likely to have been generated from the model and the computed

value Dt is small. Moreover, observe that incremental nature of the computation of

Dt values implies that our approach can be used for online anomaly detection, i.e.,

algorithm can monitor a flight in real time, without the need to wait for all the data to

arrive.
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Finally, once we compute Dt’s, the anomaly score S, characterizing the flight’s

abnormality, is obtained by computing a standard deviation (STD) of all Dt, i.e.,

SKL =
1

T

T∑

t=1

(Dt − µD)2, (5.13)

where µD = 1
T

∑T
t=1Dt. Thus, small values of S indicate normal flights, while large S

correspond to anomalies.

To motivate our choice for using STD, note that the first-order SMS-VAR is a

short-memory model (see Section 5.2), which usually detects short-duration anomalies.

Moreover, the values Dt, comparing phases at neighboring times, are sensitive to short-

duration anomalies, and so for a typical abnormal flight, Dt usually stay small except for

a few time stamps, at which anomaly events occurs and Dt spike. Therefore, STD which

uses a sum of quadratic deviations, is sufficiently sensitive to outliers and can serve as

an adequate summary measure. We note that detecting abnormal flights based on Dt

values can be viewed as a separate outlier detection problem in univariate time-series.

Various sophisticated approaches can be used for this, e.g., based on support vector

regression [90], mixture transition distribution approach of [91] or a median information

from the neighborhood [92], although we observed that a simple standard deviation

performed well in practice.

5.4 Compared Algorithms

In this Section we present an overview of the algorithms which we used in the comparison

studies in Section 5.5.The five algorithms we considered were: SMS-VAR KL, based on

KL divergence (discussed in Section 5.3), SMS-VAR based on log-likelihood, vector

autoregressive (VAR) model, semi-Markov switching (SMM) model and the multiple

kernel anomaly detector (MKAD).

SMS-VAR LL. This approach is based on estimating SMS-VAR using all the data

points and evaluating the flights based on log-likelihood of data. However, instead of

using p(F ) from (5.8) directly as a measure of abnormality, which usually washes out the

events of interest and makes them undetectable; similarly as in (5.13) we used standard

deviation, i.e., SLL = 1
T

∑T
t=2(log `t − µ`)2, where `t = p(d̄t, m̄t, ȳt|d̄1:t−1, m̄1:t−1, ȳ1:t−1)

and µ` is the mean of `t’s.
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dt−1 dt dt+1

mt−1 mt mt+1

Figure 5.1: Semi-Markov Model.

VAR. In this approach we modeled only the continuous part of the data using a

single first-order VAR process yt = Ayt−1 + εt. The anomaly detection is based on

computing SVAR = 1
T

∑T
t=2(rt − µr)2, where rt = ‖yt − Âyt−1‖2 is a one-step-ahead

prediction error, Â is the estimated VAR matrix using all the data and µr is the mean.

SMM. An approach based on modeling only the discrete part of data is based on

semi-Markov model shown in Figure 5.1. Here, similarly as in SMS-VAR, we modeled

mt and dt using (5.1) and (5.2), respectively. The anomaly score is then computed as

SSMM = 1
T

∑T
t=2(`t − µ`)2, where ` = p(d̄t, m̄t|d̄1:t−1, m̄1:t−1).

MKAD. This algorithm was designed to detect anomalies in the heterogeneous

multivariate time series, where both discrete and continuous features are present. Let

F i and F j denote the multivariate time series of two flights. The algorithm constructs a

kernel of the form K
(
F i, F j

)
= αKd

(
F i, F j

)
+(1−α)Kc

(
F i, F j

)
, where Kd is a kernel

over discrete sequences and Kc is a kernel over continuous time series and α ∈ [0, 1] is a

weight, usually set to α = 0.5. For discrete sequences, the normalized longest common

subsequence (LCS) is used, i.e., Kd

(
F i, F j

)
= |LCS(F i,F j)|√

TiTj
, where |LCS(F i, F j)| de-

notes the length of LCS. For continuous sequences, the kernel Kc

(
F i, F j

)
is inversely

proportional to the distance between symbolic aggregate approximation (SAX) repre-

sentation [75] of continuous sequences in F i and F j . The constructed kernel K ∈ RN×N ,

N is the number of flights, is then used in one-class support vector machine (SVM) to

construct a hyperplane to separate anomalous and normal flights. Note that the main

idea behind SAX technique is to represent a continuous sequence as a discrete one. This

is achieved by dividing a sequence into equally spaced segments, computing the average

of each segment and then discretizing the result into a set of alphabets of predefined

size. By regulating the length of the segments, MKAD can be tuned to detect long- or

short-term dependencies in the data.
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Figure 5.2: Performance of the five algorithms at detecting three simulated types of
anomaly events: a) Mode anomaly, b) Phase anomaly, c) Sensor anomaly. There were
100 normal and 10 anomalous flights in each considered scenario. The evaluation was
done using the area under ROC curve (AUC). The AUC values are shown after averaging
the results over 30 runs, the values in parenthesis show one standard deviation.

5.5 Experimental Results

In this Section we present extensive evaluations of the SMS-VAR model on both syn-

thetic as well as real flight data. We compare the performance of the proposed approach

with the four alternatives described in Section 5.4.

5.5.1 Synthetic Data

In the first simulation scenario we study detection accuracy of all the algorithms when

presented with different types of anomalies, while in the second study we examine how

the proportion of anomalous to normal flights affects the detection accuracy of SMS-

VAR algorithm.

Detecting Different Types of Anomalies

We generated three synthetic datasets consisting of 100 normal flights and 10 anomalous,

each of length 200 time stamps. The number of phases and sensor measurements in

the generation model was set, respectively, to nx = 3 and ny = 4. The number of

binary switches was set to 5, which corresponds to nm = 25 = 32. In each dataset,

the 10 abnormal flights represented a different type of anomaly. In the first dataset,

each anomalous flight contained several mode anomalies, i.e., unusual flips of switches,

while the continuous sensor measurements behaved normally. In the second dataset,
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Figure 5.1: Anomaly detection accuracy of SMS-VAR KL when applied to datasets
with different proportion of anomalous data (5%− 50% of normal data is replaced with
anomalous). Total number of flights in all scenarios is 100.

we simulated unusual change of unobserved phases, i.e., at several time stamps one

VAR process switched to another VAR process. Note that in this scenario all the

measurements related to a particular VAR process were normal except that the change

in underlying dynamics was abnormal. Finally, in the third dataset we simulated errors

in sensor measurements (continuous data), while the mode transitions behaved normally.

The results are shown in Figure 5.2. It can be seen from Figure 5.2-a that the dis-

crete anomaly detector SMM had the highest accuracy for detecting mode anomalies,

followed by SMS-VAR and others. Since the dataset contained only discrete anomalies,

it is expected that SMM performed the best. It was also expected that SMM would

do poorly on the other two datasets since it could not use the information from sensor

measurements. Similarly, the VAR model-based anomaly detector did not do well on

the first dataset in Figure 5.2-a but improved its accuracy in Figures 5.2-b, c. MKAD

algorithm, using both discrete and continuous data, achieved medium level accuracy in

detecting discrete anomalies and did well on the dataset with errors in sensor measure-

ments (we used a SAX window of size 2, since anomalies are of short duration). The

algorithm, on the other hand, was insensitive to unusual phase changes in the data.

In contrast, the SMS-VAR-based algorithm, which fuses information from both

sources of measurements is able to detect the anomalous flights with high accuracy
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Figure 5.2: Performance of the five approaches at detecting go-around (top) and mode
anomaly (bottom) flights. There were 100 regular and 10 anomalous flights in each
dataset. Figures a) and c) show ROC curves for each method. AUCs shown after
averaging over 30 runs for SMS-VAR, for other methods no averaging is done since they
are deterministic. Figure b) shows an example of SMS-VAR KL detecting a typical
go-around flight with a history of some of the parameters. Figure d) shows detection of
a typical mode anomaly flight.

across all the datasets. Moreover, the anomaly detection approach based on KL mea-

sure performed better than the log-likelihood measure (LL) on first and second datasets

and did slightly worse on the third one, confirming that it is a viable method to detect

abnormal activities.

Effect of Anomaly Proportion on Accuracy In this study we investigate the

validity of the assumption made in Section 5.3, where we mentioned that for our anomaly

detection approach to be accurate, the fraction of anomalous flights should not be large.

For this purpose we generated a set of datasets of same size but with different proportion

(5% − 50%) of anomalous sequences. The simulated anomaly was related to unusual
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switch changes; the parameter dimensions in the generation model remained the same

as above. Results are shown in Figure 5.1. It can be seen that when the number of

irregular data sequences is small (5%−15%), the algorithm’s detection accuracy is high

(AUC value is 0.9 − 0.7). On the other hand, as we replace more and more normal

flights with anomalous, the accuracy drops. This can be explained by noting that SMS-

VAR is built using all the data, so when the fraction of anomalous flights is large, the

constructed model represents now a typical anomalous behavior. For example, in Figure

5.1 we see that when 50% or more flights are anomalous, the algorithm prediction flips

and it starts classifying normal flights as anomalous.

5.5.2 Real Flight Data

In this section we present the evaluation results of the considered approaches on the

FOQA flight dataset from a partner airline company (a similar, publicly available flight

dataset can be found at [42]). The data contains over a million flights, each having a

record of about 300 parameters, including sensor readings, control inputs and weather

information, sampled at 1 Hz. Out of 300 parameters, we selected 31 continuous ones

related to aircraft’s sensor measurements and 18 discrete binary parameters related to

pilot switches. Therefore, the model dimensions are ny = 18 and nm = 218. Note

that although 18 binary features correspond potentially to 218 = 262144 unique com-

binations, however the number of such values in real data is much smaller, since only

few combinations of binary flight switches are possible. For example, in the dataset

consisting of 20000 flights, used in Section 5.5.2, only 673 unique modes exist (0.3%

of 262144). The number of hidden phases was set to nx = 5, after some preliminary

experiments in which we tested several nx in range [3, 20] and selected nx balancing a

good prediction accuracy with low computational complexity of algorithm. We have

selected flights with landings at the same destination airport with aircrafts of the same

fleet and type, so that we eliminate potential differences related to aircraft dynamics

or landing patterns. Data analysis focused on a portion of the flight below 10000 feet

until touchdown (duration 600-1500 time stamps), usually having the highest rates of

accidents [95].

The evaluation of the algorithms is first done by using two small dataset of manually

labeled flights (Section 5.5.2), while in the second study we use a large dataset in a more
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Figure 5.3: Anomaly scores of SMS-VAR KL, VAR and MKAD on unlabeled dataset
consisting of 20000 flights. Red circles in all plots denote all the 61 go-around flights
present in the 20000 flights.

SMS-VAR KL VAR MKAD

go-around (19) go-around (3) go-around (17)
high speed in approach (5) fast approach (2) high pitch at touch down (1)

high rate of descent in approach (4) high speed in approach (5) high speed in approach (2)
bounced landing (2) high rate of descent in approach (4) low speed at touch down (1)

delayed braking at landing(2) bank cycling in approach(2) low path in approach (1)
late retraction of landing gear (4) high pitch at touch down (1) flaps retracted in approach (1)

deviation from glide-slope (2) unusual flight switch changes (15)
unusual flight switch changes (11)

Table 5.1: Anomalies discovered in the top 100 anomalous flights, ranked by each
anomaly detection method in the set of 20000 unlabeled flights. The distribution of
anomaly scores for each method is shown in Figure 5.4.

realistic scenario with no information about flights’ labels (Section 5.5.2). In the second

case the shown results are only qualitative since no ground truth is available but the

discoveries were validated by the domain experts.

Labeled Flights: Go-Around For this study we manually selected flights, which

abort their normal landing, fly back up to a certain altitude and try to repeat the

landing again (see Figure 5.1 for an example). These flights are considered operationally

significant anomalies since they could be executed in response to an emergency or unsafe

conditions in the air or on the runway. The dataset included 10 go-around and 100

normal flights. The results are shown in Figure 5.2. In particular, from Figure 5.2-a we

see that SMS-VAR and MKAD performed similar, with SMS-VAR based on KL measure

achieving the highest accuracy of detection. Both SMM and VAR-based approaches,
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which used only part of data, performed worse, missing many go-around flights.

In Figure 5.2-b we also show a typical go-around flight and the corresponding history

of Dt (see definition in (5.12)) values across the flight. Note that the go-around happens

shortly after t = 500, when the altitude increases to about 5000 feet, coupled with

unusual behavior in other parameters. For example, a glide slope mode was switched

off, which typically is used to safely descend aircraft to a runway. Also, there was

a sharp rise of pitch angle, corresponding to airplane’s nose lifting up during ascent.

The SMS-VAR KL model correctly detected these unusual changes with multiple spikes

around the time the go-around was initiated.

Labeled Flights: Mode Anomaly Additionally, we tested the performance of the

algorithms on the real flight anomaly related to unusual auto-throttle switchings, whose

example is shown in Figure 5.2-d. In particular, around t = 400 during aircraft’s descent,

one of the switches related to throttle control is switched off briefly (2−5 seconds). This

action led to a fast spool up of engines (from 25% to 40% within few seconds). This

abnormal behavior usually causes a quick increase of longitudinal acceleration leading

to an abrupt forward motion of the aircraft. Similarly as before, we created a dataset

consisting of 10 anomalous and 100 normal flights and the results are shown in Figure

5.2-c.

Interestingly, although the anomaly type was discrete, the simple SMM approach,

which looks only at discrete part of data, did not perform well. Similarly, using only

continuous features, the VAR algorithm also did poorly. When the information from

both sources is combined, as was done in SMS-VAR KL or MKAD, the detection ac-

curacy increased. Still, it can be seen that SMS-VAR KL performed better than other

methods by a margin, justifying our proposed approach to track anomalies using the

phase information.

Unlabeled Flights Finally, we compared the algorithms’ performance on a dataset

containing 20000 unlabeled flights. We tested SMS-VAR KL and compared its perfor-

mance with MKAD and VAR. Figure 5.4 shows the anomaly scores for the three ap-

proaches. For each method, we examined the top 100 flights with the highest anomaly

scores to determine the flights with operationally significant events. In Table 5.2 we
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Figure 5.4: Anomaly scores of SMS-VAR KL, VAR and MKAD on unlabeled dataset
consisting of 20000 flights. Red circles in all plots denote all the 61 go-around flights
present in the 20000 flights.

present a summary of the discovered anomalies, examined and validated by the ex-

perts. Note that since there is no ground truth available, the presented results are only

qualitative.

SMS-VAR KL VAR MKAD

go-around (19) go-around (3) go-around (17)
high speed in approach (5) fast approach (2) high pitch at touch down (1)

high rate of descent in approach (4) high speed in approach (5) high speed in approach (2)
bounced landing (2) high rate of descent in approach (4) low speed at touch down (1)

delayed braking at landing(2) bank cycling in approach(2) low path in approach (1)
late retraction of landing gear (4) high pitch at touch down (1) flaps retracted in approach (1)

deviation from glide-slope (2) unusual flight switch changes (15)
unusual flight switch changes (11)

Table 5.2: Anomalies discovered in the top 100 anomalous flights, ranked by each
anomaly detection method in the set of 20000 unlabeled flights. The distribution of
anomaly scores for each method is shown in Figure 5.4.

As can be seen, among the top 100 flights, we found that the most common type of

anomaly were the go-around flights, shown as red circles in Figure 5.4, as well as anoma-

lies related to unusual pilot switches. The number of go-arounds detected by SMS-VAR

and MKAD was similar, 19 and 17, respectively. The VAR-based approach only identi-

fied 3 such flights in its 100 top anomalous flight list. SMS-VAR and MKAD algorithms

have additionally identified many flights with unusual changes in pilot switches, although

these flights did not overlap. In particular, the anomalies identified by SMS-VAR are
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characterized by quick changes in the flight parameters (few seconds), e.g., the switch-

ings in auto throttle system as in Figure 5.2-d or the flights when the localizer switch

was turned off during approach resulting in large deviation from glide slope and these

are difficult to detect using MKAD. The discrete anomalies identified by MKAD are

of longer duration. For example, it found several flights when the flight director was

switched off for over 2 minutes during the approach. It is an unusual behavior since,

typically, flight director is used throughout the approach to assist the pilot with ver-

tical and horizontal cues. Therefore, we can conclude that although achieving better

performance in detecting certain types of anomalies, the proposed framework can be

positioned as complementary to the existing state-of-the-art approaches, enabling the

discoveries of more diverse spectrum of operationally significant events.



Chapter 6

Conclusion

In this thesis, we have presented the work which addresses the problem of anomaly

detection in aviation systems. In particular, we have designed a spectral algorithm for

learning and inference in hidden semi-Markov models (HSMMs), which were used to

model discrete flight data and perform anomaly detection. We have then developed a

framework for anomaly detection in the continuous data based on vector autoregressive

models (VAR). Moreover, we have presented a theoretical analysis for error bounds and

sample complexity in regularized least-squares problems employed for estimating VAR

parameters. Finally, we have proposed to combine the HSMM and VAR into a SMS-

VAR model to represent a heterogeneous flight data consisting of a mixture of discrete

and continuous data.
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