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Abstract 

Increasing effects of global warming have concerned scientists and engineers for 

quite some time now. The major contributor to global warming has been the inefficient use 

of energy to fulfill the need for the ever growing human population. One of the major 

sources of energy is oil which fuels one of its largest consumer, the transportation sector. 

The Energy Information Administration reported that the U.S transportation sector 

contributed 28% to the total energy consumption and 72% to the total petroleum 

consumption in the year 2010. With these concerning developments, it has become critical 

to find a solution to improve the efficiency of transportation. A solution to this problem 

can be connected vehicles. Connected vehicle environment paves the pathway for future 

road transportation. Researches in this area have specifically focused to improve traffic 

mobility and safety, and also vehicles’ fuel consumption and emissions. A Hardware-in-

the-Loop-System (HiLS) test-bed to evaluate the performance of connected vehicle 

applications has already been developed. A laboratory powertrain research platform, which 

consists of a real engine, a hydrostatic dynamometer and a virtual powertrain model to 

represent a vehicle, is connected using a software to a microscopic traffic simulator 

(VISSIM). Actual fuel and emissions measurements are obtained using this test-bed. This 

thesis documents the development of the software architecture that enables the different 

components of the HiLS to communicate with each other in real time. Different 

methodologies of software design are tested to demonstrate real time execution of HiLS 

with a 200ms time step. Further, using this test-bed a comprehensive evaluation of 

Cooperative Adaptive Cruise Control (CACC) application has been conducted to compare 

the fuel consumption and emissions of CACC vehicle and  non-CACC vehicle in a traffic 

network simulated in VISSIM. In literature, CACC application is implemented using 

several different complex optimization methods based on prediction models derived from 

measurements of traffic information with the cost of computation power. In this thesis, a 

heuristic, averaged velocity approach to CACC is implemented using the information from 

the preceding vehicles which can be used in real time systems like the HiLS for a realistic 

evaluation of the CACC application. The algorithm designed uses information from 
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multiple preceding vehicles to determine a velocity profile for the controlled vehicle which 

will obtain fuel benefits. The simulation and experimental results obtained using this 

CACC algorithm prove that using more preceding vehicle information provides higher fuel 

benefits. This phenomenon is described by the understanding that the accessibility of future 

information, with regards to the number of preceding vehicle velocity averages, by the 

controlled vehicle allows the CACC controller to obtain a smoothened velocity profile for 

the controlled vehicle with suppressed acceleration or decelerations which has a direct 

correlation with fuel savings.  VISSIM traffic simulator is used to simulate different traffic 

conditions like city driving and highway driving. From the simulation, an individual 

vehicle is selected to be completely controlled by the CACC controller whereas the other 

vehicles are controlled byVISSIM’s internal driver model based on the Wiedmann Car 

following model. Then an extensive study is done through simulation of different traffic 

scenarios on the fuel consumption of the controlled and the immediate preceding vehicle 

which is evaluated using the Vehicle Specific Power (VSP) requirement. Further, to 

validate these simulation results, the HiLS is used to conduct experiments with selected 

scenarios from the simulations and actual fuel and emissions results for the CACC 

controlled vehicle and immediate preceding vehicle are compared. From the results 

obtained, it is realized that CACC application provides significant fuel saving, between 15-

18% approximately for both highway and city driving cases, for the controlled vehicle in 

comparison to the immediate preceding vehicle. Future work will focus on using the 

observations from the current CACC methodology and implementing a systematic method, 

possibly an online optimization method, to find out a general solution where the preceding 

vehicles’ information can be used. Then CACC application will be extended to evaluate 

more than one vehicle in a platoon of vehicles. Consequently, HiLS will be used to obtain 

experimental results.  
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Chapter 1  Introduction and Background 

1.1  Connected Vehicles Application 

Recent concerns with global warming have revealed alarming rise in the average 

temperature of planet Earth. Experts are concerned because use of fossil fuel and its 

byproducts have majorly contributed to this rise in temperature and serious measures have 

to be taken to curb this rise. At the same time, the availability of resources is decreasing 

year after year with the demand rising exponentially. Thus scientists have started to focus 

towards developing more energy efficient technology or find ways to make existing 

technology more efficient, and one such major area of field of technology is the 

transportation sector. The Energy Information Administration reported that the U.S 

transportation sector contributed 28% to the total energy consumption and 72% to the total 

petroleum consumption in the year 2010.  

Researchers are currently exploring different avenues to reduce fuel consumption 

and one major field of application is connected vehicles. Connected vehicles research 

pertains to research in the field of traffic and most recently in vehicle powertrain. Early 

developments in this topic focused majorly on safety of on road vehicles and reducing 

traffic congestion. With the introduction of Cruise Control(CC) in production vehicles in 

the early 1990s, came the development of Adaptive Cruise Control (ACC). Compared to 

conventional CC in vehicles, which only control the vehicle speed, ACC allows drivers to 

maintain a desired distance behind a preceding vehicle as well as a desired velocity. From 

the perspective of traffic network operation, a stable ACC controller that can maintain a 

consistent desired gap between vehicles will improve traffic safety and capacity of the 

traffic network. In [1] ACC is reviewed with the perspective of safety. [2], [3]demonstrate 

one of the first ways to implement ACC with respect to safety as well as fuel benefits.  

1.1.1  Inter Vehicle Communication & Vehicle Infrastructure Integration 

ACC uses range sensors to determine the relative distance and velocity to the 

preceding vehicle. It uses just one of the preceding vehicle’s information gathered from its 

onboard sensors to determine the relative distance and velocity , whereas many researchers 
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in the field of traffic are curious to find out how more information from several other 

vehicles as well as traffic infrastructure in the same traffic network can be used to improve 

safety, reduce traffic congestion and increase fuel benefits .Hence the idea of vehicle to 

vehicle and vehicle to infrastructure communication has emerged.  

Recent research in the field of transportation has focused extensively on Inter 

Vehicle Communication (IVC) and Vehicle Infrastructure Integration(VII). Initial 

developments of these concepts were formulated with the intention of increasing road 

safety, but there has been an increase in the research related to using the information 

obtained from IVC and VII for increasing fuel economy. The concept of IVC enables 

communication within vehicles whereas VII is an attempt to enable communication 

between vehicles and aspects of traffic infrastructure like traffic signal or other road side 

units as shown in figure 1.  

IVC and VII have not only gained attention in research communities, but also the 

Department of Transportation who are proposing for installing communication devices in 

new vehicles as early as 2017. Traffic information communication between vehicles, 

known as connected vehicle, will improve traffic mobility and safety. Connected vehicle 

technology also enables better optimization of a vehicle’s fuel economy and emissions by 

utilizing traffic information such as the traffic light Signal-Phase-and-Timing (SPaT) and 

other vehicle speed information in a traffic environment. 

Technologies associated with IVC and VII[4] have shown potential to improve 

traffic safety and efficiency[5], [6]. Technologies are being developed to implement IVC 

and VII, especially in wireless traffic communications. Recent researches are focusing to 

validate the reliability of Dedicated-Short-Range-Communication (DSRC) [7], [8]which is 

now the standard for wireless vehicle communication [9]. The US Federal Communication 

Commission (FCC) has agreed to dedicate 75MHz spectrum from 5.85GHz to 5.925GHz 

bands for DSRC. Using these technologies, tests have been evaluated with respect to the 

scalability, security and interoperability of DSRC communications in a real world setting. 

IVC and VII technology enable use of more traffic information which helps improve fuel 

benefits and reduce emissions.  



 

3 

 

1.1.2  Vehicle Communication Devices 

 As an extension to ACC, Cooperative Adaptive Cruise Control (CACC) 

incorporates IVC and VII communication. CACC has been under development to utilize 

IVC and VII to conduct vehicle level optimization. It is manifested with the idea of using 

every possible information available in a traffic environment, to gain potential benefits 

with regards to fuel economy, safety and traffic congestion. Information such as traffic 

signal timing cycle, longitudinal and latitudinal vehicles speed, acceleration behavior are 

crucial to realizing the true potential of CACC. CACC vehicles can be designed to follow 

the preceding vehicles with significantly higher accuracy and faster response because of 

the availability of more information. Previous research has shown that CACC vehicles are 

better at following preceding vehicles and are much more stable than ACC vehicle [10].  

The development of ACC/CACC controller is crucial in understanding the 

involvement of different levels of vehicle autonomy. The three levels of vehicle control 

currently known are non-autonomous, semi-autonomous and autonomous. Non-

autonomous vehicles are everyday vehicles that are controlled by humans. The vehicles are 

not provided with any external traffic information except for what is perceived by the 

human driver. Semi-autonomous is a higher penetration of autonomy in vehicle control 

where information is provided to the driver in the form of an advisory. An autonomous 

vehicle scenario occurs when the ACC/CACC controller takes complete control of the 

vehicle and uses parameters fed to it as input from the available traffic data. These traffic 

information are based on the detection and measurements from range sensors, internal 

states measurements from vehicle state sensing position, engine speed, vehicle speed and 

extending it to accessing the preceding vehicles’ information through wireless 

communication. A typical traffic network setup to enable a complete or semi-autonomous 

vehicle control is shown in figure 1.  



 

4 

 

 

Figure 1. Traffic Information processing through IVC & VII 

One of the key components in determining the extent of the success of autonomy 

of vehicles is the capability of range sensor equipment. The range sensor’s basic, core 

responsibility is to detect relative distance and velocity between the controlled and the 

immediate preceding vehicle. Commonly used range sensors are radar, vision sensors, and 

light detection sensors for the application of ACC and wireless communication for CACC. 

The biggest challenge for such devices is to provide reliable and accurate information to 

the controlled vehicle under any circumstances because the information these devices 

provide are crucial to the stability of the ACC/CACC controllers implemented. For CACC 

application long range wireless communication, such as a network with a specific 

bandwidth, is more relevant. With the availability of wireless communication more 

information can be sent because through wireless communication both IVC and VII 

communication can be achieved.  

1.2  CACC Controller  

  Many optimization tools like Model Predictive Control, as shown in [11], 

Pontryagin’s Minimum Principle as shown in [12] or Pulse-and-Gliding (Png) methods 

[13], [14]have been used for both ACC and CACC applications. However, many of the 

optimization algorithms implemented are computationally heavy and difficult to 
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implement in real time systems. In [15] , the behavior observed from the optimized driving 

cycle of a target vehicle is intuitively used to develop a simplified ACC approach that leads 

to fuel savings and maintains safety as well as can be implemented in real time systems. 

This idea can further be extended to develop a CACC controller 

1.2.1  CACC Controller Development 

In this thesis, the discussion will be on several case studies and approaches taken 

towards CACC implementation with respect to fuel consumption savings and its evaluation 

using a real engine. Using the simplified method mentioned in [15], the behavior of 

vehicles is studied. The study is focused on using only the information from just one 

preceding vehicle which demonstrates the application of ACC, but in this thesis a similar 

simplified method is implemented to demonstrate the capability of CACC approach to 

achieve fuel benefits as well as maintain safety of vehicles in traffic network. Therefore, 

information from more than one vehicle is obtained to formulate an algorithm that has 

potential for obtaining fuel benefits without any prediction of the future velocity profile of 

the preceding vehicles. The approach aims to prove that using the preceding vehicles’ 

velocities will give significant fuel benefits. The idea is to incorporate the dynamics of the 

preceding vehicles, based on the reaction of the driver in the lead vehicles, to any traffic 

situation in the velocity calculation of the controlled vehicle. This will allow the controlled 

vehicle to make crucial judgments to modify its own dynamics which will lead to fuel 

benefits. 

Different scenarios are tested with respect to the ability to maintain safety of 

vehicles, and reduce fuel consumption. One of the constraints is to maintain the controlled 

vehicle within the specific distance corridor bounds which means the controlled vehicle 

must have a limited range of distance to follow from the immediate preceding vehicle 

within which it can traverse freely to obtain maximum fuel benefits. The controlled vehicle 

must not approach the preceding vehicle dangerously close as well as recede too far away 

from the preceding vehicle. Either of these situations will jeopardize the safety or traffic 

flow respectively. To tackle such a situation, different methods are simulated with respect 

to the deviation of the controlled vehicle’s distance from the distance corridor limits.  In 
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[16],distance constraints are added to assure the safe travelling of vehicles within specific 

distance corridor bounds  

1.2.2  A Simplified CACC Methodology 

The objective of the Simplified Fuel Efficient Predictive Cruise Control Approach 

from literature is to reduce fuel consumption relative to a preceding vehicle by following 

the predecessor within a safe distance corridor. This approach implements an Adaptive 

Cruise Control (ACC) with a prediction of the velocity profile of the preceding vehicle 

over a horizon. A prediction model is used which is derived based on measurements of a 

velocity profile of a real vehicle on road. Using this prediction model, the approach 

conducts a prediction of the velocity of the preceding vehicle for a specific time horizon 

and takes the average of the velocity over the horizon. This average velocity is then 

assigned as the speed of the controlled vehicle for the next time step. However it also 

implements a velocity correction term to maintain the maximum and minimum distance 

corridor constraints. This approach is much more simplified than the other methods as it 

does not need to use any computationally heavy optimization algorithm. The approach of 

a velocity trajectory generator is based on the observations made from the results of other 

optimization methods that is; an averaged velocity profile of the controlled vehicle 

compared to the preceding vehicles has high potential of fuel benefits. Therefore, using a 

prediction model for a specific time horizon, the future velocity of the preceding vehicle is 

obtained which is averaged over the time horizon to give a smoothened velocity profile for 

the controlled vehicle. 

Although the above approach presented is simplified, it uses a prediction model for 

the prediction of the immediate preceding vehicle’s velocity profile which is not applicable 

for all traffic scenarios. Therefore, like any other prediction model it has inaccuracies 

associated with it. A common problem with prediction model is that it may be specific for 

one road condition and different for a different road condition, making it tedious to 

determine a prediction model for every specific road condition. Thus, the approach 

presented in this thesis aims to use the idea of a smoothened velocity profile for the 

controlled vehicle but without using a prediction model. Instead, the controlled vehicle is 
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able to access the velocity of multiple preceding vehicles and incorporate the dynamics of 

the preceding vehicles in its own dynamics by making its velocity the function of the 

average of the preceding vehicles’ velocities. The algorithm is not based on offline 

measurements but one which can be determined in real time .This algorithm is 

implemented to obtain a velocity profile for the controlled vehicle that can lead to reduced 

fuel consumption and maintain a safe distance between vehicles. In this averaged velocity 

approach an online CACC algorithm is implemented with the assumption that the velocities 

of the preceding vehicles are available to the controlled vehicle at each time step.  

This approach of CACC control implemented complements the idea of CACC as it 

uses more than one preceding vehicles’ velocities to take the average and add a correction 

term to maintain the distance corridor. The method of implementation makes this algorithm 

applicable in real time to obtain a velocity profile for the controlled vehicle that can achieve 

up to 17% of fuel benefit. Vehicle Specific Power in [12] is first used to measure the fuel 

consumption of the controlled as well as for the first preceding vehicle for simulation 

purposes assuming that the preceding and the controlled vehicles are same type of vehicles. 

Then the simulation results are validated with experimental results obtained from the 

powertrain-research-platform. Simulations are carried out with different number of 

preceding vehicles for different driving cycles to understand the influence of number of 

vehicle velocity averages on the velocity profile of the controlled vehicle.  

1.2.3  CACC Simulation with HiLS 

For simulation purposes, two different approaches to apply the constraints have 

been simulated. The two methods simulated are the buffer zone and the median method. 

The case study with the best results is used to develop a CACC controller in SIMULINK 

which is integrated with the HiLS. It requires sophisticated software interaction to achieve 

the simulation objectives. The powertrain-research-platform consists of sophisticated 

hardware such as a full-sized diesel engine, a hydrostatic dynamometer on which the 

engine is loaded for tests. A state of the art laboratory is used to house the engine. To 

successfully run and test the engine, a control environment has to be created. This is only 

achievable through the use of software integration. A middleware is designed to integrate 
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all the different components of the HiLS. This middleware is developed in C# platform and 

integrated with Matlab/SIMULINK, and VISSIM Microscopic Traffic Simulator to enable 

the simulation of a selected virtual vehicle to test the application of CACC. The information 

from this simulator is transferred over a wired or wireless network to the powertrain-

research -platform to obtain experimental, quantitative fuel consumption and emissions 

measurements. Therefore the collaboration of the software and the hardware plays a vital 

role in the successful execution of the complete HiLS.  

1.3  Experimental Validation of CACC Application 

Methods to measure the performance of a vehicle’s fuel economy and emissions in 

traffic include conducting simulation [3]or instrumenting a vehicle .However both 

approaches have drawbacks. A simulation-based approach implements  steady-state fuel-

use and emission maps as a function of the engine torque and speed, which are deemed 

inaccurate compared to actual measurements whereas instrumenting a vehicle is a 

cumbersome process because it requires modifying the vehicles. Therefore HiLS offers the 

flexibility and accuracy of evaluating the performance of connected vehicle applications.  

HiLS, a laboratory powertrain-research-platform, consists of a real engine, a 

hydrostatic dynamometer and a virtual powertrain model to represent a vehicle, is 

connected using a software to a microscopic traffic simulator (VISSIM). HiLS utilizes the 

powertrain-research-platform, which consists of a real engine for fuel and emission 

measurements in real-time. VISSIM traffic simulator allows different vehicles to be tested 

with different driving profiles by altering the engine and the load settings on the 

dynamometer. The lab set up for HiLS accommodates large precision measurement 

devices. Therefore, making connected vehicle applications testing in a simulated but 

realistic traffic more economical, without having to instrument multiple vehicles. This 

method is much safer and it overcomes the legal issues associated with testing the 

application in real traffic . 
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1.3.1  Components of HiLS 

With HiLS, different vehicles can be tested flexibly by changing the engine and the 

load settings on the dynamometer. Large precision measurement devices can be fitted in 

large vehicles [17] , but it will be cumbersome and time consuming for smaller passenger 

vehicles. Smaller portable measurement devices have been used, but are less accurate, and 

require calibrations for different driving cycles [18]. 

 

Figure 2. HiLS Componenets 

The HiLS consists of several different components as shown in figure 2. Each 

component is connected to the other with the help of a middleware developed specifically 

to serve the purpose of connecting the components in real time. The complete integration 

of all the components in a synchronized manner is required to demonstrate real time 

application. The three components of focus for this thesis are the Connected Vehicles 

Controller which pertains to CACC , the powertrain-research-platform which consists of a 

real engine with a virtual powertrain equipped with measurement devices for the purpose 

of obtaining accurate and precise measurements of fuel consumption and emissions, and 

VISSIM traffic simulator to simulate a realistic traffic environment.  

1.3.2  Powertrain Research Platform 

The engine set up in the Thomas E. Murphy lab is a John Deere diesel engine. The 

powertrain research platform is developed with the intention of using a real engine with a 
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virtual powertrain to provide the user with the flexibility of using any powertrain model 

developed in commercial software like MATLAB. In particular, this platform is 

implemented with a  power-split Hybrid Electrical powertrain derived from the Toyota 

Prius hybrid architecture, as given in[19], [20]. This power split architecture divides the 

power provided to the powertrain which is partially shared by the internal combustion 

engine and an electric motor or generator. The power split architecture allows higher 

efficiency at the fuel consumption level as it allows two degrees of freedom to the engine; 

providing power through the engine or through the motor.  

1.3.3  Virtual Hybrid Powertrain  

The hybrid powertrain research platform is designed to carry out investigation of 

fuel efficiency on hybrid vehicles. One of the major benefits of using such a set up for 

investigation is the flexibility with which experiments can be conducted. This set up 

employs a high bandwidth hydrostatic dynamometer to emulate the dynamic behaviors of 

the hybrid power sources like the electric motor/generator and vehicle loads, and interact 

with a multi cylinder engine in real time. The idea of virtual hybrid is used to emulate the 

transmission, driveline and load of a hybrid powertrain using a hydrostatic dynamometer 

as described in [21]. This is shown in figure 3. 

 

Figure 3. Virtual Hybrid Powertrain[19], [21] 

This idea of virtual hybrid powertrain saves the cost of building a physical powertrain 

system and expedites the speed of hybrid powertrain research. The design of the hydrostatic 

dynamometer based research platform is a complete hybrid powertrain control and 

simulation system .  
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1.3.4  Fuel and Emissions Measurement  

The HiLS utilizes an existing powertrain research platform that has been developed 

as shown in Figure 4. A real engine overcomes the inaccuracies associated with the 

modelling of combustion and emission behavior of an engine accurately for real-time 

application, while the dynamics of powertrain is obtained using accurately developed 

models. Therefore, the control and simulation is defined by a three-level closed-loop 

architecture[19], [21]. The high-level controller, given the power demanded from the 

vehicle, selects a reference engine operating point that optimizes fuel consumption and 

emissions. For the middle-level controller, the virtual-torque-controller controls the 

powertrain torques that utilizes the reference engine torque from the high-level controller. 

Highly accurate models are used to simulate the dynamic responses of the powertrain 

components which include the desired engine loading torque. In the low level controller, 

the dynamometer tracks the desired engine loading torque from the middle-level controller. 

Fuel consumption and emissions from the engine are measured by precision measurement 

devices. 

Fuel consumption is measured using AVL’s Fuel Measurement System Model 

P402 with a measurement uncertainty of 0.1% and output frequency of up to 80kHz, and 

the emissions are measured using AVL’s SESAM-FTIR, which measures 25 components 

of exhaust gas from engine combustion, for example NO, NO2, CO and CO2, with a 

sampling rate of 1Hz. 

  

Figure 4.Powertrain Research Platform 
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1.3.5  VISSIM Traffic Simulator 

For the current research under progress, VISSIM, a microscopic traffic simulation 

software is used to carry out real time simulation of traffic on different types of road 

architectures. VISSIM provides the user with the flexibility to design their own traffic 

scenario using calibration based on actual measurement data from on road traffic or a 

hypothetical set up of simulation scenarios for experimental purposes. It is a microscopic 

simulator that allows the user to focus on individual vehicle and also allows the user to 

acquire individual speed, location and various other vehicle attributes. 

For this project, VISSIM is a vital component that is used to run the simulation. 

However, it is important to extract this information from VISSIM software and pass it on 

to the powertrain-research-platform for obtaining real time experimental data. The 

information sent by VISSIM will be used as a reference parameter by the powertrain-

research-platform . VISSIM is used to provide the real time simulation data and emulate a 

realistic traffic scenario. To achieve all these tasks of sending vital information of a specific 

vehicle amongst all other vehicles in the traffic and then use that information in the 

powertrain-research-platform, different software need to communicate with each other. 

The proposed idea is to use C# and MATLAB to communicate with VISSIM where C# 

acts as the Component Object Model (COM) client and server [22], [23]. The complete 

synchronization of the software should be designed keeping in mind the implementation of 

various applications. For this thesis, the implementation of CACC application is crucial.  

1.3.6  Integration of Various Software Platforms using Middleware 

The software communication has to be executed three way. From the previous 

discussions, it can be inferred that the major pathway between the software 

communications has to be between VISSIM and a programming software compiler like 

MATLAB, C, C# or any other compatible language compiler that allows the user to carry 

out analysis on the data collected from VISSIM. Previous work [24] shows successful 

integration of VISSIM traffic simulator with COM objects like MATLAB. For HiLS, 

MATLAB is used for various other applications like simulating the Hybrid Electric Vehicle 

powertrain and also the CACC controller. Creating a COM outside the MATLAB 

environment gives the user the freedom of extracting information from VISSIM and makes 
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the whole architecture less cumbersome. Therefore it is realized that it will be more 

efficient to have a middleware to communicate between VISSIM and other software. 

Hence ,it is decided that a powerful programming language will be most appropriate for 

the application of the COM and so C# is used to communicate both between MATLAB 

and VISSIM. The COM client or server, in this case C#, communicates all the data that it 

receives from VISSIM to MATLAB. VISSIM and C# are extremely compatible and it is 

easy to integrate the VISSIM software using C# programming language. More about 

programming with C# and VISSIM is discussed in [25]. In this thesis we are focusing on 

sending the extracted data to the powertrain-research-platform through a network, the 

internet.  

1.4  Thesis Contribution 

In this thesis, a heuristic CACC controller is developed, a software or middleware 

is designed to integrate the HiLS and finally CACC methodology is evaluated using 

experiments in integration with the HiLS.  

CACC Controller Design 

The objective is to develop a connected-vehicle controller and integrate it with a 

microscopic traffic simulator (VISSIM) to replicate real traffic dynamics for fuel and 

emissions measurements. Hence, a simplified, averaged preceding vehicles’ velocities 

method is used to design a CACC controller to implement the controller in real time with 

HiLS. Instead of using a prediction model the controller uses the vehicle information of 

multiple preceding vehicles to determine a velocity profile for the controlled vehicle which 

provides potential fuel benefits. 

Design of Software Architecture for HiLS 

In the HiLS, the powertrain research platform calculates the demanded power of a 

target vehicle in VISSIM which is then used to load a real engine. Real fuel consumption 

and emissions are then measured using state-of-the-art measurement devices. To integrate 

the powertrain research platform with the traffic simulator and CACC application, a robust 

software or middleware is designed and implemented. The software must flawlessly 
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conduct real-time data transfer from and to different components of the HiLS within a time-

step of 200ms.   

Evaluation of CACC controller through Experiments. 

The final objective is to use the powertrain-research-platform to evaluate CACC 

approach for connected vehicles applications. Several simulation case studies are obtained 

using the developed CACC controller. A real-time CACC application is evaluated with the 

powertrain-research-platform in integration with the CACC controller to validate the 

simulation results . 
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Chapter 2  Implementation and Evaluation of Cooperative 

Adaptive Cruise Control Using Simulation 

2.1  Introduction and Background 

 

Figure 5. CACC concept sketch  

Recent developments in CACC have demonstrated the implementation of various 

optimization methods. Optimization is done with respect to multiple objectives like to 

increase safety, to increase comfort and most recently to reduce fuel consumption for better 

fuel economy. In [2], [3] an application of multi-objective Model Predictive Control (MPC) 

is implemented. The MPC algorithm is designed to fulfill the objective of reducing fuel 

consumption while taking into consideration mobility and comfort of the controlled 

vehicle. In [26],CACC is implemented with the perspective of increasing traffic flow by 

inducing string stability so that the inter-vehicle distance can be reduced while keeping a 

safe distance between consecutive vehicles in front of the controlled vehicle. 

CACC takes into account a sophisticated IVC or VII which has opened up a whole 

new avenue for research in vehicle dynamics. In [4] the velocity of controlled vehicle is 

influenced based on the information obtained from the traffic signal timings to reduce the 

time of travel as well as to obtain fuel benefit by reducing the occurrence of stops at traffic 

signals. Different optimization methods have served to explore ways to obtain fuel benefit, 

reduce travel time, increase comfort, but these complex optimization methods come with 

the cost of complex computations. Such optimization methods make the implementation 

of an effective controller in real time very difficult. However, such algorithms can be used 
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to give insight and understanding of the vehicle dynamics which may further lead to 

methods that are computationally less complex and can be implemented in real time for 

real systems. One such algorithm developed is the Simplified Predictive Cruise Control 

[15] discussed in chapter 1.  

2.1.1  The Distance Corridor Constraints 

The general CACC implementation methodology includes a string of vehicles in a 

specific traffic network where the controlled vehicle follows the immediate preceding 

vehicle at a specific distance, maintaining the distance corridor. The controlled vehicle 

must maintain the constraints given by 

∆𝑥𝑚𝑖𝑛 ≤ ∆𝑥 ≤ ∆𝑥𝑚𝑎𝑥 

The constraints ∆𝑥𝑚𝑖𝑛 and ∆𝑥𝑚𝑎𝑥 are given by the constant time headway policy which are 

stated as     

∆𝑥𝑚𝑖𝑛 = ∆𝑥𝑚𝑖𝑛,0 + ℎ𝑣   

∆𝑥𝑚𝑎𝑥 = ∆𝑥𝑚𝑎𝑥,0 + ℎ𝑣 

∆𝑥 = 𝑥𝑛−1 − 𝐿𝑛−1 − 𝑥𝑛 

Where ∆𝑥𝑚𝑖𝑛,0 and ∆𝑥𝑚𝑎𝑥,0 are the minimum and maximum inter-vehicle distance when 

the vehicles are at stand still with h as the constant time headway and v the velocity of the 

controlled vehicle at that instant. The value of h is typically equal to one or more than one. 

Since constant time headway is assumed, it is decided that h will be equal to one based on 

the initial condition of the controlled vehicle in VISSIM traffic simulator. The controlled 

vehicle’s initial speed is around 20m/s and it is approximately 22m away from the 

immediate preceding vehicle. Therefore, the controlled vehicle will take approximately 1.1 

seconds to reach the position of the immediate preceding vehicle, which makes the 

selection of h as one very feasible. Also, xn-1  and xn are the positions of the preceding 

vehicle and the control vehicle respectively from the starting point of the simulation. Ln-1 

is the length of the preceding vehicle. In VISSIM, the length of each vehicle type is given 
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as a default and the length of vehicle type cars is between 4.11 and 4.76 m. Therefore, for 

simulation purposes, the average value of 4.435m is chosen for the length of cars. This is 

clearly depicted in figure 5. 

As mentioned earlier, an ideal communication between the controlled vehicle and 

all the preceding vehicles in front of it is assumed. This assumption is crucial for the 

implementation of the controller, as the average of the velocities of all the preceding 

vehicles is required to determine the velocity of the controlled vehicle for the next time 

step.  

2.1.2  A Simplified Approach to CACC 

In [11] ,the approach chosen to determine the velocity profile of the controlled 

vehicle for a reduced fuel consumption over the complete driving cycle is to implement an 

optimization method to minimize the fuel cost which is a function of the vehicle speed and 

acceleration as stated below. This method of optimization with respect to fuel consumption 

is widely used in literature. However, the simplified approach will not use any optimization 

with respect to fuel consumption. 

min ∫ 𝑞𝑓(𝑣, 𝑎) 𝑑𝑡
𝑡𝑒𝑛𝑑

0

 

The approach in this thesis is to implement a simplified method without doing any sort of 

optimization with respect to fuel consumption as shown above . The intention is purely to 

showcase the advantage of using multiple vehicle information on fuel savings for a 

controlled vehicle. Taking the average of the velocities of the preceding vehicles provides 

a velocity profile for the controlled vehicle such that the high accelerations and 

decelerations are suppressed which in turn lead to fuel savings. By taking the average of 

the velocities of a certain number of preceding vehicles, the idea is to incorporate the 

dynamics of the preceding vehicles in the velocity of the controlled vehicle as future 

information. For instance, in figure 5, as a platoon of vehicles is shown, if the lead vehicle 

makes a stop or decelerates at a traffic signal junction and the velocity of the controlled 

vehicle is a function of the lead preceding vehicle, then the deceleration of the lead vehicle 
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will cause the controlled vehicle’s velocity to decelerate too but not at the same rate 

because the controlled vehicle’s velocity is also the function of the average of the several 

other preceding vehicles in front of it. At the same time, the preceding vehicle number two, 

not equipped with CACC controller, will not have obtained this deceleration and continue 

to accelerate until it realizes it has approached the first preceding vehicle and then 

decelerate abruptly.  

This abrupt deceleration will lead to high fuel consumption for the second 

preceding vehicle and also for the other preceding vehicles without CACC. However, the 

controlled vehicle with CACC benefits because it has already slowed down due to the 

incorporation of the velocities, which are a function of the dynamics of the preceding 

vehicles. Due to this ahead of time incorporation of the preceding vehicle’s dynamics in 

the controlled vehicle, the controlled vehicle somewhat emulates the reaction of the 

preceding vehicles. If the lead vehicle reacts to a signal by decelerating, this reaction of 

deceleration takes some time to reach the other following vehicles and the most amount of 

time to reach the controlled vehicle. However, with the average velocity method, the 

reaction flow time is drastically reduced and the controlled vehicle reacts as instantly as 

the lead vehicle does. Due to this slight deceleration, the controlled vehicle recedes behind 

the immediate preceding vehicle, increasing the distance gap between each other.  

Now, by the time the deceleration reaction reaches the immediate preceding 

vehicle, the controlled vehicle has sufficient distance between itself and the immediate 

preceding vehicle to not decelerate abruptly, whereas the immediate preceding vehicle will 

experience aggressive acceleration or deceleration to maintain a safe distance between 

itself and the consecutive preceding vehicle. Since, the controlled vehicle will not 

decelerate abruptly or accelerate abruptly, over a driving cycle, this trend of the velocity 

profile of the controlled vehicle will look like an averaged profile of the immediate 

preceding vehicle with reduced stops compared to any non-CACC preceding vehicle. If 

this smoothened profile is repeated over the complete driving cycle then the controlled 

vehicle will benefit from reduced fuel consumption. 
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2.2  CACC Controller Design 

The method in [15] uses Adaptive Cruise Control technology where it is assumed 

the controlled vehicle has a radar sensor attached to it which determines the velocity of the 

forward vehicle at the specific time step, and uses this velocity with a prediction model to 

predict the future velocity of the forward vehicle for ten seconds time horizons. Using this 

future velocity of the forward vehicle, the author claims that taking the average over the 

ten seconds prediction horizon gives the desired velocity trajectory or reference velocity. 

The idea is to average the velocity of the forward vehicle and assign it as the desired 

velocity of the controlled vehicle so that the controlled vehicle has less fluctuations in 

acceleration or deceleration.  In this thesis, a similar approach is taken where a reference 

velocity or velocity trajectory is derived based on the average of the velocities of the 

multiple preceding vehicles. However, no prediction of the velocity profile was conducted.  

The states used for this dynamic system are [∆𝑥, 𝑣]. 

The basic dynamic equations in continuous time are as follows: 

∆𝑥′ = 𝑣𝑝 − 𝑣                              

𝑣′ = 𝑎                                                                                                                 

Where ∆x is the absolute distance between the preceding vehicle and the controlled vehicle, 

vp and v are the instantaneous velocities of the immediate preceding and the controlled 

vehicle respectively and a is the instantaneous acceleration of the controlled vehicle  

The above dynamic equations are used with constraints. The major constraint is on the 

mobility of the controlled vehicle with respect to the preceding vehicle. The intention is to 

make sure that whatever the velocity is derived for the controlled vehicle, it must not lead 

the controlled vehicle to exceed the minimum distance limit such that it hits the preceding 

vehicle and crashes or it must not exceed the maximum distance limit such that it recedes 

behind the preceding vehicle, disrupting the flow of traffic. It is important to maintain the 

traffic flow for achieving a high mobility as well as maintaining a safe distance from the 

forward vehicle. A simple linear spacing policy is used, as mentioned earlier, to make sure 

the above criteria of safety and mobility is fulfilled. Where ∆𝑥𝑚𝑖𝑛,0 𝑎𝑛𝑑 ∆𝑥𝑚𝑎𝑥,0 are the 
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minimum and maximum stand still positional difference between the controlled and the 

immediate preceding vehicle.  

In discrete form the dynamic equations become: 

∆𝑥(𝑡 + 1) = ∆𝑥(𝑡) + 𝑑𝑡 ∗ (𝑣𝑝(𝑡) − 𝑣(𝑡))                             

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑑𝑡 ∗ (𝑎(𝑡))                                                                                                               

∆x(t) is the measured difference of position between the controlled vehicle and preceding 

vehicle. To measure ∆x(t) correctly at every time step from VISSIM traffic simulator, it is 

important to consider the length of the preceding vehicle and include it in the calculation 

for ∆x(t) as follows 

∆𝑥(𝑡) = 𝑥𝑛−1(𝑡) − 𝐿𝑛−1 − 𝑥𝑛(𝑡) 

2.2.1  Velocity Trajectory Generator Equation  

The velocity trajectory equation is derived as  

𝑣 = 𝑣𝑑𝑒𝑠 + 𝑣𝑐𝑜𝑟       

Where 

𝑣𝑐𝑜𝑟= fcor (∆𝒙,v,vp, ∆𝒙med, ∆𝒙min, ∆𝒙max) 

The discussion for vcor with regards to constraints is done in the next section. In this section, 

a CACC approach without using a prediction model is evaluated to determine a velocity 

trajectory. In this approach the equation as above is modified to give a velocity trajectory 

equation, but the derivation of vdes is based on the average of the velocities of a certain 

number of preceding vehicles in a platoon. Vdes is derived as shown in the equation below 

vdes(𝑡) =
𝑣𝑝1 (𝑡) + 𝑣𝑝2(𝑡) + 𝑣𝑝3(𝑡)+. . 𝑣𝑝𝑛(𝑡)

𝑛
 

Where n is the number of preceding vehicles in front of the controlled vehicle and vp1 to 

vpn are the velocities obtained from the n preceding vehicles at each time step. This is based 

on the assumption that CACC enabled vehicles have ideal communication either through 

IVC or VII.  

 The second term in equation above, the velocity correction term vcor, is not utilized 

until the vdes determined leads the controlled vehicle to exceed the distance ∆𝑥 constraints 

mentioned in equation above. Since the second term applies the distance corridor 
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constraints to correct the vdes derived from average of the velocities of the preceding 

vehicles, this second term is given the name velocity correction vcor .  

In cases when the controlled vehicle’s assigned vdes leads it to exceed the maximum 

or minimum distance corridor constraints, the second term vcor comes into play. The second 

term is utilized to make sure the instantaneous velocity of the controlled vehicle is reduced 

by a deceleration term or increased by an acceleration term if the controlled vehicle exceeds 

the minimum or maximum distance corridor constraint respectively. Therefore the 

combined equation given to derive the velocity of the target vehicle is nothing but a 

velocity trajectory generator. It is expected that following the trajectory generated from 

this equation will give significant fuel benefits and also give more intuition into how 

averaging the velocity leads to possible fuel savings. Therefore, paving the path for a much 

more realistic CACC implementation without using any prediction model. 

2.3  Applying Constraints – Derivation of the Velocity Correction term 

The averaged velocity method to generate a trajectory utilizes the average of the 

velocities of a number of preceding vehicles in front of the controlled vehicle. Using this 

averaged velocity as the controlled vehicle’s velocity is not sufficient to control the vehicle 

for achieving significant fuel benefits and maintaining safety of the vehicle. This is because 

an averaged velocity is a function of all the preceding vehicles in front of the controlled 

vehicle. Therefore the averaged velocity obtained may approach values that will cause the 

controlled vehicle to come dangerously close to the immediate preceding vehicle or even 

hit the preceding vehicle. On the contrary, the assigned velocity of the controlled vehicle 

cannot be much lower than the immediate preceding vehicles such that the controlled 

vehicle recedes far behind the preceding vehicle. Therefore, it is crucial to add constraints 

to the velocity of the controlled vehicle based on the velocity and the distance gap from the 

preceding vehicle. A velocity correction term is added to the average velocity term, as a 

function of the distance corridor bounds and also as a function of the immediate preceding 

vehicle’s velocity. [16] proposes a similar control strategy where the correction term is an 

acceleration term which is a function of the distance corridor bounds and the immediate 

preceding vehicle’s velocity. It also uses a piecewise method to increase the magnitude of 
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the correction as the controlled vehicle approaches the upper or lower bounds of the 

distance corridor. This method is simulated in the next section and it is referred to as the 

buffer zone method. These correction terms ensure that the combined velocity derived for 

the controlled vehicle complements the objective of saving fuel as well as safe driving for 

all the vehicles in the traffic network.These constraints, in the form of velocity correction, 

are categorized as soft and hard constraints.  

2.3.1  The Hard Constraints 

The two basic hard constraints are categorized as case 1 and 2. The hard constraints 

are added to make sure the controlled vehicle does not exceed ∆𝑥𝑚𝑎𝑥 and ∆𝑥𝑚𝑖𝑛  which 

have already been defined before. The cases are explained as follows: 

Case#1 

If the controlled vehicle exceeds the maximum distance corridor limit, that is: 

∆𝑥 ≥ ∆𝑥𝑚𝑎𝑥 

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑎𝑥

𝑑𝑡2 )        

  Where ka= 𝑡𝑠𝑡𝑒𝑝*k    

Case#2 

If the controlled vehicle happens to exceed the minimum distance corridor limit, that is: 

∆𝑥 ≤ ∆𝑥𝑚𝑖𝑛 

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑖𝑛

𝑑𝑡2 )       

Where ka= 𝑡𝑠𝑡𝑒𝑝*k 

Where tstep must be equal in magnitude to the time step used in simulation. In both cases, 

1 and 2, vcor will take care of the velocity correction to bring the controlled vehicle within 

the constraints of the distance corridor. Case 1 specifically compensates for the deviation 

of the distance between the controlled vehicle and the immediate preceding vehicle as it 

exceeds the maximum distance corridor. Case 2 compensates the acceleration term when 

the same distance exceeds the minimum distance corridor limit. Therefore ,the equations 

mentioned above compensate for the deviation of the difference of distance between the 
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controlled vehicle as an added acceleration term to the desired velocity term of the 

controlled vehicle. The weight k is designed to vary in relation to the change in distance 

corridor. The magnitude of k will decide the degree to which a correction is needed. Figure 

6 depicts both the cases with the red vehicle as the controlled vehicle and the green vehicle 

as the preceding vehicle.  

 

Figure 6. Minimum and Maximum Distance Corridor  

2.3.2  The Median Method as Soft Constraints 

Unlike the hard constraints, which impose drastic changes to the velocity of the 

controlled vehicle to strictly keep it within the limits, the soft constraints are added to 

reduce the impact of the drastic changes to the velocity of the controlled vehicle. The main 

objective of the soft constraints is to make the controlled vehicle realize that it is 

approaching the bounds and it must take action before the hard constraints are implied. It 

is highly preferable that the hard constraints are never utilized and instead the soft 

constraints are used to avoid the use of hard constraints because the hard constraints are 

detrimental to the reduction of acceleration of the controlled vehicle. Therefore the soft 

constraints are added as a compensation to the deviation of the distance between the 

controlled and the immediate preceding vehicle and the median of the maximum and 

minimum distance corridor limits. The idea is to directly compensate for this deviation so 

that by the time the controlled vehicle approaches the extreme limits, its velocity profile is 
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such that a drastic change is not required to keep the target vehicle within the limits. This 

also implies that the hard constrains will not act very strictly on the velocity correction 

term for the target vehicle leading to less aggressive acceleration and deceleration behavior 

of the controlled vehicle. Figure 7 depicts the derivation of the median distance term based 

on ∆𝑥𝑚𝑎𝑥 and ∆𝑥𝑚𝑖𝑛.  

 

Figure 7. Median  Distance Corridor  

The dotted line, shown in figure 7, on the red controlled vehicle is the median of ∆𝑥𝑚𝑎𝑥 

and ∆𝑥𝑚𝑖𝑛. The term ∆𝑥𝑚𝑒𝑑 can be used to compensate for the deviation of ∆𝑥 as an 

acceleration term in vcor , as vcor is a function of the acceleration of the vehicle. Thus the 

deviation term is derived as shown in figure 8 and implemented in the equations below. 

 

Figure 8. Derivation of Median  Distance Corridor 



 

25 

 

Case#1 

∆𝑥 ≥ ∆𝑥𝑚𝑒𝑑 

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑒𝑑

𝑑𝑡2 )        

Where ka= 𝑡𝑠𝑡𝑒𝑝*k 

Case#2 

∆𝑥 ≤ ∆𝑥𝑚𝑒𝑑 

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑒𝑑

𝑑𝑡2
)        

Where ka= 𝑡𝑠𝑡𝑒𝑝*k 

Unlike in the hard constrain cases, 1 and 2 , where vcor is derived with respect to 

∆𝑥𝑚𝑎𝑥 𝑎𝑛𝑑 ∆𝑥𝑚𝑖𝑛, in this case vcor is a function of ∆xmed. The complete vcor piecewise 

function with both hard and soft constraints  is given below 
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𝑘1min(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) ,   

 ∆𝒙 − ∆𝒙𝒎𝒆𝒅 < 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒂𝒙 < 𝟎  

𝑎 =

𝑘1max(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) ,   

  ∆𝒙 − ∆𝒙𝒎𝒆𝒅 > 𝟎  , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒂𝒙 < 𝟎 

𝑘1min(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) +  𝑘2min(( 𝑣𝑝 − 𝑣)/𝑑𝑡)

+ 𝑘3min(
∆𝑥 − ∆𝑥min

𝑑𝑡2
),

∆𝒙 − ∆𝒙𝒎𝒆𝒅 < 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 < 𝟎, ∆𝒙 − ∆𝒙𝒎𝒂𝒙 < 𝟎  

𝑘1max(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) +  𝑘2max( 𝑣𝑝 − 𝑣)/𝑑𝑡

+ 𝑘3max(
∆𝑥 − ∆𝑥𝑚𝑎𝑥)

𝑑𝑡2
),

∆𝒙 − ∆𝒙𝒎𝒆𝒅 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒂𝒙 > 𝟎  
 
  

  

 
  

 

 
  

 

2.3.3  Deriving the Weight Function 

The weights used with the vcor function are crucial in deciding the degree to which 

the correction is needed to be added to vdes so that the final velocity of the controlled vehicle 

provides a profile that has some potential fuel benefits as well as maintains the controlled 

vehicle within the distance corridor limits based on the smoothening of the velocity profile. 

The weight is decided by the k function which again is a function of the distance corridor 

∆𝑥.  

𝑘1min = 𝑡𝑠𝑡𝑒𝑝 ∗  𝑒
−

∆𝑥
∆𝑥𝑚𝑒𝑑

  
 

𝑘1max = 𝑡𝑠𝑡𝑒𝑝 ∗  𝑒−
∆𝑥𝑚𝑒𝑑

∆𝑥
  
 

The k1 weights are applied to the soft constraints as an exponential function .The objective 

of using an exponential function is to apply varying weight based on the deviation of ∆𝑥 

from ∆𝑥𝑚𝑒𝑑. Thus as the magnitude of difference between ∆𝑥 𝑎𝑛𝑑 ∆𝑥𝑚𝑒𝑑increases, the 

weights k1 increase exponentially depending on either ∆𝑥 > ∆𝑥𝑚𝑒𝑑 𝑜𝑟 ∆𝑥 < ∆𝑥𝑚𝑒𝑑. 
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The functionality of the exponential function is depicted using the exponential graph in 

figure 9. It can be seen in the graph below that as the x-axis value increases the weight 

function’s magnitude decreases and as the x-axis value decreases, the weight function value 

increases. This change in the magnitude is applied appropriately to the different scenarios 

as shown in the equation below. Thus this is how the weight k1 is made to vary based on 

the change in the deviation of ∆𝑥 from ∆𝑥𝑚𝑒𝑑. 

𝑓 (
∆𝑥𝑚𝑒𝑑

∆𝑥
) = 𝑒

−∆𝑥𝑚𝑒𝑑
∆𝑥

       𝑤ℎ𝑒𝑛  ∆𝑥 − ∆𝑥𝑚𝑒𝑑 > 0  ,
∆𝑥𝑚𝑒𝑑

∆𝑥
> 0   

𝑓 (
∆𝑥

∆𝑥𝑚𝑒𝑑
) = 𝑒

−∆𝑥
∆𝑥𝑚𝑒𝑑

  
   𝑤ℎ𝑒𝑛  ∆𝑥 − ∆𝑥𝑚𝑒𝑑 < 0,

∆𝑥

∆𝑥𝑚𝑒𝑑
> 0     

 

Figure 9. Exponential function with negative power 

Similarly for the hard constraints the weights k2 and k3 are applied as an addition to the 

weights k1 to add an extra measure to make sure the controlled vehicle remains within the 

bounds of the distance corridor. The hard constraints have a linear relation with ∆𝑥, ∆𝑥𝑚𝑎𝑥, 

∆𝑥𝑚𝑖𝑛 . Unlike the weight k1, k2 and k3 change linearly with respect to the change between 

∆𝑥 𝑎𝑛𝑑 ∆𝑥𝑚𝑎𝑥 𝑜𝑟 ∆𝑥𝑚𝑖𝑛 depending on ∆𝑥 > ∆𝑥𝑚𝑎𝑥  𝑜𝑟 ∆𝑥 < ∆𝑥𝑚𝑖𝑛 The k2 and k3 

functions are defined as follows: 

𝑘2𝑚𝑖𝑛 =
|∆𝒙 − ∆𝑥𝑚𝑖𝑛|

∆𝑥𝑚𝑖𝑛
 

𝑘2𝑚𝑎𝑥 =
|∆𝑥 − ∆𝑥𝑚𝑎𝑥|

∆𝑥𝑚𝑎𝑥
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𝑘3𝑚𝑖𝑛 = 𝑡𝑠𝑡𝑒𝑝 ∗
|∆𝑥 − ∆𝑥𝑚𝑖𝑛|

∆𝑥𝑚𝑖𝑛
 

𝑘3𝑚𝑎𝑥 = 𝑡𝑠𝑡𝑒𝑝 ∗
|∆𝑥 − ∆𝑥𝑚𝑎𝑥|

∆𝑥𝑚𝑎𝑥
 

2.3.4  Applying Different Methods of Constraints  

There were two different methods that were simulated, before deciding to use the 

median method as mentioned in the previous section. These methods are intended to study 

the influence of averaging the velocities of preceding vehicles over the distance corridor 

limits, the acceleration of the vehicle based on the velocity correction determined to keep 

the vehicle within the distance corridor limits and the fuel consumption. The two methods 

are defined as: buffer and the non-constraint method. 

First, for observation purposes, a non-constraint method is simulated where the 

distance corridor limits are kept sufficiently large to ensure that the controlled vehicle has 

enough space to purely use the average of the preceding vehicles as the velocity for the 

controlled vehicle in the next time step and not implement the correction factor. In other 

words, no constraints are implemented. Hence, the controlled vehicle is directly assigned 

with the average of the preceding vehicles’ velocities. This method particularly studies the 

dynamics of the average of the preceding vehicles, allowing the controlled vehicle to freely 

move in the expanse of the enlarged limits of the distance corridor. It is anticipated that the 

target vehicle under the complete influence of the average of the preceding vehicles will 

have some fuel benefits. However, since the average velocity can be drastically different 

from the immediate preceding vehicle in front of the controlled vehicle , the controlled 

vehicle may not be able to follow the preceding vehicle in a small limit of the distance 

corridor. This is further discussed in the results. 

The buffer zone method limits the expanse of the distance corridor between 10 and 

50 meters of distance from the preceding vehicle, and has the velocity correction term 

added to the average velocity for the specific buffer zone [16]. This means that at a specific 

buffer zone the weight of the velocity correction term will increase based on an exponential 

function to prevent the controlled vehicle to surpass the maximum or minimum distance 
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corridor limits. The objective of implementing a buffer zone is to reduce the unnecessary 

and abrupt acceleration and deceleration when the controlled vehicle suddenly is made to 

realize that it has crossed the distance corridor bounds. With the buffer zones implemented, 

it is anticipated that the abrupt acceleration or deceleration will be smoothened, leading to 

fuel benefits.  

 

Figure 10. Buffer Zone Method 

Next, in the median method, as already discussed in the previous section, the 

objective is to compensate for the deviation of the controlled vehicle’s position from the 

median of the minimum and maximum distance corridor limits. It is anticipated that with 

this added weight over the weights that compensate for the deviation of the controlled 

vehicle’s distance when it crosses the maximum and minimum limits, the controlled 

vehicle can decide a trajectory for itself which will be much more smoothened than the 

buffer method .This is because the weights added to compensate for the deviation will 

decide the velocity trajectory of the controlled vehicle based on the deviation from the 

median . In the other methods, the weights are abruptly added when the controlled vehicle 

crosses the limits which leads to sudden acceleration and deceleration causing the 

controlled vehicle to consume more fuel. 

To begin obtaining simulation results, the several ways mentioned above are 

implemented. The first method is to simply assign the average velocity vdes as the velocity 
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of the controlled vehicle at each time step and then observe the trend in the velocity profile 

of the controlled vehicle. The second method is to add buffer zones before the vehicle 

exceeds the maximum and minimum distance corridor limits. The idea is to increase the 

weights according to the buffer zone; that is as the target vehicle crosses the first minimum 

and maximum buffer limits, the weight must increase to compensate for exceeding the 

buffer limits. Then, if the target vehicle happens to further exceed the absolute maximum 

and minimum distance corridor limits, the weights must increase even more. The third 

method tested is to directly compensate for any deviation of relative distance from the 

median value of the maximum and minimum distance corridor as shown in figure 8. The 

idea is to allow the vehicle to smoothly add the velocity correction values to vdes, without 

abruptly changing the velocity when the target vehicle exceeds these bounds. This will help 

reduce the sudden acceleration and deceleration the target vehicle will experience upon 

realization that it has exceeded the distance corridor bounds.  

2.3.4.1  Non-constraint 

 

Figure 11.Simulation results for non-constraint method 

As shown in figure 11 , with the non-constraint case, the CACC controlled vehicle 

velocity profile shown in the top left plot is time shifted on the left side. This time shifted 
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velocity profile of the controlled vehicle,compared to the immediate preceding vehicle, 

makes it seem like as if the controlled vehicle is acting ahead in time to any situation in the 

traffic network. This means that the reaction of the controlled vehicle is occurring ahead 

of time when compared to that of the immediate preceding vehicle. However, with time 

shifted reaction, the controlled vehicle requires a larger limit of the distance corridor for it 

to maintain a safe distance from the preceding vehicle. This can be seen in the top right 

plot, where the difference in the distance between the preceding vehicle and the controlled 

vehicle varies in the range 10 to 150 m. In real traffic scenarios, such vast distances between 

vehicles will hamper mobility drastically which will be a huge cost in terms of travel time. 

However, the fuel consumption plot proves that there is potential space for fuel savings 

with averaging the preceding vehicles’ velocities and using it as the velocity for the 

controlled vehicle. This is complemented by the comparison of the acceleration profile of 

the controlled vehicle and the preceding vehicle where the controlled vehicle has lower 

variations in its acceleration compared to the preceding vehicle’s acceleration. 

2.3.4.2  Buffer Zone 

The results from implementing the buffer zone method are shown below. Similar 

to the non-constraint method, the buffer method is using the averaged velocity profile of 

the preceding vehicles. However there are observable peaks in the velocity profile of the 

controlled vehicle in the buffer method and these occurrences of the peaks are explained 

by the reduction of the distance corridor limits shown in the top right plot of figure 12. It 

can be seen that there are two buffer zones bordered with the blue line and the maximum 

and minimum distance corridor limits bordered by green and red colored lines respectively. 

The vcor term comes in to action as soon as the controlled vehicle exceeds these buffer 

zones with a certain weight k. The weightage k increases further when the controlled 

vehicle exceeds the upper or lower limits of the distance corridor. It can be clearly seen in 

the velocity profile plot that the vcor successfully tries to correct the velocity of the 

controlled vehicle by matching the velocity to the preceding vehicle whenever the limits 

are approached or crossed because the best way to correct the velocity at the limits is by 

following the preceding vehicle at its exact velocity. However, the corrections occur 
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abruptly causing sudden accelerations and decelerations shown in the acceleration plot. 

This is complemented by the fuel consumption plot as the fuel consumption for the 

controlled vehicle soars higher than that of the preceding vehicle.   

 

Figure 12. Simulation results for buffer zone method 

2.3.4.3  Median Method 

Figure 13 shows the results for the median method for 14 vehicles’ velocities 

average with a constant time headway of 0.5 seconds. The fuel savings are approximately 

8% and the distance corridor limits are much smaller than the previous methods. The fuel 

savings can be increased with a larger constant time headway or larger distance corridor 

bounds. With smaller distance corridor bounds the control effort increases, therefore the 

fuel benefits also decrease. As already discussed earlier, the median method uses the 

averaged velocity of the preceding vehicles. However, unlike the buffer zone method, the 

velocity profile of the controlled vehicle has no abrupt changes in its profile during 

instances when the vehicle surpasses the constraints. This can be seen from the comparison 

of the velocity plot of figure 12 and 13. The velocity profile derived using the median 

method behaves similar to buffer zone method where when the controlled vehicle 

approaches the limits, the controlled vehicle’s velocity tries to approach the velocity of the 
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immediate preceding vehicle. However, the advantage of using this median method over 

the buffer zone method is that an averaged velocity profile can be achieved without the 

occurrence of any sudden jerks as well as the distance corridor limits can be kept small. 

This is shown in the top right plot for the distance corridor in figure 13. From the plot, it is 

clearly visible that the controlled vehicle is made to remain within the bounds of the 

distance corridor as well as maintain a velocity profile which takes into account the average 

of the preceding vehicles without any abrupt changes in the velocity profile .This behavior 

of the controlled vehicle is definitely very beneficial in terms of fuel consumption as shown 

in the fuel consumption plot which is again complemented by the reduced magnitude of 

the controlled vehicle’s acceleration.  

 

Figure 13. Simulation results for median method 

There are three prominent conclusions that can be drawn from the above results. 

One is that , although taking the average of the preceding vehicles and using it as the 

reference velocity for the controlled vehicle gives fuel benefits, it compromises with safety 

of the vehicle if small distance corridor limits are used. To solve this problem, a correction 

term needs to be added. This is implemented in the buffer zone method , where the 

correction terms are added in piece wise manner. However, the implementation of 
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correction term in a piecewise manner with respect to the buffers introduces sudden peaks 

in the velocity profile of the controlled vehicle which leads to sudden changes in 

acceleration. This behavior is undesirable if fuel consumption savings is one of the crucial 

objectives. The implementation of the median method takes care of these sudden changes 

in the velocity by applying a compensation in the reference velocity profile of the 

controlled vehicle in the form of the correction factor , to smoothly change the reference 

velocity of the controlled vehicle to cater to the soft and hard constraints mentioned earlier. 

The results obtained from the median method give the best fuel benefits while taking care 

of the distance corridor constraints. 

2.4  Problem Formulation- Real-Time Implementation of CACC  

From the above simulation results with the velocity trajectory equations, using the 

median method, highest fuel benefit was achieved at the same time the distance corridor 

limits were also maintained. The potential of the application of CACC using this heuristic 

method has been clearly shown. However, for real-time implementation, a dynamic model 

is necessary and not a velocity trajectory generator as mentioned in the previous section. 

The above formulation is designed to provide a velocity profile or trajectory for a 

controlled vehicle based on the averaged velocity vdes and corrected velocity vcor. At every 

time step an averaged velocity vdes is calculated based on the instantaneous velocities of 

the preceding vehicles and then a vcor is obtained based on the constraints. Using this 

velocity trajectory or reference equation is problematic when the median method is applied 

and the controlled vehicle’s initial position with respect to the immediate preceding vehicle 

is outside the bounds of the distance corridor. The controlled vehicle is made to operate at 

this initial speed for a time period before the CACC application is initiated as shown in 

figure 14. When the CACC application is initiated and applied to the control vehicle, the 

control vehicle experiences a surge in its velocity with a very high acceleration or 

deceleration depending on whether it is beyond the maximum or minimum distance 

corridor limits respectively. This occurs because the CACC controller with the velocity 

trajectory generator does not consider the initial dynamics of the vehicle. It realizes that 

the controlled vehicle is outside the bounds and immediately assigns a large vcor value to 
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bring the controlled vehicle within the bounds. The gain factor for the velocity correction 

term when the vehicle is outside the maximum and minimum limits is set to be high or in 

other words when the vehicle is outside the maximum or minimum distance corridor limits 

the hard constraints are implemented. Hence, in this specific scenario because the initial 

condition of the vehicle’s position is beyond the minimum distance corridor limit, the hard 

constraints are implied directly leading the vehicle to suddenly reduce its velocity to bring 

itself within the bounds. However, in this process of bringing the vehicle within the bounds, 

the controller assigns a large velocity correction term which leads to drastic surges in the 

acceleration as shown in figure 14. The velocity plot in figure 14 shows a constant velocity 

for a period of approximately 50 seconds. During this period the CACC application has not 

started. At around 50 seconds when the median method CACC application is implemented, 

the vehicle’s velocity suddenly dips to compensate for the initial ∆𝑥 that is beyond the 

minimum ∆𝑥𝑚𝑖𝑛 as shown in the distance corridor plot in figure 14. This sudden change in 

velocity is shown, in the acceleration plot, by the unrealistic acceleration of approximately 

10 to -50m/s2 in a matter of milliseconds. 

2.4.1  The Dynamic Model Equations 

 

Figure 14.9 vehicle average using reference generator  model with initial ∆𝑥 < ∆𝑥𝑚𝑖𝑛 

To tackle this challenge, the formulation is changed to implement a dynamic model.  
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The dynamic model equations are given below in discrete time form.  

∆𝑥(𝑡 + 1) = ∆𝑥(𝑡) + 𝑑𝑡 ∗ (𝑣𝑝(𝑡) − 𝑣(𝑡))                              

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑑𝑡 ∗ 𝑢(𝑡)                                                                           

In the above dynamic equations, a method has to be determined to solve for u(t), the 

acceleration for the vehicle, at every time step. The method used to determine the 

acceleration at every time step is done using an objective function as explained below . The 

objective function is designed using the intuition obtained from the reference velocity 

generator simulation results from the previous section. 

2.4.2  The First Objective of the Function 

Given the dynamic model of the system, an objective function with specific 

objectives has been designed. The ultimate objective of the cost function J is to provide u, 

the acceleration for the controlled vehicle which will track the reference speed vdes, the 

averaged velocities of preceding vehicles. From the non-constraint method simulation 

results it is known that using the averaged velocity of the preceding vehicles provides 

potential fuel benefits. A simple cost function representing this is shown in the equation 

below. 

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡 + 1))2 

Where after expansion 

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡))
2

− 2𝑑𝑡 ∗ 𝑢(𝑡)(𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡)) + 𝑑𝑡2𝑢(𝑡)2 

Differentiating the above cost function with respect to u(t) and solving for u(t) will give 

𝑢(𝑡) =
𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡)

𝑑𝑡
 

Substituting the above relation in the dynamic equation will provide the following 

relation 

𝑣(𝑡 + 1) = 𝑣𝑑𝑒𝑠(𝑡) 

Thus using the simple objective function will fulfill the objective of following vdes as a 

reference. However, it is not desirable that the velocity of the controlled vehicle completely 
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track vdes because from previous results of the non-constraint method, it is observed that 

although following vdes has potential for fuel benefits, the vehicle requires large distance 

corridor boundaries to function safely in a traffic network. Thus the objective function must 

be modified to include distance corridor constraints. Therefore, the objective function J has 

constraints with weights added to it as a part of its objective. These constraints are 

considered with regards to the distance corridor boundaries to provide a suitable 

acceleration u(t) for every time-step such that the velocity of the controlled vehicle tracks 

vdes but also takes into account the distance corridor boundaries. The two other objectives 

of the cost function with respect to maintaining the constraint are that the controlled vehicle 

must track the immediate preceding vehicle’s velocity depending on the weight W1 and the 

acceleration of the controlled vehicle u(t) must compensate for the deviation of ∆𝑥 from 

∆𝑥𝑚𝑒𝑑.  

2.4.3  The Second Objective of the Function 

The objective of the controlled vehicle tracking the immediate preceding vehicle’s 

velocity is intended to add a high cost when the weight W1 increases. The weight W1 is an 

exponential function similar to k1 mentioned previously. The idea is to increase the weight 

W1 exponentially to the deviation of ∆𝑥 from ∆𝑥𝑚𝑎𝑥, ∆𝑥𝑚𝑖𝑛 and ∆𝑥𝑚𝑒𝑑. This objective of 

the function acts like a constraint that was being added in a piece wise manner previously. 

The weight W1 only increases when the controlled vehicle approaches the distance corridor 

limits very closely. Increasing weight causes the cost of the difference of velocities 

between the preceding and the controlled vehicle to increase. In other words, when W1 is 

high, the objective function J will provide an acceleration u(t) which will attempt to follow 

the immediate preceding vehicle’s velocity. This is desirable for two specific situations. In 

a situation when the controlled vehicle is travelling at a velocity higher than the preceding 

vehicle and it is approaching the preceding vehicle, the only way to prevent the controlled 

vehicle from hitting the preceding vehicle is to bring the controlled vehicle’s velocity to be 

at the same level as the preceding vehicle before the controlled vehicle crosses ∆xmin. In 

the same way if the controlled vehicle is travelling at a velocity lower than the preceding 

vehicle which leads it to recede from the preceding vehicle , then the only way to stop this 
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recession is by following the preceding vehicle’s exact velocity. Therefore, with this 

objective, the function is altered as follows: 

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡 + 1))2 + (𝑣𝑝𝑛(𝑡) − 𝑣(𝑡 + 1))
2

∗ 𝑊1 

Where vpn is the instantaneous velocity of the immediate preceding vehicle. 

2.4.4  The Third Objective of the Function 

From the two terms in the above objective function , an acceleration can be derived 

that will balance the vehicle’s velocity to follow between the averaged velocity and the 

preceding vehicle’s velocity. However, it is observed from preliminary results that the 

second term is not enough to keep the controlled vehicle within the distance corridor 

bounds. Hence a third term with the objective of compensating the deviation of ∆𝑥 from 

∆𝑥𝑚𝑒𝑑 is added as an extra constraint. This term is added to the objective function to 

implement the median method which has been already discussed previously. The idea is to 

add the cost of the deviation based on a weight W2 which is a constant value of small 

magnitude. As the deviation of ∆x from ∆xmed increases the cost due to the third term 

increases. The weight W3 is added with the purpose of keeping the units consistent through 

out the cost function. The first two objective functions have a unit of m2/s2 and the third 

objective has units of m2/s4. Therefore W3 is 1s2, to keep the unit m2/s2 uniform throughout 

the cost function 

Cost Function 

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡 + 1))2 + (𝑣𝑝𝑛(𝑡) − 𝑣(𝑡 + 1))
2

∗ 𝑊1

+ 𝑊3 ((𝑢(𝑡) − 𝑊2(
∆𝑥(𝑡) − ∆𝑥𝑚𝑒𝑑(𝑡)

𝑑𝑡2
))

2

 

The first two objectives of the function are evident but the last term in the above 

function needs more explanation. When the last objective in the above function is expanded 

it becomes: 

(𝑢(𝑡) − 𝑊2(
∆𝑥(𝑡) − ∆𝑥𝑚𝑒𝑑(𝑡)

𝑑𝑡2
)) =  𝑢(𝑡) − 𝑊2(∆𝑥(𝑡) −

∆𝑥𝑚𝑖𝑛,0 + ∆𝑥𝑚𝑎𝑥,0 + 2ℎ𝑣(𝑡)

2
)/𝑑𝑡2 

The substitution for ∆x and ∆xmed are obtained from the dynamic equation and definition 

of ∆x previously mentioned. Rearranging the above equation, it gives the following: 
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(𝑢(𝑡) − 𝑊2(
∆𝑥(𝑡) − ∆𝑥𝑚𝑒𝑑(𝑡)

𝑑𝑡2
)) =  𝑢(𝑡) − 𝑊2(∆𝑥(𝑡) −

∆𝑥𝑚𝑖𝑛,0 + ∆𝑥𝑚𝑎𝑥,0

2
− ℎ𝑣(𝑡))/𝑑𝑡2 

The above expansion clearly shows the physical meaning of the objective of the function. 

The last term in the function is responsible for adding a cost when the ∆x deviates from the 

median of the maximum and minimum distance bounds when the vehicles are not in motion 

and plus the second term in the above equation compensates for any deviation from the 

assumed constant time head way distance to the preceding vehicle. This means that this 

complete term will make sure that the vehicle lies within a specific range of the median of 

the stand still distance between the controlled and the preceding vehicle as well as within 

the constant time headway of one second which was previously chosen.  

The ultimate objective of the combined function J is to provide the acceleration u 

for the least cost that will satisfy each of the objectives at every time step. Unlike any other 

cost function which is designed with the objective of optimization over a specific prediction 

horizon, this function’s sole objective is to provide an acceleration for every time step. 

There is no prediction used over a time horizon, because the data available for vdes , vp , ∆𝑥 

and ∆𝑥𝑚𝑒𝑑 are for the current time step only. Therefore, this objective function does not  

use any prediction horizon. To determine the least cost J ,the function is differentiated with 

respect to u and equated to zero for every individual time step. The derivative is then solved 

for u online. 

The equation for u is given below.  

u(t) =

(dt ∗ (vdes(t) − v(t))) + (W1 ∗ dt ∗ (vpn(t) − v(t))) + (W3 ∗ W2 ∗ (
∆x(t) − ∆xmed(t)

dt2 ))

(dt2 + W1 ∗ dt2 + W3)
 

Where  

vdes(𝑡) =
𝑣𝑝1 (𝑡) + 𝑣𝑝2(𝑡) + 𝑣𝑝3(𝑡)+. . 𝑣𝑝𝑛(𝑡)

𝑛
 

𝑣𝑝𝑛 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑖𝑚𝑚𝑒𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

Looking at the objective function equation J, it can be argued that if the objective 

is to reduce fuel consumption, then the objective function must be a function of the fuel 
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consumption. However, although the objective is to reduce fuel consumption, the approach 

taken here is to understand the dynamics of the controlled vehicle based on the average 

velocities of the preceding vehicles with regards to improvements in fuel economy. The 

objective function implemented is just used as a tool to prove that following the averaged 

velocity with some constraints has potential fuel benefits. The objective function is also 

able to handle any drastic surges in the velocity because it provides an acceleration u 

fulfilling the three objectives. Therefore, it means that there will not be any drastic changes 

in u from one time-step to another, if the three objectives have to be maintained.   

In figure 15, it is clearly seen that using the dynamic model with the objective function 

mentioned above, prevents any aggressive acceleration or deceleration behavior of the 

preceding vehicle. The distance corridor plot shows that even though the initial ∆𝑥 <

∆𝑥min, when the controlled vehicle enters the VISSIM Traffic simulator, the controlled 

vehicle is gradually brought back within the distance corridor boundaries without any 

unusual surge or dip in the vehicle’s velocity unlike in the previous model shown in figure 

14. 

 

Figure 15. 9 vehicle average using dynamic model with initial ∆𝑥 < ∆𝑥𝑚𝑖𝑛  
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2.4.5  Evaluation of the Effectiveness of Objective Function  

The effectiveness of the objective function J can be arbitrated based on the 

comparison of the actual velocity profile of the vehicle and the averaged velocity profile 

vdes. As already known, the objective function must provide an acceleration based on the 

weightage of each objective. Therefore, comparing vdes  (averaged preceding vehicles’ 

velocities),tracking which is one of the objectives of the function, with the actual velocity 

of the vehicle will showcase the extent to which the different objectives have contributed 

in determining the actual velocity of the controlled vehicle. Figure 16 is used to analyze 

the operational functionality of the objective function. The four plots in figure 16 compare 

the actual velocity profiles of 14 and 2 vehicles velocities averages, actual velocity profile 

and 2 vehicles average velocities, actual velocity profile and 14 vehicles velocities average 

and the comparison of the actual velocity profiles derived from 14 and 2 vehicles velocities 

averages. The difference in the average velocity profiles for 14 and 2 vehicles profile is 

very evident. From the second plot of actual velocity profile comparison with 2 vehicles 

average, it can be said the velocity profiles are very similar because taking the average of 

just 2 preceding vehicles is almost like following the immediate preceding vehicle. 

However, the trend completely changes in the third plot comparing the actual velocity 

profile with 14 vehicles’ velocities averages. In the third plot the 14 vehicles average 

velocities profile is very different from the actual velocity profile of the controlled vehicle. 

This plot clearly shows that the objective function is effectively influencing the velocity 

profile of the controlled vehicle depending on the weightage of each objective of the 

function. The fourth plot compares the velocity profiles from the two different vehicle 

averages of 2 and 14 vehicles. This plot clearly demonstrates that the intuition previously 

gained that averaging more preceding vehicles’ velocities clearly provides a smoothened 

velocity profile for the controlled vehicle. These plots clearly exhibit the effort the 

objective function puts in determining the final velocity profile of the controlled vehicle in 

two different cases of 2 and 14 preceding vehicles’ velocities averages. These results 

clearly show that the objective function is using the different weightages on each of the 

objectives to determine the actual velocity of the controlled vehicle at every time step. 
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Figure 16. Comparison of averaged and actual velocity profiles for 2 and 14 preceding 

vehicles. 

2.5  Simulation Results of Scenarios 

The evaluation of CACC is conducted for several different scenarios. Vdes is the 

average of the preceding vehicles’ velocities 

vdes(𝑡) =
𝑣𝑝1 (𝑡) + 𝑣𝑝2(𝑡) + 𝑣𝑝3(𝑡)+. . 𝑣𝑝𝑛(𝑡)

𝑛
 

 

a. Average of 14 preceding vehicles’ velocities for city driving 

b. Average of 8 preceding vehicles’ velocities for city driving 

c. Average of 14 preceding vehicles’ velocities for highway driving 

d. Average of 8 preceding vehicles’ velocities for highway driving 

e. Varying platoon size – city driving 

The simulation results are presented in four different plots: vehicle velocity, distance corridor, total 

fuel consumption and acceleration. The calculation for cumulative fuel consumption is obtained by 

taking the summation of fuel consumption at each time step for the whole driving cycle. The fuel 

consumption calculated for the simulation of different scenarios is based on vehicle power request 

as shown in the equation below 
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𝑃𝑟𝑒𝑞(𝑡) = (𝑚𝑎(𝑡) + 𝑚𝑔𝑠𝑖𝑛∅(𝑡) +  𝜇𝑚𝑔𝑐𝑜𝑠∅(𝑡) +
1

2
∗ 𝐶𝐷𝜌𝑎𝐴𝑣(𝑡)2) ∗ 𝑣(𝑡) 

Where g is gravity , ∅(𝑡) is terrain slope of zero, 𝜇 is the rolling resistance constant, CD is the drag 

coefficient, 𝜌𝑎 is the density of air, A is the vehicle frontal area. The above equation represents the 

combined power expended over the driving cycle. In[12], a linear equation of power request against 

fuel consumption is determined. The fuel consumption for different engine operating points was 

found by using the engine map[20].  

The objective in this approach is to use more than one forward vehicles’ 

information to evaluate CACC and determine if there are any potential fuel consumption 

savings. Vdes in this case takes the average of the preceding vehicles’ velocities at every 

time step. From literature, it can be inferred that providing future information to the 

controlled vehicle has some potential benefits. Similarly, if the velocity of the controlled 

vehicle is a function of the preceding vehicles’ velocities, then it can be said that taking the 

average over the preceding vehicles’ velocities is like taking the average of the prediction 

of the velocity of the controlled vehicle. This is based on the assumption that the controlled 

vehicle will more or less follow the trajectory of the preceding vehicles. For instance, if 

the lead vehicle in a platoon stops at a traffic signal, then it can be assured that the 

controlled vehicle may not completely stop at the signal but it will at least slow down to 

maintain a safe distance from the immediate preceding vehicle which itself will slowdown 

following the reaction of the first lead vehicle. Thus it is inferred that in a string of vehicles 

the reaction of the lead vehicle to any change in traffic is passed on to all the other lagging 

vehicles. By taking the average of the instantaneous velocity of the forward vehicles at 

every time-step, and using it as the velocity of the controlled vehicle incorporates these 

reactions of the preceding vehicles in the controlled vehicle ahead of time .The simulation 

is conducted for several different cases. In one case, the controlled vehicle is placed behind 

eight preceding vehicles as shown in figure 17 and in the second case, the controlled vehicle 

is placed behind 14 preceding vehicles as shown in figure 23. The intention of obtaining 

simulation results for two different cases is to see the impact of different velocity profiles 

of the preceding vehicles on the velocity profile and fuel consumption of the controlled 
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vehicle. These two cases are varied between city and highway driving scenarios. In the 

final case, a varying platoon size is simulated. 

 

Figure 17. Fuel economy trend based on number of vehicle averages for 8 preceding 

vehicles-city driving 

2.5.1.  8 Vehicles’ Velocities Average- City Driving with 0.1s constant time headway 

The controlled vehicle is placed in the ninth position in the string of vehicles and 

the fuel consumption for the corresponding number of vehicles averaged is shown above 

each vehicle. From the results it is observed that at only two vehicles’ averages, there is no 

fuel benefit. For this case specifically, the constant time headway is chosen to be 

0.1seconds for observation purposes. For all the cases after this the constant time headway 

is chosen to be one second as decided earlier. With a smaller constant time headway, the 

fuel consumption is expected to be higher as the control effort will be higher. The effect of 

constant time headway on the control effort is discussed in detail [27]. However, as the 

number of vehicle averages increase the fuel benefit also increases proportionally. The 

specific plots for eight vehicles’ velocities average are plotted in figure 18. Eight vehicle’s 

average has the highest fuel economy when compared to fewer vehicles velocities 

averages. The limits of distance corridor is between 10 to 30 m, which is a reasonable value 

for a realistic traffic network, and it can be seen for a better fuel economy, the controlled 

vehicle seems to utilize this limited space extensively throughout the driving cycle. This 

tells that the role of the correction factor is vital in making sure the vehicle remains within 

these bounds. The fuel consumption plot clearly shows that there is considerable fuel 

benefit, about 10.8%, which is complemented by the lower magnitude of the controlled 

vehicle’s acceleration compared to that of the immediate preceding vehicle . 
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Figure 18. 8 vehicles’ velocities average simulation results- city driving 

2.5.2  8 Vehicles’ Velocities Average- City Driving 

The eight preceding vehicles’ average simulation is repeated for a less aggressive 

preceding vehicles profile with city driving conditions and a highway situation with no 

stops. Here the constant time headway is chosen to be one. Fuel consumption savings are 

expected to increase with a higher constant time headway as control effort for the vehicle 

reduces. Figure 19 shows the fuel benefit trend for the city driving case and the velocity, 

acceleration, fuel consumption and distance corridor plots are shown in figure 20. It can be 

clearly seen that, the trends in fuel benefits are similar to the earlier case where the fuel 

benefit increases with increasing vehicle velocity averages. 

 

Figure 19. Fuel economy trend based on number of vehicle averages for 8 preceding 

vehicles–city driving 
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Figure 20. 8 vehicles’ velocities average simulation results -city driving 

2.5.3  8 Vehicles’ Velocities Average- Highway Driving 

For the highway case, the eight vehicles’ average fuel benefit trends remain the 

same. However, the magnitude of fuel benefit decreases as expected. With less aggressive 

driving trajectory , where the preceding vehicles do not make a stop and keep tracking an 

almost uniform velocity for the whole driving cycle, there is not enough room for 

improvements in fuel consumption for the controlled vehicle. From the fuel consumption 

plot in figure 22, the magnitude of fuel consumption (approximately 85g) compared to 

figure 20 (approximately 140g) is much lower and so are the fuel benefits. Figure 21 shows 

that like the previous two cases, the fuel benefit increases with the increasing number of 

averages but the maximum benefit achieved is 4.8%. 

 

Figure 21. Fuel benefits for 8 vehicles’ velocities average - highway case 
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Figure 22.Plots for 8 vehicles’ velocities average -highway case 

2.5.4  14 Vehicles’ Velocities Average- City Driving 

For the 14 preceding vehicles scenario, the same cases of simulation were conducted: 

city and highway driving cases. For the city driving case, from figure 23, it can be clearly 

seen, that the fuel economy trend is similar to what was seen in 8 vehicles’ average; that is 

the fuel economy has an increasing trend as the averages increase. Similar to 8 vehicles’ 

averages, the controlled vehicle tends to use the given distance corridor space to move 

itself within the expanse of it extensively, meaning that the correction factor is consistently 

working to bring the vehicle to its median position whenever the controlled vehicle tends 

to deviate. The fuel consumption plot shows that there is significant fuel benefit which is 

complemented by the reduced acceleration of the controlled vehicle shown in the 

acceleration plot. The maximum magnitude of fuel benefit increases to 17.5% for 14 

vehicles’ average compared to 11.0% savings for the eight vehicles’ average shown in 

figure 19.  
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Figure 23. Fuel economy trend based on number of vehicle averages for 14 preceding 

vehicles –city driving 

The reason for the increase in fuel benefit is because of the reduced magnitude of 

acceleration for the controlled vehicle shown in figure 24. The acceleration comparison for 

the controlled vehicle and the preceding vehicle shows that the controlled vehicle has a 

suppressed acceleration. From the velocity plot in figure 24, it can be seen that the 

controlled vehicle never stops completely whereas, the preceding vehicle stops once and 

decelerates a second time around 250 seconds. These drastic changes in vehicle velocity 

are the reason why the acceleration of the preceding vehicle is much more aggressive than 

the controlled vehicle’s acceleration. 
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Figure 24. 14 vehicles’ velocities average simulation results –city driving 

 

Figure 25. Fuel economy trend based on number of vehicle averages for 14 preceding 

vehicles - highway case 

2.5.5  14 Vehicles’ Velocities Average- Highway Driving 

Figure 25 shows the fuel economy trend for 14 vehicles’ averages for a highway 

situation. A highway situation is different from city driving cases because it has no 

major deceleration or acceleration trends and the velocity of the vehicles in the platoon 

fluctuate around a specific range of velocities. The idea is to determine the fuel benefit 

for the controlled vehicle when it is running in a highway situation for its whole driving 

cycle. From the previous two cases , it is known that stop and go scenarios give 

significant fuel benefits. Thus it can be inferred that for a highway situation, fuel 
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benefits will exist but they will be limited due to the less aggressive behavior of the 

vehicles. This inference is proved by the fuel benefits shown in figure 25 where the 

maximum fuel benefit achieved is 11.8% .From figure 26, the acceleration plot clearly 

shows that the acceleration behavior of the controlled vehicle as well as the immediate 

preceding vehicle is much suppressed compared to the earlier cases of simulation, and 

hence the fuel benefits are reduced.  

 

Figure 26. 14 vehicles’ velocities average simulation results - highway case 

2.5.6  Preceding Vehicles’ Velocities Average- Varying Platoon Size 

A separate case is simulated where the size of the platoon of vehicles vary 

randomly. This means that depending on the traffic signal timing, the number of preceding 

vehicles change. There are instances when 14 preceding vehicles are in the platoon, and 

instances when just two preceding vehicles exist because the other twelve did not stop at 

the signal. This case is simulated on the same traffic network as shown in figure 29. 

VISSIM-COM was modified to accommodate the varying number of preceding vehicles 

in the platoon. The logic used in the code was such that the controlled vehicle can be fed 

in with a maximum of 14 preceding vehicles’ information as well as the state of the next 

traffic signal is also continuously fed as an added information to the controlled vehicle. If 

at any point the state changes to red, then the controlled vehicle can obtain information for 
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only those preceding vehicles who have stopped at the signal. On the contrary, if the signal 

turns green, the controlled vehicle can access information for preceding vehicles who are 

within 300m of distance from the controlled vehicle. The figure below shows that even 

with varying platoon size, the fuel savings are approximately 10.4% compared to the 

immediate preceding vehicle. The velocity plots show the velocity trajectory for the 

controlled and immediate preceding vehicle as well as the average of the preceding 

vehicles’ velocities in the platoon. It can be seen that the profile for the controlled vehicle 

is very different from the averaged velocity. This clearly tells that the controller is working 

to make sure that the constraints are maintained for a safe ride. If the controlled vehicle is 

to follow the averaged velocity profile completely, then a safe driving cannot be assured, 

as the averaged velocity profile can lead the controlled vehicle to exceed the distance 

corridor bounds. One such close counter with the preceding vehicle can be seen in the 

distance corridor plot. At around 170seconds , the controlled vehicle happens to cross the 

minimum distance corridor bounds slightly. However, the controller manages to pull back 

the vehicle within the bounds quickly, making sure there is a minimum safe distance 

between the preceding and the controlled vehicle.  

 

Figure 27. Varying Platoon Size Vehicle dynamics and fuel consumption  
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2.6  Conclusion 

After conducting simulations for the average velocity method, the observations 

from the results are compared in this section. It is to be noted that the median method is 

the common methodology implemented across all the scenarios.  

Averaged Velocity Method 

1. a) speed average with 14 preceding vehicles, without prediction-city 

           b) speed average with 8 preceding vehicles, without prediction -city 

           c) speed average with 14 preceding vehicles, without prediction -highway 

           d) speed average with 8 preceding vehicles, without prediction –highway 

           e) Varying Platoon size- city 

Table 1. Fuel Economy Comparison Table 

Scenario Highest Fuel Economy(%) 

1a 17.5 

1b 11.0 

1c 11.8 

1d 4.8 

1e 10.4 

 

From the table it is clear that scenario 1a achieves high fuel economy. All the 

scenarios, with averaged velocity approach, give promising results where average is taken 

with respect to the velocities of the preceding vehicles without any sort of prediction 

mechanism. From the results, it can be concluded that there is potential fuel benefit in 

taking the average of increasing number of preceding vehicles. However, only taking the 

average of the preceding vehicles’ velocities is not sufficient to maintain the constrains. 

Therefore constraints are taken care by adding objectives to the objective function as 

discussed earlier. 
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From the above results obtained for the simplified, averaged velocity approach it is 

observed that across all the cases simulated, the fuel benefit increases with the increasing 

number of preceding vehicles’ velocities average. This is clearly seen in the comparison 

between 8 and 14 vehicles’ velocities average that the fuel savings of 14 vehicles’ 

velocities average is higher. This is the result of the phenomenon previously discussed that 

as more traffic information is accessible by the controlled vehicle, the potential for fuel 

savings also increases. In this method, providing the vehicle speeds of the preceding 

vehicles to the controlled vehicle incorporates the preceding vehicles’ dynamics in the 

controlled vehicle’s dynamics, which allows the controlled vehicle to plan its trajectory 

ahead of time and obtain high fuel economy. This heuristic method does not implement 

any prediction model but assumes that complete information from preceding vehicles is 

available either through IVC or VII at every time step. Both results obtained from constant 

platoon and varying platoon size showcase that there is significant potential for fuel 

savings. However there is variance in the magnitude of fuel savings from the highway and 

the city driving cases. This is clearly because the velocity profiles of the city driving case 

are much more aggressive than the highway driving case where the vehicle velocity 

fluctuation is minimal. Thus the room for fuel savings is also lower for the highway case. 

In conclusion from the simulation results, it can be claimed that the heuristic, averaged 

velocity approach can provide fuel savings in the ranges of 10-17% across all scenarios of 

traffic by incorporating preceding vehicles’ information. 
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Chapter 3  Software Architecture Development for HiLS 

Integration 

3.1   Middleware Structure between Powertrain Research Platform and 

VISSIM 

The structure of communication between Powertrain-Research-Platform and VISSIM 

is shown in figure 28 below. It can be seen that the left half of the structure consists of the 

research platform and the right half consists of the VISSIM traffic simulator. To execute 

real-time experiment, the powertrain-research-platform needs to communicate over a 

network with the traffic simulator in synchronization to obtain vehicle speed information 

for the powertrain-research-platform.  

The remote machine running VISSIM is more specifically used to run traffic simulation 

to communicate the vehicle dynamics with the powertrain-research-platform. As it has 

been emphasized earlier that all simulations should be in real time, it is important to 

integrate the software in such a way that the data transfer will be highly efficient, enabling 

the whole simulation to be carried out in real time. To achieve this, major calculations and 

processes will have to take place online. 

 

Figure 28. Structure for collaborating Powertrain Research and VISSIM 
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VISSIM is set up for different simulation  parameters. The simulation used is a 

replica of a straight road with seven traffic signal junctions, as shown in figure 29. The 

simulation run time is set for five minutes  and VISSIM is commanded to run a single step 

of 200 milliseconds to collect vehicle data like vehicle speed. VISSIM simulation also 

designates an unique identification number to the vehicle during the simulation which helps 

determine if the vehicle is within the traffic network. This vehicle identification number 

can be accessed by C# and all the details related to this specific vehicle can be extracted as 

well.  

The current set up in the program is to run single step at 200 milliseconds. However, 

it has to be investigated that whether the vital tasks of sending and receiving data are 

reaching a stage of completion before the 200 millisecond time constrain. If a delay occurs 

in any of the processes, it will lead the single step time to exceed 200 milliseconds. To 

figure out the solution to this problem, it is important to analyze the time taken for VISSIM 

to run single step and extract data individually as well as figure out how much time it takes 

C# to pass data to MATLAB. 

For analyzing the time for VISSIM running single step, simulations were run for 

different traffic densities on the road. The traffic density was increased for each simulation 

so that the total number of vehicles increased from 200 to 800 vehicles. The reason for 

varying the traffic density each time is to observe the change in execution time for VISSIM 

software with large number of vehicles in the simulation. Before running any analysis, it 

is hypothesized that as the traffic density increases the run time for VISSIM also increases. 

 
Figure 29. Single lane, seven traffic junctions, Traffic network 
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3.1.1  Basic COM Communication with VISSIM 

The Component Object Model (COM ), in this case C# program, will be local to 

VISSIM. It will be the pathway to communicate with VISSIM as well as communicate to 

other platforms as shown in figure 30 with the blue and green arrows respectively. The idea 

is to have several other platforms like the signal controller cabinet, connected vehicle 

controller to communicate with the COM effectively. In the initial stages of the project, the 

middleware or the COM was not included. Hence, VISSIM was communicating directly 

with the different platforms. However, it is realized that having a middleware gives the 

flexibility to run each simulation independently with respect to each platform at the same 

time.   

C# program is solely responsible for initiating VISSIM and extracting data from it. 

C# program is written in such a way that it can initiate a particular VISSIM simulation 

which has already been set up according to the specifications needed for the research, and 

then use that simulation to run for specific time and collect data. This program is most 

concerned about three specific processes; VISSIM single step run, VISSIM extraction and 

sending and receiving data from different components of the complete architecture. The 

initial time step was kept as 100 milliseconds. However, from initial tests, this small time 

step of 100 milliseconds could not be maintained as sometimes the time taken for the three 

processes to run one single step would take more than 100 milliseconds. So, 200 

milliseconds was the new time step for s single step run of the simulation.  

The program is further modified to check the time for execution of each process and if the 

total time is under 200 milliseconds, the program will ask the processes to wait for the 

remaining time till 200 milliseconds has elapsed. Thus it becomes necessary to analyze the 

time taken for each individual process to run, and figure out which process is taking the 

longest so that a more efficient code can be implemented to reduce this time consumption.  
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Figure 30.Overall Proposed Middle ware Integration Structure 

3.1.2  Basic COM Communication with SIMULINK 

The previous section discussed about the COM interaction with VISSIM. In this 

section the discussion pertains to the communication of the COM, C# program, with 

SIMULINK program environment. Unlike the previous case, where VISSIM needs to be 

initiated by C#, SIMULINK is already running and it needs access by C# to pass on the 

data. To directly access SIMULINK, C# needs to access the workspace of MATLAB and 

then update the workspace. The challenge is to update the workspace of MATLAB while 

SIMULINK is running. So, it is necessary that when MATLAB /SIMULINK environment 

is initiated manually by the user, the simulation reads some default values of the desired 

data based on the initial conditions. Once C# program is executed, it will initiate VISSIM 

which then will pass on the required information to the workspace of MATLAB through 

C# and update it for the run time. It is very important to note that for C# to communicate 

with MATLAB environment, it is necessary to make MATLAB an automation server. This 

allows the COM, C#, to access the server MATLAB. 

Figure 28 clearly gives an idea about the functioning of C#, MATLAB and 

VISSIM. C# works independent of the MATLAB environment as well as the VISSIM 

simulation environment. Figure 28 shows the data flow only one way; from VISSIM traffic 

simulation to the hardware. This is just the first half of the simulation which has been 
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completed and tested. Further discussion of possibly implementing two way 

communication is done later. 

3.1.3  Network Programming- TCP/IP & UDP 

Network programming or socket programming [28] is crucial to the development 

of the middleware architecture. Primarily network programming is a method used to send 

data across a network, specifically the internet. It is network programming that enables 

communication between the remote computer running VISSIM and the powertrain-

research-platform which is represented by dashed arrows in figure 28. There are several 

applications that use network programming to send data across a network and the most 

common ones are any online chatting software that allow person to person chatting, video 

conferencing or voice conferencing. Implementing network programming with the HiLS 

increases its usability and accessibility of the powertrain- research-platform. With the 

availability of network communication, the powertrain- research-platform can be used by 

anyone with a simple internet connection. Therefore anyone can test their application with 

the powertrain- research-platform. Further in this paper, network programming will be 

crucial in enabling the evaluation  of CACC application . 

There are two approaches to network programming: TCP (Transmission Control 

Protocol) and UDP (User Datagram Protocol). Most network programming over the 

internet is done using TCP as its features ensure that data is sent over the network from 

server to client unlike UDP, where data transfer is not assured. However, UDP is much 

faster at transporting data over a network in comparison to TCP. The table below 

summarizes the different features of TCP and UDP. 
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Table 2.TCP and UDP features 

TCP UDP 

• Connection based using port • No concept of connection 

• Guaranteed reliable and ordered 

data transfer 

• No guarantee of reliability or ordering of 

packets, they may arrive out of order, be 

duplicated, or not arrive at all. 

• Automatically breaks up  data 

into packets 

• Data has to be broken into packets 

 

• Makes sure it doesn’t send data 

too fast for the internet 

connection to handle (flow 

control) 

• User has to make sure it doesn’t send 

data too fast  

 

• Easy to use: read and write data 

like it is a file 

• If a packet is lost, user needs to devise 

some way to detect this, and resend 

that data if necessary 

 

TCP uses features like flow control, data sequencing, retransmission to make sure 

that data is surely transferred unlike UDP which transfers data over a network without a 

connection. In other words, UDP does not care if the data packet is surely sent or dropped 

during transfer. Data packets are not sequenced hence data duplication occurs very often. 

However, UDP is faster because it does not implement features such as flow control, data 

sequencing and retransmission and directly sends the data packet to the client. 

UDP is usually used in applications where fast data transfer is given higher priority than 

data transfer reliability. Most multimedia data transfer like streaming a video through a 

network uses UDP; as a data lag such as in case of TCP is not desired. However, TCP is 

used in most cases where reliable data transfer over long distances is higher priority than 

fast data transfer such as in the case of emails.  
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For the middleware, TCP is used as the network communication transport protocol 

because of the reliability of data transfer and ordered data delivery. In TCP, buffer 

memories are allocated on VISSIM-COM side for data sending and on Powertrain-COM 

side for data retrieval. These buffers ensure that data is not lost during the transfer. TCP 

also ensures the order of data is preserved on the receiving side, which is important in the 

HiLS application to distinguish the traffic data contents. UDP transport protocol is faster 

than TCP, but is not used due to unreliable data transfer and disordered data. Reliable and 

ordered data delivery is important because data loss will affect the accuracy of the tests. 

Although TCP is relatively slower than UDP, it is fast enough for the HiLS application. 

The communication from VISSIM-COM to Powertrain-COM is one-directional, as 

shown in Figure 28. At start-up, Powertrain-COM is designed to continuously send 

requests for a connection with VISSIM-COM while the hardware(powertrain-research-

platform) is running. In order to establish a connection, VISSIM-COM opens a port in the 

socket of the remote computer running VISSIM to accept connection request from the 

Powertrain-COM. The socket address is defined by the internet protocol (IP) address of the 

remote computer and the port number. Therefore, socket connection is established as soon 

as VISSIM-COM opens the port. 

Utilizing TCP, VISSIM-COM and Powertrain-COM sends and retrieves data from 

their respective buffer memories. However, since network connection is established 

between the two buffers, the COMs will not be informed if interruption occurs in the 

internet network. It is therefore a common practice in TCP applications to include a keep-

alive data to check the status of the internet connection between the buffers. Utilizing the 

keep-alive data, the Powertrain-COM will throttle down the engine if it detects a severe 

network interruption to ensure the engine is at a suitable operating point before shutting 

down for safety purposes and to avoid hardware damage. This safety feature is discussed 

in detail in a different section.  
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When VISSIM simulation is completed, the network disconnection is initiated by VISSIM-

COM by closing the socket port and notifying the Powertrain-COM, where the engine will 

then throttle down in preparation for hardware shutdown. 

3.2  COM Operation Development 

 

Figure 31. Components of Hardware in the Loop System (HiLS) 

The middleware is designed to serve the purpose of linking different components 

of the HiLS, as shown in figure 31. It  is based on COM a specific platform which enables 

inter-process communication and dynamic object creation in different programming 

languages[25]. The HiLS is made up of different components each based on different 

software platforms.  The powertrain-research-platform and the Connected Vehicle 

Controller are in SIMULINK and the standalone Microscopic VISSIM Traffic Simulator, 

linked by the middleware , written in C#. For this thesis, the objective is to synchronize 

powertrain-research-platform and the connected vehicle controller in real time by 

developing a middleware that will handle data transfer with efficacy. 
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Figure 32. One way CACC Architecture 

3.2.1  One Way Middleware Architecture 

The middleware architecture for one way communication with CACC controller is 

shown in figure 32. The complete route for the data extracted from VISSIM traffic 

simulator is sent to a designated port in a network from thread one of VISSIM -COM and 

on the other side of the network, Powertrain-COM’s thread one receives this data and sends 

it to Powertrain Simulink Model. Thread two of VISSIM -COM then receives this data and 

sends it to VISSIM Traffic Simulator before the next time step to use this data. The data 

here is specifically vehicle speed of the target vehicle. Extracting and sending any data to 

VISSIM Traffic Simulator requires to access the VISSIM simulation attributes. These 

attributes are predefined variables in VISSIM that may or may not be accessed from 

VISSIM by calling them during simulation. The attributes important for COM are related 

to vehicle dynamics and they are specifically vehicle speed, vehicle desired speed and 

acceleration. However, as mentioned earlier, the access to various attributes differ. So, in 

this case, VISSIM allows the user to access all three attributes of speed, desired speed and 



 

63 

 

acceleration during each time step of simulation. However only speed and desired speed 

are editable during simulation and acceleration is only a readable attribute. The different 

characteristics of VISSIM attributes are clearly defined in VISSIM.  

Therefore, knowing that acceleration is a readable attribute and not an editable one, it is 

decided to use speed attribute of the controlled vehicle to update the speed of the vehicle 

for the next time step. Since the speed attribute needs to update the speed of the target 

vehicle for the next time step, it is crucial for COM to execute the task within the designated 

time step of 200ms.  

This COM structure is the most basic structure. With the target vehicle’s speed, 

other vehicles’ speeds can also be extracted. This capability of multiple vehicle data 

extraction like speed, vehicle number, acceleration, position on link and link or lane 

number enables the possibility of implementing an application like CACC. CACC is an 

individual entity, that works independent of the COM but it communicates with the COM 

to access and send vehicle data for implementing the application in the best possible way. 

For CACC application, the extracted target vehicle data and other vehicle data is sent to 

the CACC controller. Providing all the information to CACC controller gives the user the 

capability to select and organize the data as per their own requirement. The COM is 

designed to send the complete set of data as one long array to CACC in a format of speed, 

position, lane and vehicle number. The method of selecting and sorting the useful data from 

this long array is completely left to the CACC controller. Once the CACC controller has 

sorted the data and processed the sorted data. It sends it back to COM for updating this 

processed data back in VISSIM for the preselected controlled vehicle.  

The processed data from CACC controller is sent back to VISSIM-COM thread 

two which is responsible for sending data back to VISSIM before the next time step has 

elapsed. The synchronization between thread one and thread two of VISSIM-COM is very 

crucial. It must be made sure, that thread two only extracts data from CACC controller 

after thread one has sent a new data at every time step. Thread one is made to run at a 

designated time step of 200ms to make sure that the whole architecture maintains this 

specific time step throughout the simulation. However, it is not necessary for thread two to 
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maintain the time step and that is why thread two is made to run as fast as it can. Therefore 

thread two extracts data much faster than the time step of 200ms, but only sends the data 

back to VISSIM when thread one tells it to. The communication between thread one and 

two must ensure when to send the updated data and this is done using a flag number that is 

sent from thread one. Every time a time-step is elapsed, this flag number increments like 

an index number. In thread two, there is a check done to make sure the flag number 

changes, and once it recognizes that the flag number has changed, it sends the extracted 

data from CACC controller instantly to VISSIM within the same time step. The timing 

results later will prove that the data extracted from VISSIM in thread one is sent back to 

VISSIM through the CACC controller before the 200ms time step.  

The communication across the network to Powertrain-COM is one way as shown 

in figure 32. The current requirement is to send the CACC obtained velocity of the vehicle 

to the Powertrain-COM and then to the powertrain-research-platform to emulate the virtual 

vehicle that is running in VISSIM controlled by CACC controller. The engine in the 

powertrain-research-platform will be used to obtain actual measurements of fuel and 

emissions to compare it with a non-CACC vehicle running in VISSIM traffic simulation 

under the influence of VISSIM’s internal driver model. 

The structure of both the COMs can be divided in to sending and receiving data. 

For the first stage of the software development a sequential code was written where the 

sending and receiving of data would take place consecutively. However, it was discovered 

from timing results that such a method could not maintain the specific time step desired for 

the real time simulation. Therefore, the thread approach was taken where it allowed the 

two crucial processes to be divided into two threads. In figure 32, the structure emphasizes 

on the data flow through VISSIM-COM and Powertrain-COM. Thread one plays the role 

of sending the extracted data from VISSIM traffic simulator and at the same time 

Powertrain-COM serves to receive the data sent by VISSIM-COM over a network at a 

specific port . Once the extracted data from VISSIM Traffic simulator is received by 

Powertrain-COM, Powertrain-COM then sends it to Powertrain Simulink Model and then 

goes into the listening phase. Listening phase is unique to Powertrain-COM and thread two 
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of VISSIM-COM. During the listening phase, the Powertrain-COM will check for any new 

data at the ports over the network. Any data sent to these ports will immediately be received 

for processing. The receiving of the extracted data at the Powertrain-COM is the mark of 

the end of one way communication over a network.  In alignment with the current objective 

of one way communication, Powertrain-COM need not send the data back to VISSIM-

COM over the network . Hence Powertrain-COM is independent of any threads and is 

running on sequential code which is capable of handling a time step of 200ms. Therefore, 

the data sent from thread one of VISSIM-COM at every time step is received by 

Powertrain-COM and sent to the powertrain-research-platform to complete the successful 

functioning of the structure shown in figure 32. 

3.2.2  Basic Threads Structure 

Before it was decided that for current development only one way communication 

across the network was sufficient, the focus was to develop a middleware structure that 

could handle two way communication across a network with high efficacy. This structure 

for both two and one way are shown in figure 33.It is deemed important to send the 

processed data back across the reverse path, from Powertrain-COM to VISSIM-COM and 

to VISSIM traffic Simulator . The idea is to update the next time step in the traffic simulator 

with the actual tracked velocity of the vehicle obtained from powertrain-research-platform.  

All these tasks need to be completed in a single time step of 200ms. Any minor delays can 

cause the whole program to be aborted from running as it will not be safe for the engine to 

run. Detailed discussion  of safety features is done later. 
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Figure 33. COM One and Two Way Thread structure – One way is shown under shaded 

area 

The first stage of development for this middleware was to successfully conduct one 

way communication. One way communication is the complete data flow from the traffic 

simulator through the VISSIM-COM, across a network and to the Powertrain-COM and 

finally to the powertrain Simulink model for vehicle speed tracking purpose as shown in 

figure 33. However, to complete the loop, a back tracking of this processed data from the 

Powertrain Simulink model is also essential. Although two way communication was not 

implemented, it can be shown that the thread structure can handle two way communication 

as smoothly as it does one way communication. Keeping this intention of influencing the 

velocity of the target vehicle in the traffic simulator, the idea of a two way communication 

is developed. The challenge is to determine an efficient way to conduct this whole process 

of data transfer across a network in real time. One serious concern with real time 

application software is any sort of delays, especially in this case where the probability of a 

delay increases with so many different software platforms synchronized together. A 

literature survey was conducted to determine an efficient way to implement such a real 
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time application middleware that will enable different software platforms to communicate 

with each other and successfully update the velocity status of the target vehicle in the traffic 

simulator after all the processing.  

 Sequential code implements various tasks one after the other and does not allow 

different tasks to run in parallel. It  was immediately discovered that there were significant 

delays in the data processing and synchronization was difficult because if one part of the 

code had a delay, this delay would be propagated to the other tasks. Also, the load of 

computation was much higher on the code. One such bottleneck was extracting multiple 

data from the traffic simulator for multiple vehicles existing in the simulation. It was 

noticed that major delays were occurring at around 50 vehicles’ information extraction 

which clearly made the augmented two way communication middleware inefficient. The 

results for timing are discussed later in detail.   

In [22], [29] it is discussed that for real time application software, one of the ways 

to increase the performance of a code is by separating the processing of information and 

realizing different components of the middleware as different processes in the system. To 

decentralize the different tasks of the middleware, the methodology implemented is using 

threads. Using threads, different objectives of a software can be run independently from 

one another and each thread is recognized as a separate process where the computer 

processing power is dedicated depending on the power required to execute the specific 

process. Using this idea of threads both the Powertrain-COM’s and the VISSIM –COM’s 

structure were reorganized. Multi-threads can run in parallel as well as independently of 

one another. The benefit of parallel running of threads is that it allows different tasks to be 

executed at the same time which is crucial for the middleware. Threads are prominently 

used for multiplayer games played over network. They are known to reduce lag or delay 

between players who are playing the same game over the internet and this application of 

thread is significant in the running of middleware. 

The most crucial part of running this thread structure without any delay is to have 

the threads synchronized. Synchronization is assured at the starting of the threads. As it 

can be inferred from the above figure, not all the threads start at the same time. The first 
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thread is initiated in VISSIM-COM and Powertrain-COM. As Thread one in VISSIM-

COM is initiated it starts the general process of extracting information from VISSIM 

Traffic Simulator .Once it has extracted the data and sent it across the network to 

Powertrain-COM thread one within a time step of 200ms, it sends a trigger value to start 

thread two of VISSIM-COM. In the case of one way communication the thread structure 

will look like the second diagram in figure 33. Therefore, with Powertrain-COM receiving 

data from the network port will mark the end of one way communication. However, this 

trigger alerts thread two of VISSIM-COM that at any moment it should expect a data on 

the specified port if two way communication is concerned. Hence it should start listening 

as fast as it can, without any specific time step. The reason behind not using a time step for 

thread two of VISSIM-COM is that the data in VISSIM simulator must be updated before 

the next time step as mentioned earlier. Hence, it does not matter when the data is updated 

until and unless it is before the next time step is executed because the simulator uses the 

latest data that has been updated. For instance, if thread two updates the same value for 100 

times before the next time step, the simulator will use the 100th data that is updated. If in 

the next time step, the simulation tends to become slower and thread two updates the data 

only 50 times, then the simulator will use the 50th data that is updated before the next time 

step. At the same time Thread one of Powertrain-COM has been listening and also 

receiving the first data over the network. It then sends the data to MATLAB and 

simultaneously sends a trigger to its thread two to initiate the listening and sending process. 

So thread two of Powertrain-COM will try to extract processed data from Simulink Model 

and send it across the network to VISSIM-COM’s thread two in the similar fashion 

VISSIM -COM’s thread two is described to be functioning, without any time step. Since 

VISSIM -COM’s thread two has already been listening, it is ready to receive any data from 

the port and send it back to VISSIM Traffic Simulator to update the value for the next time 

step. All these tasks need to be completed in 200ms for the next time step data to be 

updated.  

In figure 33, the complete structure of the threads for the respective COMs clearly 

shows that the crucial tasks are running in parallel unlike previously when the tasks were 
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in sequential order. The benefits achieved from this structure are that the tasks are 

recognized as two separate processes in the memory of the system which allows the system 

to dedicate processing power separately to the different threads making it more efficient 

than the sequential way of implementing the tasks in the code. However there is still a 

possibility that with the thread structure, maintaining synchronization of data transfer can 

be a challenge as delays may not just occur due to the specific task assigned in the thread, 

but also due to other tasks that the system is simultaneously running like all other 

applications of the operating system. A deep dive into the details of how delays can be 

reduced is done with an elaborate timing analysis on each section of the code written to 

identify any existing bottlenecks and possibilities that can lead to a delay.  

 

Figure 34. Implementation of CACC application with 2 way communication 

3.2.3  Two Way Middleware Architecture 

One of the benefits of having two way communication is that various applications 

can be tested and one of them is the Connected Vehicle Controller application which in 

this case is the CACC application. A much more sophisticated structure of the two COMs 
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in synchronization with the CACC component is shown in Figure 34. The architecture 

shown in figure 34 conveys the complete loop structure, however figure 32 depicts the 

current functional structure that has been tested. All the different components, VISSIM 

Traffic Simulator, VISSIM-COM, CACC controller and the Powertrain-COM and 

Powertrain Model are linked in a synchronized manner. The CACC controller is a separate 

model created in SIMULINK platform and it is linked to the VISSIM -COM in the similar 

manner the Powertrain Simulink Model is linked to the Powertrain-COM. In this figure 

more emphasis is given to the VISSIM -COM structure with the CACC controller and 

VISSIM as it requires more sophistication in the code written, in terms of maneuvering 

multiple data extracted from VISSIM.  

VISSIM Microscopic Traffic Simulator is a piece of software created by PTV group 

in Germany. The word microscopic is a key feature that the traffic simulator possesses and 

that is it allows the user to zoom into the simulation details of an individual driver or 

vehicle. VISSIM uses different driver models to realistically simulate a traffic situation. 

These models are based on years of traffic research and statistical data. The model 

particularly used in the simulations is the Weidman model. More technical details can be 

found in [30]. The important feature that makes the use of VISSIM in this architecture 

significant is that it allows the user to use an internal driver model that is predefined by the 

software developers of this simulator as well as allows the user to implement their own 

driver model by writing their driving model in the form of a Dll (Dynamic Link 

Library)structure . This external driver model completely overtakes the internal driver 

model of VISSIM to give the user the freedom to change the vehicles’ behaviors in the 

simulation based on their requirement.  

Based on this feature of the traffic simulator, it is decided that processed vehicle 

speed from the CACC controller will be sent back as feedback to the simulator to influence 

the next time step velocity of the vehicles in the simulation during run time. Among the 

two approaches, COM and DLL, the COM approach is chosen as it gives more freedom to 

link other components like the CACC controller explicitly with the COM whereas the DLL 

acts  like a library to each piece of software and it is difficult to connect the different 
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components to the DLL and make them work in synchronization without using 

communication through a network. In other words, the DLL is a library that can be 

simultaneously used with any piece of software. However, when two pieces of different 

software are linked to a DLL, the DLL creates a copy of itself to provide its service to both 

the software at the same time, but it does not recognize that it is connected to both the 

software. The DLL works completely independent on both the software as if they are not 

connected to the DLL together. Hence, the problem arises when the requirement is to pass 

information from one software to another through the DLL. So updating a variable in the 

DLL from one software and passing it to the other software for further processing is not 

possible without a network. However there is a workaround to this problem and that is to 

connect the DLL to a TCP or UDP [28] port and then pass the data through a network, but 

this makes the task more tedious for the system and may increase the time for data 

processing depending on the type of network in use and the traffic of information in the 

network. Thus to keep this local on the computer and the structure simple, it is decided to 

go with a COM. However, the tradeoff is with speed of processing, as DLL works like an 

internal component of any software it is linked to and carries out tasks efficiently in 

comparison to COM which has to be executed explicitly. The COM however allows the 

code to be much more sophisticated in terms of functionality and has much more flexibility 

in terms of linking to other software paradigm .Thus, for this architecture shown in figure 

34 or in figure 32, the COM is chosen to be the mediator of information between different 

software pieces.  

3.2.4  Thread one and two VISSIM-COM 

The structure of both the Powertrain-COM and VISSIM -COM consist of two 

threads for two way communication and no threads in the Powertrain-COM for the one 

way communication. One thread is responsible for sending information to the network and 

the other thread is responsible for receiving information from the network. Their 

synchronized functioning is enabled by the capability of threads to work in parallel. As 

shown in figure 33, thread one in VISSIM-COM is responsible for initiating VISSIM 

Traffic Simulator, and running the simulator for every single time step as specified or 
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required. In this case, all the simulations are run with a time step of 200 milliseconds. A 

for loop is implemented which is controlled to run for 200 ms using a pause methodology 

available in C# language. The for loop, if finishes an iteration before 200ms, is made to 

pause for the 200 minus the time elapsed to keep the time step consistent at every 

simulation step. Similar methodology is used for thread two of the VISSIM -COM but 

without a specific time step as explained earlier. Within that loop structure of thread one, 

exists the feature of extracting multiple data information from VISSIM. Data types that are 

relevant for the purpose of this middleware are vehicle speed, vehicle number, link number 

and position of vehicle. The code is written to extract all information for all vehicles 

existent in simulation at every single time step in the form of a single one dimension array. 

Once all this information from VISSIM traffic simulator have been extracted, the arrays 

are sorted for only selected data that need to be passed on to the other components of the 

HILs, in this case the CACC controller. The sorted data is arranged in another one 

dimensional single array and sent across the network. The idea of using an array makes 

data sending and receiving much easier as the selected data is in a compact form. 

Previously, a for loop was being used to sort the arrays or fill the elements of the arrays 

and it was discovered that using a for loop was causing the runtime to exceed the designated 

time step of 200 ms and leading to major delay in loop. Thus a method where all elements 

from an array could be copied and pasted to a new array was used to make the sorting of 

data into compact arrays much faster. Thread two on the other hand is responsible for 

listening to the network after it receives the trigger signal from thread one. Thread two is 

designed to continuously check for new data at the designated port in the network. If any 

data is received it will send the data to VISSIM, otherwise the previous data will be sent in 

case there is any data loss due to network disconnection. However, for one way 

communication thread two of VISSIM-COM will not listen at a network port, but it will 

access the data locally from the CACC controller. One important fact to note on the 

VISSIM -COM side is that any sort of internet disconnection or network loss does not need 

to be dealt with explicitly because the simplest thing to do in such cases is to just end the 
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simulation at the moment network disconnection occurs. However, the matter is dealt in a 

different way on the Powertrain-COM side as discussed further. 

3.2.5  Thread one and two Powertrain-COM 

Thread one of Powertrain-COM plays the exact same role of listening like thread 

two of VISSIM-COM but with added features. Since the Powertrain-COM is directly 

dealing with Powertrain Simulink Model which is directly connected to a real engine, there 

are some safety precautions taken to make sure during times of disconnection or network 

loss, the engine does not run uncontrolled and a way to shut the engine down safely is 

assured. The engine currently in use has an idling speed of 900 RPM. Thus the safest way 

to shut the engine is to bring the engine to its idling speed of 900RPM and very low engine 

torque. It is not completely necessary to shut the engine at 900RPM but definitely safe. 

However, the engine torque must be maintained very low for shut down procedures. Thus, 

keeping these parameters in consideration a safety check methodology is implemented 

using a check value. It is observed that every time a disconnection occurs, the data received 

from the network in the thread one of Powertrain-COM will read the previous data from 

the previous time step as no data has been updated. 

 The first approach is to check for the repeated value over one second which means 

that with a time step of 200ms, if the value repeats for over a time of one second, the code 

will be instructed to reduce the speed of the vehicle from the last updated speed to zero. 

However, it is realized that this cannot be achieved with just the vehicle speed information 

because it can be possible that the target vehicle is at a stop and it is sending zero velocity 

to the network repeatedly, and this zero velocity with the current safety method can cause 

the code to abort even though there is no actual disconnection. Thus a check-alive data is 

sent in an array with the starting value of one. This assures that the check-alive data can 

never be the single digit zero and it will send incremented data, until and unless there is a 

network disconnection of some sort. Thus, within one second of elapsed simulation time, 

if the check-alive data is repeated, the code will assume that there has been a network 

disconnection and proceed to use the last updated vehicle velocity to reduce the speed to 
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zero and send it to the powertrain telling the engine to come down to its idling speed of 

about 900 RPM. This way it becomes safe for the engine to shut down. 

 Such a safety feature is not repeated in thread two of the Powertrain-COM, as the 

thread two is only responsible for sending the processed data extracted from Powertrain 

Simulink model and send it back to VISSIM -COM across the network. The threads 

structure of the middleware make two way communication possible. Currently, two way 

communication is achieved but not completely executed as the focus is to implement 

CACC application with one way network communication. Using threads makes it possible 

for future development of two way communication with the CACC application integrated 

. However for now, since the engine can track the speed sent from VISSIM traffic simulator 

very well, it is not desired to implement two way communication to update the actual 

vehicle speed from powertrain back to VISSIM for the next time step.  

Two way communication is a crucial feature of this structure because it enables 

feedback of data completing the Hardware in the Loop. For instance, for the  CACC 

controller, the Microscopic Traffic Simulator and VISSIM-COM, it is very important that 

the vehicle information extracted from the traffic simulator is efficiently passed on through 

the controller and back to the simulator within one time step. In this case, logic of the data 

flow fulfills the objective of emulating an individual vehicle using a real engine and a 

virtual powertrain. The information of an individual vehicle is extracted from a 

microscopic simulator, and sent across a network to the powertrain research platform for 

running a real engine with a virtual powertrain. Since this virtual traffic simulator is a 

microscopic simulator, it is possible to extract the information of one individual vehicle. 

Information obtained from the simulator is specific to vehicle dynamics like the speed, 

acceleration and location of the vehicle and other attributes may be extracted if desired. 

This information obtained from the simulator is then accessed by the COM which is 

identified as VISSIM-COM. It is responsible for routing selected data to the different 

components associated with this structure.  

Figure 31 shows the different applications of HiLS and one of them is the 

Connected Vehicle Controller. The Connected Vehicle Controller compliments various 
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applications and one of them is the CACC. CACC application is implemented with the 

HiLS to investigate the effect of the controller for one vehicle now and multiple vehicles 

in the future. VISSIM-COM must manage the routing of the data to CACC controller which 

is running on MATLAB software platform and the Powertrain-COM which is another 

middleware on a different computer, connected using a network (i.e. internet).  

The Powertrain-COM’s responsibilities are analogous to that of VISSIM-COM. 

VISSIM-COM is the middleware that creates routes for data from VISSIM Traffic 

Simulator to the other components of HiLS whereas Powertrain-COM provides data to the 

powertrain-research-platform. The data received on the Powertrain-COM, is routed to 

Powertrain Simulink model for processing. The virtual powertrain, in Simulink , calculates 

the dynamometer torque which is then sent to the dynamometer associated with the lower 

level controller for tracking . The tracked engine speed and torque can be  received back in 

the model to recalculate the actual vehicle speed. Based on the tracking performance of the 

controller ,the vehicle speed can be  sent to the Powertrain-COM which can send it back to 

the VISSIM-COM. Once VISSIM-COM acknowledges the receiving of the data, it sends 

it to the traffic simulator intended to influence the next time step velocity of the target 

vehicle. The traffic simulator assigns the speed of the target vehicle as the actual speed 

received from the Powertrain model before the next time step is updated. This single loop 

of data flow displays the emulation of one vehicle in the traffic simulator.  This is one very 

significant application of two way communication.   
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3.2.6  General Car Following Model 

 

Figure 35. Driver Following Model 

Microscopic VISSIM Traffic Simulator emulates different traffic scenarios based 

on various parameters. One of the key features of VISSIM Traffic Simulator is that an 

internal driver model is used by the software to emulate driving behavior of individual 

vehicles. Like most other traffic simulation software, VISSIM too uses a driver following 

model. The driver following model pertains to the dependence of the characteristic of the 

target vehicle’s driver behavior on the behavior of the preceding vehicle. The main 

objective of a car-following model is to maintain a safe distance between consecutive 

vehicles in a traffic situation so that the following vehicle does not hit the preceding vehicle 

and cause an accident. Scientists have developed several car-following models. However , 

no model till date can be claimed to perfectly emulate the human behavior. It is extremely 

difficult to emulate the behavior of a human driver because the behavior of each individual 

human is not only unique from other humans but also unique to a specific situation. 

Researchers claim that there are two basic groups of parameters which influence the time 

of drivers’ reactions. The individual characteristics are age, sex, driving skills, tiredness, 

stress, alcohol, drugs, psychological pressure and the characteristic of vehicle, and other 

external factors like time of day, road conditions  and visibility . Taking all these variable 

conditions into consideration makes it very difficult to design an accurate driving model 
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.This makes it very difficult to derive models that emulate human driving behavior. For the 

application of VISSIM software, it is important to have a car following model as each 

vehicle in the simulation must uniquely behave because of the software’s feature of a 

microscopic simulation package. Most existing car-following models are designed with the 

objective of collision evasion and one such model that is closely used in VISSIM traffic 

Simulator is the Wiedemann Car following Model[30]. 

 

Figure 36. The regimes in the Wiedemann car following model 

3.2.6.1  Wiedemann Car Following Model 

The Wiedemann psycho-physical car-following model as shown in  figure 36 above 

is responsible for modelling the longitudinal dynamics of the vehicles in the simulation. 

The drivers’ behavior is described with four distinct regimes as a function of ∆𝑥 𝑎𝑛𝑑 ∆𝑣. 

The regimes are as follows: free driving, approach to a car queue, driving in a queue and 

braking. All these regimes are decided based on the difference of absolute position between 

the preceding vehicle and the following vehicle given by ∆𝑥 and the difference in the 

velocities of the preceding and following vehicles given by ∆𝑣 . Based on these parameters 

the decision for the velocity of the following vehicle, for the next time is taken. The 

decision is to either accelerate, decelerate or keep the same velocity. The model used in 

VISSIM derives the desired distance between the following vehicle and the preceding 
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vehicle based on the relation shown in [30] which further denominates regions as 

SDX,ABX,SDV,CLDV and OPDV.  

SDX gives the maximum following distance for the following vehicle with respect to the 

leading or the preceding vehicle. This distance is about 1.5 to 2.5 times the minimum 

following distance ABX.  SDV is the regime where the following vehicle is approaching 

the preceding vehicle. The region CLDV is SDV in VISSIM Traffic simulator.  These 

conditions described above give rise to the car-following regimes: Following, Free driving, 

and Closing in as shown in figure 36 . Following occurs when the following vehicle 

approaches another vehicle in front of it. Free driving occurs when all the other vehicles, 

although they exist in the traffic network, are not in the vicinity of the following vehicle. 

Closing in occurs when the following vehicle approaches another vehicle in front of it with 

a lower velocity than its own. 

Following: 

The regimes SDV,SDX,OPDV and ABX, fall under the following regime. In this 

region the target vehicle is clearly influenced by the preceding vehicle which it is 

following. As the target, or the following vehicle crosses the SDV or the ABX regime, the 

following vehicle has a negative acceleration or deceleration. However, in the OPDV and 

SDX region, the acceleration is positive.  

Free Driving: 

In this regime the following vehicle is technically not following any other vehicle 

as it is not influenced by the other vehicles in the traffic network. This is the regime where 

it can be claimed that the driver model is not acting anymore. The following or the 

controlled vehicle now tries to achieve its desired velocity. The vehicle uses its maximum 

acceleration to reach its desired velocity.The maximum acceleration is a function of the 

vmax of the target vehicle and not a function of the preceding vehicles’ acceleration.  

Closing In: 

This region occurs when the driver is passing the SDV regime. The target vehicle, 

more appropriately known as the following vehicle in this case, is closing in to a leading 

vehicle that is travelling at a slower velocity than the following vehicle. It is very obvious, 
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that to prevent any sort of collision , the following vehicle has to decelerate. From the 

deceleration function in [30] it can be clearly seen that the deceleration in the closing in 

regime has no relation to desired velocity or maximum velocity of the following vehicle 

unlike in the case of free driving. In fact, the deceleration is clearly influenced by the 

preceding vehicle’s driver’s behavior as there is a clear relation of the deceleration function 

to the preceding vehicle’s acceleration.  

3.2.6.2  Overthrowing the VISSIM Internal Driver Model 

The above background study on the internal driver model of VISSIM gives an 

insight into when the driver’s behavior is directly influenced by the preceding vehicle’s 

driver behavior and when it is not. This piece of information is very important to implement 

autonomous vehicle applications like CACC. Essentially there are two ways to implement 

autonomous vehicle applications. One is to completely take control of the vehicle which 

will require overthrowing the VISSIM internal driver model discussed above for individual 

vehicles or a platoon of vehicles. The other option is to implement a semi-autonomous 

application, like a driver advisory. Since in the future it is highly desired to implement 

completely autonomous application, the approach is taken to remove the internal driver 

model of VISSIM. The microscopic feature of VISSIM Traffic Simulator is especially 

helpful in this case as it allows to select individual vehicles and remove the functionality 

of the internal driver model.  

In [31] , to implement a cruise control approach to an individual vehicle , it is 

realized that the vehicle can be completely controlled by an external cruise controller when 

the individual vehicle is in the free driving regime. From figure 36 and previous discussion 

it is clear that in the free driving region the vehicle is not influenced by other vehicles in 

its vicinity . Hence, this is the only regime where an external controller, as mentioned in 

[31], can take full control of the vehicle. However, [31] acknowledges that when the 

vehicle passes other regions like SDV or SDX, then the VISSIM internal driver model 

takes control of the vehicle overthrowing the external controller. Hence, this scenario is a 

typical depiction of a driver advisory. However, to fully realize the benefit of an external 

controller like CACC with respect to fuel consumption, reduced emissions and reduced 
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traffic congestion, it will be beneficial to provide full control of the vehicle to the external 

controller under any circumstances because unlike a driving advisory where the driver’s 

reaction will play a critical role in determining the vehicle’s velocity profile, the controller 

can implement its optimal control output to the vehicle. This is given that the controller is 

robust in several driving situations and does not become unstable and cause dangerous 

maneuvering of the vehicle. With this intention of giving full control to the external 

controller, it is desirable to overthrow the VISSIM internal model of the driver. To achieve 

this , it is necessary to realize the method used to determine the acceleration and velocity 

of each individual vehicle in the simulation. Although, VISSIM’s official manual claims 

that the driver model is a depiction of the Wiedemann Driving model, there are some 

hidden differences in VISSIM’s model which are not released to the public due to 

commercial reasons of protecting intellectual property. Hence, it is difficult to exactly 

determine the internal driver model of VISSIM. However, since it is known that the driver 

model in VISSIM is close to Wiedemann driving model , an approximate idea of the model 

can be made.  

From figure 36 and [32], it is known that only in the free driving region VISSIM’s 

driver model is not influenced by the preceding vehicle. From the equations in [30], it  can 

be seen that except for the Free Driving regime, in every other region , the acceleration is 

a function of distance from the preceding vehicle as well as the speed or the acceleration 

of the preceding vehicle. The free driving region only occurs when ∆𝑥 𝑎𝑛𝑑 ∆𝑣 are large in 

magnitude which means when the following vehicle is either too far away from the 

preceding vehicle or has a large velocity difference. Now, it is important to figure out a 

way to implement this free driving region at smaller magnitudes of ∆𝑥 𝑎𝑛𝑑 ∆𝑣. The 

approach taken is to study a “dummy” driver model DLL file provided by VISSIM. In the 

driver model DLL, there are two specific functions defined as “SetValue” and “GetValue”. 

The role of these functions are to set the parameters as output from VISSIM and send the 

parameters updated after a single time step to VISSIM for the next time step respectively. 

It is realized that the GetValue function is solely responsible for providing VISSIM with 

the updated parameters of the vehicles like the desired velocity, desired acceleration, and 
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desired lane. However, there is no specific parameter for setting the speed and acceleration 

of the vehicles. This means that VISSIM’s internal model is dependent on the desired 

velocity and desired acceleration to determine the current speed and acceleration of the 

vehicle. From the equations it is also known that the acceleration in the car following 

models are a function of the preceding vehicle’s velocity and the distance from the 

preceding vehicle, which means that other than the free driving regime, the vehicle’s 

acceleration will be largely influenced by the preceding vehicle’s behavior. In fact , in the 

closing in regime, the deceleration has a direct term of deceleration of the preceding vehicle 

added to it. Thus, it can be said that disabling the desired velocity and desired acceleration 

parameters in the DLL can possibly get rid of the internal model for a specific vehicle.  

The first approach is to disable sending desired speed parameter to VISSIM from 

the external driver model DLL. By disabling it simply means to put an “if” condition that 

if the vehicle identification number of a specific vehicle is recognized, don’t send the 

parameter. Hence, for the first test vehicle number 16 was selected and the “if” condition 

was implemented to disable sending the desired velocity to the internal driver model. After 

running the simulation it was realized that disabling the desired speed showed up as zero 

desired velocity of the target vehicle, and the vehicle in the simulation directly approached 

that zero velocity and halted in the middle of the road. This tells that the internal driver 

model was still acting and in full control of the vehicle. The next approach was to enable 

the desired speed and disable the desired acceleration. After running the simulation, it was 

observed that the vehicle starts to accelerate without any consideration of the surrounding 

traffic.  The vehicle even hits the other preceding vehicles and over takes them in the virtual 

simulation. This clearly means that disabling the desired acceleration parameters 

overthrows the driver model to some extent. However, the question is why does the vehicle 

accelerate throughout the simulation and reach a velocity of more than 100km/h by the end 

of the simulation which is higher than its designated desired velocity of 75km/h.  

First, it is inferred that the acceleration is probably due to the vehicle trying to 

achieve the desired velocity which is enabled in this case, but the inference is proved wrong 

from the observation that the vehicle exceeds the desired velocity . This is where an 
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approximation of the model is attempted. It is determined from the general acceleration 

function for most car following models that the acceleration is a function of the preceding 

vehicle’s driving behavior. Hence, disabling the driving behavior automatically gets rid of 

the VISSIM driver model which was observed when the vehicle accelerated without 

considering the vehicles surrounding it and surpassing them in the virtual traffic network. 

However, the vehicle still accelerated, and it seemed like that the vehicle was accelerating 

at its maximum acceleration. Hence, it can also be inferred that the acceleration is a 

function of the maximum acceleration. From the background study above, it is explicitly 

stated in [30] that the vehicle achieves its maximum acceleration to achieve its desired 

velocity and that too only when the vehicle dynamics is in the free driving regime. 

Therefore, in this case it can be claimed that the vehicle is behaving as if it is in the free 

driving regime but it is not accelerating to achieve the desired velocity . This again proves 

that the driver model is disabled because to stop the vehicle from accelerating beyond its 

desired velocity , the driver model needs to provide feedback but since the driver model is 

disabled, it cannot provide any feedback. 

 Taking the above observation into consideration, for the next simulation run, both 

the desired velocity and desired acceleration terms were disabled. It was observed that 

disabling these terms the vehicle did not accelerate any more but instead traveled at its 

initial velocity assigned as it entered the traffic network. The vehicle speeded at this initial 

velocity for the whole simulation without paying any regards to the surrounding vehicle. 

This clearly tells that the vehicle was no more influenced by any desire to achieve any 

speed or acceleration and it was not influenced by any regimes. However, to confirm this 

inference, it is important to determine if the vehicle is still following a physical, dynamical 

model. A comparison is conducted to make sure that the VISSIM model, even though has 

a disabled internal driver model , follows the fundamental laws of physics. The figures 

below clearly show that the distance obtained by integrating the speed over the simulation 

time is the same as the distance obtained from VISSIM simulation which is directly 

extracted as a vehicle position attribute and stored in a text file for each time step. Since 

both the plots in figure 37 are the same, it can be claimed that even with the driving model 
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disabled , the simulator follows the speed and distance relationship based on the 

fundamental laws of physics.  

 

Figure 37. Comparison of ∆x from Matlab and VISSIM simulation 

3.3  Timing and Synchronization of CACC architecture with  

Simulation Results 

This section will give an overview of the time execution analysis of the three vital 

processes that take place in the program. The three processes under discussion are: Time 

taken for VISSIM to run single step, time for C# to extract data from VISSIM for different 

number of vehicles extracted and the time taken for C# to receive and send data to the other 

components of HiLS. 

As mentioned earlier, it is decided that the total time taken for these processes will be set 

to be below 200 milliseconds; that is the three processes will have to be completed within 

200 milliseconds. With the assumption that the individual time for each process takes less 

than 50 milliseconds, the initial program is written such that if the total time taken for the 

three processes takes less the 150 milliseconds, the program will be paused for the 200 

milliseconds minus the time elapsed to complete the three processes to maintain the desired 

time step.  
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In the following sections the results for the time for execution of each of the three processes 

are discussed.  

3.3.1 Time for VISSIM to run single step 

Figure 38 shows the time taken for VISSIM to run single step over a simulation 

time of 300 seconds and also combines the graph of the total vehicle count at the end of 

each simulation. The simulation is carried out for six different situations with regards to 

the total number of vehicles present. The green cluster of points represents the increasing 

presence of vehicles in the simulation. The different cases for which the simulation is run 

are: 600, 700, 800, 900, 1000 and 1100 vehicles.   

The blue cluster in figure 38 represents the time taken for VISSIM to run single step over 

the total simulation period. There are about 3000 different points plotted which form the 

blue cluster shown in figure 38. It can be seen that as time passes by, the execution time 

for VISSIM has an increasing trend. For example, in the graph for 600 vehicles, it shows a 

very slight increase in time as the simulation time reaches the end of 300 seconds. The 

increasing trend is not very prominent in this case. If the case of 1100 vehicles is 

considered, then the increasing trend of time is much more prominent. This increasing trend 

in time is expected with the increasing density of vehicles. Comparing the plot for 600 

vehicles with the plot of 1100 vehicles, the plot for 1100 vehicles has slightly higher initial 

execution time and the time increases as the total vehicle count increases. 

 3.3.2 Time for C# to transfer data to MATLAB 

Figure 39 represents the relation of run time for MATLAB with respect to the total 

runtime of the simulation. It also shows the vehicle count for the total simulation time 

which is kept constant to investigate the effect of changing the number of vehicle 

information extracted. The six plots shown below correspond to the extraction of 1, 

50,100,150,200 and 300 vehicles. 

From figure 39 it can be seen that the points plotted in blue represent the run time for 

sending individual data to MATLAB. The simulation was run for different conditions as it 

was done for analyzing VISSIM execution time for running one single step shown in figure 

38. The average time for sending data to MATLAB is approximately in the range of 0 to 
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15 milliseconds. Like VISSIM running single step, it does not take C# much time to send 

data to MATLAB. However, unlike VISSIM running single step, the transfer rate of data 

to MATLAB remains almost constant even as the number of vehicles extracted increase in 

the simulation.  

Figure 38. Time graph for VISSIM to run single step 

This trend is expected because the C# program sends an array of vehicle 

information instead of sending individual information one by one. Implementing an array 

makes the process faster, because then C# sends all the data at once. MATLAB only has 

to receive the array which is of a particular size for every single run of the different 

simulation conditions.  Since the array size does not change, the time for execution is 

almost same for all the graphs. If the array size changed for every single simulation, then 
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the time plot would have an increasing trend. The insignificant difference in execution time 

for vehicle extraction is only because of the extra time taken to load the array as the number 

of extraction vehicle increases from one simulation to the next. 

 

 
Figure 39. Time graph for sending data to MATLAB 

3.3.3 Time for C# to extract data from VISSIM 

The results for extracting vehicle data for 50 and 100 vehicles using the preliminary 

code are shown in figure 40. It shows the time for execution increases significantly as the 

number of vehicles increase in the simulation. In this case for extracting data for 50 
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vehicles, the time increase in the beginning is till the vehicle extraction is below 50 

vehicles, but as it reaches 50, the time stays constant for the rest of the simulation.  

 

Figure 40. Execution time for VISSIM extraction 

From figure 40, for the plots of different vehicle extraction values, the time exceeds 

200 milliseconds by a large margin.  This significant delay in the simulation with the 

increase in vehicle is contributed by the for loop approach which was previously used to 

extract  multiple data from VISSIM. The most recent approach to multiple data extraction 

implements arrays which reduce the time for extraction drastically.  The results with the 

array approach are discussed later. Thus it is known that VISSIM extraction is the reason 

why the 200 millisecond time step is not working when implemented in the C# code with 

the for loop structure. These preliminary results show that when a for loop is implemented 



 

88 

 

instead of arrays, the time consumption for extracting multiple data from VISSIM 

simulation during runtime is significantly high. This situation is improved by implementing 

large arrays to extract multiple data from VISSIM without significantly impacting the time 

even when the data size is increased fourfold.  

Next, a complete simulation of the COM middleware architecture is executed to 

examine the synchronization of the different components as well as investigate the timing 

of specific components to figure out any bottlenecks. The simulation is carried out to record 

the timing for both thread structures, Thread one and two for the Powertrain-COM and the 

VISSIM -COM as shown in figure 33. The functionality of threads one and two 

corresponding to VISSIM -COM and Powertrain-COM respectively, are the same as well 

as for threads two and one corresponding to VISSIM -COM and Powertrain-COM.   

Threads one and two , VISSIM -COM and Powertrain-COM respectively  , have the 

functionality of extracting data from an external software that is linked to the COM and 

then send it across a network to a specific port. Thread one in VISSIM -COM extracts 

vehicle information like vehicle number, position, speed and link and lane location at once 

in array form and sends it to the network as well as to the CACC controller built in Simulink 

that is simultaneously running locally. On the other hand, Thread two in powertrain-COM 

extracts processed information from Powertrain Simulink model and sends it back to 

VISSIM -COM. The running of Thread one VISSIM -COM is crucial in determining the 

complete synchronization of the structure as its performance is dependent on how much 

information is being extracted from VISSIM traffic simulator, whereas for the other threads 

like thread two of VISSIM -COM and threads one and two in powertrain-COM are 

responsible for passing the data as quickly as possible to maintain the desired time step for 

the whole architecture .  

A complete synchronization of all the threads in both the COMs can be achieved 

by making sure the data extracted from VISSIM Traffic simulator is sent back with the 

processed data before the next time step for which the simulation is run. The idea is to 

provide VISSIM’s internal model with the updated data so that it can use the updated data 

to run the next time step. Looking at the structure shown in figure 33, it can be said that it 



 

89 

 

is crucial for thread one VISSIM -COM to maintain the desired time step in this case a time 

step of 200ms. This is because thread one is the main control thread which decides when 

to run the traffic simulator for one time step as well as when to extract different types of 

data from the simulator. Once a piece of data is extracted , the next time it should be 

extracted from VISSIM must be exactly after one time step is elapsed to maintain 

uniformity of time. However, the extracted data from VISSIM must now travel across all 

the other threads through a network, through different software like CACC controller in 

Simulink and Powertrain Simulink Model for processing and then back to thread two of 

VISSIM -COM before the thread one of VISSIM -COM runs the current simulation for 

another single step.  To achieve this, all the threads through which the data travels must be 

synchronized . 

Initially it was realized that all threads must maintain a time step of 200ms. 

However, after running a few simulation tests, it is realized that  allowing all the threads to 

execute at the 200ms time step holds the data unnecessarily for long time and causes delay 

in the transmission. After many considerations it was decided that it is only logical to keep 

the control thread (Thread one VISSIM -COM) in a specific time step, and all the other 

threads must send the data received as soon as possible , so that the processed data can 

reach VISSIM traffic simulator before the next single step run is executed in the control 

thread. This is because the time step is completely dependent on the control threads as the 

control thread decides when to run VISSIM depending on the set time step. Therefore, 

following this logic, all the other threads follow a logic of listening for data over a 

continuous while loop, and as the data is received, the threads pass it on to the next thread 

or software. For this to occur, all the other threads must run the loop at a faster rate then 

the control thread which is made to run its loop at the desired times step. This means that 

if all the other threads loop over faster than the control threads, there is a possibility for 

thread two of VISSIM -COM to receive the same data over and over again if one time step 

is not complete. Since VISSIM -COM thread two is responsible for delivering the 

processed data back to the VISSIM simulation, it is fine if repeated data is sent to VISSIM 

simulation before the time step is over. However if thread two sends a repeated data exactly 
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at the time when control thread runs a single step, then it will cause an error. Thus it is 

decided to put a flag value attached to the actual data extracted from VISSIM simulation. 

This flag value acts like an index which will always increment when a new data is extracted 

from VISSIM in the control thread. This flag value is then checked in all the other threads 

to realize a new data has been extracted which means a new time step has elapsed. Using 

this flag value, thread two of VISSIM -COM can make sure it does not send repeated data 

to the simulation software and instead send the updated data once and wait till the flag 

value increments for the next data to be updated in VISSIM simulation software. This 

check for the increment in the flag value allows the correct data to be replaced back in 

VISSIM Software before a time step is elapsed. To enable the actual data extracted from 

VISSIM traffic simulation and the flag value to travel together through the threads, they 

are placed as an element in an array. The maximum array size of data in all threads except 

the control thread is two elements.  For control thread in VISSIM -COM the information 

array size can vary depending on the requirement of the user. The current control thread 

set up extracts multiple data from VISSIM traffic simulator as mentioned earlier and sorts 

the large array of data to extract the most important data. Since the elements in the array 

vary at every time step with increasing or decreasing  number of vehicles, depending 

whether vehicles enter or exit the traffic simulation network at every time step, it is easier 

to set a constant large size for the array and let the data occupy or vacant the element space 

depending on the number of vehicles present during one single time step. It can be easily 

inferred that more the information is extracted from VISSIM, slower the running speed of 

control thread will become. It is crucial for the control thread to maintain the desired time 

step to keep the other threads synchronized. Any delay in the control thread will propagate 

the delay in the upcoming time steps in all the threads leading to break the simulation in 

VISSIM. It is observed that anytime a major delay occurs, for reasons like several vehicles 

running in simulation at a time step can increase the load on VISSIM Software, then the 

data processed through the threads update VISSIM in the wrong time step causing the 

internal model of VISSIM to loose control. This can lead to either the vehicles crashing in 

VISSIM simulation or stopping abruptly in the middle of the road causing all other vehicles 
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to stop too. Therefore it is vital to determine the upper limit of the quantity of information 

that can be extracted from VISSIM and processed without any significant delay. Thus, the 

simulation was carried out for two different scenarios, for 200 and 800 vehicle information 

extraction. The results are discussed below. 

3.3.4  Vehicle Information Extraction 

As mentioned earlier, the quantity of vehicle information extraction plays a major 

role in maintaining the timing and synchronization of the middleware and its components. 

As per the current requirement, one simulation time step must be within 200ms precisely. 

To maintain such a tight time step it means that any delay in any of the components will 

cause the whole synchronization to fall behind in time. Taking into account that there are 

so many components , the threads structure is implemented as the core design of the 

middleware. The parallel running feature of the threads allows the middleware to divide its 

task in different parts based on the requirement and run each component responsible for a 

specific part to run as a separate process on the computer system. This design of 

decentralizing the working of the middleware, instead of using sequential code, definitely 

helps more in synchronizing the different components of the code. As mentioned earlier, 

the major tasks of the threads are to extract information from a third party software running 

simultaneously and send or receive the information across a network or locally.  

Extraction of data starts in Thread one of VISSIM-COM as it is the initiator of the 

whole software loop. This is where VISSIM is initiated and run for every single time step. 

Thread one of VISSIM -COM is the busiest in terms of work load as it has to extract and 

send much more information than all the other threads . This thread has direct association 

with VISSIM, from where it extracts multiple data information as mentioned earlier. So 

for example, if 200 vehicle information has to be extracted then it extracts about 800 single 

data elements in the form of array as there are four data types for which it has to extract 

200 elements each. The four data types are vehicle number, speed, lane and position. Thus 

for 800 vehicle information, it extracts 3200 individual elements in the form of array at 

every time step. Further, these multiple data elements have to be processed before they can 

be sent  because not all of them are required for processing. Thread one’s primary 
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responsibility is to deliver information to CACC model running locally and also to a 

network.  

 

 

Figure 41.Timing for Thread one Vissim-COM for 200 vehicle information extraction 

3.3.4.1  VISSIM-COM Thread 1 -200 Vehicle Extraction 

The timing results shown in figure 41 are for 200 vehicle extraction of Thread one 

of VISSIM -COM. It is to be noted that 200 vehicle information includes four different 

data types; vehicle speed, position, number and lane, which means the extraction is for 800 

individual data points in the form of array. The graph with the timing for VISSIM run 

clearly shows that it takes less than 50 ms for Thread one to run VISSIM for one time step. 

Most of the timing points are cluttered around 20-25ms. However, it is inferred that these 

delays which cause the timing to increase can be due to increasing number of vehicles in 

the simulation as simulation time increases. This is clearly depicted in the plot titled 

Extraction Timing. This plot shows the general increase of vehicles over simulation time 

till 200 vehicles are extracted. It takes about 25 seconds of simulation time for the traffic 

simulation to have 200 vehicles. Although the plot shows the vehicle number saturated at 

200, it is to be noted that actual number of vehicles in the simulation reach to about 850 by 

the end of the simulation. That is the reason why at a later time, the timing for extraction 
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increases slightly. Although COM is programmed to extract 200 vehicles, VISSIM 

simulation has more processing to execute with more number of vehicles in the network. 

The third plot gives the idea of how much idle time is left for thread one to elapse. Since 

the time step of 200 ms has to be maintained for the purpose of synchronization with other 

threads, it is important to pause thread one for the extra time till the one loop of thread one 

takes up 200ms. From the plot titled Idle time, it can be seen that at the beginning of the 

simulation when the total number of vehicles in the simulation are few, the idle time is in 

the range of 10-160 ms. However, over simulation time, there is a distinctive decreasing 

trend in the idle time, and this is again explained by the fact that the number of vehicles in 

the simulation increase. The last plot shows the total time for the thread to run one time 

step. This plot clearly showcases the capability of the thread structure by maintaining the 

time step values within 200 ms for the whole simulation . From these set of plots it can be 

guaranteed that the crucial tasks of thread one in VISSIM -COM , of running VISSIM 

single step and extracting 200 vehicle information, does not exceed the time step. 
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Figure 42. Timing for thread two Vissim-COM 

3.3.4.2  VISSIM-COM Thread 2 - 200 Vehicle Extraction 

 

Timing data for thread two of VISSIM -COM is recorded and displayed in figure 

42. Thread two’s crucial tasks are receiving the data from the network and sending it to 

VISSIM traffic simulator locally. It is also responsible for continuously looking for any 

new data when it is not sending the received data to VISSIM. This is clearly depicted in 

figure 42. Looking at the plot titled Send to VISSIM, conveys that it does take thread two 

of VISSIM -COM time for it to receive and send the data to VISSIM. Most of the cluster 

of points are around 20-50 ms. These set of plots clearly convey that the crucial task of 

receiving data from the network or the CACC SIMULINK model and sending  to VISSIM 

Traffic simulator is definitely not a bottle neck.  
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Figure 43. Timing for thread one  Powertrain-COM 

3.3.4.3  Powertrain-COM Thread 1 -200 Vehicle Extraction 

 

Similar timing analysis was conducted for Powertrain-COM. For the timing 

analysis of Powertrain-COM without any threads, figure 43 shows three plots: time for 

sending data to Powertrain, idle time and time step plots. From the first plot titled send to 

Powertrain , it can be seen that the timing for sending data  to Powertrain Simulink model 

is less than 10ms which is a significantly small timing value. The idle time and the time 

step plots clearly show that the Powertrain-COM code is capable of maintaining a time 

step of 200ms. The timing data points are consistently spread and do not show any 

particular trend in time which suggests that over simulation time, the time to execute the 

code increases. This is accounted for my the uniform size of array that is been received 

from network and sent to Powertrain through out the simulation run. Hence, with this plot 

it can be concluded that for one way network communication , the complete architecture 

of the middleware is validated to work in real-time. 
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Figure 44. Timing for thread two Powertrain-COM 

3.3.4.4  Powertrain-COM Thread 2 -200 Vehicle Extraction 

 

Figure 44 shows the timing analysis plots for thread two of Powertrain-COM in the 

case of two way communication. It can be seen that the main task of extracting data from 

the Powertrain-Simulink model takes time in the range from 5ms to 25 ms with some 

outliers that exceed 30 ms. Like the other threads in the architecture, except the main 

control thread controlling VISSIM Traffic simulator, the major task of thread two of 

powertrain-COM does not consume too much time to cause any significant delay . All the 

above plots are for 200 vehicle information extraction, but the number of vehicle 

information extraction is only relevant for thread one of VISSIM -COM, the control thread, 

because all the other threads pass an array with two elements no matter how many vehicles 

information are extracted in one single time step.  
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3.3.4.5  VISSIM-COM Thread 1 -800 Vehicle Extraction 

 

To compare the results with increasing number of vehicle information ,figure 45 is 

plotted. Figure 45 shows the timing results for VISSIM -COM thread one for 800 vehicle 

information extraction, which means 3200 elements are extracted at each time step. The 

extraction and send plot clearly show an increase in time consumption as the number of 

vehicle increases to 800 but compared to the extraction and send plot for 200 vehicles in 

figure 41, the increase in time is not significantly different. The reason behind this is the 

change in VISSIM’s method of accessing attributes from the previous versions where for 

accessing multiple data information during simulation run, a for loop had to be 

implemented which definitely took more time compared to extracting multiple data all at 

the same time using an array. Due to this added feature the time step plot and the ideal time 

plot also do not differ much from that of 200 vehicle information extraction. This is very 

advantageous for real time applications such as the COM architecture, in this case, because 

even a fourfold increase in the vehicles population does not change the processing time 

significantly . Comparing the timing analysis for 200 and 800 vehicle information in figure 

41 and 45 with the timing analysis for up to 300 vehicle extraction in figure 40, it can be 

concluded that the efficacy of the program has drastically improved with the change in the 

method of extracting information. Using the array method to extract multiple data has 

reduced the timing for extracting 300 vehicle information from 2000ms to 50-70 ms for 

800 vehicle information extraction. This feature of the code has given the user the leverage 

to modify the VISSIM traffic simulation software and increase its complexity not only in 

terms of increasing the number of vehicles in the network but also to make the traffic 

network more complex with several branches and traffic signal junctions. Further 

investigation with respect to extracting more than 800 vehicles information was not 

deemed necessary at this point because the current application of CACC does not need 

even 200 vehicle information. However, with 800 vehicle extraction  it is showcased that 

the middleware has a robust architecture. With this drastic decrease in time for extraction, 

now more realistic simulations can be tested. Although the plots below show that the 
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respective tasks of the threads do not contribute to any delay, it can be seen in the time-

step plot that there exists a slight delay after 250 seconds of simulation. The delay occurs 

for two time-steps for about 400ms and 1600ms, but they are not deemed significant, since 

the time step is 200ms which is very small. Therefore, one or two time step delays are 

negligible. However, if there were frequent occurrences of delays, then the problem would 

be more serious. This particular delay is accounted for by the functioning of the operating 

system because from previous time analysis plots it is proved that the particular tasks of 

the thread do not contribute to the delay.  

 

Figure 45. Timing for thread one Vissim-COM for 800 vehicle information extraction 

3.3.5  Synchronization of VISSIM-COM Thread one and Thread two 

When CACC application is incorporated in the software structure, synchronization 

of the different component becomes vital for real time simulation. The synchronization of 

the data travelling from VISSIM traffic simulator, to thread one, to CACC Simulink model 

, to thread two and back to VISSIM traffic simulator is a very crucial path for maintaining 

the synchronicity of the whole software structure. Keeping this in mind, a simulation test 

was conducted to determine if the data extracted from VISSIM is sent back to VISSIM in 

time so that the simulation can be updated in the next time step. The figure below shows 

the superimposition of the difference in the distance between a target vehicle and its 
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preceding vehicle. The graph compares the distance calculated in MATLAB, and also 

extracted as an attribute from VISSIM. The idea is that if the two distances completely 

superimpose on each other with respect to simulation time on the x-axis, then it can be said 

that the data extracted from VISSIM , sent for processing to CACC controllers is 

appropriately updated for the next time step and hence the components of the middleware 

architecture are synchronized. These two superimposed plots also indicate that the CACC 

controller is indirectly able to influence the target vehicle in the simulation. If there was 

any discrepancy, the plots would not superimpose leading to the conclusion that either 

CACC controller is not able to influence the specific target vehicle in the simulation or 

there is some problem in the path of data which is leading to some sort of delay. This figure 

further supports the conclusion that the internal driver model of VISSIM can be completely 

overthrown by using the method mentioned earlier because the distance obtained from the 

CACC Simulink model and from VISSIM attributes match exactly .  

 

Figure 46. Distance Corridor comparison extracted from CACC controller and Vissim 

Simulation 
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3.4   Conclusion 

From the above analysis of the different components of the thread structure, it can 

be concluded that the current architecture is validated to conduct real-time execution of the 

CACC architecture shown in figure 32. The thread method gives the leverage to 

synchronize several different software platforms and execute the simulation in real time. 

For this thesis, the focus is to implement the CACC methodology described in Chapter 2 

with the HiLS. The timing analysis for the different components of the architecture clearly 

show that a simulation time-step of 200ms can be easily achieved with all of the crucial 

tasks finished within a range of 150ms to 170ms. Most of the crucial tasks of the 

architecture are conducted in control thread, VISSIM-COM thread one, and each of the 

timings for each of the tasks in thread one have proved to obey the 200ms designated time-

step. The timing results clearly showcase the versatility of the middleware handling 

multiple software and communicating locally as well as through a network like the internet. 

The robustness of the middleware has been tested for 200 vehicle information and 800 

vehicle information extraction from VISSIM with minimal difference in the timing results. 

Therefore, it can be concluded that the current middleware can successfully handle CACC 

application in integration with the powertrain-research-platform and execute in real-time.  

Future work will focus on implementing other complex applications and attempt 

will be made to make the structure even more efficient so that a smaller time-step of 

approximately 100ms can be implemented. As mentioned in the report earlier, the current 

structure does one way communication with respect to network communication, sending 

data from VISSIM-COM to Powertrain-COM, but two way communication is a possibility 

with a slight change in the structure. If timing is concerned, the current architecture, with 

threads, can handle one and two way communication with efficacy.  
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Chapter 4  Evaluation of CACC Using Experimental Results  

From the various vehicle level simulation cases observed in Chapter 2, it is 

determined that the median method with the averaged velocities of the preceding vehicles 

has potential fuel benefits for a controlled vehicle in a traffic network. In this section, the 

focus is to validate the CACC algorithm using a Hardware in the Loop Simulation(HiLS) 

where powertrain and engine dynamics will be included using a virtual powertrain as well 

as a real engine. As mentioned in chapter 3, the CACC software architecture is 

implemented with the powertrain-research -platform. The different components of the 

HiLS are explained briefly. 

4.1  HiLS Components 

The HiLS consists of the powertrain-research-platform which represents the CACC 

controlled vehicle in VISSIM, and VISSIM traffic simulator which provides the controlled 

vehicle dynamics and road conditions to the powertrain-research-platform. The 

powertrain-research-platform allows real-time measurement of fuel using the AVL’s Fuel 

Measurement System Model P402. Unlike the method of fuel measurement mentioned in 

simulation results previously which used a static fuel map, the fuel measurements using 

AVL are much more accurate as it has a high bandwidth that takes care of the transient 

driving maneuvers effectively. 

The emissions measurement is conducted using AVL’s SESAM-FTIR. Each 

constituent of the exhaust gas is measured in terms of concentrations (ppm). Therefore, the 

formula below is used to convert the unit to mass-rate in grams per second. 

𝑔

𝑠
= (

𝑃𝑃𝑀

106𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑔𝑎𝑠
) × (

𝑒𝑥ℎ𝑎𝑢𝑠𝑡_𝑚𝑎𝑠𝑠_𝑟𝑎𝑡𝑒 

𝑒𝑥ℎ𝑎𝑢𝑠𝑡_𝑚𝑜𝑙𝑎𝑟_𝑚𝑎𝑠𝑠 
) × 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡_𝑚𝑜𝑙𝑎𝑟_𝑚𝑎𝑠𝑠  

𝑃𝑃𝑀 is the measurement unit for micromole concentration per mole of exhaust gas. The 

exhaust gas mole-rate (in moles per second) is obtained using the exhaust mass-rate (in 

grams per second) and the exhaust molar-mass for diesel fuel (29.4 grams per mole). The 

exhaust mass-rate can be determined by summing the measured intake-air and fuel mass-

rates. The mole-rate of the constituent can be determined by multiplying the micromole 
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concentration of the constituent with the exhaust mole rate. The mass-rate of the constituent 

is determined using the product of the mole-rate and the molar-mass of the constituent.  

4.1.1  VISSIM Microscopic Traffic Simulator 

VISSIM is a microscopic traffic simulator which uses the Wiedemann’s car 

following model (Wiedemann, 1974) . The software allows users to simulate realistic 

traffic scenarios and access information related to individual vehicles. The attributes that 

VISSIM allows users to access are related to vehicle dynamics like the vehicle speed and 

acceleration. 

4.1.2  HiLS Middleware 

The HiLS middleware consists of the Powertrain-COM and VISSIM-COM. Local 

communication between the COM structures and the different software entities are 

discussed in Chapter 3 in detail[20]. Internet network communication between Powertrain-

COM and VISSIM-COM is also explained in Chapter 3.  

4.2  Test Results and Discussions 

4.2.1  Highway Driving  

First an offline test for simulation scenario, shown in figure 25, 14 vehicle average 

for highway driving is conducted using the powertrain-research-platform. The velocity 

profiles of the controlled vehicle and the preceding vehicle are stored offline by simulating 

the CACC architecture without the powertrain-research-platform in the loop. The idea is 

to compare the results of the simulation with an actual test using the powertrain-research-

platform. The powertrain-research-platform emulates a Hybrid Electric Vehicle(HEV) 

which uses a Power Sharing Transmission (PST) which is controlled by rule-based 

optimization method [20]. Without going into much of the details of an HEV, to obtain fair 

and comparable CACC simulation results, it is necessary to maintain the battery state of 

charge (SOC) the same at the beginning and at the end of the simulation. Maintaining the 

SOC at the same level will imply that both the controlled vehicle and target vehicle have 

used the same battery power provided by the battery through the motor/generator . This 

will make the comparison fair in a powertrain that emulates HEV .For the experimental 
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analysis, the complete plots of generator, motor torque and the battery SOC are included 

in Appendix A for all cases. The SOC plots clearly show the initial and final SOC are 

maintained at 0.6 at the beginning and end of simulation. 

Experimental results for a highway driving case are obtained for the 14 vehicles’ 

velocities average simulation case as shown in figure 25,. This showcases the advantage of 

using HiLS with a traffic simulation package that can simulate variety of realistic driving 

cycles for vehicles. Figure 47 shows reference and actual velocity profile, engine speed , 

engine torque and the fuel consumption of the controlled vehicle for 14 preceding vehicles’ 

velocities averages. The total fuel consumption is around 180g which is lower than the total 

fuel consumption of the city driving case, discussed next, because of the less aggressive 

driving behavior in a highway situation. This trend was also depicted in the simulation 

cases for 14 vehicles’ velocities averages. The driver does not tend to vary the velocity of 

the vehicle too much over the driving cycle. Since the preceding vehicles in the platoon 

too do not follow an aggressive behavior, the averaged velocity for the controlled vehicle 

is less aggressive. 

 

Figure 47. Powertrain and Vehicle Dynamics for Controlled Vehicle- 14 vehicles’ 

velocities average for highway driving 
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Figure 48. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 14 

vehicles’ velocities average 

Figure 48 compares the emissions measurements for the controlled and the 

immediate preceding vehicle. It is clearly seen from the plots that for all the pollutants 

emitted, the quantity emitted with combustion gas for the controlled vehicle is lower than 

that from the preceding vehicle. This is analogous to the engine torque magnitudes of the 

two vehicles. From figure 47 and 49, the engine torque magnitudes of controlled vehicle 

are much lower than that of the preceding vehicle. 
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Figure 49. Powertrain and Vehicle Dynamics for immediate preceding vehicle-highway 

driving 

Figure 49 shows the powertrain and vehicle dynamics for the immediate preceding 

vehicle in a highway situation. From the plots the actual seems to track the reference engine 

speed and torque very well except for the last portion of the simulation where the actual 

engine torque fluctuates. The total fuel consumption for the complete driving cycle is 216g 

for the preceding vehicle. 
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Figure 50. Total fuel consumption comparison- Controlled Vs. Preceding Vehicle 

highway driving 

Figure 50 shows the total fuel consumption comparison for the CACC controlled 

and the immediate preceding vehicle. The fuel saving for the controlled vehicle is around 

16.6%  for 14 vehicles’ velocities averages in a highway situation as depicted in figure 25. 

The fuel measurements using the powertrain-research-platform can be deemed accurate, 

and tend to provide higher fuel savings compared to the vehicle level simulations because 

the HEV powertrain is controlled using rule-based optimization methods.  

 Ultimately these results for the highway case validate the previously obtained simulation 

results that taking the average of the preceding vehicles’ velocities provides potential fuel 

benefits. This also shows that the CACC approach is not only able to achieve significant 

fuel benefits from a city driving case but even from the highway driving case where the 

room for any fuel benefit is lower than that of the city driving case due to the less aggressive 

driving behavior of vehicles on highways.  
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4.2.2  Experimental results of real-time CACC architecture- Local driving  with 

constant and varying platoon size 

Unlike the previous experimental results where the vehicle velocity trajectories 

were stored offline, the results below are obtained from the implementation of real-time 

CACC architecture as shown in figure 32. The results are for 14 preceding vehicles’ 

velocities averages in a city driving scenario. Throughout the traffic network, a platoon of 

15 vehicles travel together where the 15th vehicle is the controlled vehicle whose velocity 

is derived by taking the average of the 14 preceding vehicles and the 14th vehicle is the 

immediate preceding vehicle. 

4.2.2.1  City Driving  

Figure 51 shows the vehicle dynamics and the fuel consumption respectively for 

the controlled vehicle. Figure 52 compares the emissions measurements from the 

controlled and the preceding vehicle, whereas figure 53 shows the vehicle dynamics and 

fuel consumption for the immediate preceding vehicle to the controlled vehicle. The fuel 

saving for the controlled vehicle, relative to the preceding vehicle, are approximately 

18.5% .  

 

Figure 51. Powertrain and Vehicle Dynamics for Controlled Vehicle- 14 vehicles’ 

velocities average city driving 
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Figure 52. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 14 

vehicles’ velocities average 

 

Figure 53. Powertrain and Vehicle Dynamics for immediate preceding vehicle- city 

driving 



 

109 

 

 
Figure 54. Total fuel consumption comparison- Controlled Vs. Preceding Vehicle city 

driving 

The experimental tests provide strong evidence that the CACC method 

implemented has significant potential to not only improve fuel consumption but also reduce 

emissions which is validated using results from a very accurate measurement device, the 

AVL’s SESAM-FTIR.  

4.2.2.2  Varying Platoon Size  

A second online CACC experimental result is obtained but for a more realistic 

scenario. In real traffic scenarios it is not necessary that the size of the platoon will remain 

the same for the whole driving cycle. There are several traffic junctions at which vehicles 

will get added and subtracted from the platoon depending on whether vehicles join or leave 

at a junction. Hence, a similar simulation is prepared in VISSIM traffic simulator to 

determine the effect of vehicles leaving and joining a platoon on the fuel consumption of 

the controlled vehicle. This scenario has already been simulated as shown by the simulation 

results in figure 27. The vehicle level fuel savings obtained in simulation are about 10.4% 

which is lower than the city driving case for a constant platoon size. 
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Figure 55. Powertrain and Vehicle Dynamics for Controlled Vehicle- Varying Platoon 

Size 

Figure 55 shows the dynamics for the controlled vehicle and it can be seen that the 

engine speed is very well tracked. However, the engine torque experiences some 

occurrences of actual and reference torque discrepancies. The fuel consumption is 

approximated to be 168g for the complete driving cycle of the controlled vehicle.  

Figure56 compares the emissions for the controlled and the immediate preceding vehicle. 

Like the previous results from the city driving case shown in figure 52, in this varying 

platoon size case too the emissions are higher for the immediate preceding vehicle.  
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Figure 56. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 

Varying Platoon Size 

Figure 57 shows the vehicle dynamics for the immediate preceding vehicle with the 

actual engine speed tracking the reference speed very well. However, the engine torque 

tracking has some discrepancy. The fuel consumption for the preceding vehicle is 

approximately 200g for the whole driving cycle. 
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Figure 57 Powertrain and Vehicle Dynamics for immediate preceding vehicle 

 

Figure 58 Total fuel consumption comparison- Controlled Vs. Preceding Vehicle Varying 

Platoon size 
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Figure 58 shows the fuel consumption comparison for the controlled and the 

immediate preceding vehicle. It must be noted that the fuel consumption comparison 

between the controlled and the preceding vehicle is viable in this case because for the whole 

driving cycle the simulation was designed in such a way that the immediate preceding 

vehicle never leaves the platoon. Therefore the controlled vehicle follows the immediate 

preceding vehicle for the whole driving cycle. Also, the battery state of charge is 

maintained to be at the same level as it was initially, to provide a fair comparison of 

vehicles on a HEV powertrain. The plots for battery state of charge are shown in Appendix 

A figures A5 and A6 for both vehicles.  

From the above fuel consumption plot it is determined that the fuel benefit from both 

the vehicle level and the optimized[20] powertrain level is approximately 16% .The fuel 

benefit obtained from the vehicle level simulation of the exact scenario is 10.4% as shown 

in figure 27. The fuel consumption results obtained from powertrain-research-platform for 

HEV clearly validate the simulation results that even with a varying platoon size, taking 

the average of the preceding vehicles’ velocities in a platoon provides significant fuel 

benefits.  

4.3   Conclusion  

The experimental results obtained for both the real time execution of the CACC 

architecture, with(online) and without(offline) HEV powertrain-research-platform in the 

loop ,very clearly support the simulation results that using the controlled vehicle’s velocity 

as a function of the preceding vehicles’ velocities average gives potential fuel benefits for 

the controlled vehicle. The table below summarizes the results obtained from the 

experiment. 
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Table 3.Summary of Experimental and Simulation Results 

Case Experimental 

Fuel Benefit % 

Offline Highway 16.6 

Online City 18.5 

Online Varying 

Platoon size 

16.0 

 

The offline experimental results for the highway driving case had fuel saving of 

approximately 16.6% whereas the online city driving case had 18.5%. The real-time 

execution of the CACC architecture gave 16% fuel saving for the city driving case with 

varying platoon size. This consistency in the fuel gains demonstrates the versatility of the 

controller for different traffic conditions that it is used in. This phenomenon is a result of 

providing more information to the controlled vehicle. Using the preceding vehicles’ 

velocities provide the controlled vehicle with dynamics of the preceding vehicles for the 

different traffic situation the preceding vehicles confront. This ahead of time reaction of 

the preceding vehicles helps the controlled vehicle make crucial judgements with regards 

to its dynamics for the upcoming path of road in front of it . For instance if the lead vehicle 

, approximately at 300m from the controlled vehicle, stops at a traffic signal, then the 

controlled vehicle can decide to reduce its own velocity to give it sufficient time between 

the traffic signal state change and distance between itself and the immediate preceding 

vehicle for it to not completely stop at the signal and continue moving at that speed. If this 

behavior is repeated over a complete driving cycle, as already demonstrated by the 

simulations and the experimental results, the controlled vehicle obtains a smoothened 

velocity profile compared to the preceding vehicle which reduces the dynamics in its 

engine torque and speed that helps reduce the overall fuel consumption. Therefore, from 

both the simulation and experimental results it can be claimed that using the preceding 

vehicles’ velocities and incorporating them in the dynamics of the controlled vehicle has 

potential fuel benefits. 
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Future work will primarily consist of implementing CACC application for a large 

platoon of vehicles where all the vehicles in the platoon will be controlled by CACC. 

Further investigation will be conducted using a communication model where the success 

and failure rates of IVC and VII communication will be included in the algorithm to 

determine the effect on fuel consumption. With the current results it is proved that using 

the preceding vehicles’ velocities provides potential fuel benefits. Therefore an approach 

to design a systematic method where a possible online optimization method with direct 

relation to fuel consumption will be developed.  
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Appendix A 
 

 
Figure A1.Vehicle Dynamics of Controlled Vehicle- highway driving 

 

 
Figure A2.Vehicle Dynamics of Preceding Vehicle- highway driving 
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Figure A3.Vehicle Dynamics of Controlled Vehicle- city driving 

 
Figure A4.Vehicle Dynamics of Preceding Vehicle- city driving 
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Figure A5.Vehicle Dynamics of Controlled Vehicle using real-time CACC- Varying 

Platoon size 

 
Figure A6. Vehicle Dynamics of Preceding Vehicle using real-time CACC-Varying 

Platoon size 
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Figure A9.Fuel Map 

 


