

Investigation of Cooperative Adaptive Cruise Control with

Experimental Validation

A Thesis
SUBMITTED TO THE FACULTY OF

UNIVERSITY OF MINNESOTA
BY

Pratik Mukherjee

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

Zongxuan Sun, Adviser

July 2016

© Pratik Mukherjee, 2016

 i

Acknowledgements

It is with great honor that I will like to thank my adviser Professor Zongxuan Sun for giving

me the opportunity to conduct research under his guidance for my Master’s Plan A thesis.

His superior insight into the problem has allowed me to overcome many obstacles while

working on the several problems that I have come across in the last two years. His

consistent dedication of his time toward his students and focus on individual student’s

progress has kept me on track to finish my work. Under his guidance, I have learned to

work and think independently and I am constantly improving my problem solving skills

which will definitely be an asset that I take with me after I leave this place. Without his

continuous support to the whole research team, it would not have been possible for me to

graduate on time, with quality.

I will also like to thank the primary sponsors for the project, Federal Highway

Administration(FHWA). Without their constant financial support and trust it would not

have been possible to carry out various crucial tasks. Their constant interest in our progress

motivated me to complete my work with dedication to provide quality solutions for every

problem I solved, that will stand the test of time.

I will also like to thank my lab mates Azrin, Yunli, Abhinav, Chen, Yongsoon, Yaoying

and Keyan for constantly motivating me to work hard. Observing their work ethics over

these past two years has made me aware of my weaknesses that I need to work on to

constantly improve my skills.

Pratik Mukherjee

 ii

Dedication

I dedicate this thesis to my motherland India, my mother and father

 iii

Abstract

Increasing effects of global warming have concerned scientists and engineers for

quite some time now. The major contributor to global warming has been the inefficient use

of energy to fulfill the need for the ever growing human population. One of the major

sources of energy is oil which fuels one of its largest consumer, the transportation sector.

The Energy Information Administration reported that the U.S transportation sector

contributed 28% to the total energy consumption and 72% to the total petroleum

consumption in the year 2010. With these concerning developments, it has become critical

to find a solution to improve the efficiency of transportation. A solution to this problem

can be connected vehicles. Connected vehicle environment paves the pathway for future

road transportation. Researches in this area have specifically focused to improve traffic

mobility and safety, and also vehicles’ fuel consumption and emissions. A Hardware-in-

the-Loop-System (HiLS) test-bed to evaluate the performance of connected vehicle

applications has already been developed. A laboratory powertrain research platform, which

consists of a real engine, a hydrostatic dynamometer and a virtual powertrain model to

represent a vehicle, is connected using a software to a microscopic traffic simulator

(VISSIM). Actual fuel and emissions measurements are obtained using this test-bed. This

thesis documents the development of the software architecture that enables the different

components of the HiLS to communicate with each other in real time. Different

methodologies of software design are tested to demonstrate real time execution of HiLS

with a 200ms time step. Further, using this test-bed a comprehensive evaluation of

Cooperative Adaptive Cruise Control (CACC) application has been conducted to compare

the fuel consumption and emissions of CACC vehicle and non-CACC vehicle in a traffic

network simulated in VISSIM. In literature, CACC application is implemented using

several different complex optimization methods based on prediction models derived from

measurements of traffic information with the cost of computation power. In this thesis, a

heuristic, averaged velocity approach to CACC is implemented using the information from

the preceding vehicles which can be used in real time systems like the HiLS for a realistic

evaluation of the CACC application. The algorithm designed uses information from

 iv

multiple preceding vehicles to determine a velocity profile for the controlled vehicle which

will obtain fuel benefits. The simulation and experimental results obtained using this

CACC algorithm prove that using more preceding vehicle information provides higher fuel

benefits. This phenomenon is described by the understanding that the accessibility of future

information, with regards to the number of preceding vehicle velocity averages, by the

controlled vehicle allows the CACC controller to obtain a smoothened velocity profile for

the controlled vehicle with suppressed acceleration or decelerations which has a direct

correlation with fuel savings. VISSIM traffic simulator is used to simulate different traffic

conditions like city driving and highway driving. From the simulation, an individual

vehicle is selected to be completely controlled by the CACC controller whereas the other

vehicles are controlled byVISSIM’s internal driver model based on the Wiedmann Car

following model. Then an extensive study is done through simulation of different traffic

scenarios on the fuel consumption of the controlled and the immediate preceding vehicle

which is evaluated using the Vehicle Specific Power (VSP) requirement. Further, to

validate these simulation results, the HiLS is used to conduct experiments with selected

scenarios from the simulations and actual fuel and emissions results for the CACC

controlled vehicle and immediate preceding vehicle are compared. From the results

obtained, it is realized that CACC application provides significant fuel saving, between 15-

18% approximately for both highway and city driving cases, for the controlled vehicle in

comparison to the immediate preceding vehicle. Future work will focus on using the

observations from the current CACC methodology and implementing a systematic method,

possibly an online optimization method, to find out a general solution where the preceding

vehicles’ information can be used. Then CACC application will be extended to evaluate

more than one vehicle in a platoon of vehicles. Consequently, HiLS will be used to obtain

experimental results.

 v

Table of Contents

List of Tables …………………………………………………………………………………...viii

List of Figures………………………………………………………………………….................ix

Nomenclature…………………………………………………………………………................xii

Chapter 1 Introduction and Background ... 1

1.1 Connected Vehicles Application .. 1

1.1.1 Inter Vehicle Communication & Vehicle Infrastructure Integration 1

1.1.2 Vehicle Communication Devices ... 3

1.2 CACC Controller .. 4

1.2.1 CACC Controller Development .. 5

1.2.2 A Simplified CACC Methodology .. 6

1.2.3 CACC Simulation with HiLS .. 7

1.3 Experimental Validation of CACC Application .. 8

1.3.1 Components of HiLS .. 9

1.3.2 Powertrain Research Platform ... 9

1.3.3 Virtual Hybrid Powertrain ... 10

1.3.4 Fuel and Emissions Measurement .. 11

1.3.5 VISSIM Traffic Simulator .. 12

1.3.6 Integration of Various Software Platforms using Middleware 12

1.4 Thesis Contribution .. 13

Chapter 2 Implementation and Evaluation of Cooperative Adaptive Cruise Control Using

Simulation ... 15

2.1 Introduction and Background ... 15

2.1.1 The Distance Corridor Constraints .. 16

2.1.2 A Simplified Approach to CACC ... 17

2.2 CACC Controller Design ... 19

2.2.1 Velocity Trajectory Generator Equation ... 20

2.3 Applying Constraints – Derivation of the Velocity Correction term 21

2.3.1 The Hard Constraints .. 22

2.3.2 The Median Method as Soft Constraints ... 23

2.3.3 Deriving the Weight Function ... 26

2.3.4 Applying Different Methods of Constraints .. 28

 vi

2.4 Problem Formulation- Real-Time Implementation of CACC 34

2.4.1 The Dynamic Model Equations .. 35

2.4.2 The First Objective of the Function ... 36

2.4.3 The Second Objective of the Function ... 37

2.4.4 The Third Objective of the Function .. 38

2.4.5 Evaluation of the Effectiveness of Objective Function ... 41

2.5 Simulation Results of Scenarios ... 42

2.5.1. 8 Vehicles’ Velocities Average- City Driving with 0.1s constant time headway .. 44

2.5.2 8 Vehicles’ Velocities Average- City Driving ... 45

2.5.3 8 Vehicles’ Velocities Average- Highway Driving ... 46

2.5.4 14 Vehicles’ Velocities Average- City Driving ... 47

2.5.5 14 Vehicles’ Velocities Average- Highway Driving ... 49

2.5.6 Preceding Vehicles’ Velocities Average- Varying Platoon Size 50

2.6 Conclusion ... 52

Chapter 3 Software Architecture Development for HiLS Integration................................... 54

3.1 Middleware Structure between Powertrain Research Platform and VISSIM 54

3.1.1 Basic COM Communication with VISSIM ... 56

3.1.2 Basic COM Communication with SIMULINK ... 57

3.1.3 Network Programming- TCP/IP & UDP ... 58

3.2 COM Operation Development ... 61

3.2.1 One Way Middleware Architecture ... 62

3.2.2 Basic Threads Structure .. 65

3.2.3 Two Way Middleware Architecture ... 69

3.2.4 Thread one and two VISSIM-COM ... 71

3.2.5 Thread one and two Powertrain-COM .. 73

3.2.6 General Car Following Model .. 76

3.3 Timing and Synchronization of CACC architecture with Simulation Results........... 83

3.3.1 Time for VISSIM to run single step .. 84

3.3.2 Time for C# to transfer data to MATLAB ... 84

3.3.3 Time for C# to extract data from VISSIM ... 86

3.3.4 Vehicle Information Extraction .. 91

3.3.5 Synchronization of VISSIM-COM Thread one and Thread two 98

 vii

3.4 Conclusion .. 100

Chapter 4 Evaluation of CACC Using Experimental Results .. 101

4.1 HiLS Components ... 101

4.1.1 VISSIM Microscopic Traffic Simulator .. 102

4.1.2 HiLS Middleware ... 102

4.2 Test Results and Discussions .. 102

4.2.1 Highway Driving .. 102

4.2.2 Experimental results of real-time CACC architecture- Local driving with

constant and varying platoon size... 107

4.3 Conclusion .. 113

References ... 116

Appendix A ... 119

 viii

List of Tables

Table 1. Fuel Economy Comparison Table .. 52

Table 2.TCP and UDP features ... 59

Table 3.Summary of Experimental and Simulation Results ... 114

 ix

List of Figures

Figure 1. Traffic Information processing through IVC & VII .. 4

Figure 2. HiLS Componenets ... 9

Figure 3. Virtual Hybrid Powertrain[19], [21].. 10

Figure 4.Powertrain Research Platform .. 11

Figure 5. CACC concept sketch .. 15

Figure 6. Minimum and Maximum Distance Corridor ... 23

Figure 7. Median Distance Corridor .. 24

Figure 8. Derivation of Median Distance Corridor .. 24

Figure 9. Exponential function with negative power .. 27

Figure 10. Buffer Zone Method .. 29

Figure 11.Simulation results for non-constraint method .. 30

Figure 12. Simulation results for buffer zone method .. 32

Figure 13. Simulation results for median method ... 33

Figure 14.9 vehicle average using reference generator model with initial ∆𝑥 < ∆𝑥𝑚𝑖𝑛 35

Figure 15. 9 vehicle average using dynamic model with initial ∆𝑥 < ∆𝑥𝑚𝑖𝑛 40

Figure 16. Comparison of averaged and actual velocity profiles for 2 and 14 preceding

vehicles. .. 42

Figure 17. Fuel economy trend based on number of vehicle averages for 8 preceding

vehicles-city driving.. 44

Figure 18. 8 vehicles’ velocities average simulation results- city driving 45

Figure 19. Fuel economy trend based on number of vehicle averages for 8 preceding

vehicles–city driving ... 45

Figure 20. 8 vehicles’ velocities average simulation results -city driving 46

Figure 21. Fuel benefits for 8 vehicles’ velocities average - highway case 46

Figure 22.Plots for 8 vehicles’ velocities average -highway case 47

Figure 23. Fuel economy trend based on number of vehicle averages for 14 preceding

vehicles –city driving .. 48

Figure 24. 14 vehicles’ velocities average simulation results –city driving 49

 x

Figure 25. Fuel economy trend based on number of vehicle averages for 14 preceding

vehicles - highway case .. 49

Figure 26. 14 vehicles’ velocities average simulation results - highway case 50

Figure 27. Varying Platoon Size Vehicle dynamics and fuel consumption 51

Figure 28. Structure for collaborating Powertrain Research and VISSIM 54

Figure 29. Single lane, seven traffic junctions, Traffic network 55

Figure 30.Overall Proposed Middle ware Integration Structure 57

Figure 31. Components of Hardware in the Loop System (HILs) 61

Figure 32. One way CACC Architecture .. 62

Figure 33. COM One and Two Way Thread structure – One way is shown under shaded

area .. 66

Figure 34. Implementation of CACC application with 2 way communication 69

Figure 35. Driver Following Model .. 76

Figure 36. The regimes in the Wiedemann car following model 77

Figure 37. Comparison of ∆x from Matlab and VISSIM simulation 83

Figure 38. Time graph for VISSIM to run single step .. 85

Figure 39. Time graph for sending data to MATLAB .. 86

Figure 40. Execution time for VISSIM extraction.. 87

Figure 41.Timing for Thread one Vissim-COM for 200 vehicle information extraction . 92

Figure 42. Timing for thread two Vissim-COM ... 94

Figure 43. Timing for thread one Powertrain-COM .. 95

Figure 44. Timing for thread two Powertrain-COM ... 96

Figure 45. Timing for thread one Vissim-COM for 800 vehicle information extraction . 98

Figure 46. Distance Corridor comparison extracted from CACC controller and Vissim

Simulation ... 99

Figure 47. Powertrain and Vehicle Dynamics for Controlled Vehicle- 14 vehicles’

velocities average for highway driving ... 103

Figure 48. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 14

vehicles’ velocities average .. 104

 xi

Figure 49. Powertrain and Vehicle Dynamics for immediate preceding vehicle-highway

driving ... 105

Figure 50. Total fuel consumption comparison- Controlled Vs. Preceding Vehicle

highway driving .. 106

Figure 51. Powertrain and Vehicle Dynamics for Controlled Vehicle- 14 vehicles’

velocities average city driving .. 107

Figure 52. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 14

vehicles’ velocities average .. 108

Figure 53. Powertrain and Vehicle Dynamics for immediate preceding vehicle- city

driving ... 108

Figure 54. Total fuel consumption comparison- Controlled Vs. Preceding Vehicle city

driving ... 109

Figure 55. Powertrain and Vehicle Dynamics for Controlled Vehicle- Varying Platoon

Size .. 110

Figure 56. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle-

Varying Platoon Size .. 111

Figure 57 Powertrain and Vehicle Dynamics for immediate preceding vehicle 112

Figure 58 Total fuel consumption comparison- Controlled Vs. Preceding Vehicle Varying

Platoon size ... 112

xii

Nomenclature
Xn Distance of controlled vehicle from reference

Xn-1 Distance of immediate preceding vehicle from reference

∆x Difference of distance between controlled and preceding vehicle

∆xmin,0 Standstill minimum distance gap between controlled and preceding vehicle

∆xmax,0 Standstill maximum distance gap between controlled and preceding vehicle

Ln-1 Length of preceding vehicle

∆xmax Maximum distance corridor limit

∆xmin Minimum distance corridor limit

∆xmed Median of distance corridor bounds

h constant time headway

vt instantaneous velocity of controlled vehicle

vpn instantaneous velocity of preceding vehicle

n number of preceding vehicle

vdes average of preceding vehicles velocities

t time in seconds

J Cost function

u control law

a acceleration

Tph Prediction horizon

 Tstep gain with respect to the magnitude of time step

dt Time derivative

k, ka, gain

xiii

Yt system output at instantaneous time

CD Drag coefficient

M mass of vehicle

g gravitational constant

A vehicle frontal area

𝜇 rolling resistance for vehicle

𝜌𝑎 density

∅(𝑡) road grade angle

∆v difference in speed [m/s]

1

Chapter 1 Introduction and Background

1.1 Connected Vehicles Application

Recent concerns with global warming have revealed alarming rise in the average

temperature of planet Earth. Experts are concerned because use of fossil fuel and its

byproducts have majorly contributed to this rise in temperature and serious measures have

to be taken to curb this rise. At the same time, the availability of resources is decreasing

year after year with the demand rising exponentially. Thus scientists have started to focus

towards developing more energy efficient technology or find ways to make existing

technology more efficient, and one such major area of field of technology is the

transportation sector. The Energy Information Administration reported that the U.S

transportation sector contributed 28% to the total energy consumption and 72% to the total

petroleum consumption in the year 2010.

Researchers are currently exploring different avenues to reduce fuel consumption

and one major field of application is connected vehicles. Connected vehicles research

pertains to research in the field of traffic and most recently in vehicle powertrain. Early

developments in this topic focused majorly on safety of on road vehicles and reducing

traffic congestion. With the introduction of Cruise Control(CC) in production vehicles in

the early 1990s, came the development of Adaptive Cruise Control (ACC). Compared to

conventional CC in vehicles, which only control the vehicle speed, ACC allows drivers to

maintain a desired distance behind a preceding vehicle as well as a desired velocity. From

the perspective of traffic network operation, a stable ACC controller that can maintain a

consistent desired gap between vehicles will improve traffic safety and capacity of the

traffic network. In [1] ACC is reviewed with the perspective of safety. [2], [3]demonstrate

one of the first ways to implement ACC with respect to safety as well as fuel benefits.

1.1.1 Inter Vehicle Communication & Vehicle Infrastructure Integration

ACC uses range sensors to determine the relative distance and velocity to the

preceding vehicle. It uses just one of the preceding vehicle’s information gathered from its

onboard sensors to determine the relative distance and velocity , whereas many researchers

2

in the field of traffic are curious to find out how more information from several other

vehicles as well as traffic infrastructure in the same traffic network can be used to improve

safety, reduce traffic congestion and increase fuel benefits .Hence the idea of vehicle to

vehicle and vehicle to infrastructure communication has emerged.

Recent research in the field of transportation has focused extensively on Inter

Vehicle Communication (IVC) and Vehicle Infrastructure Integration(VII). Initial

developments of these concepts were formulated with the intention of increasing road

safety, but there has been an increase in the research related to using the information

obtained from IVC and VII for increasing fuel economy. The concept of IVC enables

communication within vehicles whereas VII is an attempt to enable communication

between vehicles and aspects of traffic infrastructure like traffic signal or other road side

units as shown in figure 1.

IVC and VII have not only gained attention in research communities, but also the

Department of Transportation who are proposing for installing communication devices in

new vehicles as early as 2017. Traffic information communication between vehicles,

known as connected vehicle, will improve traffic mobility and safety. Connected vehicle

technology also enables better optimization of a vehicle’s fuel economy and emissions by

utilizing traffic information such as the traffic light Signal-Phase-and-Timing (SPaT) and

other vehicle speed information in a traffic environment.

Technologies associated with IVC and VII[4] have shown potential to improve

traffic safety and efficiency[5], [6]. Technologies are being developed to implement IVC

and VII, especially in wireless traffic communications. Recent researches are focusing to

validate the reliability of Dedicated-Short-Range-Communication (DSRC) [7], [8]which is

now the standard for wireless vehicle communication [9]. The US Federal Communication

Commission (FCC) has agreed to dedicate 75MHz spectrum from 5.85GHz to 5.925GHz

bands for DSRC. Using these technologies, tests have been evaluated with respect to the

scalability, security and interoperability of DSRC communications in a real world setting.

IVC and VII technology enable use of more traffic information which helps improve fuel

benefits and reduce emissions.

3

1.1.2 Vehicle Communication Devices

 As an extension to ACC, Cooperative Adaptive Cruise Control (CACC)

incorporates IVC and VII communication. CACC has been under development to utilize

IVC and VII to conduct vehicle level optimization. It is manifested with the idea of using

every possible information available in a traffic environment, to gain potential benefits

with regards to fuel economy, safety and traffic congestion. Information such as traffic

signal timing cycle, longitudinal and latitudinal vehicles speed, acceleration behavior are

crucial to realizing the true potential of CACC. CACC vehicles can be designed to follow

the preceding vehicles with significantly higher accuracy and faster response because of

the availability of more information. Previous research has shown that CACC vehicles are

better at following preceding vehicles and are much more stable than ACC vehicle [10].

The development of ACC/CACC controller is crucial in understanding the

involvement of different levels of vehicle autonomy. The three levels of vehicle control

currently known are non-autonomous, semi-autonomous and autonomous. Non-

autonomous vehicles are everyday vehicles that are controlled by humans. The vehicles are

not provided with any external traffic information except for what is perceived by the

human driver. Semi-autonomous is a higher penetration of autonomy in vehicle control

where information is provided to the driver in the form of an advisory. An autonomous

vehicle scenario occurs when the ACC/CACC controller takes complete control of the

vehicle and uses parameters fed to it as input from the available traffic data. These traffic

information are based on the detection and measurements from range sensors, internal

states measurements from vehicle state sensing position, engine speed, vehicle speed and

extending it to accessing the preceding vehicles’ information through wireless

communication. A typical traffic network setup to enable a complete or semi-autonomous

vehicle control is shown in figure 1.

4

Figure 1. Traffic Information processing through IVC & VII

One of the key components in determining the extent of the success of autonomy

of vehicles is the capability of range sensor equipment. The range sensor’s basic, core

responsibility is to detect relative distance and velocity between the controlled and the

immediate preceding vehicle. Commonly used range sensors are radar, vision sensors, and

light detection sensors for the application of ACC and wireless communication for CACC.

The biggest challenge for such devices is to provide reliable and accurate information to

the controlled vehicle under any circumstances because the information these devices

provide are crucial to the stability of the ACC/CACC controllers implemented. For CACC

application long range wireless communication, such as a network with a specific

bandwidth, is more relevant. With the availability of wireless communication more

information can be sent because through wireless communication both IVC and VII

communication can be achieved.

1.2 CACC Controller

 Many optimization tools like Model Predictive Control, as shown in [11],

Pontryagin’s Minimum Principle as shown in [12] or Pulse-and-Gliding (Png) methods

[13], [14]have been used for both ACC and CACC applications. However, many of the

optimization algorithms implemented are computationally heavy and difficult to

5

implement in real time systems. In [15] , the behavior observed from the optimized driving

cycle of a target vehicle is intuitively used to develop a simplified ACC approach that leads

to fuel savings and maintains safety as well as can be implemented in real time systems.

This idea can further be extended to develop a CACC controller

1.2.1 CACC Controller Development

In this thesis, the discussion will be on several case studies and approaches taken

towards CACC implementation with respect to fuel consumption savings and its evaluation

using a real engine. Using the simplified method mentioned in [15], the behavior of

vehicles is studied. The study is focused on using only the information from just one

preceding vehicle which demonstrates the application of ACC, but in this thesis a similar

simplified method is implemented to demonstrate the capability of CACC approach to

achieve fuel benefits as well as maintain safety of vehicles in traffic network. Therefore,

information from more than one vehicle is obtained to formulate an algorithm that has

potential for obtaining fuel benefits without any prediction of the future velocity profile of

the preceding vehicles. The approach aims to prove that using the preceding vehicles’

velocities will give significant fuel benefits. The idea is to incorporate the dynamics of the

preceding vehicles, based on the reaction of the driver in the lead vehicles, to any traffic

situation in the velocity calculation of the controlled vehicle. This will allow the controlled

vehicle to make crucial judgments to modify its own dynamics which will lead to fuel

benefits.

Different scenarios are tested with respect to the ability to maintain safety of

vehicles, and reduce fuel consumption. One of the constraints is to maintain the controlled

vehicle within the specific distance corridor bounds which means the controlled vehicle

must have a limited range of distance to follow from the immediate preceding vehicle

within which it can traverse freely to obtain maximum fuel benefits. The controlled vehicle

must not approach the preceding vehicle dangerously close as well as recede too far away

from the preceding vehicle. Either of these situations will jeopardize the safety or traffic

flow respectively. To tackle such a situation, different methods are simulated with respect

to the deviation of the controlled vehicle’s distance from the distance corridor limits. In

6

[16],distance constraints are added to assure the safe travelling of vehicles within specific

distance corridor bounds

1.2.2 A Simplified CACC Methodology

The objective of the Simplified Fuel Efficient Predictive Cruise Control Approach

from literature is to reduce fuel consumption relative to a preceding vehicle by following

the predecessor within a safe distance corridor. This approach implements an Adaptive

Cruise Control (ACC) with a prediction of the velocity profile of the preceding vehicle

over a horizon. A prediction model is used which is derived based on measurements of a

velocity profile of a real vehicle on road. Using this prediction model, the approach

conducts a prediction of the velocity of the preceding vehicle for a specific time horizon

and takes the average of the velocity over the horizon. This average velocity is then

assigned as the speed of the controlled vehicle for the next time step. However it also

implements a velocity correction term to maintain the maximum and minimum distance

corridor constraints. This approach is much more simplified than the other methods as it

does not need to use any computationally heavy optimization algorithm. The approach of

a velocity trajectory generator is based on the observations made from the results of other

optimization methods that is; an averaged velocity profile of the controlled vehicle

compared to the preceding vehicles has high potential of fuel benefits. Therefore, using a

prediction model for a specific time horizon, the future velocity of the preceding vehicle is

obtained which is averaged over the time horizon to give a smoothened velocity profile for

the controlled vehicle.

Although the above approach presented is simplified, it uses a prediction model for

the prediction of the immediate preceding vehicle’s velocity profile which is not applicable

for all traffic scenarios. Therefore, like any other prediction model it has inaccuracies

associated with it. A common problem with prediction model is that it may be specific for

one road condition and different for a different road condition, making it tedious to

determine a prediction model for every specific road condition. Thus, the approach

presented in this thesis aims to use the idea of a smoothened velocity profile for the

controlled vehicle but without using a prediction model. Instead, the controlled vehicle is

7

able to access the velocity of multiple preceding vehicles and incorporate the dynamics of

the preceding vehicles in its own dynamics by making its velocity the function of the

average of the preceding vehicles’ velocities. The algorithm is not based on offline

measurements but one which can be determined in real time .This algorithm is

implemented to obtain a velocity profile for the controlled vehicle that can lead to reduced

fuel consumption and maintain a safe distance between vehicles. In this averaged velocity

approach an online CACC algorithm is implemented with the assumption that the velocities

of the preceding vehicles are available to the controlled vehicle at each time step.

This approach of CACC control implemented complements the idea of CACC as it

uses more than one preceding vehicles’ velocities to take the average and add a correction

term to maintain the distance corridor. The method of implementation makes this algorithm

applicable in real time to obtain a velocity profile for the controlled vehicle that can achieve

up to 17% of fuel benefit. Vehicle Specific Power in [12] is first used to measure the fuel

consumption of the controlled as well as for the first preceding vehicle for simulation

purposes assuming that the preceding and the controlled vehicles are same type of vehicles.

Then the simulation results are validated with experimental results obtained from the

powertrain-research-platform. Simulations are carried out with different number of

preceding vehicles for different driving cycles to understand the influence of number of

vehicle velocity averages on the velocity profile of the controlled vehicle.

1.2.3 CACC Simulation with HiLS

For simulation purposes, two different approaches to apply the constraints have

been simulated. The two methods simulated are the buffer zone and the median method.

The case study with the best results is used to develop a CACC controller in SIMULINK

which is integrated with the HiLS. It requires sophisticated software interaction to achieve

the simulation objectives. The powertrain-research-platform consists of sophisticated

hardware such as a full-sized diesel engine, a hydrostatic dynamometer on which the

engine is loaded for tests. A state of the art laboratory is used to house the engine. To

successfully run and test the engine, a control environment has to be created. This is only

achievable through the use of software integration. A middleware is designed to integrate

8

all the different components of the HiLS. This middleware is developed in C# platform and

integrated with Matlab/SIMULINK, and VISSIM Microscopic Traffic Simulator to enable

the simulation of a selected virtual vehicle to test the application of CACC. The information

from this simulator is transferred over a wired or wireless network to the powertrain-

research -platform to obtain experimental, quantitative fuel consumption and emissions

measurements. Therefore the collaboration of the software and the hardware plays a vital

role in the successful execution of the complete HiLS.

1.3 Experimental Validation of CACC Application

Methods to measure the performance of a vehicle’s fuel economy and emissions in

traffic include conducting simulation [3]or instrumenting a vehicle .However both

approaches have drawbacks. A simulation-based approach implements steady-state fuel-

use and emission maps as a function of the engine torque and speed, which are deemed

inaccurate compared to actual measurements whereas instrumenting a vehicle is a

cumbersome process because it requires modifying the vehicles. Therefore HiLS offers the

flexibility and accuracy of evaluating the performance of connected vehicle applications.

HiLS, a laboratory powertrain-research-platform, consists of a real engine, a

hydrostatic dynamometer and a virtual powertrain model to represent a vehicle, is

connected using a software to a microscopic traffic simulator (VISSIM). HiLS utilizes the

powertrain-research-platform, which consists of a real engine for fuel and emission

measurements in real-time. VISSIM traffic simulator allows different vehicles to be tested

with different driving profiles by altering the engine and the load settings on the

dynamometer. The lab set up for HiLS accommodates large precision measurement

devices. Therefore, making connected vehicle applications testing in a simulated but

realistic traffic more economical, without having to instrument multiple vehicles. This

method is much safer and it overcomes the legal issues associated with testing the

application in real traffic .

9

1.3.1 Components of HiLS

With HiLS, different vehicles can be tested flexibly by changing the engine and the

load settings on the dynamometer. Large precision measurement devices can be fitted in

large vehicles [17] , but it will be cumbersome and time consuming for smaller passenger

vehicles. Smaller portable measurement devices have been used, but are less accurate, and

require calibrations for different driving cycles [18].

Figure 2. HiLS Componenets

The HiLS consists of several different components as shown in figure 2. Each

component is connected to the other with the help of a middleware developed specifically

to serve the purpose of connecting the components in real time. The complete integration

of all the components in a synchronized manner is required to demonstrate real time

application. The three components of focus for this thesis are the Connected Vehicles

Controller which pertains to CACC , the powertrain-research-platform which consists of a

real engine with a virtual powertrain equipped with measurement devices for the purpose

of obtaining accurate and precise measurements of fuel consumption and emissions, and

VISSIM traffic simulator to simulate a realistic traffic environment.

1.3.2 Powertrain Research Platform

The engine set up in the Thomas E. Murphy lab is a John Deere diesel engine. The

powertrain research platform is developed with the intention of using a real engine with a

10

virtual powertrain to provide the user with the flexibility of using any powertrain model

developed in commercial software like MATLAB. In particular, this platform is

implemented with a power-split Hybrid Electrical powertrain derived from the Toyota

Prius hybrid architecture, as given in[19], [20]. This power split architecture divides the

power provided to the powertrain which is partially shared by the internal combustion

engine and an electric motor or generator. The power split architecture allows higher

efficiency at the fuel consumption level as it allows two degrees of freedom to the engine;

providing power through the engine or through the motor.

1.3.3 Virtual Hybrid Powertrain

The hybrid powertrain research platform is designed to carry out investigation of

fuel efficiency on hybrid vehicles. One of the major benefits of using such a set up for

investigation is the flexibility with which experiments can be conducted. This set up

employs a high bandwidth hydrostatic dynamometer to emulate the dynamic behaviors of

the hybrid power sources like the electric motor/generator and vehicle loads, and interact

with a multi cylinder engine in real time. The idea of virtual hybrid is used to emulate the

transmission, driveline and load of a hybrid powertrain using a hydrostatic dynamometer

as described in [21]. This is shown in figure 3.

Figure 3. Virtual Hybrid Powertrain[19], [21]

This idea of virtual hybrid powertrain saves the cost of building a physical powertrain

system and expedites the speed of hybrid powertrain research. The design of the hydrostatic

dynamometer based research platform is a complete hybrid powertrain control and

simulation system .

11

1.3.4 Fuel and Emissions Measurement

The HiLS utilizes an existing powertrain research platform that has been developed

as shown in Figure 4. A real engine overcomes the inaccuracies associated with the

modelling of combustion and emission behavior of an engine accurately for real-time

application, while the dynamics of powertrain is obtained using accurately developed

models. Therefore, the control and simulation is defined by a three-level closed-loop

architecture[19], [21]. The high-level controller, given the power demanded from the

vehicle, selects a reference engine operating point that optimizes fuel consumption and

emissions. For the middle-level controller, the virtual-torque-controller controls the

powertrain torques that utilizes the reference engine torque from the high-level controller.

Highly accurate models are used to simulate the dynamic responses of the powertrain

components which include the desired engine loading torque. In the low level controller,

the dynamometer tracks the desired engine loading torque from the middle-level controller.

Fuel consumption and emissions from the engine are measured by precision measurement

devices.

Fuel consumption is measured using AVL’s Fuel Measurement System Model

P402 with a measurement uncertainty of 0.1% and output frequency of up to 80kHz, and

the emissions are measured using AVL’s SESAM-FTIR, which measures 25 components

of exhaust gas from engine combustion, for example NO, NO2, CO and CO2, with a

sampling rate of 1Hz.

Figure 4.Powertrain Research Platform

12

1.3.5 VISSIM Traffic Simulator

For the current research under progress, VISSIM, a microscopic traffic simulation

software is used to carry out real time simulation of traffic on different types of road

architectures. VISSIM provides the user with the flexibility to design their own traffic

scenario using calibration based on actual measurement data from on road traffic or a

hypothetical set up of simulation scenarios for experimental purposes. It is a microscopic

simulator that allows the user to focus on individual vehicle and also allows the user to

acquire individual speed, location and various other vehicle attributes.

For this project, VISSIM is a vital component that is used to run the simulation.

However, it is important to extract this information from VISSIM software and pass it on

to the powertrain-research-platform for obtaining real time experimental data. The

information sent by VISSIM will be used as a reference parameter by the powertrain-

research-platform . VISSIM is used to provide the real time simulation data and emulate a

realistic traffic scenario. To achieve all these tasks of sending vital information of a specific

vehicle amongst all other vehicles in the traffic and then use that information in the

powertrain-research-platform, different software need to communicate with each other.

The proposed idea is to use C# and MATLAB to communicate with VISSIM where C#

acts as the Component Object Model (COM) client and server [22], [23]. The complete

synchronization of the software should be designed keeping in mind the implementation of

various applications. For this thesis, the implementation of CACC application is crucial.

1.3.6 Integration of Various Software Platforms using Middleware

The software communication has to be executed three way. From the previous

discussions, it can be inferred that the major pathway between the software

communications has to be between VISSIM and a programming software compiler like

MATLAB, C, C# or any other compatible language compiler that allows the user to carry

out analysis on the data collected from VISSIM. Previous work [24] shows successful

integration of VISSIM traffic simulator with COM objects like MATLAB. For HiLS,

MATLAB is used for various other applications like simulating the Hybrid Electric Vehicle

powertrain and also the CACC controller. Creating a COM outside the MATLAB

environment gives the user the freedom of extracting information from VISSIM and makes

13

the whole architecture less cumbersome. Therefore it is realized that it will be more

efficient to have a middleware to communicate between VISSIM and other software.

Hence ,it is decided that a powerful programming language will be most appropriate for

the application of the COM and so C# is used to communicate both between MATLAB

and VISSIM. The COM client or server, in this case C#, communicates all the data that it

receives from VISSIM to MATLAB. VISSIM and C# are extremely compatible and it is

easy to integrate the VISSIM software using C# programming language. More about

programming with C# and VISSIM is discussed in [25]. In this thesis we are focusing on

sending the extracted data to the powertrain-research-platform through a network, the

internet.

1.4 Thesis Contribution

In this thesis, a heuristic CACC controller is developed, a software or middleware

is designed to integrate the HiLS and finally CACC methodology is evaluated using

experiments in integration with the HiLS.

CACC Controller Design

The objective is to develop a connected-vehicle controller and integrate it with a

microscopic traffic simulator (VISSIM) to replicate real traffic dynamics for fuel and

emissions measurements. Hence, a simplified, averaged preceding vehicles’ velocities

method is used to design a CACC controller to implement the controller in real time with

HiLS. Instead of using a prediction model the controller uses the vehicle information of

multiple preceding vehicles to determine a velocity profile for the controlled vehicle which

provides potential fuel benefits.

Design of Software Architecture for HiLS

In the HiLS, the powertrain research platform calculates the demanded power of a

target vehicle in VISSIM which is then used to load a real engine. Real fuel consumption

and emissions are then measured using state-of-the-art measurement devices. To integrate

the powertrain research platform with the traffic simulator and CACC application, a robust

software or middleware is designed and implemented. The software must flawlessly

14

conduct real-time data transfer from and to different components of the HiLS within a time-

step of 200ms.

Evaluation of CACC controller through Experiments.

The final objective is to use the powertrain-research-platform to evaluate CACC

approach for connected vehicles applications. Several simulation case studies are obtained

using the developed CACC controller. A real-time CACC application is evaluated with the

powertrain-research-platform in integration with the CACC controller to validate the

simulation results .

15

Chapter 2 Implementation and Evaluation of Cooperative

Adaptive Cruise Control Using Simulation

2.1 Introduction and Background

Figure 5. CACC concept sketch

Recent developments in CACC have demonstrated the implementation of various

optimization methods. Optimization is done with respect to multiple objectives like to

increase safety, to increase comfort and most recently to reduce fuel consumption for better

fuel economy. In [2], [3] an application of multi-objective Model Predictive Control (MPC)

is implemented. The MPC algorithm is designed to fulfill the objective of reducing fuel

consumption while taking into consideration mobility and comfort of the controlled

vehicle. In [26],CACC is implemented with the perspective of increasing traffic flow by

inducing string stability so that the inter-vehicle distance can be reduced while keeping a

safe distance between consecutive vehicles in front of the controlled vehicle.

CACC takes into account a sophisticated IVC or VII which has opened up a whole

new avenue for research in vehicle dynamics. In [4] the velocity of controlled vehicle is

influenced based on the information obtained from the traffic signal timings to reduce the

time of travel as well as to obtain fuel benefit by reducing the occurrence of stops at traffic

signals. Different optimization methods have served to explore ways to obtain fuel benefit,

reduce travel time, increase comfort, but these complex optimization methods come with

the cost of complex computations. Such optimization methods make the implementation

of an effective controller in real time very difficult. However, such algorithms can be used

16

to give insight and understanding of the vehicle dynamics which may further lead to

methods that are computationally less complex and can be implemented in real time for

real systems. One such algorithm developed is the Simplified Predictive Cruise Control

[15] discussed in chapter 1.

2.1.1 The Distance Corridor Constraints

The general CACC implementation methodology includes a string of vehicles in a

specific traffic network where the controlled vehicle follows the immediate preceding

vehicle at a specific distance, maintaining the distance corridor. The controlled vehicle

must maintain the constraints given by

∆𝑥𝑚𝑖𝑛 ≤ ∆𝑥 ≤ ∆𝑥𝑚𝑎𝑥

The constraints ∆𝑥𝑚𝑖𝑛 and ∆𝑥𝑚𝑎𝑥 are given by the constant time headway policy which are

stated as

∆𝑥𝑚𝑖𝑛 = ∆𝑥𝑚𝑖𝑛,0 + ℎ𝑣

∆𝑥𝑚𝑎𝑥 = ∆𝑥𝑚𝑎𝑥,0 + ℎ𝑣

∆𝑥 = 𝑥𝑛−1 − 𝐿𝑛−1 − 𝑥𝑛

Where ∆𝑥𝑚𝑖𝑛,0 and ∆𝑥𝑚𝑎𝑥,0 are the minimum and maximum inter-vehicle distance when

the vehicles are at stand still with h as the constant time headway and v the velocity of the

controlled vehicle at that instant. The value of h is typically equal to one or more than one.

Since constant time headway is assumed, it is decided that h will be equal to one based on

the initial condition of the controlled vehicle in VISSIM traffic simulator. The controlled

vehicle’s initial speed is around 20m/s and it is approximately 22m away from the

immediate preceding vehicle. Therefore, the controlled vehicle will take approximately 1.1

seconds to reach the position of the immediate preceding vehicle, which makes the

selection of h as one very feasible. Also, xn-1 and xn are the positions of the preceding

vehicle and the control vehicle respectively from the starting point of the simulation. Ln-1

is the length of the preceding vehicle. In VISSIM, the length of each vehicle type is given

17

as a default and the length of vehicle type cars is between 4.11 and 4.76 m. Therefore, for

simulation purposes, the average value of 4.435m is chosen for the length of cars. This is

clearly depicted in figure 5.

As mentioned earlier, an ideal communication between the controlled vehicle and

all the preceding vehicles in front of it is assumed. This assumption is crucial for the

implementation of the controller, as the average of the velocities of all the preceding

vehicles is required to determine the velocity of the controlled vehicle for the next time

step.

2.1.2 A Simplified Approach to CACC

In [11] ,the approach chosen to determine the velocity profile of the controlled

vehicle for a reduced fuel consumption over the complete driving cycle is to implement an

optimization method to minimize the fuel cost which is a function of the vehicle speed and

acceleration as stated below. This method of optimization with respect to fuel consumption

is widely used in literature. However, the simplified approach will not use any optimization

with respect to fuel consumption.

min ∫ 𝑞𝑓(𝑣, 𝑎) 𝑑𝑡
𝑡𝑒𝑛𝑑

0

The approach in this thesis is to implement a simplified method without doing any sort of

optimization with respect to fuel consumption as shown above . The intention is purely to

showcase the advantage of using multiple vehicle information on fuel savings for a

controlled vehicle. Taking the average of the velocities of the preceding vehicles provides

a velocity profile for the controlled vehicle such that the high accelerations and

decelerations are suppressed which in turn lead to fuel savings. By taking the average of

the velocities of a certain number of preceding vehicles, the idea is to incorporate the

dynamics of the preceding vehicles in the velocity of the controlled vehicle as future

information. For instance, in figure 5, as a platoon of vehicles is shown, if the lead vehicle

makes a stop or decelerates at a traffic signal junction and the velocity of the controlled

vehicle is a function of the lead preceding vehicle, then the deceleration of the lead vehicle

18

will cause the controlled vehicle’s velocity to decelerate too but not at the same rate

because the controlled vehicle’s velocity is also the function of the average of the several

other preceding vehicles in front of it. At the same time, the preceding vehicle number two,

not equipped with CACC controller, will not have obtained this deceleration and continue

to accelerate until it realizes it has approached the first preceding vehicle and then

decelerate abruptly.

This abrupt deceleration will lead to high fuel consumption for the second

preceding vehicle and also for the other preceding vehicles without CACC. However, the

controlled vehicle with CACC benefits because it has already slowed down due to the

incorporation of the velocities, which are a function of the dynamics of the preceding

vehicles. Due to this ahead of time incorporation of the preceding vehicle’s dynamics in

the controlled vehicle, the controlled vehicle somewhat emulates the reaction of the

preceding vehicles. If the lead vehicle reacts to a signal by decelerating, this reaction of

deceleration takes some time to reach the other following vehicles and the most amount of

time to reach the controlled vehicle. However, with the average velocity method, the

reaction flow time is drastically reduced and the controlled vehicle reacts as instantly as

the lead vehicle does. Due to this slight deceleration, the controlled vehicle recedes behind

the immediate preceding vehicle, increasing the distance gap between each other.

Now, by the time the deceleration reaction reaches the immediate preceding

vehicle, the controlled vehicle has sufficient distance between itself and the immediate

preceding vehicle to not decelerate abruptly, whereas the immediate preceding vehicle will

experience aggressive acceleration or deceleration to maintain a safe distance between

itself and the consecutive preceding vehicle. Since, the controlled vehicle will not

decelerate abruptly or accelerate abruptly, over a driving cycle, this trend of the velocity

profile of the controlled vehicle will look like an averaged profile of the immediate

preceding vehicle with reduced stops compared to any non-CACC preceding vehicle. If

this smoothened profile is repeated over the complete driving cycle then the controlled

vehicle will benefit from reduced fuel consumption.

19

2.2 CACC Controller Design

The method in [15] uses Adaptive Cruise Control technology where it is assumed

the controlled vehicle has a radar sensor attached to it which determines the velocity of the

forward vehicle at the specific time step, and uses this velocity with a prediction model to

predict the future velocity of the forward vehicle for ten seconds time horizons. Using this

future velocity of the forward vehicle, the author claims that taking the average over the

ten seconds prediction horizon gives the desired velocity trajectory or reference velocity.

The idea is to average the velocity of the forward vehicle and assign it as the desired

velocity of the controlled vehicle so that the controlled vehicle has less fluctuations in

acceleration or deceleration. In this thesis, a similar approach is taken where a reference

velocity or velocity trajectory is derived based on the average of the velocities of the

multiple preceding vehicles. However, no prediction of the velocity profile was conducted.

The states used for this dynamic system are [∆𝑥, 𝑣].

The basic dynamic equations in continuous time are as follows:

∆𝑥′ = 𝑣𝑝 − 𝑣

𝑣′ = 𝑎

Where ∆x is the absolute distance between the preceding vehicle and the controlled vehicle,

vp and v are the instantaneous velocities of the immediate preceding and the controlled

vehicle respectively and a is the instantaneous acceleration of the controlled vehicle

The above dynamic equations are used with constraints. The major constraint is on the

mobility of the controlled vehicle with respect to the preceding vehicle. The intention is to

make sure that whatever the velocity is derived for the controlled vehicle, it must not lead

the controlled vehicle to exceed the minimum distance limit such that it hits the preceding

vehicle and crashes or it must not exceed the maximum distance limit such that it recedes

behind the preceding vehicle, disrupting the flow of traffic. It is important to maintain the

traffic flow for achieving a high mobility as well as maintaining a safe distance from the

forward vehicle. A simple linear spacing policy is used, as mentioned earlier, to make sure

the above criteria of safety and mobility is fulfilled. Where ∆𝑥𝑚𝑖𝑛,0 𝑎𝑛𝑑 ∆𝑥𝑚𝑎𝑥,0 are the

20

minimum and maximum stand still positional difference between the controlled and the

immediate preceding vehicle.

In discrete form the dynamic equations become:

∆𝑥(𝑡 + 1) = ∆𝑥(𝑡) + 𝑑𝑡 ∗ (𝑣𝑝(𝑡) − 𝑣(𝑡))

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑑𝑡 ∗ (𝑎(𝑡))

∆x(t) is the measured difference of position between the controlled vehicle and preceding

vehicle. To measure ∆x(t) correctly at every time step from VISSIM traffic simulator, it is

important to consider the length of the preceding vehicle and include it in the calculation

for ∆x(t) as follows

∆𝑥(𝑡) = 𝑥𝑛−1(𝑡) − 𝐿𝑛−1 − 𝑥𝑛(𝑡)

2.2.1 Velocity Trajectory Generator Equation

The velocity trajectory equation is derived as

𝑣 = 𝑣𝑑𝑒𝑠 + 𝑣𝑐𝑜𝑟

Where

𝑣𝑐𝑜𝑟= fcor (∆𝒙,v,vp, ∆𝒙med, ∆𝒙min, ∆𝒙max)

The discussion for vcor with regards to constraints is done in the next section. In this section,

a CACC approach without using a prediction model is evaluated to determine a velocity

trajectory. In this approach the equation as above is modified to give a velocity trajectory

equation, but the derivation of vdes is based on the average of the velocities of a certain

number of preceding vehicles in a platoon. Vdes is derived as shown in the equation below

vdes(𝑡) =
𝑣𝑝1 (𝑡) + 𝑣𝑝2(𝑡) + 𝑣𝑝3(𝑡)+. . 𝑣𝑝𝑛(𝑡)

𝑛

Where n is the number of preceding vehicles in front of the controlled vehicle and vp1 to

vpn are the velocities obtained from the n preceding vehicles at each time step. This is based

on the assumption that CACC enabled vehicles have ideal communication either through

IVC or VII.

 The second term in equation above, the velocity correction term vcor, is not utilized

until the vdes determined leads the controlled vehicle to exceed the distance ∆𝑥 constraints

mentioned in equation above. Since the second term applies the distance corridor

21

constraints to correct the vdes derived from average of the velocities of the preceding

vehicles, this second term is given the name velocity correction vcor .

In cases when the controlled vehicle’s assigned vdes leads it to exceed the maximum

or minimum distance corridor constraints, the second term vcor comes into play. The second

term is utilized to make sure the instantaneous velocity of the controlled vehicle is reduced

by a deceleration term or increased by an acceleration term if the controlled vehicle exceeds

the minimum or maximum distance corridor constraint respectively. Therefore the

combined equation given to derive the velocity of the target vehicle is nothing but a

velocity trajectory generator. It is expected that following the trajectory generated from

this equation will give significant fuel benefits and also give more intuition into how

averaging the velocity leads to possible fuel savings. Therefore, paving the path for a much

more realistic CACC implementation without using any prediction model.

2.3 Applying Constraints – Derivation of the Velocity Correction term

The averaged velocity method to generate a trajectory utilizes the average of the

velocities of a number of preceding vehicles in front of the controlled vehicle. Using this

averaged velocity as the controlled vehicle’s velocity is not sufficient to control the vehicle

for achieving significant fuel benefits and maintaining safety of the vehicle. This is because

an averaged velocity is a function of all the preceding vehicles in front of the controlled

vehicle. Therefore the averaged velocity obtained may approach values that will cause the

controlled vehicle to come dangerously close to the immediate preceding vehicle or even

hit the preceding vehicle. On the contrary, the assigned velocity of the controlled vehicle

cannot be much lower than the immediate preceding vehicles such that the controlled

vehicle recedes far behind the preceding vehicle. Therefore, it is crucial to add constraints

to the velocity of the controlled vehicle based on the velocity and the distance gap from the

preceding vehicle. A velocity correction term is added to the average velocity term, as a

function of the distance corridor bounds and also as a function of the immediate preceding

vehicle’s velocity. [16] proposes a similar control strategy where the correction term is an

acceleration term which is a function of the distance corridor bounds and the immediate

preceding vehicle’s velocity. It also uses a piecewise method to increase the magnitude of

22

the correction as the controlled vehicle approaches the upper or lower bounds of the

distance corridor. This method is simulated in the next section and it is referred to as the

buffer zone method. These correction terms ensure that the combined velocity derived for

the controlled vehicle complements the objective of saving fuel as well as safe driving for

all the vehicles in the traffic network.These constraints, in the form of velocity correction,

are categorized as soft and hard constraints.

2.3.1 The Hard Constraints

The two basic hard constraints are categorized as case 1 and 2. The hard constraints

are added to make sure the controlled vehicle does not exceed ∆𝑥𝑚𝑎𝑥 and ∆𝑥𝑚𝑖𝑛 which

have already been defined before. The cases are explained as follows:

Case#1

If the controlled vehicle exceeds the maximum distance corridor limit, that is:

∆𝑥 ≥ ∆𝑥𝑚𝑎𝑥

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑎𝑥

𝑑𝑡2)

 Where ka= 𝑡𝑠𝑡𝑒𝑝*k

Case#2

If the controlled vehicle happens to exceed the minimum distance corridor limit, that is:

∆𝑥 ≤ ∆𝑥𝑚𝑖𝑛

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑖𝑛

𝑑𝑡2)

Where ka= 𝑡𝑠𝑡𝑒𝑝*k

Where tstep must be equal in magnitude to the time step used in simulation. In both cases,

1 and 2, vcor will take care of the velocity correction to bring the controlled vehicle within

the constraints of the distance corridor. Case 1 specifically compensates for the deviation

of the distance between the controlled vehicle and the immediate preceding vehicle as it

exceeds the maximum distance corridor. Case 2 compensates the acceleration term when

the same distance exceeds the minimum distance corridor limit. Therefore ,the equations

mentioned above compensate for the deviation of the difference of distance between the

23

controlled vehicle as an added acceleration term to the desired velocity term of the

controlled vehicle. The weight k is designed to vary in relation to the change in distance

corridor. The magnitude of k will decide the degree to which a correction is needed. Figure

6 depicts both the cases with the red vehicle as the controlled vehicle and the green vehicle

as the preceding vehicle.

Figure 6. Minimum and Maximum Distance Corridor

2.3.2 The Median Method as Soft Constraints

Unlike the hard constraints, which impose drastic changes to the velocity of the

controlled vehicle to strictly keep it within the limits, the soft constraints are added to

reduce the impact of the drastic changes to the velocity of the controlled vehicle. The main

objective of the soft constraints is to make the controlled vehicle realize that it is

approaching the bounds and it must take action before the hard constraints are implied. It

is highly preferable that the hard constraints are never utilized and instead the soft

constraints are used to avoid the use of hard constraints because the hard constraints are

detrimental to the reduction of acceleration of the controlled vehicle. Therefore the soft

constraints are added as a compensation to the deviation of the distance between the

controlled and the immediate preceding vehicle and the median of the maximum and

minimum distance corridor limits. The idea is to directly compensate for this deviation so

that by the time the controlled vehicle approaches the extreme limits, its velocity profile is

24

such that a drastic change is not required to keep the target vehicle within the limits. This

also implies that the hard constrains will not act very strictly on the velocity correction

term for the target vehicle leading to less aggressive acceleration and deceleration behavior

of the controlled vehicle. Figure 7 depicts the derivation of the median distance term based

on ∆𝑥𝑚𝑎𝑥 and ∆𝑥𝑚𝑖𝑛.

Figure 7. Median Distance Corridor

The dotted line, shown in figure 7, on the red controlled vehicle is the median of ∆𝑥𝑚𝑎𝑥

and ∆𝑥𝑚𝑖𝑛. The term ∆𝑥𝑚𝑒𝑑 can be used to compensate for the deviation of ∆𝑥 as an

acceleration term in vcor , as vcor is a function of the acceleration of the vehicle. Thus the

deviation term is derived as shown in figure 8 and implemented in the equations below.

Figure 8. Derivation of Median Distance Corridor

25

Case#1

∆𝑥 ≥ ∆𝑥𝑚𝑒𝑑

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑒𝑑

𝑑𝑡2)

Where ka= 𝑡𝑠𝑡𝑒𝑝*k

Case#2

∆𝑥 ≤ ∆𝑥𝑚𝑒𝑑

𝑣𝑐𝑜𝑟 = 𝑑𝑡 ∗ 𝑎 = 𝑑𝑡 ∗ 𝑘𝑎 ∗ (
∆𝑥−∆𝑥𝑚𝑒𝑑

𝑑𝑡2
)

Where ka= 𝑡𝑠𝑡𝑒𝑝*k

Unlike in the hard constrain cases, 1 and 2 , where vcor is derived with respect to

∆𝑥𝑚𝑎𝑥 𝑎𝑛𝑑 ∆𝑥𝑚𝑖𝑛, in this case vcor is a function of ∆xmed. The complete vcor piecewise

function with both hard and soft constraints is given below

26

𝑘1min(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) ,

 ∆𝒙 − ∆𝒙𝒎𝒆𝒅 < 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒂𝒙 < 𝟎

𝑎 =

𝑘1max(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) ,

 ∆𝒙 − ∆𝒙𝒎𝒆𝒅 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒂𝒙 < 𝟎

𝑘1min(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) + 𝑘2min((𝑣𝑝 − 𝑣)/𝑑𝑡)

+ 𝑘3min(
∆𝑥 − ∆𝑥min

𝑑𝑡2
),

∆𝒙 − ∆𝒙𝒎𝒆𝒅 < 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 < 𝟎, ∆𝒙 − ∆𝒙𝒎𝒂𝒙 < 𝟎

𝑘1max(
∆𝑥 − ∆𝑥𝑚𝑒𝑑

𝑑𝑡2
) + 𝑘2max(𝑣𝑝 − 𝑣)/𝑑𝑡

+ 𝑘3max(
∆𝑥 − ∆𝑥𝑚𝑎𝑥)

𝑑𝑡2
),

∆𝒙 − ∆𝒙𝒎𝒆𝒅 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒊𝒏 > 𝟎 , ∆𝒙 − ∆𝒙𝒎𝒂𝒙 > 𝟎

2.3.3 Deriving the Weight Function

The weights used with the vcor function are crucial in deciding the degree to which

the correction is needed to be added to vdes so that the final velocity of the controlled vehicle

provides a profile that has some potential fuel benefits as well as maintains the controlled

vehicle within the distance corridor limits based on the smoothening of the velocity profile.

The weight is decided by the k function which again is a function of the distance corridor

∆𝑥.

𝑘1min = 𝑡𝑠𝑡𝑒𝑝 ∗ 𝑒
−

∆𝑥
∆𝑥𝑚𝑒𝑑

𝑘1max = 𝑡𝑠𝑡𝑒𝑝 ∗ 𝑒−
∆𝑥𝑚𝑒𝑑

∆𝑥

The k1 weights are applied to the soft constraints as an exponential function .The objective

of using an exponential function is to apply varying weight based on the deviation of ∆𝑥

from ∆𝑥𝑚𝑒𝑑. Thus as the magnitude of difference between ∆𝑥 𝑎𝑛𝑑 ∆𝑥𝑚𝑒𝑑increases, the

weights k1 increase exponentially depending on either ∆𝑥 > ∆𝑥𝑚𝑒𝑑 𝑜𝑟 ∆𝑥 < ∆𝑥𝑚𝑒𝑑.

27

The functionality of the exponential function is depicted using the exponential graph in

figure 9. It can be seen in the graph below that as the x-axis value increases the weight

function’s magnitude decreases and as the x-axis value decreases, the weight function value

increases. This change in the magnitude is applied appropriately to the different scenarios

as shown in the equation below. Thus this is how the weight k1 is made to vary based on

the change in the deviation of ∆𝑥 from ∆𝑥𝑚𝑒𝑑.

𝑓 (
∆𝑥𝑚𝑒𝑑

∆𝑥
) = 𝑒

−∆𝑥𝑚𝑒𝑑
∆𝑥

 𝑤ℎ𝑒𝑛 ∆𝑥 − ∆𝑥𝑚𝑒𝑑 > 0 ,
∆𝑥𝑚𝑒𝑑

∆𝑥
> 0

𝑓 (
∆𝑥

∆𝑥𝑚𝑒𝑑
) = 𝑒

−∆𝑥
∆𝑥𝑚𝑒𝑑

 𝑤ℎ𝑒𝑛 ∆𝑥 − ∆𝑥𝑚𝑒𝑑 < 0,

∆𝑥

∆𝑥𝑚𝑒𝑑
> 0

Figure 9. Exponential function with negative power

Similarly for the hard constraints the weights k2 and k3 are applied as an addition to the

weights k1 to add an extra measure to make sure the controlled vehicle remains within the

bounds of the distance corridor. The hard constraints have a linear relation with ∆𝑥, ∆𝑥𝑚𝑎𝑥,

∆𝑥𝑚𝑖𝑛 . Unlike the weight k1, k2 and k3 change linearly with respect to the change between

∆𝑥 𝑎𝑛𝑑 ∆𝑥𝑚𝑎𝑥 𝑜𝑟 ∆𝑥𝑚𝑖𝑛 depending on ∆𝑥 > ∆𝑥𝑚𝑎𝑥 𝑜𝑟 ∆𝑥 < ∆𝑥𝑚𝑖𝑛 The k2 and k3

functions are defined as follows:

𝑘2𝑚𝑖𝑛 =
|∆𝒙 − ∆𝑥𝑚𝑖𝑛|

∆𝑥𝑚𝑖𝑛

𝑘2𝑚𝑎𝑥 =
|∆𝑥 − ∆𝑥𝑚𝑎𝑥|

∆𝑥𝑚𝑎𝑥

28

𝑘3𝑚𝑖𝑛 = 𝑡𝑠𝑡𝑒𝑝 ∗
|∆𝑥 − ∆𝑥𝑚𝑖𝑛|

∆𝑥𝑚𝑖𝑛

𝑘3𝑚𝑎𝑥 = 𝑡𝑠𝑡𝑒𝑝 ∗
|∆𝑥 − ∆𝑥𝑚𝑎𝑥|

∆𝑥𝑚𝑎𝑥

2.3.4 Applying Different Methods of Constraints

There were two different methods that were simulated, before deciding to use the

median method as mentioned in the previous section. These methods are intended to study

the influence of averaging the velocities of preceding vehicles over the distance corridor

limits, the acceleration of the vehicle based on the velocity correction determined to keep

the vehicle within the distance corridor limits and the fuel consumption. The two methods

are defined as: buffer and the non-constraint method.

First, for observation purposes, a non-constraint method is simulated where the

distance corridor limits are kept sufficiently large to ensure that the controlled vehicle has

enough space to purely use the average of the preceding vehicles as the velocity for the

controlled vehicle in the next time step and not implement the correction factor. In other

words, no constraints are implemented. Hence, the controlled vehicle is directly assigned

with the average of the preceding vehicles’ velocities. This method particularly studies the

dynamics of the average of the preceding vehicles, allowing the controlled vehicle to freely

move in the expanse of the enlarged limits of the distance corridor. It is anticipated that the

target vehicle under the complete influence of the average of the preceding vehicles will

have some fuel benefits. However, since the average velocity can be drastically different

from the immediate preceding vehicle in front of the controlled vehicle , the controlled

vehicle may not be able to follow the preceding vehicle in a small limit of the distance

corridor. This is further discussed in the results.

The buffer zone method limits the expanse of the distance corridor between 10 and

50 meters of distance from the preceding vehicle, and has the velocity correction term

added to the average velocity for the specific buffer zone [16]. This means that at a specific

buffer zone the weight of the velocity correction term will increase based on an exponential

function to prevent the controlled vehicle to surpass the maximum or minimum distance

29

corridor limits. The objective of implementing a buffer zone is to reduce the unnecessary

and abrupt acceleration and deceleration when the controlled vehicle suddenly is made to

realize that it has crossed the distance corridor bounds. With the buffer zones implemented,

it is anticipated that the abrupt acceleration or deceleration will be smoothened, leading to

fuel benefits.

Figure 10. Buffer Zone Method

Next, in the median method, as already discussed in the previous section, the

objective is to compensate for the deviation of the controlled vehicle’s position from the

median of the minimum and maximum distance corridor limits. It is anticipated that with

this added weight over the weights that compensate for the deviation of the controlled

vehicle’s distance when it crosses the maximum and minimum limits, the controlled

vehicle can decide a trajectory for itself which will be much more smoothened than the

buffer method .This is because the weights added to compensate for the deviation will

decide the velocity trajectory of the controlled vehicle based on the deviation from the

median . In the other methods, the weights are abruptly added when the controlled vehicle

crosses the limits which leads to sudden acceleration and deceleration causing the

controlled vehicle to consume more fuel.

To begin obtaining simulation results, the several ways mentioned above are

implemented. The first method is to simply assign the average velocity vdes as the velocity

30

of the controlled vehicle at each time step and then observe the trend in the velocity profile

of the controlled vehicle. The second method is to add buffer zones before the vehicle

exceeds the maximum and minimum distance corridor limits. The idea is to increase the

weights according to the buffer zone; that is as the target vehicle crosses the first minimum

and maximum buffer limits, the weight must increase to compensate for exceeding the

buffer limits. Then, if the target vehicle happens to further exceed the absolute maximum

and minimum distance corridor limits, the weights must increase even more. The third

method tested is to directly compensate for any deviation of relative distance from the

median value of the maximum and minimum distance corridor as shown in figure 8. The

idea is to allow the vehicle to smoothly add the velocity correction values to vdes, without

abruptly changing the velocity when the target vehicle exceeds these bounds. This will help

reduce the sudden acceleration and deceleration the target vehicle will experience upon

realization that it has exceeded the distance corridor bounds.

2.3.4.1 Non-constraint

Figure 11.Simulation results for non-constraint method

As shown in figure 11 , with the non-constraint case, the CACC controlled vehicle

velocity profile shown in the top left plot is time shifted on the left side. This time shifted

31

velocity profile of the controlled vehicle,compared to the immediate preceding vehicle,

makes it seem like as if the controlled vehicle is acting ahead in time to any situation in the

traffic network. This means that the reaction of the controlled vehicle is occurring ahead

of time when compared to that of the immediate preceding vehicle. However, with time

shifted reaction, the controlled vehicle requires a larger limit of the distance corridor for it

to maintain a safe distance from the preceding vehicle. This can be seen in the top right

plot, where the difference in the distance between the preceding vehicle and the controlled

vehicle varies in the range 10 to 150 m. In real traffic scenarios, such vast distances between

vehicles will hamper mobility drastically which will be a huge cost in terms of travel time.

However, the fuel consumption plot proves that there is potential space for fuel savings

with averaging the preceding vehicles’ velocities and using it as the velocity for the

controlled vehicle. This is complemented by the comparison of the acceleration profile of

the controlled vehicle and the preceding vehicle where the controlled vehicle has lower

variations in its acceleration compared to the preceding vehicle’s acceleration.

2.3.4.2 Buffer Zone

The results from implementing the buffer zone method are shown below. Similar

to the non-constraint method, the buffer method is using the averaged velocity profile of

the preceding vehicles. However there are observable peaks in the velocity profile of the

controlled vehicle in the buffer method and these occurrences of the peaks are explained

by the reduction of the distance corridor limits shown in the top right plot of figure 12. It

can be seen that there are two buffer zones bordered with the blue line and the maximum

and minimum distance corridor limits bordered by green and red colored lines respectively.

The vcor term comes in to action as soon as the controlled vehicle exceeds these buffer

zones with a certain weight k. The weightage k increases further when the controlled

vehicle exceeds the upper or lower limits of the distance corridor. It can be clearly seen in

the velocity profile plot that the vcor successfully tries to correct the velocity of the

controlled vehicle by matching the velocity to the preceding vehicle whenever the limits

are approached or crossed because the best way to correct the velocity at the limits is by

following the preceding vehicle at its exact velocity. However, the corrections occur

32

abruptly causing sudden accelerations and decelerations shown in the acceleration plot.

This is complemented by the fuel consumption plot as the fuel consumption for the

controlled vehicle soars higher than that of the preceding vehicle.

Figure 12. Simulation results for buffer zone method

2.3.4.3 Median Method

Figure 13 shows the results for the median method for 14 vehicles’ velocities

average with a constant time headway of 0.5 seconds. The fuel savings are approximately

8% and the distance corridor limits are much smaller than the previous methods. The fuel

savings can be increased with a larger constant time headway or larger distance corridor

bounds. With smaller distance corridor bounds the control effort increases, therefore the

fuel benefits also decrease. As already discussed earlier, the median method uses the

averaged velocity of the preceding vehicles. However, unlike the buffer zone method, the

velocity profile of the controlled vehicle has no abrupt changes in its profile during

instances when the vehicle surpasses the constraints. This can be seen from the comparison

of the velocity plot of figure 12 and 13. The velocity profile derived using the median

method behaves similar to buffer zone method where when the controlled vehicle

approaches the limits, the controlled vehicle’s velocity tries to approach the velocity of the

33

immediate preceding vehicle. However, the advantage of using this median method over

the buffer zone method is that an averaged velocity profile can be achieved without the

occurrence of any sudden jerks as well as the distance corridor limits can be kept small.

This is shown in the top right plot for the distance corridor in figure 13. From the plot, it is

clearly visible that the controlled vehicle is made to remain within the bounds of the

distance corridor as well as maintain a velocity profile which takes into account the average

of the preceding vehicles without any abrupt changes in the velocity profile .This behavior

of the controlled vehicle is definitely very beneficial in terms of fuel consumption as shown

in the fuel consumption plot which is again complemented by the reduced magnitude of

the controlled vehicle’s acceleration.

Figure 13. Simulation results for median method

There are three prominent conclusions that can be drawn from the above results.

One is that , although taking the average of the preceding vehicles and using it as the

reference velocity for the controlled vehicle gives fuel benefits, it compromises with safety

of the vehicle if small distance corridor limits are used. To solve this problem, a correction

term needs to be added. This is implemented in the buffer zone method , where the

correction terms are added in piece wise manner. However, the implementation of

34

correction term in a piecewise manner with respect to the buffers introduces sudden peaks

in the velocity profile of the controlled vehicle which leads to sudden changes in

acceleration. This behavior is undesirable if fuel consumption savings is one of the crucial

objectives. The implementation of the median method takes care of these sudden changes

in the velocity by applying a compensation in the reference velocity profile of the

controlled vehicle in the form of the correction factor , to smoothly change the reference

velocity of the controlled vehicle to cater to the soft and hard constraints mentioned earlier.

The results obtained from the median method give the best fuel benefits while taking care

of the distance corridor constraints.

2.4 Problem Formulation- Real-Time Implementation of CACC

From the above simulation results with the velocity trajectory equations, using the

median method, highest fuel benefit was achieved at the same time the distance corridor

limits were also maintained. The potential of the application of CACC using this heuristic

method has been clearly shown. However, for real-time implementation, a dynamic model

is necessary and not a velocity trajectory generator as mentioned in the previous section.

The above formulation is designed to provide a velocity profile or trajectory for a

controlled vehicle based on the averaged velocity vdes and corrected velocity vcor. At every

time step an averaged velocity vdes is calculated based on the instantaneous velocities of

the preceding vehicles and then a vcor is obtained based on the constraints. Using this

velocity trajectory or reference equation is problematic when the median method is applied

and the controlled vehicle’s initial position with respect to the immediate preceding vehicle

is outside the bounds of the distance corridor. The controlled vehicle is made to operate at

this initial speed for a time period before the CACC application is initiated as shown in

figure 14. When the CACC application is initiated and applied to the control vehicle, the

control vehicle experiences a surge in its velocity with a very high acceleration or

deceleration depending on whether it is beyond the maximum or minimum distance

corridor limits respectively. This occurs because the CACC controller with the velocity

trajectory generator does not consider the initial dynamics of the vehicle. It realizes that

the controlled vehicle is outside the bounds and immediately assigns a large vcor value to

35

bring the controlled vehicle within the bounds. The gain factor for the velocity correction

term when the vehicle is outside the maximum and minimum limits is set to be high or in

other words when the vehicle is outside the maximum or minimum distance corridor limits

the hard constraints are implemented. Hence, in this specific scenario because the initial

condition of the vehicle’s position is beyond the minimum distance corridor limit, the hard

constraints are implied directly leading the vehicle to suddenly reduce its velocity to bring

itself within the bounds. However, in this process of bringing the vehicle within the bounds,

the controller assigns a large velocity correction term which leads to drastic surges in the

acceleration as shown in figure 14. The velocity plot in figure 14 shows a constant velocity

for a period of approximately 50 seconds. During this period the CACC application has not

started. At around 50 seconds when the median method CACC application is implemented,

the vehicle’s velocity suddenly dips to compensate for the initial ∆𝑥 that is beyond the

minimum ∆𝑥𝑚𝑖𝑛 as shown in the distance corridor plot in figure 14. This sudden change in

velocity is shown, in the acceleration plot, by the unrealistic acceleration of approximately

10 to -50m/s2 in a matter of milliseconds.

2.4.1 The Dynamic Model Equations

Figure 14.9 vehicle average using reference generator model with initial ∆𝑥 < ∆𝑥𝑚𝑖𝑛

To tackle this challenge, the formulation is changed to implement a dynamic model.

36

The dynamic model equations are given below in discrete time form.

∆𝑥(𝑡 + 1) = ∆𝑥(𝑡) + 𝑑𝑡 ∗ (𝑣𝑝(𝑡) − 𝑣(𝑡))

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑑𝑡 ∗ 𝑢(𝑡)

In the above dynamic equations, a method has to be determined to solve for u(t), the

acceleration for the vehicle, at every time step. The method used to determine the

acceleration at every time step is done using an objective function as explained below . The

objective function is designed using the intuition obtained from the reference velocity

generator simulation results from the previous section.

2.4.2 The First Objective of the Function

Given the dynamic model of the system, an objective function with specific

objectives has been designed. The ultimate objective of the cost function J is to provide u,

the acceleration for the controlled vehicle which will track the reference speed vdes, the

averaged velocities of preceding vehicles. From the non-constraint method simulation

results it is known that using the averaged velocity of the preceding vehicles provides

potential fuel benefits. A simple cost function representing this is shown in the equation

below.

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡 + 1))2

Where after expansion

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡))
2

− 2𝑑𝑡 ∗ 𝑢(𝑡)(𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡)) + 𝑑𝑡2𝑢(𝑡)2

Differentiating the above cost function with respect to u(t) and solving for u(t) will give

𝑢(𝑡) =
𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡)

𝑑𝑡

Substituting the above relation in the dynamic equation will provide the following

relation

𝑣(𝑡 + 1) = 𝑣𝑑𝑒𝑠(𝑡)

Thus using the simple objective function will fulfill the objective of following vdes as a

reference. However, it is not desirable that the velocity of the controlled vehicle completely

37

track vdes because from previous results of the non-constraint method, it is observed that

although following vdes has potential for fuel benefits, the vehicle requires large distance

corridor boundaries to function safely in a traffic network. Thus the objective function must

be modified to include distance corridor constraints. Therefore, the objective function J has

constraints with weights added to it as a part of its objective. These constraints are

considered with regards to the distance corridor boundaries to provide a suitable

acceleration u(t) for every time-step such that the velocity of the controlled vehicle tracks

vdes but also takes into account the distance corridor boundaries. The two other objectives

of the cost function with respect to maintaining the constraint are that the controlled vehicle

must track the immediate preceding vehicle’s velocity depending on the weight W1 and the

acceleration of the controlled vehicle u(t) must compensate for the deviation of ∆𝑥 from

∆𝑥𝑚𝑒𝑑.

2.4.3 The Second Objective of the Function

The objective of the controlled vehicle tracking the immediate preceding vehicle’s

velocity is intended to add a high cost when the weight W1 increases. The weight W1 is an

exponential function similar to k1 mentioned previously. The idea is to increase the weight

W1 exponentially to the deviation of ∆𝑥 from ∆𝑥𝑚𝑎𝑥, ∆𝑥𝑚𝑖𝑛 and ∆𝑥𝑚𝑒𝑑. This objective of

the function acts like a constraint that was being added in a piece wise manner previously.

The weight W1 only increases when the controlled vehicle approaches the distance corridor

limits very closely. Increasing weight causes the cost of the difference of velocities

between the preceding and the controlled vehicle to increase. In other words, when W1 is

high, the objective function J will provide an acceleration u(t) which will attempt to follow

the immediate preceding vehicle’s velocity. This is desirable for two specific situations. In

a situation when the controlled vehicle is travelling at a velocity higher than the preceding

vehicle and it is approaching the preceding vehicle, the only way to prevent the controlled

vehicle from hitting the preceding vehicle is to bring the controlled vehicle’s velocity to be

at the same level as the preceding vehicle before the controlled vehicle crosses ∆xmin. In

the same way if the controlled vehicle is travelling at a velocity lower than the preceding

vehicle which leads it to recede from the preceding vehicle , then the only way to stop this

38

recession is by following the preceding vehicle’s exact velocity. Therefore, with this

objective, the function is altered as follows:

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡 + 1))2 + (𝑣𝑝𝑛(𝑡) − 𝑣(𝑡 + 1))
2

∗ 𝑊1

Where vpn is the instantaneous velocity of the immediate preceding vehicle.

2.4.4 The Third Objective of the Function

From the two terms in the above objective function , an acceleration can be derived

that will balance the vehicle’s velocity to follow between the averaged velocity and the

preceding vehicle’s velocity. However, it is observed from preliminary results that the

second term is not enough to keep the controlled vehicle within the distance corridor

bounds. Hence a third term with the objective of compensating the deviation of ∆𝑥 from

∆𝑥𝑚𝑒𝑑 is added as an extra constraint. This term is added to the objective function to

implement the median method which has been already discussed previously. The idea is to

add the cost of the deviation based on a weight W2 which is a constant value of small

magnitude. As the deviation of ∆x from ∆xmed increases the cost due to the third term

increases. The weight W3 is added with the purpose of keeping the units consistent through

out the cost function. The first two objective functions have a unit of m2/s2 and the third

objective has units of m2/s4. Therefore W3 is 1s2, to keep the unit m2/s2 uniform throughout

the cost function

Cost Function

𝐽𝑡 = (𝑣𝑑𝑒𝑠(𝑡) − 𝑣(𝑡 + 1))2 + (𝑣𝑝𝑛(𝑡) − 𝑣(𝑡 + 1))
2

∗ 𝑊1

+ 𝑊3 ((𝑢(𝑡) − 𝑊2(
∆𝑥(𝑡) − ∆𝑥𝑚𝑒𝑑(𝑡)

𝑑𝑡2
))

2

The first two objectives of the function are evident but the last term in the above

function needs more explanation. When the last objective in the above function is expanded

it becomes:

(𝑢(𝑡) − 𝑊2(
∆𝑥(𝑡) − ∆𝑥𝑚𝑒𝑑(𝑡)

𝑑𝑡2
)) = 𝑢(𝑡) − 𝑊2(∆𝑥(𝑡) −

∆𝑥𝑚𝑖𝑛,0 + ∆𝑥𝑚𝑎𝑥,0 + 2ℎ𝑣(𝑡)

2
)/𝑑𝑡2

The substitution for ∆x and ∆xmed are obtained from the dynamic equation and definition

of ∆x previously mentioned. Rearranging the above equation, it gives the following:

39

(𝑢(𝑡) − 𝑊2(
∆𝑥(𝑡) − ∆𝑥𝑚𝑒𝑑(𝑡)

𝑑𝑡2
)) = 𝑢(𝑡) − 𝑊2(∆𝑥(𝑡) −

∆𝑥𝑚𝑖𝑛,0 + ∆𝑥𝑚𝑎𝑥,0

2
− ℎ𝑣(𝑡))/𝑑𝑡2

The above expansion clearly shows the physical meaning of the objective of the function.

The last term in the function is responsible for adding a cost when the ∆x deviates from the

median of the maximum and minimum distance bounds when the vehicles are not in motion

and plus the second term in the above equation compensates for any deviation from the

assumed constant time head way distance to the preceding vehicle. This means that this

complete term will make sure that the vehicle lies within a specific range of the median of

the stand still distance between the controlled and the preceding vehicle as well as within

the constant time headway of one second which was previously chosen.

The ultimate objective of the combined function J is to provide the acceleration u

for the least cost that will satisfy each of the objectives at every time step. Unlike any other

cost function which is designed with the objective of optimization over a specific prediction

horizon, this function’s sole objective is to provide an acceleration for every time step.

There is no prediction used over a time horizon, because the data available for vdes , vp , ∆𝑥

and ∆𝑥𝑚𝑒𝑑 are for the current time step only. Therefore, this objective function does not

use any prediction horizon. To determine the least cost J ,the function is differentiated with

respect to u and equated to zero for every individual time step. The derivative is then solved

for u online.

The equation for u is given below.

u(t) =

(dt ∗ (vdes(t) − v(t))) + (W1 ∗ dt ∗ (vpn(t) − v(t))) + (W3 ∗ W2 ∗ (
∆x(t) − ∆xmed(t)

dt2))

(dt2 + W1 ∗ dt2 + W3)

Where

vdes(𝑡) =
𝑣𝑝1 (𝑡) + 𝑣𝑝2(𝑡) + 𝑣𝑝3(𝑡)+. . 𝑣𝑝𝑛(𝑡)

𝑛

𝑣𝑝𝑛 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑖𝑚𝑚𝑒𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

Looking at the objective function equation J, it can be argued that if the objective

is to reduce fuel consumption, then the objective function must be a function of the fuel

40

consumption. However, although the objective is to reduce fuel consumption, the approach

taken here is to understand the dynamics of the controlled vehicle based on the average

velocities of the preceding vehicles with regards to improvements in fuel economy. The

objective function implemented is just used as a tool to prove that following the averaged

velocity with some constraints has potential fuel benefits. The objective function is also

able to handle any drastic surges in the velocity because it provides an acceleration u

fulfilling the three objectives. Therefore, it means that there will not be any drastic changes

in u from one time-step to another, if the three objectives have to be maintained.

In figure 15, it is clearly seen that using the dynamic model with the objective function

mentioned above, prevents any aggressive acceleration or deceleration behavior of the

preceding vehicle. The distance corridor plot shows that even though the initial ∆𝑥 <

∆𝑥min, when the controlled vehicle enters the VISSIM Traffic simulator, the controlled

vehicle is gradually brought back within the distance corridor boundaries without any

unusual surge or dip in the vehicle’s velocity unlike in the previous model shown in figure

14.

Figure 15. 9 vehicle average using dynamic model with initial ∆𝑥 < ∆𝑥𝑚𝑖𝑛

41

2.4.5 Evaluation of the Effectiveness of Objective Function

The effectiveness of the objective function J can be arbitrated based on the

comparison of the actual velocity profile of the vehicle and the averaged velocity profile

vdes. As already known, the objective function must provide an acceleration based on the

weightage of each objective. Therefore, comparing vdes (averaged preceding vehicles’

velocities),tracking which is one of the objectives of the function, with the actual velocity

of the vehicle will showcase the extent to which the different objectives have contributed

in determining the actual velocity of the controlled vehicle. Figure 16 is used to analyze

the operational functionality of the objective function. The four plots in figure 16 compare

the actual velocity profiles of 14 and 2 vehicles velocities averages, actual velocity profile

and 2 vehicles average velocities, actual velocity profile and 14 vehicles velocities average

and the comparison of the actual velocity profiles derived from 14 and 2 vehicles velocities

averages. The difference in the average velocity profiles for 14 and 2 vehicles profile is

very evident. From the second plot of actual velocity profile comparison with 2 vehicles

average, it can be said the velocity profiles are very similar because taking the average of

just 2 preceding vehicles is almost like following the immediate preceding vehicle.

However, the trend completely changes in the third plot comparing the actual velocity

profile with 14 vehicles’ velocities averages. In the third plot the 14 vehicles average

velocities profile is very different from the actual velocity profile of the controlled vehicle.

This plot clearly shows that the objective function is effectively influencing the velocity

profile of the controlled vehicle depending on the weightage of each objective of the

function. The fourth plot compares the velocity profiles from the two different vehicle

averages of 2 and 14 vehicles. This plot clearly demonstrates that the intuition previously

gained that averaging more preceding vehicles’ velocities clearly provides a smoothened

velocity profile for the controlled vehicle. These plots clearly exhibit the effort the

objective function puts in determining the final velocity profile of the controlled vehicle in

two different cases of 2 and 14 preceding vehicles’ velocities averages. These results

clearly show that the objective function is using the different weightages on each of the

objectives to determine the actual velocity of the controlled vehicle at every time step.

42

Figure 16. Comparison of averaged and actual velocity profiles for 2 and 14 preceding

vehicles.

2.5 Simulation Results of Scenarios

The evaluation of CACC is conducted for several different scenarios. Vdes is the

average of the preceding vehicles’ velocities

vdes(𝑡) =
𝑣𝑝1 (𝑡) + 𝑣𝑝2(𝑡) + 𝑣𝑝3(𝑡)+. . 𝑣𝑝𝑛(𝑡)

𝑛

a. Average of 14 preceding vehicles’ velocities for city driving

b. Average of 8 preceding vehicles’ velocities for city driving

c. Average of 14 preceding vehicles’ velocities for highway driving

d. Average of 8 preceding vehicles’ velocities for highway driving

e. Varying platoon size – city driving

The simulation results are presented in four different plots: vehicle velocity, distance corridor, total

fuel consumption and acceleration. The calculation for cumulative fuel consumption is obtained by

taking the summation of fuel consumption at each time step for the whole driving cycle. The fuel

consumption calculated for the simulation of different scenarios is based on vehicle power request

as shown in the equation below

43

𝑃𝑟𝑒𝑞(𝑡) = (𝑚𝑎(𝑡) + 𝑚𝑔𝑠𝑖𝑛∅(𝑡) + 𝜇𝑚𝑔𝑐𝑜𝑠∅(𝑡) +
1

2
∗ 𝐶𝐷𝜌𝑎𝐴𝑣(𝑡)2) ∗ 𝑣(𝑡)

Where g is gravity , ∅(𝑡) is terrain slope of zero, 𝜇 is the rolling resistance constant, CD is the drag

coefficient, 𝜌𝑎 is the density of air, A is the vehicle frontal area. The above equation represents the

combined power expended over the driving cycle. In[12], a linear equation of power request against

fuel consumption is determined. The fuel consumption for different engine operating points was

found by using the engine map[20].

The objective in this approach is to use more than one forward vehicles’

information to evaluate CACC and determine if there are any potential fuel consumption

savings. Vdes in this case takes the average of the preceding vehicles’ velocities at every

time step. From literature, it can be inferred that providing future information to the

controlled vehicle has some potential benefits. Similarly, if the velocity of the controlled

vehicle is a function of the preceding vehicles’ velocities, then it can be said that taking the

average over the preceding vehicles’ velocities is like taking the average of the prediction

of the velocity of the controlled vehicle. This is based on the assumption that the controlled

vehicle will more or less follow the trajectory of the preceding vehicles. For instance, if

the lead vehicle in a platoon stops at a traffic signal, then it can be assured that the

controlled vehicle may not completely stop at the signal but it will at least slow down to

maintain a safe distance from the immediate preceding vehicle which itself will slowdown

following the reaction of the first lead vehicle. Thus it is inferred that in a string of vehicles

the reaction of the lead vehicle to any change in traffic is passed on to all the other lagging

vehicles. By taking the average of the instantaneous velocity of the forward vehicles at

every time-step, and using it as the velocity of the controlled vehicle incorporates these

reactions of the preceding vehicles in the controlled vehicle ahead of time .The simulation

is conducted for several different cases. In one case, the controlled vehicle is placed behind

eight preceding vehicles as shown in figure 17 and in the second case, the controlled vehicle

is placed behind 14 preceding vehicles as shown in figure 23. The intention of obtaining

simulation results for two different cases is to see the impact of different velocity profiles

of the preceding vehicles on the velocity profile and fuel consumption of the controlled

44

vehicle. These two cases are varied between city and highway driving scenarios. In the

final case, a varying platoon size is simulated.

Figure 17. Fuel economy trend based on number of vehicle averages for 8 preceding

vehicles-city driving

2.5.1. 8 Vehicles’ Velocities Average- City Driving with 0.1s constant time headway

The controlled vehicle is placed in the ninth position in the string of vehicles and

the fuel consumption for the corresponding number of vehicles averaged is shown above

each vehicle. From the results it is observed that at only two vehicles’ averages, there is no

fuel benefit. For this case specifically, the constant time headway is chosen to be

0.1seconds for observation purposes. For all the cases after this the constant time headway

is chosen to be one second as decided earlier. With a smaller constant time headway, the

fuel consumption is expected to be higher as the control effort will be higher. The effect of

constant time headway on the control effort is discussed in detail [27]. However, as the

number of vehicle averages increase the fuel benefit also increases proportionally. The

specific plots for eight vehicles’ velocities average are plotted in figure 18. Eight vehicle’s

average has the highest fuel economy when compared to fewer vehicles velocities

averages. The limits of distance corridor is between 10 to 30 m, which is a reasonable value

for a realistic traffic network, and it can be seen for a better fuel economy, the controlled

vehicle seems to utilize this limited space extensively throughout the driving cycle. This

tells that the role of the correction factor is vital in making sure the vehicle remains within

these bounds. The fuel consumption plot clearly shows that there is considerable fuel

benefit, about 10.8%, which is complemented by the lower magnitude of the controlled

vehicle’s acceleration compared to that of the immediate preceding vehicle .

45

Figure 18. 8 vehicles’ velocities average simulation results- city driving

2.5.2 8 Vehicles’ Velocities Average- City Driving

The eight preceding vehicles’ average simulation is repeated for a less aggressive

preceding vehicles profile with city driving conditions and a highway situation with no

stops. Here the constant time headway is chosen to be one. Fuel consumption savings are

expected to increase with a higher constant time headway as control effort for the vehicle

reduces. Figure 19 shows the fuel benefit trend for the city driving case and the velocity,

acceleration, fuel consumption and distance corridor plots are shown in figure 20. It can be

clearly seen that, the trends in fuel benefits are similar to the earlier case where the fuel

benefit increases with increasing vehicle velocity averages.

Figure 19. Fuel economy trend based on number of vehicle averages for 8 preceding

vehicles–city driving

46

Figure 20. 8 vehicles’ velocities average simulation results -city driving

2.5.3 8 Vehicles’ Velocities Average- Highway Driving

For the highway case, the eight vehicles’ average fuel benefit trends remain the

same. However, the magnitude of fuel benefit decreases as expected. With less aggressive

driving trajectory , where the preceding vehicles do not make a stop and keep tracking an

almost uniform velocity for the whole driving cycle, there is not enough room for

improvements in fuel consumption for the controlled vehicle. From the fuel consumption

plot in figure 22, the magnitude of fuel consumption (approximately 85g) compared to

figure 20 (approximately 140g) is much lower and so are the fuel benefits. Figure 21 shows

that like the previous two cases, the fuel benefit increases with the increasing number of

averages but the maximum benefit achieved is 4.8%.

Figure 21. Fuel benefits for 8 vehicles’ velocities average - highway case

47

Figure 22.Plots for 8 vehicles’ velocities average -highway case

2.5.4 14 Vehicles’ Velocities Average- City Driving

For the 14 preceding vehicles scenario, the same cases of simulation were conducted:

city and highway driving cases. For the city driving case, from figure 23, it can be clearly

seen, that the fuel economy trend is similar to what was seen in 8 vehicles’ average; that is

the fuel economy has an increasing trend as the averages increase. Similar to 8 vehicles’

averages, the controlled vehicle tends to use the given distance corridor space to move

itself within the expanse of it extensively, meaning that the correction factor is consistently

working to bring the vehicle to its median position whenever the controlled vehicle tends

to deviate. The fuel consumption plot shows that there is significant fuel benefit which is

complemented by the reduced acceleration of the controlled vehicle shown in the

acceleration plot. The maximum magnitude of fuel benefit increases to 17.5% for 14

vehicles’ average compared to 11.0% savings for the eight vehicles’ average shown in

figure 19.

48

Figure 23. Fuel economy trend based on number of vehicle averages for 14 preceding

vehicles –city driving

The reason for the increase in fuel benefit is because of the reduced magnitude of

acceleration for the controlled vehicle shown in figure 24. The acceleration comparison for

the controlled vehicle and the preceding vehicle shows that the controlled vehicle has a

suppressed acceleration. From the velocity plot in figure 24, it can be seen that the

controlled vehicle never stops completely whereas, the preceding vehicle stops once and

decelerates a second time around 250 seconds. These drastic changes in vehicle velocity

are the reason why the acceleration of the preceding vehicle is much more aggressive than

the controlled vehicle’s acceleration.

49

Figure 24. 14 vehicles’ velocities average simulation results –city driving

Figure 25. Fuel economy trend based on number of vehicle averages for 14 preceding

vehicles - highway case

2.5.5 14 Vehicles’ Velocities Average- Highway Driving

Figure 25 shows the fuel economy trend for 14 vehicles’ averages for a highway

situation. A highway situation is different from city driving cases because it has no

major deceleration or acceleration trends and the velocity of the vehicles in the platoon

fluctuate around a specific range of velocities. The idea is to determine the fuel benefit

for the controlled vehicle when it is running in a highway situation for its whole driving

cycle. From the previous two cases , it is known that stop and go scenarios give

significant fuel benefits. Thus it can be inferred that for a highway situation, fuel

50

benefits will exist but they will be limited due to the less aggressive behavior of the

vehicles. This inference is proved by the fuel benefits shown in figure 25 where the

maximum fuel benefit achieved is 11.8% .From figure 26, the acceleration plot clearly

shows that the acceleration behavior of the controlled vehicle as well as the immediate

preceding vehicle is much suppressed compared to the earlier cases of simulation, and

hence the fuel benefits are reduced.

Figure 26. 14 vehicles’ velocities average simulation results - highway case

2.5.6 Preceding Vehicles’ Velocities Average- Varying Platoon Size

A separate case is simulated where the size of the platoon of vehicles vary

randomly. This means that depending on the traffic signal timing, the number of preceding

vehicles change. There are instances when 14 preceding vehicles are in the platoon, and

instances when just two preceding vehicles exist because the other twelve did not stop at

the signal. This case is simulated on the same traffic network as shown in figure 29.

VISSIM-COM was modified to accommodate the varying number of preceding vehicles

in the platoon. The logic used in the code was such that the controlled vehicle can be fed

in with a maximum of 14 preceding vehicles’ information as well as the state of the next

traffic signal is also continuously fed as an added information to the controlled vehicle. If

at any point the state changes to red, then the controlled vehicle can obtain information for

51

only those preceding vehicles who have stopped at the signal. On the contrary, if the signal

turns green, the controlled vehicle can access information for preceding vehicles who are

within 300m of distance from the controlled vehicle. The figure below shows that even

with varying platoon size, the fuel savings are approximately 10.4% compared to the

immediate preceding vehicle. The velocity plots show the velocity trajectory for the

controlled and immediate preceding vehicle as well as the average of the preceding

vehicles’ velocities in the platoon. It can be seen that the profile for the controlled vehicle

is very different from the averaged velocity. This clearly tells that the controller is working

to make sure that the constraints are maintained for a safe ride. If the controlled vehicle is

to follow the averaged velocity profile completely, then a safe driving cannot be assured,

as the averaged velocity profile can lead the controlled vehicle to exceed the distance

corridor bounds. One such close counter with the preceding vehicle can be seen in the

distance corridor plot. At around 170seconds , the controlled vehicle happens to cross the

minimum distance corridor bounds slightly. However, the controller manages to pull back

the vehicle within the bounds quickly, making sure there is a minimum safe distance

between the preceding and the controlled vehicle.

Figure 27. Varying Platoon Size Vehicle dynamics and fuel consumption

52

2.6 Conclusion

After conducting simulations for the average velocity method, the observations

from the results are compared in this section. It is to be noted that the median method is

the common methodology implemented across all the scenarios.

Averaged Velocity Method

1. a) speed average with 14 preceding vehicles, without prediction-city

 b) speed average with 8 preceding vehicles, without prediction -city

 c) speed average with 14 preceding vehicles, without prediction -highway

 d) speed average with 8 preceding vehicles, without prediction –highway

 e) Varying Platoon size- city

Table 1. Fuel Economy Comparison Table

Scenario Highest Fuel Economy(%)

1a 17.5

1b 11.0

1c 11.8

1d 4.8

1e 10.4

From the table it is clear that scenario 1a achieves high fuel economy. All the

scenarios, with averaged velocity approach, give promising results where average is taken

with respect to the velocities of the preceding vehicles without any sort of prediction

mechanism. From the results, it can be concluded that there is potential fuel benefit in

taking the average of increasing number of preceding vehicles. However, only taking the

average of the preceding vehicles’ velocities is not sufficient to maintain the constrains.

Therefore constraints are taken care by adding objectives to the objective function as

discussed earlier.

53

From the above results obtained for the simplified, averaged velocity approach it is

observed that across all the cases simulated, the fuel benefit increases with the increasing

number of preceding vehicles’ velocities average. This is clearly seen in the comparison

between 8 and 14 vehicles’ velocities average that the fuel savings of 14 vehicles’

velocities average is higher. This is the result of the phenomenon previously discussed that

as more traffic information is accessible by the controlled vehicle, the potential for fuel

savings also increases. In this method, providing the vehicle speeds of the preceding

vehicles to the controlled vehicle incorporates the preceding vehicles’ dynamics in the

controlled vehicle’s dynamics, which allows the controlled vehicle to plan its trajectory

ahead of time and obtain high fuel economy. This heuristic method does not implement

any prediction model but assumes that complete information from preceding vehicles is

available either through IVC or VII at every time step. Both results obtained from constant

platoon and varying platoon size showcase that there is significant potential for fuel

savings. However there is variance in the magnitude of fuel savings from the highway and

the city driving cases. This is clearly because the velocity profiles of the city driving case

are much more aggressive than the highway driving case where the vehicle velocity

fluctuation is minimal. Thus the room for fuel savings is also lower for the highway case.

In conclusion from the simulation results, it can be claimed that the heuristic, averaged

velocity approach can provide fuel savings in the ranges of 10-17% across all scenarios of

traffic by incorporating preceding vehicles’ information.

54

Chapter 3 Software Architecture Development for HiLS

Integration

3.1 Middleware Structure between Powertrain Research Platform and

VISSIM

The structure of communication between Powertrain-Research-Platform and VISSIM

is shown in figure 28 below. It can be seen that the left half of the structure consists of the

research platform and the right half consists of the VISSIM traffic simulator. To execute

real-time experiment, the powertrain-research-platform needs to communicate over a

network with the traffic simulator in synchronization to obtain vehicle speed information

for the powertrain-research-platform.

The remote machine running VISSIM is more specifically used to run traffic simulation

to communicate the vehicle dynamics with the powertrain-research-platform. As it has

been emphasized earlier that all simulations should be in real time, it is important to

integrate the software in such a way that the data transfer will be highly efficient, enabling

the whole simulation to be carried out in real time. To achieve this, major calculations and

processes will have to take place online.

Figure 28. Structure for collaborating Powertrain Research and VISSIM

55

VISSIM is set up for different simulation parameters. The simulation used is a

replica of a straight road with seven traffic signal junctions, as shown in figure 29. The

simulation run time is set for five minutes and VISSIM is commanded to run a single step

of 200 milliseconds to collect vehicle data like vehicle speed. VISSIM simulation also

designates an unique identification number to the vehicle during the simulation which helps

determine if the vehicle is within the traffic network. This vehicle identification number

can be accessed by C# and all the details related to this specific vehicle can be extracted as

well.

The current set up in the program is to run single step at 200 milliseconds. However,

it has to be investigated that whether the vital tasks of sending and receiving data are

reaching a stage of completion before the 200 millisecond time constrain. If a delay occurs

in any of the processes, it will lead the single step time to exceed 200 milliseconds. To

figure out the solution to this problem, it is important to analyze the time taken for VISSIM

to run single step and extract data individually as well as figure out how much time it takes

C# to pass data to MATLAB.

For analyzing the time for VISSIM running single step, simulations were run for

different traffic densities on the road. The traffic density was increased for each simulation

so that the total number of vehicles increased from 200 to 800 vehicles. The reason for

varying the traffic density each time is to observe the change in execution time for VISSIM

software with large number of vehicles in the simulation. Before running any analysis, it

is hypothesized that as the traffic density increases the run time for VISSIM also increases.

Figure 29. Single lane, seven traffic junctions, Traffic network

56

3.1.1 Basic COM Communication with VISSIM

The Component Object Model (COM), in this case C# program, will be local to

VISSIM. It will be the pathway to communicate with VISSIM as well as communicate to

other platforms as shown in figure 30 with the blue and green arrows respectively. The idea

is to have several other platforms like the signal controller cabinet, connected vehicle

controller to communicate with the COM effectively. In the initial stages of the project, the

middleware or the COM was not included. Hence, VISSIM was communicating directly

with the different platforms. However, it is realized that having a middleware gives the

flexibility to run each simulation independently with respect to each platform at the same

time.

C# program is solely responsible for initiating VISSIM and extracting data from it.

C# program is written in such a way that it can initiate a particular VISSIM simulation

which has already been set up according to the specifications needed for the research, and

then use that simulation to run for specific time and collect data. This program is most

concerned about three specific processes; VISSIM single step run, VISSIM extraction and

sending and receiving data from different components of the complete architecture. The

initial time step was kept as 100 milliseconds. However, from initial tests, this small time

step of 100 milliseconds could not be maintained as sometimes the time taken for the three

processes to run one single step would take more than 100 milliseconds. So, 200

milliseconds was the new time step for s single step run of the simulation.

The program is further modified to check the time for execution of each process and if the

total time is under 200 milliseconds, the program will ask the processes to wait for the

remaining time till 200 milliseconds has elapsed. Thus it becomes necessary to analyze the

time taken for each individual process to run, and figure out which process is taking the

longest so that a more efficient code can be implemented to reduce this time consumption.

57

Figure 30.Overall Proposed Middle ware Integration Structure

3.1.2 Basic COM Communication with SIMULINK

The previous section discussed about the COM interaction with VISSIM. In this

section the discussion pertains to the communication of the COM, C# program, with

SIMULINK program environment. Unlike the previous case, where VISSIM needs to be

initiated by C#, SIMULINK is already running and it needs access by C# to pass on the

data. To directly access SIMULINK, C# needs to access the workspace of MATLAB and

then update the workspace. The challenge is to update the workspace of MATLAB while

SIMULINK is running. So, it is necessary that when MATLAB /SIMULINK environment

is initiated manually by the user, the simulation reads some default values of the desired

data based on the initial conditions. Once C# program is executed, it will initiate VISSIM

which then will pass on the required information to the workspace of MATLAB through

C# and update it for the run time. It is very important to note that for C# to communicate

with MATLAB environment, it is necessary to make MATLAB an automation server. This

allows the COM, C#, to access the server MATLAB.

Figure 28 clearly gives an idea about the functioning of C#, MATLAB and

VISSIM. C# works independent of the MATLAB environment as well as the VISSIM

simulation environment. Figure 28 shows the data flow only one way; from VISSIM traffic

simulation to the hardware. This is just the first half of the simulation which has been

58

completed and tested. Further discussion of possibly implementing two way

communication is done later.

3.1.3 Network Programming- TCP/IP & UDP

Network programming or socket programming [28] is crucial to the development

of the middleware architecture. Primarily network programming is a method used to send

data across a network, specifically the internet. It is network programming that enables

communication between the remote computer running VISSIM and the powertrain-

research-platform which is represented by dashed arrows in figure 28. There are several

applications that use network programming to send data across a network and the most

common ones are any online chatting software that allow person to person chatting, video

conferencing or voice conferencing. Implementing network programming with the HiLS

increases its usability and accessibility of the powertrain- research-platform. With the

availability of network communication, the powertrain- research-platform can be used by

anyone with a simple internet connection. Therefore anyone can test their application with

the powertrain- research-platform. Further in this paper, network programming will be

crucial in enabling the evaluation of CACC application .

There are two approaches to network programming: TCP (Transmission Control

Protocol) and UDP (User Datagram Protocol). Most network programming over the

internet is done using TCP as its features ensure that data is sent over the network from

server to client unlike UDP, where data transfer is not assured. However, UDP is much

faster at transporting data over a network in comparison to TCP. The table below

summarizes the different features of TCP and UDP.

59

Table 2.TCP and UDP features

TCP UDP

• Connection based using port • No concept of connection

• Guaranteed reliable and ordered

data transfer

• No guarantee of reliability or ordering of

packets, they may arrive out of order, be

duplicated, or not arrive at all.

• Automatically breaks up data

into packets

• Data has to be broken into packets

• Makes sure it doesn’t send data

too fast for the internet

connection to handle (flow

control)

• User has to make sure it doesn’t send

data too fast

• Easy to use: read and write data

like it is a file

• If a packet is lost, user needs to devise

some way to detect this, and resend

that data if necessary

TCP uses features like flow control, data sequencing, retransmission to make sure

that data is surely transferred unlike UDP which transfers data over a network without a

connection. In other words, UDP does not care if the data packet is surely sent or dropped

during transfer. Data packets are not sequenced hence data duplication occurs very often.

However, UDP is faster because it does not implement features such as flow control, data

sequencing and retransmission and directly sends the data packet to the client.

UDP is usually used in applications where fast data transfer is given higher priority than

data transfer reliability. Most multimedia data transfer like streaming a video through a

network uses UDP; as a data lag such as in case of TCP is not desired. However, TCP is

used in most cases where reliable data transfer over long distances is higher priority than

fast data transfer such as in the case of emails.

60

For the middleware, TCP is used as the network communication transport protocol

because of the reliability of data transfer and ordered data delivery. In TCP, buffer

memories are allocated on VISSIM-COM side for data sending and on Powertrain-COM

side for data retrieval. These buffers ensure that data is not lost during the transfer. TCP

also ensures the order of data is preserved on the receiving side, which is important in the

HiLS application to distinguish the traffic data contents. UDP transport protocol is faster

than TCP, but is not used due to unreliable data transfer and disordered data. Reliable and

ordered data delivery is important because data loss will affect the accuracy of the tests.

Although TCP is relatively slower than UDP, it is fast enough for the HiLS application.

The communication from VISSIM-COM to Powertrain-COM is one-directional, as

shown in Figure 28. At start-up, Powertrain-COM is designed to continuously send

requests for a connection with VISSIM-COM while the hardware(powertrain-research-

platform) is running. In order to establish a connection, VISSIM-COM opens a port in the

socket of the remote computer running VISSIM to accept connection request from the

Powertrain-COM. The socket address is defined by the internet protocol (IP) address of the

remote computer and the port number. Therefore, socket connection is established as soon

as VISSIM-COM opens the port.

Utilizing TCP, VISSIM-COM and Powertrain-COM sends and retrieves data from

their respective buffer memories. However, since network connection is established

between the two buffers, the COMs will not be informed if interruption occurs in the

internet network. It is therefore a common practice in TCP applications to include a keep-

alive data to check the status of the internet connection between the buffers. Utilizing the

keep-alive data, the Powertrain-COM will throttle down the engine if it detects a severe

network interruption to ensure the engine is at a suitable operating point before shutting

down for safety purposes and to avoid hardware damage. This safety feature is discussed

in detail in a different section.

61

When VISSIM simulation is completed, the network disconnection is initiated by VISSIM-

COM by closing the socket port and notifying the Powertrain-COM, where the engine will

then throttle down in preparation for hardware shutdown.

3.2 COM Operation Development

Figure 31. Components of Hardware in the Loop System (HiLS)

The middleware is designed to serve the purpose of linking different components

of the HiLS, as shown in figure 31. It is based on COM a specific platform which enables

inter-process communication and dynamic object creation in different programming

languages[25]. The HiLS is made up of different components each based on different

software platforms. The powertrain-research-platform and the Connected Vehicle

Controller are in SIMULINK and the standalone Microscopic VISSIM Traffic Simulator,

linked by the middleware , written in C#. For this thesis, the objective is to synchronize

powertrain-research-platform and the connected vehicle controller in real time by

developing a middleware that will handle data transfer with efficacy.

62

Figure 32. One way CACC Architecture

3.2.1 One Way Middleware Architecture

The middleware architecture for one way communication with CACC controller is

shown in figure 32. The complete route for the data extracted from VISSIM traffic

simulator is sent to a designated port in a network from thread one of VISSIM -COM and

on the other side of the network, Powertrain-COM’s thread one receives this data and sends

it to Powertrain Simulink Model. Thread two of VISSIM -COM then receives this data and

sends it to VISSIM Traffic Simulator before the next time step to use this data. The data

here is specifically vehicle speed of the target vehicle. Extracting and sending any data to

VISSIM Traffic Simulator requires to access the VISSIM simulation attributes. These

attributes are predefined variables in VISSIM that may or may not be accessed from

VISSIM by calling them during simulation. The attributes important for COM are related

to vehicle dynamics and they are specifically vehicle speed, vehicle desired speed and

acceleration. However, as mentioned earlier, the access to various attributes differ. So, in

this case, VISSIM allows the user to access all three attributes of speed, desired speed and

63

acceleration during each time step of simulation. However only speed and desired speed

are editable during simulation and acceleration is only a readable attribute. The different

characteristics of VISSIM attributes are clearly defined in VISSIM.

Therefore, knowing that acceleration is a readable attribute and not an editable one, it is

decided to use speed attribute of the controlled vehicle to update the speed of the vehicle

for the next time step. Since the speed attribute needs to update the speed of the target

vehicle for the next time step, it is crucial for COM to execute the task within the designated

time step of 200ms.

This COM structure is the most basic structure. With the target vehicle’s speed,

other vehicles’ speeds can also be extracted. This capability of multiple vehicle data

extraction like speed, vehicle number, acceleration, position on link and link or lane

number enables the possibility of implementing an application like CACC. CACC is an

individual entity, that works independent of the COM but it communicates with the COM

to access and send vehicle data for implementing the application in the best possible way.

For CACC application, the extracted target vehicle data and other vehicle data is sent to

the CACC controller. Providing all the information to CACC controller gives the user the

capability to select and organize the data as per their own requirement. The COM is

designed to send the complete set of data as one long array to CACC in a format of speed,

position, lane and vehicle number. The method of selecting and sorting the useful data from

this long array is completely left to the CACC controller. Once the CACC controller has

sorted the data and processed the sorted data. It sends it back to COM for updating this

processed data back in VISSIM for the preselected controlled vehicle.

The processed data from CACC controller is sent back to VISSIM-COM thread

two which is responsible for sending data back to VISSIM before the next time step has

elapsed. The synchronization between thread one and thread two of VISSIM-COM is very

crucial. It must be made sure, that thread two only extracts data from CACC controller

after thread one has sent a new data at every time step. Thread one is made to run at a

designated time step of 200ms to make sure that the whole architecture maintains this

specific time step throughout the simulation. However, it is not necessary for thread two to

64

maintain the time step and that is why thread two is made to run as fast as it can. Therefore

thread two extracts data much faster than the time step of 200ms, but only sends the data

back to VISSIM when thread one tells it to. The communication between thread one and

two must ensure when to send the updated data and this is done using a flag number that is

sent from thread one. Every time a time-step is elapsed, this flag number increments like

an index number. In thread two, there is a check done to make sure the flag number

changes, and once it recognizes that the flag number has changed, it sends the extracted

data from CACC controller instantly to VISSIM within the same time step. The timing

results later will prove that the data extracted from VISSIM in thread one is sent back to

VISSIM through the CACC controller before the 200ms time step.

The communication across the network to Powertrain-COM is one way as shown

in figure 32. The current requirement is to send the CACC obtained velocity of the vehicle

to the Powertrain-COM and then to the powertrain-research-platform to emulate the virtual

vehicle that is running in VISSIM controlled by CACC controller. The engine in the

powertrain-research-platform will be used to obtain actual measurements of fuel and

emissions to compare it with a non-CACC vehicle running in VISSIM traffic simulation

under the influence of VISSIM’s internal driver model.

The structure of both the COMs can be divided in to sending and receiving data.

For the first stage of the software development a sequential code was written where the

sending and receiving of data would take place consecutively. However, it was discovered

from timing results that such a method could not maintain the specific time step desired for

the real time simulation. Therefore, the thread approach was taken where it allowed the

two crucial processes to be divided into two threads. In figure 32, the structure emphasizes

on the data flow through VISSIM-COM and Powertrain-COM. Thread one plays the role

of sending the extracted data from VISSIM traffic simulator and at the same time

Powertrain-COM serves to receive the data sent by VISSIM-COM over a network at a

specific port . Once the extracted data from VISSIM Traffic simulator is received by

Powertrain-COM, Powertrain-COM then sends it to Powertrain Simulink Model and then

goes into the listening phase. Listening phase is unique to Powertrain-COM and thread two

65

of VISSIM-COM. During the listening phase, the Powertrain-COM will check for any new

data at the ports over the network. Any data sent to these ports will immediately be received

for processing. The receiving of the extracted data at the Powertrain-COM is the mark of

the end of one way communication over a network. In alignment with the current objective

of one way communication, Powertrain-COM need not send the data back to VISSIM-

COM over the network . Hence Powertrain-COM is independent of any threads and is

running on sequential code which is capable of handling a time step of 200ms. Therefore,

the data sent from thread one of VISSIM-COM at every time step is received by

Powertrain-COM and sent to the powertrain-research-platform to complete the successful

functioning of the structure shown in figure 32.

3.2.2 Basic Threads Structure

Before it was decided that for current development only one way communication

across the network was sufficient, the focus was to develop a middleware structure that

could handle two way communication across a network with high efficacy. This structure

for both two and one way are shown in figure 33.It is deemed important to send the

processed data back across the reverse path, from Powertrain-COM to VISSIM-COM and

to VISSIM traffic Simulator . The idea is to update the next time step in the traffic simulator

with the actual tracked velocity of the vehicle obtained from powertrain-research-platform.

All these tasks need to be completed in a single time step of 200ms. Any minor delays can

cause the whole program to be aborted from running as it will not be safe for the engine to

run. Detailed discussion of safety features is done later.

66

Figure 33. COM One and Two Way Thread structure – One way is shown under shaded

area

The first stage of development for this middleware was to successfully conduct one

way communication. One way communication is the complete data flow from the traffic

simulator through the VISSIM-COM, across a network and to the Powertrain-COM and

finally to the powertrain Simulink model for vehicle speed tracking purpose as shown in

figure 33. However, to complete the loop, a back tracking of this processed data from the

Powertrain Simulink model is also essential. Although two way communication was not

implemented, it can be shown that the thread structure can handle two way communication

as smoothly as it does one way communication. Keeping this intention of influencing the

velocity of the target vehicle in the traffic simulator, the idea of a two way communication

is developed. The challenge is to determine an efficient way to conduct this whole process

of data transfer across a network in real time. One serious concern with real time

application software is any sort of delays, especially in this case where the probability of a

delay increases with so many different software platforms synchronized together. A

literature survey was conducted to determine an efficient way to implement such a real

67

time application middleware that will enable different software platforms to communicate

with each other and successfully update the velocity status of the target vehicle in the traffic

simulator after all the processing.

 Sequential code implements various tasks one after the other and does not allow

different tasks to run in parallel. It was immediately discovered that there were significant

delays in the data processing and synchronization was difficult because if one part of the

code had a delay, this delay would be propagated to the other tasks. Also, the load of

computation was much higher on the code. One such bottleneck was extracting multiple

data from the traffic simulator for multiple vehicles existing in the simulation. It was

noticed that major delays were occurring at around 50 vehicles’ information extraction

which clearly made the augmented two way communication middleware inefficient. The

results for timing are discussed later in detail.

In [22], [29] it is discussed that for real time application software, one of the ways

to increase the performance of a code is by separating the processing of information and

realizing different components of the middleware as different processes in the system. To

decentralize the different tasks of the middleware, the methodology implemented is using

threads. Using threads, different objectives of a software can be run independently from

one another and each thread is recognized as a separate process where the computer

processing power is dedicated depending on the power required to execute the specific

process. Using this idea of threads both the Powertrain-COM’s and the VISSIM –COM’s

structure were reorganized. Multi-threads can run in parallel as well as independently of

one another. The benefit of parallel running of threads is that it allows different tasks to be

executed at the same time which is crucial for the middleware. Threads are prominently

used for multiplayer games played over network. They are known to reduce lag or delay

between players who are playing the same game over the internet and this application of

thread is significant in the running of middleware.

The most crucial part of running this thread structure without any delay is to have

the threads synchronized. Synchronization is assured at the starting of the threads. As it

can be inferred from the above figure, not all the threads start at the same time. The first

68

thread is initiated in VISSIM-COM and Powertrain-COM. As Thread one in VISSIM-

COM is initiated it starts the general process of extracting information from VISSIM

Traffic Simulator .Once it has extracted the data and sent it across the network to

Powertrain-COM thread one within a time step of 200ms, it sends a trigger value to start

thread two of VISSIM-COM. In the case of one way communication the thread structure

will look like the second diagram in figure 33. Therefore, with Powertrain-COM receiving

data from the network port will mark the end of one way communication. However, this

trigger alerts thread two of VISSIM-COM that at any moment it should expect a data on

the specified port if two way communication is concerned. Hence it should start listening

as fast as it can, without any specific time step. The reason behind not using a time step for

thread two of VISSIM-COM is that the data in VISSIM simulator must be updated before

the next time step as mentioned earlier. Hence, it does not matter when the data is updated

until and unless it is before the next time step is executed because the simulator uses the

latest data that has been updated. For instance, if thread two updates the same value for 100

times before the next time step, the simulator will use the 100th data that is updated. If in

the next time step, the simulation tends to become slower and thread two updates the data

only 50 times, then the simulator will use the 50th data that is updated before the next time

step. At the same time Thread one of Powertrain-COM has been listening and also

receiving the first data over the network. It then sends the data to MATLAB and

simultaneously sends a trigger to its thread two to initiate the listening and sending process.

So thread two of Powertrain-COM will try to extract processed data from Simulink Model

and send it across the network to VISSIM-COM’s thread two in the similar fashion

VISSIM -COM’s thread two is described to be functioning, without any time step. Since

VISSIM -COM’s thread two has already been listening, it is ready to receive any data from

the port and send it back to VISSIM Traffic Simulator to update the value for the next time

step. All these tasks need to be completed in 200ms for the next time step data to be

updated.

In figure 33, the complete structure of the threads for the respective COMs clearly

shows that the crucial tasks are running in parallel unlike previously when the tasks were

69

in sequential order. The benefits achieved from this structure are that the tasks are

recognized as two separate processes in the memory of the system which allows the system

to dedicate processing power separately to the different threads making it more efficient

than the sequential way of implementing the tasks in the code. However there is still a

possibility that with the thread structure, maintaining synchronization of data transfer can

be a challenge as delays may not just occur due to the specific task assigned in the thread,

but also due to other tasks that the system is simultaneously running like all other

applications of the operating system. A deep dive into the details of how delays can be

reduced is done with an elaborate timing analysis on each section of the code written to

identify any existing bottlenecks and possibilities that can lead to a delay.

Figure 34. Implementation of CACC application with 2 way communication

3.2.3 Two Way Middleware Architecture

One of the benefits of having two way communication is that various applications

can be tested and one of them is the Connected Vehicle Controller application which in

this case is the CACC application. A much more sophisticated structure of the two COMs

70

in synchronization with the CACC component is shown in Figure 34. The architecture

shown in figure 34 conveys the complete loop structure, however figure 32 depicts the

current functional structure that has been tested. All the different components, VISSIM

Traffic Simulator, VISSIM-COM, CACC controller and the Powertrain-COM and

Powertrain Model are linked in a synchronized manner. The CACC controller is a separate

model created in SIMULINK platform and it is linked to the VISSIM -COM in the similar

manner the Powertrain Simulink Model is linked to the Powertrain-COM. In this figure

more emphasis is given to the VISSIM -COM structure with the CACC controller and

VISSIM as it requires more sophistication in the code written, in terms of maneuvering

multiple data extracted from VISSIM.

VISSIM Microscopic Traffic Simulator is a piece of software created by PTV group

in Germany. The word microscopic is a key feature that the traffic simulator possesses and

that is it allows the user to zoom into the simulation details of an individual driver or

vehicle. VISSIM uses different driver models to realistically simulate a traffic situation.

These models are based on years of traffic research and statistical data. The model

particularly used in the simulations is the Weidman model. More technical details can be

found in [30]. The important feature that makes the use of VISSIM in this architecture

significant is that it allows the user to use an internal driver model that is predefined by the

software developers of this simulator as well as allows the user to implement their own

driver model by writing their driving model in the form of a Dll (Dynamic Link

Library)structure . This external driver model completely overtakes the internal driver

model of VISSIM to give the user the freedom to change the vehicles’ behaviors in the

simulation based on their requirement.

Based on this feature of the traffic simulator, it is decided that processed vehicle

speed from the CACC controller will be sent back as feedback to the simulator to influence

the next time step velocity of the vehicles in the simulation during run time. Among the

two approaches, COM and DLL, the COM approach is chosen as it gives more freedom to

link other components like the CACC controller explicitly with the COM whereas the DLL

acts like a library to each piece of software and it is difficult to connect the different

71

components to the DLL and make them work in synchronization without using

communication through a network. In other words, the DLL is a library that can be

simultaneously used with any piece of software. However, when two pieces of different

software are linked to a DLL, the DLL creates a copy of itself to provide its service to both

the software at the same time, but it does not recognize that it is connected to both the

software. The DLL works completely independent on both the software as if they are not

connected to the DLL together. Hence, the problem arises when the requirement is to pass

information from one software to another through the DLL. So updating a variable in the

DLL from one software and passing it to the other software for further processing is not

possible without a network. However there is a workaround to this problem and that is to

connect the DLL to a TCP or UDP [28] port and then pass the data through a network, but

this makes the task more tedious for the system and may increase the time for data

processing depending on the type of network in use and the traffic of information in the

network. Thus to keep this local on the computer and the structure simple, it is decided to

go with a COM. However, the tradeoff is with speed of processing, as DLL works like an

internal component of any software it is linked to and carries out tasks efficiently in

comparison to COM which has to be executed explicitly. The COM however allows the

code to be much more sophisticated in terms of functionality and has much more flexibility

in terms of linking to other software paradigm .Thus, for this architecture shown in figure

34 or in figure 32, the COM is chosen to be the mediator of information between different

software pieces.

3.2.4 Thread one and two VISSIM-COM

The structure of both the Powertrain-COM and VISSIM -COM consist of two

threads for two way communication and no threads in the Powertrain-COM for the one

way communication. One thread is responsible for sending information to the network and

the other thread is responsible for receiving information from the network. Their

synchronized functioning is enabled by the capability of threads to work in parallel. As

shown in figure 33, thread one in VISSIM-COM is responsible for initiating VISSIM

Traffic Simulator, and running the simulator for every single time step as specified or

72

required. In this case, all the simulations are run with a time step of 200 milliseconds. A

for loop is implemented which is controlled to run for 200 ms using a pause methodology

available in C# language. The for loop, if finishes an iteration before 200ms, is made to

pause for the 200 minus the time elapsed to keep the time step consistent at every

simulation step. Similar methodology is used for thread two of the VISSIM -COM but

without a specific time step as explained earlier. Within that loop structure of thread one,

exists the feature of extracting multiple data information from VISSIM. Data types that are

relevant for the purpose of this middleware are vehicle speed, vehicle number, link number

and position of vehicle. The code is written to extract all information for all vehicles

existent in simulation at every single time step in the form of a single one dimension array.

Once all this information from VISSIM traffic simulator have been extracted, the arrays

are sorted for only selected data that need to be passed on to the other components of the

HILs, in this case the CACC controller. The sorted data is arranged in another one

dimensional single array and sent across the network. The idea of using an array makes

data sending and receiving much easier as the selected data is in a compact form.

Previously, a for loop was being used to sort the arrays or fill the elements of the arrays

and it was discovered that using a for loop was causing the runtime to exceed the designated

time step of 200 ms and leading to major delay in loop. Thus a method where all elements

from an array could be copied and pasted to a new array was used to make the sorting of

data into compact arrays much faster. Thread two on the other hand is responsible for

listening to the network after it receives the trigger signal from thread one. Thread two is

designed to continuously check for new data at the designated port in the network. If any

data is received it will send the data to VISSIM, otherwise the previous data will be sent in

case there is any data loss due to network disconnection. However, for one way

communication thread two of VISSIM-COM will not listen at a network port, but it will

access the data locally from the CACC controller. One important fact to note on the

VISSIM -COM side is that any sort of internet disconnection or network loss does not need

to be dealt with explicitly because the simplest thing to do in such cases is to just end the

73

simulation at the moment network disconnection occurs. However, the matter is dealt in a

different way on the Powertrain-COM side as discussed further.

3.2.5 Thread one and two Powertrain-COM

Thread one of Powertrain-COM plays the exact same role of listening like thread

two of VISSIM-COM but with added features. Since the Powertrain-COM is directly

dealing with Powertrain Simulink Model which is directly connected to a real engine, there

are some safety precautions taken to make sure during times of disconnection or network

loss, the engine does not run uncontrolled and a way to shut the engine down safely is

assured. The engine currently in use has an idling speed of 900 RPM. Thus the safest way

to shut the engine is to bring the engine to its idling speed of 900RPM and very low engine

torque. It is not completely necessary to shut the engine at 900RPM but definitely safe.

However, the engine torque must be maintained very low for shut down procedures. Thus,

keeping these parameters in consideration a safety check methodology is implemented

using a check value. It is observed that every time a disconnection occurs, the data received

from the network in the thread one of Powertrain-COM will read the previous data from

the previous time step as no data has been updated.

 The first approach is to check for the repeated value over one second which means

that with a time step of 200ms, if the value repeats for over a time of one second, the code

will be instructed to reduce the speed of the vehicle from the last updated speed to zero.

However, it is realized that this cannot be achieved with just the vehicle speed information

because it can be possible that the target vehicle is at a stop and it is sending zero velocity

to the network repeatedly, and this zero velocity with the current safety method can cause

the code to abort even though there is no actual disconnection. Thus a check-alive data is

sent in an array with the starting value of one. This assures that the check-alive data can

never be the single digit zero and it will send incremented data, until and unless there is a

network disconnection of some sort. Thus, within one second of elapsed simulation time,

if the check-alive data is repeated, the code will assume that there has been a network

disconnection and proceed to use the last updated vehicle velocity to reduce the speed to

74

zero and send it to the powertrain telling the engine to come down to its idling speed of

about 900 RPM. This way it becomes safe for the engine to shut down.

 Such a safety feature is not repeated in thread two of the Powertrain-COM, as the

thread two is only responsible for sending the processed data extracted from Powertrain

Simulink model and send it back to VISSIM -COM across the network. The threads

structure of the middleware make two way communication possible. Currently, two way

communication is achieved but not completely executed as the focus is to implement

CACC application with one way network communication. Using threads makes it possible

for future development of two way communication with the CACC application integrated

. However for now, since the engine can track the speed sent from VISSIM traffic simulator

very well, it is not desired to implement two way communication to update the actual

vehicle speed from powertrain back to VISSIM for the next time step.

Two way communication is a crucial feature of this structure because it enables

feedback of data completing the Hardware in the Loop. For instance, for the CACC

controller, the Microscopic Traffic Simulator and VISSIM-COM, it is very important that

the vehicle information extracted from the traffic simulator is efficiently passed on through

the controller and back to the simulator within one time step. In this case, logic of the data

flow fulfills the objective of emulating an individual vehicle using a real engine and a

virtual powertrain. The information of an individual vehicle is extracted from a

microscopic simulator, and sent across a network to the powertrain research platform for

running a real engine with a virtual powertrain. Since this virtual traffic simulator is a

microscopic simulator, it is possible to extract the information of one individual vehicle.

Information obtained from the simulator is specific to vehicle dynamics like the speed,

acceleration and location of the vehicle and other attributes may be extracted if desired.

This information obtained from the simulator is then accessed by the COM which is

identified as VISSIM-COM. It is responsible for routing selected data to the different

components associated with this structure.

Figure 31 shows the different applications of HiLS and one of them is the

Connected Vehicle Controller. The Connected Vehicle Controller compliments various

75

applications and one of them is the CACC. CACC application is implemented with the

HiLS to investigate the effect of the controller for one vehicle now and multiple vehicles

in the future. VISSIM-COM must manage the routing of the data to CACC controller which

is running on MATLAB software platform and the Powertrain-COM which is another

middleware on a different computer, connected using a network (i.e. internet).

The Powertrain-COM’s responsibilities are analogous to that of VISSIM-COM.

VISSIM-COM is the middleware that creates routes for data from VISSIM Traffic

Simulator to the other components of HiLS whereas Powertrain-COM provides data to the

powertrain-research-platform. The data received on the Powertrain-COM, is routed to

Powertrain Simulink model for processing. The virtual powertrain, in Simulink , calculates

the dynamometer torque which is then sent to the dynamometer associated with the lower

level controller for tracking . The tracked engine speed and torque can be received back in

the model to recalculate the actual vehicle speed. Based on the tracking performance of the

controller ,the vehicle speed can be sent to the Powertrain-COM which can send it back to

the VISSIM-COM. Once VISSIM-COM acknowledges the receiving of the data, it sends

it to the traffic simulator intended to influence the next time step velocity of the target

vehicle. The traffic simulator assigns the speed of the target vehicle as the actual speed

received from the Powertrain model before the next time step is updated. This single loop

of data flow displays the emulation of one vehicle in the traffic simulator. This is one very

significant application of two way communication.

76

3.2.6 General Car Following Model

Figure 35. Driver Following Model

Microscopic VISSIM Traffic Simulator emulates different traffic scenarios based

on various parameters. One of the key features of VISSIM Traffic Simulator is that an

internal driver model is used by the software to emulate driving behavior of individual

vehicles. Like most other traffic simulation software, VISSIM too uses a driver following

model. The driver following model pertains to the dependence of the characteristic of the

target vehicle’s driver behavior on the behavior of the preceding vehicle. The main

objective of a car-following model is to maintain a safe distance between consecutive

vehicles in a traffic situation so that the following vehicle does not hit the preceding vehicle

and cause an accident. Scientists have developed several car-following models. However ,

no model till date can be claimed to perfectly emulate the human behavior. It is extremely

difficult to emulate the behavior of a human driver because the behavior of each individual

human is not only unique from other humans but also unique to a specific situation.

Researchers claim that there are two basic groups of parameters which influence the time

of drivers’ reactions. The individual characteristics are age, sex, driving skills, tiredness,

stress, alcohol, drugs, psychological pressure and the characteristic of vehicle, and other

external factors like time of day, road conditions and visibility . Taking all these variable

conditions into consideration makes it very difficult to design an accurate driving model

77

.This makes it very difficult to derive models that emulate human driving behavior. For the

application of VISSIM software, it is important to have a car following model as each

vehicle in the simulation must uniquely behave because of the software’s feature of a

microscopic simulation package. Most existing car-following models are designed with the

objective of collision evasion and one such model that is closely used in VISSIM traffic

Simulator is the Wiedemann Car following Model[30].

Figure 36. The regimes in the Wiedemann car following model

3.2.6.1 Wiedemann Car Following Model

The Wiedemann psycho-physical car-following model as shown in figure 36 above

is responsible for modelling the longitudinal dynamics of the vehicles in the simulation.

The drivers’ behavior is described with four distinct regimes as a function of ∆𝑥 𝑎𝑛𝑑 ∆𝑣.

The regimes are as follows: free driving, approach to a car queue, driving in a queue and

braking. All these regimes are decided based on the difference of absolute position between

the preceding vehicle and the following vehicle given by ∆𝑥 and the difference in the

velocities of the preceding and following vehicles given by ∆𝑣 . Based on these parameters

the decision for the velocity of the following vehicle, for the next time is taken. The

decision is to either accelerate, decelerate or keep the same velocity. The model used in

VISSIM derives the desired distance between the following vehicle and the preceding

78

vehicle based on the relation shown in [30] which further denominates regions as

SDX,ABX,SDV,CLDV and OPDV.

SDX gives the maximum following distance for the following vehicle with respect to the

leading or the preceding vehicle. This distance is about 1.5 to 2.5 times the minimum

following distance ABX. SDV is the regime where the following vehicle is approaching

the preceding vehicle. The region CLDV is SDV in VISSIM Traffic simulator. These

conditions described above give rise to the car-following regimes: Following, Free driving,

and Closing in as shown in figure 36 . Following occurs when the following vehicle

approaches another vehicle in front of it. Free driving occurs when all the other vehicles,

although they exist in the traffic network, are not in the vicinity of the following vehicle.

Closing in occurs when the following vehicle approaches another vehicle in front of it with

a lower velocity than its own.

Following:

The regimes SDV,SDX,OPDV and ABX, fall under the following regime. In this

region the target vehicle is clearly influenced by the preceding vehicle which it is

following. As the target, or the following vehicle crosses the SDV or the ABX regime, the

following vehicle has a negative acceleration or deceleration. However, in the OPDV and

SDX region, the acceleration is positive.

Free Driving:

In this regime the following vehicle is technically not following any other vehicle

as it is not influenced by the other vehicles in the traffic network. This is the regime where

it can be claimed that the driver model is not acting anymore. The following or the

controlled vehicle now tries to achieve its desired velocity. The vehicle uses its maximum

acceleration to reach its desired velocity.The maximum acceleration is a function of the

vmax of the target vehicle and not a function of the preceding vehicles’ acceleration.

Closing In:

This region occurs when the driver is passing the SDV regime. The target vehicle,

more appropriately known as the following vehicle in this case, is closing in to a leading

vehicle that is travelling at a slower velocity than the following vehicle. It is very obvious,

79

that to prevent any sort of collision , the following vehicle has to decelerate. From the

deceleration function in [30] it can be clearly seen that the deceleration in the closing in

regime has no relation to desired velocity or maximum velocity of the following vehicle

unlike in the case of free driving. In fact, the deceleration is clearly influenced by the

preceding vehicle’s driver’s behavior as there is a clear relation of the deceleration function

to the preceding vehicle’s acceleration.

3.2.6.2 Overthrowing the VISSIM Internal Driver Model

The above background study on the internal driver model of VISSIM gives an

insight into when the driver’s behavior is directly influenced by the preceding vehicle’s

driver behavior and when it is not. This piece of information is very important to implement

autonomous vehicle applications like CACC. Essentially there are two ways to implement

autonomous vehicle applications. One is to completely take control of the vehicle which

will require overthrowing the VISSIM internal driver model discussed above for individual

vehicles or a platoon of vehicles. The other option is to implement a semi-autonomous

application, like a driver advisory. Since in the future it is highly desired to implement

completely autonomous application, the approach is taken to remove the internal driver

model of VISSIM. The microscopic feature of VISSIM Traffic Simulator is especially

helpful in this case as it allows to select individual vehicles and remove the functionality

of the internal driver model.

In [31] , to implement a cruise control approach to an individual vehicle , it is

realized that the vehicle can be completely controlled by an external cruise controller when

the individual vehicle is in the free driving regime. From figure 36 and previous discussion

it is clear that in the free driving region the vehicle is not influenced by other vehicles in

its vicinity . Hence, this is the only regime where an external controller, as mentioned in

[31], can take full control of the vehicle. However, [31] acknowledges that when the

vehicle passes other regions like SDV or SDX, then the VISSIM internal driver model

takes control of the vehicle overthrowing the external controller. Hence, this scenario is a

typical depiction of a driver advisory. However, to fully realize the benefit of an external

controller like CACC with respect to fuel consumption, reduced emissions and reduced

80

traffic congestion, it will be beneficial to provide full control of the vehicle to the external

controller under any circumstances because unlike a driving advisory where the driver’s

reaction will play a critical role in determining the vehicle’s velocity profile, the controller

can implement its optimal control output to the vehicle. This is given that the controller is

robust in several driving situations and does not become unstable and cause dangerous

maneuvering of the vehicle. With this intention of giving full control to the external

controller, it is desirable to overthrow the VISSIM internal model of the driver. To achieve

this , it is necessary to realize the method used to determine the acceleration and velocity

of each individual vehicle in the simulation. Although, VISSIM’s official manual claims

that the driver model is a depiction of the Wiedemann Driving model, there are some

hidden differences in VISSIM’s model which are not released to the public due to

commercial reasons of protecting intellectual property. Hence, it is difficult to exactly

determine the internal driver model of VISSIM. However, since it is known that the driver

model in VISSIM is close to Wiedemann driving model , an approximate idea of the model

can be made.

From figure 36 and [32], it is known that only in the free driving region VISSIM’s

driver model is not influenced by the preceding vehicle. From the equations in [30], it can

be seen that except for the Free Driving regime, in every other region , the acceleration is

a function of distance from the preceding vehicle as well as the speed or the acceleration

of the preceding vehicle. The free driving region only occurs when ∆𝑥 𝑎𝑛𝑑 ∆𝑣 are large in

magnitude which means when the following vehicle is either too far away from the

preceding vehicle or has a large velocity difference. Now, it is important to figure out a

way to implement this free driving region at smaller magnitudes of ∆𝑥 𝑎𝑛𝑑 ∆𝑣. The

approach taken is to study a “dummy” driver model DLL file provided by VISSIM. In the

driver model DLL, there are two specific functions defined as “SetValue” and “GetValue”.

The role of these functions are to set the parameters as output from VISSIM and send the

parameters updated after a single time step to VISSIM for the next time step respectively.

It is realized that the GetValue function is solely responsible for providing VISSIM with

the updated parameters of the vehicles like the desired velocity, desired acceleration, and

81

desired lane. However, there is no specific parameter for setting the speed and acceleration

of the vehicles. This means that VISSIM’s internal model is dependent on the desired

velocity and desired acceleration to determine the current speed and acceleration of the

vehicle. From the equations it is also known that the acceleration in the car following

models are a function of the preceding vehicle’s velocity and the distance from the

preceding vehicle, which means that other than the free driving regime, the vehicle’s

acceleration will be largely influenced by the preceding vehicle’s behavior. In fact , in the

closing in regime, the deceleration has a direct term of deceleration of the preceding vehicle

added to it. Thus, it can be said that disabling the desired velocity and desired acceleration

parameters in the DLL can possibly get rid of the internal model for a specific vehicle.

The first approach is to disable sending desired speed parameter to VISSIM from

the external driver model DLL. By disabling it simply means to put an “if” condition that

if the vehicle identification number of a specific vehicle is recognized, don’t send the

parameter. Hence, for the first test vehicle number 16 was selected and the “if” condition

was implemented to disable sending the desired velocity to the internal driver model. After

running the simulation it was realized that disabling the desired speed showed up as zero

desired velocity of the target vehicle, and the vehicle in the simulation directly approached

that zero velocity and halted in the middle of the road. This tells that the internal driver

model was still acting and in full control of the vehicle. The next approach was to enable

the desired speed and disable the desired acceleration. After running the simulation, it was

observed that the vehicle starts to accelerate without any consideration of the surrounding

traffic. The vehicle even hits the other preceding vehicles and over takes them in the virtual

simulation. This clearly means that disabling the desired acceleration parameters

overthrows the driver model to some extent. However, the question is why does the vehicle

accelerate throughout the simulation and reach a velocity of more than 100km/h by the end

of the simulation which is higher than its designated desired velocity of 75km/h.

First, it is inferred that the acceleration is probably due to the vehicle trying to

achieve the desired velocity which is enabled in this case, but the inference is proved wrong

from the observation that the vehicle exceeds the desired velocity . This is where an

82

approximation of the model is attempted. It is determined from the general acceleration

function for most car following models that the acceleration is a function of the preceding

vehicle’s driving behavior. Hence, disabling the driving behavior automatically gets rid of

the VISSIM driver model which was observed when the vehicle accelerated without

considering the vehicles surrounding it and surpassing them in the virtual traffic network.

However, the vehicle still accelerated, and it seemed like that the vehicle was accelerating

at its maximum acceleration. Hence, it can also be inferred that the acceleration is a

function of the maximum acceleration. From the background study above, it is explicitly

stated in [30] that the vehicle achieves its maximum acceleration to achieve its desired

velocity and that too only when the vehicle dynamics is in the free driving regime.

Therefore, in this case it can be claimed that the vehicle is behaving as if it is in the free

driving regime but it is not accelerating to achieve the desired velocity . This again proves

that the driver model is disabled because to stop the vehicle from accelerating beyond its

desired velocity , the driver model needs to provide feedback but since the driver model is

disabled, it cannot provide any feedback.

 Taking the above observation into consideration, for the next simulation run, both

the desired velocity and desired acceleration terms were disabled. It was observed that

disabling these terms the vehicle did not accelerate any more but instead traveled at its

initial velocity assigned as it entered the traffic network. The vehicle speeded at this initial

velocity for the whole simulation without paying any regards to the surrounding vehicle.

This clearly tells that the vehicle was no more influenced by any desire to achieve any

speed or acceleration and it was not influenced by any regimes. However, to confirm this

inference, it is important to determine if the vehicle is still following a physical, dynamical

model. A comparison is conducted to make sure that the VISSIM model, even though has

a disabled internal driver model , follows the fundamental laws of physics. The figures

below clearly show that the distance obtained by integrating the speed over the simulation

time is the same as the distance obtained from VISSIM simulation which is directly

extracted as a vehicle position attribute and stored in a text file for each time step. Since

both the plots in figure 37 are the same, it can be claimed that even with the driving model

83

disabled , the simulator follows the speed and distance relationship based on the

fundamental laws of physics.

Figure 37. Comparison of ∆x from Matlab and VISSIM simulation

3.3 Timing and Synchronization of CACC architecture with

Simulation Results

This section will give an overview of the time execution analysis of the three vital

processes that take place in the program. The three processes under discussion are: Time

taken for VISSIM to run single step, time for C# to extract data from VISSIM for different

number of vehicles extracted and the time taken for C# to receive and send data to the other

components of HiLS.

As mentioned earlier, it is decided that the total time taken for these processes will be set

to be below 200 milliseconds; that is the three processes will have to be completed within

200 milliseconds. With the assumption that the individual time for each process takes less

than 50 milliseconds, the initial program is written such that if the total time taken for the

three processes takes less the 150 milliseconds, the program will be paused for the 200

milliseconds minus the time elapsed to complete the three processes to maintain the desired

time step.

84

In the following sections the results for the time for execution of each of the three processes

are discussed.

3.3.1 Time for VISSIM to run single step

Figure 38 shows the time taken for VISSIM to run single step over a simulation

time of 300 seconds and also combines the graph of the total vehicle count at the end of

each simulation. The simulation is carried out for six different situations with regards to

the total number of vehicles present. The green cluster of points represents the increasing

presence of vehicles in the simulation. The different cases for which the simulation is run

are: 600, 700, 800, 900, 1000 and 1100 vehicles.

The blue cluster in figure 38 represents the time taken for VISSIM to run single step over

the total simulation period. There are about 3000 different points plotted which form the

blue cluster shown in figure 38. It can be seen that as time passes by, the execution time

for VISSIM has an increasing trend. For example, in the graph for 600 vehicles, it shows a

very slight increase in time as the simulation time reaches the end of 300 seconds. The

increasing trend is not very prominent in this case. If the case of 1100 vehicles is

considered, then the increasing trend of time is much more prominent. This increasing trend

in time is expected with the increasing density of vehicles. Comparing the plot for 600

vehicles with the plot of 1100 vehicles, the plot for 1100 vehicles has slightly higher initial

execution time and the time increases as the total vehicle count increases.

 3.3.2 Time for C# to transfer data to MATLAB

Figure 39 represents the relation of run time for MATLAB with respect to the total

runtime of the simulation. It also shows the vehicle count for the total simulation time

which is kept constant to investigate the effect of changing the number of vehicle

information extracted. The six plots shown below correspond to the extraction of 1,

50,100,150,200 and 300 vehicles.

From figure 39 it can be seen that the points plotted in blue represent the run time for

sending individual data to MATLAB. The simulation was run for different conditions as it

was done for analyzing VISSIM execution time for running one single step shown in figure

38. The average time for sending data to MATLAB is approximately in the range of 0 to

85

15 milliseconds. Like VISSIM running single step, it does not take C# much time to send

data to MATLAB. However, unlike VISSIM running single step, the transfer rate of data

to MATLAB remains almost constant even as the number of vehicles extracted increase in

the simulation.

Figure 38. Time graph for VISSIM to run single step

This trend is expected because the C# program sends an array of vehicle

information instead of sending individual information one by one. Implementing an array

makes the process faster, because then C# sends all the data at once. MATLAB only has

to receive the array which is of a particular size for every single run of the different

simulation conditions. Since the array size does not change, the time for execution is

almost same for all the graphs. If the array size changed for every single simulation, then

86

the time plot would have an increasing trend. The insignificant difference in execution time

for vehicle extraction is only because of the extra time taken to load the array as the number

of extraction vehicle increases from one simulation to the next.

Figure 39. Time graph for sending data to MATLAB

3.3.3 Time for C# to extract data from VISSIM

The results for extracting vehicle data for 50 and 100 vehicles using the preliminary

code are shown in figure 40. It shows the time for execution increases significantly as the

number of vehicles increase in the simulation. In this case for extracting data for 50

87

vehicles, the time increase in the beginning is till the vehicle extraction is below 50

vehicles, but as it reaches 50, the time stays constant for the rest of the simulation.

Figure 40. Execution time for VISSIM extraction

From figure 40, for the plots of different vehicle extraction values, the time exceeds

200 milliseconds by a large margin. This significant delay in the simulation with the

increase in vehicle is contributed by the for loop approach which was previously used to

extract multiple data from VISSIM. The most recent approach to multiple data extraction

implements arrays which reduce the time for extraction drastically. The results with the

array approach are discussed later. Thus it is known that VISSIM extraction is the reason

why the 200 millisecond time step is not working when implemented in the C# code with

the for loop structure. These preliminary results show that when a for loop is implemented

88

instead of arrays, the time consumption for extracting multiple data from VISSIM

simulation during runtime is significantly high. This situation is improved by implementing

large arrays to extract multiple data from VISSIM without significantly impacting the time

even when the data size is increased fourfold.

Next, a complete simulation of the COM middleware architecture is executed to

examine the synchronization of the different components as well as investigate the timing

of specific components to figure out any bottlenecks. The simulation is carried out to record

the timing for both thread structures, Thread one and two for the Powertrain-COM and the

VISSIM -COM as shown in figure 33. The functionality of threads one and two

corresponding to VISSIM -COM and Powertrain-COM respectively, are the same as well

as for threads two and one corresponding to VISSIM -COM and Powertrain-COM.

Threads one and two , VISSIM -COM and Powertrain-COM respectively , have the

functionality of extracting data from an external software that is linked to the COM and

then send it across a network to a specific port. Thread one in VISSIM -COM extracts

vehicle information like vehicle number, position, speed and link and lane location at once

in array form and sends it to the network as well as to the CACC controller built in Simulink

that is simultaneously running locally. On the other hand, Thread two in powertrain-COM

extracts processed information from Powertrain Simulink model and sends it back to

VISSIM -COM. The running of Thread one VISSIM -COM is crucial in determining the

complete synchronization of the structure as its performance is dependent on how much

information is being extracted from VISSIM traffic simulator, whereas for the other threads

like thread two of VISSIM -COM and threads one and two in powertrain-COM are

responsible for passing the data as quickly as possible to maintain the desired time step for

the whole architecture .

A complete synchronization of all the threads in both the COMs can be achieved

by making sure the data extracted from VISSIM Traffic simulator is sent back with the

processed data before the next time step for which the simulation is run. The idea is to

provide VISSIM’s internal model with the updated data so that it can use the updated data

to run the next time step. Looking at the structure shown in figure 33, it can be said that it

89

is crucial for thread one VISSIM -COM to maintain the desired time step in this case a time

step of 200ms. This is because thread one is the main control thread which decides when

to run the traffic simulator for one time step as well as when to extract different types of

data from the simulator. Once a piece of data is extracted , the next time it should be

extracted from VISSIM must be exactly after one time step is elapsed to maintain

uniformity of time. However, the extracted data from VISSIM must now travel across all

the other threads through a network, through different software like CACC controller in

Simulink and Powertrain Simulink Model for processing and then back to thread two of

VISSIM -COM before the thread one of VISSIM -COM runs the current simulation for

another single step. To achieve this, all the threads through which the data travels must be

synchronized .

Initially it was realized that all threads must maintain a time step of 200ms.

However, after running a few simulation tests, it is realized that allowing all the threads to

execute at the 200ms time step holds the data unnecessarily for long time and causes delay

in the transmission. After many considerations it was decided that it is only logical to keep

the control thread (Thread one VISSIM -COM) in a specific time step, and all the other

threads must send the data received as soon as possible , so that the processed data can

reach VISSIM traffic simulator before the next single step run is executed in the control

thread. This is because the time step is completely dependent on the control threads as the

control thread decides when to run VISSIM depending on the set time step. Therefore,

following this logic, all the other threads follow a logic of listening for data over a

continuous while loop, and as the data is received, the threads pass it on to the next thread

or software. For this to occur, all the other threads must run the loop at a faster rate then

the control thread which is made to run its loop at the desired times step. This means that

if all the other threads loop over faster than the control threads, there is a possibility for

thread two of VISSIM -COM to receive the same data over and over again if one time step

is not complete. Since VISSIM -COM thread two is responsible for delivering the

processed data back to the VISSIM simulation, it is fine if repeated data is sent to VISSIM

simulation before the time step is over. However if thread two sends a repeated data exactly

90

at the time when control thread runs a single step, then it will cause an error. Thus it is

decided to put a flag value attached to the actual data extracted from VISSIM simulation.

This flag value acts like an index which will always increment when a new data is extracted

from VISSIM in the control thread. This flag value is then checked in all the other threads

to realize a new data has been extracted which means a new time step has elapsed. Using

this flag value, thread two of VISSIM -COM can make sure it does not send repeated data

to the simulation software and instead send the updated data once and wait till the flag

value increments for the next data to be updated in VISSIM simulation software. This

check for the increment in the flag value allows the correct data to be replaced back in

VISSIM Software before a time step is elapsed. To enable the actual data extracted from

VISSIM traffic simulation and the flag value to travel together through the threads, they

are placed as an element in an array. The maximum array size of data in all threads except

the control thread is two elements. For control thread in VISSIM -COM the information

array size can vary depending on the requirement of the user. The current control thread

set up extracts multiple data from VISSIM traffic simulator as mentioned earlier and sorts

the large array of data to extract the most important data. Since the elements in the array

vary at every time step with increasing or decreasing number of vehicles, depending

whether vehicles enter or exit the traffic simulation network at every time step, it is easier

to set a constant large size for the array and let the data occupy or vacant the element space

depending on the number of vehicles present during one single time step. It can be easily

inferred that more the information is extracted from VISSIM, slower the running speed of

control thread will become. It is crucial for the control thread to maintain the desired time

step to keep the other threads synchronized. Any delay in the control thread will propagate

the delay in the upcoming time steps in all the threads leading to break the simulation in

VISSIM. It is observed that anytime a major delay occurs, for reasons like several vehicles

running in simulation at a time step can increase the load on VISSIM Software, then the

data processed through the threads update VISSIM in the wrong time step causing the

internal model of VISSIM to loose control. This can lead to either the vehicles crashing in

VISSIM simulation or stopping abruptly in the middle of the road causing all other vehicles

91

to stop too. Therefore it is vital to determine the upper limit of the quantity of information

that can be extracted from VISSIM and processed without any significant delay. Thus, the

simulation was carried out for two different scenarios, for 200 and 800 vehicle information

extraction. The results are discussed below.

3.3.4 Vehicle Information Extraction

As mentioned earlier, the quantity of vehicle information extraction plays a major

role in maintaining the timing and synchronization of the middleware and its components.

As per the current requirement, one simulation time step must be within 200ms precisely.

To maintain such a tight time step it means that any delay in any of the components will

cause the whole synchronization to fall behind in time. Taking into account that there are

so many components , the threads structure is implemented as the core design of the

middleware. The parallel running feature of the threads allows the middleware to divide its

task in different parts based on the requirement and run each component responsible for a

specific part to run as a separate process on the computer system. This design of

decentralizing the working of the middleware, instead of using sequential code, definitely

helps more in synchronizing the different components of the code. As mentioned earlier,

the major tasks of the threads are to extract information from a third party software running

simultaneously and send or receive the information across a network or locally.

Extraction of data starts in Thread one of VISSIM-COM as it is the initiator of the

whole software loop. This is where VISSIM is initiated and run for every single time step.

Thread one of VISSIM -COM is the busiest in terms of work load as it has to extract and

send much more information than all the other threads . This thread has direct association

with VISSIM, from where it extracts multiple data information as mentioned earlier. So

for example, if 200 vehicle information has to be extracted then it extracts about 800 single

data elements in the form of array as there are four data types for which it has to extract

200 elements each. The four data types are vehicle number, speed, lane and position. Thus

for 800 vehicle information, it extracts 3200 individual elements in the form of array at

every time step. Further, these multiple data elements have to be processed before they can

be sent because not all of them are required for processing. Thread one’s primary

92

responsibility is to deliver information to CACC model running locally and also to a

network.

Figure 41.Timing for Thread one Vissim-COM for 200 vehicle information extraction

3.3.4.1 VISSIM-COM Thread 1 -200 Vehicle Extraction

The timing results shown in figure 41 are for 200 vehicle extraction of Thread one

of VISSIM -COM. It is to be noted that 200 vehicle information includes four different

data types; vehicle speed, position, number and lane, which means the extraction is for 800

individual data points in the form of array. The graph with the timing for VISSIM run

clearly shows that it takes less than 50 ms for Thread one to run VISSIM for one time step.

Most of the timing points are cluttered around 20-25ms. However, it is inferred that these

delays which cause the timing to increase can be due to increasing number of vehicles in

the simulation as simulation time increases. This is clearly depicted in the plot titled

Extraction Timing. This plot shows the general increase of vehicles over simulation time

till 200 vehicles are extracted. It takes about 25 seconds of simulation time for the traffic

simulation to have 200 vehicles. Although the plot shows the vehicle number saturated at

200, it is to be noted that actual number of vehicles in the simulation reach to about 850 by

the end of the simulation. That is the reason why at a later time, the timing for extraction

93

increases slightly. Although COM is programmed to extract 200 vehicles, VISSIM

simulation has more processing to execute with more number of vehicles in the network.

The third plot gives the idea of how much idle time is left for thread one to elapse. Since

the time step of 200 ms has to be maintained for the purpose of synchronization with other

threads, it is important to pause thread one for the extra time till the one loop of thread one

takes up 200ms. From the plot titled Idle time, it can be seen that at the beginning of the

simulation when the total number of vehicles in the simulation are few, the idle time is in

the range of 10-160 ms. However, over simulation time, there is a distinctive decreasing

trend in the idle time, and this is again explained by the fact that the number of vehicles in

the simulation increase. The last plot shows the total time for the thread to run one time

step. This plot clearly showcases the capability of the thread structure by maintaining the

time step values within 200 ms for the whole simulation . From these set of plots it can be

guaranteed that the crucial tasks of thread one in VISSIM -COM , of running VISSIM

single step and extracting 200 vehicle information, does not exceed the time step.

94

Figure 42. Timing for thread two Vissim-COM

3.3.4.2 VISSIM-COM Thread 2 - 200 Vehicle Extraction

Timing data for thread two of VISSIM -COM is recorded and displayed in figure

42. Thread two’s crucial tasks are receiving the data from the network and sending it to

VISSIM traffic simulator locally. It is also responsible for continuously looking for any

new data when it is not sending the received data to VISSIM. This is clearly depicted in

figure 42. Looking at the plot titled Send to VISSIM, conveys that it does take thread two

of VISSIM -COM time for it to receive and send the data to VISSIM. Most of the cluster

of points are around 20-50 ms. These set of plots clearly convey that the crucial task of

receiving data from the network or the CACC SIMULINK model and sending to VISSIM

Traffic simulator is definitely not a bottle neck.

95

Figure 43. Timing for thread one Powertrain-COM

3.3.4.3 Powertrain-COM Thread 1 -200 Vehicle Extraction

Similar timing analysis was conducted for Powertrain-COM. For the timing

analysis of Powertrain-COM without any threads, figure 43 shows three plots: time for

sending data to Powertrain, idle time and time step plots. From the first plot titled send to

Powertrain , it can be seen that the timing for sending data to Powertrain Simulink model

is less than 10ms which is a significantly small timing value. The idle time and the time

step plots clearly show that the Powertrain-COM code is capable of maintaining a time

step of 200ms. The timing data points are consistently spread and do not show any

particular trend in time which suggests that over simulation time, the time to execute the

code increases. This is accounted for my the uniform size of array that is been received

from network and sent to Powertrain through out the simulation run. Hence, with this plot

it can be concluded that for one way network communication , the complete architecture

of the middleware is validated to work in real-time.

96

Figure 44. Timing for thread two Powertrain-COM

3.3.4.4 Powertrain-COM Thread 2 -200 Vehicle Extraction

Figure 44 shows the timing analysis plots for thread two of Powertrain-COM in the

case of two way communication. It can be seen that the main task of extracting data from

the Powertrain-Simulink model takes time in the range from 5ms to 25 ms with some

outliers that exceed 30 ms. Like the other threads in the architecture, except the main

control thread controlling VISSIM Traffic simulator, the major task of thread two of

powertrain-COM does not consume too much time to cause any significant delay . All the

above plots are for 200 vehicle information extraction, but the number of vehicle

information extraction is only relevant for thread one of VISSIM -COM, the control thread,

because all the other threads pass an array with two elements no matter how many vehicles

information are extracted in one single time step.

97

3.3.4.5 VISSIM-COM Thread 1 -800 Vehicle Extraction

To compare the results with increasing number of vehicle information ,figure 45 is

plotted. Figure 45 shows the timing results for VISSIM -COM thread one for 800 vehicle

information extraction, which means 3200 elements are extracted at each time step. The

extraction and send plot clearly show an increase in time consumption as the number of

vehicle increases to 800 but compared to the extraction and send plot for 200 vehicles in

figure 41, the increase in time is not significantly different. The reason behind this is the

change in VISSIM’s method of accessing attributes from the previous versions where for

accessing multiple data information during simulation run, a for loop had to be

implemented which definitely took more time compared to extracting multiple data all at

the same time using an array. Due to this added feature the time step plot and the ideal time

plot also do not differ much from that of 200 vehicle information extraction. This is very

advantageous for real time applications such as the COM architecture, in this case, because

even a fourfold increase in the vehicles population does not change the processing time

significantly . Comparing the timing analysis for 200 and 800 vehicle information in figure

41 and 45 with the timing analysis for up to 300 vehicle extraction in figure 40, it can be

concluded that the efficacy of the program has drastically improved with the change in the

method of extracting information. Using the array method to extract multiple data has

reduced the timing for extracting 300 vehicle information from 2000ms to 50-70 ms for

800 vehicle information extraction. This feature of the code has given the user the leverage

to modify the VISSIM traffic simulation software and increase its complexity not only in

terms of increasing the number of vehicles in the network but also to make the traffic

network more complex with several branches and traffic signal junctions. Further

investigation with respect to extracting more than 800 vehicles information was not

deemed necessary at this point because the current application of CACC does not need

even 200 vehicle information. However, with 800 vehicle extraction it is showcased that

the middleware has a robust architecture. With this drastic decrease in time for extraction,

now more realistic simulations can be tested. Although the plots below show that the

98

respective tasks of the threads do not contribute to any delay, it can be seen in the time-

step plot that there exists a slight delay after 250 seconds of simulation. The delay occurs

for two time-steps for about 400ms and 1600ms, but they are not deemed significant, since

the time step is 200ms which is very small. Therefore, one or two time step delays are

negligible. However, if there were frequent occurrences of delays, then the problem would

be more serious. This particular delay is accounted for by the functioning of the operating

system because from previous time analysis plots it is proved that the particular tasks of

the thread do not contribute to the delay.

Figure 45. Timing for thread one Vissim-COM for 800 vehicle information extraction

3.3.5 Synchronization of VISSIM-COM Thread one and Thread two

When CACC application is incorporated in the software structure, synchronization

of the different component becomes vital for real time simulation. The synchronization of

the data travelling from VISSIM traffic simulator, to thread one, to CACC Simulink model

, to thread two and back to VISSIM traffic simulator is a very crucial path for maintaining

the synchronicity of the whole software structure. Keeping this in mind, a simulation test

was conducted to determine if the data extracted from VISSIM is sent back to VISSIM in

time so that the simulation can be updated in the next time step. The figure below shows

the superimposition of the difference in the distance between a target vehicle and its

99

preceding vehicle. The graph compares the distance calculated in MATLAB, and also

extracted as an attribute from VISSIM. The idea is that if the two distances completely

superimpose on each other with respect to simulation time on the x-axis, then it can be said

that the data extracted from VISSIM , sent for processing to CACC controllers is

appropriately updated for the next time step and hence the components of the middleware

architecture are synchronized. These two superimposed plots also indicate that the CACC

controller is indirectly able to influence the target vehicle in the simulation. If there was

any discrepancy, the plots would not superimpose leading to the conclusion that either

CACC controller is not able to influence the specific target vehicle in the simulation or

there is some problem in the path of data which is leading to some sort of delay. This figure

further supports the conclusion that the internal driver model of VISSIM can be completely

overthrown by using the method mentioned earlier because the distance obtained from the

CACC Simulink model and from VISSIM attributes match exactly .

Figure 46. Distance Corridor comparison extracted from CACC controller and Vissim

Simulation

100

3.4 Conclusion

From the above analysis of the different components of the thread structure, it can

be concluded that the current architecture is validated to conduct real-time execution of the

CACC architecture shown in figure 32. The thread method gives the leverage to

synchronize several different software platforms and execute the simulation in real time.

For this thesis, the focus is to implement the CACC methodology described in Chapter 2

with the HiLS. The timing analysis for the different components of the architecture clearly

show that a simulation time-step of 200ms can be easily achieved with all of the crucial

tasks finished within a range of 150ms to 170ms. Most of the crucial tasks of the

architecture are conducted in control thread, VISSIM-COM thread one, and each of the

timings for each of the tasks in thread one have proved to obey the 200ms designated time-

step. The timing results clearly showcase the versatility of the middleware handling

multiple software and communicating locally as well as through a network like the internet.

The robustness of the middleware has been tested for 200 vehicle information and 800

vehicle information extraction from VISSIM with minimal difference in the timing results.

Therefore, it can be concluded that the current middleware can successfully handle CACC

application in integration with the powertrain-research-platform and execute in real-time.

Future work will focus on implementing other complex applications and attempt

will be made to make the structure even more efficient so that a smaller time-step of

approximately 100ms can be implemented. As mentioned in the report earlier, the current

structure does one way communication with respect to network communication, sending

data from VISSIM-COM to Powertrain-COM, but two way communication is a possibility

with a slight change in the structure. If timing is concerned, the current architecture, with

threads, can handle one and two way communication with efficacy.

101

Chapter 4 Evaluation of CACC Using Experimental Results

From the various vehicle level simulation cases observed in Chapter 2, it is

determined that the median method with the averaged velocities of the preceding vehicles

has potential fuel benefits for a controlled vehicle in a traffic network. In this section, the

focus is to validate the CACC algorithm using a Hardware in the Loop Simulation(HiLS)

where powertrain and engine dynamics will be included using a virtual powertrain as well

as a real engine. As mentioned in chapter 3, the CACC software architecture is

implemented with the powertrain-research -platform. The different components of the

HiLS are explained briefly.

4.1 HiLS Components

The HiLS consists of the powertrain-research-platform which represents the CACC

controlled vehicle in VISSIM, and VISSIM traffic simulator which provides the controlled

vehicle dynamics and road conditions to the powertrain-research-platform. The

powertrain-research-platform allows real-time measurement of fuel using the AVL’s Fuel

Measurement System Model P402. Unlike the method of fuel measurement mentioned in

simulation results previously which used a static fuel map, the fuel measurements using

AVL are much more accurate as it has a high bandwidth that takes care of the transient

driving maneuvers effectively.

The emissions measurement is conducted using AVL’s SESAM-FTIR. Each

constituent of the exhaust gas is measured in terms of concentrations (ppm). Therefore, the

formula below is used to convert the unit to mass-rate in grams per second.

𝑔

𝑠
= (

𝑃𝑃𝑀

106𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑔𝑎𝑠
) × (

𝑒𝑥ℎ𝑎𝑢𝑠𝑡_𝑚𝑎𝑠𝑠_𝑟𝑎𝑡𝑒

𝑒𝑥ℎ𝑎𝑢𝑠𝑡_𝑚𝑜𝑙𝑎𝑟_𝑚𝑎𝑠𝑠
) × 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡_𝑚𝑜𝑙𝑎𝑟_𝑚𝑎𝑠𝑠

𝑃𝑃𝑀 is the measurement unit for micromole concentration per mole of exhaust gas. The

exhaust gas mole-rate (in moles per second) is obtained using the exhaust mass-rate (in

grams per second) and the exhaust molar-mass for diesel fuel (29.4 grams per mole). The

exhaust mass-rate can be determined by summing the measured intake-air and fuel mass-

rates. The mole-rate of the constituent can be determined by multiplying the micromole

102

concentration of the constituent with the exhaust mole rate. The mass-rate of the constituent

is determined using the product of the mole-rate and the molar-mass of the constituent.

4.1.1 VISSIM Microscopic Traffic Simulator

VISSIM is a microscopic traffic simulator which uses the Wiedemann’s car

following model (Wiedemann, 1974) . The software allows users to simulate realistic

traffic scenarios and access information related to individual vehicles. The attributes that

VISSIM allows users to access are related to vehicle dynamics like the vehicle speed and

acceleration.

4.1.2 HiLS Middleware

The HiLS middleware consists of the Powertrain-COM and VISSIM-COM. Local

communication between the COM structures and the different software entities are

discussed in Chapter 3 in detail[20]. Internet network communication between Powertrain-

COM and VISSIM-COM is also explained in Chapter 3.

4.2 Test Results and Discussions

4.2.1 Highway Driving

First an offline test for simulation scenario, shown in figure 25, 14 vehicle average

for highway driving is conducted using the powertrain-research-platform. The velocity

profiles of the controlled vehicle and the preceding vehicle are stored offline by simulating

the CACC architecture without the powertrain-research-platform in the loop. The idea is

to compare the results of the simulation with an actual test using the powertrain-research-

platform. The powertrain-research-platform emulates a Hybrid Electric Vehicle(HEV)

which uses a Power Sharing Transmission (PST) which is controlled by rule-based

optimization method [20]. Without going into much of the details of an HEV, to obtain fair

and comparable CACC simulation results, it is necessary to maintain the battery state of

charge (SOC) the same at the beginning and at the end of the simulation. Maintaining the

SOC at the same level will imply that both the controlled vehicle and target vehicle have

used the same battery power provided by the battery through the motor/generator . This

will make the comparison fair in a powertrain that emulates HEV .For the experimental

103

analysis, the complete plots of generator, motor torque and the battery SOC are included

in Appendix A for all cases. The SOC plots clearly show the initial and final SOC are

maintained at 0.6 at the beginning and end of simulation.

Experimental results for a highway driving case are obtained for the 14 vehicles’

velocities average simulation case as shown in figure 25,. This showcases the advantage of

using HiLS with a traffic simulation package that can simulate variety of realistic driving

cycles for vehicles. Figure 47 shows reference and actual velocity profile, engine speed ,

engine torque and the fuel consumption of the controlled vehicle for 14 preceding vehicles’

velocities averages. The total fuel consumption is around 180g which is lower than the total

fuel consumption of the city driving case, discussed next, because of the less aggressive

driving behavior in a highway situation. This trend was also depicted in the simulation

cases for 14 vehicles’ velocities averages. The driver does not tend to vary the velocity of

the vehicle too much over the driving cycle. Since the preceding vehicles in the platoon

too do not follow an aggressive behavior, the averaged velocity for the controlled vehicle

is less aggressive.

Figure 47. Powertrain and Vehicle Dynamics for Controlled Vehicle- 14 vehicles’

velocities average for highway driving

104

Figure 48. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 14

vehicles’ velocities average

Figure 48 compares the emissions measurements for the controlled and the

immediate preceding vehicle. It is clearly seen from the plots that for all the pollutants

emitted, the quantity emitted with combustion gas for the controlled vehicle is lower than

that from the preceding vehicle. This is analogous to the engine torque magnitudes of the

two vehicles. From figure 47 and 49, the engine torque magnitudes of controlled vehicle

are much lower than that of the preceding vehicle.

105

Figure 49. Powertrain and Vehicle Dynamics for immediate preceding vehicle-highway

driving

Figure 49 shows the powertrain and vehicle dynamics for the immediate preceding

vehicle in a highway situation. From the plots the actual seems to track the reference engine

speed and torque very well except for the last portion of the simulation where the actual

engine torque fluctuates. The total fuel consumption for the complete driving cycle is 216g

for the preceding vehicle.

106

Figure 50. Total fuel consumption comparison- Controlled Vs. Preceding Vehicle

highway driving

Figure 50 shows the total fuel consumption comparison for the CACC controlled

and the immediate preceding vehicle. The fuel saving for the controlled vehicle is around

16.6% for 14 vehicles’ velocities averages in a highway situation as depicted in figure 25.

The fuel measurements using the powertrain-research-platform can be deemed accurate,

and tend to provide higher fuel savings compared to the vehicle level simulations because

the HEV powertrain is controlled using rule-based optimization methods.

 Ultimately these results for the highway case validate the previously obtained simulation

results that taking the average of the preceding vehicles’ velocities provides potential fuel

benefits. This also shows that the CACC approach is not only able to achieve significant

fuel benefits from a city driving case but even from the highway driving case where the

room for any fuel benefit is lower than that of the city driving case due to the less aggressive

driving behavior of vehicles on highways.

107

4.2.2 Experimental results of real-time CACC architecture- Local driving with

constant and varying platoon size

Unlike the previous experimental results where the vehicle velocity trajectories

were stored offline, the results below are obtained from the implementation of real-time

CACC architecture as shown in figure 32. The results are for 14 preceding vehicles’

velocities averages in a city driving scenario. Throughout the traffic network, a platoon of

15 vehicles travel together where the 15th vehicle is the controlled vehicle whose velocity

is derived by taking the average of the 14 preceding vehicles and the 14th vehicle is the

immediate preceding vehicle.

4.2.2.1 City Driving

Figure 51 shows the vehicle dynamics and the fuel consumption respectively for

the controlled vehicle. Figure 52 compares the emissions measurements from the

controlled and the preceding vehicle, whereas figure 53 shows the vehicle dynamics and

fuel consumption for the immediate preceding vehicle to the controlled vehicle. The fuel

saving for the controlled vehicle, relative to the preceding vehicle, are approximately

18.5% .

Figure 51. Powertrain and Vehicle Dynamics for Controlled Vehicle- 14 vehicles’

velocities average city driving

108

Figure 52. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle- 14

vehicles’ velocities average

Figure 53. Powertrain and Vehicle Dynamics for immediate preceding vehicle- city

driving

109

Figure 54. Total fuel consumption comparison- Controlled Vs. Preceding Vehicle city

driving

The experimental tests provide strong evidence that the CACC method

implemented has significant potential to not only improve fuel consumption but also reduce

emissions which is validated using results from a very accurate measurement device, the

AVL’s SESAM-FTIR.

4.2.2.2 Varying Platoon Size

A second online CACC experimental result is obtained but for a more realistic

scenario. In real traffic scenarios it is not necessary that the size of the platoon will remain

the same for the whole driving cycle. There are several traffic junctions at which vehicles

will get added and subtracted from the platoon depending on whether vehicles join or leave

at a junction. Hence, a similar simulation is prepared in VISSIM traffic simulator to

determine the effect of vehicles leaving and joining a platoon on the fuel consumption of

the controlled vehicle. This scenario has already been simulated as shown by the simulation

results in figure 27. The vehicle level fuel savings obtained in simulation are about 10.4%

which is lower than the city driving case for a constant platoon size.

110

Figure 55. Powertrain and Vehicle Dynamics for Controlled Vehicle- Varying Platoon

Size

Figure 55 shows the dynamics for the controlled vehicle and it can be seen that the

engine speed is very well tracked. However, the engine torque experiences some

occurrences of actual and reference torque discrepancies. The fuel consumption is

approximated to be 168g for the complete driving cycle of the controlled vehicle.

Figure56 compares the emissions for the controlled and the immediate preceding vehicle.

Like the previous results from the city driving case shown in figure 52, in this varying

platoon size case too the emissions are higher for the immediate preceding vehicle.

111

Figure 56. Emissions Measurements for Controlled Vehicle Vs. Preceding Vehicle-

Varying Platoon Size

Figure 57 shows the vehicle dynamics for the immediate preceding vehicle with the

actual engine speed tracking the reference speed very well. However, the engine torque

tracking has some discrepancy. The fuel consumption for the preceding vehicle is

approximately 200g for the whole driving cycle.

112

Figure 57 Powertrain and Vehicle Dynamics for immediate preceding vehicle

Figure 58 Total fuel consumption comparison- Controlled Vs. Preceding Vehicle Varying

Platoon size

113

Figure 58 shows the fuel consumption comparison for the controlled and the

immediate preceding vehicle. It must be noted that the fuel consumption comparison

between the controlled and the preceding vehicle is viable in this case because for the whole

driving cycle the simulation was designed in such a way that the immediate preceding

vehicle never leaves the platoon. Therefore the controlled vehicle follows the immediate

preceding vehicle for the whole driving cycle. Also, the battery state of charge is

maintained to be at the same level as it was initially, to provide a fair comparison of

vehicles on a HEV powertrain. The plots for battery state of charge are shown in Appendix

A figures A5 and A6 for both vehicles.

From the above fuel consumption plot it is determined that the fuel benefit from both

the vehicle level and the optimized[20] powertrain level is approximately 16% .The fuel

benefit obtained from the vehicle level simulation of the exact scenario is 10.4% as shown

in figure 27. The fuel consumption results obtained from powertrain-research-platform for

HEV clearly validate the simulation results that even with a varying platoon size, taking

the average of the preceding vehicles’ velocities in a platoon provides significant fuel

benefits.

4.3 Conclusion

The experimental results obtained for both the real time execution of the CACC

architecture, with(online) and without(offline) HEV powertrain-research-platform in the

loop ,very clearly support the simulation results that using the controlled vehicle’s velocity

as a function of the preceding vehicles’ velocities average gives potential fuel benefits for

the controlled vehicle. The table below summarizes the results obtained from the

experiment.

114

Table 3.Summary of Experimental and Simulation Results

Case Experimental

Fuel Benefit %

Offline Highway 16.6

Online City 18.5

Online Varying

Platoon size

16.0

The offline experimental results for the highway driving case had fuel saving of

approximately 16.6% whereas the online city driving case had 18.5%. The real-time

execution of the CACC architecture gave 16% fuel saving for the city driving case with

varying platoon size. This consistency in the fuel gains demonstrates the versatility of the

controller for different traffic conditions that it is used in. This phenomenon is a result of

providing more information to the controlled vehicle. Using the preceding vehicles’

velocities provide the controlled vehicle with dynamics of the preceding vehicles for the

different traffic situation the preceding vehicles confront. This ahead of time reaction of

the preceding vehicles helps the controlled vehicle make crucial judgements with regards

to its dynamics for the upcoming path of road in front of it . For instance if the lead vehicle

, approximately at 300m from the controlled vehicle, stops at a traffic signal, then the

controlled vehicle can decide to reduce its own velocity to give it sufficient time between

the traffic signal state change and distance between itself and the immediate preceding

vehicle for it to not completely stop at the signal and continue moving at that speed. If this

behavior is repeated over a complete driving cycle, as already demonstrated by the

simulations and the experimental results, the controlled vehicle obtains a smoothened

velocity profile compared to the preceding vehicle which reduces the dynamics in its

engine torque and speed that helps reduce the overall fuel consumption. Therefore, from

both the simulation and experimental results it can be claimed that using the preceding

vehicles’ velocities and incorporating them in the dynamics of the controlled vehicle has

potential fuel benefits.

115

Future work will primarily consist of implementing CACC application for a large

platoon of vehicles where all the vehicles in the platoon will be controlled by CACC.

Further investigation will be conducted using a communication model where the success

and failure rates of IVC and VII communication will be included in the algorithm to

determine the effect on fuel consumption. With the current results it is proved that using

the preceding vehicles’ velocities provides potential fuel benefits. Therefore an approach

to design a systematic method where a possible online optimization method with direct

relation to fuel consumption will be developed.

116

References
[1] S. Seshagiri and H. K. Khalil, “Longitudinal adaptive control of a platoon of

vehicles,” Proc. 1999 Am. Control Conf. (Cat. No. 99CH36251), vol. 5, pp. 291–

296, 1999.

[2] S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-objective

vehicular adaptive cruise control,” IEEE Trans. Control Syst. Technol., vol. 19, no.

3, pp. 556–566, 2011.

[3] L. Luo, H. Liu, P. Li, and H. Wang, “Model predictive control for adaptive cruise

control with multi-objectives: comfort, fuel-economy, safety and car-following,” J.

Zhejiang Univ. Sci. A, vol. 11, no. 3, pp. 191–201, 2010.

[4] B. Asadi and A. Vahidi, “Predictive cruise control: Utilizing upcoming traffic

signal information for improving fuel economy and reducing trip time,” IEEE

Trans. Control Syst. Technol., vol. 19, no. 3, pp. 707–714, 2011.

[5] Ma, Yongchang, "A Real Time Traffic Condition Assessment And Prediction

Framework Using Vehicle Infrastructure Integration With Computational

Intelligence”. Clemson Univ. pp.42-62, 2008.

[6] E. Paikari, S. Tahmasseby, and B. Far, “A simulation-based benefit analysis of

deploying connected vehicles using dedicated short range communication,” IEEE

Intell. Veh. Symp. Proc., pp. 980–985, 2014.

[7] F. Bai and H. Krishnan, “Reliability Analysis of DSRC Wireless Communication

for Vehicle Safety Applications,” IEEE Intell. Transp. Syst. Conf., pp. 355–362,

2006.

[8] X. Chen, H. H. Refai, and M. Xiaomin, “A quantitative approach to evaluate

DSRC highway inter-vehicle safety communication,” GLOBECOM - IEEE Glob.

Telecommun. Conf., pp. 151–155, 2007.

[9] J. B. Kenney, “Dedicated short-range communications (DSRC) standards in the

United States,” Proc. IEEE, vol. 99, no. 7, pp. 1162–1182, 2011.

[10] B. Van Arem, C. J. G. Van Driel, and R. Visser, “The impact of cooperative

adaptive cruise control on traffic-flow characteristics,” IEEE Trans. Intell. Transp.

Syst., vol. 7, no. 4, pp. 429–436, 2006.

[11] T. Stanger and L. del Re, “A model predictive Cooperative Adaptive Cruise

Control approach,” Am. Control Conf. (ACC), pp. 1374–1379, 2013.

[12] J. Hu, Y. Shao, Z. Sun, M. Wang, J. Bared, and P. Huang, “Integrated optimal eco-

driving on rolling terrain for hybrid electric vehicle with vehicle-infrastructure

communication,” Transp. Res. Part C Emerg. Technol., vol. 68, pp. 228–244,

2016.

[13] S. E. Li and H. Peng, “Strategies to minimize the fuel consumption of passenger

cars during car-following scenarios,” Proc. Inst. Mech. Eng. Part D J. Automob.

Eng., vol. 226, no. 3, pp. 419–429, 2012.

[14] S. E. Li, H. Peng, K. Li, and J. Wang, “Minimum fuel control strategy in

automated car-following scenarios,” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp.

998–1007, 2012.

117

[15] Schmied, R., Waschl, H., and del Re, L., "A Simplified Fuel Efficient Predictive

Cruise Control Approach," SAE Technical Paper ,2015.

[16] D. Lang, T. Stanger, and L. Del Re, “Fuel efficient quasi optimal adaptive cruise

control by control identification,” Proc. IEEE Int. Conf. Control Appl., pp. 229–

234, 2013.

[17] H. Hu, Z. Zou, and H. Yang, “On-board Measurements of City Buses with Hybrid

Electric Powertrain , Conventional Diesel and LPG Engines,” Power, vol. 4970,

pp. 1–7, 2009.

[18] B. Daham, G. Andrews, H. Li, B. Rosario, M. Bell, and J. Tate, “Application of a

portable FTIR for measuring on-road emissions,” Eprints.Whiterose.Ac.Uk, vol.

724, 2005.

[19] Y. Wang and Z. Sun, “A Hydrostatic Dynamometer Based Hybrid

PowertrainResearch Platform,” Proc.International Symposium on Flexible

Automation.,pp. 1–8, 2010.

[20] M. Azrin, M. Zulkefli, J. Zheng, Z. Sun, and H. X. Liu, “Hybrid powertrain

optimization with trajectory prediction based on inter-vehicle-communication and

vehicle-infrastructure-integration,” Transp. Res. Part C, vol. 45, pp. 41–63, 2014.

[21] Z. Sun, Y. Wang, and K. A. Stelson, “Nonlinear Tracking Control of a Transient

Hydrostatic DynamometerFor Hybrid Powertrain Research,” Proc.ASME Dynamic

Systems and Control Conference.,pp. 1–8, 2010.

[22] Ciubotaru, Bogdan. Advanced Network Programming – Principles and

 Techniques. London: Springer, 2013.

[23] Mosher, Microsoft Outlook Programming: Jump Start for Administrators,

Developers , and Power Users ,ISBN 1-55558-286-9, pp.624, 2002.

[24] T. Tettamanti and I. Varga, “Development of road traffic control by using

integrated vissim-matlab simulation environment,” Periodica Polytechnica, vol.

56, no. 1, pp. 43–49, 2012.

[25] PTV Group, “VISSIM 5.10-06 COM Interface Manual,” PTV AG, pp. 260, 2009.

[26] J. Ploeg, B. T. M. Scheepers, E. Van Nunen, N. Van De Wouw, and H. Nijmeijer,

“Design and experimental evaluation of cooperative adaptive cruise control,”

Conf. Intell. Transp. Syst., pp. 260–265, 2011.

[27] D. Swaroop and K. R. Rajagopal, “A review of constant time headway policy for

automatic vehicle following,” ITSC 2001. 2001 IEEE Intell. Transp. Syst. Proc.

(Cat. No.01TH8585), pp. 65–69, 2001.

[28] Comer D. E., Stevens, D. L., 2001. Internetworking with TCP/IP Vol III: Client-

Server Programming And Applications Linux/POSIX Sockets Version. Prentice

Hall, New Jersey.

[29] Stone, J., Stewart, R. R., and Otis, D. "Stream Control Transmission Protocol

(SCTP) implementations, and techniques. New topics include:Checksum Change,"

RFC 3309, 2002.

[30] PTV Group, “PTV VISSIM 7 User Manual,” PTV AG, pp. 240, 2013.

118

[31] A. Mihaly, “Look-ahead cruise control design in VISSIM simulation

environment,” Models and Technologies for Intelligent Transportation Systems,.

June, pp. 3–5, 2015.

[32] M. Aycin and R. Benekohal, “Comparison of Car-Following Models for

Simulation,” Transp. Res. Rec., vol. 1678, no. 1, pp. 116–127, 1999.

119

Appendix A

Figure A1.Vehicle Dynamics of Controlled Vehicle- highway driving

Figure A2.Vehicle Dynamics of Preceding Vehicle- highway driving

120

Figure A3.Vehicle Dynamics of Controlled Vehicle- city driving

Figure A4.Vehicle Dynamics of Preceding Vehicle- city driving

121

Figure A5.Vehicle Dynamics of Controlled Vehicle using real-time CACC- Varying

Platoon size

Figure A6. Vehicle Dynamics of Preceding Vehicle using real-time CACC-Varying

Platoon size

122

Figure A9.Fuel Map

