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Abstract

The process of creating artistic patterns has existed for a long time. Many great artists

have contributed to this field. Amongst them are notably M.C. Escher, who made many

major contributions to this field. He created a few hyperbolic tessellations, which are

repeating patterns in hyperbolic geometry and are represented in the Euclidean plane, as

formulated by some mathematicians. Creating these patterns was a very complex process,

as it had to be done by hand. After his contributions, some programmers developed applications

to create these repeating hyperbolic tessellations using the C, C++, and Java programming

languages.

The motivation for my thesis is to create a simple and interactive tool that allows the

user to create these hyperbolic tessellations. The user will have the ability to select the type

of hyperbolic tessellation. The user will also be able to create triply periodic polyhedrons in

this system. Finally, the system models the relationship between a hyperbolic tessellation

and a corresponding triply periodic polyhedron using an interactive and simple mechanism.

The tool was created in the Unity Game Engine using the C# programming language.
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1 Introduction

Drawing artistic geometric patterns has been in existence for a long time. A lot of

different civilizations across various regions have incorporated these artistic patterns, which

is evident from the ruins of these civilizations. Some civilizations such as the Arabic,

Chinese, Sumerians, Egyptian, Japanese, Persians, Greek and Romans have inscribed these

artistically repeating patterns in the architecture of their floors, walls, buildings and also

the ceilings, where these were made of clay. These designs had some symmetrical and

asymmetrical aspects associated with them [7].

Many mathematicians in the past have done a lot of work trying to understand these

geometric patterns. They eventually came up with algorithms to describe these geometric

patterns. They have used Euclidean geometry and non-Euclidean geometries to represent

these patterns.

Amongst these works are the notable contributions of M.C Escher, a very famous Dutch

artist. His major contribution was to represent an infinite tessellation on a 2-dimensional

plane. Some of his work was focused on representation of a hyperbolic tessellation on

a 2-dimensional plane. These hyperbolic tessellations were eventually give the notation

of {p,q}, also known as the Schläfli symbol named after a great mathematician Ludwig

Schläfli. Here “p” denotes a p-sided regular polygon and “q” of them meet at each vertex

[4].

This idea can be extended into 3-dimensional space to get an infinite skew polyhedron.

An infinite skew polyhedron is a 3-dimensional structure with non-planar figure, consisting

of regular polygon faces and stretches infinitely into all 3-directions. These are sometimes
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called hyperbolic tessellations, due to the presence of negative angle defect at each of their

vertices. They are represented by the modified Schläfli symbol {p,q|r}, which was defined

by H.S.M. Coxeter. Here “p” denotes a regular p-gon face, where “q” of them meet at each

vertex, and they have regular “r” sided polygonal holes between them [2]. Figure 1.1 shows

a {4,6} hyperbolic tessellation and a {4,6|4} polyhedron with angels and demons pattern

generated by the program.

Figure 1.1: The {4,6} hyperbolic tessellation and the {4,6|4} polyhedron generated by the
program

The are some geometrical symmetries between these hyperbolic tessellations and infinite

skew polyhedron as observed by Dr.Dunham in his paper [4]. Previously some applications

have been created to generate hyperbolic tessellations using C, C++ and Java. The idea for

my thesis is to create a software that generates these hyperbolic tessellations and infinite

skew polyhedrons using the C# programming and the Unity game engine. The system will

have simple interacitve ability to create these hyperbolic tessellations and infinite skew

polyhedrons. Finally the tool allows for a simple and interactive mechanism that models

the relationship between hyperbolic tessellation and triply periodic polyhedra.
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2 Euclidean andNon-EuclideanGeometries

“Geometry” is a branch of mathematics, and this word originated from the Greek words

“gē” meaning earth and “metria” meaning to measure. This branch is associated with the

study of shapes and sizes in all dimensions. A lot of work in this field was done by the great

mathematician “Euclid” also known as the “father of geometry”. His work is considered as

the foundation of geometry. Geometry has progressed a lot and modern geometry consists

of more complex areas like the study of differential and gravitational fields [8].

These geometries can be divided into different kinds. Amongst them Euclidean and

non-Euclidean geometries have been used for the creation of repeating tessellations. The

Euclidean geometry is also known as classical geometry is the most commonly known

geometry. Amongst the non-Euclidean geometries, mainly spherical and hyperbolic geometries

are used for these tessellations.

2.1 Euclidean Geometry

Euclidean geometry is themost commonly used and also themost well-known geometry.

Most of it is found in “The Elements”, a collection of books written by the great Greek

mathematician Euclid around 300 B.C. The book mostly consisted of theoretical concepts,

although nowadays his geometrical ideas can be used to solve hundreds of practical problems.

The basis for his theories rely on five main axioms listed below:
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1. Given two different points A and B, we can get a unique line m that passes through both

these points.

2. Given any line-segmentsMN andRS,MNcan be extended toNO,whereNO is congruent

to RS.

3. Given any line-segment, a circle with radius equal to the length of the line-segment can

be constructed around it, and here one endpoint of the line-segment becomes the center of

the circle.

4. Given any two right angles, they are always congruent.

5. The final postulate is also called the parallel postulate. It states that given any line m and

a point S, not on that line, we can get only one unique line n which passes through S and is

parallel to m.

2.2 Non-Euclidean Geometry

The foundation of non-Euclidean geometry was laid by Carl Friedrich Gauss, who

investigated the parallel postulate problem. It was evident from his diary and personal

letters to friend that he discovered a geometry that was completely different from Euclidean

geometry. But, Gauss did not publish his findings in any paper. Later Janos Bolyai,

independently came upwith the discovery of non-Euclidean geometry, whichwas an appendix

in his father's book. His father sent Gauss a letter regarding his son's discovery as he knew

him well. Gauss in his reply back, informed Bolyai's of his own research in this direction.

On receiving this reply Janos thought that Gauss had stolen his ideas. Janos didn't publish

anything after this incident.

The first person to discover non-Euclidean geometry documental by publication, is

Nikolai Lobachevsky, a great Russian mathematician. Lobachevsky's publication came

to Gauss's attention and later he also showed his contributions to this field[1].
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2.2.1 Hyperbolic Geometry

The major development of this field can be attributed to the great works by Gauss, Janos

Bolyai and Lobachevsky. In this geometry all the axioms of Euclidean geometry hold, with

the exception of the parallel postulate. This axiom is replaced by the hyperbolic axiom,

which states that: If we are given a line m and a point S, which is not on that line m, we can

get at least two distinct lines n and p, passing through the point S and both these lines are

parallel to m.

Figure 2.1: Hyperbolic Axiom

A few more important properties of the hyperbolic geometry are listed below:

1. Rectangles don’t exist in hyperbolic geometry due to the hyperbolic axiom.

2. The sum of all the three angles of a triangle is less than 180 degrees.

3. The sum of all the angles of a convex quadrilateral is less than 360 degrees.

4. If there exist two similar triangles in hyperbolic geometry, then they are congruent [6].

These properties are not very intuitive to us, since we are used to a lot of Euclidean

geometry from our childhood. The notion that the sum of all angles of a triangle is less

than 180 degrees is something that doesn't look natural to us. The figure below shows a

hyperbolic triangle with the sum of all angles being less than 180 degrees.
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Figure 2.2: Hyperbolic Triangle

A few models to represent hyperbolic geometry has been discovered. Some of them

include the Poincaré Disk, the Weierstrass and the Klein models. More details about these

models can be found in the next chapter.

2.2.2 Spherical Geometry

Spherical geometry is also referred to as Riemannian geometry, after the name of its

founder BernhardRiemann. Spherical geometry is not a neutral geometry, because it doesn’t

have parallel lines. All the first four axioms of Euclidean geometry hold here, but the

parallel postulate changes. If we are given any line m and a point P not on the line, there

exists no lines parallel to the m. In a spherical geometry lines are represented by great

circles. Take a plane passing through the center of the sphere and any two points on the

sphere. The intersection of the plane with the sphere, gives us a great circle. Figure below

shows a great circle E, which passes through the center O and two points N and S on the

sphere. These points on the sphere N and S are also know as antipodal points [9].
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Figure 2.3: Great cicle and antipodal points

A few more important properties of the spherical geometry are listed below:

1. Since we don’t have straight lines, three great circles intersect to form a spherical triangle.

The sum of all the angles here is greater than 180 degrees and less than 540 degrees.

2. There are no parallel lines in spherical geometry, hence it is also called a non-neutral

geometry.

3. Given two similar triangles, they are congruent as well.
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3 Models for Representing Hyperbolic

Geometry

The need for a model arises to represent all the objects and to prove all the axioms of

the given hyperbolic geometry true. There are several models for representing hyperbolic

geometry. These models can be broadly classified into two categories. One of them is a

representation in the 2-dimensional Euclidean space and the other one is a representation

in the 3-dimensional Euclidean space. The Beltrami-Klein model and the Poincaré Disk

model are representations in 2-dimensional Euclidean space and are also finite hyperbolic

geometrymodels. TheWeierstrassmodel is a 3-dimensional Euclidean space representation

of hyperbolic geometry and is also an infinite hyperbolic geometry model. All these three

models and isomorphisms between them are discussed in detail in this chapter.

3.1 Beltrami-Klein Model

This model was proposed by a great German mathematician Felix Klein. This model is

a finite representation of hyperbolic geometry on a 2-dimensional Euclidean circle. Given

a circle with center O and radius OA, as seen in the Figure 3.1, all points B are considered

to lie in the interior of the circle if OB<OA. The circle is also know as the bounding circle.
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Figure 3.1: Points in Klein Model

In the Klein model all points in the interior of the circle like B, represent points on the

hyperbolic plane. The definition of a line in this model is an open chord of the circle. An

open chord here means all the points on a normal chord of the circle excluding the two

end-points on the circle. Also we know that in hyperbolic geometry given a line and a point

which is not on that line, we can get two lines passing through that point and parallel to the

first given line. The figure below shows a line l and two lines (open-chords) parallel to l

and passing through a point P.

Figure 3.2: Lines in the Klein Model
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3.2 Poincaré Model

This model was proposed by a great French mathematician Henry Poincaré. Similar

to the Klein model, in this model all points on the hyperbolic plane are represented by

points lying in the interior of a circle in the Euclidean 2-dimensional plane. This model is

sometimes also referred to as the conformal disk model. Although we have the same points

as we have in Klein model, the definition for lines in this model changes.

There are two type of lines in the Poincaré model. All the open chords passing through

the center of the circle or open diameters are lines. Here open diameter refers to a diameter

of a circle excluding the two end-points on the circle. The other lines are open arcs coming

from another circle orthogonal to the bounding circle [6] [2]. Both these types of lines are

shown in the figure below:

Figure 3.3: Lines in Poincaré Model

Compared to the Klein model, the greatest advantage of the Poincare model is that the

congruence of angles is similar to that in Euclidean geometry [6].
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3.3 Coversion of a Point between theKlein and the Poincaré

Model

Both these models represent points on the interior of a bounding circle in Euclidean

2-dimensional space. This section gives the equations to convert a vector representing a

point from one model to another.

Given a vector p representing a point on the Poincaré Disk model, the corresponding

point k on the Klein model is given by the following equation below:

k =
2p

1 + p.p

Also, given a vector k representing a point on the Klein model, a point p on the Poincaré

model can be calculated by the following equation:

p =
k

1 +
√
1− k.k

=
(1−

√
1− k.k)k

k.k

3.4 Weierstrass Model

This model is also commonly known as the hyperboloid model, since it is represented

on a hyperboloid. This model is an infinite representation of Hyperbolic geometry. In this

model all points on the hyperbolic plane are represented by points on the surface of the

hyperboloid. The figure below shows a simple hyperboloid of one sheet.
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Figure 3.4: Hyperboloid of one sheet

Here the model only takes points on the upper part of the hyperboloid. This is a very

important model and is very essential to derive the other models of hyperbolic geometry.

The following equation represents a hyperboloid:

< X,X >= x2 + y2 − z2 = −k2

Here X is a vector in the 3-dimesnional Euclidean space (x, y, z). This gives two sheets

of the hyperboloid: the upper and lower sheet. The model only uses the upper sheet as the

lower one is a mere reflection of the upper one. The new mathematical representation of

the upper sheet is as below:

< X,X >= −K2 and (z > 0)

12



All these hyperbolicmodels have isomorphisms between them. Thesemodels are isomorphic

since the points and lines in one model have corresponding similar points and lines in

another model and they also preserve properties such as incidence and congruence [6]. The

next section talks about these isomorphism relations in greater detail.

3.5 Isomorphism Between Hyperbolic Models

3.5.1 Weierstrass-Klein Model

The Klein model is obtained by projecting the hyperboloid through the origin onto the

z=1 plane [2]. The equations for that are given below:

< x, y, x > → <
x

z
,
y

z
, 1 >

The reverse from Klein to Weierstrass model projection is given by:

< x, y, 1 > → 1

1− x2 − y2
< x, y, 1 >

3.5.2 Weierstrass-Poincaré Model

Similar to theKleinmodel, the Poincarémodel can also be obtained by taking a projection

from the hyperboloid. Here the projection is through the point (0, 0, -1). The following

equation represent the projection:

< x, y, z > → 1

z + 1
< x, y, 0 >

The reverse from Poincaré to Klein model is given by:

13



< x, y, 0 > → 1

1− x2 − y2
< 2x, 2y, 1 + x2 + y2 >

The figure below shows the projection of a line from the hyperboloid to the Poincaré

model. The brown line is the line in the hyperboloidmodel and the red one is on the Poincaré

model and the projection is through (0, 0, -1) as it can be seen in the Figure 3.4 [10].

Figure 3.5: Projection from the Hyperboloid to Poincaré model
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4 Implementation

This chapter will discuss about the generation of hyperbolic tessellation and triply periodic

polyhedra in Unity-3D game engine. This chapter will also talk about how the relationship

between a triply periodic polyhedron and the corresponding hyperbolic tessellation ismodelled.

4.1 Tessellation

Tessellations are formed when a shape repeats itself over and over again on a plane with

no gaps between them. The origin of the word "tessellate" can be traced back to the Greek

word "tesseres", which means four. The early tilings were made up of four square tiles.

There are three kinds of tessellations.

4.1.1 Regular Tessellation

A regular tessellation comprises of congruent copies of regular polygons repeating itself

over a plane. All the angles of a regular polygon are equal and so are its sides. The figure

below shows examples in the Euclidean plane.
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Figure 4.1: Regular Tessellations

4.1.2 Semi-regular Tessellation

A semi-regular tessellation is created when two ormore kinds of regular polygons repeat

itself over a plane. Any important property to notice here is that at each vertex, we get the

same cyclic arrangement of regular polygons. The figure below shows some examples.
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Figure 4.2: Semi-regular Tessellations

4.1.3 Non-regular Tessellation

A non-regular tessellation has regular polygons of different sides that repeat itself over

a plane, and have no restriction on the order of polygons around a vertex.

4.2 Hyperbolic Tessellation

Once the idea of tessellation has been established, we can now talk about hyperbolic

tessellations. Hyperbolic tessellations are repeating patterns in the hyperbolic plane. These

patterns are also modelled in the finite Euclidean plane using the Poincaré and the Klein

models. These are denoted by {p,q} notation. Here p denotes the sides of regular polygons,

where q of them meet at each vertex. The condition for {p,q} to be a tessellation in the

hyperbolic plane is (p-2)(q-2) > 4. The figure below shows a {6,4} tessellation generated

by the application with polygons colored with random colors.
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Figure 4.3: A {6,4} hyperbolic tessellation with random color polygons

4.3 Mesh Generation in Unity

Everything is represented by a gameobject in Unity. A gameobject refers to the most

basic fundamental object in Unity that can represent a character, object, or an item. Every

gameobject has a mesh associated with it. Amesh represents the vertices of the gameobject.

Unity supports only two kinds of polygonal meshes: triangular and quadrilateral. To create

a mesh through code in Unity, we have to assign vertices for the gameobject. Then we

have to specify which vertices make a triangle, if we are using the triangular mesh. Finally

some texture can be applied to this object using uvs, which defines the texture coordinates

attached at each vertex. Also the normals can be defined which specifies the direction in

18



which the texture is rendered. This is explained in detail with an example. Suppose the

user wants to create a square with a red colored texture in unity using an automatic mesh

generation. The figure below shows a red square generated by a script. As it can be seen in

the figure the blue lines around the square represent the outline of the mesh.

Figure 4.4: A square generated in unity

The first step is to assign vertices for the mesh. The vertices are stored in an array of

Vector3. Vector3 is a data structure used in Unity to pass a 3-dimensional position in space.

Here the array consists of 4 Vector3’s namely (0,0,0) , (0,1,0) , (0,1,1), and (0,0,1). The next

step is to assign triangles for the mesh, which is stored in an integer array. Here we have

two triangles for the square. The first triangle has vertices 0,1,2 and the second triangle

has vertices 2,3,0. An important thing to notice here is that these vertices are assigned

clockwise. The final step is to add texture coordinates to the mesh which is defined by the

uvs. The uvs are stored in an array of Vector2. Vector2 is a data structure used in Unity to

19



sometimes assign a 2-dimensional position or assign texture coordinates. These uvs here

are simply (0,0), (1,0), (1,1), and (0,1). A uv has to be assigned for each vertex which

assigns the texture coordinate to the actual 3-dimensional point.

4.4 Generation of Hyperbolic Tessellation in Unity

This subsection talks in details about the steps required to create a hyperbolic tessellation

in Unity. The overview of the steps involved in the process include:

1. Creating an array of vertices for each hyperbolic polygon involved in the tessellation.

2. Generating hyperbolic lines between vertices for all the polygon obtained from the

previous step.

3. Applying random colors or texture to all the polygons by setting up the uvs.

These three steps are discussed in detail in the subsections below.

4.4.1 Finding vertices for all the hyperbolic polygons

The method that is used to obtain the vertices for all the polygons is heavily reliant on

the concept of inverse geometry. The first step to get all the vertices for all the polygons,

involves finding the vertices of the fundamental polygon i.e. the center polygon in the

tessellation. This can be done with the help of a circumscribing circle as shown in the

figure below.
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Figure 4.5: Fundamental Polygon and its circumscribing circle

The angle P in the figure is π/p,the angle Q is the figure is π/q and the angle R is π/2.

Based on some simple trigonometric equation developed by Coxeter [3], the coordinates

for point Q can be easily obtained. Now it is also known that all vertices have an angle of

2π/p between them. So the point Q can be rotated by an angle of 2π/p to get the coordinates

of all the vertices of the fundametal polygon.

Now once we have all the vertices of the fundamental polygon, the next step involves

obtaining vertices for all the polygons other than the fundamental polygon. This can be

achieved by reflection of the obtained vertices across the hyperbolic lines. An important

thing to observe here is that these hyperbolic lines are circular, so the reflections around

these lines is just the inverse of a vertex with respect to the circumscribing circle. The

figure below explains this in a greater detail.
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Figure 4.6: Inverse of a point on the fundamental polygon

The figure show the reflection of point P, a vertex of the fundamental polygon to get the

vertex P' of a polygon in the next layer. Similarly if we do this reflection for other points

of the fundamental polygon with respect to the hyperbolic line shown in the figure we get

vertices for one polygon in the layer next to the fundamental polygon. If we keep doing

this for other hyperbolic edges of the fundamental polygon, we can get vertices for other

polygons in the next layer.

4.4.2 Generation of Hyperbolic Lines

Once we have all the vertices for all the polygons, the next step in the process is to

generate hyperbolic lines between these vertices that we just obtained from the previous

step. It is know that lines in the Klein model are straight lines. Also Unity renders meshes

in the form of triangles. Now suppose we have to create a hyperbolic line between two

Poincaré points obtained from the previous step. We can first convert these points to
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Klein points. Now there is a straight line-segment between them. We can subdivide this

line-segment in more points between them. Now when we convert all these points back

to Poincaré points we have a hyperbolic line between the two original points. The below

figures explain this in more detail.

Figure 4.7: Before subdivsion
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Figure 4.8: After subdivision

The first figure shows the stage where the vertices are converted from the Poincaré to

the Klein model. In the Klein model we have a straight line-segment between two points as

shown in the figure titled Before subdivision. Now it is very easy to divide a line-segment

into more than 2 points between them. We divide each of the line-segments between every

two pair of vertices of the polygon into 15 points between them. Now when these are

converted back into Klein model we get hyperbolic lines betweeen them. This is evident in

the Figure 4.8.

4.4.3 Assigning Texture or Random Color to Polygons

The final step is to assign a texture or add random color to each polygons. To assign a

texture we have to assign texture coordinates to all vertices generated in step two after the

subdivide step. Similar to the subdivision of vertices in the second step, a similar function
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is used to set up these texture coordinates for all the vertices. Once these uvs are set up, the

Unity game engine can easily attach texture to all the polygons desired. To assign random

color to each of the polygons we can simply give random color to the gameobject's mesh

renderer.

4.5 Generation of Triply Periodic Polyhedron in Unity

In geometry a polyhedron is defined as a solid figure consisting of many planar faces.

A triply periodic polyhedron sometimes also referred to as infinite skew polyhedron is

a 3-dimensional structure containing regular polygonal faces and stretches infinitely in

all 3-dimensions. They are represented by the modified Schläfli symbol {p,q|r}. Here

"p" denotes a regular p-gon face, where "q" of them meet at each vertex, and they have

regular "r" sided polygonal holes between them. The basic idea in the creation of a triply

periodic polyhedron in Unity is to create its regular polygon first, using the mesh generation

technique already mentioned in a previous section. Then the idea is to replicate this basic

building block at different positions and different angles to create the triply periodic polyhedron.

This is explained in more detail using the {4,6|4} triply periodic polyhedron as an example.

The figure below shows the {4,6|4} triply periodic polyhedron with the angels and demons

pattern on it generated by the application.
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Figure 4.9: The {4,6|4} triply periodic polyhedron

The first step to create a {4,6|4} triply periodic polyhedron is to create its very basic face

which is a square. Using the values of p,q i.e. 4 and 6, the Poincaré points of the centre tile

in the hyperbolic tessellation are obtained from steps previously mentioned. These points

when taken in the Klein model give the equivalent points for a face in the triply periodic

polyhedron. Once we have the 4 vertices of the square face, we can easily obtain the centre

of the square using a simple mathematical equation which is the sum of all the vertices

divided by the number of vertices. Now the idea is to break this square into 4 triangles each

containing two vertices and the centre of the square. Now we add all these points in the

Vector3 array. The figure below explains this in much detail.
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Figure 4.10: A Square face of the {4,6|4} polyhedron

The figure above shows a square with vertices A,B,C and D and the centre O. Once

we have all these points stored in Vector3, we can create an array of Vector3 consisting of

them. We can add them in the order of the triangles needed. The Vector3 array consists

of A,B,O for the first triangle, then B,C,O for the second, C,D,O for the third and D,A,O

for the fourth and last triangle. Once we have this vertex array set up for the mesh, we can

assign the triangles for the mesh. Since we have to add the vertices in the order for the

triangles to be setup easily, the triangles integer array in the mesh is just numbers 0 through

11. Now the final step is to assign a texture to it. The figure below show the angels and

demons pattern which is attached to the triply periodic polyhedron.

Figure 4.11: Angels and Demon pattern
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The idea here while assigning the uvs to the mesh is to assign a texture coordinate for

each vertex defined in the vertices array. So for points A,B and O in the square above these

coordinates will be (0,1),(1,1) and (0.5,0.5) respectively. Also these texture coordinates i.e.

uvs are stored in Vector2 array. Similarly it can be done for all other vertices. Once this

is done we will have a square face for the {4,6|4} triply periodic polyhedron rendered in Unity.

Now this face can be replicated, rotated and translated to generate a very basic block of the {4,6|4}

triply periodic polyhedron. To replicate a gameobject in Unity the following function can be used.

1 I n s t a n t i a t e ( gameobject_name , new_pos i t i on , r o t a t i o n ) ;

Here the instantiate function takes in three arguments. The first argument is the gameobject

name that is to be replicated, the next argument is a Vector3 which specifies the new position of

the gameobject and the final argument in a Quaterion which is used in Unity to specify a rotation.

Using the third argument we can specify the rotation associated with the new gameobject. The figure

below shows such a block generated in Unity by code with one of the meshes highlighted in blue.

Figure 4.12: A block of the {4,6|4} triply periodic polyhedron
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Also this block can be replicated and translated to create an infinite triply periodic polyhedron

using the basic function specified before.

4.6 Relation Between Hyperbolic Tessellation and Triply

Periodic Polyhedron

Polygons in hyperbolic geometry have a negative angle defect. This arises when the sum of all

angles of a hyperbolic triangles is less than the usual 180 degrees in the Euclidean geometry, or when

the sum of all angles of a hyperbolic quadrilateral is less than the usual 360 degrees. Dr. Dunham

noticed the presence of these negative angle defects in the triply periodic polyhedrons, hence they

can also be known as 3-dimensional hyperbolic tessellations [4]. This section aims to explain how

this relationship has been modelled.

In the programwe have two kinds of interactivemechanismswhich clearly and very easily depict

the relation between a hyperbolic tessellation and the corresponding triply periodic polyhedron. We

represent them via the {4,6} hyperbolic tessellation and the {4,6|4} triply periodic polyhedron.

4.6.1 Modelling the relation with Line Renderer

The first mechanism which allows us to model the relationship between a hyperbolic tessellation

and the corresponding triply periodic polyhedron, is using the line renderer available in Unity. A

line renderer in Unity allows the user to add a line of variable width between any two user defined

points. The figure below shows an image of the {4,6} hyperbolic tessellation and the {4,6|4} triply

periodic polyhedron along with the line renderer.
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Figure 4.13: Modelling the Relationship with Line Renderer

As it is visible in the figure, the pink lines are generated via the linerenderer. Also the current

polygonal face in the triply periodic polyhedron is highlighted based on the mouse position shown by

the red sphere. Along with this polygonal face, the corresponding tile in the hyperbolic tessellation is

also highlighted. The user has the ability tomove themouse pointer on the triply periodic polyhedron

and based on the polygonal face selected by the mouse pointer location, the width of the linerenderer

increases to highlight the selected polygonal face.

4.6.2 Modelling the relation with Mouse Position

The other mechanism which allows us to model the relation between a hyperbolic tessellation

and the corresponding triply periodic polyhedron is with the help of a small sphere, whose position

can be changed in the hyperbolic tessellation with the help of the mouse pointer. The figure below

shows the red sphere in the hyperbolic tessellation and the corresponding yellow sphere in the triply
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periodic polyhedron.

Figure 4.14: Modelling the Relationship with Sphere

The user has the ability to interactively move the red sphere in the hyperbolic tessellation. The

user has to take the mouse pointer over the sphere to pick it. Now based on the position of the mouse

pointer the sphere moves and this motion is only limited to the faces highlighted by the pink line

renderer. The corresponding movement based on this is shown by the yellow sphere in the triply

periodic polyhedron. To achieve this, some basic transformations have been applied which also

depends on the tile in the hyperbolic tessellation.

For the center polygon we get the Poincaré point based on the position of the red sphere. Now if

we convert this point to the corresponding Klein model point, we get the position of the point where

the yellow sphere should be place in the triply periodic polyhedron. Finally, we have to select the

appropriate tile and place the yellow sphere at the point given by the point in the Klein model.

Finding the corresponding point in the triply periodic polyhedron, for all the other polygons in

the hyperbolic tessellation is slightly more complicated. The following steps give an overview to get
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the equivalent representation in the triply periodic polyhedron for the hyperolic tessellation point.

1. First the point or the position of the red sphere which is in the Poincaré model is converted into

a point in the Weierstrass model.

2. Now based on the polygon in which the point lies, a transformation is applied in this model to get

the corresponding equivalent point in the center polygon in the Weierstrass model.

3. Now this point in transformed back into the Klein model, which gives us the position of the point

from the center of the corresponding polygon in the triply periodic polyhedron, representing this

hyperbolic polygon. This is the position where the yellow sphere is placed.

The transformations used in these steps include rotations around the edge of the fundamental

polygon and around the hypotenuse of the fundamental polygon. These also include some basic

rotations around the x,y and z axis. The following are these matrices.

Reflect_Edge =

⎡

⎢⎢⎢⎢⎣

−cosh2q 0 sinh2q

0 1 0

−sinh2q 0 cosh2q

⎤

⎥⎥⎥⎥⎦

Reflect_Hyptoenuse =

⎡

⎢⎢⎢⎢⎣

cos(2π/p) sin(2π/p) 0

sin(2π/p) −cos(2π/p) 0

0 0 1

⎤

⎥⎥⎥⎥⎦

Reflect_EdgeBisector =

⎡

⎢⎢⎢⎢⎣

1 0 0

0 −1 0

0 0 1

⎤

⎥⎥⎥⎥⎦

The Reflect_Edge matrix when multiplied to a point, gives the reflection of that point with
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respect to an edge of the fundamental polygon. The Reflect_Hypotenuse matrix when multiplied to

a point, gives the reflection of that point with respect to the hypotenuse of the fundamental polygon.

The Reflect_EdgeBisector matrix when multiplied to a point, gives the reflection of that point with

respect to the edge bisector of the fundamental polygon. In these matrices the values of p and q

come from the {p,q} hyperbolic tessellation. These matrices are obtained from the paper Creating

Repeating Hyperbolic Patterns [5]. Some other rotations by θ are also performed. The matrix for

that is specified below.

Rotate_θ =

⎡

⎢⎣
cos(θ) sin(θ)

−sin(θ) cos(θ)

⎤

⎥⎦

This matrix when multiplied to a Poincaré point give the final point rotated by θ degrees.
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5 Graphical User Interface

The C# application created allows us to create different hyperbolic tessellations by specifying

the values of p and q. It also allows us to create two kinds of triply periodic polyhedrons, the {4,6|4}

polyhedron and the {6,6|3} polyhedron. The application also models the relationship between the

hyperbolic tessellation and the triply periodic polyhedron via simple interactive features. This

chapter gives some details about the Graphical User Interface associated with the application.

On starting the application, the user gets a screen with three buttons on it. One of the button is

for the hyperbolic tessellation, the other is for the triply periodic polyhedron and the final button is

the modeling button. The figure below shows the starting screen of the application.

Figure 5.1: Starting Screen of the application
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When the user clicks the hyperbolic tessellation button, option to enter the values for p and q

come up. The user has to enter desired values of p and q and click the Go button. When the go button

is clicked the hyperbolic tessellation is generated with polygons filled with random colors. The

figure below shows the screen when the hyperbolic tessellation button is clicked, with the options

to add values of p and q for the {p,q} hyperbolic tessellation.

Figure 5.2: Options to setup the hyperbolic tessellation type

When the user clicks the triply periodic polyhedron button, two buttons to select the type of

triply periodic polyhedron come up. The user can click on the type of triply periodic polyhedron

desired, and the triply periodic polyhedron selected comes up with its polygonal faces colored with

random colors. The figure below shows the screen when the triply periodic polyhedron button is

clicked, with the options to select the type of triply periodic polyhedron.
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Figure 5.3: Options to select the type of triply periodic polyhedron

When the user clicks the modelling button, the application screen is split into two, one showing

the {4,6} hyperbolic tessellation and the other showing the {4,6|4} triply periodic polyhedron, both

with the angels and demons pattern on it. There are two simple mechanisms in the application that

model the relationship between them, which are already mentioned in detail in the previous chapter.

The figure below shows the split screen when the modeling button is clicked.

36



Figure 5.4: Split-screen showing the hyperbolic tessellation and the corresponding triply
periodic polyhedron
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6 Results

This section illustrates the results generated by the C# application created in Unity game engine.

This application provides a simple interface to specify the values of p and q to generate a {p,q}

hyperbolic tessellation. This application also allows the user to select some pre-defined triply periodic

polyhedrons. Some applications have been created to generate hyperbolic tessellations using the C,

C++, and Java programming language. This is the first application that allows the creation of both

hyperbolic tessellations and triply periodic polyhedrons. The application also models the relation

between a hyperbolic tessellation and a corresponding triply periodic polyhedron. The figures below

show some screenshots of the hyperbolic tessellations and triply periodic polyhedrons generated by

the application.
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Figure 6.1: A {4,6} hyperbolic tessellation with 3 layers and randomly colored polygons
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Figure 6.2: A {6,6} hyperbolic tessellation with 3 layers and randomly colored polygons
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Figure 6.3: A {8,3} hyperbolic tessellation with 3 layers and randomly colored polygons
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Figure 6.4: A {10,3} hyperbolic tessellation with 3 layers and randomly colored polygons
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Figure 6.5: A {10,3} hyperbolic tessellation with 4 layers and randomly colored polygons

43



7 Conclusions

The main focus for this thesis was to create an application that allows the creation of hyperbolic

tessellations and triply periodic polyhedrons. A few applications allow us to create hyperbolic

tessellations, but are slightly complicated to operate. This application is very simple and intuitive

to use. The application also has a section which models the relationship between a hyperbolic

tessellation and a corresponding triply periodic polyhedron. This modelling is represented with

simple and intuitive features. This application gives the user the ability to specify p and q to create

the {p,q} hyperbolic tessellation. The modelling section also has the angels and demons patterns

attached to both the hyperbolic tessellation and the corresponding triply periodic polyhedron.

The application can be extended to allow user to add the values of p,q and r and generate the

{p,q|r} triply periodic polyhedron, provided the values are valid. The application can be extended

to support more textures in addition to the angels and demons patterns. The application can be

also extended to allow the creation of some texture which can then be applied to these hyperbolic

tessellations and triply periodic polyhedrons. Also, the application can be extended to support the

modellingwith the help ofmore hyperbolic tessellations and corresponding triply periodic polyhedrons.

Finally, since Unity has great support for viewing 3-D object using the Oculus rift, the triply periodic

polyedrons can be viewed using the Oculus rift. The application can have features to add some

textures inside the triply periodic polyhedrons, which can then be seen using the Oculus rift.
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