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Abstract

This work examines two aspects of Monte Carlo Tree Search (MCTS), a recent
invention in the field of artificial intelligence.

We propose a method to guide a Monte Carlo Tree Search in the initial moves
of the game of Go. Our method matches the current state of a Go board against
clusters of board configurations that are derived from a large number of games played
by experts. The main advantage of this method is that it does not require an exact match
of the current board, and hence is effective for a longer sequence of moves compared to
traditional opening books.

We apply this method to two different open-source Go-playing programs. Our ex-
periments show that this method, through its filtering or biasing the choice of a next
move to a small subset of possible moves, improves play effectively in the initial moves
of a game.

We also conduct a study of the effectiveness of various kinds of parallelization of
MCTS, and add our own parallel MCTS variant. This variant introduces the notion of
using multiple algorithms in the root version of parallelization. The study is conducted
across two different domains: Go and Hex. Our study uses a consistent measure of
performance gains in terms of winning rates against a fixed opponent and uses enough

trials to provide statistically significant results.
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Chapter 1

Introduction

In the early years of the 21st century a new approach to solving search problems and
playing games which are not amenable to traditional tree search algorithms has arisen.
This approach uses a stochastic method called Monte Carlo search to evaluate nodes
in a game or search tree. The principle of stochastic evaluation is to score a node in a
tree not by using a heuristic evaluation function, but by playing a large number of test
simulations using randomly chosen actions starting at the node to be evaluated out to
the end of the game or simulation.

The ancient game of Go has been a grand challenge in the area of artificial intelligence
for decades because it remains resistant to traditional game search techniques which have
proven successful in other games such as Othello, checkers, and chess. The size of the
search space along with the lack of heuristics to rate positions and moves meant that
some other way would need to be found. The use of Monte Carlo methods has proven
to be the key to progress in tackling Go, with a program named “AlphaGo” [1] finally
achieving the milestone of defeating the top-ranked professional Go player in the world,
Lee Sedol, in a highly anticipated tournament in March of 2016. AlphaGo uses a deep
neural net to learn from expert human games and uses reinforcement learning to learn
a policy network from self-play. Monte Carlo Tree Search is then guided by the learned
probability distribution over moves and by a value network which predicts the expected
outcome for positions played using the policy. Most of advancements in the methods of
this dissertaion have been developed in this domain.

In this work we look at two different aspects of Monte Carlo Tree Search (MCTS).
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First we improve performance at the beginning of the game of Go through a novel
form of opening book which advises the Monte Carlo search. Then we examine the
gains which are afforded by parallelization of the Monte Carlo Tree Search algorithm in
the domain of Go and another game called Hex, along with introducing a new way to
parallelize it.

We introduce SMARTSTART, our method which improves Monte Carlo search at
the beginning of the game of Go, where its search tree is at its widest and deepest.
This method uses expert knowledge to eliminate from consideration moves which have
not been played by professional Go players in similar situations. We create a multi-
element representation for each board position and then match that against clusters of
professional games. Only those next moves which were played in games in the closest
cluster are allowed to be searched by the Monte Carlo algorithm. This is a fast filter
because the clusters of the professional games are calculated ahead of time. By pruning
a large proportion of the options at the very beginning of a game tree, stochastic search
can spend its time on the most fruitful move possibilities. Applying this technique has
raised the win rate of a Monte Carlo program by a small, but statistically significant
amount.

We examine the results of parallelizing the MCTS algorithm. Although increasing
the amount of time to build a tree using MCTS increases the quality of the results,
this may in some cases be impractical or disadvantageous. Previous studies comparing
parallelization have suffered from either using too few trials to achieve a reasonable
statistical significance, or have used indirect measures of the effectiveness. We compare
the root and tree methods of parallelizing against increasing the amount of time available
using the winning rate of the programs as the efficacy measure. These comparisons are
made not only in the domain of Go, but also in the game of Hex where MCTS has
been applied successfully. Our results show similarities but also some differences in
how parallelization affects MCTS performance across these different domains. We also
introduce a new variant of root parallelization which utilizes multiple algorithms, or
multiple parameters, in order to increase the diversity of the separate trees constructed.

The contents of this thesis are arranged as follows,

e Chapter 2 describes the games of Go and Hex, which are the domains over which

the algorithms will be run.
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e Chapter 3 first looks at tree search as applied to games, then the ideas of Monte
Carlo Tree Search (MCTS). Finally we describe the various ways of dividing up

MCTS work into sections that can be executed concurrently (parallelization).

e Chapter 4 is a review of the previous work and literature on computer Go, MCTS,

MCTS parallelization and computer Hex.

e Chapter 5 is our explanation of the work to incorporate a novel kind of Go open-
ing book into a MCTS program, which we call SMARTSTART. We describe the
shortcomings of current opening book procedures, how our procedure avoids these
in addition to the details of how SMARTSTART works. We document how applying
this has improved the winning results in tournament play against other computer

programs.

e Chapter 6 describes our study and comparison of parallel MCTS techniques. We
also describe a new approach to parallelizing MCTS and compare the results of

this new approach to current approaches.

e Chapter 7 summarizes the conclusions from our work and describes future work

in these areas.



Chapter 2
Go and Hex Game Descriptions

Both Go and Hex are games played by humans against each other as entertainment and
a mental challenge. Both games are also widely used as a test of artificial intelligence

techniques. The game of Go has a much longer history and is better known than Hex.

2.1 The game of Go

Go is a two-player, perfect information game played using black and white stones on a 19
by 19 grid of lines, with the black and white players placing single stones on alternating
turns. It is called Weiqi in Chinese, Baduk in Korean, Igo or Go in Japanese.

This traditional board game has been played in its current form for many centuries.
It was invented in China over 2000 years ago, having been mentioned in written texts
as early as 400 B.C. Legend has it that the emperor Yao, who ruled around 2000 BC,
created the game to help improve the mental acuity of his son and teach him discipline.
From China it was exported to Japan by 300 AD, and also to Korea and many other
parts of southeast Asia. A simple set of rules leading to very deep and difficult to
understand strategies, along with the aesthetic appeal of the board and stones are some

of the reasons for the game’s enduring appeal.

2.1.1 Game Rules and Play

Go is played by placing black or white stones on a 19 x 19 grid of lines, with the black

and white players alternating turns and black moving first (Figure 2.1). Once placed,

4



5
the stones are not moved around on the board as are the playing pieces in other games
such as chess, checkers or backgammon, but remain in place until the end of the game,
or until they are removed by capture. A player may elect not to place a stone by passing
on his or her turn. The game ends when both players have passed in succession and the

winner is the player who controls the most territory.

®
\

©

L3 JuSaat Snanantas

(a) Empty 19 x 19 Board. (b) Beginning Game.

Figure 2.1: Example Go boards.

The object of the game is to surround or control the territory on the board. This
is done by walling off sections of the board with stones of one’s own color so that the
opponent cannot create a living group of stones within your controlled area. A stone or
group of stones is alive, or avoiding capture, if it is connected via a line (not diagonally)
to an open intersection on the board. The connection must either be direct or through
one’s own stones. It is thus possible to capture enemy stones by denying them access
to an open intersection, also called an eye point. For example, a single stone can be
captured by placing four enemy stones on each of the adjacent intersections.

Only two rules restrict the placement of a stone. The first rule is a no-suicide rule:
a player may not place a stone that would cause the immediate capture of the player’s

stone or group of stones. Since one gauges the effects on the opponent’s stones first,
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however, there are many moves which capture an opponent’s group which temporarily

would violate this rule.

White to Play Not allowed Allowed Capture Result

Figure 2.2: Allowable moves

In the situation seen in Figure 2.2, white is not allowed to play at @ because the
black group still has a liberty (an open intersection) remaining at a. Because of this
remaining liberty for black, white’s play at @ would result in the white stone being
immediately removed from the board. However, if the black group has no other liberties,
then the move at (1) would be legal as shown in the third diagram above, because it
results in the capture of the black stones that surround it.

The second rule prevents the repetition of a previous position on the board. This
rule is called the “ko” rule, as it prevents an infinite sequence of recaptures from a

position as shown in the following diagram.

il il >+ > |

Beginning of Ko White Captures  Black Recaptures White Fills the Ko
Figure 2.3: Ko rule
The ko rule prevents the third move in the sequence in Figure 2.3, which would

lead to an exact repetition of a board position if allowed. Black, instead of recapturing,

must play elsewhere on the board (often called a ko threat), allowing white the choice
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of either filling in as shown in the fourth move of Figure 2.3, or replying to black’s move
and allowing black to retake the ko.

When the game begins on an empty board, players place stones in strategic locations
all across the board, attempting to outline areas of control, called “moyo” in Japanese.
Since it takes the fewest stones to surround area in the corner of a board, initial stones
are always placed first to take control of the corners, then along the sides, and finally
towards the center (where it takes the most stones to surround a given amount of
territory). Each player’s choices affect the placement of the other player’s, and the
configuration of stones in one corner can have an effect on how to best place one’s
stones even on the opposite side of the board. Although the first moves in the game are
often placed very loosely, there will be occasional sequences of stones placed adjacent to
each other in a local battle for control. When they occur in a corner early in the game,
the best tactics to use in particular situations have been studied enough that there
are many books of move sequence collections from which people may study. These set
sequences are known as “joseki” (fixed stones) in Japanese.

As the game progresses into the middle game (past the twentieth or thirtieth move,
for example), the opponents engage in battles all around the board, often trading ter-
ritory they may have thought of as theirs in one area, for greater influence in another.
Influence is often created by building up walls of stones facing in a particular direction,
and then using the wall to either surround a large area nearby, or attack an opponent’s
nearby moyo.

Once the board has been almost filled with stones, with both sides having recognized
territories under their control, the end game consists of very short sequences of moves
which define the very edges of conflicting territory, often just a point or two at a time.

The game ends when both players have passed in succession. At that point the
amount of territory controlled by each player is counted: in the Japanese system only
the open territory is counted, and captured stones are subtracted from this amount.
Under Chinese rules, captured stones are ignored, and all territory (stones and controlled
intersections) are scored. The scoring systems produce equivalent results, with a possible
one stone variance [2]. To offset the first-move advantage of the black player, a “komi”
of 6.5 points or 7.5 points is granted to white: thus black must win by eight points in

order to secure a 1/2 point victory when the 7.5 point komi is in effect.
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In addition to playing on a 19 x 19 board, the game can also be played on boards
of smaller sizes. Two common sizes for playing shorter, or training games, are 13 x 13

and 9 x 9. These sizes are also used to test out computer go programs.

2.1.2 Player Skill Levels and Handicap Play

At all skill levels of play, amateur players are ranked according to a system which ranges
from 30 to 1 kyu, and then 1 to 7 dan. A person with a rank of 30 kyu is considered
to be someone who has just learned the rules, and a 7 dan is one of the top amateur
players of the game. Additionally, professional players are ranked on a separate scale
from 1 to 9 dan, such that a top-ranked amateur (7 dan amateur) would be equivalent
to a 1 kyu or 1 dan professional.

In order for players of different strengths to play an interesting game and have an
equivalent chance of winning, Go has a handicap system which gives the black player
from 2 to 9 stones placed in pre-determined spots on the board in lieu of black’s first
move (Figure 2.4). Typically an extra stone is given for each one or two levels of
difference in the player’s ranks. For example if a 2 kyu played against a 10 kyu, the 2
kyu player would take white and give a 4 to 8 stone handicap to the 10 kyu player.

\ \ \ \ \ \ \ \

ol e ol e o e e e

° e o |||® ° o

it Bk T Yo
\ \ \ \ \ \ \ \

2 Stone Handicap 5 Stone Handicap 6 Stone Handicap 9 Stone Handicap

Figure 2.4: Handicap system: pre-determined configurations

Among professional players, however, dan-ranked players do not play handicap
games with one another. Thus many even games (games with no handicap stones
placed on the board) are played between players with differing rankings, sometimes as

great as 8 levels of rank.
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When a handicap game is played, the stronger player, always playing white, must
play more aggressively than they might against an equally ranked opponent in order to
overcome the advantage of the initially placed stones for black. The white player must
take risks, such as leaving a group undefended, or conducting what might normally be
a risky invasion of territory, in hopes that the weaker player will not play optimally,
leaving the stronger player with the advantages accrued from the bold playing style.
In addition to the traditional kyu and dan ranking system, a rating system similar
to that commonly used in the chess world based on the work of Elo is used, especially
on public go servers. The Elo system generally has ratings from 0 to about 3000 points.
The point difference between two players represents the probability of winning. If two
players have an equal number of Elo points, the probability for each is 50%, while a
100 point difference means the stronger player should win 64% of the time, a 200 point
difference yields a 75% win rate, and so on, based on a normal distribution where the
standard deviation is 200v/2 points. Using this system, a 7 dan amateur, or 1 dan
professional would have a 2700 Elo rating, while a 1 dan amateur would be 2100, an 11

kyu would be 1000, and a beginner at 20 kyu would have a rating of 100 Elo.

2.2 The game of Hex

The game of Hex is a two-player perfect information game played by marking control of
hexagonal cells on an n x n grid. The object of the game is to create a path of connected
hexagons across the board, typically from top to bottom for black and left to right for
white. This connection game can be played on a grid of hexagons of any size, the most
common of which are 9 x 9 and 11 x 11.

The game was invented independently by both the Danish mathematician Piet Hein
and John Nash in the 1940s. The game is similar to others invented at the same time
such as Havannah.

The examples in figure 2.5 show a 9 x 9 board. The empty board is shown, and then
a game won by white. The game can only be won by one of the two players, as there is
no possible board configuration that would be considered a draw. Additionally, it must
be won by one of the players, as there is no way to fill up the board entirely without

either a black connection or a white connection occurring as shown by John Nash: there
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(a) Empty Board (b) White Victory

Figure 2.5: Example 9 x 9 Hex Boards

is no way to completely block one’s opponent without forming a side to side connection
oneself.

The player using the black pieces plays first, and can gain a significant first move
advantage. Because of this, the game as played between humans usually includes a rule
called the pie rule. After the first move has been placed, the second player has two

options:
1. Let the move stand, play a move and continue as the second player.

2. Switch places and become the first player. The original first player now becomes
the second player and plays the second move, and the game continues with the

players in the swapped roles.

This rule acts as a normalizer, as the first player will typically not choose a move that
is too strong since the second player would then choose to steal that move, putting the
first player at a disadvantage of their own creation. In computer tournaments another
solution is to have both players begin the game with fixed positions, one game for each
possible starting move on the board. Thus for a 10 x 10 board, one game would be
played for computer A beginning on hex 1-1, another for computer B beginning on hex
1-1, another for computer A beginning on 1-2, and so on for a total of 200 games: 100
for each color starting from each cell on the board. A complete set of these games
is considered a single round of the tournament. Since many of the positions confer
significant advantages or disadvantages, the pair of games starting from those positions

will tend to be split leading to 50% win rates over many of the possible starting moves.
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(a) Connecting Jump (b) Edge Connections (¢) Connection Complete

Figure 2.6: Example Virtual Connections

One of the strategies in the game is making unbreakable links between cells that are
two cells apart by making sure there are two connection options, as shown in Figure
2.6. This is often called a virtual connection, as a connection can be made even if the
opponent moves first. In Figure 2.6(a), black’s two pieces are connected with each other
by a virtual connection. If white were to play in one of the dotted cells, black could
occupy the other to complete the connection. In (b), black has a connection to the NW
side of the board for the same reason from cell d2, but also has a connection to the
SE side from cell d5 even though there are two intervening cells to the side. This is
because if white were to play at c7 with an obvious blocking move for a direct virtual
connection, black can play at either e6 or b6 as shown in (c), thereby completing virtual
connections to both the edge and the current position at db.

Much like Go, Hex is a game of very simple rules but complicated strategies and

deep analysis must be used in order to win.



Chapter 3

Monte Carlo Tree Search

In this chapter we first take a quick look at how computers think about making choices
in games using a search tree, and then describe the recent development of a variant of

that process, which is known as Monte Carlo tree search.

3.1 Tree search in games

When computers need to choose an action in a game they traditionally pick the best
action by constructing what is called a game tree. The tree consists of nodes, each
representing a state of the game. Each node is connected to children nodes which
represent the state of the game after a single action has been taken and also connected
to its parent node which represents a state just before the action which led to the current
state.

To choose an action, a computer will construct a tree by beginning at the current
state and creating nodes representing all the possible states of the game after a possible
next move and connect them as “children” of the current state. From each of these
children, then, more child nodes are creating representing the possible game positions
after another move, and so on. If carried out to the end of the game, this would
represent a full game tree. These trees can become quite large as they represent every
possible outcome beginning at the current state. For example, even the simple game of
tic-tac-toe, with its decreasing number of options at each move, has a large full game

tree when beginning at the empty board. There are nine children of the empty board,

12
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X X X
X X X
X X X
X[o x| To] [x
0
x[o[x] [x[o X0
X X

Figure 3.1: Portion of game tree for tic-tac-toe game.

eight children of each of those children, seven for each of those, and so on. At the ninth
level down there are 9! = 362, 880 terminal nodes in the tree, each representing the final
state of the game played out by each chosen move following the path from the root node
down to that terminal node. Part of the tic-tac-toe game tree is shown in Figure 3.1.
Note that there are 9! nodes in the bottom, final layer of the tree, but there are also 8!
nodes in the layer above that and so on, so the total number of nodes in this tree is the
sum from 1 to 9 of n!.

The number of options available from any given node is what is known as the branch-
ing factor. In the case of tic-tac-toe, the branching factor varies from 9 down to 0. In
most games and their trees, the branching factor also varies, typically becoming nar-
rower as the game progresses, but not always. For example the first move in a game of
chess has exactly 20 options, but later in the game after some pawns have been cleared
from the board, there are often many more options, sometimes with 14 options for just
one of the pieces (a rook or bishop) alone.

There are some interesting properties to note about game trees. First of all, most
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trees will not have an even depth. Even a tic-tac-toe tree is not really even, since the
result of the game was determined before the ninth move in most of the games. There
is no reason to actually continue expanding nodes after the result of the game has been
determined, and no such continuation takes place in most game trees. Secondly, it is
possible that two different nodes in the tree will describe exactly the same state of
the game. These two identical states will have been arrived at through different move
orderings, and so will appear in different sections of the tree, but if the current state is
the full description of the game, regardless of prior move ordering, then these identical
states are called transpositions, and can really be collapsed into a single node, since the
sub-trees under them will be identical.

Once a tree has been built, it is used to determine the computer’s next move. In
order to do this, the computer must determine which of the immediately following nodes,
those at the first level, is the best.

If the tree is completely filled out so that each path ends at a completed game (which
is possible for games as small as tic-tac-toe) then each terminal node, also called a leaf
node, that is a win for the computer player would be given a score of 1, each loss a score
of zero and each draw a score of 0.5. Using a procedure called min-max, we can proceed
from the bottom up assigning scores to non-leaf nodes in the following fashion. If the
child nodes represent the choice of the the opponent the parent node must be given the
minimum score of all its children, since we assume that the opponent will play the best
move for it and thus the worst for the computer. If the child nodes represent the choice
of the computer, then the parent node will be given the maximum score available from
its children, since the computer is allowed to choose the best option available to it. This
process allows us to fill in the values moving up the tree until finally at the very top
level, the computer picks the maximum of its immediate children as the next move. In
this fashion the computer will be able to pick the best move at each point in the game,
and achieve what is known as perfect play.

Most of the time, however, it is not possible to create a full tree due to the branching
factor of the game and the depth of the tree. When this is the case, it is still possible to
create a partial game tree to build an approximation of the best move. This is done by
using a static evaluation function to give an approximate value to a game state which is

not a final, or end of game state. This static evaluation function allows the computer to
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distinguish game states which are better or worse for it without having to read forward
to the end of the game. The computer can build out the tree to chosen depth, and then
use the static evaluation function on all the leaf nodes, and then as before use the min-
max algorithm to propagate these values up the tree, allowing the choice amongst the
next available moves from the root (current position) of the tree. The closer the static
evaluation function is to the true value of the game state, the better this algorithm will
function. Indeed, if there were a perfect evaluation function available for a game, one
would not have to build a tree at all: simply expand the current state to all possible
successor states, apply the function to each of those states, and then pick the option
with the highest function value.

Since game trees can become very large, computer algorithms often will eliminate
parts of the tree from consideration if it would be impossible or unlikely to find a solution
in that branch of the tree. This process is called pruning the tree. One improvement on
the min-max algorithm, called alpha-beta (a— ) [3], eliminates from the tree some sub-
trees that cannot produce better results than their siblings by running the evaluation
function at each level and then not pursuing those sub-trees where a sibling node has
already shown that it can achieve a better result. This pruning allows the computer to
spend its time doing evaluations in more promising parts of the tree at greater depths,
where the evaluations should be more accurate. The efficiency of @ — 8 depends on the
order in which subtrees are evaluated, however, since the more promising subtree has

to have been discovered first in order for a later less promising one to be pruned.

3.2 Monte-Carlo Methods

When a search tree is too large, or a reasonably fast and accurate static evaluation
function is not available, traditional min-max search will fail to deliver good results. In
these cases another way to get an evaluation of the node is to use stochastic sampling.
For the game of Go this was first proposed by Briigmann in 1993 [4], and completes
games with random move sequences to the end of the game many thousands of times

from a given position.
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3.2.1 Flat Monte Carlo

The basic idea of stochastic sampling methods (named Monte Carlo for the gambling
reference) is to assign a value to a game state by playing random legal moves starting
from the game state in question until the end of the game where a win or loss can be
determined. These move sequences to a terminal state are called a playout. Because
this process tends to be rather fast, a large number of playouts can be executed for each
game state that needs to be evaluated. For example, executing one thousand playouts
(that is, one thousand independent randomly played games to completion) from each
node that needs an evaluation. Each of these nodes then will have a score based on
how many of the playouts resulted in victories for the computer player divided by the
number of playouts from that node. Alternatively the score can be based on the amount
of the win or loss, if that information is available in the game [5]. For example in Go
the game can be won or lost by a certain number of points, while in Hex the result is
simply a win or a loss. If the playouts are distributed in an even fashion across all the
possible actions for the computer, this is called flat Monte-Carlo search. As an example
imagine our tic-tac-toe game again. For each of the nine possible moves we would play
one thousand games with random choices until the end of the game. We thus have a
random sampling of the possible results in each of the nine sub-trees, and we can pick
whichever of these samplings shows us the best result. In our small tic-tac-toe game
this is a fairly large sampling (1000 out of about 40000 possible games in each of the
nine branches). As the trees get larger, however, the sample size gets proportionally
smaller, and does so quite quickly. Even on a very small Go board of 7 x 7, there are
48 options for move 2, 47 for move 3 and so on. Though not all will be legal, there will
be therefore on the order of 47! = 2.5 x 10° possible games, so our 1000 games will be
a very small sampling indeed.

Flat Monte Carlo evaluation does produce results, but is handicapped by a number of
shortcomings. Because so many playouts are spent on exceptionally suboptimal moves,
it does not scale well. Additionally, there are situations in which an incorrect move will
be more likely chosen even as the number of playouts increases, due to the lack of an

opponent model [6].
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3.2.2 Exploitation versus Exploration

We are often constrained by a budget of time which can usually be directly translated
into a certain number of playouts. So in order to improve upon flat Monte Carlo, some
ideas are used from game theory, specifically the problem domain called the multi-armed
bandit problem. This problem comes from the idea of playing many slot machines (one-
armed bandits) which have different payout ratios, but the only way to learn the payout
ratios is to play the machines. With a limited number of coins to put into the machines,
one would like to balance playing coins in the machines with already-discovered good
payout ratios (exploiting the knowledge of payouts) and playing coins in machines which
are relatively unknown (exploring). This has been formalized in terms of minimizing a
player’s regret, defined the expected loss due to not playing the machine with the best
payout ratio with every coin.

In terms of choosing playouts in search of the best move, the idea is to spend more
of the playouts to get a better sampling of the more promising options and spend fewer
playouts on the less promising options. A way to choose the option that minimized

regret was proposed by Auer et al. [7], called UCBI.

2Inn

UCBl = X; + (3.1)

nj
This is called the upper confidence bound and indicates the notion that a given choice
will be the optimal choice, without there being any prior knowledge of the value of a
choice. The first term X ;j represents the average winning rate discovered so far for the
given option j. This is called the exploitation term. The rewards for each option are in
the range [0,1] so this average term is also in that range. The second term % gives
value to those options which have not been explored as much as the other options: this
value gets larger as the proportion of the overall budget on it decreases. This is the
exploration term. In order to choose which move to sample with the next playout one
picks the choice which optimizes this UCB1 value. As the number of samples increases,
it has been shown to asymptotically approach the true value of the node. Options which
have not been explored yet have an exploration term of infinity, so each option will be

explored with at least one playout.
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Figure 3.3: MCTS Algorithm Phases

3.2.3 Monte Carlo Tree Search

In order to make use of this decision-making policy, instead of just creating only nodes
for each of the current choices, that is for each child of the root node, one builds up
a tree of nodes. Doing this adds a single node to the tree with each playout executed.
From the root node a node will be created for each option from the root position and
a playout will be run through the created node. Once each option from root has been
covered once and a child node created for each of those options, a playout will descend
through one of the nodes. The choice of node is often based on the one with the highest
score from the UCB1 equation above, and a second-level node will be created as a child
of the chosen node on the first level. Each time a first level node is chosen, one of its
child options will acquire a tree node until all of its children are filled in before third level
children are created from that second level node. A tree is thus built in an asymmetric
fashion, with the more promising parts of the tree expanded to deeper levels than the
less promising parts.

As this tree gets created the algorithm follows these basic steps until a resource
limit (such as time or number of iterations) has been reached: Selection, Expansion,
Simulation, and Backpropagation.

The selection phase starts at root, choosing the action or move represented by a
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node in the tree according to some selection policy. It then recursively descends the
tree always choosing a child node according to the selection policy. When it reaches
a node which has unvisited children and which represents a non-terminal state, the
selection phase stops.

The expansion phases now creates a new node as a child node of the selected node
and adds it to the tree.

Now the third phase begins: simulation plays legal actions (moves) randomly until
an end position is reached. The win or loss from this simulation, also called a playout,
is determined.

This is added to the statistics of the newly created node and all of its parents up to
the root node during the backpropagation phase.

These steps are shown in Figure 3.3.

The choice of child nodes in the selection and expansion phases is determined by
what is called a tree or in-tree policy. This is often something similar the UCB1 equation,
called UCT:

UCT = X; +2C, - (3.2)

where n is the number of times the current (parent) node has been visited, n; is the
number of times the child j has been visited and C), is a constant. When n; is zero the
UCT value for that child will be co which will guarantee that each child of a parent
node will be explored at least once before any of the children are expanded. Although
all children of an expanded node must be run once before any of them can be expanded,
the growth of an MCTS tree is not similar to breadth-first search. It is asymmetrical,
so that the more promising parts of the tree are explored in greater depth first.

The choice of actions during the playout, the simulation phase, is called the default
policy or sometimes the out-of-tree policy. It is usually a policy of picking random
actions which are legal to take from the given state.

Both the tree policy and the default policy can be modified in order to alter and
improve the way MCTS works, often depending on the domain to which it is being
applied.

An interesting property of MCTS is that it operates as an anytime algorithm. After

each iteration the scores are back-propagated up the tree so that the values for the
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choice of the next move is always up to date. As the number of simulations grows
towards infinity, it has been shown that the likelihood of selecting the incorrect action
converges to zero [8].

The MCTS method is also interesting in that it can choose actions without utilizing
much domain-specific knowledge. Any domain which can be modelled as states with
allowed actions can be searched as an MCTS tree using just the rules of the game.
This is in contrast to the minimax search which requires a domain-specific heuristic to

perform a static evaluation of non-terminal nodes.

3.2.4 MCTS Variations

Improvements and adaptations of the MCTS algorithm are usually applied and tuned
based on the domain. Most adaptations fall into one of two categories: modifying the
in-tree selection policy or changing the out-of-tree default policy. Because modifying
the random pick of the default policy often slows down the rate at which playouts can
be executed, these are often called heavy playouts.

One major advance that is applicable in some domains is to make use of what is
called the All Moves As First (AMAF) property. In many situations a move played
later in the game is also valuable in the current situation. To utilize this property a
separate set of statistics is kept about wins and losses in each of the nodes in the tree.
The values are accumulated by looking at the actions taken in the playouts. During
each random playout (using the default policy outside of the tree), every move taken is
noted along with the result of the playout. If any of these moves could have been made
inside the tree during the selection phase that led to the playout, the nodes resulting
from those moves will have their AMAF statistics updated with the win or loss. The
selection phase is then modified by using the policy that considers both the UCT score
and the AMAF statistics. For example the a-AMAF algorithm gives an in-tree value
to a node of

aA+(1—-a)U (3.3)

where U is the traditional UCT value.
The most popular version of AMAF is called the Rapid Action Value Estimation
(RAVE) formula. In RAVE the value of « in the a-rAMAF formula is not a static, but
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instead changes with the number of visits to the node, linearly decreasing towards zero
at some number of visits V. Once o becomes zero the UCT score reverts to its original
form.

The effect of using an AMAF algorithm is to quickly build up some statistics for child
actions that have not otherwise had a playout run from them. This rapid accumulation
of knowledge, though less accurate than the pure UCT knowledge, has been shown to
increase the performance of MCTS in a number of domains, including Go.

A modification of the tree policy which encourages early exploitation of promising
nodes is to assign a first play urgency value to unexplored child nodes instead of the
standard infinite value. By doing so it is possible to explore a child node (expand it)
before having to run at least one simulation through all of its siblings. Tuning this value
enables a promising branch to be explored quickly, at least until the value is low enough
to be less promising than the first play urgency value.

Another tree policy modification involves using domain dependent knowledge to bias
selection in the tree by modifying the initial statistics associated with a node when it is
built. When a node is created, its values for the number of times visited and the number
of wins are set to zero by default. In order to bias a parent’s selection of a node, these
values can be set to non-zero values. For example, setting the values to 20 wins out
of 20 visits would typically cause the parent node to want to exploit such a favorable
node. Using whatever domain knowledge is available an algorithm can set such a bias
on nodes representing preferred game states.

A popular way to modify the out-of-tree (default) policy from a random pick of
available actions to something more realistic is to use some pattern matching. When
part of the current state during a playout matches one of the available patterns, the
next move in the playout is chosen from the matching pattern’s suggestion rather than
as a random pick. In Go small patterns, sometimes only 3 x 3, have been used to modify
playouts based on very local situations. Similarly in Hex, patterns that choose a move
which defends a virtual connection have made playouts more realistic and the overall
algorithm more successful.

Another default policy modification involves a simple heuristic in the playout which
stores for each player the most recent winning reply move to a given move [9]. In the

playout phase, instead of a totally random move, a lookup is done to see if a move has
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been played following the immediately preceding move and if that move led to a win
for the currently moving player. Because this involves only 361 possibilities for each
player, the lookup table is small and fast, and does not substantially slow down the
playout speed. If a move is not found in this table, the normal default policy is used.
This policy was also expanded to include a table based on the two previous moves, and

a policy involving “forgetting”, which removes losing picks from the lookup table [10].

3.3 Parallelization of MCTS

The nature of MCT'S, with its repeated and rapid playouts along with separable steps in
the algorithm, afford a number of opportunities to spread the work out among parallel
processes. There are generally three ways to parallelize search in an MCTS tree: at the

leaves of the search tree, throughout the entire tree, and at its root.

3.3.1 Leaf parallelization

In leaf parallelization, after a node is selected in the tree for expansion, multiple play-
outs originating at that node are conducted in parallel. When all the playouts have
finished, the combined score from those playouts is propagated back up the tree. De-
pending on the number of parallel threads this can greatly increase the speed at which
the win-rate statistics are gathered. However, since each playout may take a different
length of time, some efficiency is lost waiting for the longest playout to complete before
reporting the statistics. Some implementations have moved these playouts to a GPU
[11]. Unfortunately many of the playouts in leaf level parallelization are wasted due to
their simultaneous nature: if the first eight playouts all are losses or very low-scoring,
for example, it is unlikely that the next eight will do any better, leading to an inherent

limitation of this technique.

3.3.2 Tree parallelization

In tree parallelization, multiple threads perform all four phases of MCTS (descend
through the search tree, add nodes, conduct playouts and propagate statistics) at the
same time. In order to prevent data corruption from simultaneous memory access,

mutexes (locks) are placed on nodes that are currently in use by a thread. These locks
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lead to scalability problems since many threads may want to be exploiting a particular
node in a tree. Ome solution to this mutex problem has been to introduce virtual
losses. When a thread descends through a node in the tree, it adds a virtual loss to the
statistics of that node, making it less appealing to other threads, and so less likely that
these other threads will try to descend through that node and be delayed by the lock.
When the thread updates statistics, it removes the virtual loss. Another implementation
[12] created a lock-free version of tree parallelization utilizing the virtual loss system.
Without locks this method depends on a large enough virtual loss to deter other threads
to the point that overwriting of old data will occur very rarely. Tree parallelization
can be created on shared memory systems or on distributed systems with very fast

interconnects (clusters).

3.3.3 Root parallelization

In root parallelization, multiple independent trees are built by separate threads with
no information communicated between them while the trees are being built. This can
happen either on a shared memory machine or in a cluster. All the trees are created
through the end of the time limit on the machine or machines, and then the scores for
the top layer nodes, that is to say the nodes which represent the immediate choice from
the root node, are combined to determine which action will be chosen. Although the
trees have been created starting from the same node, the stochastic element of MCTS
means that each tree will be formed differently from the others. When the information
from the different trees is combined, two methods of combining the values from the trees
are commonly used. The first is to add up all the scores for each possible action from all
the trees. In this case the combined score for an action is the sum of each tree’s score
for that action. The second method is to choose the action which “won” the contest in
each of the trees. These two methods are called “average” voting and “majority” voting

respectively.



Chapter 4

Related Work

Most game-playing programs depend on building and searching a game tree, using a
position (or node) evaluation function and a variation of the minimax algorithm called
a — [ search (originally by John McCarthy, first described in [3] and [13]). This search
technique looks at all the possible moves from the current position, and then each of the
opponent’s possible moves from each of these positions, and so on, building up a tree
of possible games. Each layer in the tree adds one more move to each of the possible
games. In order to find the best friendly move, o — 3 search looks at the best move of
the opponent given a friendly move, and uses the score of that position (the result of
the friendly move followed by the opponent’s best move) as the assumed score of that
move. Assigning a score calculated in this fashion to each of the possible friendly moves
allows a game engine to choose a move.

In small games without many possible moves, for example tic-tac-toe, it is possible
to fill out an entire game tree to the end, looking at every possible game sequence and
its conclusion, and so determine the best move. In any non-trivial game however, the
exponential explosion of the number of possible game sequences quickly makes building
a full game tree infeasible. Therefore most game engines play out only a certain number
of moves, and then use some heuristic to judge the value of a non-terminal position in
the game. This heuristic is called an evaluation function. Many algorithms are also
used to prune a game tree, throwing away certain possible sequences after only a few
moves in order to be able to spend the computational time expanding other branches

of the game tree (those with greater possibilities) to a deeper level.
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The complexity of Go may be compared to that of chess, in that examining the
game tree of either is a non-trivial exponential problem. But the exponential factor of
go is much higher than that of chess. Where the average number of choices for a move
in chess is 20, the average in go is about 200, and while the average length of a game of
chess is on the order of 80 moves, in go the average length of a game is over 200 [14]. To
look at the game tree out to four moves in chess, therefore, would require approximately
20% nodes (160,000), while to look ahead the same number of moves in a go game tree
would require 200* nodes (1,600,000,000). Adding just two moves (one move for each
player) bumps these numbers up to 64 million for chess and 64 trillion for Go.

In addition to the large difference in the expansion rates of the game trees for Go
versus chess, it is also far more difficult to produce a static evaluation function. In
chess, even counting the number of and power of the pieces on the board can be a good
beginning at evaluating the board at any given time, while in Go, it can be a difficult
problem simply to determine if some of the pieces on the board are to be considered
“alive” or “dead” (pieces that are in an untenable position remain on the board until the
opponent actually captures them and removes them from the board), and so difficult to
gauge the amount of territory controlled by either side. For example, it is often the case
that a small, local tree search must be run just to determine the life or death status of
a group before being able to include it in a scoring of the overall board [15].

In chess, using a traditional tree search, the Deep Blue machine which beat Kasparov
in the 90s would evaluate many millions of board positions per second in order to
expand the game tree to a deep enough level to produce its master-level play. The best
Go programs of that time were not able to give a score to even tens of thousands of
game positions per second due to the lack of a fast and accurate static-board-evaluation

algorithm.

4.1 Computer Go

There has been a large number of efforts over the years to create a computer Go play-
ing program which can play at the level of a professional Go player. Up until about
2005 programs improved slowly using variations of traditional techniques and reached

approximately the level of a medium-strength beginner.
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In an attempt to overcome the difficulties mentioned above, the architecture of
pre-MCTS Go programs (see surveys by [16] and [17], along with [18]), and of an open-
source effort, Gnu-Go [19], were quite different from that of the traditional full tree
search programs. Although early attempts at Go programs such as [20] used traditional
methods combined with sophisticated algorithms for pruning the large size of the tree,
most Go program architectures instead contained a number of different move-generating
modules, an idea first used in [21]. Each module produces a suggested move along with
an urgency, or importance, score. From the list suggested, the main program thread
chooses one move given the importance scores and a current global state. Modules are
often based on particular goals of the game, or on particular sections of the game. For
example, a life and death module which produces moves to save or kill a group of stones,
an opening module to produce moves which attempt to form “moyo” or frameworks on
the board, a connection module which produces moves to connect friendly live groups,
or an endgame module which can read and play for the most points when the board
is almost filled. Additionally, some work has gone in to automating the creation of
the rules used by these modules to suggest moves [22]. A combination of modules and
traditional search, sometimes used to play out tactical situations, was introduced with
[23] and became the standard for most serious go programs. Programs of this type,
including the introduction of parallelization methods [24], made slow progress from the
1980s to the 2000s, but none ever broke through to dan-level play.

The paper “Life in the Game of Go” [25] helped give an algorithmic definition of a
live group in the game, and explored life and death problems.

A comparison of chess versus Go, including their applicability as research topics and
their difficulty for computers is found in [26]. Burmeister and Wiles [27] then looked at
creating infuence maps based on people’s perceptions of the Go board. This was then
used as an example of relating local to global factors in thinking and cognition in [28].
They also did a study [29] of people’s memory of board positions. Burmeister then used
these works to inform a survey [30] of how Go problems can be used in the study of
cognitive science, including looking at memory and problem solving.

Bouzy [31] argues for the need of spatial reasoning in order to analyze Go positions.
This sort of reasoning is carried forward in [32] applying mathematical morphology,

recognition of shapes, to computer Go.
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Bouzy and Cazenave [33] look at the shared aspects of complex problems alongside
computer Go. They cite economic, social sciences, war simulations, linguistics, and
earth sciences.

Using the idea of thermography to analyze Ko situations is explored by Berlekamp
[34] and also by Miiller, Berlekamp, and Spight [35]. Additionally the value of multiple
Ko situations is studied in [36] and [37]. These ideas are then further expanded in
an “enriched environment” and applied to Go endgames and Amazons in [38]. Silver,
Sutton, and Miiller [39] also use these ideas under the name of “Temporal Difference
Search” and Kao [40] explores applying Temperature Search to endgames.

Cazenave [22] created a system to automatically learn local patterns and positions as
tactical rules. These rules were used and developed in his “Gogol” program, a rule-based
computer Go program that reasons about achieving small local goals.

Bewersdorff [41] studies end game and life and death situations in terms of combi-
natorial math. Chen and Chen [42] also provide some mathematical definitions of life
and death in Go. Wolfe [43] provides a proof that the endgame of Go is P-SPACE hard.

Huima [44] explains the Zobrist hash function which is used to hash board positions
for quick lookup and storage in a table.

In 2000 Graepel [45] applies common fate graphs and subgraphs to 9 x 9 Go while
Wolf [46] presents a study of using heuristic search techniques to solve live and death
problems. These techniques are later expanded and applied in [47].

Bouzy and Cazenave [16] authored a very extensive survey of computer Go in 2001
along with Chen [48] who provides an overview of the architectures of most of the
programs available at that time. Cant et al. [49] looked at some these same programs
and tried to add an advising neural net into a go-playing architecture.

Bouzy [50] explores the general decision-making process of Indigo, a typical Go
engine of the pre-MCTS era with a detailed overview of the modules involved.

In 2005 Chen [51] proposed a non-territory way of scoring go game positions, based
on a chance-of-winning value. Nakamura [52] also worked on a static evaluation function
of Go, incrementally updating information from turn to turn.

Van der Werf et al. [53] present a learning system to predict life and death situations
in Go. They develop a classifier based on various features of blocks of stones including

number of liberties, the perimeter, player to move, whether or not a ko exists, etc.
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Nijhuis [54] also develops a system to learn Go board patterns with common fate graphs
and relative subgraphs.

Wu and Baldi [55] use a DAG recursive neural network to try and learn a static
evaluation function for 9x9, 13x13, and 19x19 Go boards. They use 3x3 patterns from
the games as inputs to the RNN. Bouzy and Chaslot [56] also worked on automatically
extracting various sized patterns from 19 x 19 games.

Stern et al. [57] use Bayesian patterns rankings in order to predict moves in Go
games. They harvest various sized patterns from professional games based on the stones
surrounding the most recent move. In 2007, Silver, Sutton, and Miller [58] used re-
inforcement learning to develop small patterns for helping play on Go boards up to
9x9.

Mayer [59] examines how a board is represented while training neural networks with
temporal difference learning. This is done on a very small (5x5) board.

Lee et al. [60] build an ontology of computer Go knowledge using expert input.

Wistuba et al. [61] compare different Bayesian move prediction systems in 2012
while Wolf [62] looked at techniques for recognizing and moving in Seki in Go.

Maddison et al. [63] use a DCNN trained on a database of professional games to
predict moves in games. When used without search it beat GnuGo and matched Fuego

at 100k playouts/turn.

4.2 Opening Books in Go

An opening book is a set of predefined moves that can be found by matching the state
of the board at the beginning of the game with a set of states in a lookup table. Given
a particular state of the board, the moves are considered the best responses for that
situation. Opening books of some sort have been used in most Go programs.

A number of developments involving opening books in the 2000s involved using
neural networks to create or test them. Huang, Conneil and McQuade [64] used neural
networks in self-play to learn moves in the first 10 moves of the game through temporal
difference learning and using high-level features. Lee [65] also used temporal difference
learning in a neural network on a 19x19 board and Kendal et al. [66] look at using a

neural network to learn opening game strategies on a 13 x 13 board.
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An opening book for 9 x 9 Go was built by Audouard [67] using a grid coevolution
technique. This utilized self-play of the MCTS player MoGo.

In 2010 Gaudel [68] discussed creating and analyzing opening books in Go while
Mullins and Drake [69] implemented an opening book based on both fuseki and joseki
with exact matching. Hoock et al. [70] created an ontology of good and bad openings
by having professionals rate moves in the opening on a 5 point scale from very bad to
very good on a 9 x 9 board. These are then matched up to provide an opening book
based on fuzzy pattern matching.

An active opening book for 19 x 19 Go was created by Baier [71] in 2011 to assist
MCTS . It uses an exact match of the board, or portion of the board to create suggested
moves, but instead of choosing the move as the next action, it is used to bias the MCTS
engine in-tree search. Bayesian learning was used by Michalowski [72] to improve the
performance of the Fuego program by suggesting possible good moves in the first 20
plays of the game.

In 2014 a very large scale board position look-up was implemented using a Hadoop
database system in [73]. Each move of every game was stored in all 8 rotations.

Steinmetz and Gini [74] describe a system of clustering together professional game

positions to derive favorable moves in assistance of MCTS in-tree bias policies.

4.3 Monte-Carlo Tree Search

Since the early 2000s, much effort has been spent on exploring a technique that uses
a stochastic model of a game tree to evaluate a static position on the board. Called
Monte Carlo Tree Search, a version was first proposed by Briigmann [4] in 1993 . This
technique completes games with random moves many thousands of time from a given
move, and scores this move based on the outcome of this random sampling of games.

The mathematical foundation for the MCTS algorithm was introduced in 2002 by
Auer, et al. [7]. It introduced the UCBI formula in the context of the multi-armed
bandit problem.

In 2003 Bruno Bouzy created two programs Olga and OLEG [75]. These used some
Monte Carlo methods and simulated annealing. He also looked at various attempts

at Monte Carlo approaches and modifications in [76] including an all-moves-as-first
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approach along with progressive pruning. This work continued with an almost-flat
Monte-Carlo approach in 2004 [77] which used MC evaluation to prune nodes and then
move to another depth, prune nodes based on MC eval, and so on. Further refinements
of this pruning approach, which resembles MCT'S, was carried out in [78] which modified
playouts using domain dependent knowledge, and in [79].

In 2006 a modification to the Monte Carlo algorithm for creating search trees was
published by Kocsis and Szepesvéri [8]. It was called Upper Confidence Bounds Ap-
plied to Trees (UCT), and chooses moves by iterating through the scoring of candidate
moves with the normal Monte-Carlo algorithm but keeping track of the number of times
successor nodes in the tree are encountered along with their scores. When a successor
node has been visited enough times, it is promoted to the status of a candidate node
itself, and all such nodes are scored not by the usual MC method, but by using the best
score of their most promising “child” nodes.

Chaslot et al. [80] provide a MC search with move selection strategies that are not
UCBL.

Coulom [81] introduced and named MCTS and the mathematics behind it in his
Crazy Stone program. This was expanded by adding patterns in [82], where the pro-
grams Elo ratings were also discussed. In a little-used variant, Yoshimoto et al. [5]
discusses a method of scoring a candidate in MCTS not just by the number of playouts
won and lost, but also the amount (number of stones) by which these games were won
or lost.

Also in 2006 Gelly and Wang [83] introduced their “Mogo” program and discussed
basic MCTS with no additions. This was expanded to introduce first-play urgency in
[84] along with using patterns to affect the playouts. Gelly and Silver [85] combined
online knowledge in the form of RAVE values and offline knowledge in the form of priors
(as biases to newly built nodes) in 2007 .

Drake [86] introduced his “Orego” program, adding a proximity heuristic and an
opening book. [87] discusses four different in-tree heuristics and experimental results
from their application. Chaslot et al. [88] brought expert knowledge in the form of
patterns to the in-tree calculations by modifying RAVE values ahead of time depending
on the pattern.

Cook [89] examined the speed of playouts on current hardware in 2007. His results
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showed that a single processor, 2.8 GHz machine could execute one hundred thousand
playouts in approximately three seconds.

In 2009 MCTS was used by Balla and Fern [90] to play tactical assault manuevers in
a real time strategy game. Perez et al. [91] also applied MCTS to a real time strategy
game, notably pursuing multiple objectives in that context.

Chen et al. [92] provided a survey of MCTS as applied to Go in 2009. Other survey
papers have followed by Rimmel [93] in 2010 and Gelly et al. [94] in 2012. Browne
et al. [95] released a comprehensive study of everything MCTS in 2012. This major
work listed application domains, variants, and the history of MCTS in a well-referenced
volume.

Drake [9] improved the performance of his Orego program by introducing the last-
good-reply playout policy. This was improved by Baier and Drake [10] in 2010 by adding
an element of forgetting recent responses which lost after they won.

Huang, Coulom, and Lin [96] improve playout parameters using simulation balancing
while RAVE value are used to bias playouts (in addition to the tree policy) in “Biasing
Monte-Carlo Simulations through RAVE values” [97] by Rimmel. Similarly, in 2013
Fernando and Miiller [98] explore the differences of various playout policies used in
Fuego while Powley et al. [99] also examine playout policies, especially using UCB1
during playouts while also using it as a tree policy.

In 2011 Gelly and Silver [100] give a thorough description of MCTS with RAVE.
Baudis and Gailly [101] describe the Pachi open-source Go engine which notably uses
RAVE and introduces dynamic komi.

Hashimoto describes an implementation of accelerated UCT, which gives more weight
to games which were started from deeper nodes of the tree, in [102].

Bubeck and Cesa-Bianchi [103] along with Bubeck, Perchet, and Rigollet [104] ana-
lyze and refine the mathematics of regret in multi-armed bandits.

Niekerk and Kroon [105] look at using decision trees to generate features which can
be used to influence MCTS while Tkeda and Viennot [106] explore the use of static
knowledge to bias the tree search.

Graf, Schaefers and Platzner explore how MCTS reacts to semeai situations in [107]
while the limits of MCTC in certain Go positions (semeai and seki) are explored by
Huang and Miiller [108].
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Lorentz and Horey [109] apply MCTS to the simple game of Breakthrough.

In 2015 Graf and Platzner [110] explored adaptive playouts using reinforcement
learning. Jin and Keutzner [111] used convolution networks and GPUs to improve the
performance of an MCTS Go program.

The program AlphaGo, developed by the Alphabet-owned company Deep Mind [1],
achieved a milestone by beating human champion players including the recognized world

champion Lee Sedol in non-handicap Go in late 2015 and March of 2016.

4.4 Parallelization of MCTS

Cazenave and Jouandeau discuss three methods of parallelization in [112] and [113].
They use the term single-run parallelization to mean what we call root parallel, multiple-
run parallelization to mean root parallel, but updating the information more often than
just at the end, and at the leaves to mean leaf parallelization.

Chaslot, Winands, and van den Herik compare leaf, root, and tree parallelization
in one of the first comparisons with “Parallel Monte-Carlo Tree Search” [114]. They
propose tree parallelization and introduce both local mutexes and virtual loss as means
of avoiding the bottleneck of locking. They also introduce the notion of “strength
speedup”, which measures the strength of the improvement by comparing against the
winning rate of a program given more time.

Kato [115] creates a system for leaf parallelization that is based on a client-server
model, updating in the tree after the first result comes back (thus not waiting for the
last one).

“The Parallelization of Monte-Carlo Planning” [116] by Gelly, Hoock, Rimmel, Tey-
taud, and Kalemkarian specifies the algorithms for MCTS, multi-threaded, shared mem-
ory MCTS (tree parallelization with mutexes), cluster MCTS with tree sharing, and
finally cluster MCTS with only root sharing. They show some very limited results in
terms of improving winning rates while trying each of these methods.

In 2009 Enzenberger and Miiller [12] introduced a lock-free version of tree paral-
lelization in Fuego.

In “A Parallel General Game Player” [117] Méhat and Cazenave explore four vari-

ations of root parallelization across a number of game domains including checkers and
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Othello using a program named “Ary” which integrates a Prolog interpreter. They ob-
served the best results in checkers along with more moderate improvements in Othello.

Rocki and Suda explored “Massively Parallel Monte Carlo Tree Search” [118] by
presenting MPI methods to perform root parallelization over thousands of cores. They
use MCTS over the game of Reversi, and implement root parallel on a very large cluster.
Their results are measured in terms of number of playouts accomplished.

In Soejima, Kishimoto, Watanabe, “Evaluating Root Parallelization in Go” [119]
the authors explore various aspects of root parallelization, running experiments for
analysis of performance data. They compare the performance of root parallelization
using two different methods of scoring: majority voting and average selection. They
use a modified version of Fuego playing on both 9x9 and 19x19 sizes. The results show
winning percentages of average selection and majority voting against both sequential
Fuego and sequential MoGo. Further results compared the lock-free tree parallelization
directly against 64 node majority-vote root parallelization using Fuego. Finally, All
these methods were engaged in picking moves in particular game situations against an
oracle selection made by a very long time run of Fuego (80 s). They concluded that
majority voting outperformed average selection in root parallelization, but that lock-free
tree parallelization outperformed root, and that root did not scale well past 32 cpus.

In “Scalability and Parallelization of Monte-Carlo Tree Search” [120] Bourki, et. al.
explore the limitations of parallelization with multi machine (messaging) implementa-
tions on clusters. They discuss slow parallelization versus very slow root parallelization
conclude that the slow version has an advantage over very slow. Additionally, they
discuss some of the weaknesses, in Go, of MCTS players, namely semeais.

Fern and Lewis [121] looked at a different formulation of root parallelization which
they called Ensemble Plannning over five simpler game domains.

In “Scalable Distributed Monte-Carlo Tree Search” [122] Yoshizoe et al. used a
depth-first UCT and transposition-table driven scheduling in order to create a dis-
tributed version of Fuego which ran on up to 1,200 cores.

Niekerk and Kroon [123] implemented both tree and root parallelization on their Go
player, Oakfoam, and looked at the results in terms of number of playouts per second.

Nishino and Nishino [124] implement leaf and “sample” parallelization on an imper-

fect information game Daihinmin (a card game).
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Goli et al. [125] look at using MCTS to statically map out parallel tasks onto both
CPUs and GPUs.

In [126] the use of teams of software agents to pick moves is explored, similar to root
parallelization with majority voting. This is also examined by Marcolino and Matsubara
[127] and then expanded by Marcolino et al. [128].

In “Parallelization of Information Set Monte Carlo Tree Search” [129] Sephton et.
al. compare root, tree, and leaf parallelization in a card game “Lords of War” which
is an imperfect information game with a branching factor from 25 to 50 and a depth
of about 60 turns. They utilize Information Set MCTS which tracks a game state in-
cluding hidden information not as a single random pick of what the hidden information
could be (my opponent is holding three kings) but as the set of all possible versions
of the hidden information. At each simulation the determination of the hidden infor-
mation is made, rather than just once. This simulates a search across a wide range of
possible combinations of hidden information. The testing done compares the efficiency
as measured by the speed of the algorithms to produce a tree of 5000 nodes. This is
done with both MCTS and ISMCTS across root, tree, tree with virtual loss and leaf
parallelization. They show little difference between MCTS and ISMCTS and show that
root parallelization appears to be the most efficient.

Schaefers and Platzner [130] in “Distributed Monte Carlo Tree Search” analyze the
effects of using a parallel transposition table for tree parallelization along with dedicating
some compute nodes to broadcast operations to help scaling to large numbers of nodes.
They explain their parallel architecture with its information flow and the distinct jobs
of different parts of the hardware in great detail.

In 2015 Gopayegani, Dusaric, and Clarke [131] apply parallel MCTS to the manage-
ment of energy demand and production.

In “Parallel Monte Carlo Tree Search from Multi-core to Many-core Processors”,
Mirsoleimani et. al. [132] compare scalability of the root and tree algorithms on modern
Intel processors over the game of Hex. They show that mutex locks are not limiting
even up to 16 threads if implemented on the Intel Xeon Phi hardware which contains

30x faster communications than a typical Xeon processor.
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4.5 Computer Hex

Originating in the world of mathematics, the game of Hex has been played by computers
from early its development, including even an analog computer that used the measured
the current differences of circuits through the board in order to create a heat map and
thus choose the best position for the next move [133].

In 2000 Anshelevich [134] used a theorem-proving approach to discover virtual con-
nections, and combined this with an « — § search algorithm to create the “Hexy”
program. This program was later modified with a set of hierarchical deduction rules in
[135]. The resulting version was a world-champion computer Hex player, and played at
a reasonably strong rating in an online forum.

In 2002 van Rijswijck [136] used pattern search and graph distance heuristics to
build a computer Hex player called Queenbee.

Yang [137] built a partial solution to 7 x 7 games of Hex, giving some winning and
losing first moves. This size board was later fully solved by Hayward et al. [138] using
heuristics to reduce the state space by filling in part of the board.

The programs “Six” [139] in 2003 and later “Wolve” [140] in 2008, both o — /5 based
algorithms with sophisticated evaluation functions continued improving the quality of
computer-Hex programs.

Rasmussen developed a sub-game decomposition algorithm for playing hex which
he dubbed H-Search [141]. Other algorithmic improvements include refinements by
Henderson and Hayward that enabled the pruning of a class of moves through probing
along the opponents in a so-called 4-3-2 position [142], and the introduction of the
notion of decisive moves and anti-decisive moves for MCTS in the context of Hex by
Teytaud and Teytaud [143].

A survey of the mathematical background to the game and the combinatorics in-
volved for computation of solutions was published by Hayward [144] in 2006.

The MCTS Hex player “MoHex” was created by Arneson et al. [145] in 2010 . It
utilized reduced equivalent boards in the playout phase rather than the actual game
board, and pruned provably inferior children in the game tree. MoHex was improved in
2013 [146] by the addition of learned patterns to improve both the in-tree prior values

(bias values) and the out of tree simulation policy.



Chapter 5

Smart Start

In this chapter we will show our work developing an improvement to the way the opening
moves in a game of Go may be played by a computer.

When humans play traditional, well-researched games such as chess, checkers, and
Go they often rely on remembering a set of fixed sequences of best moves called an
opening book. A book will usually list one or more options for a player to use when
the situation on the board has exactly a particular configuration. By following the
prescriptions in an opening book, players can quickly make the highest quality moves

available without doing much analysis.

5.1 Proposed Approach

We have created the SMARTSTART method to act as a generalized opening book, pro-
viding higher quality moves in the initial play of the game without requiring an exact
full or partial board match to known games.

We first record the moves chosen during games between professional players for each
board position of the initial moves of the games. We then group these records, within
each move number, into a small number of clusters based on the similarity of the board
positions. Each cluster so created contains a list of all the next moves chosen in the
records of that cluster. During play, we determine which cluster is closest to the current
board situation and utilize the next moves in that cluster to guide the Monte Carlo

style algorithm.

37
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5.1.1 Opening books in Computer Go

One of the ways in which computer chess programs have succeeded in reaching the grand
master level of the game is through a basic method of learning from human experience
for the opening moves of a game. Long before computer chess programs entered the
scene, most serious students of chess would spend hours studying the opening moves of
master level players. Because the grand masters had discovered and developed over the
years the most powerful sequences of opening moves, one of the fastest ways to improve
one’s game was to study these opening books and memorize exactly the “best” move
given the current position. Computer chess programs, like well-studied humans, can
therefore be loaded with these opening book libraries, and may simply do a look-up
of the best move given a particular position. With the ability to do a table-lookup of
the “correct” move at the beginning of the game, chess programs have been spared the
arduous task of calculating their own moves at the beginning of the game when a game
tree may need to be longer and wider to achieve the same kind of powerful result that
a smaller tree might achieve later in the game.

In the game of Go, although there are well-known patterns of play in the opening
moves and numerous books regarding opening strategy [147], lengthy and comprehensive
opening books comparable to those in chess have not arisen, due to the large number
of possible top-quality opening move sequences. If one limits the scope of the moves to
one corner of the board, however, a set of literature exists explaining move sequences
called joseki (“fixed stones” in Japanese). These are mini opening books concerning

only a small area of the board, typically sequences of moves in a corner.

5.1.2 Problems with Opening Books

The way an opening book works in the code of a computer Go program is that sequences
of moves are placed into a database so that they can be looked up by the board position
that would exist after each of the moves in the sequence. So for a sequence of six moves,
A B CD E F, the algorithm would find this sequence if it was looking at a board with
just move A on it, or a board after moves A and B, or the board as it would look after
moves A, B, and C, and so on. If the lookup succeeds, the next move in the sequence is

then the move of choice from the opening book. For example, if it is move 5 with black
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to play (since black always moves first in Go) and the board matches the board state
that would exist after the moves A B C D, then the move E is the one which will be
chosen by the opening book. For the first move of the game onto an empty board, one
of the sequences (often the longest) is designated as the choice to be made.

For any given board state, there is at most one entry in the opening book. However,
there are many variant sequences that begin similarly, as opponent play cannot be
controlled. The sequence A B C D E F may be accompanied by another sequence that
begins the same but then branches such as ABC GH,or ATJ KL M.

Once a play has been made outside of any of the sequences contained in the opening
book it is no longer possible to find a move which will match, and so the opening book
will no longer be consulted.

Opening books exist in many computer Go programs, including some with very long
sequences of 30 moves. If two programs play each other using the same opening book,
the first moves of the game are then completely deterministic, consisting of exactly
the moves in the sequence designated to make the first, empty-board, move. When a
program with an opening book plays against one with no opening book, however, the
actual number of moves used from the book usually ends up being quite small, and play
leaves the book quickly. This can mean that the presence of a traditional opening book
has very little effect on play against a non-opening book opponent.

In testing we found that black with an opening book playing against an opponent
with no opening book used only the first move in 84% of the games and used only the
first and third moves in 12% of the games. Playing white with an opening book against
an opponent with no opening book resulted in using no moves from the book 6% of the
time and only one move from the book 76% of the time. To see how this affected the
overall quality of play, we tested a version of Fuego in two tournaments, once with an
opening book, and once without, against a version of Pachi with no opening book. We
found that the opening book used in this fashion was not able to provide a statistically
significant improvement to the resultant winning rates (see Table 5.1). With a null
hypothesis that the opening book in Fuego does not change Fuego’s ability to win, we
found a two-tailed p-value of 0.86, which does not allow us to reject the null hypothesis

(usually rejected with a a p-value of 0.05 or smaller).
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Table 5.1: Fuego vs. Pachi 10. 10,000 games per tournament.

As Black|As White| Cumulative|p-value
Fuego with no Opening Book | 36.3% | 41.1% 38.7% -
Fuego with Opening Book 36.0% | 41.6% 38.8% 0.862

5.1.3 Using Professional Play in the Opening Game to Improve MCTS

In this chapter we show how the play of MCTS-based computer players can be improved
in the opening moves of Go by SMARTSTART, our technique to utilize a full board pattern
match against clusters of positions derived from a large database of games played by
top-ranked professional players. While an opening book requires a perfect match of the
current board in play against a position found in a database, SMARTSTART matches the
current board with the nearest cluster of positions in a database. By matching against
clusters of similar moves instead of seeking a perfect match, our method is guaranteed
to find some match, and the solutions found are more general.

Instead of choosing a single move on a board with a perfect match to an opening
book position, SMARTSTART constrains the Monte Carlo search tree during the initial
moves of the game to only those moves played by professionals in games most closely
matching the position of the game in question.

During a Monte Carlo search, all legal moves are considered at each turn during a
playout. This means that at the beginning of the game, the search will consider all 361
initial locations on the board for move 1 (ignoring symmetry), then 360 for move 2, and
so on. The engine must then play out a number of games to the end of the game for
each of these possibilities in order to evaluate them.

Because so many different moves are being considered that are not at all viable,
the MCTS engine is spending a significant amount of effort on needless playouts, and
occasionally picks moves which are easily recognized as ineffective even by novice players.

Our work involves limiting the search by considering only those moves that have
been made by professional players in the same or similar situations. This approach is
different from using an opening book in two ways: we are not using an exact match of
the board, and we are not directly picking the move with a match, only reducing the

search space of the Monte Carlo engine and letting it conduct its playouts to determine
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which next move has the best chance of winning.

The scale of this reduction at the beginning of the game can be substantial. For
example, if we consider a game after eight moves a normal search for the next black
move would start sub-trees at all open intersections on the board, (19 x 19 — 8), which
is 353 different possibilities. When using SMARTSTART, with 64 clusters for example,
the average number of next moves that would need to be considered in this situation
after move 8 is about 34. By only considering these moves, we reduce the number of

next move possibilities by a factor of 10.

5.2 Design of SMARTSTART

The overall design of SMARTSTART involves matching up the current state in a game
being played to a cluster of archived games that are “close” or identical to the game
being played. Within the matching cluster of games, which were drawn from professional
play, there will be a grouping of next moves which SMARTSTART uses to assist in the
decision for the move choice in the current game. The creation of the clusters and
storing the relevant information about those clusters is done offline, and so takes no
time during game play. The lookup during the game to find the closest cluster center to
a board state involves comparing the board state with the board state associated with
the center of a given cluster and finding a distance between the two states. This must
be done for each cluster available, and once the closest cluster is found, the data about

its next moves are used to calculate the next move for the current game.

5.2.1 Game State Representation

To compare various board states, we must have a mathematical representation of the
state, along with methods to measure the difference or similarity of a pair of states. In
SMARTSTART we use a representation where we consider each of the 361 points on the
board to be two separate elements, giving each board state a representation as a 722
(2 x 19 x 19) element vector. Each element of the vector represents either the presence
or absence of one color of stone at one of the intersections on the board. Thus the first
element of the vector would represent a black stone in the lower left corner of the board,

while the second element would represent a white stone in that same location, as shown
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Figure 5.1: Board positions in the vector representation.

in figure 5.1. By using two elements for each location, one for black and one for white,
board situations where black and white stones are swapped do not appear to be similar,
or too dissimilar, as they do when a single location is considered a single element in the
vector.

Because of the geometric symmetry inherent in the game of Go, we also need to
consider the equivalence of symmetric board positions. Because a board state is defined
as the locations of stones on a square grid, there is an 8-way symmetry: four rotations
of 90 degrees and another four rotations of a mirrored position, as shown in Figure
5.2. Although the locations of the stones is different in each of these 8 boards, they
nonetheless all represent an equivalent game. In a comparison of two board states, a
source and a target, either the source or the target must be rotated through all eight

symmetric orientations to check for an equivalence match.
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5.2.2 Database Creation

In order to find similar game positions in games played by professional players, we have
scored professional games from a large database and then clustered these together based
on their similarity.

A sample of games spanning from 1980 to 2007 from a large database of full 19 x 19
board professional level Go games was used as the basis for finding patterns in opening
play. We created results from a 1046 game sample of the commercially available Games
of Go on Disk collection. For each professional game in the sample, and for each of the
first twenty moves in those games , a vector representation of the board was created as
described above. Along with this board representation, the professional’s response to
that game state was also recorded. Each of these representations along with the next
move played was then reproduced in all eight rotations so that each professional game
created 8 entries for move 1, another 8 entries for move 2, another 8 for move 3 and so
on for the first 20 moves of the game, and a total of 160 entries per sample game. We
increased the number of entries in the database eightfold rather than rotate a current
move through the eight symmetries at runtime in order to avoid the rotation cost during
the runtime phase. The same number of comparisons will take place at runtime with
either architecture.

Each rotation of each move of each professional game was entered in the database
as a 722 element vector of ones or zeroes as described above. In order to best facilitate
quick and accurate matching, the database has been divided into separate databases for
each move number. Because move number one is always black, and move number two
is always white and so on, each of the databases will have groupings most appropriate
to the given move. That is, if we are looking for the best move at move number 8, there
should already be seven stones played on the board (barring some very early capture).
The database of board positions that will be searched against in this case is precisely
the set of board positions after move number 7. The advantage of a divided database is
that we can be assured that only the most similar board positions are being searched.

Finally, within each move number, we took all the entries for that move (8368 for
the 1046 game sample) and clustered them into a much smaller (64 to 256) number of

clusters.
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5.2.3 Clustering of Database Games

One of the important ideas of SMARTSTART is that instead of searching through a
history of professional play for an exact match of the current game state in order to find
a good next move, a search will be conducted over a smaller number of groups of game
states (sampled from professional play), where each group consists of a set of games
which are similar to each other. These should be more similar to each of the other
games in their own group than they are to members of one of the other groups. Each of
these groups can then be expressed as the position average of the members of the group.
In the case where these games are vectors of length 722 then, this average represents the
center of the groups’ games in 722 dimensional space. By searching only through each
of the groups’ center positions, we find a group of games that are similar to the current
position, and do so with many fewer comparisons than needed if we look through all
the games individually. Additionally, this method is guaranteed to find some matching
group, the closest one, whereas attempting to find an exact match can fail if such an
exact match does not exist in the database.

To accomplish this, the entries from the professional games for each move number
were clustered into a small number of groups based on the similarity of the entries as
measured by the cosine of the normalized position vectors. If we had entries with only
two elements each, this would equate to finding the cosine between the angles of these
entries in an x-y space. Because of the normalization, the entries would all be on the
unit circle. The cosine value of a perfect match of two vectors will be 1.0. The number
of groups (clusters) is chosen before the clustering, and we experimented with using 64,
96, 128, 160, 192, 224, and 256 clusters. Note that because of the eight-fold symmetry
the number of clusters is eight times the number of different scenarios.

Using small tournaments of a program modified with SMARTSTART we found only
a small variation in the winning ratio when changing the number of clusters, and so
used the 64 cluster and 96 cluster databases in this work. Both the number of entries
in the database and the number of clusters affect the number of next moves (the move
suggestions) supplied by each of the clusters. As the number of clusters decreases, it is
more likely that in each cluster there are many different next moves. This makes the

prediction of the next move more difficult.
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The clustering was accomplished with the Cluto program [148]. This program pro-
vides two different ways of creating clusters. A top-down partitioning method begins
with all entries in a single cluster and then goes through multiple rounds of bisecting the
current clusters until the desired number of clusters is reached. A bottom-up agglomer-
ative method begins with all entries in their own clusters and then repeatedly merging
nearby clusters until the desired number of clusters is reached. When the number of
items to be clustered and the number of clusters are both large, these two methods
end with very similar results, with a slight edge for partitioning [149]. Therefore we
chose the top-down bisection method. For the similarity measure we used the commonly
adopted cosine measure.

The bisection method of clustering works as follows: all entries are first considered
to be in a single group. This group is then divided into two clusters by movement of each
entry into one of the two new clusters. The choice of which cluster to place each entry
in is determined by maximizing the similarity in each cluster, where the similarity of the
cluster is based on the summation of the similarity of each pair of entries. Specifically,

at each bisection this algorithm tries to maximize

k
Z / Z sim(v, ) (5.1)
i=1 v,uES;

where k is the number of clusters, v and u are entries, S; is the ith cluster, and sim (v, u)
is the similarity measure of the two entries v and w. In this case our similarity measure
is the cosine. The term inside the root here is the sum of all similarity measures inside a
single cluster, and the algorithm maximizes this over all clusters. After the fist bisection,
the process continues by bisecting each of the resultant clusters until the desired number
of clusters is reached.

For each of the final set of clusters created by Cluto, we created a single cluster entry
in our comparison database to be used during play. Each of these entries contained the
following information: the normalized vector representing the cluster’s center, the total
number of entries that are contained in the cluster, a list of the next moves played
during the games that are included in that cluster, and the frequencies of those next
moves.

We investigated the accuracy of these clusters by considering how often they contain

a next move which predicts the next move found in other games taken from the GoGoD
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Figure 5.3: Percentage of next moves found in closest cluster.

database. We selected a random sample of approximately 8000 games which were not
used in constructing our clusters, and then at each position in those games found the
closest cluster as explained in the next section. We consider a success to have occurred
when the cluster contains, as one of its next moves, the move actually played in the
observed sample professional game.

We found that the success rate decreased as the move number increased. We also
found that the success rate decreased with an increasing number of clusters. These
results are shown in Figure 5.3. Since the average number of games per cluster also
decreased with increasing number of clusters, it is not surprising that our success rate
would also decrease.

While it is an advantage to have a smaller number of next moves in each cluster so
that our filtering or biasing has a greater influence, it can be a disadvantage because it
becomes somewhat less likely that your cluster will contain the “correct” move. Since
even with a larger number of next moves we are filtering out or biasing against a very
large number of unacceptable moves, we elected in our experiments to first look at using
a smaller number of clusters and their larger sets of next moves. As mentioned above,

we found with small samples very little difference between using fewer or larger numbers



48

of clusters.

5.2.4 Finding a move during play

At each point during a search where the MCTS algorithm was searching through the
initial moves of the game, both for candidate moves, and during playouts to evaluate
the candidate moves, we limited the options of the program to those moves that had
been played by professional players in the games contained in the nearest cluster to
the current position. The position of the game board being evaluated in the search
is expressed as a 722 element vector of ones and zeroes identical to the scoring of the
professional games before creating the clusters. We then compare this vector to each
of the vectors representing a cluster center in the comparison database. In order to
compare the two scores, current position and cluster center, the cosine of these two
vectors is calculated. Whichever cluster has a cosine closest to the value one is the
nearest. The cluster whose center was nearest to the given position was then selected
to provide the candidate next moves. These candidate next moves from the games
contained in the nearest cluster were then used to modify the MCTS process.

We looked at two ways to modify the MCT'S search: filtering and biasing. In filtering
the choice both in and out of the search tree is limited so that only the moves from the
cluster’s list are allowed to be chosen. Thus instead of looking at all the possible moves
(over 300 at the beginning of the game) the algorithm considers the few (usually ten to
forty) allowed by the filter. In the biasing method we change the in-tree node selection
by modifying the statistics of the preferred moves. Used in [85] and often called “priors”
for prior knowledge, this technique seeds the selection statistics with virtual win and
visit counts. As nodes in the tree are created, instead of beginning with 0 wins from
0 visits, they are biased by beginning with, for example, 40 wins from 40 visits. Using
this method means that although all possible moves are open for consideration by the
MCTS algorithm, the moves selected by SMARTSTART are given a strong preference
since they will appear to have already won a large number of playouts.

The positions that were considered were those up to move twelve. We also explored
using the knowledge up to move twenty, but found that the overall win rates actually
declined. This corresponded with a similar decrease in the quality of the clusters that

had been produced: after move twelve the tightness of the clusters and the clarity with
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Figure 5.4: SMARTSTART Speed in playouts/s.

which they can be distinguished from other clusters gradually decreased.

The computational overhead of creating a position’s score and finding the closest
cluster for the initial moves was small but increased with the number of clusters. As
measured by playouts per second, comparing to 64 clusters was less than 2% slower
while 128 clusters was less than 5% slower at their worst, which was the first few moves

when the most comparisons would take place. The speeds are shown in Figure 5.4.

5.3 Current Open Source Go Engines

There are currently three popular and strong open-source Go engines available which
use Monte Carlo techniques, Fuego, Orego, and Pachi. Additionally, the open-source
Gnugo program, though weaker than these, is often used as a traditional Al techniques
opponent. Fuego is built using C++, Pachi with C, and Orego with Java, while Gnugo
is written using C. Of these, Fuego is considered the strongest.

The algorithms for Monte Carlo Tree Search can be categorized along a few different
axes: the random play out policy, the tree selection policy, and the propagation method

of results.
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The policy during random playout is the amount of control exerted over the choice
of moves in the random playout phase. This is known as the default policy. When the
engine picks only totally random legal moves, this policy is considered to be a “light”
policy. When a heuristic or set of heuristics is applied to modify the random move
selection, the policy is considered to become “heavy”: the more heuristics applied and
the greater the filtering effect, the heavier the policy. Heuristics range from simply not
filling in eye spaces, to relying on extensive pattern matching to filter available moves.

Another distinguishing feature of a Go engine is the techniques used to choose which
nodes on the edge of the search tree to expand. This is known as the tree policy, and
determines the fashion in which the tree is built. The nature of the values used to
choose from which node to start a simulation, and how to calculate and modify them,
are often the heart of the various named versions of MCTS such as flat UCT and All
Moves As First with its most popular version RAVE.

Finally the method in which a win or a loss from a playout is propagated through the
tree differentiates the different algorithms used. Whereas in UCT the result moves up
the tree from the node at which the default playout began up to the root through each
nodes’ parents, in All Moves As First algorithms, the result is also added to statistics
in any node in the tree that could have been played (but was not) that matches some

move occurring during the random playout phase.

5.3.1 Fuego

Fuego [150] is a Go Engine and game framework written in C++ created and maintained
by the Computer Go group at the University of Alberta, Canada. It consists of a number
of modules to run a go board, read and write SGF game files, run a game-independent
MCTS game, and run an MCTS go game engine using various heuristics including
RAVE. Fuego contains the ability to invoke an opening book if desired, and that book
can be replaced or modified. Additionally, Fuego has the ability to be run as a multi-
threaded application. Fuego has done well in computer to computer Go tournaments,

with an occasional top place, and often scoring in the top three.
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5.3.2 Orego

Orego [151] is a Go Engine written in Java created and maintained by Peter Drake
and his students at Lewis and Clark College in Oregon. Orego is an object-oriented
implementation which uses a class hierarchy to create different kinds of MCTS players.
The classes which implement players determine the kind of tree search which will take
place. There are classes for the traditional flat Monte Carlo search, an unadulterated
MCTS tree, a RAVE equipped search tree and one using last good reply techniques.
Other classes directly implement the playout policy, with three heuristics available:
escape, pattern, and capture. The playout heuristics can be specified at runtime with

any priority order and any probability of being invoked on a particular move pick.

5.3.3 Pachi

Pachi [101] is a Go Engine written in C mostly by Petr Baudis as his Master’s Thesis
work at Charles University in Prague. It is maintained and upgraded as an open source
project. Though written in C, Pachi is divided into a number of modules which together
implement a Go specific MCTS engine.

Pachi uses simplified RAVE statistics in the tree policy.

Pachi implements a semi-heavy playout policy, using a small (less than 10) set of
heuristics in a given priority order to generate lists of candidate moves. Each heuristic
is given a 90% chance of being consulted. If there are any moves in a list produced by

a heuristic, one is chosen from that list.

5.3.4 Gnugo

Gnugo [19] is a Go Engine using traditional, not Monte Carlo, techniques. It has been
in intermittent development since 1989, with the most work ceasing after 2009 as MCT'S
programs became significantly stronger.

Similar to many traditional Go programs, Gnugo uses a number of independent
analysis modules to study a given board situation, and then generate a list of reasonable
moves. Then using estimated territory values for those moves, along with some heuristics
dealing with strategic effects of the moves, it picks one of the candidates as the next

move. It does not conduct a global lookahead search.
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5.4 Results

We tested our method by incorporating it into a pair of strong open-source engines and
compared win rates of modified and unmodified versions of these programs versus other
Go-playing programs. For exploring the different implementation parameters mentioned
above and for part of the following results we used the Orego [151] program, written in
Java. We played Orego against the older, non Monte Carlo Go program Gnugo [19]. We
also incorporated our method into the stronger Fuego [150] program, written in C++,

and played it against another strong open-source MCTS Go program called Pachi [101].

5.4.1 Statistics

One of the problems with trying to study the end results of Go is the large number of
games that must be played in order to detect a difference in playing strength. In any
situation where the results are binary such as win-loss records of games, the formula for
the 95% normal approximation of the binomial confidence interval is p:l:l.%M
where p is the probability of a win and n is the number of trials in the sample. This
means that 95% of the time an experiment is run the actual result will be within the
confidence interval of the value seen in the sample seen by the experiment. Given
this formula a very large number of games must be played to determine a reasonably
precise value of the software’s playing ability . For example, to get an approximately
2% confidence interval when the winning rate is about 50% requires 10,000 games. In
our experiments we have used 14,000 game tournaments in order to provide a 95%
confidence interval of approximately 1.65% (p + 0.825% ).

When comparing two different versions of a program we are usually concerned with
determining whether one version is performing better than the other. The simplest way
to do this would be to observe a large enough difference such that the 95% confidence
intervals of each of the two programs do not overlap. This is actually a too stringent
measure when comparing two win ratios. A much more accurate measure is to use what
is called the two-proportion z-test, or a score test of binomial proportions. In the case
of testing computer Go programs, we wish to determine if one proportion of wins is
greater than another in a statistically significant way. This test tells us the “p-value”:

the probability that the result we see in testing is due to normal variation (called the
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null hypothesis: the programs are really of equal strength and we are seeing a normal
variation of this), or if the result we see in testing is so unlikely that we should conclude
the opposite (called the alternative hypothesis: that one program is stronger than the
other). By convention when the p-value is 5 percent or less we reject the null hypothesis
and call the probability of the alternative hypothesis “significant”.

For example, to see if Fuego can win against Pachi more often than Orego wins
against Pachi, we state our null hypothesis (the theory that we are trying to disprove)
as WinRate(Fuego) < WinRate(Orego) and so our alternate hypothesis is then Win-
Rate(Fuego) > WinRate(Orego). If Fuego won 510 out of 1000 games while Orego won
500 of 1000, we would find a p-value of 0.3437. This means that we have a 34.37%
chance of finding these experimental results given our null hypothesis that Fuego was
equal to or weaker than Orego. By convention, therefore, we do not reject the null
hypothesis. If Fuego won 5100 out of 10,000 games and Orego won 5000 out of 10,000,
though, we would find a p-value of 0.08074. That would mean we still have a 8.074%
chance of finding the result we did given our null hypothesis, and so we still accept the
null hypothesis. Finally at 14,000 games, if Fuego won 7140 while Orego won 7000, our
p-value would be 0.04831 which means we now have only a 4.831% chance of finding
this result under the null hypothesis. Thus we reject that and accept our alternative
hypothesis that Fuego is stronger than Orego.

Figure 5.5 shows the various p-values for a 51% winning rate versus a 50% winning
rate, based on the number of games played. The p-value shows the percent chance that
the player winning 51% of its games is equal to or weaker than the player winning 50%

of its games.

5.4.2 Experimental Parameters

We first incorporated our SMARTSTART technique into the Monte Carlo style “Orego”
program. The two versions of Orego, with and without SMARTSTART, were matched
up against Gnugo 3.8 at skill level 10. The games were played running both the Orego
and Gnugo programs on the same machine, moderated by the “gogui-twogtp” script
[152]. This script communicates with each program using Go Text Protocol (gtp) and
accumulates the results of all the games played. Both versions of Orego played with the

number of playouts per turn fixed at 8,000. The version of Orego with SMARTSTART
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Figure 5.5: The p-values calculated for comparing a 51% winning rate versus a 50%

winning rate.

was played with SMARTSTART invoked through move twelve using a database containing
96 clusters.

Since the Fuego program is a stronger computer Go engine, we also ran both the
normal Fuego and a SMARTSTART Fuego against an opponent, in this case the open
source program Pachi v.10. Fuego played with the number of playouts set to 16,000.
These tournaments utilized a database divided into 64 clusters for each of the games’
first twelve moves.

Our Fuego testing was divided into two different tournaments. In the first tourna-
ment the professional responses were used, as they were in the Orego tournaments, to
filter the moves available to the Fuego engine, both during the in-tree decision process,
and during the playouts.

In the second tournament, the matching responses were used to bias in-tree nodes.
From a given position represented by a tree node, the moves which had been chosen by
professionals were given a bias of 40 victories out of 40 games played. This bias causes
the Monte Carlo algorithm to favor exploring those nodes over those without the bias.

All the games in all the tournaments were run using Chinese scoring rules and a 7.5
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point komi on a 19 x 19 board.

5.4.3 Orego vs. Gnugo Results

In our tournaments of Orego vs. Gnugo 3.8, we played 14,000 games of unmodified
Orego against Gnugo, and 14,000 games of SMARTSTART Orego against Gnugo. In
both of these tournaments, half the games were played with Orego as black, and half
the games with Orego as white.

The win rates of Orego and Orego with SMARTSTART are shown in Table 5.2. With
the 14,000 game tournaments and the given winning rates, we have a one-sided p-value
of 0.0119. This means that there is only a 1.19% chance that the SMARTSTART Orego
winning rate is equal to or less than the unmodified Orego winning rate. Thus we have
a statistically significant improvement in the winning rate achieved by applying the

SMARTSTART method to Orego.

Table 5.2: Win Rates of Orego vs Gnugo. SMARTSTART Filtering applied through move
12.

As Black|As White| Cumulative|p-value
Unmodified Orego 40.76% | 40.06% | 40.41% -
SMARTSTART Orego 43.04% | 40.44% | 41.74% | 0.0119

5.4.4 Fuego vs. Pachi Results

In the Fuego vs. Pachi tournaments, we started by matching up Fuego with our SMART-
START algorithm configured for filtering. 14,000 games were played with this configu-
ration, and 12,000 games were played with an unmodified version of Fuego vs. Pachi.
14,000 games each were played using the Fuego engine modified with our SMARTSTART
algorithm providing a bias of 40 wins instead of filtering.

The unmodified and SMARTSTART versions of Fuego were all limited to 16,000 play-
outs per move. The unmodified version of Fuego was run with its opening book disabled.

The win rates are shown in Table 5.3 along with the p-value for the null hypothesis

that the SMARTSTART Fuego version is equal or weaker than the unmodified Fuego.
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Thus in applying SMARTSTART both as a filter and as a bias we obtained a small but

statistically significant increase in winning rates.

Table 5.3: Win Rates of Fuego vs. Pachi 10. SMARTSTART Filtering and Bias applied
through move 12.

As Black|As White| Cumulative| p-value
Fuego with no Opening Book 50.88% | 57.66% | 54.275% -

Fuego with SMARTSTART Filtering | 54.16% | 56.54% 55.35% | 0.0424
Fuego with SMARTSTART Bias 40 53.97% | 57.71% | 55.84% | 0.0058

5.5 SMARTSTART Summary and Future Work

By applying the SMARTSTART technique to two different open-source programs, Orego
and Fuego, we were able to create statistically significant improvements in the winning
rates of both of these programs over their opponents. This was true for using the
SMARTSTART knowledge either as a filter or as a large bias.

Continuation of this work will include testing the effects of SMARTSTART when
the number of playouts per move is larger through the entire game, and applying the
system to the Pachi go engine. Additional testing of different numbers of clusters will
be conducted to more thoroughly examine the effects of large versus small numbers of
clusters, including increasing the number of clusters with the move number to represent
the greater possibilities available at each move. Finally we will also explore the effects

of using larger samples of expert games to create the clusters.



Chapter 6

Parallel MCTS

Monte Carlo Tree Search has proven very successful in a number of domains, and due
to the nature of running many independent playouts it is an algorithm that lends itself
well to parallelization. As described above in chapter 3 there are generally three ways
to parallelize search in an MCTS tree: at the leaves of the search tree, throughout the
entire tree, and at its root.

Over the last ten years, commercial computer processors have not become much
faster in terms of their clock speed, but more numerous; dual core processors replacing
single core, and being replaced by quad core processors in turn in most home and
business configurations, and 8, 12, 16 and more core processors in many kinds of server
chips. This trend means that in order to improve performance of MCTS in the future,
especially in applications where time is of the essence and one cannot simply wait longer
for a better answer, parallelization will become the key ingredient.

In this chapter we will explain our work on a detailed, in-depth comparison of the
efficacy of the three kinds of parallelization. Additionally we will introduce a new
variant of root parallelization which uses the idea of heterogeneous algorithms to create

a diversity of search trees from which to derive a solution.

6.1 Comparisons of Parallelization of MCTS

Some direct comparisons have been run over the years over differing methods of par-

allelization. These studies have almost all been conducted in the domain of Go, since

o7



58
most MCTS implementations were first done in this domain.

Chaslot, Winands, and van den Herik [114] compared all three of these paralleliza-
tion methods. They created a measure of scalability which was based on the increase
in winning rates as the amount of time per turn increased, naming it the “strength
speedup” measure. They concluded that the best increase in strength was achieved by
using root parallelization, with average voting. This was tested on their Mango pro-
gram. These experiments were conducted with reasonably sized tournaments from 500
to 100 games, and used a 1 second time limit per turn as the baseline.

Soejima, Kishimoto, and Watanabe [119] explored root parallelization, comparing a
majority voting system versus an average voting system, and found that majority voting
was superior. They compared these over 9x9, 19x19 sized Go boards with both self
play using Fuego and also against MoGo. Additionally they tested move selection on
particular board problems against an “oracle” version of the software which was Fuego
running for 80 seconds, which is 8 times their baseline move time of 10 seconds in other
experiments, but for the move selection experiments they ranged from 1 to 64 seconds.
Their tournaments were limited in size, having only 200 games in each resulting in large
confidence intervals on their results.

Segal [153] found a theoretical upper bound for a multi-threaded model over a single-
threaded one for MCTS as implemented in Fuego. He also found that tree parallel
algorithms work well using the virtual loss technique, but stop scaling well at around
8 threads without virtual loss. This research did use 1000 game tournaments, but
always used self-play, which tends to exaggerate differences. Additionally, the testing
was done by giving a total amount of time to both the multi-thread and single thread
implementations, so the actual time for the multi-threaded player was the time divided
by the number of threads. Strength was then extrapolated from these results, with the
multi-threaded player always losing some Elo due to threading costs.

Schaefers and Platzner [130] analyzed the effects of using a parallel transposition
table for tree parallelization along with dedicating some compute nodes to broadcast

operations to help scaling to large numbers of nodes.
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6.2 Multiple Algorithms for Root Parallelization

Along with comparing parallelization techniques, we introduce a new variant of root
parallelization involving multiple algorithms. During the process of root parallelization,
the different trees which are created grow slightly differently due to the stochastic nature
of the playouts. Usually each tree is started with a different random seed for the
stochastic parts of the algorithm to guarantee that the trees are built with different
playout results. In order to increase the diversity of these trees, we introduce the idea
of varying some of the tree-building parameters so that groups of the parallel trees will
be created by slightly different build algorithms. For example, half of the parallel trees
could use algorithm A while another half uses algorithm B. Our conjecture is that this
diversity will help improve the overall results in the majority voting as was accomplished

in an intelligent agents context in [127].

6.3 Methodology

We compared the effects of root parallelization over a number of scenarios in the do-
mains of the games of Go and Hex. We chose to use the Go game domain because
the MCTS software for computer Go has become quite mature, and Hex as a similar
domain but with slightly different characteristics. The game of Go was the first to
seriously develop MCTS, and offers a selection of open-source programs with which to
experiment, including two that are considered to be some of the strongest computer Go
programs.

We examined 4 different basic arrangements in order to observe the effects of paral-
lelization on MCTS:

1. We increased the time available to a single thread, thereby allowing a larger tree
to be created.

2. We increased the number of threads operating on a single tree to be increased,
also allowing a larger tree to be created.

3. We increased the number of nodes over which to run MCTS, and therefore the
number of trees that would be built and contribute to the choice of action.

4. We compared the effects of different settings for the MCTS algorithm using root
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level parallelism by varying a parameter that controls the balance of of exploitation

versus exploration.

6.3.1 Larger Trees With More Time

The longer an MCTS algorithm is run, the larger the search tree will become and this
should usually improve the quality of the results. All trees eventually run into memory
limitations, and have to have their very least promising branches pruned to free up the
memory to build out the higher quality parts of the tree. Nonetheless, measured by the
total number of playouts conducted, the size of the tree explored at some point, even if
it has been subsequently pruned, rises close to linearly with the time allotted.

We allowed an MCTS program to run for longer than a typical amount of time in
the domain, doubling and redoubling the time allowed, in order to see the effect this
would have on the quality of the resultant decisions. We measured the quality by the
comparing the winning rate of a computer Go program playing against an opponent
that was only allowed to use the standard amount of time.

We chose a standard time allotment for each domain as the baseline amount of
time. In the case of computer Go, using 15 second turns for decisions is quite common.
We picked this as 1 unit of time, and then kept doubling the time allowed based on
that unit. We believe this avoids the problems of showing large improvements from
an unrealistically small baseline time unit. Similarly in the Hex domain we chose a 10

second per turn time limit as 1 unit of time.

6.3.2 Larger Trees With More Threads

Another way to increase the size of the search tree is to allow more than one thread to
work on the same tree at a time: tree parallelization. The scalability of this approach is
limited by the number of cores that are sharing access to the same memory on a machine
with a shared memory architecture. Current high-end consumer-grade processors are
four-core, but act as though they have eight cores by using hyper-threading technology.

We ran an MCTS program capable of conducting lock-free tree parallelization on a
single machine with an increasing number of threads and recorded the quality of the

win rate results as the number of threads increased.
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6.3.3 Using More Trees

We increased the number of nodes over which to run MCTS, and therefore the number
of trees that would be built and contribute to the choice of action. We implemented
a parallel version of the MCTS algorithm with root level parallelism. Because of the
success seen in [119], we used a system of majority voting to determine the next action
to be taken.

At initialization, N copies of the MCTS program are created on different nodes of
a cluster. Each node keeps track of the current state. When asked to produce an
action choice, the node runs an MCTS search without sharing information with the
other nodes. When the decision has been reached, each node reports its decision to the
master node, node 0, but does not implement that decision: it does not change the state.
For each possible action, Node 0 tallies up the number of nodes on which that action was
chosen. The action with the largest number of votes, one vote per node, is considered
the winner. This decision is then reported back to each node, which implements that
winning action and changes the state accordingly. At this point, each node should have
a copy of the current state and be ready for the next request.

We ran this majority vote root-parallel version of MCTS using an increasing number

of nodes and recorded the changes in the winning rates.

6.3.4 Mixing Search Styles with Multiple Algorithms

We compared the effects of different settings for MCTS using root level parallelism by
varying a parameter that controls the balance of exploitation versus exploration. In
the descent phase of each round of MCTS, if the normal UCT formula is followed the
exploration term will be set at infinity for any action not yet explored, as explained
above. This causes every legal action from any state to be taken at least one time
before any further descent occurs below that node. If infinity is replaced by a “first play
urgency” term then depending on that value the exploration term may end up small
enough to allow especially promising child nodes to be exploited before their siblings
have had even a single play. By setting this urgency term to a low number such as 1, we
will encourage exploitation over exploration more than the default balance between the

two. Since a large number of independent trees will be constructed in the root parallel
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algorithm, the exploration of the various promising branches can be accomplished by the
presence of the votes from the different trees, rather than having to consider everything
in one tree.

In addition we considered a mix of the default and low urgency settings where out of n
nodes, half would operate with the default urgency settings and half would operate with
the low setting. This was based on heterogeneous multi-agent work found in Marcolino
[128], where it was indicated that a mix of different agents voting for an action could
produce results superior to even the best of those agents on their own. Agent voting is
very similar to the majority voting for combining the separately created trees in root

parallelism, so we wished to observe any effects this might have in the parallel MCTS.

6.4 Experimental Setup

In order to study the effects of parallelization on MCTS in general and eliminate domain-
specific results, we elected to perform identical experiments over two domains: the game
of Go and the game of Hex.

In the domain of computer Go, there are currently two highly ranked open source
Go engines which incorporate MCTS, Pachi [101] and Fuego [150]. We used recent
builds of both of these programs — Pachi 11 and Fuego revision 1983 — to conduct our
experiments.

Our Go experiments consisted of running tournaments between these two programs
and recording the win/loss rates. All games were played with no handicap and a komi
of 7.5. In each tournament, each computer Go program played half of its games as
black, and half as white. We used Fuego and our modifications of Fuego as the variable
program, modifying it and its parameters. These various versions of Fuego were then
played against Pachi running always with the same set of parameters. All of our results
are stated in terms of the percentage of games won by Fuego against Pachi, or won by a
modified Fuego against its unmodified self. Pachi was played with all default parameters
except that it was run as a single thread with a time limit of 15 seconds per turn with
no opening book. Pachi plays with a RAVE component. Fuego was run with no opening
book, at the time limit specified in the experiment, on the number of threads specified

in the experiment and with the first-player-urgency specified in the experiment. Fuego
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runs with a RAVE component and a low urgency setting of 1.

In order to observe the effects of parallelization in a situation where AMAF was
not applicable, we also ran experiments with a version of Fuego which did not use the
RAVE statistics. This version was run with a high urgency of 10,000 when not otherwise
specified in the experiment.

In the domain of Hex, we used the two open-source programs MoHex and Wolve from
the “benzene” [154] package of Hex programs developed at the University of Alberta.
We built the software based on commit 7b1f7f from 16 February 2012. MoHex uses
MCTS while Wolve is based on traditional o — § search. We used Wolve as our test
opponent, and Mohex along with a modified MoHex as the program to test out the
various kinds of parallelization. As with our experiments in the Go domain, all of our
results are stated as the win rate of the MoHex program in its various versions versus
the Wolve program.

The tournaments were run on a cluster of HP blade servers, where each node con-
tained 2 quad-core 2.8 GHz Xeon “Nehalem EP” processors sharing 24 GB of memory.

In the game of Go two different board sizes are used to play games, especially between
computers. A game on a 9x9 board usually lasts on average about 60 moves before it
is decided or one side resigns. A game on a 19x19 board lasts about 260 moves, and so
involves a much larger state space and takes from four to five times as long to play.

In the Hex domain, we used the common 11 x 11 board for all of our tournaments.
On this size board, the typical game lasts on average a little less than 60 moves.

For the more time experiment in Go, we played a tournament on a 9x9 board with
Fuego running a single thread for 15 seconds available per move against Pachi running
a single thread for 15 seconds per turn. We then repeated this tournament five more
times, allowing Fuego 30 seconds per turn, then 60, 120, 240, and finally 480 seconds
per turn. We then repeated this experiment with the no RAVE version of Fuego.

In the Hex domain we played a tournament of 5 rounds with MoHex running on a
single thread for 10 seconds per turn against Wolve at 10 seconds per turn. We then
increased MoHex’s allowed running time to 20, 40, 80, and 160 seconds per turn.

For the more threads experiment, we played four 9x9 tournaments matching up
Fuego against Pachi, allowing Fuego to play with 1, 2, 4, and 8 threads respectively.

Pachi was kept to a single thread. Both programs were given 15 second per turn. We
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also ran these four tournaments with the no RAVE version of Fuego against Pachi. In
the Hex domain we played MoHex with 1, 2, 4, and 8 threads against Wolve, all at 10
seconds per turn.

In the experiment with multiple trees in Go we played four tournaments on a 9x9
board. In each tournament both Fuego and Pachi were run on single threads with 15
second time limits. The number of nodes Fuego was allowed to use, and hence the
number of trees it built, was varied with 1, 8, 32, and 64 nodes respectively in the
tournaments. We also conducted another four tournaments with the opponent being
Fuego itself running on a single thread and limited to one node. Again, the multi-tree
Fuego was run with 1, 8, 32, and 64 nodes. Additionally we repeated these Fuego and
Pachi tournaments but with the games played on a 19x19 board, single-threaded, with
15 second per turn time limits.

Experimenting with multiple trees in Hex we also played a similar four tournaments
using 1, 8, 32, and 64 nodes for the MoHex player. All these tournaments were played
with the 10 second per turn time limit against the Wolve player.

Finally, for the experiment mixing different styles of search, we used the variable
number of nodes creating multiple trees experiment as a baseline, and then ran the same
four tournaments against Pachi, but with a copy of Fuego where the first-move-urgency
value had been set to 1 from its default value of 10,000. The default of 10,000 is a
number representing a virtual infinite value for this parameter. Changing this value to
1 should encourage exploitation over exploration in the in-tree selection. In addition, we
ran three tournaments where half of the nodes used the default urgency value, and half
used the low urgency value. These were run on the 8, 32, and 64 node configurations.

This experiment was run twice, with both the RAVE and no RAVE versions of Fuego.

6.4.1 Statistics

In order to study the trend of performance in the winning rates in an adversarial game
situation we use the binomial confidence interval p &+ 1.96m where p is the
probability of a win and n is the number of trials in the sample. This means that 95%
of the time an experiment is run the actual value sought will be within the confidence
interval of the value seen in the sample by the experiment. Given this formula a reason-

ably large number of games must be played to detect an improvement in the software’s
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ability. If the winning rate is near 50% for example, the confidence interval for 500

games is a bit below 5%. This means with a 400 game trial, a result could be something
like 50 4+ 5%. With an 800 game trial the confidence interval is near +3.5%.

Where some of the previous studies used tournament sizes in the hundreds, we chose

to run tournaments of 1000 games in order to get confidence intervals close to +3%.

We believe this level of precision is necessary to be certain that the observed results are

real, not accidental, and to give a more accurate picture of the data trends.

6.5 Results

Tournaments between the computer Go opponents were moderated by the “gogui-
twogtp” script [152] which communicates with each program using the simple Go Text
Protocol and records the results of the games played. Tournaments between the com-

puter Hex opponents were moderated by a similar script modified for Hex players.

6.5.1 Extended Time Results

The results from the tournaments between copies of Fuego with increasing amounts of
time allotted for each decision and Pachi with the fixed 15 seconds of time per turn are
shown in Table 6.1. As the amount of time allowed increases, the winning rate of Fuego
increases until it is playing with eight times the base time, i.e., 120 seconds, after which
no significant advantage is seen. The results from the no RAVE Fuego with increasing
time limits show essentially no gain from increasing the time available when it is using

the default urgency value.

Table 6.1: Fuego vs Pachi. Fuego win rates with increasing time/move limits for a 9x9
Go board.

Time 15s | 30s | 60s | 1205|240 s|480 s
Winning Rate Fuego vs Pachi [48.4%)57.5%(63.8%]70.3%(68.6%|71.2%
Winning Rate Fuego (no | 8.3% | 9.5% [10.3%| 8.6% | 9.4% | 8.5%
RAVE) vs Pachi
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The results from the tournaments between a copy of MoHex with varied and in-
creasing time limits per turn are shown in Table 6.2. As the amount of time increases,
the winning rate of Mohex continues to increase up through 8x where it appears to

leveling out as it is doubled again to 16x.

Table 6.2: MoHex vs Wolve. MoHex win rates with increasing time/move limits on an
11 x 11 Hex board.

Time 10s | 20s | 40s | 80s | 160 s
Winning Rate MoHex vs Wolve |37.3%]42.8%48.1%54.6%55.5%

6.5.2 Single Tree Multithreaded Results

Tournaments between copies of Fuego set to run with varying number of threads versus
Pachi on a single thread produced the results seen in Table 6.3. As the number of
threads increases, the strength of the program appears to increase almost linearly up to
the maximum of eight, the number of processors in our shared-memory systems. Good

results are also obtained for the no RAVE version of Fuego.

Table 6.3: Fuego win rates with increasing number of threads for a 9x9 Go board.

Number of Threads 1 2 4 8

Winning Rate Fuego vs Pachi |48.4%159.2%|66.4%|74.2%
Winning Rate Fuego (no |8.3% [10.5%(12.5%18.9%
RAVE) vs Pachi

Results from a multi-threaded version of MoHex playing against Wolve are shown
in Table 6.4. The improvement in the Hex domain appears much more muted than that

gained in the Go domain.

6.5.3 Root Parallelization Results

Tournaments played between a root parallelized Fuego with an increasing number of

nodes against single-threaded Pachi and the no RAVE version of Fuego against Pachi
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Table 6.4: MoHex vs Wolve. MoHex win rates with increasing number of threads on an
11 x 11 Hex board.

Number of Threads 1 2 4 8
Winning Rate MoHex vs [37.9%39.0%|43.6%|40.9%
Wolve

are shown in Table 6.5. In both of these cases, the major jump in strength is from one

to eight nodes.

Table 6.5: Fuego vs Pachi. Fuego win rates with increasing number of nodes for a 9x9
Go board.

Number of Nodes 1 8 32 64

Winning Rate Fuego vs Pachi |48.4%(62.8%/69.0% |68.5%
Winning Rate Fuego (no |8.3% [22.8%]28.3%23.4%
RAVE) vs Pachi

We ran the root parallel version of MoHex on an increasing number of nodes versus
the default Wolve program. This was done once with the standard 10 second per turn
time limit and once again with a 20 second per turn time limit. The results from these

tournaments are shown in Table 6.6.

Table 6.6: MoHex vs Wolve. MoHex win rates with increasing number of nodes on an
11 x 11 Hex board.

Number of Nodes 1 8 16 32 64
10s/turn Winning Rate MoHex |37.3%/40.8%/40.7%|38.2%|41.5%

vs Wolve

20s/turn Winning Rate MoHex [42.8% |41.8%|43.5%|44.3%45.7%

vs Wolve

The root parallel version of Fuego played against a single-threaded copy of Fuego
with the results shown in Table 6.7. When competing against itself, the parallelized
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Fuego seemed to hit its upper limit at a lower winning rate than when competing against
Pachi. Self-play is typically not used in testing programs because implementation side

effects can confound the results.

Table 6.7: Fuego vs Fuego. Fuego win rates with increasing number of nodes for a 9x9
Go board.

Number of Nodes 1 8 32 64
Winning Rate 49.8%63.0%62.8%63.9%

We also ran a set of tournaments on a larger size Go board, 19x19. These were not
extended to 1000 games per tournament, and so do not have as much precision as our
other results, but show the same trend over an increasing number of nodes as the 9x9
results: a major leap in strength from 1 to 8 nodes, and then only gradual gains after

that. These results are shown in Table 6.8.

Table 6.8: Fuego vs Pachi on a 19x19 Go board. Fuego win rates with increasing

number of nodes.

Number of Nodes 1 8 32 64 |128
Winning Rate Fuego vs Pachi [40.9%61.3%63.1%(67.0%|66.7

Finally we ran the root parallel version of MoHex on an increasing number of nodes
versus the default Wolve program. This was done once with the standard 10 second per
turn time limit and once again with a 20 second per turn time limit. The results from

these tournaments are shown in Table 6.9.

6.5.4 Comparing Parallelization Techniques

We compare the effects of these techniques in our Fuego vs Pachi tournaments in Figure
6.1. As the time or number of threads or number of trees increases, all of these techniques
increase their strength from a baseline value. Increasing the number of threads using
a lock-free implementation works the best, but is limited by the number of CPUs in a

shared memory architecture. Increasing the number of nodes scales almost as well as
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Table 6.9: MoHex vs Wolve. MoHex win rates with increasing number of nodes on an

11 x 11 Hex board.

Number of Nodes 1 8

16

32

64

10s/turn Winning Rate MoHex [37.3%40.8%

vs Wolve

40.7%

38.2%

41.5%

20s/turn Winning Rate MoHex [42.8% |41.8%

vs Wolve

43.5%

44.3%

45.7%

increasing the time, but both of these see diminishing returns between the 8 and 32

multiplier levels.
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Figure 6.1: Comparison of winning rates for root parallelization, multi-threaded, and

increased time MCTS for a 9x9 Go board.

We compare these effects again in our Fuego (no RAVE) vs Pachi tournaments shown

in Figure 6.2. In this case the best result is achieved by increasing the number of nodes

rather than the number of threads, but appears to maximize at 32 nodes.
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Figure 6.2: Comparison of Fuego (no RAVE) winning rates vs Pachi for root paralleliza-

tion, multi-threaded, and increased time MCTS for a 9x9 Go board.

The effects of increasing the time and increasing the number of nodes across both
10 second per turn and 20 second per turn MoHex on winning rates against 10 second
per turn Wolve are shown in Figure 6.3. This clearly shows that increasing from 1 to
64 trees with root parallelization produces very little gain compared to increasing the
amount of time spent building a single tree in the domain of Hex.

We also compare the winning rates of our root parallel version of Fuego on the
different board sizes: 9 x 9 against 19 x 19. The winning rates given the increasing
number of nodes is shown in Figure 6.4. This shows that the win rates stop increasing
after 32 nodes on the smaller board, but continue increasing up to 64 nodes on the
larger board.

To investigate the apparent difference made by the size of the domain on the scala-
bility of root parallelism, we have started to examine the details of the voting patterns
with differing numbers of nodes.

We looked at how many different actions were chosen by the independent compute

nodes in the root parallel process at any decision point, and how that varied as the
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Figure 6.3: Comparison of winning rates for root parallelization at two timing levels,

along with increased time and increased threads on an 11 x 11 Hex board.

number of compute nodes increased. To do so we looked at a 5 randomly selected
games and for each turn we recorded how many different actions received any votes,
and how many votes they received. This value was then averaged across all the moves
of all the games to arrive at number for each board size and number of compute nodes
combination.

The results are shown in Figure 6.5 and seem to correlate well with the winning
rate results: in the 19 x 19 domain more reasonable possible moves are available than
in 9 x 9, and increase as the number of compute nodes increases. The number of moves
for the 9 x 9, however, plateaus at 4 choices at 64 compute nodes, very likely because

there are simply not more than 4 reasonable choices available in the smaller domain.
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Figure 6.4: Comparison of winning rates for root parallelization of Go at two board
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Figure 6.5: Average number of different moves chosen during root parallelization in Go

at two board sizes.
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6.5.5 Mixed Search Results

We compared the results of mixing algorithms, in this case the first play urgency value
which replaces infinity in the UCT formula, as the number of nodes available to the root-
parallel MCTS increased. The default urgency value is 10,000 while the low urgency
we used is 1. These win rates are shown in Table 6.10. In the case of modifying just
the first play urgency, there were no statistically significant differences in performance

compared to the default values.

Table 6.10: Fuego vs Pachi. Fuego win rates with increasing number of nodes for a 9x9
Go board.

Urgency 1 8 32 64

Default 48.4%62.8%169.0%|68.5%
Low 48.4%64.7%67.3%68.3%
Mixed 65.6%165.0%|68.7%

This experiment was repeated with the no RAVE version of Fuego. The results of
this are seen in Table 6.11, and also fail to show a statistically significant difference

between playing with default, low, or mixed values of the first play urgency setting.

Table 6.11: Fuego no RAVE vs Pachi. Fuego win rates with increasing number of nodes
for a 9x9 Go board.

Urgency 1 8 32 64

Default 8.3%122.8%23.3%23.4%
Low 9.2%124.6%(27.0%25.5%
Mixed 24.6%27.3%|27.5%

6.6 Analysis of Results

Compared to previous surveys found in the literature which have found that parallel
algorithms underperformed against simply running the algorithm for a longer period of

time in the domain of Go, we have shown that parallel algorithms keep pace with or
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exceed the performance gained by increasing the amount of time. We believe this is
due to both the maturity of the algorithms now available, and the use of a reasonable
baseline time unit for measurement. Weaker programs have more variability in their
playing strength, and it is deceptively easy to get a jump in performance when starting
from an unrealisticly low time scale. On the other hand, our results in the Hex domain
concur with these previous studies that increasing time, if available, is the best way to
improve winning rates.

Our larger tournament sizes also provide a much better picture of the actual results
and trend lines due to the smaller confidence intervals compared to many of the previous
studies, with which most of our results do agree.

In the Hex domain, however, root parallelism did not keep pace with the improve-
ments that could be gained by increasing the amount of time available to create a single
tree. Indeed increasing the number of nodes to 64 appeared to have about the same
effect as doubling the amount of time, both from 10 second turns to 20 second turns,
and from 20 second turns to 40 second turns.

One interesting result was that although in 9 x 9 Go and in Hex root parallelization
gains stalled at 32 nodes, in 19 x 19 Go the gains continued through 64 nodes. By
examining the number of different choices made in actual play in a root parallel system,
we believe that the plateau is due to the larger number of good choices available in
the larger game. As the number of votes available increases the likelihood of picking
the best move increases, but this may plateau at some multiple of the available good
moves. For example, if there are only three reasonable moves in a 9 x 9 game having 64
instead of 32 voters choosing may not increase the quality of the pick, but if there are
ten reasonable moves available it may require 64 or more nodes to find one of the best
as many of the votes will be spread out over the wider selection of reasonable moves.
We believe that our observations of the vote distribution support this theory, and will
include more studies of this nature in our future research.

The lack of a statistically significant difference between the default urgency, low
urgency, and mixed urgency algorithms was disappointing. This is likely due to the
efficiency of the RAVE statistics (all moves as first: AMAF) which allow non-infinite
values to be attributed to actions which have not yet been expanded from a given node,

thus bypassing the use of the urgency parameter. Because AMAF is not valid in many
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domains, though it is in Go, this experiment should be repeated and expanded in a

different domain, or in Go but without using RAVE.



Chapter 7

Conclusions and Future Work

Artificial Intelligence researchers have for decades applied their skills to games, in partic-
ular to Othello, chess, checkers, and Go. Automatically playing these games is challeng-
ing due to their large size of the possible moves search space and the lack of heuristics
to guide the search. Recently, Monte Carlo methods, particularly Monte Carlo Tree
Search, MCTS, has proven to be the key that unlocks the door to progress, notable in
Go, the domain of this thesis.

7.1 Conclusions

In this work we have addressed two important aspects of MCTS for Go.

First, we approached the opening game, which we improved via a novel form of an
opening book, one which informs the processing of MCTS. We introduced SMARTSTART,
a method which improves Monte Carlo search at the beginning of the game of Go,
where its search tree is at its widest and deepest. This method uses expert knowledge
to eliminate from consideration moves which have not been played by professional Go
players in similar situations. These moves have been taken from publically available
sources.

SMARTSTART creates a multi-element representation for each board position and
then matches that against clusters of professional games. A unique idea in SMARTSTART
is that instead of searching through individual games in a database in a brute force way,

during pre-processing it clusters these games and then searches only by cluster center
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positions. SMARTSTART allows only those next moves which were played in games in
the closest cluster to be searched by the Monte Carlo algorithm. The benefit of this
approach is that it speeds up processing, working as a very fast filter. By pruning a
large proportion of the options at the very beginning of a game tree, stochastic search
can spend its time on the most fruitful move possibilities. Applying this technique has
raised the win rate of a Monte Carlo program by a modest, but statistically significant
amount.

Second, we have studied the parallelization of MCST for Go, and another game,
Hex, and have introduced a new way to parallelize the search.

Although increasing the amount of time to build a tree using MCTS increases the
quality of the results, this may in some cases be impractical or disadvantageous.

Previous studies comparing parallelization schemes have suffered from either us-
ing too few trials to achieve a reasonable statistical significance, or have used indirect
measures of the effectiveness. We compared the root and tree methods of parallelizing
against increasing the amount of time available using the winning rate of the programs
as the efficacy measure.We found that the using either root or tree parallelization with
current open source software compared well to previous results, in that both were able
to keep pace with and outperform the improvements gained by increasing the amount
of time. This was an improvement on results presented previously, which we believe can
be attributed to the maturation of the software and also our measurements methods,
including using a reasonable baseline unit of time.

We introduced a new variant of root parallelization. It utilizes multiple multiple pa-
rameter sets in order to increase the diversity of the separate trees constructed. This is
similar to the idea of multiple agents voting on the same move as in the agents environ-
ment, and found that although the performance did not show a significant advantage
with only parameter sets, it did not decrease performance, and so this method still

shows some promise as a way to better utilize parallelization.

7.2 Future Work

As with any research, this work has created some new research questions.
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7.2.1 SmartStart

In the opening game, would increasing the number of clusters as the move number
increases better capture the greater variability of the go games at these later moves, as
the very opening moves transition into the late opening and early middle game?

Would a combination of SMARTSTART and more traditional opening book techniques
produce better results? In particular, a combination of Baier’s technique of first check-
ing for exact match on the whole board, then in the corners, and then moving on to
SmartStart.

Could SMARTSTART’s performance be improved further by varying the bias applied
based on the relative popularity of the move within the cluster: more popular means
more bias? One possible way of doing this might be to have a fixed number of bias
points in a pool which are then distributed exactly as the next-moves are distributed

within the matched cluster.

7.2.2 Parallelization

What are the effects of combining root parallelization with tree parallelization? Will
having multiple threads running on each node in a cluster lower the performance gains
as the number of nodes increases?

Choose other and more parameters to vary with heterogeneous root parallelism.
Search for a parameter which really allows different trees to be created. Is this variability
any better than the variability achieved with the random seed?

What is the reason for the better performance scaling of the root parallel algorithm
in 19 x 19 Go compared to 9 x 9 Go? We propose to further examine the distribution of
the choices made in these root parallel systems. Given 8 through 128 choices, what is
the nature of the distribution of chosen moves in 19 x 19 Go versus 9 x 9 Go; the smaller
versus the larger domain? Does the distribution change as the game progresses?

What are the perfomance gains from parallelization in a different domain which is

not a perfect-information game, and not a RAVE domain?
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