LINE-OF-SIGHT PURSUIT IN STRICTLY SWEEPABLE POLYGONS
By

Lindsay Berry, Andrew Beveridge, Jane Butterfield, Volkan Isler, Zachary Keller, Alana
Shine and Junyi Wang

IMA Preprint Series #2456

(August 2015)

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
400 Lind Hall
207 Church Street S.E.
Minneapolis, Minnesota 55455-0436
Phone: 612-624-6066 Fax: 612-626-7370
URL.: http://www.ima.umn.edu

Line-of-Sight Pursuit in Strictly Sweepable Polygons

Lindsay Berry* Andrew Beveridge' Jane Butterfield* Volkan Isler?
Zachary Keller? Alana Shine! Junyi Wang'

Abstract

We study a turn-based game in a simply connected polygonal environment () between a pursuer
P and an adversarial evader £. Both players can move in a straight line to any point within unit
distance during their turn. The pursuer P wins by capturing the evader, meaning that their distance
satisfies d(P,E) < 1, while the evader wins by eluding capture forever. Both players have a map
of the environment, but they have different sensing capabilities. The evader £ always knows the
location of P. Meanwhile, P only has line-of-sight visibility: P observes the evader’s position
only when the line segment connecting them lies entirely within the polygon. Therefore P must
search for £ when the evader is hidden from view.

We provide a winning strategy for P in the family of strictly sweepable polygons, meaning
that a straight line L can be moved continuously over @ so that (1) L N @ is always convex and
(2) every point on the boundary 0@ is swept exactly once. This strict sweeping requires that L
moves along () via a sequence of translations and rotations. We develop our main result by first
considering pursuit in the subfamilies of monotone polygons (where L moves by translation) and
scallop polygons (where L moves by a single rotation). Our algorithm uses rook strategy during
its active pursuit phase, rather than the well-known lion strategy. The rook strategy is crucial
for obtaining a capture time that is linear in the area of (). For monotone and scallop polygons,
our algorithm has a capture time of O(n(Q) + area(Q)), where n(Q) is the number of polygon
vertices. The capture time bound for strictly sweepable polygons is O(n(Q) - area(Q)).

1 Introduction

We study a turn based pursuit-evasion game in which a pursuer P chases an evader £ in a simply
connected polygon () with boundary 0Q). The players have unit speed, so they can move to any point
within unit distance of their current location, provided that the line segment connecting these points is
contained in (). The pursuer’s goal is to catch the evader in finite time using a deterministic strategy,
while the evader tries to avoid capture indefinitely. Both players have full knowledge of the layout of
environment, but they have asymmetric sensing capabilities. The evader has full-visibility, meaning

*Department of Mathematics, University of Texas, Austin TX 78712

TDepartment of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul MN 55105
#Department of Mathematics & Statistics, University of Victoria, Victoria, B.C. V8X 2X6

$Department of Computer Science & Engineering, University of Minnesota, Minneapolis MN 55455
TDepartment of Mathematics, University of Minnesota, Minneapolis MN 55455

IDepartment of Computer Science, Pomona College, Claremont CA 91711

that £ knows the location of P at all times. The pursuer only has line-of-sight visibility: she knows the
exact location of £ only when the line segment PE C (). Therefore, the pursuer must search when & is
obscured by features of the environment. The capture condition requires both proximity and visibility:
the evader is captured when d(P, £) < 1 and PE C Q.

The line-of-sight restriction puts the pursuer at a great disadvantage. Isler, Kannan and Khanna
[8] provide a winning strategy for a full-visibility pursuer P in a simply connected polygon, called
lion’s strategy. They also construct environments for which a pursuer P with line-of-sight visibility
does not have a deterministic winning strategy. Recently, Klein and Suri [[10] provided an upper bound
for the number of pursuers required for this setting: O(n'/?) line-of-sight pursuers have a winning
strategy in any simply connected polygon. They construct a comb-like environment (with visibility-
blocking notches in its corridors) that requires G(nl/ 2) pursuers, so their bound is tight.

V12

() (b) ©

Figure 1.1: (a) A strictly sweepable polygon. (b) A monotone polygon with respect to horizontal axis
Lg with vertices indexed from left to right. (c) A scallop polygon with vertices indexed according to
decreasing polar angle.

This paper addresses the other extreme: when can a single line-of-sight pursuer use a deterministic
strategy to catch an evader? We provide a winning pursuer strategy for the family of strictly sweepable
polygons. A polygon () is sweepable if a straight line L can be moved continuously over () so that
@ N L is always convex. The sweeping motion can include translations and rotations of the sweep
line. A polygon is strictly sweepable if every point of @) is swept exactly once during this process,
see Figure[I.T[(a). We build up to this result, first describing winning pursuit strategies in two simpler
subfamilies. A monotone polygon is a strictly sweepable polygon where the sweep line moves via
translation along a fixed line Lo, see Figure [I.T(b) Our second family is scallop polygons, where the
sweep line simply rotates through a fixed center C' located outside of the polygon, see Figure [I.1]c).
In this case, the total angle swept must be less than 7 to maintain the convex intersection with). Our
main theorem summaries our results.

Theorem 1.1. A line-of-sight pursuer can catch an evader in each of the following families of environ-
ments:

(a) monotone polygons with capture time O(n(Q) + area(Q)),

Figure 1.2: An example pursuit trajectory in which the evader makes two blocking moves. The white
points indicate the transition from search mode to rook mode. The gray points indicate where the
pursuer is blocked and transitions back to seach mode. The evader is captured at the final black point.
Note that the pursuer never visits the same point twice.

(b) scallop polygons with capture time O(n(Q) + area(Q)), and
(c) strictly sweepable polygons with capture time O(n(Q) - area(Q)).

Our pursuit algorithm alternates between a search mode and an active pursuit mode, called rook
mode. During search mode, the pursuer methodically clears the polygon from left-to-right, maintaining
a series of checkpoints that mark her progress. When P enters rook mode, her movements still guard
these checkpoints. During rook mode, the evader can use features of the environment to hinder the
pursuer. For example, the pursuer can be blocked by the boundary. In scallop and strictly sweepable
polygons, the evader can also hide behind features. In response, P reverts back into search mode,
carefully ensuring that she maintains her checkpoint progress. Maintaining the progress is straight-
forward in monotone polygons, but is trickier in scallop polygons and tricker still in strictly sweepable
polygons. Eventually, the evader will be pushed into a subpolygon where the pursuer can capture him.
Figure[I.2]shows a typical pursuit trajectory in a monotone polygon. The pursuer’s searching phases are
shown in black and the active pursuit phases are shown in gray. Note that searching always progresses
from left-to-right. During active pursuit, P guards her current horizontal position, moving left or right
to track the evader’s movement, and advancing towards the evader when given the opportunity.

The proofs for each polygon family can be found in the three sections that follow, with our
arguments building successively. Monotone pursuit is the simplest case, so we prove Theorem
[[.T(a) in Section 2] Noori and Isler [16] proved that monotone polygons are pursuer-win for a
line-of-sight pursuer. Their algorithm guarantees a capture time of O(n(Q)7 - diam(Q)'?) where
diam(Q) = max, yec d(z, y). Our pursuit strategy is much simpler, as is reflected in our significantly
reduced capture time. The key improvement is a novel chasing strategy for pursuit in polygonal en-
vironments. The standard endgame in a polygon uses the extended lion’s strategy [8]] to capture the
evader. Herein, we use a different tactic that is better suited to the monotone setting. This rook’s strat-
egy chases the evader while simultaneously guarding a horizontal frontier from incursion by the evader.
This allows for a seamless transition between searching for the evader and actively chasing him. More
specifically, our active rook phase also guards the pursuer’s progress, while Noori and Isler needed a

third mode to defend against certain pursuer gambits, which increased their capture time bound.

In Section 3] we adapt the monotone pursuit strategy for scallop polygons. The guiding principle
of the scallop strategy is to update the pursuer’s frame of reference as she moves through the polygon.
This update takes some care, as P must reposition herself to continue to guard her progress. Finally,
we generalize to strictly sweepable polygons in Sectiond] where our methodical analysis of monotone
and scallop polygons pays off. We treat the sweepable environment as a progression of monotone
and scallop polygons. The delicate transitions between these types requires even more care, since
they can interact in subtle ways. Before launching into the proofs, we discuss related work and some
environmental assumptions.

1.1 Related work and environmental assumptions

The literature on pursuit-evasion games spans a variety of settings and disciplines, with various motion
and sensing capabilities. For a given environment, the main questions are (1) to determine the mini-
mum number of pursuers needed to capture the evader, and (2) to bound the capture time, which is
the number of rounds needed to catch the evader. Diverse game models have been studied, considering
different types of environments, motion constraints, sensing capabilities and capture conditions. We
list a sampling of these variations. Researchers have explored speed differentials between the players,
constraints on acceleration, and energy budgets. As for sensing models, the players may have full
information about the positions of other players, or they may have incomplete or imperfect informa-
tion. Typically, the capture conditions requires achieving colocation, a proximity threshold, or sensory
visibility (such as a non-obstructed view of the evader).

The original pursuit-evasion game seems to be Rado’s lion-and-man game from the 1930’s. In
this game, lion chases man in a circular arena, with each player moving with unit speed. Lion wins
if it becomes colocated with man in finite time, while the man tries to evade the lion forever. Intu-
ition suggests that lion should be victorious. However, Besicovich showed that if the game is played
in continuous time, then man can gently spiral away from the center, so that the lion becomes arbi-
trarily close, but never achieves colocation [12]. Meanwhile, the turn-based version time avoids this
pathology: Sgall showed that the lion is victorious in finite time [19].

Pursuit-evasion games have enjoyed significant attention in the last decade, from three camps.
The computational geometry viewpoint has been embraced by robotics researchers and theoretical
computer scientists. In this setting, the turn-based pursuit game is played in a polygonal environment, a
productive setting for studying autonomous agents. The game takes place inside a polygon with a finite
collection of polygonal holes; the papers [7,[11,[13]] provide introductions to pursuit in this setting. Isler
et al. [8] introduced the extended lion’s strategy, which adapts the original lion’s strategy in circular
environments. This is a winning strategy for a single pursuer in any any simply connected polygon.
More recently, Noori and Isler [[14, [15] employed a novel pursuer strategy called rook’s strategy for
pursuit on surfaces and convex terrains. This strategy, which was originally developed for the full
visibility case, is valid whenever the capture distance is nonzero. Herein, we extend rook’s strategy for
line-of-sight pursuit in sweepable polygons. Interest in polygonal pursuit games has been spurred by
the widespread availability of practical sensing technologies and robotics platforms. Applications for

automated search and pursuit are on the rise, including intruder neutralization, search-and-rescue, and
tracking of tagged wildlife. Analysis of games with an adversarial evader provide important worst-case
bounds for these applications.

Meanwhile, combinatorics researchers have devoted intense scrutiny to pursuit-evasion on graphs,
where it is known as the game of cops and robbers. This graph game was introduced in the 1980’s [18|
17]. For an overview of pursuit-evasion on graphs, see the monograph [6]. More recently, topologists
have gotten into the game, characterizing capture strategies for spaces with various curvature conditions
[2,3]. There has certainly been cross-pollination between these traditions. For example, the analog of
the classic Aigner and Fromme result that three cops can always capture a robber on a planar graph [[1]]
was recently proven to hold for the polygonal setting by Bhaudauria et al. [S]], and further generalized
to a class of compact two-dimensional domains by Beveridge and Cai [4].

We conclude this section with comments on two aspects of our game model. First, we assume
that there is a relationship between the geometry of the environment and the speed of the players. In
particular, the environment has a minimum feature size, meaning that the minimum distance between
any two polygonal vertices is at least one unit. This assumption can be achieved by a simple rescaling
of the environment, if necessary. Klein and Suri [9] pointed out that this minimum feature size has been
an implicit assumption in many papers. Furthermore, it is necessary to avoid an unexpectedly powerful
evader who can use his super-speed to confound a line-of-sight pursuer. Of course, this assumption is
a natural one: we view the turn-based game as an approximation of the continuous time, so we should
choose a time scaling that appropriately partitions the dynamics of movement in the environment.

Second, recall that capture in our game requires two conditions: d(P,E) < 1 and P sees £. We
employ unit capture distance to simplify the presentation of our proofs. Our results also hold when we
replace the first condition with d(P, £) < e for any positive capture radius € > 0. The only impact of a
smaller capture radius € is a multiplicative factor of 1/¢ in the capture time. We note that the polygonal
literature uses proximity capture (d(P,E) < ¢€) and colocation capture (d(P,E) = 0) with roughly
equal frequency. Herein, we take additional advantage of the former capture condition in developing
the rook’s strategy for chasing the evader. In particular, the buffer distance between the players plays
an essential role in the rook’s strategy. In practice, the players would have non-zero radius so this
assumption always holds.

Finally, we assume that |area(Q)| > |diam(Q)| throughout to simplify our time bound notation.
This will generally be the case, except for long, skinny environments. Note that area(Q) < diam(Q)?
whenever diam(Q) > 1, so we could use the latter value for our capture time bounds, if desired. We
state our bounds in terms of area since our analysis will naturally partition the polygon into disjoint
regions.

2 Pursuit in a Monotone Polygon

In this section, we prove Theorem [I.I(a): P can capture £ in a monotone polygon. We start by
setting some notation. We fix our monotone axis L¢ and then label our vertices from left to right as
v1, V2, . .., Vy. The monotonicity of () has a simple characterization with respect to 0Q): the boundary

can be partitioned into two piecewise linear functions defined on [x(v1), (v,)]. These functions only
intersect at v; and v,,, so we refer to them as the upper chain 11;; and the lower chain 11y,

Given a point Z, let (Z) and y(Z) denote its z- and y-coordinates respectively, so that Z =
(z(Z),y(Z)), where the horizontal z-axis aligns with the monotone axis Lg. The horizontal and
vertical line segments through Z that intersect J() are denoted by X (Z) and Y (Z), respectively. We
opt for this notation since we will view these lines as the “z-axis” and “y-axis” for the frame of
reference centered at Z. The symbols P and £ denote the pursuer and the evader respectively. We
are often concerned with these positions at some time ¢ > 0, and will use P; = (x(P), y(P:)) and
& = (x(&),y(&)) to denote these points in the polygon. We define Az(t) = |z(P;) — z(&)| and
Ay(t) = |y(Pr) — y(&)|. Occasionally, we will drop the subscript and use P, £ to denote the player’s
positions, in order to ease the exposition.

The high-level pursuer strategy is given in Algorithm [I| We start with a qualitative description of
the pursuit, tackling the details of this algorithm in the subsections that follow. Our pursuer algorithm
in a monotone polygon has much in common with the algorithm presented by Noori and Isler [16].
Both alternate between a searching mode and a chasing mode. In the search mode, P traverses left-
to-right along a specified search path. At certain times, P is able to mark a region to her left as
cleared, meaning £ cannot enter this region without being captured. These checkpoints are necessary
for showing that the pursuit terminates in finite time. This methodical advancement continues until P
establishes the criteria to enter chase mode. This requires (1) visibility of £ and (2) being positioned
in a manner that protects the cleared region. Once P has transitioned into chase mode, she pursues
the evader until £ makes a rightward move that obstructs her pursuit (either by hiding behind a vertex
or by using the boundary to block the pursuer’s responding move). This forces P to re-enter search
mode. Crucially, this is done in a way that protects (and perhaps =updates) the cleared territory. The
algorithm continues, and the evader territory shrinks over time. Eventually, £ is trapped in a subregion
where he cannot foil the chase mode any longer, and P captures him.

Algorithm 1 Pursuit Strategy
Require: P starts out at left endpoint vq
1: while £ has not been captured do
2: Create Search Path from the current location of P
3 while P has not attained rook position do
4 Follow Search Strategy
5 end while
6: while £ does not make an escape move do
7
8
9

Follow Rook Strategy
: end while
: end while

The fundamental difference between our algorithm and that of Noori and Isler is the choice of
chase mode. The method of chasing informs the trajectory for searching, so the search paths are also
different. Noori and Isler use the extended lion’s strategy to chase the evader. In lion’s strategy, the
pursuer stays on the shortest path between the leftmost point v; and the evader. Noori and Isler need

(@ (b)

Figure 2.3: Rook strategy in a convex polygon. (a) P is in rook position with negative offset z:(P) —
x(£) < 1/2. P can maintain this offset when £ moves to the right. (b) Eventually, P will make
progress, perhaps by switching to a positive offset when £ finally moves to the left.

an additional guarding mode to establish this position after spying the evader. This guarding mode is
quite involved (and contributes to their worst case O(n(Q)” - diam(Q)'?) capture time), as the evader
has multiple gambits to threaten the pursuer’s cleared region. However, once P has established lion’s
position, she can reliably push the evader to the right, ending in capture or an evader hiding move
(which triggers a transition back to search mode).

Herein, we use a different chasing tactic called rook’s strategy that is better suited for our mono-
tone setting. This strategy has been used successfully on polyhedral surfaces for the full visibility
case [[14, [15]], but this marks its first appearance for polygonal pursuit and with visibility constraints.
Rook’s strategy draws inspiration from the chess endgame of a black rook and black king versus a
solitary white king. During this endgame, the black rook reduces the area available to the white king,
one row at a time (with occasional support of the black king). Eventually, the white king is confined to
a single row, where black can checkmate. At any given time, the rook guards a horizontal row on the
chessboard. Likewise, a pursuer in rook position will also guard a horizontal frontier. This is a natural
complement to the pursuer’s horizontal search trajectory. Rook’s strategy eliminates the challenging
transition that Noori and Isler mitigated with their guarding phase, which dealt with the mismatch of
their linear search path and the curved boundary of their cleared region. Our improved capture time
of O(n(Q) + area(Q)) directly reflects the seamless transition between our search mode and our rook
mode.

We say that P is in rook position when (a) () contains the line segment joining P and &, and (b)
|z(P) — z(€)| < 1/2, see Figure 2.3(a). We refer to z(P) — () as the pursuer offset and we refer
to the horizontal line segment X (P) as the rook frontier. In a convex polygon (where visibility is
not an issue), rook position has three important characteristics. First, a pursuer in rook position can
re-establish this position after every evader move. Second, the evader cannot get too close to the rook
frontier (or cross it) without being captured. Third, the pursuer can reliably advance her rook frontier:
the worst case scenario is when £ moves full speed horizontally across the region. At some point, he
must reverse direction, and the pursuer changes her offset (say, from positive to negative), and moves
her rook frontier towards the evader, see Figure [2.3(b). The situation is more complicated in a general
polygon, but these three basic characteristics remain the driving force of rook’s strategy.

Figure shows the eight different configurations for a pursuer in rook position. We say that P is

5 w
lower chute lower chute lower pocket lower pocket
c € c €
c
P a p w
upper pocket upper pocket upper chute upper chute

Figure 2.4: The eight types of rook positions. The evader territories are shown in gray.

in lower (upper) pocket position when (1) the evader is below (above) the pursuer, and (2) both of the
endpoints of the rook frontier are on the lower chain II;, (upper chain II;;). We say that P is in lower
(upper) chute position when (1) the evader is below (above) the pursuer, and (2) the left endpoint of
the rook frontier is on the lower (upper) chain and the right endpoint is on the upper (lower) chain.

When the pursuer establishes pocket position, we have reached the endgame of the pursuit. The
evader can try to use the features in the pocket to his advantage, but the pursuer always has a counter
move. Eventually, the evader will be caught, just as in a convex polygon. On the other hand, when the
pursuer establishes chute position, the evader can employ an escape move to prolong the game. For
example, in a lower chute, £ can move rightward and use the upper boundary I1;; to block the pursuer’s
rook move. In response, P transitions back into search mode, using a new search path drawn from her
current location, see Figure [2.9]

This concludes the overview of our pursuer strategy. We work through the details in the subsections
that follow.

2.1 Search Strategy

The key to the pursuer’s search mode is the choice of search path II. Algorithm [2] explains how to
construct IT from any point p € (). For our original search path, p = v;. Intuitively, the pursuer
follows a search path II that remains as horizontal as possible, the search path always terminates at the
rightmost vertex v,,. An example of the initial search path is shown in Figure [2.5](a).

Algorithm [3| describes the pursuer search movement. Typically, P traverses the search path at unit
speed. However, she stops at the z-coordinate of each vertex of () in order to (1) avoid stepping past
an evader hiding behind a feature and (2) allow for a change in direction when encountering a vertex of
0Q that is on the search path II (recall that the pursuer can only move in a straight line on each turn).
The pursuer also ensures that z(P) < z(€) at all times.

The pursuer keeps track of her search frontier X; = X (P;) and her checkpoint c;, which is the

Algorithm 2 Create Monotone Search Path

1: Input: p € @

2: while p # v, do

3: Move p horizontally until reaching the boundary 0Q)
4 if p is on lower boundary II;, then
5: Traverse upwards along II;, until reaching local maximum vertex v; € IIp
6: else
7
8
9:

Traverse downward along Iy until reaching local minimum vertex vy € Il
end if
end while

(a) (b)

Figure 2.5: (a) Search path through a monotone polygon with four pursuer positions shown, i < j <
k < £. (b) The corresponding search frontier X; and checkpoint ¢; for those four pursuer positions.

Figure 2.6: Two examples of a guarded frontier. The evader territory Q)¢ is shaded and pursuer
territory (Qp is unshaded; the guarded frontier Y is in bold.

point in X; N OQ that is closest to P, among points to the left of P;; see Figure b). Let X] C X}
denote left part of the search frontier, up to and including ¢;. We prove below that £ cannot cross X/
without being captured, so we call X the guarded frontier. The guarded frontier partitions () into
two sub-polygons: the pursuer territory Qp(t) to the left, and the evader territory Q¢ (t) to the
right; see Figure [2.6]

The checkpoint represents our progress. When the checkpoint location is updated, its z-coordinate
increases, causing the pursuer territory to increase and the evader territory to decreases. In Section
we discuss this notion of progress more rigorously. Notice that ¢; = v1 until P first reaches Q. Up
until that event, the pursuer territory is simply the point v;. Finally, we observe that checkpoint ¢; is
the unique rightmost vertex in the pursuer territory Qp(¢). Similarly, the left endpoint of the guarded
frontier X is the unique leftmost point in the evader territory Qg (). Both of these facts play a role in
the pursuer’s ability to guard Qp(¢).

The next lemma shows that if £ moves horizontally past P, then he must be visible.

Lemma 2.1. Suppose that P is following the search strategy and x(Pi—1) < x(&-—1). If (&) <
x(Py—1) then Py can see &. Furthermore, if £ also crossed the horizontal line X (Py—1), then he is
captured immediately.

Proof. First, suppose that both &_1, &; are invisible to P;_1. We have z(&) < z(Pi—1) < z(&),
so each evader position is obscured by a distinct vertex. However, these two vertices would be sep-
arated by a distance strictly less than d(&;, &) < 1, which is impossible due to the feature size of
Q). Therefore, at least one of &_1,&; is visible to P;_;. Without loss of generality, assume that
y(Pi—1) < y(&—1). There are two cases, depending on the location of &;.

Suppose that y(Pi—1) > y(&), so that £ has moved from the first quadrant of P to her third
quadrant, see Figure [2.7(a). Consider the triangle &_1P;_1&;, which might intersect the boundary of
Q. The angle Z&;_1P;—1&, is obtuse, which means that &;_1&; is the unique longest side. We know
that at least one of &_1, & is visible to P;_1. If Py_; sees &1 then d(Py—1,&—1) < 1, so the game
was over at time ¢ — 1. Therefore P;_1 must see & and d(P;—1,&;) < 1, so the game is over after this
evader move.

Next, suppose that y(Pr—1) < y(&:), so that £ has moved from the first quadrant of P to her

10

Algorithm 3 Monotone Search Strategy

Require: Vertices of) are vy, ve, ..., v, Where z(v;) < x(vi41) forl <i<n—1.
Require: II is the search path
Require: z(P;_1) < z(&-_1), but &_1 might be invisible to P;_;

1: while NOT (& is visible and 0 < z(&—_1) — 2(Pi—1) < 1/2) do

2: Evader moves from &£;_1 to &

3 Set checkpoint ¢ € 0Q N X (P;—1) to be the point nearest to P;_; such that z(c) < z(P_1)
4: if & is visible and d(P;—1,&;) < 1 then

5: P, < &, which captures the evader

6. elseif —1/2 < x(&) — x(Pi—1) < 0 then

7: Note: & is in evader territory and visible by Lemma[2.1

8: Pt (2(&), y(Pi-1))

9: else
10: Note: z(Pi—1) < (&)
11: k < the unique index for which x(vy) < z(Pi—1) < x(vgs1)

12: Z < the rightmost point in II N B(P;_1,1)

13: P: < the unique point on II with z-coordinate min{z(vg41), 2(Z), z(&) — 1/2}
14: end if

15: Updatet <t + 1
16: end while

second quadrant, see Figure b). Assume that P;_; cannot see &. Since we are following the search
strategy, no lower feature to the left of the pursuer can impede her horizontal movement. Therefore the
pursuer’s visibility must be blocked by the upper chain II;;. In other words, P;_1&; intersects II;; at
some point Z; see Figure a). Let Z’ be the point on &_1&; that is directly above Z. Since Z is on
the boundary of @, the point Z’ lies outside). Therefore &_1&; also intersects II;;, which means that
&; was not visible from &;_1, and so the evader could not have moved to &. We conclude that P;_;
sees &;. O

We can now prove that the pursuer achieves rook position by following the search strategy.

Lemma 2.2. If P follows the search strategy then £ cannot step into the pursuer territory without
being caught. Furthermore, P either achieves rook position or captures € within O(n(Q) + diam(Q))
rounds.

Proof. We show that two loop invariants are maintained by the pursuer: & ¢ Qp(t) and z(P;) <
x(&). We also show that the pursuer territory increases over time, which ensures that search strategy
terminates. Initially P is located at the leftmost vertex Py = vy, so z(Py) < (&) and the pursuer
territory Qp(0) = {v1}. Now suppose that P has not established rook position by time ¢ — 1 with
x(Pe—1) < x(&-1) and E—1 ¢ Qp(t — 1). Since P is not in rook position, either z(&_1) >
x(Pr—1) + 1/2, or the evader is hidden and x(P;—1) < x(&—1) < x(Pi—1) + 1/2. At this point, the
evader moves from & to &. There are four cases, three of which result in rook position (or capture).

Case 1: Either x(P;—1) + 1/2 < (&), or z(Pi—1) < x(&;) and P;—;1 does not see &_1. Note
that & ¢ Qp(t — 1) since z(c;—1) < x(Pi—1) < (&) and ¢;_; is the rightmost point in Qp(t — 1).

11

(a) (b)

Figure 2.7: The evader cannot hide when moving past the pursuer to the left. (a) When £ moves from
the first quadrant to the third quadrant, at least one of E;_1, E} is visible to P, and within unit distance.
(b) When & starts above P, he cannot hide behind an upper feature.

In response, the pursuer moves forward along II. If she encounters the z-coordinate of a vertex,
encounters the boundary, or achieves x(&) — x(P;) < 1/2 with visibility, then she stops; otherwise
she moves unit distance. Either way, she maintains z(c;) < z(P;) < (&) and & ¢ Qp(t). After this
move, if z(&) — x(P;) < 1/2 with visibility, then the pursuer has achieved rook position; otherwise
we continue in search mode. The number of such moves is O(diam(Q) + n).

Case 2: P;_ sees & and x(Py—1) < x(&) < x(Pi—1) + 1/2. This means that P is in already
in rook position, so we take P, = P;—1 and ¢; = ¢;—1. Since x(¢;) < z(Pr) < x(&;), we have
& ¢ Qp(t) (unless ¢, = Py = &, which ends the game).

Case 3: (&) < x(Py—1) and & € Qg(t—1). The evader position &, is visible to P;_; by Lemma
Since the leftmost point of Q¢ (¢ — 1) is the left endpoint of X/, the pursuer can move horizontally
to the point (z(&;), y(Pi—1)) to achieve rook position because x(P;) — (&) < x(&—1) — x(&) < 1.

Cased: 2(&) < x(Pi—1) and & € Qp(t—1), so that the evader crossed the guarded frontier X;_;.
This means that &; is not visible to P;_1, blocked by the feature containing the current checkpoint. As
observed in the proof of Lemma this means that d(P;—1,&—1) < 1 and & was visible to P;_;.
Therefore the game was over at time ¢ — 1, and this case cannot occur. O

Once P establishes rook position, we immediately update the guarded frontier to be X} := X and
update the checkpoint c; to be the righthand endpoint of this segment. To emphasize the fact that P is
in rook position, we refer to X; as the rook frontier. In the next section, we will see how a pursuer
can methodically advance the rook frontier via rook’s strategy. Any leftward movement of £ can be
copied by P since the leftmost point in Q¢ (t) is the endpoint of X;. The pursuer can also mimic the
evader’s rightward movement, up to the checkpoint ¢;. If the pursuer is impeded by the boundary to
the right, she will start a new search mode. Throughout these horizontal moves, the pursuer territory is
guarded from incursion.

12

2.2 Rook Strategy

After searching, P uses the monotone rook strategy of Algorithm []to either capture £ or to reduce
the evader territory. We adapt of the rook’s strategy for pursuit on polyhedral surfaces of Noori and
Isler [14] [15] to line-of-sight pursuit in a monotone polygon. For simplicity, we assume that £ starts
in the first quadrant of P. The other cases follow analogously by swapping left for right, and/or up for
down.

Recall that there are two types of rook position: pocket position and chute position, as shown in
Figure[2.4l We will see that pocket position is the endgame of the pursuit: P can maintain rook position
and methodically advance her rook frontier until capture without re-entering search mode. In an upper
pocket position, the lower chain II;, lies beneath the rook frontier X (P), so features on I, cannot
impede the pursuer’s movements. Meanwhile we will see that any attempt by £ to use upper features
to his advantage can be immediately neutralized. The analogous statements hold for a lower pocket
position. On the other hand, if P is in chute position, then £ can break out of this rook configuration
via an escape move, as shown in Figure 2.9} the evader moves rightward so that the boundary blocks
the rook response. This forces the pursuer to abandon rook mode and initiate a new search mode. In
this transition to a new search mode, we will have increased the pursuer territory, so we have made
progress towards eventual capture.

We deal with pocket position first, and take up chute position.

Lemma 2.3. If P is in pocket position then the monotone rook strategy captures the evader in
O(area(Qg)) turns.

The proof requires some helper lemmas, paying careful attention to visibility and mobility con-
straints. First, we show that the evader cannot approach X (P) or leave Q¢ without being captured.

Lemma 2.4. Suppose P and £ are in pocket position at time t — 1. If the evader moves so that
ly(Pr_1) — y(&)| < V/3/2, then the pursuer can move to a point Py that captures . In particular, £
cannot cross the rook frontier X (P;—1) without being captured.

Proof. Rook position means that P sees £ and that Az (t — 1) < 1/2. Therefore Ay(t — 1) > 1/3/2,
otherwise the evader was captured at time ¢ — 1. Suppose that the evader does not cross the rook frontier
and that |y(P;—1) — y(&)| < V/3/2. Since y(&) < y(E—1) and P;_1 can see &_1, it is clear that
Pi_1 can also see &. We have |z(Pi—1) — (&) < Az(t — 1) + 1 = 3/2 and therefore

AP, &) </ (3/2)2 + (V3/2)2 = V3 < 2.

The pursuer can move directly towards E; to achieve d(&;, P;) < 1, which ends the game.

Finally, suppose that the evader moves to a point & below the rook frontier X (P;_1). We must
be careful in this case since features on the lower boundary might prevent P from moving directly
towards &;. Instead, the pursuer moves laterally along the rook frontier to capture the evader. Let Z be
the point of intersection of X (P;_1) and &_1&,. Since Ay(t — 1) > /3/2, we have

d(Pi-1,2) < |2(Pe1) — 2(&-1)| + |2(E1) — 2(2)] < 1/2+ |w(&1) —2(2)] < 1.

13

Algorithm 4 Monotone Rook Strategy

Require: 0 < z(&_1) — x(Pi—1) < 1/2 and P, sees &1
Require: Q¢(t — 1) is bounded above by II;; and below by the rook frontier X (P;_1)
1: while £ is not captured do

2: Evader moves from &;_1 to &
3: if £ made an escape move then
4: Note: P must have been in chute position
5: Exit (in order to start a new searching phase)
6: else
7: if £ crossed below X (P;_;) then
8: P, + the point where the evader crossed X (P;—_1), capturing £
9: else if & is within v/3/2 of X (P;_1) then
10 Note: & must be visible to P;_1
11: P; < the point on P;_1&; as close to & as possible, capturing £
12: else if &; is not in sight then
13: ‘P; < the highest reachable point below &;_;
14: Note: this advances the rook frontier by at least v/3/2.
15: else if |2(Pr_1) — x(&:)| < 1 then
16: a < the closer of (&) £ 1/2 to x(P—1)
17: ‘P: < the highest reachable point on vertical line x = «
18: Note: this advances the rook frontier by at least 7/22.
19: else
20: P < the highest reachable point on vertical line z = x(&;) — 1/2
21: end if
22: end if

23: Updatet <t + 1
24: end while

14

gt 5t <1 gt— 1

s
i1
P, P+
1— Ax(t — 1) Vil \
Pt_l_Ax(t_l) X(Pi1) |—|1/2 | Pioi

(@ (b)

Figure 2.8: Counter-moves during rook mode. (a) If £ hides behind a feature on Iy then P responds
by moving to a point directly below the evader’s previous position. (b) The pursuer response when &
moves leftward past P and |z(&;) — x(Pi—1)| < 1.

Therefore P can move to Z, and clearly d(Z, &) < d(&—1,&) < 1, so the evader is captured. O

In addition to closing the distance to the evader, our rook strategy maintains (or re-establishes)
visibility with the evader at each pursuer turn. The next lemma handles the case in which £ moves to
a position that is invisible to P.

Lemma 2.5. Suppose P and & are in pocket position at time t — 1. If the evader moves to &; that is
invisible to P;_1 then the pursuer can move to Py to re-establish rook position. This move advances
the rook frontier by at least \/3/2.

Proof. Suppose that 0 < Ax(t — 1) < 1/2 with P,_1&_1 C Q, while [Ty obstructs P;&. By
Lemma 2.1 & must be to the right of P;_;. We show that the pursuer can move to P; = P;_; +
(Ax(t —1),/1—Ax(t — 1)2) and has visibility to &. We have x(P;) = x(&;_1) by construction
and y(P;) < y(&—_1) (otherwise £ was caught at time ¢ — 1). Since P;_1&_1 C Q and X (P;_1) C
Q, we clearly have P;_1P; C @, see Figure [2.8| (a). Similarly, since &_1& € (Q, we also have
P& € Q, so the point P; sees the point &. The pursuer’s progress is /1 — Az(t — 1)2 > /3/2
since Ax(t —1) < 1/2.

Finally, we show that P is in rook position. Since x(P;) = x(&:—1), it is sufficient to prove that
|z(E) —x(E-1)| < 1/2. Suppose that the evader moves leftward. By Lemma[2.1] we have z(P;—1) <
x(&) and therefore |z(&;) — z(&—1)| < |x(Pi—1) — x(&—1)| < 1/2. Suppose that the evader moves
rightward. We claim that the slope of &_1& must be greater than V/3. Since & is not visible to
P;_1, the slope of &_1&; must be strictly larger than the slope of P;_1&;_1, as shown in Figure[2.8|(a).
However, P was in rook position with Az (¢ —1) < 1/2 and therefore Ay(t—1) > /3/2, as otherwise
the evader was caught at time ¢ — 1. Therefore the slope of P;_1&;_1 is at least v/3, so Ax(t) < 1/2.

The argument for —1/2 < Axz(¢ — 1) < 0 is entirely analogous. O

15

Our final lemma shows that the pursuer can advance the rook frontier when £ does not significantly
increase his horizontal distance from P.

Lemma 2.6. Suppose P and £ are in pocket position at time t — 1. If the evader moves so that &; is
visible to Pi_1 and |x(&) — x(Pe—1)| < 1 then the pursuer can re-establish rook position while also
advancing the rook frontier by at least 7/22.

Proof. Without loss of generality, 0 < z(&—1) — (Pi—1) < 1/2. Let « be the closer of z(&) £ 1/2
to z(P;—1), and let Z be the point with z(Z) = « that is closest to P;_1, so that d(Z, Pi—1) < 1/2.
Let P; be the point on ZE&, at distance one from P;_;. A leftward evader move is shown in Figure
(b), and the rightward move results in an equivalent situation. The visibility of & from P;_
ensures that both of P;_1P; and P&, are in (). By Lemma & is at least v/3 /2 above X (Pi_1),
so the absolute value of the slope of Z& is at least v/3. In addition, |z(P;_1) — z(Z)| < 1/2 and
|2 (&) —x(Py)| < |x(&)—2(Z)| = 1/2. Setting a = |z(P;) —x(Z)|, the distance from Py to X (P_1)
is at least v/3a. By the Pythagorean theorem, 1 < (1/2+a)? + 3a?, or equivalently, a > (v/13—1)/8.
Therefore, the pursuer has advanced the rook frontier by v/3a > 7/22. O

We are now ready to prove Lemma[2.3]

Proof of Lemma [2.3] For simplicity of notation, we start at ¢ = 0. Let s be the length of the rook
frontier X (Py). We show that after at most 2s turns, either the evader is caught or the pursuer advances
the rook frontier by at least 7/22. We repeat this process until the height of the evader territory is at
most v/3/2, so that the evader is caught by Lemma The total number of turns to catch the evader
is O(area(Q¢)), as explained below.

Let Q¢ denote the initial evader territory, bounded by IT;; and X (P;). If s < 1 then P can move to
the midpoint of the frontier on his next turn and then advance the frontier by 1 on all successive turns
until catching £. So we consider s > 1. Without loss of generality, we assume that x(Py) < x(&) <
x(Po) + 1/2 and y(Ey) > y(Poy) + /3/2. We show that after at most 25 moves, either the evader is
caught or the pursuer advances the rook frontier by at least 7/22.

Suppose that P;_1 is in rook position with respect to &_1 and that the evader moves to &;. There
are three cases to consider. First, if &_1 is not visible to P;_1, then the pursuer moves according
to Lemma advancing the frontier by v/3/2 > 7/22. Second, if |z(&) — (P;_1)| < 1 then
the pursuer moves according to Lemma advancing the frontier by at least 7/22. Third, suppose
that 1 < |2(&) — x(Pi—1)| < 3/2, which only occurs when £ moves leftward by at least 1/2. In
this case, the pursuer responds by moving to the highest point reachable on the vertical line through
x=x(&)—1/2. (f |2(&) — x(Pr—1)| = 3/2 then this is a purely horizontal move, but otherwise the
pursuer makes some vertical progress.) The evader can only make 2s such moves before he is forced
to make a move covered by the previous two cases. Therefore, after at most 2s moves, the pursuer
advances the frontier by at least 7/22.

The worst-case scenario for the capture time is when the evader repeatedly runs the width of the
region using horizontal steps of distance 1. This zig-zagging forces the pursuer to trace a path of length
O(area(Q¢)). O

We conclude this section with the pursuer response to an escape move from chute position.

16

Pi1

(®)

Figure 2.9: Transition from Rook Mode back to Search Mode. (a) £ makes a blocking move, so that
‘P’s responding rook move is obstructed by point Z. (b) Instead, P counters by re-entering Search
Mode with an updated search path and updated checkpoint c.

Lemma 2.7. Suppose that the pursuer is in lower (or upper) chute position. Using monotone rook
strategy, P can either capture &, or she can update her checkpoint to the right.

Proof. Suppose that P is in lower chute position (an upper chute is analogous). If the evader never
makes an escape move, then the pursuer will establish a lower pocket position. The pursuer advances
the rook frontier, so its right endpoint must eventually transition to the lower chain. In this case, the
pursuer catches the evader by Lemma[2.3]

Suppose that £ makes an escape move. That is, £ makes a rightward move below an upper feature
that obstructs the pursuer’s rook response, see Figure [2.9)(a). Let Z € II;, be the point that obstructs
the pursuer’s desired movement. In response, P re-enters search mode. Her new search path, which is
constructed via Algorithm [2} starts from her current location, and then continues rightward, as shown
in Figure|2.9|(b). After her first move, she encounters the blocking feature, so her checkpoint c updates
to the blocking point Z, or some point on the blocking feature even further to the right. In other words,
the entire rook frontier is now guarded. This updates the checkpoint compared to the last time that P
was in search mode. O

2.3 Catching the Evader

We are finally ready to prove Theorem [I.1{a).

Proof of Theorem [1.1(a). The pursuer alternates between Search Mode and Rook Mode until she
captures the evader: see Figure [I.2] for an example pursuer trajectory. Once the pursuer is in Search
Mode, she will establish rook position by Lemma[2.2] The evader can hide at most n times (once for
each vertex of Q), so we switch modes O(n) times. Indeed, £ cannot hide behind the same vertex
twice because P does not exit search mode until 0 < z(€) — x(P) < 1/2 and P has visibility of £.
Once P is in Rook Mode, £ must make an escape move in order to hide. Therefore £ must hide behind
a new vertex to the right of the previous hiding spot.

17

Overall, the pursuer spends at most O(n(Q) + diam(Q)) turns in Search Mode: the factor of n
appears since P defensively stops every time she passes the z-coordinate of a vertex of (), or is blocked
by a boundary segment. Note that P can only pass by a vertex in Search Mode at most once (as any
future passings of that vertex must occur in Rook Mode), and each of the n boundary segments can
obstruct the pursuer at most once. Therefore the number of truncated steps is O(n).

Each time P switches to Rook Mode, she either captures £, or £ makes an escape move. In the
latter case, the pursuit continues to the right of the current player positions. Crucially, throughout the
pursuit, P never visits the same point twice. Once in Rook Mode, P guards her pursuer frontier by
Lemma [2.4] so the evader cannot cross it. Any vertical move by the pursuer advances this frontier,
further limiting the pursuer territory. Furthermore, by Lemma , P is able to advance the rook frontier
by at least 7/22 once every diam(()) moves. Therefore, the entire pursuit path taken by P has length
O(area(Q)).

Every time the pursuer switches from Rook Mode back to Search Mode, she updates her checkpoint
and the evader territory shrinks. Therefore, the pursuer ultimately traps the evader in a pocket position
and achieves capture by Lemma[2.3|Combining the time bounds for both search and pursuit, the pursuer
captures the evader in O(n(Q) + area(Q)) turns. O

This completes our discussion of pursuit in a monotone polygon. In the next two sections, we
describe how to adapt this basic algorithm to the scallop and strictly sweepable settings.

3 Pursuit in a Scallop Polygon

A polygon @ is a scallop polygon if it can be swept by rotating a line L through some center point C
outside the polygon such that the intersection LN () is always convex. An example of a scallop polygon
is shown in Figure[L.1] (b). We use polar coordinates (r : #) where C'is located at the origin, and the
polygon is located in the upper half plane. We will sweep our polygon in the clockwise direction, so
we index the vertices of our polygon by decreasing angle. More precisely, let the n vertices of) be
vg = (rg : O0) for 1 < k < nwherery > 0forall kandand 7 > 60; > 603 > --- > 6, > 0. Fora
point x € @, let S(z) denote the sweep line through x, and let #(z) denote the angle of S(x).

We begin with an overview of the pursuer’s strategy. Just as with a monotone polygon, pursuit in
a scallop polygon alternates between search mode and rook mode. Scallop search strategy guards a
monotone increasing region as the pursuer traverses from left to right (now measured by the decreasing
angle of the sweep line). Figure[3.10|(a) shows an example search path. The main difference is how we
handle the notions of “horizontal” and “vertical.” We change our frame of reference every time we pass
a vertex of the polygon, matching the sweeping nature of the polygon itself. The second difference
from the monotone case is that only vertices on the lower boundary are taken as checkpoints. The
search path can include vertices on II;;. However, we may have to relinquish these upper boundary
points as our frame of reference rotates. Figure[3.10](b) shows an example of an upper vertex that goes
from guarded to unguarded as P traverses II down a spoke line. From here forwards, we use the term
auxiliary point to refer to the transient checkpoints on the upper chain.

The transition between frames must be handled with care. For 1 < k < n, let S, = S(v) be the

18

(@) (b)

Figure 3.10: The search path of a scallop polygon. (a) At each spoke line, we adjust the path to our new
frame of reference so that we continue to guard the checkpoint vertex. (b) Guarding upper boundary
vertex a is only temporary: later on, we revert back to guarding c; directly. Later on the pursuer
updates her checkpoint to cg, as guarding cz also guards the previous checkpoint c;.

spoke line through the center C' and the vertex v,. When she encounter a spoke line during search, the
pursuer halts. She then traverses down the spoke line until she reaches a point that guards the current
checkpoint (on the lower boundary) with respect to her new frame of reference. At this point, she
adopts that frame of reference, and continues forward. Throughout this transition, she must be aware
of both her old and new frames of reference, in case £ tries to invade the pursuer territory.

The goal of searching is to establish rook position in the current frame of reference. The pursuer
then transitions into rook mode: she maintains this frame of reference and executes rook strategy for
as long as she can maintain rook position. There are now three ways for £ to force P back into search
mode. As in the monotone case, £ can make an escape move to the right, and he now has two additional
gambits: he can hide behind a feature, or he can make a blocking move within a pocket, see Figures
[3.12) and below. Moreover, the return to search mode must be handled with care. To prevent
recontamination, the pursuer must keep track of two frames of reference, see Algorithm [§below.

In the following subsections, we consider scallop search mode, scallop rook mode, and the delicate
transitions between then two.

3.1 Search Strategy

Algorithms[5]and [6] adapt the monotone searching of Algorithms [2]and [3]to our new setting. We begin
with the result analogous to Lemma [2.2]

Lemma 3.1. If P follows the scallop search strategy then £ cannot step into the pursuer territory
without being caught. Furthermore, P either achieves rook position or captures £ in finite time.

19

Algorithm 5 Create Scallop Search Path
1: The vertices of () are vy, va, . .., vy, listed in decreasing order of polar angle.

2: Let spoke line S; be the line through v; and C, 1 <4 < n.

3: Let transverse line 7; be the line through v; that is perpendicular to S;, 1 <7 < n

4: Set point p := v; with vertical axis Y := S; and horizontal axis X := T1.

5: Set checkpoint ¢ := v

6: while p # v, do

7 Move p along horizontal axis X until reaching either Q) or a spoke line

8: if p is on lower boundary 11, then

9: Traverse upwards along I, until reaching local maximum vertex x; € Iy,
10: Set vertical axis Y := S and horizontal axis X := Tj.

11: Update checkpoint ¢ := p = vy,

12: else

13: if p is on upper boundary II;; then

14: Traverse downwards along 11 until reaching reaching local minimum vertex x € Il
15: end if

16: Set vertical axis Y := S and horizontal axis X := T}.

17: Move down Y until the leftward horizontal line ¢ through p protects checkpoint ¢
18: if ¢ intersects a vertex v; # c on the lower boundary then

19: Update checkpoint ¢ := v;, where v, is the rightmost vertex in £ N 11,

20: end if
21: end if
22: end while

20

Algorithm 6 Scallop Search Strategy

Require: Vertices of Q) are Oy, = vg, vy, . ..,v, = Or where 0(v;) > 0(vi41) for 1 <i < n.
Require: II is the search path
Require: Initial frame of reference (X, Y") is the current frame of reference of P;_;
Require: x(P;_1) < z(&-_1), but &_1 might be invisible to P;_;

1: while NOT (& is visible and 0 < z(&—1) — z(Ps—1) < 1/2) do

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

Set checkpoint ¢ to be the rightmost guarded point on the search frontier Y (P;_1)
while P;_; is not on a spoke line do
Evader moves from & _1 to &
‘P; < one monotone search move (Algorithm with respect to (X, Y'), but stopping if she

reaches the next spoke line

t+—t+1
end while
Evader moves from &;_1 to &
Sy < the spoke line that P has encountered
(X', Y") < the frame of reference for Sy
if £ is in the third quadrant of the (X’,Y”) frame then
(X,Y) + (X", Y") where Y” = PE is the new vertical direction
Exit to start a new Scallop Rook Strategy (Algorithm [/) with respect to new reference

frame

end if
p < the lowest point on II N Sk
while P has not reached p do
if £ is in rook position with respect to frame (X, Y") or frame (X', Y”) then
Exit to start a new Scallop Rook Strategy with respect to the appropriate frame
end if
P; < step downwards towards p
t—t+1
if P;_1 # p then
Evader moves from £;_1 to &
end if
end while
Note: P;_1 = p and P can now adopt her new reference frame
(X,Y) « (X', Y

28: end while

21

Proof. As the pursuer travels between spoke lines Sy and Sy 1, the proof is unchanged from that of
Lemma [2.2] Indeed, the polygon region between the spoke lines S,_; and Sy is monotone with
respect to the horizontal axis (perpendicular to spoke S). Furthermore, the guarded vertex remains
guarded while P moves through this region. We therefore need only prove that £ cannot step into the
pursuer territory during the change of frame that occurs at spoke lines.

Suppose that P reaches spoke line Sy at point Z;: an example is shown in Figure With
respect to the polar coordinates centered at C', the search path takes P from her current position Z; =
(p1 : 0)to Zy = (pa :) where py > po. The point Zs is chosen so that z; is protected by the
horizontal line through Z5 with respect to vertical Sy 1. The simplest case of protecting x; is when
this horizontal line intersects x1. However a feature on the lower boundary might obstruct the line
through x1; in this case, Z is chosen so that the new horizontal line intersects the vertex on the top of
this obstructing feature.

Before proceeding along the search path, P first checks whether a simple change of frame will
establish rook position. Let Yi11 = Sk and let Y, , and Y]:fH denote the lines located £1/2 from
Sk41. Let Yy, denote the line through Z; parallel to spoke line Sy, and define Y, ", Y,j similarly. Since
‘P has not established rook position, £ must be to the right of Y,:“. However, £ could be to the left
of Y, (in region A of Figure . In this case, £ must be visible to P since there are no vertices
between xj and zj, 1. Therefore P can change her vertical axis to be the line through P and £. This
protects the checkpoint vertex ¢ (due to the construction of the search path II), and establishes rook
position.

Otherwise, € is located to the right of both Y,:r and thl (in region B of Figure . The pursuer
moves down the segment Z; Z, keeping track of rwo coordinate systems: she uses Yy, above her
position and Y}, below her position. If the evader steps within 1/2 distance to either of these lines,
then P responds by establishing rook position with respect to the appropriate frame. Once again,
this protects the checkpoint vertex c. Finally, if P reaches Zs without establishing rook position, she
commits to the Y 1-frame (which is also the Sy 1 frame). If her current search frontier intersects any
lower boundary vertices to the left, then P updates her checkpoint or auxiliary point, if necessary. (In
Figure[3.11] we continue to guard auxiliary point z.) Having adopted her new frame of reference, she
continues her search. O

3.2 Rook Strategy

The eight different rook positions in a scallop polygon are the same as those in Figure[2.3] Algorithm
lists the pursuer’s rook strategy for upper pockets and upper chutes. Lower pockets and lower chutes
are handled similarly, and we discuss these adaptations at the end of this section. Rook pursuit in a
scallop polygon is more challenging than the monotone case because the evader has some additional
gambits. The evader can make a hiding move to disrupt the pursuer’s visibility (Figure [3.12]a)) or
make a blocking move in which the boundary physically impedes the pursuer (Figure[3.13|a)). These
moves interrupt the pursuer’s rook position, so we need a recovery phase to handle these setbacks.
This recovery uses the modified search algorithm listed in Algorithm [§] which remains aware of the

22

Figure 3.11: Changing frame during the search. The pursuer starts at z;. If £ € A, then P can pick a
vertical axis between Y} and Y. and immediately establish rook position. Otherwise, £ € B, and P
can travel from 21 to 29 and safely transition from vertical axis Y}, to vertical axis Y1 (or establish
rook position along the way if £ makes an unwise move).

rook frame of reference, even as the search frame rotates. After recovery in a pocket, P will return to
using rook moves, perhaps with an updated frame of reference.

Recovery in a lower (upper) chute must deal with the case where £ makes an escape move using
the upper (lower) boundary to block the pursuer’s rightward movement (Figures and [3.74). In
response to such an escape move, the pursuer will either re-establish a rook position, or initiate a new
search phase. Once again, the transition in a scallop polygon is more difficult than in a monotone
polygon, due to the shifting frame of reference.

We will consider upper pocket position first.

Lemma 3.2. If'P and & are in upper pocket position, then upper rook strategy captures the evader in
O(area(Qg) + n(Q¢)) turns, where n(Qg) is the number of vertices in the pocket Q¢.

Proof. As in the proof of Lemma [2.3] we show that P consistently shrinks the size of the pocket.
Furthermore, the pursuer trajectory never visits the same point twice, capturing the evader in
O(area(Q¢) + n(Qg)) turns.

Let S; = S(vi) be the spoke line perpendicular to the rook frontier. Suppose that P and £ are in
upper pocket position and that P is executing the strategy of Algorithm[/| If £ never makes a hiding
move or a blocking move, then P captures £ in O(area(Q)¢)) turns by the same argument used for
Lemma Suppose that £ hides behind a feature in the upper pocket. We consider the case when
x(Pi—1) — 1/2 < x(&—1) < x(Pr—1) just before this hiding move; the case x(Py—1) < x(&-1) <
x(Pi—1) + 1/2 is argued similarly, swapping the roles of left and right.

Let vy be the hiding vertex that obscures the evader. First, we consider the case ¢ < k, see Figure

23

Algorithm 7 Upper Rook Strategy (for Upper Pocket and Upper Chute)

Require: |z(Pi—1) — x(E—1)] < 1/2and y(Pi—1) < y(Ei—1) and Py_q sees E_1.
1: Note: the rook frontier X (P;_1) lies below &_1
2: Note: the leftmost endpoint of Q¢, , isin IIyy N X (Pe_1).
3: while £ is not captured do

4: Evader moves from &;_1 to &
5: if £ made a blocking move then
6: Let Z € Iy N X (P;—1) be the blocking point
7 Py < Z, which is reachable in one step
8: Enter Cautious Scallop Search Strategy
9: else if £ made a hiding move then
10: Let vy € Iy be the hiding vertex.
11: Note: assume that &, is to the left of P;_;. We handle &; to the right of P;_; similarly.
12: while £ remains hidden by vy, meaning x(&;) < x(vy) and y(P;_1) < y(v¢) do
13: if :L‘(vg) < $(Pt71) then
14: P < move leftward towards x(vy) and upwards with remaining movement budget
15: Note: it takes at most two rounds to reach z(P) = z(vy)
16: else
17: ‘P: <+ move upwards towards vy
18: end if
19: t—t+1
20: Evader moves from &_1 to &
21: end while
22: if & is still in the hiding pocket and P;_; = v, then
23: Enter Cautious Scallop Search Strategy.
24: end if
25: Note: &; stepped to the right of P;_1 and is no longer hidden
26: P; < one monotone rook move (Algorithm [])
27: else if £ made an escape move then
28: Let Z € IIy, be the blocking point.
29: ‘P: < Z, which is reachable in one step
30: if 6(&:) > 6(P;) then
31: Update vertical direction to be P.E
32: Start a new Upper Rook Strategy with this updated frame of reference
33: else
34: Create a new search path from P; = Z and enter a new Scallop Search Strategy
35: end if
36: else
37: P; < one monotone rook move (Algorithm [))
38: end if

39: t+—t+1
40: end while

24

Algorithm 8 Cautious Scallop Search Strategy

Require: P starts at a point Z on the boundary

Require: Previous rook frame of reference is (Xo, Yp)

Require: & is to the left of P in frame (X, Yj). A right move is handled analogously.
1: Create a new search path from Z

2: while £ remains to the left of 7P with respect to previous rook frame (Xo, Yp) do

3 ‘P makes one Scallop Search Strategy move

4 if P is in rook position with respect to the search frame then

5: Enter a new Upper Rook Strategy

6

7

8

9

end if
: end while
: Note: £ has stepped to the right of P with respect to (X, Yp)
: Exit (back to the previous Upper Rook Strategy)

Figure 3.12: (a) £ makes a hiding move into the shaded region above v;. P responds by moving below
vy and then upwards until reaching v,. If £ moves to the right of P then she re-enters rook mode. (b)
Once P = vy, P starts a new cautious search phase. The evader is confined to the gray region: if £
moves to the right of P in the original rook frame, then P reverts to that rook mode.

[3.12a). The evader cannot have stepped to the right of 7P by an argument similar to the proof of Lemma
[2.1] (with left and right reversed). The pursuer’s high-level strategy is to reach the hiding vertex and
then traverse a new search path. However, if £ ever moves to the right of P in the original rook frame,
then she reverts to her previous rook strategy. First, P tries to achieve z:(P) = x(v;), which takes one
or two rounds. In the turn that she achieves x(P) = z(vy), she uses any additional movement budget
to move upwards towards the hiding vertex, see Figure[3.12(a). We refer to the region between II; and
the vertical through v, as the hiding pocket.

After that, the pursuer moves upwards until reaching the hiding vertex vy. In the meantime, if £
moves to the right of the hiding vertex vy, then z(P) < z(£) < x(P) + 1 and £ must be visible
to P due to the scallop nature of the polygon. The pursuer responds by returning rook mode using
vertical Sy. In particular, she uses a leftward offset, which means that she will make at least /3,2
vertical process. This vertical progress is crucial, since it prevents the evader from repeatedly hiding

25

\ka

Py

(a)

Figure 3.13: (a) The evader makes a blocking move from &_; to & in an upper pocket. The upper
boundary prevents P from re-establishing rook position, so she moves to blocking point P;. (b) P uses
the cautious scallop search strategy, while £ is in the shaded region. If £ steps to the right of P in the
original rook frame, then P will revert back to the old rook phase. P will achieve rook position before
reaching spoke line Sj.

and reappearing above v, forever. Indeed, once P reaches vy, the evader can no longer hide behind this
vertex.

Suppose that £ remains in the hiding pocket until P reaches v,. The pursuer switches to the
cautious scallop search strategy for Algorithm [8] see Figure [3.12[b). She draws a new search path
starting at vy, and searches along this path while keeping track of two frames of reference: her old rook
frame (with vertical Sj) and the current search frame. If £ ever steps to the right of P with respect to
the old rook frame, then P reverts back to the original rook mode. Note that in this case, P has made
vertical progress. Meanwhile, if the evader never steps to the right of P in the old rook frame, then
search mode will terminate with rook position in an updated frame of reference. Furthermore, £ will
be trapped in an even smaller pocket than before. Finally, note that P must attain rook position before
reaching spoke line Si: if £ is to the right of Sy, then £ is to the right of P in the original rook frame,
so P will have already reverted to the previous rook mode.

A hiding move behind a vertex vy, where ¢ > k is argued similarly. In this case, it is easy to see
that the hiding vertex must satisfy x(P;—1) — 1/2 < z(vs) < x(P;—1) + 1. Therefore, P can achieve
x(P;) = x(v¢) in her first responding move. The argument then proceeds as above, swapping left and
right when z(P;—1) < z(vg).

The pursuer deals with a blocking moving in much the same way. Without loss of generality,
suppose that P is blocked to the right, see Figure She moves to the blocking point Z and then
draws a new search path from Z. She then enters a modified search strategy, keeping track of both the
old rook frame and her current search frame. During the search, if £ steps to the right of P with respect
to the old rook frame, then 7P immediately re-enters rook mode with a leftward offset (making /3 /2
vertical process). Otherwise, P establishes rook mode with respect to a new frame of reference, and
the evader region has been reduced.

During this pursuit, P never visits the same point twice. She mades methodical progress in each

26

rook phase. Every time that the evader hides, the pursuer eventually enters another rook phase, and she
can only block or hide n(Q¢) times. Therefore the capture time is O(area(Qg) + n(Qsg)). O

When evader territory an a upper (lower) chute, then he can make an escape move, using the lower
(upper) chain to obstruct £, see Figure As in the monotone case, this is the only evader gambit in
an upper (lower) chute that involves the lower (upper) boundary.

Lemma 3.3. Suppose that P and & are in upper chute position. Using the upper rook strategy, P will
either capture &£, or make progress on her search path.

Proof. If £ never makes an escape move, then P will establish pocket position and capture the evader
by Lemma [3.2] Suppose that £ makes a rightward escape move, meaning that the lower boundary
blocks the pursuer’s rook move. Her recovery phase consists of a single round. The pursuer steps
rightward to the blocking point Z, see Figure If S(&) is between the vertical axis and S(P), then
‘P chooses the line between P and £ as her new vertical axis and starts a new rook phase. This updates
the rook frontier and advances her checkpoint. Otherwise, P starts a new search phase from her current
location z € IIy,. This protects her previous checkpoint: 6(P) > 6(£) means that £ is to the right of
‘P in the new search frame. She updates her checkpoint to Z, and begins searching. O

Figure 3.14: Recovery from an escape move in an upper chute. (a) The evader makes one of two
rightward blocking moves. The pursuer responds by moving to the blocking point Z. (b) If £ is to the
left of the radial line through Z, then P immediately enters rook mode using the line between P and £
as the new vertical. (c) If £ is to the right of this line, then P starts a new search phase.

The lower rook strategy is very similar to Algorithm [/} swapping up for down. Pursuit in a lower
pocket is entirely analogous to pursuit in an upper pocket. However, handling an escape move from
a lower chute is slightly different. Suppose that £ makes a rightward escape move, meaning that the
upper boundary blocks the pursuer’s responding rook move, see Figure In response, the pursuer
steps rightward to the blocking point Z. If she is currently above her most recent search path II, then
she cannot start a new search path from her current location, see Figure [3.11[a). Instead, she travels
down the sweep line S(Z) until reaching Z’' € I N S(Z). While moving along S(Z), she keeps track
of two frames of reference, just as if she is making a usual frame transition during search mode, as
shown in Figure [3.1T](c). This protects the last checkpoint of her previous search phase.

27

We omit the formal adaptation of Algorithm [/|for lower rook strategy. We simply state the lower
formulations of our previous two lemmas. The proofs of those lemmas are easily adapted to the lower
rook setting.

(2) (®) (©

Figure 3.15: Recovery from an escape move in a lower chute. (a) The evader makes an escape move.
(b) The pursuer moves to the blocking point Z and then along the sweep line S(Z) heading to point Z’
on the previous search path II. (c) While traversing S(Z), she uses the previous rook frame in region
A, and she uses her current frame (where S(Z) is vertical) in .

Lemma 3.4. If P and & are in lower pocket position, then P will capture € in O(area(Qg) + n(Qg)
moves. If P and & are in lower corral position, then, P will either capture £, or make progress on her
search path. Il

3.3 Catching the Evader

The pursuit algorithm for a scallop polygon is identical to Algorithm [I] where we use our scallop al-
gorithms in place of the monotone algorithms. We now prove that this algorithm succeeds in capturing
the evader.

Proof of Theorem [I.I(b). The proof is similar to that of Theorem[I.I[a), and relies on Lemmas
and The pursuer alternates between search mode and rook mode (which includes the cautious
search mode). The transition from rook mode to search mode only occurs after an escape move. Every
boundary edge or vertex can only be involved in one such escape transition, so we switch modes O(n)
times. The search path is at most twice the diameter (by the Pythagorean theorem the search path from
Oy, to Op is at most twice the length of the shortest path between these vertices). During search mode,
the pursuer never visits the same point twice. Indeed, when £ makes an escape move, P starts a new
search path from the blocking point. The pursuer pauses when passing the spoke lines, accounting for
at most n steps. In summary, accounting for all the search modes, the pursuer spends O(diam(Q) +n)
turns searching.

Next, we argue that ‘P visits each point at most twice. Consider the entire pursuer trajectory from
the start until the capture of the evader, and partition the pursuer’s path according to each search phase,
and rook phase. It is clear that none of the search paths intersect one another. While making rook
moves in a fixed rook frame of reference, the pursuer path does not intersect itself. However, it is

28

possible for the pursuer’s path to intersect itself when considering the rook phases before and after an
escape move. For an escape move in an upper chute, no point is revisited. When P is blocked by
the lower boundary, she immediately decides whether she can attain rook position via updating her
frame of reference. If she can, then this new frame of reference lies above the previous rook frame.
Otherwise, she enters search mode, progressing into unexplored territory.

An escape move for a lower chute may lead to P revisiting some points, but no point will be
visited more than twice. Suppose that £ makes an escape move by blocking P at point z € II;;. The
pursuer responds by moving to z and then along S(z) with the goal of reaching the search path IT and
transitioning her frame of reference. Consider the turn in which she next attains rook position (either
with respect to the old rook frame or with respect to her intended new frame). If £ lies below 11, then
she enters rook mode in previously unexplored territory, so no point is revisited. If P attains rook
mode with £ above II, then the evader territory may include points to the left of S(z) and above II,
see Figure [3.14|(c). Therefore this region can be revisited during the new rook phase. However, we are
now in upper pocket position or upper chute position, which means that P will not revisit any points a
third time: the next escape move by the evader cannot involve these points in any way.

In a given rook phase, the pursuer makes consistent vertical progress, and she never visits the same
point twice. Therefore she spends a total of O(area(Q)) turns in rook mode. Eventually, the evader is
trapped in a pocket region, where he is caught by the pursuer. (I

4 Strictly Sweepable Polygons

In this final section, we prove Theorem[I.1](c): a pursuer can capture an evader in a strictly sweepable
polygon. Recall that a polygon () is strictly sweepable when a straight line L can be moved contin-
uously over () such that (1) L N @ is always convex and (2) every point of () is swept exactly once
during this process. This is equivalent to saying that () can be partitioned into a series of subpolygons
Q1,Q2, . .., Qi where each Q); is either a monotone polygon or a scallop polygon, see Figure [4.16]
We need to handle four types of transitions: monotone-to-scallop, scallop-to-monotone, scallop-to-
scallop where the two centers are on the same side of the polygon, and scallop-to-scallop where the
two centers are on opposite sides of the polygon. The previous two sections explain how to handle
search and pursuit in each of these component polygons, so our final task is to handle the transition
between subpolygons. Rather than presenting formal algorithms, we focus on the alterations required
to combine the algorithms for monotone and scallop polygons. Likewise, rather than giving a full proof
of Theorem (c), we discuss the adaptations needed for the proofs of parts (a) and (b), leaving the
details to the reader.

4.1 Search Strategy

First, we address search path construction and search strategy. We have three objectives: (1) define
the global search path through the sweepable polygon, (2) manage the search transition from one
subpolygon (which requires a change of reference frame), and (3) establish a global notion of search
progress as the pursuer moves along the search path.

29

Figure 4.16: A sweepable polygon partitioned by type and by frame of reference. Subpolygons (1
and (Y3 are monotone, while 2, 4, Q)5 are scallop subpolygons. The regions corresponding to the
sequential frames of reference are indicated by F; where 1 < i < 8.

We start by constructing the search path, where we must manage the transition from @; to ;1.
For now, we make the simplifying assumption that for 2 < j < k, a pursuer in (); can see into
(j—1, but features in ();_1 obstruct the view into ();_o. We will relax this assumption below, once
we understand how to handle this basic transition. The simplest transition is from a scallop); to a
monotone ;1. We treat ;41 as if it is part of the scallop subpolygon: the construction of Algorithm
E] is still valid. Once the frame of reference for the monotone (Q;; has been established, it protects
the last checkpoint in the scallop ();. This tactic also handles the transition between scallop polygons
whose centers are on the same side of ().

The transition from a monotone (); to a scallop ;11 is also intuitive. Without loss of generality,
assume that the sweeping center is below (@), so that the notions of “up” and “down” are consistent in ();
and ;1. To transition our search path, we view @); as part of the scallop subpolygon ;1. However,
this introduces a new twist that undermines our notion of progress in the monotone ;. In a monotone
subpolygon, intersections of the search path with either chain establish valid checkpoints. However, in
a scallop subpolygon, only intersections with the lower chain are checkpoints: intersections with the
upper chain are auxiliary points. If our last checkpoint in monotone (); was on the upper chain, then
it becomes an auxiliary point once we reach (); 1. This means that we might have to cede previously
guarded area as we move through @); 1, see Figure This compromises the immutability of check-
points in the monotone @);. Therefore, we must introduce a new notion of progress to complement our
(now temporary) checkpoint progress.

A simple way to resolve this problem in a monotone-to-scallop transition is to recast the check-
points on the upper chain as auxiliary points. This is a valid solution when each); does not have
visibility into @)j_o: we temporarily give up some progress in (; while in Q;41, but we will recover
it by the time we reach);4+2. However, this solution will not extend to sweepable polygons without
this visibility constraint between subpolygons. Indeed, the location of the various sweeping centers
invert our notions of “up” and “down,” which means that our categorization of a chain being “upper”
or “lower” is unstable. Auxiliary points and checkpoints repeatedly switch places as we traverse ().

30

Figure 4.17: Transitioning from monotone (); to scallop ;4. Points a,b are both checkpoints in
monotone ();. After transitioning to scallop Q;+1, point b becomes an auxiliary checkpoint. Search
path point ¢ protects checkpoint a (relinquishing point b). The checkpoint is updated again when
reaching point d.

Therefore, we turn to a new notion of progress that is more robust to changes in reference frames as
the pursuer searches the polygon.

To introduce our new progress measure, we return to the global view of our sweepable polygon.
Consider a searching pursuer that navigates the entire polygon (using our yet-to-be defined search
path). Let us further subdivide the polygon according to the pursuer’s frame of reference. In a mono-
tone subpolygon, we use one frame of reference, while in a scallop polygon we use a series of reference
frames. Let us denote the entire series of frames for polygon @ as F = (Fy, Fy, ..., F;) where each
F; denotes the notion of horizontal and vertical (particularly, up and down) for the frame, see Figure
The crucial observation is the following: once P successfully adopts frame Fj, she never reverts
to any of the previous frames F7, ..., F;_;. This leads us to our new notion of progress: we say that P
makes headway every time that she successfully adopts a new frame of reference. During adoption,
she may give up some geometric progress (by abandoning a previous checkpoint), but she has still
advanced through the polygon in a global sense. We will show that P reliably makes headway, so she
will eventually establish rook mode. Finally, we note that |F| is bounded by the number of vertices of
@ so there are a finite number of headway phases during the search. Therefore the pursuer will surely
establish rook position in finite timeE]

We handle the monotone-to-scallop transition as follows. We act as if (); is part of the scallop
polygon ;41 and use Algorithm [2.2]to continue the search path construction. When searching along
this path, rather than measuring progress by advancing checkpoints, P achieves progress by making
headway, which means adopting a new frame of reference that guards some subpolygon in Uilei.

Next, we consider a transition from scallop (); to scallop (); 11, where the sweep centers are on
opposite sides of (). This change of frame reverses the orientation of our vertical axis (meaning “up”
and “down” are now flipped). As a consequence, we must swap the roles of checkpoints and auxiliary
points in ;. Indeed, in our new inverted world, it is now crucial to defend the former auxiliary points
in (); against incursion (so that they are now treated as checkpoints, to be consistent with our updated

"We could have used “making headway” as our measure of progress in a sweepable polygon. However, at that point in
the exposition, it was more important to emphasize the complementary roles of checkpoints and auxiliary points.

31

Figure 4.18: A sweepable polygon where the search path alternates between guarding points a and b.

vertical orientation in ();41). As in the monotone-to-scallop case, a potential consequence is to cede
some previously cleared area in ();: our last auxiliary point in (); might be “behind” the last checkpoint
in ();, similar to Figure However, we now measure progress by making headway (adopting a new
frame of reference) rather than maintaining all previous checkpoints, so we have advanced our global
effort.

We claim that the pursuer can always make headway. Indeed, the crucial phases are where the
pursuer is traveling along a spoke line in order to transition from frame F; to frame F;, ;. The search
path has been constructed so that successful adoption of Fj; guards a previous checkpoint or auxiliary
point. Simultaneously, we re-categorize this point as a checkpoint/auxiliary point according to the
vertical orientation of the new frame of reference Fj;;. By Lemma[5] the pursuer can successfully
attain this position or establish rook mode with respect to the previous frame F;. In the latter case,
the last checkpoint (with respect to F;) remains guarded. This concludes our discussion of the simpler
case where (Q; does not have visibility to Q;_2.

Finally, we relax our visibility constraint between successive subpolygons, as promised above. We
allow for a point in (); 1 to have visibility to all previous subpolygons Q1, ..., Q;. Our search path
construction does not change. However, we must now keep track of all previous checkpoints and
auxiliary points in Ui;lek, since we may revert to guarding any of them during the transition. Figure
shows a search path that repeatedly alternates between guarding the same two points a,b. We
could extend this oscillating behavior O(n) times in the natural way. In this example, as the pursuer
advances along the search path, she does not make checkpoint progress. However, she does make
headway by incrementing though the list / of frames of reference. This is our updated notion of
progress, so our search strategy terminates in finite time.

4.2 Rook Strategy

Adapting rook’s strategy in a sweepable polygon is relatively straight forward. As before, there are
two categories of rook position: pocket positions and chute positions. However, the characterization
of being an “upper” or “lower” position is no longer appropriate. For example, a pocket position can
span a series of subpolygons Q);, Qi11, ..., Qi+, see Figure Therefore, the pursuer responds to
any evader gambits (hiding move, blocking move, escape move) by viewing those moves with respect

32

to the frame of reference (and vertical orientation) appropriate for the current pursuer position.

Figure 4.19: A pocket position where the subpolygon types changes. As a result, the pocket transitions
from an upper pocket to a monotone pocket to a lower pocket. When £ makes a blocking more or a
hiding move, P responds with the move appropriate to the current subpolygon type.

Likewise, during the pursuer’s response to these moves, the subpolygon type might change. Cru-
cially, the smoothness of the sweep line guarantees that the pursuer tactics from Sections [2.1] and [3.1]
will re-establish rook position. For example, suppose that the evader makes a leftward blocking move,
see Figure .20 In response, P moves horizontally along the rook frontier to the blocking point, and
then enters a cautious search phase until either (1) £ steps to the right past P, in which case P re-
enters rook mode using her current reference frame, or (2) she attains rook position with respect to her
searching frame. If the polygon type changes during this process, then the search path will continue to
protect the blocking vertex. The adaptations for a hiding move and an escape move are similar, so we
omit the details.

Figure 4.20: A blocking move where the subpolygon type changes within the blocking pocket. (a)
& makes a blocking move and P moves to the blocking point. (b) P uses a cautious search strategy,
following a new search path that protect the blocking vertex. If £ steps to the right of P with respect
to the previous rook frame, then P reverts to the previous rook phase.

33

Figure 4.21: The three shaded bands show areas visited in three different rook modes. The rook modes
start with the evader at positions &1, &2, £3, who then moves leftward it is current frame. The first two
rook modes end with escape moves at vertices v; and v;, respectively. The region R is visited three
times, once in each rook mode.

4.3 Catching the Evader

The pursuit algorithm for a sweepable polygon is identical to Algorithm[I} We conclude by sketching
the proof of Theorem [I.1](c).

Proof of Theorem [I.I(c). The transitions between search phase, rook phase and cautious rook
phase are argued just as in the proof of Theorem [I.T(b). Therefore, we only address the capture time
bound of O(n - area(R)) + diam(@)). As in a scallop polygon, the time spent in search mode is is
O(diam(Q) 4+ n). However, the changing locations of our sweep centers leads to the n - area(Q) term
accounting for rook phases (instead of the area(Q) term for a scallop polygon). Recall that in scallop
pursuit, we visited each point at most twice. Figure shows an strictly sweepable example where P
revisits one region R during three different rook modes; it is straight-forward to extend this example so
that one region is revisited O(n) times. Furthermore, simple changes to the geometry (including taking
a gentler rotation) can increase the size of the repeated region to be O (area(Q)). Meanwhile, the total
number of distinct rook phases is at most |F| < n, see Figure Due to the repeated visitation
during rook mode, the best bound we can guarantee during the active pursuit phases is O(n - area(Q)).
This completes our summary of the adaptations required for the proof of Theorem [I.1](c). O

5 Conclusion

We have considered a pursuit-evasion game in strictly sweepable polygons, including the subfamilies
of monotone and scallop polygons. We have shown that a line-of-sight pursuer has a deterministic
winning strategy in these environments. Line-of-sight pursuit must alternate between searching and
chasing. We have taken advantage of the existence a natural traversal path in our environments, which
allows the pursuer to clear the polygon from left to right. In particular, we can associate a unique frame
of reference to each point in the polygon by using the sweep line as the vertical axis.

34

Determining the full class of pursuer-win environments remains a challenging open question. It
is known that there are weakly monotone polygons which are evader-win [[16]]. One milestone would
be resolving whether the family of sweepable polygons is pursuer-win. Note that the sweep line is
allowed to backtrack as it navigates the polygon. A potential search path must account for this back-
tracking, which presents a further challenge to the methods presented herein. We are optimistic that our
notion of making headway could generalize to all sweepable polygons, but there are certainly technical
challenges to overcome. The subfamily of straight walkable polygons would also be a step forward.
The boundary of such a polygon can be partitioned into two chains between vertices s and ¢, such
that we can move two mutually visible points monotonically from s to ¢, one clockwise and the other
counterclockwise.

6 Acknowledgments

This work was supported in part by the Institute for Mathematics and its Applications and in part by
NSF Grant DMS-1156701. Volkan Isler was supported in part by NSF Grant IIS-0917676. We thank
Narges Noori for helpful conversations and feedback.

References

[1] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Appl. Math., 8:1-12, 1983.

[2] S. Alexander, R. Bishop, and R. Ghrist. Pursuit and evasion on nonconvex domains of arbitrary
dimensions. In Proceedings of Robotics: Science and Systems, Philadelphia, USA, August 2006.

[3] S. Alexander, R. Bishop, and R. Ghrist. Capture pursuit games on unbounded domains. Ensiegn.
Math., 55:103-125, 2009.

[4] A. Beveridge and Y. Cai. Two-dimensional pursuit-evasion in a compact domain with piecewise
analytic boundary. http://arxiv.org/abs/1505.00297.

[5] D. Bhadauria, K. Klein, V. Isler, and S. Suri. Capturing an evader in polygonal environments with
obstacles: the full visibility case. International Journal of Robotics Research, 31(10):1176-1189,
2012.

[6] A. Bonato and R. Nowakowski. The Game of Cops and Robbers on Graphs. American Mathe-
matical Society, 2011.

[7] T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile robotics: a
survey. Autonomous Robots, 31:299-316, 2011.

[8] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygonal environment.
IEEE Transactions on Robotics, 5(21):864-875, 2005.

35

[9] K. Klein and S. Suri. Catch me if you can: Pursuit and capture in polygonal environments with
obstacles. In Proc. of 26th Conference on Artificial Intelligence, pages 2010-2016, 2012.

[10] K. Klein and S. Suri. Capture bounds for visibility-based pursuit evasion. Computation Geome-
try: Theory and Applications, 48:205-220, 2015.

[11] S. Kopparty and C. V. Ravishankar. A framework for pursuit evasion games in R". Inf. Process.
Lett., 96:114-122, 2005.

[12] J. E. Littlewood. Littlewood’s Miscellany. Cambridge Univeristy Press, 1986.

[13] N. Noori, A. Beveridge, and V. Isler. A pursuit-evasion toolkit. Technical Report TR-15-013,
University of Minnesota, Computer Science & Engineering Department, 2015.

[14] N. Noori and V. Isler. Lion and man game on convex terrains. In Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2014.

[15] N. Noori and V. Isler. Lion and man game on polyhedral surfaces with boundary. In /EEE
Conference on Intelligent Robots and Systems (IROS), 2014.

[16] N. Noori and V. Isler. Lion and man with visibility in monotone polygons. International Journal
of Robotics Research, 33(1):155-181, 2014.

[17] R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete Mathematics, 43(2—
3):235 - 239, 1983.

[18] A. Quilliot. Jeux et pointes fixes sur les graphes. PhD thesis, Université de Paris VI, 1978.

[19] J. Sgall. A solution to David Gale’s lion and man problem. Theoretical Comp. Sci., 259(1—
2):663-670, 2001.

36

	lospursuit.pdf
	Introduction
	Related work and environmental assumptions

	Pursuit in a Monotone Polygon
	Search Strategy
	Rook Strategy
	Catching the Evader

	Pursuit in a Scallop Polygon
	Search Strategy
	Rook Strategy
	Catching the Evader

	Strictly Sweepable Polygons
	Search Strategy
	Rook Strategy
	Catching the Evader

	Conclusion
	Acknowledgments

