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Abstract

In this project, we obtained a better understanding of modeling of lithium-ion batteries
including the optimization of porosity and thickness of the positive electrode to maximize specific
energy and specific power, the capacity loss during storage due to SEI growth formed between
the negative electrode and electrolyte, and the dendrite growth in lithium polymer systems
during galvanostatic charging which can pose a safety concern by rederiving and reproducing
results from the literature [1], [2], [3] and [4].

1 Introduction

Lithium-ion batteries are used in many applications from electronic devices to vehicles. Since it is
the lightest metal and is highly electropositive, lithium-ion batteries have higher specific energy
(Wh/ kg) and specific power (W/kg) than lead acid batteries and nickelmetal hydride batteries[10].
The specific energy and the specific power serve as an indicator of the range and acceleration of a
vehicle, respectively.

A lithium-ion cell consists of a composite negative electrode and a composite positive electrode.
They are divided by a porous separator through which lithium ions transport from one electrode to
another. The porous composite electrodes consist of active material, binder and conductive carbon
(if needed). The pores are filled with electrolyte (Li salt such as LiPF6 in organic solvent). The
separator prevents electronic contact between the positive and the negative electrodes and thus
prevents shorting. The negative composite electrode is usually coated on to a Cu current collector
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and the positive on to a Al current collector. These current collectors are connected to a load,
such as a car. When the battery discharges, electrons from the negative electrode move through
the external circuit (i.e. from the Cu current collector, to the load, and then to the Al current
collector of the positive electrode). Simultaneously, the lithium-ions from the negative electrode
move through the separator and into the positive electrode. Electrons react with lithium ions and
solid lithium intercalates into the active materials in the composite electrodes. This changes the
composition of the electrodes.
Our report is arranged as follows. In section 2 and 3, we construct the models for specific energy,
capacity, and specific power to obtain the optimal porosity and thickness of the ohmically limited
porous positive electrode. In section 4, we will show that the thickness of the SEI as well as the
capacity loss are linearly dependent on the square root of the time. In section 5, we will obtain
the model for dendrite growth, and research the factors, such as current density and interelectrode
distance, that can influence the growth of dendrites. In section 6, we summarize our main results
of this project. In section 8, we display most of the MATLAB codes we developed to obtain our
results, and in section 9, we have provided the list of symbols used in the report.

2 Galvanostatic Discharge in Ohmically Limited Porous Elec-
trodes

Maximizing the capacity (Q) of the lithium ion battery is desired. To acquire this, a galvanostatic
discharge of an electrode is considered here. It is also assumed that voltage losses are attributed
to only ohmic resistances. From these conditions, the reaction zone is very narrow. Furthermore,
the highly porous separator and the positive electrode will only be considered. The conductivity
of the solid matrix is assumed to be unaffected by the reactions.

2.1 Effective Capacity

The following is the equation for effective capacity and the theoretical capacity, respectively

Q = it, (1)

QT (L) = qL. (2)

Using Ohm’s law (Eqn. (3)) and the expression for resistance (Eqn. (4)), Eqn.(5) is derived from
Eqn.(1). Eqn.(5) expresses capacity as a function of electrode thickness.

∆V = iR(i,t), (3)

R(i,t) =
Ls
κs

+
L

κ+ σ
+

it

q(κ+ σ)

[( σ
κ′

+
κ

σ′

)
(1 + f)− 1

]
, (4)

yields

Q(L) =
(κ+ σ)

(
∆V
i −

L
κ+σ −

Ls
κs

)
q(

σ
κ′ + κ

σ′

)
(1 + f)− 1

. (5)
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Figure 1: Effective electrode capacity and electrode thickness.

2.2 Thickness of the Electrode

Equating Equations (2) and (5) and solving for L will yield the optimal electrode thickness.
Fig.1 shows the effective electrode capacity plotted as a function of electrode thickness using the
two Eqns. (1) and (2) as labelled. Their intersection is the optimal electrode thickness (Lopt). It
provides the relation between Q and QT , with the dashline denoting unattainable points because
of no more active material in the electrode or exceeding the allowable potential loss.

2.3 Optimal Porosity

Once the thickness has been chosen, the optimal porosity can be determined. The following are
empirical equations used to convert Eqn. (5) from a function of electrode thickness to a function
of porosity:

κ = κ0ε
n, (6)

κ′ = κ0ε
n
f ,

σ = σ0(1− ε)n,
σ′ = σ′0(1− εf )n,

q = q0(1− ε),

εf = 1− 1− ε
B

.

Substituting these empirical equations into Eqn. (5) yields

Q(ε) =
q0(1− ε)(κ0ε

n + σ0(1− ε)n)
(

∆V
i −

Ls
κs

)
[

σ0(1−ε)n
κ0(1− 1−ε

B )
n + κ0εn

σ′0(
1−ε
B )

n

]
(1 + f)

. (7)
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Figure 2: Electrode capacity for various electrode thickness and porosity.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

alpha

op
tim

al
 p

or
os

ity

Figure 3: Optimal electrode thickness and porosities.

Using Eqn. (7), a contour map can be made to plot the capacity as a function of porosity and
the ratio of the bulk conductivities of the electrolyte and the solid matrix denoted as α, and
α = σ0

σ0+κ0
. This map is shown in Fig. 2. It shows that for a smaller α value, capacity is maximized

at lower porosities.

Fig. 2 shows the effective capacity as a function of ratio of solid conductivity α and porosity ε.
In this figure, the capacity increases from blue to red in the color scale. Therefore, to maximize
capacity, the porosity should be relatively small and α should be relatively small as well. This
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Figure 4: Dependence of the optimum porosity on the relative conductivities of the bulk matrix
and solution phases, with red dotted line n = 1.5, and blue dotted line n = 2.

implies that the conductivity of the electrolyte should be large. For a given α we determine the
optimal porosity at peak capacity.
For Figs. 2 and 3, the plots are for B = 1 and n = 1.5. B is the parameter that takes into account
the volumetric changes within the battery. n is the tortuosity. Tortuosity is a measure of how
winding a path is for the transport of the charged species (mainly lithium ions) through the porous
media within the cell. As n approaches infinity, the path becomes more winding. Here, only n
between 1 and 3 are considered.

Figs.4 and 5 are plots of the dependence of the optimum porosity on α with varying B and n.
The optimal porosities are varied using different ratios of the bulk conductivities of the unreacted
and reacted components of the solid matrix.

3 Optimization of Porosity and Thickness for discharge times

In the analysis of the previous section the capacity of the electrode was maximized as a function
of the electrode thickness and the porosity. Now we wish to maximize the specific energy, E as a
function of porosity and electrode thickness for various discharging time. Maximizing the specific
energy is advantageous because it takes into account the overall mass of the system. The discharge
time gives insight into the particular application of the vehicle.

3.1 Specific Energy

The assumptions from the previous section will be preserved. Activation and concentration over-
potentials are considered negligible relative to ohmic resistance. Also the current distribution, i, is
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Figure 5: Relation between porosity and conductivity of the bulk matrix and solution phase. Solid
phase conductivity ratio between discharged and charged state: red:1; blue: 0.5; and black: 0.1.

non-uniform. Combining these results, the cell potential at any given time becomes

V = U − Ls
κs
i− i2t

κ(1− ε)q+
, (8)

the energy per unit separator area becomes

E =

∫
V idt = (U − Ls

κsi
)itd −

i3t2d
2κ(1− ε)q+

. (9)

To rescale the problem, we introduce the following dimensionless parameters. The dimensionless
current becomes, I = iLs

κsU
, and the dimensionless discharge time becomes, T = Uκstd

q+L2
s

. The current

that maximizes energy is

I1
opt =

1

1 + (1 + Tκs
2κ(1−ε))1/2

. (10)

However, there are two constraints to consider. Once the electrode has completely discharged, the
cell potential should not drop below the cut-off voltage to preserve the lifespan of the battery. This
forces

I2
opt ≤

2(1− Vc
U )

1 + (1 + 4(U−Vc)tdκ2s
2κ(1−ε)q+L2

s
)1/2

. (11)

Also the capacity of the positive electrode must not be exceeded, so

I3
opt ≤

L+

Ls

(1− ε)
T

, (12)
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Figure 6: Electrode capacity for various electrode thickness and porosity.

the optimal current, Iopt = min(I1
opt, I

2
opt, I

3
opt). The total mass per unit separator area becomes

M = ρrLr + ρsLs + [ρ−q+(1− ε)/q− + ερs + (1− ε)ρs]L+. (13)

Finally the dimensionless specific energy now becomes

Ē =
(1− I)IT − I3T 2

2ε1.5(1−ε)
ρrLr
ρsLs

+ 1 + L+

Ls
[ε+ ρ+

ρs
(1− ε)]

. (14)

3.2 Optimum Specific Energy vs. Optimal Capacity

First we consider the capacity as a function of dimensionless electrode thickness for fixed discharge
time. Fig. 6 depicts the capacity of the system as a function of electrode thickness for fixed a
discharge time of T = 100 at various values of ε. In Fig. 6, we consider the relation between the
capacity and electrode thickness for fixed ε. For relatively small electrode thickness, the capacity
is directly proportional to the thickness of the system. In this case Iopt = I1

opt. Once the electrode
thickness reaches a certain threshold value, the capacity remains constant. This implies that one
of our constraints have been met. So Iopt = min(I2

opt, I
3
opt). By inspection the optimal porosity and

thickness predicted by the capacity is .6 and 6 respectively when T = 100.
Next we consider the specific energy as a function of electrode thickness. In Fig.7, we depict the
specific energy of the system as a function of electrode thickness for a fixed discharge time of
T = 100 at various values of ε. The optimal porosity and thickness predicted by the specific energy
is 0.227 and 1.95 when T = 100. In this scenario the specific energy diminishes the optimal porosity
and thickness by about 67%. The specific energy predicts smaller optimal porosity and thickness
because it takes into account the mass of the electrode.

3.3 Specific Energy vs. Average Specific Power

Fig.8 depicts the relation between specific energy and average specific power and is called a Ragone
plot. In the context of electric vehicle applications, the figure can be thought of as the range against
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the acceleration. For electrode designed for a discharge time of T = 2, the maximum specific energy
is relatively small. However, even as the average power gets large, the specific energy remains high.
This suggests a small discharge time is more suited for high power applications. For a discharge
time of T = 5000, the maximum specific energy is relatively large. However, as the average specific
power obtained remains high, the specific energy delivered decreases relatively fast. This suggests
that thicker electrodes are most suitable for continuous low power to moderate activities that need
to be sustained for a long time.

4 Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells

Solid-electrolyte interface (SEI) in lithium-ion batteries is the passive layer that is formed over the
negative electrode. Solvent reduction contributes to the formation of SEI and leads to capacity
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loss. This irreversible capacity loss happens during the first few charges of the battery and is
necessary, because isolating negative electrode from the electrolyte minimizes further reduction of
electrolyte components. ”Good” electrolytes produce thin and dense SEI films that have low solvent
permeability and are able to withstand volume changes due to lithium intercalation-deintercalation.
”Poor” electrolytes lead to porous SEI films that may permit continuing reduction of solvent, thus,
reducing the capacity of the battery.
Here we study simple model of formation of SEI [3].

4.1 Model

Assumptions.

• The reaction of one solvent component (S) dominates. This component undergoes two-
electron reduction at the carbon-SEI interface via

S + 2e− + 2Li+ → P ; (15)

• Within the SEI phase, component S is the only mobile component and has a constant effective
diffusivity (DS);

• S is dilute within the SEI so that cS � cP ;

• Electrons and lithium cations are available in excess at the carbon-SEI interface;

• cP is constant and a reference frame in which the SEI/electrolyte interface is stationary, the
flux of P is zero and the differential mass balance for P is satisfied identically.

Using similarity transformation we have the following dimensionless diffusion equation for the
concentration of S derived from the differential mass balance ,

d2cS
du2

+ 2u
dcS
du

= 0 (16)

cS = 0, at u = λ, (17)

cS = ceq, at u = 0, (18)

where u = z√
4DSt

and λ = L(t)√
4DSt

.

Using results in [6] and [7], we obtain
The solution of this problem is given by

cS(z, t) = ceq

(
1− erf(u)

erf(λ

)
(19)

where λ may be found from the solution of

λ =
ceq√
πcp

exp−λ2

erf(λ)
(20)
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Figure 9: Capacity loss x and SEI thickness L with respect to
√
t

and the SEI thickness (L(t)) and fractional capacity loss (x(t)) are given by

L(t) = 2λ
√
DSt, (21)

x(t) =
2ZpcpAanodeλ

N0

√
DSt. (22)

In the simulation we use Eqn. (21) and (22) to get the relation between the capacity loss(x) and
SEI thickness L with respect to time(t) in Fig. 9. From Fig. 9, we observe the linear dependence
of the capacity loss on the square root of the time for HE prototype cells stored at temperatures
of 30 and 60◦C, respectively. Similarly, the dependence of the SEI thickness on the square root of
the time is also linear. In Fig. 10, we show the remaining capacity in a time span of 100 days.
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5 Dendrite Growth in Li/Polymer Systems

Although lithium has higher specific capacity than graphite for lithium insertion, it is not com-
mercially used for most applications due to the problem of dendrite growth. Better understanding
of this issue can lead to mitigation efforts. Therefore, we seek to model the dendrite growth in a
lithium polymer cell during galvanostatic charging. This model is surface-energy controlled and it
takes into account the effect of dendrite tip curvature into the kinetics of its dendrite growth. [4]

5.1 Objective

We want to simulate the dendrite growth in a parallel-electrode lithium/polymer cell during gal-
vanostatic charging.

5.2 Model

Assumptions.

• The electrolyte behaves ideally, i.e., the solution is relatively dilute and the activity coefficients
are unity.

• Material and transport properties are treated as constant with respect to concentration.

• The cell is presumed to be isothermal.

• A typical charge cycle is assumed to last three hours.

Firstly, we need to obtain concentration and potential profiles for a binary electrolyte. Given
an initial bulk concentration of lithium salt (cb) in the separator we need to solve the following
transient diffusion equation for overall salt concentration (c),

∂c

∂t
= D

∂2c

∂y2
, (23)

11



where the Laplacian is reduced to one dimension, and y denotes the direction from negative electrode
to positive, perpendicular to both of them. This equation is subject to boundary conditions,

i = − DF

(1− t0+)

∂c

∂y

∣∣∣∣
y=0

, (24)

1

L

∫ L

0
c(y, t)dy = cb, (25)

c = cb at t = 0. (26)

Where F is Faraday’s constant and t0+ is the cation transference number.
These equations can be nondimensionalized using change of variables of the following form,

ξ =
y

L
, (27)

τ =
Dt

L2
, (28)

θ =
(c− cb)DF
(1− t0+)iL

. (29)

Then the problem can be transformed to the following type,

∂θ

∂τ
=
∂2θ

∂ξ2
, (30)

∂θ

∂ξ

∣∣∣∣
ξ=0

= −1 , (31)∫ 1

0
θT (τ, ξ)dξ = 0, (32)

θ = 0 at τ = 0. (33)

Now we are going to solve problem (30) by decomposing θ as follows,

θ(ξ, τ) = θSS(ξ) + θT (ξ, τ), (34)

and the steady-state solution (θSS) is found by simple integration, while transient solution (θT ) is
found using separation of variables and Fourier series. We arrive at the following form,

θ = −ξ +
1

2
− 4

∞∑
k=1

1

(2k − 1)2π2
e−(2k−1)2π2τ × cos[(2k − 1)πξ], (35)

Resulting concentration profile is depicted in Fig. 11.
To find the potential profile we use Butler-Volmer type expression,

i

F
= κa exp (

αaF

RT
Φ)− κcc exp (

−αcF
RT

Φ) (36)

We assume that potential relative to the cathode can be written as the sum of open-circuit over-
potential (OCP) and a surface overpotential, i.e.,

Φ = V0 + ηs (37)
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When the current is zero, the OCP is achieved. We, therefore, can solve for V0:

V0 =
RT

(αa + αc)F
ln

(
κcc

κa

)
(38)

Then assuming the transfer coefficients sum to unity we obtain,

i

F
= καca (κcc)

αa

[
exp

(
αaF

RT
ηs

)
− exp

(
−αcF
RT

ηs

)]
(39)

Using Eqn. (39), we define exchange current density as

i0 = καca (κcc)
αa = i0,ref

(
c

cref

)αa
(40)

Assuming αa = αc = 1/2 we obtain analytic expression for the surface overpotential,

ηs =
2RT

F
sinh−1

[
1

2

(
i

i0,ref

)(cref
c

)1/2
]

(41)

Finally, with the overpotential as a boundary condition, we use the integrated form of modified
Ohm’s law to find the instantaneous potential as

Φ3(y, t) = ηs −
i

Λ

∫ y

0

1

c
dy +

RT

F
(1− 2t0+) ln

[
c(y, t)

c(0, t)

]
(42)

Here Λ is the equivalent conductance of the electrolyte and is given by

Λ =
F 2D

2t0+(1− t0+)RT
(43)

Fig. 12 shows the potential in the separator, i.e. the profile for Eqn.(42).
Now we assume that there is single dendrite protruding from the cathode, sufficiently far apart
form the other dendrites. We also assume that dendrite so small that it does not affect the con-
centration and potential in the cell. Furthermore, the growth of the dendrite does not lower the
bulk concentration of lithium appreciably. The expression for the kinetics of the dendrite growth
is given below.

in
i0,ref

=
exp ( 2γV

rRT ) exp (αaFηRT )− exp (−αcFηRT )

(
cref
cLi+

)αa +
(1−t0+)ri0,ref

FDcδ
′
Li+

exp (−αcFηRT )
; (44)

Notice that the dendrite radius r is a variable, but in the simulation, we choose a constant radius
that maximizes the tip current in.
The current density at the dendrite tip in is related to the propagation velocity of the dendrite vtip
by

vtip =
in(c, η)V

F
, (45)

In Fig. 13, we depict the velocity vtip profile as a function of distance L for fixed time t. It shows

13
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Figure 11: Concentration (θ) profile in the galvanostatic cell.
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Figure 12: Potential φ3 vs. distance and time in the cell.

that the relation is linear.
Finally, we can get the equations satisfied by the dendrite tip position ytip. ytip satisfies the following
first order differential equation with the initial condition,

∂ytip
∂t

= vtip =
in(c, η)V

F
(46)

ytip = 0 at t = 0.

In Fig. 14, we show the dendrite growth ytip with respect to time t. Adjusting the current density
changed the shape of the dendrite growth profile (Fig. 15). Lowering the current density appeared
to prolong relatively linear growth rate. From Figs. 13 and 14, we conclude that the dendrite
growth accelerates both as time passed and as it moved across the cell.
Finally, we explored the effect of current density on the charge passed at failure. The results are
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Figure 13: Dendrite velocity vtip as a function of distance.
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Figure 14: Dendrite position ytip and time t.

depicted in Fig. 16. This figure suggests that cell fails if run above 75% of limiting current. Also,
the slope of the curve suggests that lowering current density always increases the charge that can
be passed before failure.

6 Conclusion

In this project, we looked at the modeling of lithium-ion batteries from different perspectives:
optimization of performance, life span and safety issues.
First, we constructed the models for specific energy, capacity, and specific power to obtain the
optimal porosity and thickness of the ohmically limited porous positive electrode. From our
simulation results, we saw that optimal porosity depends on relative bulk conductivities of the
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Figure 15: Dendrite growth profile shape at varying currents.
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Figure 16: Charge to short out cell and charge in 3 h vs. interelectrode distance, i = 0.95iL.

solid matrix and electrolyte. It also depends on volume changes of an active material in the
electrode. For example, for B < 1 optimal porosity is relatively large to account for increase in
the volume of reacted material; for B > 1, it is relatively small because reacted material occupies
smaller volume. Furthermore, the larger the tortuosity(n), the more important it becomes to
spread the material out (larger porosity).

Next, we studied the aging of lithium-ion batteries, in particular, the growth of SEI and capacity
fade associated with it. We observed that the thickness of the SEI as well as the capacity loss are
linearly dependent on the square root of the time.

Finally, we obtained the model for the dendrite growth in lithium/polymer systems. We investi-
gated the influence of different factors, such as current density and interelectrode distance, on the

16



growth of dendrites.
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8 Appendix

• Code for Fig. 1

close a l l
clear a l l
clc
%Fig . 2 in Mid−term .
%over 1=Ls/ kappa s ;
%[ 7 ] :
kappa =.138;
kappa prime =.715;
sigma=20∗kappa ; s igma prime =20;
q =1.11;
%\end{ verbat im }
%\ beg in { verbat im }
for x = 1:10

disp ( x )
end
%\end{ verbat im }
%\ beg in { verbat im }
deltaV =.1;
i =.1 ;
f =0; over 1 =0;
syms L
Eq 7=(kappa+sigma )∗ ( deltaV / i−L/( kappa+sigma)−over 1 )∗q / . . .

( ( sigma/ kappa prime+kappa/ sigma prime )∗(1+ f )−1);
Eq 8=q∗L ;
L c r i t i c a l=s o l v e ( Eq 7==Eq 8 ) ;
X1=0 : . 02 : L c r i t i c a l ;
X2=L c r i t i c a l : . 0 2 : 1 . 4 ;
Eq 7 p lo t 1=subs ( Eq 7 , L , X1 ) ;
Eq 7 p lo t 2=subs ( Eq 7 , L , X2 ) ;
Eq 8 p lo t 1=subs ( Eq 8 , L , X1 ) ;
Eq 8 p lo t 2=subs ( Eq 8 , L , X2 ) ;
c r i t i c a l p l o t=L c r i t i c a l ;
%graphs
plot (X1 , Eq 7 p lot 1 , ’−− ’ ) ;
hold on
plot (X2 , Eq 7 p lot 2 , ’− ’ ) ;
hold on
plot (X1 , Eq 8 p lot 1 , ’− ’ ) ;
hold on
plot (X2 , Eq 8 p lot 2 , ’−− ’ ) ;
y c r i t i c a l=subs ( Eq 7 , L , L c r i t i c a l ) ;
xlabel ( ’L(cm) ’ ) ;
ylabel ( ’$Q(\ f r a c {A−hr }{cmˆ2}) $ ’ , ’ I n t e r p r e t e r ’ , ’ LaTex ’ ) ;
text ( . 2 , subs ( Eq 7 , L , . 2 ) + . 2 , ’ Equation [ 7 ] ’ ) ;
text ( 1 . 1 , subs ( Eq 8 , L , 1 . 1 ) − . 2 , ’ Equation [ 8 ] ’ ) ;
hold on
plot ( [ L c r i t i c a l L c r i t i c a l ] , [ 0 y c r i t i c a l ] , ’−− ’ ) ;
text ( double ( L c r i t i c a l ) − . 1 , . 1 , ’ Lopt ’ ) ;%Note . t e x t works only f o r doub le coord ina te s .
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• Code for Fig. 7

% \ beg in { verbat im }
%reproduceResu l t s paper .
% %Fig .3 , E lec t rode capac i t y f o r var ious e l e c t r o d e t h i c kne s s and po r ou s i t i e s .
% %Vc=2/3∗U;%a reasonab l e assumption .
% %kappa s=kappa 0 ;
%Fig .4 , s p e c i f i c energy f o r var ious e l e c t r o d e t h i c kne s s and p o r o s i t i e s .
T=100; r a t i o sOve r0 =1;
U=1;
Vc=2/3∗U;
%L plus /Ls−−−the x−axis , and denotes as ra t i o L ;
r a t i o L=linspace ( 0 , 8 . 5 , 1 0 0 ) ;
ep s va lue=linspace ( . 1 , . 7 , 7 ) ;
y=zeros ( length ( ep s va lue ) , length ( r a t i o L ) ) ;
C=zeros ( length ( ep s va lue ) , length ( r a t i o L ) ) ;
for i =1: length ( ep s va lue )

eps=eps va lue ( i ) ;
%Fi r s t l y , compare the three va lue s in [ 7 ] , [ 8 ] and [ 9 ] to ge t the opt imal
%current .
I eq7 =1/(1+(1+3∗ r a t i o sOve r0 ∗T/2∗eps ˆ(1.5)∗(1−eps ) ) ˆ ( 1 / 2 ) ) ;
I eq8 =2∗(1−Vc/U)/(1+(1+4∗(U−Vc)∗ r a t i o sOve r0 ∗T/(eps ˆ(1.5)∗(1−eps )∗U) ) ˆ ( 1 / 2 ) ) ;
I eq9=r a t i o L ∗(1−eps )/T;
I=min( I eq7 , I eq8 ) ;
%disp ( I ) ;
I=min( I , I eq9 ) ;
C( i , : )= I ∗T;
%y−−−−−−−−−the d imens ion les s s p e c i f i c energy to be maximized .
y ( i , :)=((1− I ) . ∗ I ∗T−I . ˆ ( 3 )∗Tˆ(2)/(2∗ eps ˆ(1.5)∗(1−eps ) ) ) . / . . .
(1+ r a t i o L ) ;

end
plot ( ra t i o L , y ) ;
%\end{ verbat im }
\ i n c l u d e g r a p h i c s [ width=4in ]{ pape r2 f i g3 01−eps−converted−to }

• Code for Figs. 9 and 10.

clear a l l
clc
%codes paper3

20



%Fig . 2 . Measured capac i t y l o s s and es t imated SEI
%th i c kne s s as func t i ons o f time and temperature f o r HE pro to type c e l l s
%s tored a f l o a t p o t e n t i a l o f 3 .9 v .
z p =2;%s to i c h i ome t r i c c o e f f i c i e n t
c p =2.11∗1 e6 /74 ;
c eq =2.636 e3 ;
A anode =173;
%lambda=.21168;
D s = [ 3 . 0 7 ; 1 5 . 1 ] . ∗ 1 e−23;
N 0 = [ 5 0 . 9 3 ; 4 9 . 1 6 ] . ∗ ( 3 6 0 0 ) ;%i n i t i a l capac i t y .
F=9.6485 e4 ;
s q r t t=linspace ( 0 , 2 2 , 1 0 0 ) ;
x=zeros ( length ( D s ) , length ( s q r t t ) ) ;
l=zeros ( length ( D s ) , length ( s q r t t ) ) ;
syms y
lambda=s o l v e ( ( sqrt (pi )∗ c p )∗y−c eq ∗exp(−yˆ2)/ erf ( y ) , y ) ;
%lambda=lambda /1000;
%return
%lambda=.211;
for i =1: length ( D s )

x ( i , : )=F∗2∗ z p ∗ c p ∗A anode∗ lambda∗sqrt ( D s ( i ) )∗ ( s q r t t )∗ sqrt (3600∗24)∗100/ N 0 ( i ) ;
l ( i , : )=2∗ lambda∗sqrt ( D s ( i ) )∗ ( s q r t t )∗ sqrt (3600∗24)∗1 e9 ;

end
[ ax , h1 , h2 ] =plotyy ( s q r t t , x , s q r t t , l ) ;%f i g pape r3
set ( ax ( 1 ) , ’YLim ’ , [ 0 2 0 ] ) ;
set ( ax ( 2 ) , ’YLim ’ , [ 0 3 6 . 5 ] ) ;
figure

plot ( ( s q r t t ) . ˆ 2 , x ) ;%1 paper3
axis ( [ 0 100 0 9 ] )
figure
plot ( ( s q r t t ).ˆ2 ,100−x ) ;%2 paper3
axis ( [ 0 100 91 10 0 ] )
\ i n c l u d e g r a p h i c s [ width=4in ]{ pa pe r3 a l l 0 1−eps−converted−to }
\ i n c l u d e g r a p h i c s [ width=4in ]{ pa pe r3 a l l 0 2−eps−converted−to }
\ i n c l u d e g r a p h i c s [ width=4in ]{ pa pe r3 a l l 0 3−eps−converted−to }

• Codes for dendrite problem.

The following are codes for the last section 5.
Firstly, we need to define the parameter for Lithium batteries in a parallel-electrode lithium/poly-
mer cell.

D=[5e−12] ; %Sa l t d i f f u s i o n c o e f f i c i e n t , mˆ2/ s
t p l u s s =0.3 ; %cat ion t rans f e r ence number
Cb=1000; %i n i t i a l bu l k concentra t ion o f l i t h i um sa l t , mol/mˆ3
L=100∗10ˆ(−6.0); %in t e r e l e c t r o d e dis tance , m
F=96487; %Faraday constant
R=8.3143; %id e a l gas constant
c r e f =1000; %re f e rence concentrat ion , mol/mˆ3
T=358.15; %Temperature , K
IL= −2.0∗Cb∗D(1)∗F/(1.0− t p l u s s )/L ; %Limit ing current
I =0.95∗ IL ; %current dens i t y
V=1.2998∗10ˆ(−5); % molar volume of l i th ium , mˆ3/mol
gamma = 1 . 7 1 6 ; %sur face energy , J/mˆ2
lambda = F∗F∗D(nn )/(2∗ t p l u s s ∗(1− t p l u s s )∗R∗T) ; %equ i va l ence cond , Smˆ2/mol

The following steps lead to concentration profile Fig.11.

t=exp ( [ 1 2 3 4 5 6 7 ] ) ;
x =(0 .0 :L/25 :L ) ;
N1=s ize ( t , 2 )
figure (2 )
for i =1:N1

plot (x , concent ra t i on (x , t ( i ) , I ,D(nn ) , t p l u s s ) , ’ b ’ ) ;
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i Time (s)

0.95iL 8050
0.5iL 4.209x104

0.05iL 5.27x105

Table 1: Time short out for limiting current

hold on
end

Codes for potential profile Fig.12,

figure (3 )
for i =1:N1
plot ( x , p o t e n t i a l 3 (x , t ( i ) , I , lambda ,R,T, F , t p l u s s ) ) ;
hold on ;
grid on ;
end

Codes for Fig.15,

t t1 = [ ( 0 : 5 : 5 0 0 ) ] ;
N1=s ize ( tt1 , 2 ) ;
N2=s ize (x , 2 ) ;
[TT XX]=meshgrid ( t t1 , x ) ;
r r =(0 .0 :L/100∗0 . 1 :L ∗ 0 . 3 ) ;
N3=s ize ( rr , 2 ) ;
for kk=1:N3

for i i =1:N2
for j j =1:N1

ZZ( i i , j j )=Veloc i tyTip ( x ( i i ) , t t 1 ( j j ) , I , lambda , R ,
T , F , t p l u s s , gamma , V , r r ( kk ) ,D(nn) ) ;

end
[ Imax ( i i ) indexR ]=max(ZZ( i i ) ) ;

end
clear ZZ ;
[ IImax ( kk ) IndexRadiu ]= max( Imax ) ;

end
[ I I imax IndexRadiusF ]=max( IImax ) ;
d i s p l ay ( ’ r ad iu s=’ ) ;
d i s p l ay ( r r ( IndexRadiusF ) ) ;

for time fixed t = 1900s, we can get Fig.13 using the following codes,

for i =1:N2
vso l 2 ( i )= V e l o c i t y t i p ( x ( i ) , 1900 , I , lambda , R , T , F ,

t p l u s s , gamma , V , r r ( IndexRadiusF ) ) ;
end
figure (7 )
plot ( x , v so l 2 )

Using Runge Kutta in matlab (ode45), we can obtain Fig.14,

[ Tsol Ysol ]=ode45 ( @( t t , yy ) V e l o c i t y t i p ( yy , t t , I , lambda , R , T ,
F , t p l u s s , gamma , V , 1 . 0 e−7 ,D(nn) ) , [ 0 8050 ] , [ 0 ] ) ;

figure (5 )
plot ( Tsol , Ysol ) ;

The following are the assistant function for the above main files.

function [ y ] = THETAstadystate ( x i )
% input x i = Distance d imens iona less
% output y So lu t i on s tady S ta te

y= −1.0∗ x i +1/2.0;
end
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function [ y ] = THETAtransient ( x i , tao , N )
% Input x i : Distance d imens iona less
% tao : Time dimens iona less
% N: # termins f o r Fourier s e r i e s
% output y So lu t i on t r an s i en t s t a t e

temp =0.0;
for j =1:N
temp1 = 2.0∗ j −1.0 ;
temp1=temp1∗pi ;
temp=temp+1.0/( temp1 ˆ2)∗ (exp(−1.0∗( temp1 ˆ2 .0 )∗ tao ) )∗ cos ( temp1∗ x i ) ;
end
y = −4.0∗temp ;

end

function [ y ] = concent ra t i on ( x , t , I , D , t p l u s s )
% input x : d i s t ance (m)
% t : time ( s )
% I : Current dens i t y (A/mˆ2)
% D: d i f f u s i o n c o e f i c i e n t (mˆ2/ s )
% t p l u s s : ca t ion t rans f e r ence number
% output y : concentra t ion (mol/mˆ3)

F=96487; %(C/mol )
L=100e−6.0 ; % Distance Ref (m)
Cb=1000; % i n i t i a l conce t ra t i on (mol/mˆ3)
x i = x/L ;
tao=D∗ t /L/L ;
y =(THETAstadystate ( x i )+THETAtransient ( xi , tao ,20) )∗ (1 .0 − t p l u s s )∗ I ∗L/D/F

+Cb;
end

function y = o v e r p o t e n t i a l S ( x , t ,T , I , F , R ,D , t p l u s s )
% input x : d i s t ance (m)
% t : time ( s )
% T: Temperature (K)
% I : current Density (A/mˆ2)
% F: Faraday ’ s constant
% R: Id ea l gas constant
% D: d i f f u s i o n c o e f i c i e n t (mˆ2/ s )
% t p l u s s : ca t ion t rans f e r ence number
% output y : o v e r p o t en t i a l ( v )

i 0 =−30.0 ; %current r e f e r ence
c r e f =1000; % concentra t ion re f e r ence
[ y ] = 2∗R∗T/F∗asinh ( 0 .5∗ ( I / i 0 )∗
( c r e f / concent ra t i on ( x , t , I , D , t p l u s s ) ) . ˆ 0 . 5 ) ;

end

function [ y ] = p o t e n t i a l 3 ( x , t , I , lambda , R , T , F , t p l u s s ,D )
% input x : d i s t ance (m)
% t : time ( s )
% I : current Density (A/mˆ2)
% lambda : e qu i v a l en t conductance (Smˆ2/mol )
% R: Id ea l gas constant
% T: Temperature (K)
% F: Faraday ’ s constant
% t p l u s s : ca t ion t rans f e r ence number
% D: d i f f u s i o n c o e f i c i e n t (mˆ2/ s )
% output y : p o t e n t i a l 3 ( v ) p o t e n t i a l in v i c i n i t y o f dendr i t e t i p

N1=s ize (x , 2 ) ;
for i =1:N1
pp =(0 .0 : x ( i ) /100 : x ( i ) ) ;

cc=trapz ( pp , 1 . / concent ra t i on (pp , t , I , D , t p l u s s ) ) ;
y ( i ) = o v e r p o t e n t i a l S ( x ( i ) , t , T , I , F , R ,D , t p l u s s ) ;
y ( i )= y ( i )− I /lambda ∗ cc ;
y ( i )=y ( i )+R∗T/F∗(1−2∗ t p l u s s )∗ log ( concent ra t i on ( x ( i ) , t , I ,D , t p l u s s )
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/ concent ra t i on (0 , t , I ,D , t p l u s s ) ) ;
end

end

function [ y ] = d e n d r i t e P o t e n t i a l ( x , t , I , lambda ,R,T, F , tp lus s ,gamma,V, r ,D)
% input x : d i s t ance (m)
% t : time ( s )
% I : current Density (A/mˆ2)
% lambda : e qu i v a l en t conductance (Smˆ2/mol )
% R: Id ea l gas constant
% T: Temperature (K)
% F: Faraday ’ s constant
% t p l u s s : ca t ion t rans f e r ence number
% D: d i f f u s i o n c o e f i c i e n t (mˆ2/ s )
% output y : p o t e n t i a l 3 ( v ) p o t e n t i a l in v i c i n i t y o f dendr i t e t i p

y= p o t e n t i a l 3 ( x , t , I , lambda , R , T , F , t p l u s s ,D ) ;
end

function [ y ] = currentNormal ( x , t , I , lambda ,R,T, F , tp lu s s ,gamma,V, r ,D)
% input x : d i s t ance (m)
% t : time ( s )
% I : current Density (A/mˆ2)
% lambda : e qu i v a l en t conductance (Smˆ2/mol )
% R: Id ea l gas constant
% T: Temperature (K)
% F: Faraday ’ s constant
% t p l u s s : ca t ion t rans f e r ence number
% gamma sur face energy (J/mˆ2)
% V: molar Volumen of l i t h i um
% D: d i f f u s i o n c o e f i c i e n t (mˆ2/ s )
% output y : current dens i t y normal to dendr i t e (A/mˆ2)

c r e f =1000; %concentra t ion re f ence
i 0 =−30.0; % current re f ence
eta =−1.0∗ d e n d r i t e P o t e n t i a l ( x , t , I , lambda ,R,T, F , tp lus s , gamma, V , r ,D) ;
temp1=exp(2∗gamma∗V/ r /R/T) ;
temp2=exp ( 0 . 5∗F.∗ eta /R/T) ;
temp3=exp(−0.5∗F.∗ eta /R/T) ;
% cc=concentra t ion fo r x and t
cc=concent ra t i on ( x , t , I , D , t p l u s s ) ;
temp4=−1.0∗(1− t p l u s s )∗ r ∗ i 0 .∗ temp3/F/D. / cc ;
y=i 0 ∗( temp1∗temp2−temp3 ) . / ( ( c r e f . / cc ) .ˆ0 .5+ temp4 ) ;

end

function [ y ] =Veloc i tyTip ( x , t , I , lambda ,R,T, F , tp lus s ,gamma,V, r ,D)
% input x : d i s t ance (m)
% t : time ( s )
% I : current Density (A/mˆ2)
% lambda : e qu i v a l en t conductance (Smˆ2/mol )
% R: Id ea l gas constant
% T: Temperature (K)
% F: Faraday ’ s constant
% t p l u s s : ca t ion t rans f e r ence number
% gamma sur face energy (J/mˆ2)
% V: molar Volumen of l i t h i um
% D: d i f f u s i o n c o e f i c i e n t (mˆ2/ s )
% output y : Ve loc i t y t i p (m/s )

y = 1.0∗V/F∗ currentNormal ( x , t , I , lambda ,R,T, F , tp lus s ,gamma,V, r ,D) ;
end
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9 List of symbols

Table 2: Section 2

Q , electrode capacity, A− s/cm2

i , current density, A/cm2

t , time, s

L , electrode thickness, cm

q , effective electrode capacity equal to q0(1− ε), A− s/cm3

∆V , voltage loss, V

R(i,t) , resistance, ohm/cm2

Ls , separator thickness, cm

κs , conductivity of the separator, mho/cm

κ , effective conductivity of solution in porous matrix in the
charged state, mho/cm

σ , effective conductivity of the solid phases in the porous ma-
trix in the charged state, mho/cm

κ′ , effective conductivity of solution in porous matrix in the
discharged state, mho/cm

σ′ , effective conductivity of the solid phases in the porous ma-
trix in the discharge state, mho/cm

f , fraction increase in electrode thickness due to volume
changes

κ0 , conductivity of the bulk solution, mho/cm

σ0 , conductivity of the bulk solid phases in the charged state,
mho/cm

ε , electrode porosity in the charged state

n , a parameter which accounts for tortuosity effects

εf , electrode porosity in the discharged state

σ′0 , conductivity of the bulk solid phases in the discharged state,
mho/cm

q0 , specific electrode capacity, A− s/cm3

B , a parameter which accounts for volume changes within the
electrode
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Table 3: Section 3

V , cell potential, V

U , open-circuit potential, V

i , superficial current density, A/cm2

I , dimensionless current density

L+ , thickness of positive electrode, cm

Ls , thickness of the separator, cm

Lr , thickness of residual parts, cm

M , mass per unit separator area, g/cm2

q+ , capacity density of solids in the positive electrode, C/cm3

q− , capacity density of the negative electrode, C/cm3

t , time, s

td , discharge time, s

T , Uκstd/q+L
2
s

Vc , cutoff potential, V

ε , electrode porosity

κ , electrolyte conductivity in positive electrode, S/cm

κ0 , inherent electrolyte conductivity, S/cm

κs , conductivity of separator, S/cm

ρ+ , average density of the positive solid material, g/cm3

ρ− , density of the negative electrode, g/cm3

ρr , average density of residual parts, g/cm3

ρs , density of the electrolyte, g/cm3
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Table 4: Section 4

S , solvent species

P , solvent reduction product

R , gas constant, cal/molK

L , SEI thickness, cm

L0 , initial SEI thickness, cm

c , total molar concentration of the SEI phase, mol/com3

ceq , equilibrium solvent molar concentration, mol/com3

cP , product molar concentration in the SEI phase, mol/com3

cS , solvent molar concentration, mol/com3

u , similarity transformation variable

ZP , the stoichiometric coefficient of Li in P

x , fractional capacity loss

N0 , the initial number of moles of lithium available

Aanode , the anode area,cm2

DS , solvent diffusivity in the SEI phase, cm2/s
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Table 5: Section 5

cb , initial bulk concentration of lithium slat, mol/m3

cref , reference concentration of lithium salt, mol/m3

D , salt diffusion coefficient, m2/s

F , Faraday’s constant, 96487 C/mol

I , current, A

R , ideal gas constant, 8.3143 J/molK

r , dendrite tip radius, m

θ , (c− cb)DF/(1− t0+)iL dimensionless concentration

ξ , dimensionless distance

τ , dimensionless time

ηS , surface over-potential, V

γ , surface energy, J/m2

Φ3 , potential in vicinity of dendrite tip, V

i , current density, A/m2

Λ , F 2D/t0+(1− t0+)RT equivalent conductance, Sm2/mol

κ , electrolyte conductivity, S/m

κa , anodic rate constant

κc , cathodic rate constant

T , absolute temperature, K

αa , anodic transfer coefficient

αc , cathodic transfer coefficient

vtip , dendrite propagation velocity m/s

ytip , dendrite tip position, m

t , time, s

ts , time passed before cell failure, s

t0+ , cation transference number

Q , charge passed per unit area, C/cm2

Qs , charge passed per unit area before cell failure, C/cm2

L , interelectrode distance, m

iL , 2cbDF/(1− t0+)L limiting current density, A/m2

in , current density normal to dendrite tip, A/m2

V0 , open-circuit potential, V
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