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RIGOROUS VALIDATION OF ISOLATING BLOCKS FOR FLOWS

AND THEIR CONLEY INDICES

THOMAS STEPHENS∗ AND THOMAS WANNER∗

Abstract. Isolated invariant sets and their associated Conley indices are valuable tools for
studying dynamical systems and their global invariant structures. Through their design, they aim
to capture invariant behavior which is robust under small perturbations, and this in turn makes
them amenable to a computational treatment. Over the years, a number of algorithms have been
proposed to find index pairs for an isolated invariant set, and then to use an index pair to compute
the associated Conley index. Nevertheless, most of these methods are restricted to discrete, albeit
possibly multi-valued, dynamical systems. Only relatively few general methods exist for dynamical
systems generated by differential equations.

In the current paper, we present a new method for finding and rigorously verifying a special type of
index pairs, namely isolating blocks and their exit sets. Our method makes use of a recently developed
adaptive algorithm for rigorously determining the location of nodal sets of smooth functions, which
combines an adaptive subdivision technique with interval arithmetic. By characterizing an exit set
as a nodal domain, we are able to determine a valid index pair and proceed to compute its Conley
index. Our method is illustrated using several examples for three-dimensional flows.

Key words. Isolated invariant set, isolating block, Conley index, computer-assisted proof,
heteroclinic orbit, periodic orbit
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1. Introduction. In the study of ordinary differential equations and their asso-
ciated flows, global invariant structures are of fundamental importance. In contrast to
the case of stationary or equilibrium points, these structures consist of non-constant
bounded solutions of the underlying system, such as periodic, homoclinic, or hetero-
clinic solutions, or even more complicated objects such as strange attractors. They
can be representations of periodic or other recurrent behavior, or they can delineate
between regions of phase space with different asymptotic behavior, for example as
boundaries of domains of attraction. Many applications, such as the study of travel-
ing waves in partial differential equations, naturally lead to the necessity of finding
global invariant structures in ordinary differential equations. While local analysis
certainly plays an important role in this task, it alone cannot suffice.

Over the years, a number of tools have been developed to aid in locating global
invariant structures and rigorously prove their existence, most of them topological in
nature. One of the most flexible and powerful among these is Conley’s theory of the
homotopy index [4, 18, 21]. Since this theory is the foundation for our approach, we
begin by briefly recalling its basics. In the following, we consider a smooth ordinary
differential equation of the form

(1.1) ẋ = f(x)

and assume that it generates a smooth global flow ϕ : R × R
n → R

n. A set S ⊂ R
n

in the phase space is called invariant under the flow ϕ if we have ϕ(R,S) ⊂ S, i.e., if
for every point x ∈ S the full orbit through x stays in S. The smallest sets in phase
space which are invariant under ϕ are of course single orbits, as well as arbitrary
unions of orbits, but one is generally interested in invariant sets with some additional
structure or desirable property — most notably boundedness of S. Many invariant
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2 T. Stephens and T. Wanner

sets that capture interesting dynamics are in fact bounded invariant sets , for example
fixed points, periodic orbits, and connecting orbits.

As important as bounded invariant sets are for understanding a particular dy-
namical system, they are often equally difficult to resolve computationally. Ordinary
differential equations such as (1.1) which arise in applications generally involve pa-
rameters in the definition of the right-hand side f . Bounded invariant sets, however,
can change dramatically with changes in the parameter, and this sensitivity can have
profound impact on their computability — even if the right-hand side f is known
exactly. Furthermore, the parameters affecting f are often not known precisely, and
one is therefore interested in uncovering bounded invariant sets which exist in sim-
ilar form for whole ranges of parameter values. Finally, in many systems the most
important bounded invariant sets act as organizing centers for the dynamics, and
are therefore themselves unstable, making direct numerical approximation extremely
difficult. Based on these comments, it is not surprising that any theoretical approach
to the study of bounded invariant sets which is useful for applications should in some
sense be robust to perturbations of the right-hand side f in (1.1).

One such approach was proposed by Conley [4], who realized that robustness with
respect to continutation can be achieved by restricting attention to special invariant
sets. Let N ⊂ R

n denote any compact set. Then the maximal invariant set in N is
defined by

(1.2) Inv(N ) = {x ∈ N : ϕ(R, x) ⊂ N} .

This definition assigns a possibly empty invariant set to every compact subset of phase
space. The basis for Conley theory are those which do not touch the boundary of N .
More precisely, an invariant set S is called an isolated invariant set , if there exists a
compact subset N ⊂ R

n such that

(1.3) S = Inv(N ) ⊂ intN ,

where intN denotes the interior of N . In this case, the set N is called an isolating
neighborhood . In addition to being the maximal invariant set in a compact neighbor-
hood N , an isolated invariant set S also cannot touch the boundary of N . Together,
these properties imply that if a compact setN is an isolating neighborhood for an ordi-
nary differential equation (1.1), then it is also an isolating neighborhood for ẋ = g(x),
if the new right-hand side g is a sufficiently small perturbation of f . In other words,
even though small changes in f can change S = Inv(N ), the compact set N itself
still remains an isolating neighborhood, and therefore uniquely determines an isolated
invariant set in its interior. For more details, see [4, 18, 21].

In [4], Conley showed that it is possible to define an index theory for isolating
neighborhoods N , which in many ways mimics the Brouwer degree for continuous
mappings. In particular, this index theory has the Ważewski property: If the index is
non-trivial, then the isolated invariant set S = Inv(N ) is non-empty. Moreover, if N1

and N2 are two isolating neighborhoods for the same isolated invariant set S, then
the indices assigned to N1 and N2 coincide. In other words, the Conley index of N is
actually an index for the isolated invariant set S = Inv(N ).

Conley’s index theory recognizes that the flow which is not part of the isolated
invariant set S, yet is contained in an isolating neighborhood for S, shuttles along its
topology via a homotopy. Thus, computations away from the isolated invariant set
have a chance of revealing information about the invariant set itself. The classical
definition of the Conley index is a reflection of this idea, and is based on the notion of
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index pair. Assume that S is an isolated invariant set for a flow ϕ. A pair of compact
sets (N ,L) with L ⊂ N is called an index pair for S, if the following hold:

• N \ L is a neighborhood of S, and S = Inv(N \ L).
• L is positively invariant in N : If x ∈ L, then the orbit ϕ(t, x) for t ≥ 0 stays
in L as long as it stays in N .

• L is an exit set for N : If the orbit starting at x ∈ N exits N in forward time,
it has to enter L before it exits N .

One can show that for every isolated invariant set S there do exist many index pairs.
Given any such index pair, the homotopy Conley index of S is defined as the pointed
space

h(S) = (N/L, [L]) ,

and the weaker, but often sufficient, homological Conley index of S is defined as

CH∗(S) = H∗ (N/L, [L]) ≈ H∗(N ,L) .

Using the idea of flow transport mentioned above, one can show that the Conley index
in either form is independent (up to isomorphism) of the choice of index pair, and
only depends on the underlying isolated invariant set S. Note, however, that for the
computation of the Conley index, only the index pair is necessary. For the purposes of
this paper, we will always consider the homological Conley index which is given by a
sequence (CHk(S))∞k=0 of Abelian groups CHk(S). The Ważewski principle can then
be stated as follows: If at least one of the homology groups CHk(S) is non-trivial,
then S 6= ∅.

The main goal of the present work is to develop a computational techique for
rigorously computing the Conley index of an isolated invariant set. Rather than
considering general index pairs, we focus on the following special case which was
introduced in [5], see also [18].

Definition 1.1. A compact set B ⊂ R
n is called an isolating block for the flow ϕ

generated by the ordinary differential equation (1.1), if its exit set

(1.4) B− = {x ∈ B : ϕ([0, T ], x) 6⊂ B for all T > 0}

is closed, and if for all T > 0 we have

(1.5) InvT (B, ϕ) = {x ∈ B : ϕ([−T, T ], x) ⊂ B} ⊂ intB .

Note that the closedness of the exit set B− is part of the assumption of an isolating
block, and that it does not follow automatically from (1.5).

It was shown in [5] that for every isolated invariant set there exist associated
isolating blocks B. Given an isolating block B as above, in general some trajectories
of the flow which originate in B will leave B. If they do, they have to pass through
the exit set B− as defined in (1.4). This set consists of points that are immediately
pushed out of B in forward time. Moreover, if we define

(1.6) B+ = {x ∈ B : ϕ([−T, 0], x) 6⊂ B for all T > 0} ,

then one can easily see that (1.5) is equivalent to the identity

(1.7) ∂B = B− ∪ B+ .
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This implies two things. First of all, the invariant set Inv(B) has to be contained in the
interior of B, i.e., B is an isolating neighborhood. Secondly, any orbit which originates
in B and which touches the boundary ∂B has to immediately exit the isolating block
either forward or backward in time. In other words, the flow does not generate any
internal tangencies with the boundary of B. Thus, one can easily see that the following
holds.

Lemma 1.2. If the compact set B ⊂ R
n is an isolating block for the flow ϕ

generated by the ordinary differential equation (1.1), and if S = Inv(B) denotes the
associated isolated invariant set, then the pair (B,B−) is an index pair for S.

Index pairs are the fundamental objects in Conley’s theory, since their knowledge
alone enables one to determine the Conley index. This in turn furnishes the Conley
index of the associated, but usually unknown, isolated invariant set S. It is therefore
not surprising that many algorithmic approaches have been developed over the years
to construct index pairs computationally. Most of these have been derived for discrete-
time dynamical systems, or for the case of multi-valued maps. For more information,
we refer the reader to [15, 18] and the references therein. Finding index pairs for
flows turns out to be a much more complicated task. Many approaches reduce the
problem to the discrete-time setting by constructing rigorous outer approximations
of a time-T -map for the flow, which of course involves approximating the solutions of
the ordinary differential equation (1.1).

Methods which avoid the above-mentioned time integration and work directly
with the vector field f are rarer. We briefly describe two of them in more detail,
since they are most directly related to our work. The first approach is due to Boczko,
Kalies, and Mischaikow [1, 2], and it is aimed at decomposing the underlying finite-
dimensional phase space into a simplicial complex which can be used to track the flow
induced by (1.1). More precisely, every simplex in the constructed complex is aligned
with the flow in such a way that along each of the faces of the simplex the flow is
transversal. Thus, one can create a multi-valued map which describes the possible
paths of orbits and which can be used to find index pairs for the flow. However,
while constructing a suitable simplicial decomposition is feasible in two and three di-
mensions, it becomes considerably more complicated in higher dimensions. Another
approach is due to Eberlein and Scheurle [11, 12]. Rather than constructing a flow-
induced decomposition of phase space, their work is concentrating on the numerical
construction of specific isolating blocks for flows. For polyhedral regions in two and
three dimensions, they use Delaunay triangulations to try to resolve possible internal
flow tangencies and arrive at a modified polyhedral region which can then be used to
form an isolating block. The associated homological Conley index is computed using
the Delaunay triangulation, in combination with a variety of contractibility conditions
and the nerve lemma. However, even in the considered two and three-dimensional
examples, resolving the internal tangencies, as well as an a-posteriori rigorous com-
putational validation of the isolating block using interval arithmetic seems extremely
involved. Furthermore, the approach in [11, 12] is very much relying on the fact that
the faces of the polyhedral regions are flat, and they did not address resolving internal
tangencies in dimensions higher than three.

In the current paper we present a method which allows for the automated rig-
orous verification of isolating blocks B ⊂ R

n for (1.1) whose boundary is a smooth
orientable compact manifold M in R

n of codimension one. In this sense, our ap-
proach is similar in spirit to [11, 12], even though it no longer requires flat polygons
to bound the region. However, our approach differs significantly in that we derive an
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easily stated condition which can readily be verified using rigorous computations based
on interval arithmetic, and which either provides a computer-assisted proof that the
given region is an isolating block, or provides guidance as to where the manifold M
has to be adjusted in order to arrive at an isolating block. Our condition is based
on properties of nodal domains and nodal sets of smooth functions, and applies in
arbitrary dimensions n. Recall that if u : M → R is any real-valued function, then
its positive and negative nodal domains N±(u) are defined as the sets

(1.8) N+(u) = {p ∈ M : u(p) > 0} and N−(u) = {p ∈ M : u(p) < 0} ,

and its nodal set N0(u) is defined by

(1.9) N0(u) = {p ∈ M : u(p) = 0} .

While at this point we do not want to present all the details, our main theorem takes
the following form. For the precise formulation, see Theorem 2.3 below.

Theorem 1.3 (Isolating Blocks via Nodal Domains). Consider the flow ϕ associ-
ated with the ordinary differential equation (1.1), and assume that the boundary of the
compact set B ⊂ R

n is given by a smooth orientable compact embedded manifold M
of codimension one. Then there exist smooth functions u, v : M → R which depend
only on M and f such that the following holds. If we have

N0(u) ⊂ N+(v) , and if zero is a regular value of u ,

then B is an isolating block for (1.1) in the sense of Definition 1.1. In this case, the
exit set B− defined in (1.4) is given by the closure of the positive nodal domain N+(u)
of u, i.e., we have B− = N+(u). The definition of the functions u and v can be found
in (2.4) and (2.5) below.

By reformulating the test for an isolating block in terms of nodal domains of
functions, we can make use of a recent algorithm [3, 6, 7] which rigorously validates
such nodal domains using interval arithmetic and an adaptive randomized subdivision
procedure. The essential aspects of this algorithm will be recalled later, but it can
easily be implemented in Matlab using for example the interval arithmetic package
INTLAB [20], and an implementation in C++ for arbitrary dimensions has recently been
completed [9]. The output of either algorithm is a nonuniform rectangular grid, from
which the Conley index associated with the isolating block can be computed using
the technique developed in [8].

The remainder of this paper is organized as follows. In Section 2 we present the
precise definitions of the two test functions u and v from Theorem 1.3 and establish the
result. The next section is completely devoted to the computational aspects involved
in applying Theorem 1.3 in practice. In Section 3.1 we recall the algorithm of [3, 6, 7]
to validate nodal domains, and in Sections 3.2 and 3.3 we describe the extensions which
are necessary in our situation. While the bulk of our paper is concerned with regions
which are bounded by a smooth manifold, in Section 3.4 we address the problem
of regions whose boundary is a piece-wise smooth manifold. Finally, in Section 4
we present three case studies to illustrate our method. In Section 4.1 we discuss a
gradient flow example from [11], followed by an example of a non-gradient flow in
Section 4.2 which is taken from [2]. The paper concludes with a Hopf bifurcation
example from [12] in Section 4.3.
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2. Characterization of Isolating Blocks via Nodal Domains. In this sec-
tion we provide the theoretical background for our method by establishing the charac-
terization of isolating blocks which was briefly sketched in Theorem 1.3. Throughout
this section, we make the following assumptions and notational definitions.

(A1) We assume that B ⊂ R
n is a connected open subset whose boundary M = ∂B

is a smooth compact embedded orientable manifold in R
n of codimension one.

In this case, the manifold M divides the ambient space R
n into the bounded com-

ponent B and the unbounded component Rn \ B, see for example [13, Theorem 4.6].
The normal and tangential directions to the manifold are defined as follows.

(A2) For every p ∈ M we denote by TpM ⊂ R
n the tangent space of M at p.

Furthermore, we assume that M ∋ p 7→ νp ∈ R
n is a smooth mapping with

the property that νp 6= 0 is an outward normal vector for B for every p ∈ M.
Finally, for every vector q ∈ R

n we denote its orthogonal projection onto TpM
by π⊤

p q.
In our setting, the tangent spaces TpM are of codimension one, and standard results
on orientable manifolds imply that smooth normal vector mappings ν· : M → R

n as
in (A2) always exist. In fact, if we require in addition that the normal vectors are
all normalized to length one, then this vector field is uniquely determined. See for
example [17, Proposition 13.21, Problem 15-7]. Note, however, that in (A2) we do not
require any normalization of νp in order to keep our approach as flexible as possible.
The projection operator π⊤

p is explicitly given by

π⊤

p q = q − 〈q, νp〉
〈νp, νp〉

· νp ,

where 〈·, ·〉 denotes the standard scalar product on R
n. Finally, we also need to make

use of the following notion from Riemannian geometry.
(A3) For every p ∈ M we denote by II : TpM×TpM → R the second fundamental

form of M at p along the normal vector field ν.
The second fundamental form measures curvature information of the manifold M and
will prove to be useful for excluding internal tangencies of the flow. For more details
we refer the reader to [10, 16].

After these preparations we can now turn our attention to the definition of the
functions u and v mentioned in Theorem 1.3. This will be separated into two lemmas,
the first of which addresses the question of domain exit from B.

Lemma 2.1. Consider the ordinary differential equation (1.1) with smooth right-
hand side f , and suppose that Assumptions (A1) and (A2) are satisfied. Furthermore,
define the function u : M → R as

(2.1) u(p) = 〈f(p), νp〉 ,

where ν denotes the normal vector field from (A2). Then we have the inclusions

N+(u) ⊂ B− \ B+ and N−(u) ⊂ B+ \ B− ,

where N±(u) were defined in (1.8), and B± where defined in (1.4) and (1.6). Notice
that at this point we cannot make any statements about the behavior of the flow near
points p ∈ M with u(p) = 0.

Proof. Let p ∈ M. According to [17, Proposition 5.16], there exists a neighbor-
hood U ⊂ R

n of p and a smooth submersion Φ : U → R such that M∩U is given by
the zero set of Φ. Since ∇Φ(p) is orthogonal to TpM, we can assume without loss of
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generality that ∇Φ(p) is a positive multiple of νp. Thus, for all q ∈ U we have q 6∈ B
if and only if Φ(q) > 0, and q is contained in the interior of B if and only if Φ(q) < 0.

Now let x(t) denote the solution of (1.1) satisfying x(0) = p. Evaluating Φ along
the solution x(t) close to p and differentiating with respect to t then furnishes

d

dt
Φ(x(t)) = 〈∇Φ(x(t)), ẋ(t)〉 = 〈∇Φ(x(t)), f(x(t))〉 .

For t = 0 one therefore has

d

dt
Φ(x(t))

∣

∣

∣

∣

t=0

= 〈∇Φ(p), f(p)〉 = c · u(p) ,

where c > 0 is a positive scalar. If we now assume u(p) > 0, then there exists a T > 0
such that Φ(x(t)) > 0 for all t ∈ (0, T ], and Φ(x(t)) < 0 for all t ∈ [−T, 0). Together
with the above characterization of the interior and exterior of B in U given above, this
immediately implies (a). Since the proof of (b) is completely analogous, Lemma 2.1
follows.

Notice that the above lemma only uses the normal vector field ν on the mani-
fold M = ∂B, and it allows us to locate the exit set B− up to points at which u(p) = 0.
These points of course are candidates for flow tangencies with the boundary of B. In
order to exclude internal tangencies, understanding the local curvature of the manifold
is crucial. Thus, the following lemma, which introduces the tangency test function v
mentioned in Theorem 1.3, needs to make use of the second fundamental form of the
manifold M.

Lemma 2.2. Consider the ordinary differential equation (1.1) with smooth right-
hand side f , and suppose that Assumptions (A1) through (A3) are satisfied. Let u
denote the function from (2.1), and define the function v : M → R as

v(p) = 〈Df(p)f(p), νp〉 − II
(

π⊤

p f(p), π
⊤

p f(p)
)

,

where ν denotes the normal vector field from (A2) and II the second fundamental
form from (A3). If the point p ∈ M = ∂B satisfies u(p) = 0 and v(p) > 0, then the
solution of (1.1) through p forms an external tangency with ∂B, i.e., there exists a
time T > 0 such that ϕ([−T, T ], p) ∩ B = {p}, where ϕ denotes the flow associated
with (1.1). On the other hand, if u(p) = 0 and v(p) < 0, then the solution of (1.1)
through p forms an internal tangency with ∂B, i.e., there exists a time T > 0 such
that ϕ([−T, T ], p) \ {p} ⊂ int B.

Proof. Let p ∈ M. As in the proof of the previous lemma, there exists a neigh-
borhood U ⊂ R

n of p and a smooth submersion Φ : U → R such that M∩U is given
by the zero set of Φ, and that ∇Φ(p) is a positive multiple of νp. Now let α : U → R

+

be a smooth function with α(q) = ‖νq‖ for all q ∈ M ∩ U . Such a function can
always be constructed, possibly after choosing a smaller neighborhood U . For exam-
ple, using a tubular neighborhood of M∩ U as in [13, Theorem 5.1], one can simply
define α to be constant on each of the normal fibres. If we then define Ψ : U → R

via Ψ(q) = α(q)Φ(q)/‖∇Φ(q)‖ for all q ∈ U , then also Ψ is a smooth submersion such
that M∩ U is given by the zero set of Ψ. In addition, one can easily see that

(2.2) ∇Ψ(q) = νq for all q ∈ M∩ U .

Thus, we still have for all q ∈ U that q 6∈ B if and only if Ψ(q) > 0, and q is contained
in the interior of B if and only if Ψ(q) < 0. But in addition, the smooth vector
field ∇Ψ is an extension of ν· onto U .
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After these preparations, let p ∈ M be a point with u(p) = 0, and let x(t) denote
the solution of (1.1) with x(0) = p. If we define the real-valued function τ in a small
neighborhood of 0 ∈ R via τ(t) = Ψ(x(t)), then τ(0) = Ψ(p) = 0. Furthermore,
due to the above construction of Ψ, the solution x(t) forms an external tangency
with ∂B = M if there exists a time T > 0 such that τ(t) > 0 for all t ∈ [−T, T ] \ {0}.
Similarly, x(t) forms an internal tangency if we have τ(t) < 0 on [−T, T ] \ {0}. As in
the proof of Lemma 2.1, the derivative of τ can be computed as

τ ′(t) =
d

dt
Ψ(x(t)) = 〈∇Ψ(x(t)), ẋ(t)〉 = 〈∇Ψ(x(t)), f(x(t))〉 ,

which implies τ ′(0) = 〈∇Ψ(p), f(p)〉 = 〈νp, f(p)〉 = u(p) = 0 due to (2.2). The second
derivative of τ is given by

τ ′′(t) = 〈∇Ψ(x(t)), Df(x(t))f(x(t))〉 + 〈HessΨ(x(t))f(x(t)), f(x(t))〉 ,

and evaluation at t = 0 furnishes in combination with (2.2) the identity

τ ′′(0) = 〈νp, Df(p)f(p)〉+ 〈HessΨ(p)f(p), f(p)〉 .

According to our above discussion, the solution x(t) forms an external tangency
with ∂B = M if τ ′′(0) > 0, and an internal tangency if τ ′′(0) < 0. Thus, in or-
der to complete the proof of the lemma it suffices to show that τ ′′(0) = v(p). Since we
already know that f(p) ∈ TpM (recall that u(p) = 0), this in turn follows immediately
from the fact that

(2.3) II (y, z) = −〈HessΨ(p)y, z〉 for all y, z ∈ TpM ,

which will be established in the remainder of the proof.
In order to verify (2.3), we make use of some results from Riemannian geometry.

According to [10, Chapter 6, Proposition 2.3], the second fundamental form is given
by

II(y, z) = −〈π⊤

p ∇y∇Ψ(p), z〉 for all y, z ∈ TpM .

In this formula, π⊤
p denotes the orthogonal projection onto TpM introduced in (A2),

and ∇ denotes the Riemannian connection on R
n. For any vector field N on R

n, the
latter is given by the directional derivative ∇yN = DNy, see [10, pp. 51–56]. This
yields

π⊤

p ∇y∇Ψ(p) = π⊤

p HessΨ(p)y = HessΨ(p)y − 〈HessΨ(p)y, νp〉
〈νp, νp〉

· νp ,

as well as II(y, z) = −〈HessΨ(p)y, z〉, since z ∈ TpM implies 〈νp, z〉 = 0. This
completes the verification of (2.3), and thus also of Lemma 2.2.

After these preparations, we can now proceed to the characterization of isolating
blocks via nodal sets and nodal domains as described briefly in the introduction. For
the convenience of the reader, we restate Theorem 1.3 before proving it, this time
including all the necessary details.

Theorem 2.3 (Isolating Blocks via Nodal Domains). Consider the flow ϕ associ-
ated with the ordinary differential equation (1.1), and suppose that Assumptions (A1)
through (A3) are satisfied, i.e., assume that the boundary of the compact set B ⊂ R

n
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is given by a smooth compact embedded orientable manifold M of codimension one.
Furthermore, define the smooth functions u, v : M → R via

u(p) = 〈f(p), νp〉 ,(2.4)

v(p) = 〈Df(p)f(p), νp〉 − II
(

π⊤

p f(p), π
⊤

p f(p)
)

.(2.5)

If in addition we have

(2.6) N0(u) ⊂ N+(v) , and if zero is a regular value of u ,

then B is an isolating block for (1.1) in the sense of Definition 1.1. In this case, the
exit set B− defined in (1.4) is given by

(2.7) B− = N+(u) ∪N0(u) = N+(u) ,

i.e., by the closure of the positive nodal domain N+(u) of u.
Proof. According to the definition of the nodal domains and the nodal set in (1.8)

and (1.9), respectively, the boundary of B can be partitioned in the form

M = N+(u) ∪N0(u) ∪N−(u) .

Due to Lemma 2.1 we have both N+(u) ⊂ B− \ B+ and N−(u) ⊂ B+ \ B−. Now
let p ∈ N0(u) be arbitrary. Then (2.6) implies p ∈ N+(v), and Lemma 2.2 shows
that the solution of (1.1) through p forms an external tangency with B, i.e., there
exists a T > 0 such that ϕ([−T, T ], p)∩B = {p}, where ϕ denotes the flow associated
with (1.1). This readily implies p ∈ B− ∩ B+, i.e., we have N0(u) ⊂ B− ∩ B+. As
mentioned above, the sets N±(u) and N0(u) form a partition of M. Since in addition
the sets B− \ B+, B+ \ B−, and B− ∩ B+ are pairwise disjoint, we obtain both

∂B =
(

B− \ B+
)

∪
(

B+ \ B−
)

∪
(

B− ∩ B+
)

,

as well as

N+(u) = B− \ B+ , N−(u) = B+ \ B− , and N0(u) = B− ∩ B+ .

The first statement shows that (1.5) in Definition 1.1 is satisfied. Moreover, due to the
second statement we have B− = N+(u)∪N0(u), and thus B− = {p ∈ M : u(p) ≥ 0}.
Due to the continuity of u this set is closed. Together, this implies that the set B is
an isolating block in the sense of Definition 1.1.

In order to complete the proof we still need to verify that B− = N+(u). Due
to N+(u) ⊂ B− and the closedness of B− one clearly has N+(u) ⊂ B−. Since we have
already established B− = N+(u)∪N0(u), we only need to show that N0(u) ⊂ N+(u).
According to [17, Corollary 5.14], the nodal set N0(u) ⊂ M is a properly embedded
submanifold of codimension one, since we assumed that zero is a regular value of u.
Now let p ∈ N0(u) be arbitrary. Since u is a submersion at p, every neighborhood of p
in M has to contain points which lie in N+(u), and points in N−(u). This readily
shows that p ∈ N+(u), and the proof of Theorem 2.3 is complete.

We would like to point out that in the above theorem, the set B is an isolating
block even if zero is not a regular value of u. However, in this case one cannot in
general show that the exit set B− is the closure of the positive nodal domain N+(u).
This technicality will not affect our further studies, since the validation algorithm
which will be discussed in the next section automatically implies that zero is a regular



10 T. Stephens and T. Wanner

value. In fact, we will see that in principle the algorithm cannot succeed if zero is not
a regular value of u — and a new candidate B would have to be chosen.

To close this section, we collect a couple of formulas which are hidden in the
proofs of Lemmas 2.1 and 2.2, but deserve to be stated explicitly. Assume that the
manifoldM in Theorem 2.3 is given as the nodal set of a smooth function Φ : Rn → R,
which has zero as a regular value. After possibly considering −Φ instead of Φ, one
can use the normal vector field νp = ∇Φ(p) for p ∈ M. In this situation, Lemmas 2.1
and 2.2 show that the exit set test function u is given by

(2.8) u(p) = 〈∇Φ(p), f(p)〉 ,

and the tangency test function v is given by

(2.9) v(p) = 〈∇Φ(p), Df(p)f(p)〉+ 〈HessΦ(p)π⊤

p f(p), π
⊤

p f(p)〉 .

Notice also that since we use the function v only for points p ∈ N0(u), one can simplify
the definition of v further. If we consider the smooth function w : M → R given by

(2.10) w(p) = 〈∇Φ(p), Df(p)f(p)〉+ 〈HessΦ(p)f(p), f(p)〉 ,

then w = v on the set N0(u). However, the definition of w no longer requires that
the vector f(p) in the second term is projected onto the tangent space TpM. This
simplifies some of our later computations significantly.

3. Computational Validation of Isolating Blocks. In this section we
demonstrate how the theoretical results of the previous section can be turned into
computer-assisted proofs for the existence of isolating blocks for ordinary differential
equations. Since our method is based on the randomized adaptive nodal domain val-
idation algorithm developed in [3, 7], Section 3.1 will be used to recall this algorithm
and its properties. In Sections 3.2 and 3.3 we then show how the algorithm can be
extended so that it applies efficiently in our situation. Finally, in Section 3.4 we dis-
cuss further possible extensions to the case of isolating blocks whose boundary is only
piecewise smooth, and also discuss how different manifold representations have to be
treated in different ways.

3.1. Rigorous Approximation of Nodal Domains. Let Ω ⊂ R
2 denote a

closed rectangular domain whose sides are parallel to the coordinate axes. In addition,
let u : Ω → R denote a smooth function. We assume that the function u, together
with its first-order derivatives, can be rigorously evaluated using interval arithmetic.
This means that there are computable real-valued functions u and u which are defined
on the collection of compact subsets of Ω such that

u(R) ⊂ [u(R), u(R)] for all rectangular R ⊂ Ω ,

where again we assume that the sides of R are parallel to the coordinate axes. Thus,
for every such rectangular subset R we can determine an interval, namely [u(R), u(R)],
which encloses the actual range u(R) ⊂ R. For more details on interval arithmetic,
we refer the reader to [19]. There are a number of software packages available which
implement the upper and lower bound functions u and u. For the purposes of this
paper, we use the Matlab package INTLAB [20].

Using this notation, the adaptive randomized validation algorithm of [3] can be de-
scribed as follows. LetQ denote an initial collection of rectangles with non-overlapping
interiors whose union equals Ω. For example, one could simply chooseQ = {Ω}. More-
over, let V = ∅. Then for every rectangle R ∈ Q the following steps are performed:
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?

Fig. 1. Sign configurations and the implied nodal line location. From left to right the images
correspond to cases (a) through (d) in (V4) of the validation algorithm in [3]. The first three images
show all possible corner sign configurations of a rectangle in the final adaptive grid produced by
the algorithm, up to rotation, symmetry and sign inversion. The sign configuration shown in the
right-most image will never validate, such a rectangle will automatically be subdivided.

(V1) Remove the rectangle R from Q.
(V2) Corner validation: For each of the four corners of R, rigorously determine

the sign of the function value of u using interval arithmetic, i.e., compute an
interval enclosure for the value of u at the corner and test whether it contains
zero. If it does for any of the corners, the validation algorithm fails.

(V3) Edge validation: Based on the rigorously verified signs of the function values
of u at the corners of R, use interval arithmetic to perform one of the following
validation tests for each of the four edges of R:
(a) If u has the same sign at the two corners of an edge E, check whether

zero is contained in the enclosure [u(E), u(E)].
(b) If u has different signs at the two corners of a horizontal edge E, check

whether zero is contained in the enclosure [ux(E), ux(E)].
(c) If u has different signs at the two corners of a vertical edge E, check

whether zero is contained in the enclosure [uy(E), uy(E)].
If zero is contained in the respective range enclosure, then the edge fails the
validation step and we procced with step (V5) below. If all four edges pass
the validation step, proceed to (V4). Note that if R passes the edge validation
step, then every edge contains at most one zero of u.

(V4) Face validation: Based on the rigorously verified signs of the function values
of u at the corners of R, determine which of the four cases shown in Figure 1
occurs — up to sign negation, reflection, and rotation. Then perform the
corresponding validation test from the following four possibilities:
(a) If all four signs are the same, determine the enclosure [u(R), u(R)] for

the range u(R) ⊂ R. If it contains zero, then R fails the validation test,
otherwise it passes.

(b) If all but one of the signs are the same, use interval arithmetic as above
to show that either ux(R) or uy(R) does not contain zero. If this is the
case, R passes the test, otherwise it fails.

(c) If the signs are as in the third image in Figure 1, use interval arithmetic
to verify that uy(R) does not contain zero. If this is the case, R passes
the test, otherwise it fails. Similarly treat the case when the corners of
the left vertical edge have the same sign and the ones on the right edge
have the opposite sign by verifying that ux(R) does not contain zero.

(d) In this last case, i.e., the right-most image of Figure 1, R automatically
fails the validation test.

We would like to point out that if R passes also the face validation test,
then the nodal domain geometry of u in R is qualitatively as shown in the
respective image of Figure 1.
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(V5) If one of the validation tests in (V3) or (V4) fails, subdivide R randomly
into two subrectangles (more on this below), and add each of these rectangles
to Q. If R passes the test, add R to V .

This iteration ends if either Q = ∅ is reached, or if one rectangle in Q is smaller than a
pre-specified minimal size, or if (V2) fails. While in the latter two cases the algorithm
fails, in the case Q = ∅ the algorithm produces a subdivision of Ω which allows one
to qualitatively determine the location of the nodal lines within each rectangle in
the final grid. Note that the above version of the validation algorithm is a slight
variation of the one described in [3]. As presented here, it can be extended to the
higher-dimensional case as well, see [9].

While the details of the random aspects of the algorithm have been explained
in [3], we briefly recall what is necessary for our current application. In step (V5) of
the algorithm the rectangle R has to be subdivided. This is accomplished by dividing
the longer sides of the rectangle into two parts, thereby replacing R by two smaller
rectangles. While at first glance it seems prudent to simply divide the longer edge of R
into two equal parts, it has been demonstrated in [3, 7] that this can lead to validation
failures due to grid alignment issues. We therefore subdivide the edge according to
ratios which are chosen randomly from a subdivision ratio set. For the purposes of
the present work, this set contains the two numbers (

√
5− 1)/2 and (3−

√
5)/2, i.e.,

we use the golden ratio for the subdivisions. It was shown in [3] that if the initial
set Ω is a square, then this choice leads to randomized grids with rectangles of only
three possible aspect ratios — while still effectively eliminating grid alignment issues.

Notice that in the above description of the algorithm, the validation steps always
require to test whether zero is contained in a suitable range enclosure. In fact, upon
closer inspection one realizes that it suffices to implement a rigorous interval test of
positivity of a function over a rectangle. In [3] this was accomplished in an effective
way by extending a branch-and-bound type method due to Skelboe [19]. Finally, it is
clear from the form of the algorithm that upon successful completion, one can easily
construct a complete representation of the nodal domains of u which is amenable to a
subsequent homology computation. This can be done efficiently using the coreduction
technique developed in [8].

We close this section with a brief comment on the general applicability of the
nodal domain validation algorithm. Even though this was not specifically pointed
out in [3], the successful completion of the algorithm establishes the regularity of the
value zero, as the following simple lemma shows.

Lemma 3.1. Let Ω ⊂ R
2 denote a closed rectangular domain and let u : Ω → R be

a twice continuously differentiable function. Furthermore, assume that the algorithm
of [3] successfully validates the nodal domains of u. Then zero is a regular value of u.

Proof. Assume to the contrary that the algorithm validates the nodal domains,
but zero is not a regular value of u. Then there has to exist a point x ∈ Ω such that
both u(x) = 0 and ∇u(x) = 0. Let R ⊂ Ω denote a closed rectangle in the final grid
produced by the algorithm which contains x. Due to u(x) = 0, this rectangle must
have been validated as one which contains part of the zero set of u, i.e., it must have
passed validation steps (V4)(b) or (V4)(c). But then one of the partial derivatives
of u must have been either strictly positive or strictly negative on all of R. This
contradicts ∇u(x) = 0.

Thus, in principle the algorithm can only be expected to work if the function u
is at least twice continuously differentiable, and if zero is a regular value for u, i.e., at
every zero of the function u the gradient ∇u is nonzero. Notice that this also ensures
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that the zero set of u in Ω consists of nonintersecting C1-curves, and it guarantees that
small perturbations of u lead to small perturbations of the nodal domains which do not
change their topology. This robustness under perturbations is needed. For example, if
the zero set contains two intersecting curves, infinitesimally small perturbations could
break the crossing in two fundamentally different ways. Notice that this necessarily
implies that zero is not a regular value for u. Thus, in a generic sense the algorithm
can be expected to apply “almost always,” and the numerical experiments in [3] attest
to that.

3.2. Validation of Exit Sets and the Location of Internal Tangencies.

In the form presented in the previous section, the nodal domain validation algorithm
is immediately applicable to study two-dimensional manifolds M in R

3, i.e., we now
consider the case n = 3 in Theorem 2.3. For demonstration purposes, in this section
we will discuss how the nodal domains of the functions u and v in this theorem, as
well as of the simplified test function w from (2.10), can be rigorously validated. For
this, consider the vector field f : R3 → R

3 given by

(3.1) f(x, y, z) =
(

− x

10
+ y − x3 , −x− y

10
, 5z

)

,

and let B ⊂ R
3 denote the region enclosed by an ellipsoid M centered at the origin,

which has major axes of lengths 3, 2, and 2, pointing in the directions of the unit
vectors

(3.2)





1/
√
5

2/
√
5

0



 ,





−2/
√
5

1/
√
5

0



 , and





0
0
1



 , respectively.

Elementary algebra shows that the manifold M is given as the zero set of the smooth
function

Φ(x, y, z) =
2x2

9
− xy

9
+

5y2

36
+

z2

4
− 1 ,

and therefore the exit set test function u from (2.8) is given by

u(x, y, z) =
1

180

(

12x2 − 80x4 + 34xy + 20x3y − 25y2 + 450z2
)

,

for points (x, y, z) ∈ M. Before we can apply the nodal domain validation algorithm,
we need to introduce a two-dimensional parametrization of the manifold. Based on
spherical coordinates, we use





x
y
z



 = 3 sin θ cosφ ·





1/
√
5

2/
√
5

0



+ 2 sin θ sinφ ·





−2/
√
5

1/
√
5

0



+ 2 cos θ ·





0
0
1



 ,

with (φ, θ) ∈ [0, 2π]× [0, π]. Once this formula is plugged into the formula for u, one
obtains a smooth function defined on the rectangle Ω = [0, 2π]× [0, π] ⊂ R

2, to which
the randomized nodal domain validation algorithm from the previous section can be
applied.

The result of this validation computation is shown in Figure 2. In both images,
the horizontal axis corresponds to 0 ≤ φ ≤ 2π, while the vertical axis is for 0 ≤ θ ≤ π.
The exit set of the flow generated by (1.1) and (3.1) is shown in dark blue in the left
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Fig. 2. Isolating block validation for (3.1). The left image shows the exit set of the ellipsoidal
isolating block B described in the text in dark blue, together with the adaptive grid which validates
the nodal domains. The black closed loops in the image are the zeros of the tangency test function w.
The image on the right shows the type of each rectangle in the final grid, color coded as described in
the text. In both images, the horizontal axis corresponds to the parametrization variable 0 ≤ φ ≤ 2π,
while the vertical axis is for 0 ≤ θ ≤ π.

Fig. 3. Isolating block validation for (3.1). The left image shows the positive nodal domain of
the tangency test function w of the ellipsoidal isolating block B described in the text in dark blue,
together with the adaptive grid which validates the nodal domains. The black curves in the image
are the zeros of the exit set function u as in Figure 2. The image on the right shows the type of each
rectangle in the final grid, color coded as described in the text. In both images, the horizontal axis
corresponds to the parametrization variable 0 ≤ φ ≤ 2π, while the vertical axis is for 0 ≤ θ ≤ π.

image, together with the final adaptive grid produced by the validation algorithm.
For each of the rectangles in the final grid, the right image indicates the validation
type in the following sense. If the rectangle is red, then u has positive function values
at all four corners, if it is orange, exactly three values are positive; green rectangles
correspond to two positive and two negative function values as in (V4)(c); finally,
light blue indicates one positive and three negative function values, while dark blue
implies that u is negative at all four corners of the rectangle. One can clearly see that
due to the Skelboe positivity test from [3], the rectangles in the final grid are usually
fairly large, and the algorithm does not seem to have to refine excessively.

We now turn our attention to the tangency test function w defined in (2.10).
Also this function can be determined explicitly as u before, but we refrain from
reproducing the precise formula here, since it is rather long and does certainly not
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Fig. 4. Isolating block validation for (3.1). The left image shows a graph of the tangency
test function w defined in (2.10), while the right image shows the tangency test function v defined
in (2.9). The two functions are different, but either can be used to exclude internal flow tangencies
at the boundary of the isolating block block B. However, from a computational point of view the
function w is easier to work with.

add any additional insight. Suffice it to say that this formula, as well as the one for v,
can easily be generated using computer algebra software. Applying the nodal domain
validation algorithm to w furnishes the images shown in Figure 3. In the left image,
the positive nodal domain of w is shown in dark blue, the right image again indicates
the validation type of every rectangle in the final grid for the function w, using the
same color convention as before. In addition, we have included the nodal lines of w
as black loops in the left image of Figure 2, and the nodal lines of u as black curves
in the left image of Figure 3.

Taken together, the two figures seem to establish the set B as an isolating block,
since the nodal line of u is strictly contained in the positive nodal domain of w, see
again Theorem 2.3. Note, however, that the adaptive grids produced by the validation
algorithm for the functions u and w are almost never aligned. Since the algorithm
does not provide precise information on the location of the nodal set within each
rectangle, except for which edges it intersects and that it is a simple curve in the
interior, overlapping rectangles in the two grids could lead to a situation where it
cannot be guaranteed that no internal tangencies occur. In order to address this
issue, the validation algorithm needs to be adjusted — and this is the topic of the
next section.

To close this section, we briefly return to the tangency test function. In the
discussion following Theorem 2.3 we presented two different versions of this function.
On the one hand, there is v given in (2.9), which is exactly the function from the
theorem, but rewritten for the case of M being a level set of a smooth function Φ. In
this level set framework, we could alter the function in order to avoid projecting the
vector f(p) onto the tangent space TpM, giving rise to w in (2.10). In general, the
functions v and w are different, see for example Figure 4 for the situation described in
the current section. While either function can be used to exclude internal tangencies,
the function w does lead to faster computations, sometimes even significantly faster,
since the resulting formulas will be less complex. In our situation, the positive nodal
domains of v and w are just small perturbations of each other, but both contain the
nodal lines of u. Note, however, that the definition of v in Theorem 2.3 is given
in a general manifold setting, regardless how this manifold is represented. And in
this setting the second fundamental form is only defined on the tangent bundle. In
addition, as we will see in Section 4, in some cases a level set description of M is not
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readily available, and in these cases the function v needs to be determined using local
coordinate charts. This will be described in more detail in Section 3.4.

3.3. Rigorous Validation of Isolating Blocks. It was pointed out in the last
section that in order to establish a set B as an isolating block one cannot generally just
validate the nodal domains of the test functions u and v from Theorem 2.3 separately.
Since the resulting adaptive grids will almost certainly not be aligned, overlapping
grid rectangles which each contain parts of the zero sets of u and v, respectively, would
make a definite rigorous answer impossible. Fortunately, this problem can easily be
solved by a slight adaption of the nodal domain verification algorithm, which will be
presented in the following.

Assume that Ω ⊂ R
2 is a rectangular coordinate chart over which the test func-

tions u and v are parametrized, i.e., we are given two smooth functions u, v : Ω → R.
Then the following algorithm can be used to rigorously establish the assumptions of
Theorem 2.3 on Ω. The algorithm makes use of three lists Q, V , and T of rectangles,
which initially are all empty. Then we proceed through the following steps:

(IB1) Nodal domain validation for u: Apply the nodal domain validation algo-
rithm (V1) through (V5) to the smooth function u. If this algorithm fails,
then the isolating block validation fails as well. If it succeeds, initialize the
list Q with the generated validated rectangles.

(IB2) Tangency test sweep: For each of the rectangles R in Q, remove the rectangle
from Q, and then perform one of the following two steps based on the signs
of u at the corners of R:
(a) If the function u has the same sign at all four corners of the rectangle R,

then add R to the list V .
(b) If the function u takes on both positive and negative function val-

ues at the corners of R, use interval arithmetic to find a range enclo-
sure [v(R), v(R)] of v(R). If we have v(R) > 0, then add R to the list V ,
otherwise, add the rectangle to T .

If the sweep ends with T = ∅, then we have shown that B is an isolating
block. Otherwise, we proceed to the next step.

(IB3) Refinement of the nodal domain grid for u: For each of the rectangles in T ,
remove the rectangle from T , and then apply the nodal domain validation
algorithm (V1) through (V5) to the smooth function u|R after forcing at least
one further subdivision of R. If this algorithm fails, then the isolating block
validation fails as well. If it succeeds, add the resulting rectangles to the
list Q. Once the list T is empty, return to (IB2) for another sweep of the
rectangles in Q.

This iteration ends if either T = ∅ is reached, or if a pre-specified maximal number
of sweeps (IB2) has been exceeded. While in the latter case the algorithm fails, in
the former case the algorithm produces a subdivision of Ω which allows one to easily
verify the assumptions of Theorem 2.3.

Theorem 3.2 (Isolating Block Verification). Let Ω ⊂ R
2 be a rectangular co-

ordinate chart for the manifold M = ∂B from Theorem 2.3, and let u, v : Ω → R

denote the smooth exit set and tangency test functions from the theorem, expressed
in local coordinates. If the isolating block validation algorithm (IB1) through (IB3)
successfully finishes when applied to u, v, then (2.6) is satisfied on the closed subset
of M which is parametrized through Ω. Moreover, if the above holds for a finite num-
ber of local coordinate charts whose images cover the manifold M, then the set B is
an isolating block for (1.1).
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Fig. 5. Isolating block validation for (3.1). From top left to bottom right, the first three images
show the state of the isolating block validation algorithm at the end of each step (IB2). In each
image, colored rectangles are contained in V, color coded as described in the text; white rectangles
are contained in T . The image in the lower right shows the final grid produced by the algorithm,
together with the exit set in dark blue, and the zero set of the tangency test function in black. In all
four images, the horizontal axis corresponds to the parametrization variable 0 ≤ φ ≤ 2π, while the
vertical axis is for 0 ≤ θ ≤ π.

Proof. Let V denote the collection of validated rectangles at the end of the algo-
rithm. Since each of these rectangles has passed the validation step (V4), Lemma 3.1
implies that zero is a regular value over each rectangle, hence over Ω.

Now let p ∈ Ω be any point with u(p) = 0. Then there exists a rectangle R ∈ V
with p ∈ R. Since R has passed step (IB2) and contains a zero of u, it must have
passed step (IB2)(b). This shows that v > 0 on R, and therefore we have v(p) > 0.
This completes the proof of the theorem.

We would like to point out that the above algorithm only validates the location
of the nodal set of u. For the tangency test function v, the precise location of its zero
set is irrelevant, as long as v can be shown to be strictly positive at zeros of u. In fact,
the tangency test function v is only evaluated over rectangles R, which certifiably
contain zeros of u. In practice, we perform the positivity test v(R) > 0 using the
Skelboe-type method introduced in [3]. Note, however, that the precise location of
the zero set of u is indeed required for the computation of the Conley index, since it
determines the exit set B−.

We close this section by applying the isolating block validation algorithm to the
example from the previous section. The algorithm validated the set B as an isolating
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block in three sweeps, leading to the results in Figure 5. From top left to bottom right,
the first three images show the state of the isolating block validation algorithm at the
end of each sweep (IB2). In each image, colored rectangles are contained in V , and
their color indicates at how many corners of the rectangle the function u is positive,
in the order red, orange, green, light blue, dark blue from four down to zero. The
remaining white rectangles are contained in T . The image in the lower right shows
the final grid produced by the algorithm, together with the exit set in dark blue, and
the zero set of the tangency test function w, which was used instead of v, in black.

Notice that these images demonstrate the automated and adaptive nature of the
algorithm. After having determined an initial rectangular approximation of the nodal
sets of u, it then systematically tests for positivity of the tangency test function on
all rectangles which contain part of the zero set of u. In some cases, these rectangles
might contain points at which v is indeed negative, while in others it might just not
be possible to establish the positivity of v, since the rectangle is still too large. Only
when necessary, it then refines the nodal domain approximation locally, and retries
the positivity verification of v. In this way, the adaptive grid is only refined whenever
it is necessary to separate the zero sets of u and v.

3.4. Local Coordinate Charts and Piecewise Smooth Boundaries. In
Section 3.2 we demonstrated with a specific example how the functions u and v,
or the modified tangency test function w, can be determined if the manifold M is
given as level set of a smooth function Φ. Yet, in many situations such a level set
representation might not be available, or might involve a complicated formula. In
such cases, one has to revert back to a local coordinate chart and express everything
in terms of this coordinate chart. Since the results of Section 2 were formulated in
a coordinate-free way, we now briefly summarize how a local parametric description
of M can be used to determine the test functions u and v from Theorem 2.3.

To fix notation, suppose that M = ∂B is a smooth manifold which satisfies (A1)
through (A3) from Section 2. Suppose further that the mapping r : Ω → M ⊂ R

n

is a smooth local regular coordinate chart for M, which is defined on a rectangular
set Ω ⊂ R

n−1, i.e., the set Ω is the product of n − 1 nontrivial closed intervals.
Standard results from differential geometry then imply that the partial derivatives

rθ1(θ) ∈ R
n , . . . , rθn−1

(θ) ∈ R
n with θ = (θ1, . . . , θn−1) ∈ Ω

form a usually not normalized basis for the tangent space TpM at p = r(θ). In the
special case n = 3, one can therefore explicitly compute a normal vector νp as in (A2)
by letting

νp = ± (rθ1(θ) × rθ2(θ)) , or normalized as νp = ± rθ1(θ)× rθ2(θ)

‖rθ1(θ)× rθ2(θ)‖
,

where the sign is chosen in such a way that νp points away from B. In the general case,
the normal vector could be found by solving an appropriate linear system. With νp
at hand, the test function u from (2.4) can then be written in local coordinates as

(3.3) u(θ1, . . . , θn−1) =
〈

f(r(θ1, . . . , θn−1)), νr(θ1,...,θn−1)

〉

,

for (θ1, . . . , θn−1) ∈ Ω.
We now turn our attention to the tangency test function v, in particular, to the

local representation of the second fundamental form. Let θ = (θ1, . . . , θn−1) ∈ Ω be
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fixed, and define p = r(θ1, . . . , θn−1) ∈ M. By solving the appropriate linear system,
one can find real numbers α1(p), . . . , αn−1(p) ∈ R and β(p) ∈ R such that

f(p) = β(p)νp +

n−1
∑

k=1

αk(p)rθk(θ) .

Then the projection π⊤
p f(p) is given by the sum in the previous expression, and as

described in [10, pp. 126–128], the second fundamental form of M evaluated at this
projection takes the form

II
(

π⊤

p f(p), π⊤

p f(p)
)

=

n−1
∑

k,ℓ=1

〈rθkθℓ(θ), νp〉 · αk(p)αℓ(p) .

This finally furnishes the tangency test function v from (2.5) in local coordinates in
the form

(3.4) v(θ) =
〈

Df(r(θ))f(r(θ)), νr(θ)
〉

−
n−1
∑

k,ℓ=1

〈rθkθℓ(θ), νr(θ)〉 · αk(r(θ))αℓ(r(θ)) ,

for θ = (θ1, . . . , θn−1) ∈ Ω. Notice that in this form, the Hessian matrix of the
parametrization r appears explicitly in the formula. Moreover, this formula is valid
even if the normal vector ν is not normalized.

To close this section, we briefly indicate a possible extension of our approach.
So far, we have always assumed that the boundary of the potential isolating block B
is given by a smooth manifold. For some applications, however, it might be useful
to consider regions with piecewise smooth boundary M. Of course, on each of the
maximal smooth subsets Mk of M, we can still use the isolating block validation
algorithm to verify the assumptions of Theorem 2.3. But what can be said about
the points in M at which the smooth submanifolds with boundary meet? For this,
let M1 ⊂ M and M2 ⊂ M denote two closed smooth submanifolds of M with
boundary, and assume that their intersection is contained in each of their boundaries.
Furthermore, assume that both submanifolds satisfy the assumptions of Theorem 2.3,
and that along their intersection, the region B is convex in the following sense, which
is due to [11]:

(C) If p ∈ M1 ∩M2, then there exists a neighborhood U of p in M, such that
for any point p1 ∈ M1 ∩ U and any point p2 ∈ M2 ∩U their connecting line
segment is completely contained in B.

In this case, at all points p ∈ M1 ∩ M2 the flow of (1.1) either enters or exits in a
non-trivial way, i.e., we have p ∈ B+ \B− or p ∈ B− \B+, respectively, or there exists
a time T > 0 such that ϕ([−T, T ], p) ∩ B = {p}. In other words, it suffices to study
only the smooth submanifolds up to and including their boundaries to establish an
isolating block. Formulating a corresponding result in general dimensions appears to
be technically involved, even though in special cases it is easy to show that the above
statement holds. We therefore refrain from presenting a general result.

4. Three Numerical Case Studies. In this final section of the paper we
present a number of examples which illustrate the verification procedure of the last
section. It is our hope that these examples demonstrate both the simplicity of our
approach, as well as its applicability. In particular, we will demonstrate that even
if a candidate set B does not turn out to be an isolating block, the output of the
validation algorithm (IB1) through (IB3) can provide crucial information as to how
the set has to be changed in order to furnish an isolating block.
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Fig. 6. Isolating block validation for (4.1). The left and right images show the exit sets of the
isolating blocks A0 and A2, respectively, in dark blue; the final adaptive grid produced by the isolating
block validation algorithm is shown in red. In both cases, the modified tangency test function w is
strictly positive on the whole domain. The horizontal axis corresponds to the variable 0 ≤ φ ≤ 2π
in both images, while the vertical axis is for 0 ≤ θ ≤ π.

4.1. A Simple Gradient System. Our first example is taken from Eberlein’s
thesis [11] and is given by the system

ẋ = 2x(z − y) ,

ẏ = 1 + z − x2 ,(4.1)

ż = −1 + y + x2 .

One can easily see that this system is a gradient system with associated potential

(4.2) V (x, y, z) = x2y − x2z − yz − y + z ,

i.e., the right-hand side of (4.1) is given by −∇V (x, y, z). Note that contrary to our
presentation, in [11] the potential −V is considered and orbits move to increase V .
Instead, we have adopted the standard definition of a gradient system where the flow
of (4.1) decreases the potential V .

One can easily verify that the system (4.1) has exactly three equilibrium solutions
given by p0 = (−1, 0, 0), p1 = (1, 0, 0), and p2 = (0, 1,−1). All of these are hyperbolic
with indices 2, 2, and 1, respectively. Our validation algorithm can be used to obtain
these indices if one chooses for example the following three neighborhoods:

• The set A0 is a 2-norm ellipsoid whose principal axes are pointing in the
direction of the three eigenvectors of the linearization of (4.1) at p0. The
length of each principal axis is given by 3/20 divided by the absolute value
of the corresponding eigenvalue.

• The set A1 is constructed analogously to A0, but for p1 instead of p0.
• The set A2 is a sphere of radius 1/5 centered at p2.

The boundary of each of these sets is parameterized using spherical coordinates as
described in Section 3.2, and the algorithm described in Section 3.3 rigorously verifies
them as isolating blocks with the anticipated indices

CH∗(A0) ≃ CH∗(A1) ≃ (0, 0,Z, 0, . . .) and CH∗(A2) ≃ (0,Z, 0, 0, . . .) .

The output of the isolating block validation algorithm for the sets A0 and A2 is shown
in the left and right images of Figure 6, respectively. In both cases, the modified
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Fig. 7. Visualization of several validated isolating blocks for the flow of (4.1). The depicted
surfaces are the boundaries of the isolating blocks, exit sets are shown in dark blue, while the flow
enters the blocks in the light blue regions. The left image shows the isolating blocks A0, A1, and A2

enclosing the equilibria p0, p1, and p2, respectively. In addition to these, the right image also shows
the isolating blocks A01 and A012 described in the text.

tangency test function w defined in (2.10) turns out to be strictly positive over the
parameterization domain Ω = [0, 2π]× [0, π]. The results for A1 were omitted, since
this block validated similar to A0. All three isolating blocks are shown in the left
image of Figure 7. We would like to point out that the specific forms of these sets as
ellipsoids or sphere are not essential. We could have easily chosen spheres in all three
cases. Note, however, that at the equilibria p0 and p1, the exit set boundary intersects
the three lines through each equilibrium which are parallel to the coordinate axes, due
to inherent symmetries in (4.1). In order to use the boundary parameterization as
in Section 3.2, one therefore has to slightly rotate the coordinate system. Since the
“north” and ”south pole” of the parameterization will be represented by the line
segments θ = 0 and θ = π, they have to be contained either in the interior of the exit
set or of the entry set.

As a gradient system with three hyperbolic fixed points, the only other type of
globally bounded orbits are heteroclinic orbits between these equilibrium solutions.
One can readily see that there is no possibility of a heteroclinic between the stationary
states p0 and p1, since the plane x = 0 is invariant under the flow and the two equilibria
lie on either side of it. But what about heteroclinics between p0 and p2, or between p1
and p2? In [11] the existence of at least one of these connections was established by
using two polygonal isolating blocks — one which contains p0 and p1, and one which
contains all three equilibria. Similarly, we consider the following two neighborhoods:

• The set A01 is a 2-norm ellipsoid centered at the origin whose principal axes
are pointing in the coordinate directions x, y, and z and have lengths 6/5,
3/10, and 3/10, respectively.

• In contrast, the set A012 is a 4-norm ellipsoid centered at the
point (0, 1/2,−1/2) whose principal axes are pointing in the coordinate di-
rections x, y, and z and have lengths 3/2, 1, and 1, respectively.

Our algorithm confirms that these sets are in fact isolating blocks, and they are shown
in the right image of Figure 7. The boundary of each of these sets is parameterized
using spherical coordinates φ and θ as described in Section 3.2, and the validated
exit sets as functions of φ and θ are depicted in Figures 8 and 9 for the isolating
blocks A01 and A012, respectively. In both cases, the tangency test function w was
strictly positive over the domain. From these images one can readily deduce that the
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Fig. 8. Isolating block validation for (4.1). The left image shows the exit set of the isolating
block A01 in dark blue, as well as the final adaptive grid produced by the validation algorithm. The
image on the right shows the type of each rectangle in the final grid, color coded according to the
number of positive function values of u at the corners of each rectangle, with red, orange, green, light
blue, and dark blue corresponding to four, three, two, one, and zero, respectively. In both images,
the horizontal axis is for the variable 0 ≤ φ ≤ 2π, while the vertical axis is for 0 ≤ θ ≤ π. These
computations imply that the Conley index of A01 is the sum of the Conley indices of A0 and A1,
i.e., it is given by (0, 0,Z2, 0, . . .).

Fig. 9. Isolating block validation for (4.1). The two images contain the output of the isolating
block validation algorithm applied to A012, analogous to Figure 8. The associated Conley index is
given by (0, 0,Z, 0, . . .), i.e., the index of an index two equilibrium.

associated Conley indices are given by

CH∗(A01) ≃ (0, 0,Z2, 0, . . .) and CH∗(A012) ≃ (0, 0,Z, 0, . . .) .

This furnishes

CH∗(A01)⊕ CH∗(A2) 6≃ CH∗(A012) ,

which as in [11] implies the existence of a heteroclinic connection between the isolated
invariant set in A01 — which is comprised of p0 and p1 — and the equilibrium p2.

Yet, we can easily say more than that. If we can find two isolating blocks, one
encapsulating only p0 and p2, and the other only containing p1 and p2, in such a way
that their Conley indices are different from

CH∗(Ak)⊕ CH∗(A2) ≃ (0,Z,Z, 0, . . .) , for k = 0, 1 ,
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Fig. 10. Visualization of validated isolating blocks A02 (left image) and A12 (right image) for
the flow of (4.1). These isolating blocks establish the existence of heteroclinic orbits from p0 to p2,
and from p1 to p2, respectively. In addition, both images depict the isolating blocks A0, A1, and A2

enclosing the three equilibria.

Fig. 11. Isolating block validation for (4.1). The images contain the output of the isolating
block validation algorithm applied to A12, as in Figure 8. The associated Conley index is trivial. In
the left image, the zero set of the modified tangency test function w is shown in black; outside of
this loop, the function w is positive.

then the same reasoning as above proves the existence of heteroclinics between both p0
and p2, and between p1 and p2. This can be accomplished using the following sets:

• The sets A02 and A12 are congruent 2-norm ellipsoids which are centered at
the points (−1/2, 1/2,−1/2) and (1/2, 1/2,−1/2), respectively. Their major
axes have lengths 12/5, 6/5, 6/5 and point in the directions of the vectors
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 , respectively.

Again, our validation algorithm confirms these sets as isolating blocks, and they are
shown in the left and right images of Figure 10. The boundary of each of these sets
is again parameterized using spherical coordinates φ and θ, and for A12 the validated
exit set is shown in Figure 11. This time, the tangency test function w has a nontrivial
negative nodal domain given by the interior of the black loop depicted in the left image
of Figure 11 — yet this loop lies in the interior of the entry set. For both isolating



24 T. Stephens and T. Wanner

blocks, the associated Conley index is trivial, and this furnishes the existence of both
above-mentioned heteroclinics.

4.2. Asymptotic Behavior of Ground States. In [14], Hulshof & van der
Vorst studied the asymptotic behavior of ground states of coupled semilinear Poisson
equations. Their approach could reduce the problem to establishing the existence of
a certain heteroclinic orbit in a three-dimensional ordinary differential equation. This
equation was later considered by Boczko et al. [2] as a test case for their polygonal
flow approximations. In the following, we will show that our isolating block validation
algorithm can be applied in this situation as well. We consider the ordinary differential
equation

ẋ = −x(x+ 1)− z ,

ẏ = y(2 + 6x− y) + 3x+ z ,(4.3)

ż = z(2− x+ 5y) .

One can easily verify that this ordinary differential equation has equilibria at the
points p0 = (0, 0, 0) and p1 = (−1,−1, 0), and our goal is to establish the existence
of a heteroclinic orbit from p0 to p1. Note, however, that these are not the only
stationary states of (4.3). Additional rest states can be found at (2, 0,−6), (0, 2, 0),
(−1,−3, 0), and (−3,−1,−6). None of these will be relevant in the following, as they
will lie outside all constructed isolating blocks.

As in the first example, finding isolating blocks around the equilibrium solutions
is an easy task. We chose two balls Bk of radius 3/20 centered at pk+(0, 0, 11/100), for
k = 0, 1, and our verification method confirms them as isolating blocks. Finding an
isolating block B01 encompassing both p0 and p1, as well as the anticipated heteroclinic
orbit proves to be slightly more involved. As shown in [2], the orbit has the general
shape of a parabola connecting the equilibria, and reaching almost to a height of 1.
Thus, it seems reasonable to construct B01 as the ̺-neighborhood of the parabolic
space curve

(4.4) r(θ) =





θ − 1
θ − 1

4hθ(1− θ) + c



 for 0 ≤ θ ≤ 1 ,

for suitable constants c and h, and with a suitable circular cross section of radius ̺.
We parameterize the surface of the tube in the following way. For 0 ≤ θ ≤ 1 the
standard Frenet-Seret frames are used to describe the circular cross section of B01

with the plane through r(θ) and spanned by the normal and binormal vectors at this
point. In this way, the cylindrical surface is parameterized using 0 ≤ θ ≤ 1 along the
curve, and using 0 ≤ φ ≤ 2π along the circular cross section. For −1/2 ≤ θ < 0 and
for 1 < θ ≤ 3/2 we use standard spherical coordinates to parameterize the spherical
caps at the ends of B01.

As a first attempt, we choose h = 1, c = 0, and thickness ̺ = 1/5. The corre-
sponding exit set and the nodal domains of the tangency test function v are shown in
the top row of Figure 12. Note that while the exit set would give B01 a trivial Conley
index, thus establishing the connecting orbit, it turns out that for these parameter
values B01 is not in fact an isolating block — the nodal line associated with the exit
set intersects the yellow region of internal tangencies.

Upon closer inspection one can see that this yellow region is located at the bottom
bend of the tubular neighborhood, where the relatively high curvature of r(θ) is larger
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Fig. 12. Two attempts at finding an isolating block for the ground state example (4.3). The
top row shows the exit set and the nodal domains of the tangency test function for a tubular neigh-
borhood of the parabolic space curve (4.4) with h = 1 and c = 0. Since the boundary of the exit set
intersects with the yellow region, there are internal tangencies — and this neighborhood is not an
isolating block. The bottom row shows the exit set and the tangency test function for the tubular
neighborhood B01 of (4.4) with h = 1/2 and c = 1/5. This time, one obtains an isolating block.
In all images, the horizontal axis corresponds to the variable 0 ≤ φ ≤ 2π, while the vertical axis
corresponds to −1/2 ≤ θ ≤ 3/2, as described in the text.

than the curvature of the flow. Thus, in order to achieve an isolating neighborhood one
needs to decrease the curvature of r(θ) at the bend, while still maintaining isolation
of the heteroclinic orbit. This can be accomplished by decreasing h, while at the same
time increasing c and possibly also ̺. More precisely, if we choose h = 1/2, c = 1/5,
and thickness ̺ = 1/4, we obtain a tubular neighborhood B01 whose exit set and
the nodal domains of the tangency test function v are shown in the bottom row of
Figure 12. In fact, even though we are not including the actual output, applying the
isolating block validation algorithm from Section 3.3 does indeed establish the new set
as an isolating block with trivial Conley index which contains p0 and p1. Since these
equilibria have indices 2 and 1, the maximal invariant set in B01 has to contain at
least one additional orbit. In the left image of Figure 13 the three isolating blocks B0,
B1, and B01 are shown, and the right image contains a few flow curves of (4.3) which
are tangential to B01 (red indicates negative direction of time, black is for positive
time).

The only missing piece is to identify the additional part of the isolated invariant set
as a connecting orbit. For this, one just has to note that in the quadrant 2−x+5y > 0
and z > 0, whose closure contains p0, the z-component of the flow of (4.3) is strictly
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Fig. 13. Visualization of the isolating block B01 which proves the existence of a heteroclinic
orbit from p0 to p1. The left image shows B01, together with two spherical isolating blocks B0 and B1

around p0 to p1, respectively. The right image shows the isolating block B01 again, but this time
with selected solution segments of (4.3) which are outer tangencies to the isolating block.

Fig. 14. Visualization of the isolating block B01 for (4.3) from two perspectives. The red region
is the part of the plane 2 − x + 5y = 0 in which the flow field of (4.3) is transverse to the plane
with decreasing x- and y-coordinates. As shown in the text, this additional piece of information is
necessary to establish the heteroclinic orbit between p0 and p1.

increasing, while in the quadrant 2−x+5y < 0 and z > 0, whose closure contains p1,
the z-component is strictly decreasing. As shown in Figure 14, the part of the plane
2−x+5y = 0 in which the flow field of (4.3) is transverse to the plane with decreasing
x- and y-coordinates contains a complete cross section of B01. In other words, the
only possible additional full orbit in B01 is a heteroclinic orbit which leaves p0 with
increasing z-component until it traverses the red region of Figure 14, and then drops
down towards p1.

4.3. A Planar Hopf Bifurcation. Our final example is concerned with an
essentially planar system undergoing a Hopf bifurcation. The planar version of this
example was considered in the work of Eberlein & Scheurle [12]. Since our focus is
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Fig. 15. Isolating block validation for the Hopf bifurcation example (4.5), for λ = −1/10.
The two images show the result of the isolating block validation algorithm applied to the isolating
block C1. The left image shows the exit set in dark blue, as well as the final adaptive grid produced by
the algorithm. In addition, the zero set of the modified tangency test function w is shown in black.
The image on the right shows the type of each rectangle in the final grid, color coded according
to the number of positive function values of u at the corners of each rectangle, with red, orange,
green, light blue, and dark blue corresponding to four, three, two, one, and zero, respectively. In both
images, the horizontal axis is for the variable 0 ≤ φ ≤ 2π, while the vertical axis is for 0 ≤ θ ≤ π.
The images imply that the isolating block C1 contains an isolated invariant set which has the Conley
index of a hyperbolic index 1 equilibrium.

the study of three-dimensional flows, we instead consider the system

ẋ = λx+ y − x3 ,

ẏ = −x+ λy ,(4.5)

ż = 5z ,

which is obtained from [12, p. 396] by adding an unstable z-direction. This system
depends on a real parameter λ, and we are interested in the dynamics of (4.5) as λ
increases through zero.

One can easily verify that the origin is an equilibrium for (4.5), which is unstable
with index 1 for λ < 0, and unstable with index 3 for λ > 0. As λ increases through
zero, the linearization of (4.5) at the origin has a pair λ ± i of complex eigenvalues
which cross the imaginary axis with nonzero speed — hence triggering a Hopf bifur-
cation. For our application of validated isolating blocks we consider the following two
neighborhoods of the origin:

• The set C1 is a ball of radius 3/10 centered at the origin.
• The set C2 is an ellipsoid centered at the origin. Its major axes have lengths 3,
2, and 2, and point in the directions of the unit vectors given in (3.2).

The boundary of either set is parameterized using spherical coordinates as described
in Section 3.2. In fact, the example discussed in Sections 3.2 and 3.3 is precisely set C2
defined above, for the ordinary differential equation (4.5) at λ = −1/10.

We first discuss the flow of (4.5) for the case λ = −1/10. Our validation algorithm
can be applied to both neighborhoods C1 and C2, and it confirms both as isolating
blocks. The corresponding exit set for C1 is shown in dark blue in the left image of
Figure 15, while the exit set for C2 was already presented in the left image of Figure 5.
In both of these images, the zero set of the tangency test function w is shown as black
loops, outside of which the function w is strictly positive. Finally, the right images in
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Fig. 16. Isolating block validation for the Hopf bifurcation example (4.5), for λ = 1/10. The
two images show the result of the isolating block validation algorithm applied to the isolating block C2.
The left image shows the exit set in dark blue, as well as the final adaptive grid produced by the
algorithm. In addition, the zero set of the modified tangency test function w is shown in black. The
image on the right shows the type of each rectangle in the final grid, color coded as in Figure 15. In
both images, the horizontal axis is for the parametrization variable 0 ≤ φ ≤ 2π, while the vertical
axis is for 0 ≤ θ ≤ π. The images imply that the isolating block C2 contains an isolated invariant
set which has the Conley index of a hyperbolic index 1 equilibrium.

Figures 15 and 5 show the type of each rectangle in the final adaptive grid generated
by the validation algorithm, color coded according to the number of positive function
values of u at the corners of each rectangle, with red, orange, green, light blue, and
dark blue corresponding to four, three, two, one, and zero positive function values,
respectively. For both isolating blocks C1 and C2 these computations imply that the
corresponding homological Conley index is given by

CH∗(C1) ≃ CH∗(C2) ≃ (0,Z, 0, 0, 0, . . .) ,

which is the Conley index of a hyperbolic fixed point with one-dimensional unstable
manifold. In fact, for λ < 0 the origin is the unique equilibrium solution of (4.5), and
it has index 1.

The situation changes if we turn our attention to the case λ = 1/10. Our valida-
tion algorithm still can be applied successfully to both C1 and C2. In the case of the
set C1, the exit set function u turns out to be strictly positive on Ω = [0, 2π]× [0, π],
so the resulting grid contains only one rectangle, and step (IB2) in the validation
algorithm completes without any evaluation of the tangency test function w. For the
isolating block C2, its exit set in shown in dark blue in the left image of Figure 16, the
type of each rectangle in the final adaptive grid is shown on the right. In addition,
the zero set of the tangency test function w is shown as black loops, outside of which
the function w is strictly positive. See also Figure 17 for a rendering of the isolating
blocks C1 and C2 at both parameter values λ = ±1, together with their exit sets.
These images show that while the homological Conley index of the isolating block C2
remains unchanged, the Conley index of C1 is now given by

CH∗(C1) ≃ (0, 0, 0,Z, 0, . . .) ,

which is the expected Conley index of an index 3 unstable equilibrium. Of course,
this equilibrium is the origin which is contained in C1. We would like to point out
that in contrast to the case λ < 0, the differential equation (4.5) has the additional
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Fig. 17. Visualization of the isolating blocks C1 and C2 and their exit sets in the phase space
of (4.5). The left image shows the exit sets for λ = −1/10, the right image for λ = 1/10. As described
in the text, these images prove that between the two λ-values a periodic orbit bifurcates from the
origin, and that there are connecting orbits from the origin to the periodic orbit for λ = 1/10. The
periodic orbit is contained in the shell region between the small ball C1 and the large ellipsoid C2.
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Yet, for our choice λ = 1/10 one can easily verify that these additional equilibrium
solutions lie outside the isolating blocks C1 and C2.

What does the above Conley index information tell us about the dynamics
of (4.5)? From our above discussion of the equilibrium solutions we see that both C1
and C2 only contain one equilibrium, namely the origin — and as λ increases
from −1/10 to 1/10 no other equlibria enter these sets. Thus, the index change
implies the bifurcation of an invariant set which has to touch ∂C1 for some λ-value
strictly between −1/10 and 1/10. But we can say even more at λ = 1/10. Since the
surface ∂C1 consists only of exit points, it is trivial to verify that C2 \ C1 is an isolating
block as well, and that its homological Conley index is given by

CH∗(C2 \ C1) ≃ (0,Z,Z, 0, 0, . . .) .

This index is non-trivial, and therefore the interior of C2 \ C1 contains a maximal
isolated invariant set S 6= ∅. As discussed earlier, the set S cannot contain any
equilibria. Furthermore, due to the form of (4.5), every globally bounded invariant
set has to be contained in the x-y-plane. But then the Poincaré-Bendixson theorem
implies that S has to contain a periodic orbit. Note that this is consistent with the
above Conley index information, as the index is that of an unstable periodic orbit
with two-dimensional unstable manifold. Finally, due to

CH∗(C1)⊕ CH∗(C2 \ C1) 6≃ CH∗(C2) ,

there has to be at least one connecting orbit from the unstable origin to the isolated
invariant set S.
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