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COMPUTATION OF LIMIT CYCLES

AND THEIR ISOCHRONES: FAST ALGORITHMS

AND THEIR CONVERGENCE

GEMMA HUGUET AND RAFAEL DE LA LLAVE

Abstract. In this paper we develop efficient algorithms to com-
pute limit cycles and their isochrones (i.e. the sets of points with
the same asymptotic phase) for planar vector fields. We formulate
a functional equation for the parameterization of the invariant cy-
cle and its isochrones and we show that it can be solved by means
of a Newton method. Using the right transformations, we can solve
the equation of the Newton step efficiently.

The algorithms are efficient in the sense that if we discretize in
N points, a Newton step requires O(N) storage and O(N log(N))
operations (in Fourier discretization) or O(N) operations in other
discretizations.

We prove convergence of the algorithms and present a validation
theorem in an a-posteriori format. That is, we show that if there
is an approximate solution of the invariance equation that satisfies
some some mild non-degeneracy conditions, then, there is a true
solution nearby. Thus, our main theorem can be used to validate
numerically computed solutions.

The theorem also shows that the isochrones are analytic and
depend analytically on the base point. Moreover, it establishes
smooth dependence of the solutions on parameters and provides
efficient algorithms to compute perturbative expansions with re-
spect to external parameters.

We include a discussion on the numerical implementation of
the algorithms as well as numerical results for a representative
example.

1. Introduction

In recent times, there has been increased interest into the asymptotic
phase near a limit cycle because of its applications to Neuroscience.
The sets with constant asymptotic phase, called isochrones [Win75]
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2 G. HUGUET AND R. DE LA LLAVE

and the change of phase under perturbation called the “phase reset-
ting curve” (PRC) play an important role in the understanding of the
response of neurons to brief stimuli and its synchronization properties
[Izh07, Erm96, MC08]. The relation of isochrones and PRCs to the
theory of normally hyperbolic manifolds was pointed out in [Guc75].
Since then, there has been a large effort into computing isochrones and
PRCs. Recent papers close to our goal are [GH09] which describes
and implements computations of isochrones and PRCs even for points
which are not on the limit cycle, [TF10] which presents algorithms to all
orders, [SG09] which describes and implements algorithms for bursting
neurons and [OM10] which describes and implements algorithms for
the computation of isochrones suitable for very stiff systems.

In this paper we describe efficient algorithms for the computation
of isochrones and PRCs, that allow us to obtain infomation about the
phase not just in an infinitesimal neighborhood of the limit cycle but
also in a whole neighborhood. The core mathematical result of this pa-
per is Theorem 3.2, which provides estimates for the convergence of the
algorithm. In addition to this, Theorem 3.2 shows that the isochrones
are analytic and depend analytically on the base point, establishes
smooth dependence of the solutions on parameters and provides with
efficient algorithms to compute perturbative expansions with respect
to external parameters.

The starting point of the mathematical formulation of the problem
is the work [Guc75] which pointed out that isochrones are just the
stable manifolds of a point in the limit cycle in the sense of the theory
of normally hyperbolic manifolds. Hence, following [CFL03a, CFL03b,
CFL05], we formulate the problem as solving a functional equation (see
(4)) for the parameterization of the invariant circle and its isochrones.
This method was also used in [GH09], where the invariance equation
was solved using a step by step method. The main novelty here is that
we apply a Newton method to solve this functional equation. The key
to obtain both an efficient algorithm and good estimates that lead to
convergence, is to use several identities and algebraic manipulations to
transform the equation for the Newton step into an equation which can
be solved efficiently.

These identities, which have an interesting geometric interpretation,
are obtained by taking derivatives of the invariance equation. As it
turns out, the Newton step involves some “loss of derivatives”, i.e. the
norm of the remainder after a Newton step is controled by the square of
the norm of derivatives of the remainder before the Newton step. It is
well known since [Kol54, Mos66b, Mos66a] that the quadratic estimates
in one step lead to convergence even when there is loss of derivatives.



COMPUTATION OF LIMIT CYCLES 3

Of course, numerical implementations exhibit quadratic convergence
irrespective of the fact that to establish it one uses a sophisticated
method.

The algorithms we present can be implemented rather straightfor-
wardly using a package manipulating Fourier-Taylor series of the type
that is commonly used in celestial mechanics [BG69, Har08, LG12].
The algorithm is highly efficient in the sense that if we discretize the
function using N terms of the Fourier-Taylor series, then a Newton
step requires O(N) storage and O(N log N) operations but it has the
quadratic convergence of the Newton algorithm (i.e. after an applica-
tion of the algorithm, the error is roughly the square of the original
error). If we discretize in splines, or using collocation methods, using
N points, a Newton step requires O(N) storage and O(N) operations
(with a larger constant).

We have implemented these algorithms using Fourier series and the
results in some representative cases are reported in Section 8. The
algorithm is highly accurate (in the example considered, one can get the
isochrones up to a thousand times of the roundoff error) and it also gives
information on the derivatives of the isochrones. The computations in
Section 8 run in seconds in a standard laptop.

We call attention that the main Theorem 3.2 is formulated in the “a-
posteriori” format. That is, Theorem 3.2 shows that given an approx-
imate solution of the invariance equation (4), which satisfies some ex-
plicit non-degeneracy conditions, then, there is a true solution nearby.
Theorems in “a-posteriori” format can be used to validate the com-
putations and allow us to be confident of the calculations even when
they are close to breakdown. Hence, the calculations obtained using
Algorithm 4.3 can easily be turned into computer assisted proofs. It
suffices to estimate rigorously the error and the condition numbers.

From the analytic point of view, we stress that the method leads also
to several other consequences, such as uniqueness and smooth depen-
dence on parameters. Some of them can be obtained by the standard
methods of ODE (notably the smooth dependence on parameters for
the limit cycle). However, the regularity of isochrones does not seem to
follow from the general theory of normal hyperbolicity. We also hope
that the methods developed here can be extended to other problems.

This paper is organized as follows: in Section 2, we formulate the
problem as a functional equation. In Section 3, we state the main result
(Theorem 3.2). In Section 4 we describe the iterative step that will be
used to improve approximations for K. In particular, in Section 4.4,
we present the iterative step in an algorithmic form (Algorithm 4.3).
This iterative step will be used in Section 5 to prove that the method
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converges in some appropriate norms defined in 3.1. In Section 6 we
present some consequences of the formalism such as smooth dependence
on parameters. The Algorithm 4.3 will also be discussed in Section 7
where we supplement it with implementation details. In Section 8 we
present numerical results for a representative example.

Note that the tools and standards of the sections of this paper are
very different and could appeal to different communities. Hence, we
have striven to make the specific sections readable independently. For
instance, in Sections 4.4, 7 and 8, we use the language of algorithm
theory, and discuss storage, operation counts, etc. In contrast, in Sec-
tions 5 and 6 we use rigorous mathematical estimates.

2. Set up of the problem

We consider a differential equation in the plane

(1) ẋ = X(x) x ∈ R
2,

and denote by X t the flow associated to (1). That is, X t(x0) solves
d
dt

X t(x0) = X(X t(x0)), X0(x0) = x0. We assume that (1) admits a
hyperbolic limit cycle and that X is analytic.

More precisely, we assume for some map K0 : T → R2, that x(t) =
K0(ωt) is a solution of (1) and, furthermore that K = K0(T

1) is an
exponentially attracting set. That is, if y is close enough to K,

(2) d(X t(y),K) ≤ C e−λt,

for some C, λ > 0.
Given (2), as pointed out in [Guc75], it follows that given such a y,

we can find a unique Φ(y) in such a way that

(3) |X t(y)−K0(t + Φ(y))| ≤ C e−λt.

The goal is to show (see Theorem 3.2 for a more precise statement)
that, in these circumstances, we can find K : T1 × [−1, 1] → R2, an
analytic local diffeomorphism, such that

(4) X ◦K(θ, s) = DK(θ, s)

[

ω
λs

]

.

Using the more concise notation Aω,λ =

[

ω
λs

]

, equation (4) can be

written as

X ◦K(θ, s) = DK(θ, s)Aω,λ.

Equation (4) will be the centerpiece of our approach. Note that, if (4)
holds, (2) also holds with the same value of λ. Of course, (2) holds for
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a range of λ’s while (4) determines λ in a unique way. From now on,
we will use λ to denote the optimal λ in (2). 1

We should think of (4) as a functional equation for the mapping K
and for the numbers ω, λ. The vector field X is, of course, known.

Note that we are taking the convention that the functions are 1-
periodic, not 2π-periodic. Hence, ω is the inverse of the period.

Note that with our conventions λ is positive when the limit cycle
is repulsive and negative when the limit cycle is stable. The method
works in both cases. In the stable case, the isochrones are obtained
by fixing the asymptotic phase in the future. In the unstable case, the
isochrones are obtained by fixing the asymptotic phase in the past. Of
course, one can pass from the stable case to the unstable case just by
changing the direction of time (equivalently, the sign of the vector field
X).

2.1. Geometric interpretation of invariance equation (4). We
can think of (4) as a change of variables that turns the vector field X
into the straight vector field on T1 × [−1, 1]

(5) Aωλ ≡

[

ω
λs

]

.

We can also write (4) as

X ◦K(θ, s) = [ω∂θ + λs∂s] K(θ, s),

but the formulation as in (4) is geometrically more natural.
It is straightforward to show that if we have (4), the evolution in the

coordinates (θ, s) becomes

(6) X t(K(θ, s)) = K(θ + tω, s eλt).

Indeed, note that, using (4) we have:

d

dt
K(θ + tω, s eλt) = (ω∂θ + s λ eλt∂s)K(θ + tω, s eλt)

= X
(

K(θ + tω, s eλt)
)

.

We can describe (6) as saying that if we perform the change of vari-
ables given by K, the coordinates (θ, s) evolve by the linearized evolu-
tion

(7) Λt(θ, s) = (θ + ωt, s eλt),

that is, we have X t ◦K = K ◦ Λt.

1one of the consequences of the theory developed here is that the optimal λ in
(2) exists. That is, there are no subexponential corrections. See Section 2.3 for
more details.



6 G. HUGUET AND R. DE LA LLAVE

In particular, the isochrones are just the sets obtained by fixing θ
and letting s vary

(8) Sθ = {K(θ, s) | s ∈ [−1, 1]} .

In Theorem 3.2, we will show that K is analytic, and, as a corollary,
that Sθ are analytic manifolds and that they depend analytically on θ.

Note that if we have (4),

K0(θ) = K(θ, 0)

is a limit cycle, so that we see that the isochrones Sθ are curves transver-
sal to the limit cycle. Indeed K1(θ) is the tangent to the isochrone at
K0(θ). In symbols,

K1(θ) = ∂sK(θ, s)|s=0.

Note that even if the foliation by isochrones is invariant, the indi-
vidual leaves are not invariant. Indeed, we have

(9) Sθ+ωt = X t(Sθ).

Remark 2.1. It has been known since Poincaré [Poi78] that one can
linearize in a neighborhood of a limit cycle for planar vector fields. If
the vector field is analytic, the linearization is analytic. The lineariza-
tion is just the function K solving (4). Usually, the analyticity of K
is proved by reducing to a (one-dimensional) Poincaré map and then
showing that the one-dimensional map can be conjugated to a linear
one. The mathematical point of this paper is that we can study (4)
directly and that approximate solutions for it can be validated. The
method of study of the equation yields very efficient algorithms.

2.2. Lack of uniqueness. It is important to note that the solutions
of (4) are never unique.

Indeed, for any θ0 ∈ T1 and b ∈ R, if (K, ω, λ) is a solution of (4)

and K̃ is defined by K̃(θ, s) = K(θ + θ0, s · b); then (K̃, ω, λ) is also a
solution of (4).

We will show in Theorem 6.1 that this is the only source of nonunique-
ness. In particular, ω and λ are uniquely determined.

A practical consequence of this lack of uniqueness is that we can
assume (by choosing b) that the domain of the parameter s is [−1, 1].
This choice of parameters b is convenient for theoretical calculations,
but not essential. On the other hand, it is very important for numerical
calculations. It is well known that the round-off becomes very problem-
atic if we are working with numbers that are some orders of magnitude
apart. By choosing b appropriately, it is possible to aim for having the
coefficients of the expansion of K more or less constant in size so that
roundoff is greatly reduced.
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2.3. Topological characterization of isochrones. One of the con-
sequences of (4) is that the isochrones admit a topological characteri-
zation. This is somewhat different from the characterization given by
the theory or normally hyperbolic manifolds, which involves not only
convergence, but convergence at a certain exponential rate. For sim-
plicity, we present only the formula for the stable case, when λ < 0
and the asymptotic phase is the phase in the future.

Using (4) and the fact that K is uniformly differentiable (so that it
preserves rates of convergence up to a constant), we have for 0 < η ≪ 1:

W s
K(θ,0) = {P ∈ R

2 | |Xt(P )−Xt(K(θ, 0))| ≤ Cη,P e−(|λ|−η)t for all t ≥ 0}

= {K(θ, s), s ∈ R}

= {P ∈ R
2 | |Xt(P )−Xt(K(θ, 0))| → 0 as t→∞}

= {P ∈ R
2 | |Xt(P )−Xt(K(θ, 0))| ≤ CP e−|λ|t for all t ≥ 0}

(10)

The first characterization of W s
K(θ) in (10) is the standard definition in

normally hyperbolic theory. Note that it involves rates of convergence.
The third line of (10) is a purely topological characterization (it just

involves convergence irrespective of the rate). The link between all
the characterizations in (10) is using the characterization given in the
second line of (10). The difference from the first and fourth lines of
(10) is that in the first line we just assume that there is an open interval
of rates of convegence. In the fourth line, we obtain that the end point
of the rates of convergence allowed in the first line is also allowed.

The proof of the characterization follows from the observation that
it is valid when the dynamics is Λt and that changing variables by K
does not change the rates of convergence.

The characterization above shows that, for the problem at hand,
orbits that converge, converge exponentially fast and that the expo-
nential rate is always the optimal one (i.e. there are no polynomial
corrections). This result depends very much on the low dimensional-
ity of the problem and is false in more general normally hyperbolic
manifolds.

3. Statement of the main analytical result, Theorem 3.2

To formulate precisely Theorem 3.2, we need some definitions of
norms in which to measure functions.
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3.1. Definition of norms. We use the standard supremum norms
in KAM theory. They seem to give the sharpest results in loss of
differentiabiliy. As for the numerical work with them, see Section 7.4.

We denote

Tρ = {θ ∈ C/Z | |Im(θ)| ≤ ρ}

Bβ = {s ∈ C | |s| ≤ β}

Dβ,ρ = Tρ ×Bβ

(11)

Definition 3.1. Given a periodic function f(θ) =
∑

k∈Z
f̂ke

2πikθ and a
number ρ > 0, we define

(12) ‖f‖ρ = sup
θ∈Tρ

|f(θ)|.

Given a family of periodic functions K(θ, s) =
∑

n∈N
Kn(θ)sn with

Kn(θ) periodic and two numbers ρ, β > 0 we define

(13) ‖K‖β,ρ = sup
|s|≤β,θ∈Tρ

|K(θ, s)|.

Note that the definitions above are valid both in the cases that the
functions are real valued or vector valued.

We consider the spaces Aρ,Aβ,ρ consisting of the functions for which
the above norms are finite. We consider them equipped with the cor-
responding norms, which makes Aρ,Aβ,ρ Banach spaces.

Some elementary properties of these norms are presented in Sec-
tion 5.1.

3.2. Statement of Theorem 3.2.

Theorem 3.2. Let X be an analytic vector field in a domain of R2

which extends to a domain C ⊂ C2.
Assume that we can find an analytic parameterization K : T ×

[−1, 1]→ R
2 and numbers ω, λ in such a way that:

• K(Tρ × Bβ) ⊂ C, dist(K(Tρ × Bβ), C2 − C) = ζ > 0.
• ‖X ◦K −DKAω,λ||β,ρ < ε
• For some 0 < δ < ρ/2, we have

(14) εδ−1C ≤ 1

where C is an explict expression developed in the proof depend-
ing on supx∈C |D

2X|, supx∈Tρ×Bβ
|DK(x)|, |DK−1(x)|, |D2K|.

Then, there exists K∗ an analytic local diffeomorphism and ω∗, λ∗ ∈ R

such that

(15) X ◦K∗(θ, s) = DK∗(θ, s)Aω∗,λ∗ .
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Furthermore,

‖K −K∗‖β−δ,ρ−δ, |ω − ω∗|, |λ− λ∗| ≤ Cε.(16)

Here, following the standard practice in KAM arguments, we denote
by the letter C quantities that depend on the quantities indicated after
(16) even if the meaning could be different from line to line. In partic-
ular, the constant C that appears in the conclusions (16) is different
from the constant C that appears in the hypothesis (14). There are
several pairs of constants that work.

As we will see in subsequent sections, the proof of Theorem 3.2 is
based in a rapidly convergent iteration. This iteration, which takes
advantage of some geometric calculations, is not only the method of
proof but also yields efficient algorithms.

The proof of Theorem 3.2 also leads to the conclusion that K∗, ω∗

and λ∗ are locally unique (up to obvious choices of origins of coordi-
nates in K and scaling factors discussed in Section 2.2). We will also
show that the solutions depend smoothly on parameters and that there
are versions of the theorem for finitely differentiable vector fields. We
discuss these results in more detail in Section 6.

In practice, the computation of K using the algorithms justified
by Theorem 3.2, provides extremely accurate representations of the
isochrones in a neighborhood of the limit cycle. Once this accurate
representation is known in a neighborhood, we can extend the compu-
tation using

Sθ = X−t(Sθ+ωt).

Note that if Sθ+ωt is known as a small curve, for t > 0, the isochrone
Sθ is much longer.

4. The iterative step for the computation of (K, ω, λ)

In this section we will describe the computation of (K, ω, λ). More
precisely, we will describe the procedure to obtain a more approximate
solution out of a sufficiently approximate one. That is, we will describe
the algebraic manipulations to simplify the invariance equation and we
will state explicitly the functional equations that need to be solved as
well as their solutions. We will present two methods to solve the equa-
tions needed (one using Fourier series and another one using integral
representations).

This procedure will be the basis both of the convergence proof de-
veloped in Section 5 and of the description of the algorithmic steps in
Section 4.4.
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To obtain convergence proofs we need to supplement the discussion
in this section with considerations of function space and estimates that
quantify the assertion that the result of the step satisfies the invariance
equation more accurately. For the numerical implementation, we need
to supplement the discussion in this section with specifications on how
to discretize functions and implement the elementary operations (al-
gebraic operations, composition, derivatives, integrals, etc.) as well as
how to solve the functional equations that appear in the Newton and
quasi-Newton methods.

Of course, we will also need to show that the procedure to produce
more accurate solutions can be iterated, hence obtaining a sequence of
functions which converge to a solution.

4.1. The Newton method. A convenient place to start the motiva-
tion of the iterative step to obtain a solution of (4) from approximate
solutions is the Newton method.

Given an approximate solution (K, ω, λ) of (4)

(17) X ◦K −DKAω,λ = E,

Newton method seeks an improved solution K + ∆, ω + σ, λ + η, in
such a way that ∆, σ, η eliminates E “in the linear approximation”.

Since X ◦(K +∆) ≈ X ◦K +DX ◦K∆ and D(K +∆) = DK +D∆,
we have that the equation for the Newton method is

(18) DX ◦K∆− (D∆) Aω,λ −DK Aσ,η = −E.

One should think of (18) as an equation for ∆ and η, σ when all the
other quantities are known. X is given by the problem and (K, ω, λ)
is the known approximation we are trying to improve.

Note that at this stage it is not clear that (18) has a solution because
we have periodicity requirements on K. The fact that (18) has solutions
will be established in Section 4.1. In Section 4.1 we will also provide
quantitative estimates.

If we discretize our functions in some appropriate basis of funtions
satisfying the periodicity conditions, equation (18) is a linear equation
that can be solved using a linear solver. This is a reasonably practical
approach in many circumstances and was used in [GH09].

In this paper, however, we will take a different approach. We will
use several identities to obtain a change of variables which reduces
(18) to a much simpler equation up to a certain error which is smaller
than the original error and does not change the quadratic character of
the Newton method. The use of these identities in linearization prob-
lems was pointed out in [Mos66b]. A more systematic study based on
“group structure” of the equations is in [Zeh75]. Some extensions of
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this approach were used in [LGJV05] for Hamiltonian systems, tak-
ing advantage of the geometric properties of the system. In our case,
the geometric properties we take advantage of are, mainly, the lower
dimensionality of the system.

4.2. The quasi-Newton method. We are given (K, ω, λ) satisfying
(17). Notice that taking derivatives of (17) we obtain that our approx-
imate solution (K, ω, λ) also satisfies

(19) (DX ◦K)DK −D2KAω,λ −DKDAω,λ = DE,

where

DAω,λ =

(

0 0
0 λ

)

.

We emphasize that both (17) and, hence, (19) are information that
is on hand at the beginning of the iterative step.

As we will see, one can use (19) to simplify the equation for the
Newton method (18). The main idea is that rather than looking for
(∆, σ, η) in (18), we look for (W, σ, η), where

(20) ∆ = DKW.

Note that if DK is invertible, both ∆ and W are equivalent unknowns
in the sense that if we know one, we can find the other one.

If we substitute (20) into (18) we obtain that (18) is equivalent to

(21) DX ◦KDKW −D2KWAω,λ −DKDWAω,λ −DKAσ,η = −E.

Using (19), we obtain that (21) is equivalent to (recall that D2KWAω,λ =
D2KAω,λW because D2K is a symmetric quadratic form):

(22) DKDAω,λW + (DE)W −DKDWAω,λ −DKAσ,η = −E.

The quasi-Newton method consists just in dropping the term DEW
from (22), which we argue, heuristically at the moment, is “quadrat-
ically small” because it is the product of two terms which are small
(think of W as of the same order of smallness than E). Of course,
this heuristic idea that DEW is small will be made rigorous when we
perform estimates in Section 5.2.

Hence, we will consider the equation for (W, σ, η),

(23) DKDAω,λW −DKDWAω,λ −DKAσ,η = −E

and then, consider the improved solution (K + DK W , ω + σ, λ + η).
This will be referred to as the quasi-Newton step.

In the rest of this section we will just show that (23) has solutions.
Estimates on the size of the solution and on the improvement of the
error will be carried out in Section 5.2.
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If we premultiply (23) by DK−1 we obtain

(24)

(

0 0
0 λ

)

W −DWAω,λ − Aσ,η = −DK−1E.

If we express (24) in components, using the shorthand Ẽ = DK−1E,

and denoting the components of Ẽ and W by subindices, Ẽ = (Ẽ1, Ẽ2)
and W = (W1, W2), we obtain:

− (ω∂θ + λs∂s)W1 − σ = −Ẽ1

λW2 − (ω∂θ + λs∂s)W2 − ηs = −Ẽ2.
(25)

The remarkable feature of (25) is that it only involves the linear
operator with constant coefficients. As we will see next, these equa-
tions can be solved very efficiently either in Fourier coefficients ( see
Lemma 4.1) or using explicit (and fast converging) integral formulas
(see Lemma 4.2).

4.3. Solution of the constant coefficients linearized equations.

In the this section, we will study the solvability of equations (25) both
using (formal) Fourier series and improper (but rapidly convergent)
integrals. Detailed estimates will be established in Section 5. Never-
theless, for the purpose of implementing algorithms, only the existence
and the form of the solutions is needed.

4.3.1. Fourier methods for the solutions of the quasi-Newton method.

Lemma 4.1. Consider given a formal series Ẽ =
∑

Ẽj,ks
je2πikθ. Then,

if Ẽ00 = 0, the equation for u

(26) (ω∂θ + λs∂s)u = Ẽ

has the one dimensional family of formal series solutions
∑

j∈N, k∈Z

uj,ks
je2πikθ

with

uj,k =
Ẽj,k

2πiωk + λj
if (j, k) 6= (0, 0)

u0,0 = α

(27)

for any α ∈ R. The solutions given in (27) are the only formal series

solutions of (26). Furthermore if Ẽ00 6= 0 there are no formal series
solutions of (26).

If Ẽ10 = 0, then the equation for u

(28) −λu + (ω∂θ + λs∂s)u = Ẽ
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has the one parameter family of formal series solutions
∑

j∈N, k∈Z

ujks
je2πikθ

with

ujk =
Ẽjk

2πiωk + λ(j − 1)
if (j, k) 6= (1, 0)

u1,0 = α

(29)

for any α ∈ R. The solutions given by (29) are the only formal series
solutions of (28). Furthermore, if Ẽ1,0 6= 0, (28) has no solutions.

Proof. Taking Fourier series on both sides of (26) we have

ujk(λj + 2πiωk) = Ẽjk.

It is easy to see that λj + 2πiωk = 0 if and only if j = 0, k = 0.
Therefore, the solution u is obtained by setting ujk = Ẽjk/(λj+2πiωk)
when (j, k) 6= (0, 0) and u00 is arbitrary.

Similarly, we observe that (28) is equivalent to

(λj − λ + 2πiωk)ujk = Ẽjk.

Again, we note that λ(j − 1) + 2πiωk = 0 if and only if j = 1, k = 0
and then, the same argument as before applies. �

Consider the expressions given by (27) and (29). If Ẽ is not just a
formal power series, but rather a smooth function, the solutions above
will also have several regularity properties. The reason is that regu-
larity of the error implies fast decay properties for the Fourier-Taylor
coefficients, which in turn imply fast decay of the Fourier-Taylor coeffi-
cients of the solutions and, hence regularity properties of the solutions.
Detailed estimates will be presented in Section 5.

The solutions of the equations (26) and (28) can be computed very
efficiently when the functions are discretized in Fourier-Taylor series.
Notice that if we store N Fourier coefficients, we need only O(N) op-
erations and O(N) storage.

4.3.2. Solutions of linearized equations by improper integrals. In this
section we write the solutions of (25) as improper (but fast converg-
ing) integrals. These representations of solutions are convenient when
the functions are discretized using splines or collocation methods, like
in the cases where X is known only at some points obtained experi-
mentally.
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Lemma 4.2. Consider given Ẽ : T × [−1, 1] → R2 which is a Cr

function r ∈ N∪ {∞, ω}, r ≥ 1. Assume that we are in the stable case
(λ < 0).

If
∫ 1

0
Ẽ(θ, 0)dθ = 0, the equation (26) has the solutions

(30)

u(θ, s) ≡ α +
1

ω

∫ θ

0

Ẽ(σ, 0) dσ +

∫ ∞

0

[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)]dt.

Furthermore, if
∫

Ẽ(θ, 0) 6= 0 there is no C0 solution of (26). The
only solutions of (26) in C0(T× [−1, 1]) are (30).

If r ≥ 2,
∫ 1

0
∂sẼ(θ, 0)dθ = 0 the equation (28) has the solutions

u(θ, s) = A(θ) + sB(θ) +

∫ ∞

0

e−λt[Ẽ(θ + ωt, seλt)

− Ẽ(θ + ωt, 0)− seλt∂sẼ(θ + ωt, 0)] dt,

(31)

where

A(θ) =

∫ ∞

0

eλtẼ(θ − ωt, 0) dt

B(θ) = α +
1

ω

∫ θ

0

∂sẼ(σ, 0) dσ

Furthermore, if
∫ 1

0
∂sẼ(θ, 0)dθ 6= 0, there is no C1 solution of (28).

The only solutions of (28) in C2(T× [−1, 1]) are those given by (31).

Proof. We observe that if we particularize (26) to s = 0, we obtain

ω∂θu(θ, 0) = Ẽ(θ, 0).

Hence, by the fundamental theorem of calculus, the only continuous
solutions of (26) should satisfy

(32) u(θ + ωT, 0)− u(θ, 0) =

∫ T

0

Ẽ(θ + ωt, 0) dt.

We see that the expression (32) is periodic in T if and only if
∫ 1

0
Ẽ(θ, 0) dθ =

0. Hence, if
∫ 1

0
Ẽ(θ, 0) dθ 6= 0 there is no solution u. In the rest of the

discussion we will assume
∫ 1

0
Ẽ(θ, 0) dθ = 0. We also note that the

expression (32) is a solution of (26) on the set s = 0.



COMPUTATION OF LIMIT CYCLES 15

Also by the fundamental theorem of calculus and adding and sub-
tracting terms we obtain that any solution of (26) should satisfy

u(θ + ωT, seλT )− u(θ, s)

=

∫ T

0

[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)] dt +

∫ T

0

Ẽ(θ + ωt, 0) dt

=

∫ T

0

[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)] dt + u(θ + ωT, 0)− u(θ, 0).

(33)

Because u(θ + ωT, seλt)− u(θ + ωT, 0) converges to 0 as T →∞, and

|Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)| ≤ ceλt.

We obtain that the integral (33) is uniformly convergent and we obtain
that the function u is the only candidate for a solution.

Taking T →∞ in the expression (33) we have

u(θ, s) = u(θ, 0)−

∫ ∞

0

[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)] dt

and using again the fundamental theorem of calculus we have

u(θ, 0) = u(0, 0) +

∫ θ

0

∂θu(σ, 0)dσ = α +
1

ω

∫ θ

0

Ẽ(σ, 0)dσ,

which gives (30).
Since the integrand converges fast enough, we can compute the

derivatives of the integral by computing the derivatives of the inte-
grand and, therefore u is indeed a solution.

To prove the second claim of Lemma 4.2, we proceed as before. We
start by computing candidates for u(θ, 0) and ∂su(θ, 0) and then, we
show that the integrand converges fast enough that we can justify that
they are solutions. This strategy is very common in linearization prob-
lems and in invariant manifold theorems.

We observe that using the integrating factor e−λθ/ω in equation (28)
we have

−λe−λθ/ωu(θ, s) + e−λθ/ω(ω∂θ + λs∂s)u(θ, s) = e−λθ/ωẼ(θ, s)

and therefore

(ω∂θ + λs∂s)[e
−λθ/ωu(θ, s)] = e−λθ/ωẼ(θ, s).

Using the fundamental theorem of calculus

e−λ(θ+ωT )/ωu(θ+ωT, seλT )−e−λθ/ωu(θ, s) =

∫ T

0

e−λ(θ+ωt)/ωẼ(θ+ωt, seλt)dt



16 G. HUGUET AND R. DE LA LLAVE

and multiplying by eλθ/ω we have the variation of parameters formula

(34) e−λT u(θ + ωT, seλT )− u(θ, s) =

∫ T

0

e−λtẼ(θ + ωt, seλt)dt.

We observe that using the variation of parameters formula (34) for
s = 0, we obtain

e−λT u(θ + ωT, 0)− u(θ, 0) =

∫ T

0

e−λtẼ(θ + ωt, 0) dt,

which multiplying by eλT and performing the change of variables θ̃ =
θ + ωT , becomes

u(θ̃, 0) = u(θ̃ − ωT, 0)eλT +

∫ T

0

eλ(T−t)Ẽ(θ̃ − ω(T − t), 0) dt

= u(θ̃ − ωT, 0)eλT +

∫ T

0

eλtẼ(θ̃ − ωt, 0) dt.

Taking limits as T →∞, we obtain the expression for A in (31).
Now, we observe that if we take derivatives with respect to s of (28)

and evaluate at s = 0, we obtain

−λ∂su(θ, 0) + ω∂θ∂su(θ, 0) + λ∂su(θ, 0) = ∂sẼ(θ, 0),

which we rewrite as

ω∂θ[∂su(θ, 0)] = ∂sẼ(θ, 0).

Therefore, we have that if
∫

∂sẼ(θ, 0) dθ = 0, there is no periodic
solution. Otherwise, we obtain B in (31).

Equation (28) is obviously linear and we have found solutions A(θ),
sB(θ) corresponding to RHS Ẽ(θ, 0), s∂sẼ(θ, 0). Therefore it suffices
to find solutions for a RHS of (28) as

˜̃E(θ, s) = Ẽ(θ, s)− Ẽ(θ, 0)− s∂sẼ(θ, 0).

Again, we will find a candidate ũ(θ, s) and verify that indeed it is a
solution.

The variation of parameters formula (34) gives

e−λT ũ(θ + ωT, seλT )− ũ(θ, s) =

∫ T

0

e−λt ˜̃E(θ + ωt, seλt) dt.

We note that, because ˜̃E is C2 and ˜̃E(θ, 0) = 0, ∂s
˜̃E(θ, 0) = 0

| ˜̃E(θ + ωt, seλt)| ≤ Ce2λt.

Hence, the integral in the RHS is convergent if we take the limit T →
∞.
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Since we have found the linear parts for u(θ, s), it is natural to guess
that ũ(θ, s) ≤ Cs2. Thus, we guess that the only solution for (28) is

(35) ũ(θ, s) =

∫ ∞

0

e−λt ˜̃E(θ + ωt, seλt) dt.

To prove that (35) is indeed a solution of (28), we note that taking
derivatives under the integral sign (which is justified by the rapid con-
vergence to zero of the integrand and its derivatives), we obtain that
(35) satisfies (28).

Now we observe that, using the definition of ũ, if there was a solution
u of (28), it would satisfy

−λ(u− ũ) + (ω∂θ + λs∂s)(u− ũ) = Ẽ(θ, 0) + s∂sẼ(θ, 0),

but we have already established the uniqueness of this previous ap-
proximation. �

Of course, from the form of the solutions (30) and (31) we can also
obtain regularity properties, but this will be done in Section 5.

Note that, since λ < 0, the integrals defining A are uniformly con-
vergent. The integrals in (31) are also uniformly convergent because,
by Taylor’s theorem,

|Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)− seλt∂sẼ(θ + ωt, 0)]| ≤ Ce2λt.

The representation of the solutions by convergent integrals is rather
convenient if we represent the functions by the values on a grid and
then, interpolate using splines.

If we fix the values of θ and s, the evaluation of the integrals (30) and
(31) can be done in a number of operations which depends only on the
accuracy required. It should be moderate because the integrands con-
verge rather rapidly. Hence, we expect that the number of operations to
compute N discretization points will be O(N), but the constant could
be large. On the other hand, the evaluation of the integrals at different
points is clearly paralellizable and the discretization allows to use more
points in the places where the function is worse behaved. Note also
that it is possible to use a mixed representation. Using splines in θ and
using Taylor series in s. See Section 7 for a more detailed discussion.

4.4. Algorithm for the quasi-Newton step. In this section we
specify step by step the implementation of the Quasi-Newton step. We
call attention to the fact that the ingredients of the Quasi-Newton step
consist only of algebraic operations, composition of functions, taking
derivatives and solving cohomology equations.
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The theory of solvability of linearized equations developed in Lemma 4.1
indicates how to approach the solution of (25). We determine the un-
knowns σ, η so that the equations are all solvable, namely

σ =

∫ 1

0

Ẽ1(θ, 0)dθ,

η =

∫ 1

0

∂sẼ2(θ, s)|s=0dθ.

(36)

Therefore, we are led to the following algorithm

Algorithm 4.3. Consider a vector field X : R
2 → R

2. Given K :
T× [−1, 1]→ R2, ω ∈ R, λ ∈ R. Compute:

(1) α← X ◦K
(2) β ← DK
(3) E ← α− β Aωλ

(4) Ẽ = DKE. Denote Ẽ = (Ẽ1, Ẽ2).

(5) σ =
∫ 1

0
Ẽ1(θ, 0) dθ

η =
∫ 1

0
∂sẼ2(θ, s)|s=0 dθ

(6) Find W1 solving

(ω∂θ + λs∂s)W1 = Ẽ1 − σ.

We also impose the normalization
∫

W1|s=0 = 0, so that the
solution is unique

(7) Find W2 solving

(ω∂θ + λs∂s)W2 − λW2 = Ẽ2 − ηs

We also impose the normalization
∫

∂sW2|s=0 = 0, so that the
solution is unique

(8) Denote W = (W1, W2). The improved solution is

K̃ = K + DKW, ω = ω + σ, λ = λ + η

One remarkable feature of Algorithm 4.3 is that even if it is a quadrat-
ically convergent algorithm, at no stage of the algorithm, it requires
to compute (much less to invert) a matrix of the dimension of the
discretization. We only need to perform algebraic operations among
functions, computing derivatives and solving cohomology equations.

All the above operations can be implemented either in Taylor-Fourier
series or using a discretization in a grid of points and interpolate using
e.g. splines. Note that, as indicated in Section 4.3.1, the solution of
the linearized equations is diagonal in Fourier-Taylor coefficients.

If we discretize the functions with N points, the storage required is
O(N) and the number of operations is O(N log(N)) if we use the FFT
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to switch between representations or O(N) – with a larger constant –
if we use the real space representation in a grid of points and evaluate
at intermediate points using (one-dimensional) splines.

Remark 4.4. Notice that the solution W1 obtained in step (6) is unique
up to the addition of a constant and W2 computed in step (7) is unique
up to the adition of a multiple of the first order coefficient.

The solutions obtained for η, σ are unique.
The undeterminacy in the solutions of (6) and (7) can be used to

achieve other normalizations.
We also emphasize that, since the algorithm was obtained using only

algebraic or calculus identities from the linearized equation, these un-
determinacies are the only undeterminacies of the modified Newton
equation. The uniqueness of the linearized equation will be the basis
of the proof of the uniqueness result in Theorem 6.1.

Remark 4.5. It is remarkable to note that the computation of the limit
cycles and the isochrones, requires less computational effort than the
computation of the limit cycle alone.

If we were to compute the parameterization of the limit cycle alone by
a Newton method, we would need to invert a full matrix of derivatives.
Computing at the same time the limit cycle and the first order of
the isochrones, one can get a fast algorithm. The computation of the
higher order of the isochrones does not change the leading order of the
requirements in storage or in the operation count.

Similar phenomena have appeared other times in computational dy-
namics. Sometimes it is advantageous to consider the linearized equa-
tions and “reduce” them. In [JS92, HL06], the reduction of the lin-
earized equations required some additional computation. In our case,
the reducibility is automatic.

5. Convergence of the iterative step and Proof of
Theorem 3.2

In this section we prove Theorem 3.2 that establishes the convergence
of Algorithm 4.3 provided that we start with a sufficiently approximate
solution of (4).

Note that Theorem 3.2 has the format of a-posteriori results of nu-
merical analysis. We show that if the initial approximation solves
the equation with sufficient accuracy depending on explicit “condition
numbers”, then there is a true solution and we can bound the difference
between the initial approximation and the true solution by the residual
of (4) evaluated on the initial approximation.
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The a-posteriori results such as Theorem 3.2 are very typical of
results on convergence of methods based in Newton-Kantorovich al-
gorithms, which have an iterative method leading to a fixed point.
Nevertheless, since our iterative step involves taking derivatives we
will have to use Nash-Moser estimates rather than the more elemen-
tary Kantorovich ones. This will require introducing norms to measure
the distance between functions, etc. Since we are using a Nash-Moser
method, we will need to use families of norms. Nash-Moser methods
are very robust and can work with several norms. For simplicity, we
will only discuss the most customary supremum norms introduced in
Definition 3.1.

5.1. Some elementary properties of the norms in Definition 3.1.

In this section we review some elementary properties of the norms in-
troduced in Section 3.1

Proposition 5.1. Consider the notation introduced in Definition 3.1.
For any f, g ∈ Aρ and K, L ∈ Aβ,ρ, we have

‖f · g‖ρ ≤ ‖f‖ρ‖g‖ρ

‖K · L‖β,ρ ≤ ‖K‖β,ρ‖L‖β,ρ

(37)

The proof of Proposition 5.1 is immediate if we just observe that the
supremum of the product is less than the product of the supremums.

Proposition 5.2. For any δ > 0, we have for any f ∈ Aρ, K ∈ Aβ,ρ.

‖∂θf‖ρ−δ ≤ Cδ−1‖f‖ρ

‖∂sK‖β−δ,ρ ≤ Cδ−1‖K‖β,ρ

‖∂θK‖β,ρ−δ ≤ Cδ−1‖K‖β,ρ

(38)

This is a very standard result in complex analysis that follows from
Cauchy formula for the derivative as a contour integral. See [Ahl78,
SZ65].

Proposition 5.3. Let X be an analytic vector field in a domain C ⊂
C2. Let K : Tρ × Bβ → C2 be such that

dist(K(Tρ × Bβ), C2 − C) ≥ ζ > 0.

Then,

• X ◦K ∈ Aβ,ρ. In particular, X ◦K is analytic on Tρ ×Bβ.
• For all γ : Tρ × Bβ → C2 with ‖γ‖β,ρ sufficiently small, we

have:

(39) ‖X ◦ (K + γ)−X ◦K −DX ◦K γ‖β,ρ ≤ C‖γ‖2β,ρ
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The proof of Proposition 5.3 follows from the observation that, for
each x ∈ Tρ we can use the Taylor’s theorem and then take the supre-
mum. This gives that the constant C apppearing in (39) can be taken
to be just

C =
1

2
sup
x∈C
||D2X||.

Another useful property of the norms is that they are log convex in
ρ. This is just Hadamard’s three circle theorem [Ahl78, SZ65]. For all
ρ1, ρ2 > 0, 0 ≤ α ≤ 1, we have

(40) ||φ||αρ1+(1−α)ρ2
≤ ||φ||αρ1

||φ||1−α
ρ2

.

5.2. Estimates for the iterative step. In this section we quantify
the argument presented heuristically showing that indeed the error in
(4) after the iterative step is bounded by the square of the error before
the step. There are some subtleties (standard in KAM theory) that
need to be taken into account: a) The bounds after the step are in a
slightly smaller domain; b) The bounds have constants that blow up
(like a power) on the loss of analyticity; c) The bounds have constants
that depend on some non-degeneracy conditions which can be written
explicitly and consist of algebraic expressions involving derivatives of
K.

Lemma 5.4. Assume that X is analytic in some domain U ⊂ C
2. Let

K : Dβ,ρ = Tρ × Bβ → U belong to Aβ,ρ.
Assume that

d(Range(K(Dβ,ρ), C
2 − U) ≥ ζ > 0.

Assume furthermore that for some m ≥ 0,

‖K‖β,ρ ≤ m,

‖DK‖β,ρ, ‖D
2K‖β,ρ ≤ m+,

‖DK−1‖β,ρ ≤ m− ,

ω ≥ m̃ , and λ ≤ −m̃.

(41)

Let E be the error function defined as

E = X ◦K −DKAω,λ,

and δ > 0 be such that

(42) δ−1m‖E‖β,ρ ≤ ζ/100.
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Then, there is a constant C depending only on ζ, m+, m−, m̃ such that,
the improved solution (K + ∆, ω + σ, λ + η) obtained after the Quasi-
Newton step specified in Algorithm 4.3 satisfies:

(43) ‖X ◦ (K + ∆)−D(K + ∆)Aω+σ,λ+η‖β−δ,ρ−δ ≤ Cδ−1‖E‖2β,ρ

Proof. The proof follows just walking through the argument presented
in Section 4.4 and adding and subtracting appropriate terms in the
linear expansion.

Our goal is to estimate the error of the improved approximation
X + ∆, ω + σ, λ + η where ∆ = DKW , and W, σ, η are obtained
through Algorithm 4.3 (see points (4)-(7)).

Remember that the prescription to compute the Fourier coefficients
of the function W is specified in (27) and (29). Then, using that

Ẽ = DKE and Proposition 5.1, we have that

|σ|, |η| ≤ ‖Ẽ‖1,ρ

≤ ‖DK‖1,ρ‖E‖1,ρ

≤ C‖E‖1,ρ

‖W‖1,ρ ≤ C

(

1

ω
+

1

λ

)

‖E‖1,ρ

(44)

where C is a constant that depends on m+.
The following identity is obtained just adding and subtracting some

terms (the ones we declared as the leading coefficients and the ones
that we cancel) and grouping:

X ◦ (K + ∆)−D(K + ∆)Aω+σ, λ+η

= X ◦ (K + DKW )−D(K + DK W )(Aω,λ + Aσ,η)

= X ◦ (K + DK W )−DKAω,λ −DKAσ,η −D2KWAωλ

−D2KWAσ,η −DKDWAω,λ −DKDWAσ,η

= X ◦ (K + DKW )−X ◦K −DX ◦KDKW

+ [DX ◦KDK −D2KAω,λ −DKDAω,λ]W

+ X ◦K −DKAω,λ

+ DKDAω,λW −DKDWAω,λ −DKAσ,η

−DKDWAσ,η

−D2KWAσ,η.

(45)

The different lines (which we denote ℓ1 − ℓ6) in the last expression
of (45) can be estimated as follows.
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The third line (ℓ3) in (45) is just E and we observe that the point of
the solution of the quasi-Newton method (23) is that W, σ, η are chosen
so that the third and fourth line of (45) cancel exactly.

We recall that we denote by C numbers that are controlled by
some function of the condition numbers m in (41) as well as ω, λ and
supx∈C |D

2X|.
The first line of (45) can be estimated using the Taylor remainder

and the bound for ‖W‖β,ρ obtained in (44). We obtain

‖ℓ1‖β,ρ ≤
1

2
‖D2X‖C (‖DK‖β,ρ‖W‖β,ρ)

2 ≤
1

2
C‖W‖2β,ρ

≤ C‖E‖2β,ρ.
(46)

The second line of (45) can be estimated observing that the term
in parenthesis is the derivative of E (see equation (19)). Then, using
Cauchy bounds (Proposition 5.2) and the bound for ‖W‖β,ρ obtained
in (44) as well as the Banach algebra properties (Proposition 5.1), we
obtain

‖ℓ2‖β−δ,ρ−δ ≤ Cδ−1‖E‖β,ρ‖W‖β,ρ

≤ Cδ−1‖E‖2β,ρ.

The fifth and sixth line of (45) can be estimated straightforwardly
using the estimates for σ, η and W in (44) and Cauchy bounds (Propo-
sition 5.2) by

‖ℓ5‖β−δ,ρ−δ ≤ Cδ−1‖W‖β,ρ|(σ, η)|

≤ Cδ−1‖E‖2β,ρ

‖ℓ6‖β,ρ ≤ C‖W‖β,ρ|(σ, η)|

≤ C‖E‖2β,ρ

(47)

Taking the minimum of these estimates we obtain the bound in (43).
�

Remark 5.5. In contrast with the usual KAM problems, we do not lose
derivatives in the solutions of the linearized problem. In that case,
the lost of derivatives in the Newton step is because the functional
equation (4) involves taking derivatives to straighten the vector field
and composition of functions (which is not a differentiable operator
unless one loses some domain).

5.3. Repeating the iteration and end of the proof of Theo-

rem 3.2. The proof is very standard in KAM theory. We follow very
closely the presentation in [Lla01] for KAM problems.
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We assume by induction that the iterative step can be carried out
n times (i.e., that hypothesis (42) is verified for the first n steps).
We denote by subindices n the objects after n steps of the iterative
process. We will show that, under certain assumptions on the size of δ0

and the error in the intial approximation ε0, which will be independent
of n, hypothesis (42) will be verified for n + 1. Moreover, we will
show that the error for successive approximations decreases very fast
(superexponentially).

We start by fixing

(48) δn =
1

4
δ02

−n.

We will show that this choice of δn is acceptable when the error in the
initial approximation ε0 is small enough.

The condition numbers m−, m+, m̃ will be changing in the iteration.
We will assume inductively that they are twice as bad as the initial
value. We will show that this induction assumption is maintained if ε0

is small enough. We will denote by C the constant that corresponds
to the values of m,m+ and m̃, which are twice the original values.

Denoting by εn the value of the error at step n, the estimates for the
iterative step, can be written

(49) εn ≤ C(δ02
−n−1)−1ε2

n−1.

Repeating (49), we obtain

εn ≤ Cδ−1
0 2n+1ε2

n−1

≤ (Cδ−1
0 )2n+1(Cδ−1

0 )222nε2·2
n−2

≤ (Cδ−1
0 )1+2+22+···+2n−1

2(n+1)+2(n)+22(n−1)+···+2n

ε2n

0

≤ (Cδ−1
0 )2n

22n+1
Pn+1

k=1
k2−k

ε2n

0

≤ (Cδ−1
0 )2n

22n+1
P

∞

k=0 k2−k

ε2n

0

≤ (Cδ−1
0 )2n

22n+2

ε2n

0

≤ (Cδ−1
0 22ε0)

2n

(50)

Notice that if Cδ−1
0 ε0 < 1, then εn is superexponentially small. We

will now show that the fact that εn decresases superexponentially while
δn decreases only exponentially (48) has the consequence that the in-
ductive assumption (42) will be satisfied for all the iterative steps if
the initial error ε0 is small enough.
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Furthermore, denoting Dβn,ρn
the domain of definition of Kn with

(βn, ρn) = (βn−1 − δn−1, ρn−1 − δn−1), we have that

‖DKn −DK0‖ηn,ρn
≤

n
∑

j=1

‖DKj −DKj−1‖ηj ,ρj
≤

n
∑

j=1

Cεjδ
−1
j

≤

n
∑

j=1

(Cδ−1
0 ε0)

2j

δ−1
0 2j

Similarly, we obtain

‖D2Kn −D2K0‖ηn,ρn
≤

n
∑

j=1

(Cδ−1
0 ε0)

2j

δ−2
0 22j

Hence, we see that if ε0 is small enough we obtain that the assump-
tion that the change of m+ is small enough is satisfied.

Similarly, we see that the other smallness of the change are satisfied
if ε0 is sufficiently small. We get, therefore that the inductive assump-
tions amount to a finite number of smallness assumptions on ε0.

Note also that, adding and subtracting terms and using (44), we
have

||K0 −K∞||β∞,ρ∞ ≤
∞
∑

n=0

||Kn −Kn+1||β∞,ρ∞

≤
∞
∑

n=0

||Kn −Kn+1||βn+1,ρn+1

≤
∞
∑

n=0

Cεn ≤ Cε0

(51)

The last inequality, of course, depends on ε0δ
−1 being sufficiently

small so that the superexponential convergence implies that the domi-
nant term in the infinite sum above is the first one.

Observe that the recurrence for the error (49) can be rewritten more
transparently as

εn ≤
(

C(δ02
−n−1)−1εn−1

)

εn−1

Using (50) we obtain that for ε0 sufficently small, we have C(δ02
−n−1)−1εn−1 ≤

1/2. Hence, we can estimate the sums by a geometric series with an
initial term ε0 and ratio 1/2.

Analogous consideration lead to estimates of |ω − ω∗|, |λ− λ∗|.

Remark 5.6. For the experts in KAM theory, we note that in our case,
the size of the correction is bounded by the error without any factor
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from the loss of analyticity. The factors in δ−1, come only from the fact
that the functional we are studying is not differentiable. In the regular
KAM theory, the corrections at the step require a factor of the loss of
differentiability.

In both cases, we obtain that the total change in the function is
bounded by a multiple of the first step. In the standard KAM case,
this first step is the error times a power of the analyticity loss. In our
case, the step is bounded by a step of the error.

6. Some remarks and extensions of the analytic proof

6.1. Local uniqueness.

Theorem 6.1. Let (K1, ω1, λ1) and (K2, ω2, λ2) be solutions of (4) for
the same vector field X. If

(52) ‖K1 −K2‖β,ρ, |ω1 − ω2|, |λ1 − λ2| ≤ C

for a constant C that depends on the condition numbers of the solution
(K1, ω1, λ1) and β, ρ, then

(53) ω1 = ω2, λ1 = λ2,

and there is θ0, b ∈ R, such that

K2(θ, s) = K1(θ + θ0, bs).

Note that, as anticipated in Remark 2.2, the only non-uniqueness
in (4) is the choice of origin in phase and the choice of scale for the
parameter on the isochrones. Of course, the isochrones and the limit
cycle are not affected by these choices of the parameterization.

6.1.1. Proof of Theorem 6.1. The proof is very similar to the local
uniqueness results in other papers [LGJV05, CdlL10] which also use
automatic reducibility methods. The key observation is that the lin-
earized equation admits a unique solution if we impose a normalization.
In the language of abstract implicit function theorems, this is expressed
as saying that the linearized equation admits a “left inverse”. For a
discussion of this from an abstract point of view, we refer to [CdlL10,
Appendix A].

To overcome the ambiguity pointed out in Remark 2.2, we need to
introduce a definition of normalized solutions.
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Definition 6.2. Given a solution (K1, ω1, λ1) of (4), we say that an-
other embedding K2 is K1-normalized when

∫

dθ Π1

[

(K2 −K1)DK−1
1

]

s=0
= 0,

∫

dθ Π2

[

DK2DK−1
1

]

s=0
= 1,

(54)

where Π1, Π2 denote the projections over the components.

The interpretation of (54) is that, when we express the difference
between the solutions in the natural frame of reference of K1, then the
first coordinate has average zero. Furthermore, that the vector field
representing the stable directions of the solutions have integral 1. These
normalizations are natural since they eliminate the indetermimations
we already identified in the solutions of (4), namely the change of the
origin in the angle variable and the change of scale in the linear variable.

Lemma 6.3. There exists a constant C such that if ‖K1 −K2‖β,ρ ≤
C, then there exist small θ0 and b close to 1 such that if we denote
Bθ0,b(θ, s) = (θ + θ0, bs), then K2 ◦Bθ0,b is K1-normalized.

The proof is similar to Lemma 14 in [LGJV05]. It is based on the
application of the implicit function theorem to the function F K(θ0, b)
defined by evaluating (54) at K ◦Bθ0,b. That is,

F K
1 (θ0, b) =

∫

dθ Π1

[

(K ◦Bθ0,b −K1)DK−1
1

]

s=0

F K
2 (θ0, b) =

∫

dθ Π2

[

DK ◦Bθ0,bDK−1
1

]

s=0
.

(55)

Hence, to prove Theorem 6.1, it suffices to show that if we have
two solutions of (4), (K1, ω1, λ1) and (K2, ω2, λ2) and that K2 is K1-
normalized, then we have that they are equal. To do so and, it will be
useful to introduce a more abstract point of view similar to [CdlL10].
We introduce the notation

(56) T (K, ω, λ) ≡ X ◦K −DKAω,λ

so that (4) can be written as

(57) T (K, ω, λ) = 0.
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If we are given two solutions (K1, ω1, λ1) and (K2, ω2, λ2) of (57), we
can write, using Taylor’s theorem from one to the other,

0 = T (K2, ω2, λ2)

= T (K1, ω1, λ1) + DT (K1, ω1, λ1)[K2 −K1, ω2 − ω1, λ2 − λ1] + R

= DT (K1, ω1, λ1)[K2 −K1, ω2 − ω1, λ2 − λ1] + R,

(58)

where R is the reminder of the Taylor expansion of the functional T .
The fact that T is differentiable and the form of the derivative have
been established in Lemma 5.4.

Note that T involves only composing X on the right with K, taking
derivatives of K and performing some algebraic operations. Hence, we
have that

(59) ||R||ρ−δ ≤ Cδ−1(||K2 −K1||
2
ρ + |ω2 − ω1|

2 + |λ2 − λ1|
2).

The identity (58) relates the increments in the unknown to the Taylor
estimates in exactly the same way that the corrections of the Newton
method were related to the error. We can regard (58) as an equation
for K2 −K1, ω2 − ω1, λ2 − λ1. Using that these equations have unique
solutions (because K2 is K1-normalized), we have that:

||K2 −K1||ρ−2δ,|ω2 − ω1|, |λ2 − λ1| ≤ Cδ−1||R||ρ−δ

≤ Cδ−2(||K2 −K1||
2
ρ + |ω2 − ω1|

2 + |λ2 − λ1|
2).

(60)

Using Hadamard’s three circle theorem (40), we obtain:

||K2 −K1||
2
ρ ≤ ||K2 −K1||ρ+2δ||K2 −K1||ρ−2δ.

Hence,

||K2 −K1||ρ−2δ + |ω2 − ω1|+ |λ2 − λ1|

≤ Cδ−2(||K2 −K1||ρ+2δ + |ω2 − ω1|+ |λ2 − λ1|)·

· (||K2 −K1||ρ−2δ + |ω2 − ω1|+ |λ2 − λ1|)

(61)

Thefore if Cδ−2(||K2−K1||ρ+2δ+|ω2−ω1|+|λ2−λ1|) < 1, we conclude
that K1 = K2, ω1 = ω2, λ1 = λ2. The statement of Theorem 6.1 is
obtained just by redefining ρ. �

6.2. Dependence on parameters. In many applications, the mod-
els depend on extra parameters. We will show how the automatic
reducibility methods used in the proof of Theorem 3.2 lead to very
efficient computations of the perturbative expansions with respect to
these parameters. We will also show, following [Mos67], that these
perturbative expansions converge.
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6.2.1. Lipschitz dependence on parameters. If we consider a family of
vector fields Xµ and we assume Lipschitz dependence of the vector field
with respect to the parameter µ, we can use Theorem 3.2 to obtain
Lipschitz dependence of the solution with respect to the parameter µ.

Following the notation introduced in (56), denote

Tµ(K, ω, λ) ≡ Xµ ◦K −DKAω,λ,

so that a solution (Kµ, ωµ, λµ) of (4) for the vector field Xµ can be
written as

(62) Tµ(Kµ, ωµ, λµ) = 0.

Consider given (Kµ, ωµ, λµ) satisfying (62). Then, using that Xµ is
Lipschitz dependent with respect to parameter µ, we clearly have

‖Tµ̃(Kµ, ωµ, λµ)‖β−δ,ρ−δ = ‖Tµ̃(Kµ, ωµ, λµ)− Tµ(Kµ, ωµ, λµ)‖β−δ,ρ−δ

= ‖Xµ̃ ◦Kµ −Xµ ◦Kµ‖β−δ,ρ−δ ≤ Cδ−1|µ− µ̃|.

So, we have that (Kµ, ωµ, λµ) is as an approximate solution of (62) for
values of the parameter µ close to the original one.

Hence, we can apply Theorem 3.2 and obtain that for |µ − µ̃| suf-
ficiently small, there exists Kµ̃ an analytic local diffeomorphism and
ωµ̃, λµ̃ ∈ R, such that

‖Kµ −Kµ̃‖β−2δ,ρ−2δ, |ωµ − ωµ̃|, |λµ − λµ̃| ≤ Cδ−1|µ− µ̃|.

6.2.2. Expansions on parameters. Consider given a parametric family
of vector fields Xµ as well as a solution (K0, ω0, λ0) of (62) for µ = 0.
We will first discuss how to compute a formal solution of (62) for µ 6= 0,
by considering asymptotic expansions on the parameter µ,

Kµ =
∑

n

µnKn

ωµ =
∑

n

µnωn, λµ =
∑

n

µnλn.
(63)

We will show that Theorem 3.2 leads to efficient calculations of these
asymptotic expansions, as well as its convergence.

Efficient calculation of asymptotic expansions
We will discuss two different methods to compute the asymptotic

expansions efficiently. We will first discuss the order by order method.
The other method is based on the philosophy of quasi-Newton methods.
Order by order method. Inductively we assume that we have computed
the expansion (63) up to order n − 1 and we want to show that it is
possible to compute the expansion up to order n.
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We substitute (63) into (4) and by matching coefficients of order n,
we obtain

(64) (DXµ ◦K0)K
n−DKnAω0,λ0

−DK0Aωn,λn = Sn(K0, . . . , K
n−1),

where Sn is an explicit polynomial expression in K0, . . . , Kn−1 whose
coefficients are derivatives of Xµ evaluated at K0. These coefficients
can be calculated efficiently using the methods of automatic differen-
tiation when Xµ is formed using elementary functions (polynomials,
exponentials, trigonometric functions, etc).

We observe that equations (64) are identical to (18); the equations
we studied in Section 4.1. Hence, we can use the same method used
there with some minor differences that we discuss now.

Note that because K0 satisfies exactly the invariance equation (4),
the factorization of the equation (64) into elementary steps achieved in
Algorithm 4.3 holds exactly. Furthermore, all the auxiliary quantities
involved in the factorization need to be computed only once because
for all steps we only consider the linearization around K0, which does
not change during the iteration.
A quadratically convergent method for perturbative expansions. An
even faster method to compute the perturbative expansions consists in
considering K(θ, s, µ); that is K is a function of the parameter µ. It is
easy to see that the Algorithm 4.3 lifts to functions of three variables
and that one can also obtain quadratic convergence in the space of
functions in these three variables using the argument in Section 3.

Convergence of perturbative expansions
Convergence of perturbative expansions is guaranteed by Theorem 3.2.

It suffices to take the solution of (62) for µ = 0 as an approximate so-
lution of (62), and by Theorem 3.2 we have that there exists a solution
(Kµ, ωµ, λµ) of (62) for µ small and complex. Then, using Lemma 6.3.
we can assume that the solutions are K0-normalized in the sense of Def-
inition 6.2. We also know that functions (Kµ, ωµ, λµ) are differentiable
for µ small and complex. Hence, they are analytic in µ.

6.3. Finite differentiablity. There is a standard procedure in [Mos66b,
Mos66a], systematized and extended in [Zeh75] that shows that one
can deduce results for finite differentiable problems from quantitative
results such as Theorem 3.2 for analytic problems.

The key is the following Lemma characterizing the finitely differen-
tiable functions by the speed of approximation by analytic functions.

Lemma 6.4. A function f : Td × Bl is r times continuously differen-
tiable, r ∈ N and the r derivative is Hölder continuous with exponent
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α, 0 < α < 1 if and only if we can find a sequence of functions fn, each
of them analytic in a complex extension of size ρn = 2−n and such that

• ||fn − fn−1||ρn
≤ C2−n(r+α)

• ||fn − f ||C0 → 0

A very streamlined poof of Lemma 6.4 is found in [Zeh75]. It is also
well known that the characterization given by Lemma 6.4 is false for
α = 0, 1.

Notice that equation (4) is linear in X. If X is Cr+α we can construct
a sequence Xn which is analytic in decreasing domains. If (K0, ω0, λ0)
is analytic and solves (4) for X0 with a good enough approximation,
we can apply Theorem 3.2 and construct a true solution (K1, ω1, λ1) of
(4) for X0. This will be an approximate solution of (4) for X1, then
applying Theorem 3.2, we can construct an exact solution (K2, ω2, λ2)
of the problem for X1, which will be an approximate solution for the
problem for X2, etc.

In general, under appropriate inductive assumptions in the domain,
we have that

||Xn ◦Kn −DKnAωn,λn
||ρn
≤ C||Xn −Xn−1||ρn

≤ C2−(r+α)n.

Appying Theorem 3.2, we obtain that

||Kn+1 −Kn||ρn+1
, |ωn+1 − ωn|, |λn+1 − λn| ≤ C2−(r+α−1)n.

Hence, we conclude that K is Cr−1+α.

7. Implementation of Algorithm 4.3.

There are several ways to implement Algorithm 4.3. The implemen-
tations require choices on the discretization of functions and on the
ways to perform the elementary operations. Many practical properties
of the algorithm depend on these choices, among them

(a) storage requirements,
(b) speed,
(c) accuracy,
(d) stability,
(e) paralellizability.

Here we will discuss several possible discretizations:

7.1. Taylor-Fourier series. This is a very well stablished method in
celestial mechanics (see [BG69, Dep70, Sch89] for classical implemen-
tations and [LG12, Har08] for more modern implementations).
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In this representation, one stores the Fourier-Taylor coefficients of a
function

(65) f(θ, s) =
∑

j∈N, k∈Z

fjks
je2πikθ.

Note that for discretization (65), steps (6) and (7) of Algorithm 4.3
are diagonal and require only O(N) operations. Similarly, the computa-
tion of the derivative in step (2), as well as addition and multiplication
of functions by numbers, also require only O(N) operations.

The difficult calculation is the computation of X ◦ K in step (1).
When X can be obtained applying elementary operations (addition,
multiplication, trigonometric functions, exponentials, etc.) there is a
well defined toolskit that goes under the name of automatic differenti-
ation.

It consists of a set of techniques to compute the derivatives of arbi-
trary order of a function evaluated at a fixed value, accurate to work-
ing precision, avoiding in this way the numerical problems inherent
in symbolic and numerical differentiation. They are based on writing
the function as a sequence of algebraic operations (sum, product,. . .)
and elementary transcendental functions (exp, sin, cos, log, power,. . .),
and then applying systematically the chain rule to these operations
(see [Knu97], and also the Web page of the automatic differentiation
community http://www.autodiff.org/).

Take for instance the case of the exponential function. Consider
given the Taylor expansion of a function f , then one can obtain the
Taylor expansion of the function exp(f) using the following relation

∂s exp(f) = exp(f)∂sf.

Substituting f by its Taylor expansion and equating terms of order n
we obtain

(66) (n + 1)[exp(f)]n+1(θ) =

n
∑

ℓ=0

[exp(f)]n−ℓ(θ)(ℓ + 1)fℓ+1(θ).

We can think of (66) as a recursion that allows us to compute
exp(f)n+1(θ) provided that we know exp(f)0(θ), . . . , exp(f)n−1(θ). The
recursion can be initialized because exp(f)0 is just the constant exp(f0).

Similar algorithms can be obtained for sin f , cos f , log(1 + f), fα,
or indeed for any function of f that satisfies a differential equation or
some recurrence on the coefficients.

Also, one can apply similar algorithms for Fourier series (think of
them as the sums of two polynomials in e2πiθ, e−2πiθ). Hence, one can
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use the previous algorithm to compute

exp

(

∑

j≥0

fk(e
2πiθ)k

)

,

exp

(

∑

j≥0

fk(e
−2πiθ)k

)

,

and then use the addition formula for the exponentials.

7.2. Fourier-real mixed representation. A variant of the auto-
matic differentiation which has proved very useful is to keep at the
same time both a representation based on the Fourier-Taylor coeffi-
cients and a discrete representation in real space

f
(

j/N, exp(2πiℓ/N)
)

,

for j = 0, . . . , N − 1 and ℓ = 0, . . . , N − 1. Note that one can go from
the discrete representation to the Taylor-Fourier series representation
just using the Fast Fourier Transform.

Since we use both the Fourier-Taylor representation and the discrete
representation we can use the Fourier-Taylor representation in steps
(2) – differentiation – and (6),(7) –solving the cohomology equations –
of algorithm 4.3 and the discrete representation in step (1) – evaluation
of the vector field.

Hence, at the price of doubling the storage space, (which in any
case is only O(N), since we do not use any matrix) we obtain a step
which requires only O(N log(N)) operations, where N is the number
of discretization points (or the number of coefficients).

In practice, for most computers, one can find highly optimized im-
plementations of FFT, for example [FJ05] so that the algorithm is
O(aN log N + bN) with a≪ b.

Remark 7.1. Note that in order to be able to use the discretization (65)
for K we need that the radius of convergence of K is at least 1. As
observed in Remark 2.2 this can always be achieved through a proper
change of scales.

7.3. Splines.

When the vector field is not analytic or is given by empirical mea-
surements, a method of choice to discretize the vector field and the
function K is to use “splines” [dB01]. By now, splines, including multi-
dimensional splines, are well supported in many packages [GDT+11,
Eat12].
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The discretization in terms of splines takes O(N) operations to eval-
uate the vector field, compute derivatives, etc. However, the evaluation
of splines makes non-trivial the computation of solutions of cohomol-
ogy equations (26) and (28). In this case, it is more efficient to use
solutions (30) and (31), which require only quadratures. We note that
if the spline representation (by polynomials of low order) is known, the
quadratures can be computed in closed form and evaluated rather fast
(again only O(N) operations).

Thus, using the splines discretization, a step requires only O(N)
operations. Furthermore, given that the operations required for splines
are local, they can be easily parallelized, specially in machines with
multiple cores. Hence, splines seem to be extremely fast, even for a
large number of data points.

7.4. Numerical norms. Depending on the discretizations used, the
norms that are appropriate may be different.

If we use splines, the error can be measured easily in Cr spaces. Ana-
lytic norms are not appropriate for splines since the functions involved
are not analytic.

If we use Fourier series, the norms that are easy to compute are
the ones that can be expressed in terms of Fourier series. Amongst
the most effective norms in Fourier analysis are the weighed ℓ1 norms
because for them it is easy to compute the norm of operators in terms
of matrix elements. For example, ||f ||wℓ1 =

∑

k |k|
n|f̂k|e

ρ|k| is a norm
that has many advantages: it is easy to compute reliably, it is easy to
compute for operators and it satisfies the Banach algebra property for
n large enough.

For the experts we remark that one could have developed the theo-
retical results such as Theorem 3.2 in terms of weighted ℓ1 norms of the
Fourier coefficients, but it turns out that estimates of the composition
operator are not so easy. Also the characterization of finite differen-
tiable functions by approximation are only true in the supremum norms
considered here.

In practice, one can get useful upper bounds of ||f ||ρ by noting that
||f ||ρ ≤ ||f ||wℓ1 or, more generally

(67) ||f ||ρ ≤
(

||fk||wℓ1
)1/k

.

The bounds (67) are very easy to implement and they are very sharp
in practice. Indeed, it is a consequence of the theory of Banach algebras
[Rud74, Th. 18.9 ] that, for any norm which is a Banach algebra under
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multiplication one has

||f ||ρ = lim
k→∞

(

||fk||wℓ1
)1/k

.

8. Implementation and numerical results

In this section we discuss some aspects of the numerical implemen-
tation using a Fourier-real mixed representation.

Initial guess: To apply the Newton method we need to start
with an initial approximation for the function K and the pa-
rameters λ and ω. To do so, we will use a Poincaré section and
reduce the problem to finding a zero of the Poincaré map. This
will provide K0 (the periodic orbit) and ω = 1/T , where T is
the period of the orbit.

A reasonable approximation for K1 and λ can be obtained by
observing that

DX ◦K0(θ)K1(θ) = ωDθK1(θ) + λK1(θ).

Hence, we can solve for U(θ) the variational equation

DX ◦K0(θ)U(θ) =
d

dθ
U(θ)

U(0) = Id2,
(68)

and we will have that eλ/ω will be an eigenvalue of U(T ) and
K1(0) will be the corresponding eigenvector.

Note that once we obtain the result for a point, say θ = 0, it
is easy to propagate using that

(69) K1(θ) = U(θ)K1(0)e−λθ.

Our initial approximation for K will be K(θ, σ) = K0(θ) +
K1(θ)σ. We store K0(θ) and K1(θ) for equidistant values of
θ; that is, θi = i/N for i = 0, . . . , N − 1. Notice that this is
equivalent to storing the coefficients of the Fourier series up to
degree N by means of the FFT algorithm.

Newton step: We will use a Fourier-real mixed representation to
implement Algorithm 4.3. See section 7.2 for a detailed descrip-
tion. Since X can be obtained applying elementary operations,
we used automatic differentiation methods to perform the Tay-
lor expansions as described in section 7.1. In order to pass from
a grid representation to Fourier series and vice versa we use the
fast Fourier transform (FFT). In this work we have used the
fftw3 library [FJ12, FJ05].
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At each step of the Newton method we double the order of the
Taylor series, so that after n Newton steps we have computed
the Fourier-Taylor series up to order L = 2n.

The Newton method stops when the solution has been com-
puted up to an error (17) of order 10−12 up to the desired order
L. The norm we use to estimate the error is the ℓ1 norm.

Local approximation: Up to this point we assume that we have
converged to an approximate solution K of the invariance equa-
tion. We need to determine the domain Ωloc where the solution
K is accurate; that is, the function K satisfies the invariance
equation up to a certain tolerance E that we established at
10−12.

Given a fixed tolerance E we compute

(70) Ωloc(E) := {(θ, σ) ∈ T×R | ‖X(K(θ, σ))−DK(θ, σ)Aω,λ‖ < E},

where ‖·‖ is a norm in R2. The dependence on E of this domain
will be suppressed to simplify notation. We remark that Ωloc

contains the limit cycle γ. Notice that the higher the order L
the larger is Ωloc.

Globalization of the isochrones: Since the isochrons are in-
variant for the time-T map of the flow of the vector field X,
one can take several points on the isochron provided by the
local approximation and iterate these points backwards for the
time-T map of the flow X. This procedure extends the isochron
to a bigger domain Ω. We refer to this procedure as the glob-
alization of isochrons.

We use the procedure described in [GH09], which follows the
numerical method proposed in [Sim90]. The main idea is to
select a non uniform mesh of points on the isochron so that the
globalization procedure provides dense points on the isochron.

The integration method used is a Taylor method (we have
used the routines provided by Jorba and Zou; see [18] and
http://www.maia.ub.es/angel/soft.html). We used adaptive step
size, degree, and a tolerance (absolute and relative) of 10−16.

8.1. Numerical Examples. We present here an application of the
method described in the previous section to a classical example in the
literature: the Van der Pol oscillator. The equations for the Van der
Pol oscillator are:

ẋ = −y + x− x3

ẏ = x
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The system is analytic, has an unstable fixed point at (0, 0) and a
stable limit cycle. We have used N = 2042 Fourier modes for each Kn.
The program takes only a few seconds (less than 10s) to compute Kn

up to order 60 in a regular laptop.
In Figure 1 we show the limit cycle and 16 isochrones for the Van

der Pol oscillator. We show the local approximation up to orders 15,
30 and 60 computed semi-analytically using Fourier-Taylor expansions
and the globalized isochron computed using the dynamics given by the
vector field.

We already mentioned that the solution is not unique; indeed if
K(θ, σ) is a solution of the invariance equation, so is K(θ + θ0, bs)
for any θ0 ∈ [0, 1) and b ∈ R.

We choose θ0 so that the zero phase for the oscillator corresponds to
the maximum value of the x-coordinate (in Neuroscience, the peak of
the spike).

The choice of b is related to the domain of convergence (70). Hence,
if we choose a large b, the domain where we can evaluate the series will
be small. Although mathematically we can choose any value of b, for
the numerical stability it will be convenient to choose a value of b such
that the coefficients Kn can be kept at order 1, so that one can avoid
the round-off errors. However, since the orbits do not approach the
limit cycle uniformly along the limit cycle, the functions Kn are not
uniform in θ and one cannot find a global b. Hence, for certain values
of θ, Kn becomes smaller than the machine precision as n increases.
See Figure 1. Given a particular choice of the parameter b, increasing
the order of the Taylor series has no effect on increasing the length of
the local isochron, because the values of Kn are very small. See Figure
1, where we show the computed Kn for some values of n.
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