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DENOISING AN IMAGE BY DENOISING ITS CURVATURE IMAGE

MARCELO BERTALMIO AND STACEY LEVINE

Abstract. In this article we show that when an image is corrupted by additive noise, its
curvature image is less affected by it, i.e. the PSNR of the curvature image is larger. We conjecture
that, given a denoising method, we may obtain better results by applying it to the curvature image
and then reconstructing from it a clean image, rather than denoising the original image directly.
Numerical experiments confirm this for several PDE-based and patch-based denoising algorithms.
The improvements in the quality of the results bring us closer to the optimal bounds recently derived
by Levin et al. [1, 2].

1. Introduction. We start this work trying to answer the following question:
when we add noise of standard deviation ¢ to an image, what happens to its curvature
image? Is it altered in the same way?

Let’s consider a grayscale image I, the result of corrupting an image a with
additive noise n of zero mean and standard deviation o:

I=a+n. (1.1)

Figure 1.1 shows on the left an image a from the Kodak database [3] and its corre-
sponding curvature image k(a); on the right we see I and x(I), where I has been
obtained adding Gaussian noise of ¢ = 25 to a. Notice that is difficult to tell the
curvature images apart because they look mostly gray, which shows that their values
lie mainly close to zero (which corresponds to the middle-gray value in these pictures).
We have performed a non-linear scaling! in fig. 1.2 in order to highlight the differ-
ences, and now some structures of the grayscale images become apparent, like the
boundary between sky and water, or the contours of the palm trees. However, when
treating the curvature images as images in the usual way, they appear less noisy than
the images that originated them; that is, the difference in noise between a and I is
much more striking than that between k(a) and x(I).
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Fic. 1.1. (a), (b): image and its curvature. (c), (d): after adding noise. For visualization
purposes we have linearly scaled the curvature images so that the mid-gray value represents zero
curvature, black is minimum curvature and white is maximum curvature.

This last observation is corroborated in figure 1.3 which shows, for Gaussian noise
and different values of o, and for the same image in fig. 1.1, the noise histograms of
I and k(I), i.e. the histograms of I — a and of k(I) — k(a). We can see that, while
the noise in I is N (0, 0?) as expected, the curvature image is corrupted by noise that,
if we model as additive, has a distribution resembling the Laplace distribution, with
standard deviation smaller than o. Consistently, in terms of Signal to Noise Ratio

IWe have used the formula y = 127.5  sign(zx) * \/|z| + 127.5, where z is the curvature linearly
scaled into the range [—1, 1].



(a) (b)

Fic. 1.2. Close ups of the clean curvature (left) and noisy curvature (right) with non-linear
scaling to highlight the differences.

(SNR) the curvature image is better (higher SNR, less noisy) than I, as is noted in
the figure plots.
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F1G. 1.3. Noise histograms for I (top) and x(I) (bottom). From left to right: o = 5,15,25.

Another important observation is the following. If we have the noisy image I and
the clean curvature x(a), then we can recover the clean image a almost perfectly by
looking for the steady state of this PDE:

ur = k(u) — k(a), (1.2)

with initial condition u(t = 0) = I. Notice that as u evolves, k(u) gets progressively
closer to x(a) until they coincide when u; = 0 and the steady state 4 is reached. This
notion that all the relevant information on an image is contained in its curvature (so
we can fully recover the former if having the latter) was introduced by Attneave [4],
as Ciomaga et al. point out in a recent paper [5].

Figure 1.4 shows, on the left, the noisy image I, in the middle the result @ obtained
as the steady state of (1.2), and on the right the original clean image a. The images
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4 and a look very much alike, although there are slight numerical differences among
them (the MSE between both images is 11.5).

Fic. 1.4. Left: noisy image I. Middle: the result 4 obtained with (1.2). Right: original clean
image a.

In this work we argue that the curvature of a noisy image, x(I) = V- (%) has a
higher signal-to-noise ratio than both the unit normals of the noisy image, = %,

and the noisy image itself, I. In fact, for a number of denoising algorithms, we
demonstrate that if one uses the same algorithm for denoising the curvature image
to obtain an approximation of x(a) and then solves (4.1), a better result is obtained
than if the denoising algorithm was applied directly to the noisy image.

It is important to point out that what we propose here is not a PDE-based
denoising method, but rather a general denoising framework. Specifically, instead of
directly denoising I with some algorithm F to obtain a clean approximation u = F(I),
one can do the following:

Step 1: Given a noisy image, I, denoise x(I) to obtain kg = F(x(I)).

Step 2: Construct a new image 4 whose curvature matches that of xg.

The resulting image @ from Step 2 will be a clean version of I, and one that we claim
will generally have a higher SNR than u. To illustrate the broad applicability of this
approach, in Section 3 we demonstrate that the regularizer F can come from vastly
different schools for denoising, including variational methods as well as patch-based
approaches.

2. Comparing the noise power in I and in its curvature image k(I).
From (1.1) and basic calculus we get this formula for the curvature of I, x(I):

-5 (30) - S (50) v () o

If
[Va| > |Vn|, (2.2)

then

k(1) ~ k(a) + V- (%) : (2.3)

and we can consider the difference between the curvatures of the original and observed
images in (2.3) as “curvature noise”, n:

Ny =V - <|g—7;|> . (2.4)
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In this set-up, we now compute the Signal to Noise Ratio (SNR) of x(I). If we use
directional differences to compute the curvature x on images which are in the range
[0, 255], then |x| < 4 and therefore the amplitude of the signal x(I) is 8.

Now we need to compute the variance of n,. Let vector ¥ be the gradient of the
noise:

U= (v1,v2) = Vn, (2.5)

SO we can re-write n, as:

U1 V2 U1 V2

Expanding:
vy (v1)2 V1|,
T pr— —_— 3 2.
i) = vr e 27)
and:
U2 (U2)y |VI|y
= — . 2.8
S = % e (28)
Recall that:
LI, + 1,1,
VI, = 7|w‘y =, (2.9)
and
VI, = Leley + Dylyy (2.10)

V1|

Observe that (2.2) tells us that we are presently at a contour of a. Let us now
assume, without loss of generality, that this contour is oriented in the direction of ¥,
i.e. it is vertical and therefore I, = 0 and |VI| = |I,|. It also tells us that, for both
vy and va:

lv;| < |Vn| < |Va| < |VI],i=1,2. (2.11)
Taking all this into account and considering (2.7) and (2.8), now we have:

|VI‘1 U1 Ixm

= — 2.12
7-}1 |V[|2 |VI| Ix 9 ( )
and
|VI\y Vo Imy
= —=, 2.1
VIE T VI I, (2.13)

From (2.11), &—iﬂ ~ 0,7 = 1,2 and therefore we should be able to disregard the

second terms of the right-hand side of (2.7) and (2.8), as long as If—f and If—” are not
very large. In practice, we can always ensure this. ’ ‘
To see this, we introduce the notation: I(zx — 1,y +1) = A, I(z+ L,y +1) =
B, I(z—1,y—1)=C,I(z+1,y—1)=D,a= B—A,6 = D —C. Then using centered
differences, I, = 1(a — 6) and I, = (a +6).
4



Therefore:

Ly

I,

(2.14)

a—0 L 20
a+d6| a+6|’

which can only be large if a4+ 6 ~ 0. But this would imply that I, ~ 0, contradicting
our hypothesis of (2.2). As a result:

(IéiTI)y - (|vvi)ry (2.15)

The same reasoning can be applied to the horizontal direction. Now we use this
notation: I(z,y) = A I(x + 1 y) B,I(x — 1,y) = C. Using centered differences,
I,,=B+C—2Aand I, .

2

Therefore:
. 2(C - A)
— =21+ —= 2.1
I, ‘ "o | (2.16)

and the only way this can have a very large value is if B — C' ~ 0, but this would
imply that I, ~ 0, which contradicts our hypothesis of (2.2). As a result:

(Iélfl)z ~ (gﬁ, (2.17)

From (2.17) and (2.15) we get:

1 1

1 1
Ny = W((Ul)x + (v2)y) = WV (v1,02) = WV Vn = WA"' (2.18)

Using directional differences:

Ny =~ ﬁ(n(m + ]-ay) + n(x - Ly) + n(x’y + 1) + n(x,y - 1) - 4n(9c,y)), (219)

so the (numerical) variance of the curvature noise is:

1
Va’f'(n,.{) ———20Va ( ) WO’

~ T (2.20)

Now we can compute the SNR of x(I):

SNR(#(I)) = 20logio <\/27§30> = 20log1o (1 7olV1 ') (2.21)

VI

If we go to the original grayscale image I and compute locally its SNR, we get that
its amplitude is approximately |VI| (because the local amplitude is the magnitude of
the jump at the boundary, and using directional differences |VI| is the value of this
jump) and the standard deviation of the noise is just o, therefore:
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This would be saying that, along the contours of a, the curvature image x(I) is
some 5dB less noisy than the image I. Note that if instead of using backward-forward
differences to compute x we had used central differences and the formula:

| L, + L, - 2111,
" (12 +12)

)

then the amplitude of ¥ would be much larger than 8 and hence the difference in SNR,
with respect to I would also be much larger. But we have preferred to consider the
case of directional differences, because in practice the curvature is usually computed
this way, for numerical stability reasons (see Ciomaga et al. [5] for alternate ways of
estimating the curvature).

What happens if we want to denoise the normals, as Lysaker et al. [6] do? Let W
be the normal vector:

_ VI _ Va n Vn
IZiZinaZi

W= (wy, ws) (2.23)

Let’s compute the SNR for any of the components of w, say w;. Its amplitude is
2, since w; € [—1,1]. Using similar arguments as before, we can approximate the
variance of the “noise” in w; as:

Ty

1
—_— )~ — 2.24
Var(‘v[') |VI|2 Var(’”’-’E)? ( )
and, using directional differences:
ny(z,y) = n(z + 1,y) —n(z - Ly), (2.25)
SO
n 1 1
)~ ——2V = ——20% 2.2
Var <|VI|) VI ar(n) VIP o (2.26)
Therefore, the SNR of the first component of the normal field is:
2 VI
SN R(w1) = 20logio | —=—— | = 20logo (1.41|) . (2.27)
V25 7

From equations 2.21,2.22 and 2.27 we get SNR(I) < SNR(w;) < SNR(x) and
therefore we can conjecture that, given any denoising method, for best results on the
contours it’s better to denoise the curvature rather than directly denoise I (or the
normal field).

As mentioned in section 1, from the denoised curvature k4 we can obtain the final
denoised image I; by looking for the steady state of this PDE:

uy = k(u) — Kq, (2.28)

with initial condition u(t = 0) = I. Notice that as u evolves, k(u) gets progressively
closer to kg (which is constant in time) until they coincide when u; = 0 and the steady
state is reached.

On homogeneous or slowly varying regions, though, (2.2) is no longer valid and
we have instead:

|Va| < |Vn|, (2.29)
6



SO NoOw

Va
VI

k() ~ k(n)+ V- ( ). (2.30)
In this case then k(I) can’t be expressed as the original curvature x(a) plus some
curvature noise, unlike in (2.3). So in homogeneous regions (I) is a poor estimation
of k(a), but we can argue that this is not a crucial issue, with the following reasoning.

From egs. 2.29 and 2.30 we see that x(I) behaves as x(n) plus a perturbation;
since n is random noise, x(I) will also be random noise and its mean will be zero.
Therefore, any simple denosing method applied to x(I) will result in curvature values
of kg close to zero, so after running (2.28) the reconstructed (denoised) image Iy
will have, in these homogeneous regions, curvature close to zero, which means that
these regions will be approximated by planes (not necessarily horizontal). This is not
a bad approximation given that these regions are, precisely, homogeneous or slowly
varying. Another observation is that the plots in fig. 1.3 show that the SNR of x([)
is higher than the SNR of I, despite the fact that the contour pixels represent a small
percentage of the image area. This means that the poor estimation of the curvature in
the homogeneous regions (i.e. at the non-contour pixels) is still largely compensated
by the high SNR at the contours.

3. Experiments. The observations in the previous sections have led us to per-
form the following experiments:

-run a denoising method on an image I obtaining a denoised image Iy

-run the same method on the curvature image «(I) obtaining a denoised curvature
image kg4, then iterate the equation:

ur = K(u) — kg + 201 — u), (3.1)

where A is a positive parameter and I is the original noisy image, finally obtaining
Id = hmt_mo u.

We have used as image database the grayscale images (range [0,255]) obtained
by computing the luminance channel of the images in the Kodak [3] database (at
half-size), and tested three denoising methods: TV denoising [7], Bregman iterations
[8] and Non-local Means [9]. Our experiments show that in all three cases we obtain
better results by denoising the curvature image «(I) rather than directly denoising the
image I. Furthermore, the improvement in terms of PSNR is in the range predicted
by Levin et al. [1, 2], which suggests that with our technique we could be approaching
the optimality bounds estimated in those works.

3.1. TV denoising with ROF. We have compared with the Rudin-Osher-
Fatemi (ROF) TV denoising method [7]:
Vu
= V(=) +2\t){ — 3.2
u V(\Vu\)+ O —w), (3.2)
where A(t) is estimated at each iteration, knowing the value o of the standard devia-
tion of the noise. Initialization: u(t = 0) = I. The stopping criterion is: MSE(I,u) >
o2. The obtained result is ITror = limy_ o0 u.
We perform TV denoising of «(I):

( Vk
| V|
7

) (3.3)

Ry =



which we iterate for a fixed number of steps, obtaining k4. The parameter values are:
time step At = 0.025, number of steps T' = 25 for noise value o = 5, T' = 15 for noise
values o = 10, 15, 20, 25.

Then we iterate the equation:

ur = k(u) — kg + 2\() (1 — u), (3.4)

where A(t) is estimated at each iteration, finally obtaining I; as the steady state.
Initialization: u(t = 0) = I. Time step: At =0.1.

Defining €?(m) as the MSE difference with respect to the original noisy image at
iteration step m,

¢*(m) = il > (@) —ulz)(t =m))?, (3.5)

we can express the stopping criterions for (3.4) as follows: stop when

(m)>0o? or |e(m+1)—e(m)| <0.0005, (3.6)

whichever happens first.
Fig. 3.1 shows one example comparing the outputs of TV denoising of I and ().

Fic. 3.1. Left: noisy image. Middle: result obtained with TV denoising of the image. Right:
result obtained with TV denoising of the curvature image.

Figure 3.2 compares, on the left, the average increase in PSNR (over the original
noisy image) obtained with both approaches: PSNR(Igor)-PSNR(I) (in magenta),
PSNR(I4)-PSNR(I) (in blue). As with all the plots in this article, the values have
been averaged over all the images in the database. On the right we use another image
quality measure, the Q-index of [10], which is reported as having higher perceptual
correlation than PSNR and SNR-based metrics [11]; in this case we plot the average
percentage increase in Q:

QUror) — Q) and 100 x Qa) — Q(I)'
Q) Q)
Both plots in fig. 3.2 show that TV denoising of the curvature allows us to obtain
a denoised image I; which is better in terms of PSNR and Q-index than Izop, the
image obtained by directly applying TV denoising to the original noisy image.

100 x

3.2. Bregman iterations. Lysaker et.al. [6] proposed a two step denoising
algorithm in which they first approximate a smooth normal field, n , to the noisy

image, I, using
2
argm1n/|Vﬁ>| +/\/ <|VI| ) (3.7)
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27,3952, 4,07282 27,3962, 52,4213

Fic. 3.2. Comparison of TV denoising on I, TV denoising on «(I) and Bregman iterations.
Left: PSNR increase for each method. Right: percentage increase on Q-index [10]. Values averaged
over Kodak database (only luminance channel, images reduced to half-size).

and then obtain the denoised image via the minimization problem

us = arg min / (IVu| — 7} - V) + /\/(I ), (3.9)
weBV(Q)

This idea motived several other related works. The authors in [12] proposed a similar
algorithm, but in step 1 they solve for a divergence-free, noise-free approximate unit
tangent field, t = (u,v) (a more mathematically sound minimization problem than
(3.7)), use this to compute 71 = (—v,u), and then solve for the clean image using
(3.8). Other works have built on this model. For example, the authors in [13] suggest
replacing (3.8) with a more direct feature orientation-matching functional.

The Bregman iterations of Osher et.al. [8] was also motivated by [6], and has made
a particular impact on the field of variational based image processing. The idea is to
replace (3.7) with a step that first generates a smooth approximation of the image,
w1, then compute an approximate unit normal, 77, = \gzil’ and finally solve (3.8).
The authors discovered this is equivalent to solving the Rudin-Osher-Fatemi (ROF)
functional [7], adding the residual noise back to the original noisy image, and then
solving ROF again. They also discovered that even better results could be obtained
by starting with an image of all zeros and iteratively repeating this process until the
solution is within a distance of o from the noisy image.

We wanted to compare also with this method, because of its relationship with the
denoising of normalized-gradient fields. We showed in section 2 that, although better
than direct denoising of I, denoising of normalized-gradient fields would not perform
as well as the denoising of k(I), at least on the image contours. Comparisons in term
of PSNR and Q-index can be seen in figure 3.2. This figure shows that Bregman
iterations fare better than ROF in terms of Q-index, although not in PSNR, and that
TV denoising of x outperforms both Bregman iterations and ROF, as predicted, and
it does so both in terms of PSNR and Q-index.

The implementation details are as follows. We have compared with the original
Bregman iterations method of [8]; the values used for A : 0.033,0.013,0.009, 0.005, 0.00425,
corresponding to o : 5,10, 15, 20, 25 respectively, have been chosen following the sug-
gestions given in [8] in order to obtain optimum results. The time step is At = 0.1.
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3.3. Non-Local Means. To illustrate a comparison with patch-based methods,
we incorporated Non-Local Means denoising [9] into our general framework as follows.
First we performed Non-local Means denoising on the original noisy image I,, using
the code from [14] (with their choice of parameters) obtaining the denoised image
Irpor.

For our method, we have done the following:

e Apply NLM to k(I), but with these two modifications:
1. Compute the weights from I instead of k (i.e. compare image patches,
not curvature patches).
2. Use 0, = 0 + 5 as the standard deviation.
We obtain the denoised curvature kq.
e Starting with u(¢t = 0) = Irpor, solve for the steady state of:

ur = K(u) — kg + 201 — u),

with the stopping criterion described in (3.6).
The values used for A : 0.2,0.075,0.05,0.04,0.03, correspond to o : 5,10,15,20,25
respectively.
Fig. 3.3 shows one example comparing the outputs of NLM denoising of I and
k().

F1G. 3.3. Left: noisy image. Middle: result obtained with NLM denoising of the image. Right:
result obtained with NLM denoising of the curvature image.

Figure 3.4 (left) compares the average increase in PSNR of the denoised image
over the original noisy image, obtained with both approaches: NLM on I (in magenta),
NLM on K (in blue).

If the starting condition were u(t = 0) = I as usual then denoising the curvature
performs worse, in terms of PSNR, than denoising the image, see fig. 3.5. This is
why we are starting with u(t = 0) = I;por, but now one could argue that what we
are doing is basically TV denoising on the output of NLM; in fact, if we over-process
Kk we obtain kg = 0 and in that case we would actually be doing ROF denoising on
Irpor- But that is not the case: if we apply ROF on I;poy, as explained in section 3.1
(with variable A(t) and the stopping criteria mentioned there), the outputs have lower
PSNR, see fig. 3.4 (left). Figure 3.4 (right) compares the average percent increase
in Q-index of the denoised image ogver the original noisy image, obtained with both
approaches.

Both plots in fig. 3.4 show that NLM denoising of the curvature allows us to
obtain a denoised image Iy which is better in terms of PSNR and Q-index than the
image I7por, obtained directly by applying NLM tos the original noisy image.
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FiGc. 3.4. Comparison of NLM denoising on I and NLM denoising on «(I). Left: PSNR
increase for each method; also pictured: PSNR increase for ROF on the output of NLM on I.
Right: percentage increase on Q-index [10]. Values averaged over Kodak database (only luminance
channel, images reduced to half-size).
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Fi1G. 3.5. PSNR comparison of NLM denoising on I and NLM denoising on k(1) with different
starting conditions.

4. Discussion.

4.1. Computing the curvature. Kovalevsky shows in [15] that it is difficult
to compute the curvature with errors smaller than 40% without subpixel accuracy
and numerical optimization, even in high resolution images. The reason is that small
errors require very long curves. Utcke [16] points out that the smaller the curvature,
the larger the error in estimating it. Ciomaga et al. [5] propose a method to increase
the accuracy in estimating a curvature image by decomposing the image in its level
lines and computing the curvature at each of these curves with subpixel accuracy.

All the tests in this article have been performed using very simple numerical
schemes for the computation of the curvature hence the error must be very significant,
but this does not seem to affect the final result dramatically as fig. 1.4 shows. We
would like to test other computational techniques for the curvature, and their impact
in the quality of the results.

4.2. The reconstruction equation. The equation that we use to reconstruct
a clean image from a denoised curvature image, eq. (1.2), is the flow associated with
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the minimization problem

i \V4 . 4.1
min / V] + r(a)u (4.1)

The functional in (4.1) was used in Ballester et.al. [17] for the purpose of image
inpainting, and in particular, for propagating the level lines of the known parts of an
image into the inpainting region. The functional they use is

F(u) = / [Vu|—6-Vu (4.2)

where 6 is a gradient field that determines the direction of the level lines. Intuitively,
when considering the denoising problem, if one starts with a noisy image for which
the noise has mean zero and propagates the level lines of the clean image (ideally
using 0 = |gg‘) while smoothing with a total variation based regularizer, one would
expect a relatively accurate reconstruction of the original clean image, a. Existence
and uniqueness results, as well as fast convergence, were formally proven in Andreu
et al. [18] for a very similar equation, one in which the term x4 is constant or time-
varying. If it is also spatially varying, as it is our case, then convergence is achieved
as time goes to infinity. In practice we have found that convergence with eq. (3.1)
takes three times as many iterations as convergence with eq. (3.2).

We are not aware of any other method to recover an image from its curvature
image, and it would be interesting to study whether the accuracy of the reconstruction
could be improved by using another technique.

4.3. Real curvature images. After we apply a given denoising method F to
the curvature image k(I) we obtain an image kg = F((k(I)) which we call (and treat
as) “denoised curvature”. But we can’t formally say that kg is actually a curvature

image, i.e. there may not exist an image I; such that kg = V - (Igfil) Although

this does not seem to hinder the approach from improving on denoising methods in
general, we are currently exploring more precisely what effect this has on our solution.

5. Conclusions and future work. In this article we have shown that when an
image is corrupted by additive noise, its curvature image is less affected. This has
led us to conjecture that, given a denoising method, we may obtain better results
applying it to the curvature image and then reconstructing a clean image from it,
rather than denoising the original image directly. Numerical experiments confirm this
for several PDE-based and patch-based denoising algorithms. The improvements in
the quality of the results bring us closer to the optimal bounds recently derived by
Levin et al. [1, 2]. Many open questions remain, concerning the accuracy in the
computation of the curvature, the reconstruction method used and the nature of the
denoised curvature image, which will be the subject of further work.
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