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1 Introduction

Integrated circuits are produced at smaller and smaller scales to make more powerful elec-
tronic devices. According to Moore’s law, the number of components in an integrated circuit
will double every two years. Currently, the level of detail is at the nanometer scale, which
presents many challenges.

At present, integrated circuits are produced by optical lithography. Specifically, light is
passed through a photomask and an image of the mask is projected onto a photoresist to etch
the desired patterns. Designing and inspecting a photomask for defects require accurately
calculating the change in the electric field caused by the photomask. To be practical, this
computation must be very quick.

The current lithography process uses deep ultraviolet light, but new technology is needed
to increase the resolution. One likely alternative is to switch to extreme ultraviolet light,
which has a shorter wavelength; however, at this wavelength materials are not very reflective
or transparent. To get around this, two materials are alternately layered to produce a Bragg
reflector. The photomask consists of an patterned absorber on top of a Bragg reflector.

Our goal is to find an efficient way to calculate the electromagnetic field after light has
been reflected by the photomask.

In the first section, we determine the reflected and transmitted field for the multilayered
reflector, using matrices to model the field in each layer of the reflector. Next, we compute
the transmitted field at the bottom of a cross section of a thick absorptive material in terms
of the incident field using an adaptation of the Born approximation. We have implemented
the computations in Matlab to determine the accuracy. We conclude with a comparison of
our results to a solution obtained using the finite element method (FEM). We also include
an appendix covering Green’s functions for the Helmholtz equation.
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2 Multilayer Reflector

We start by modeling the transmission and reflection of extreme ultraviolet light by the
multi-layered Bragg reflector. We first consider a more general problem: electromagnetic
plane waves incident to N layers of arbitrary materials with specified thicknesses, d1, d2, . . . ,
dN , and indices of refraction n1, n2, . . . , nN . We assume that the materials only vary in one
direction (say downward) and are homogeneous in perpendicular cross-sections. To further
simplify the problem, we decompose the incident field into two orthogonal components, S-
polarization and P-polarization, and treat these cases separately.

Let Ea, Eb, Ec, and Ed be the total transmitted and reflected waves in the j-th and
j + 1-st layers, as illustrated in the following figure. We also establish a coordinate system
in x̂, ŷ, and ẑ, where x̂ is to the right, ŷ is pointing into the page, and ẑ is up.
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Figure 1: multilayer structure

Assume the plane of incidence is spanned by x̂ and ẑ, and that tj, rj are, respectively,
the down-going and up-going wave coefficients at the j-th boundary between media. For the
S-polarization plane electromagnetic wave, set

Ea = tjŷeika·x Eb = rjŷeikb·x Ec = tj+1ŷeikc·x Ed = rj+1ŷeikd·x

ka =

 kx,j
0
−kz,j

 kb =

 kx,j
0

+kz,j

 kc =

 kx,j+1

0
−kz,j+1

 kd =

 kx,j+1

0
+kz,j+1


where k2

j = ω2µ0εj = k2
x,j + k2

z,j and

kx,j = kj sin θj ∈ R

kz,j = kj cos θj =
√
k2
j − k2

x =

√
n2
j

(
2π

λ

)2

− k2
x
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for j = 1, . . . , N with the branch of the square root being chosen such that the imaginary
part is nonnegative. Since n̂ × E is continuous at each interface z = zj, the total fields
immediately above and below the boundary must be equal, so we have

tje
ikx,jx−ikz,jzj + rje

ikx,jx+ikz,jzj = tj+1eikx,j+1x−ikz,j+1zj + rj+1eikx,j+1x+ikz,j+1zj (1)

for the x-components, whereas the y and z-components are zero. Note that the above
equation holds for all x ∈ R, so kx,j = kx,j+1 = kx for all j. In case εj is positive and
|kx,j | < kj, then kx,j = kj sin θj and kz,j = kj cos θj. Then, kx,j = kx,j+1 gives Snell’s law :

kj sin θj = kj+1 sin θj+1

for all j.
This branch corresponds to waves that decay in the direction of propagation. Using these

constants, we can rewrite (1) as

tje
−ikz,jzj + rje

ikz,jzj = tj+1e−ikz,j+1zj + rj+1eikz,j+1zj (2)

Once the time-harmonic electric fields Ea, Eb, Ec, and Ed are known, the corresponding
magnetic fields Ha, Hb, Hc, and Hd can be determined by one of Maxwell’s equations

∇×E = iωµ0H

This gives the following equations

Ha =
tj
ωµ0

kz,j0
kx

 eika·x Hb =
rj
ωµ0

−kz,j0
kx

 eikb·x

Hc =
tj+1

ωµ0

kz,j+1

0
kx

 eikc·x Hd =
rj+1

ωµ0

−kz,j+1

0
kx

 eikd·x

We may now apply continuity of n̂×H on each interface, to get

tjkz,je
−ikz,jzj − rjkzjeikz,jzj = tj+1kz,j+1e−ikz,j+1zj − rj+1kz,j+1eikz,j+1zj (3)

We can rewrite (2) and (3) as a linear system:[
1 1
kz,j −kz,j

] [
e−ikz,jzj 0

0 eikz,jzj

] [
tj
rj

]
=

[
1 1

kz,j+1 −kz,j+1

] [
e−ikz,j+1zj 0

0 eikz,j+1zj

] [
tj+1

rj+1

]
This can now be simplified by letting

uj =

[
e−ikz,jzj 0

0 eikz,jzj

] [
tj
rj

]
Mj =

[
1 1
kz,j −kz,j

]
Dj =

[
e−ikz,jdj 0

0 eikz,jdj

]
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where dj = zj − zj+1 is the thickness of the j-th layer, which gives the recursive relation

uj = M−1
j Mj+1Dj+1uj+1 j = 1, 2, . . . , N − 1 (4)

We now can obtain the electric field on one side of an interface in terms of the electric field
on the other side, and we can determine the electric field across any number of layers by
multiplying the appropriate matrices, called transfer matrices.

To determine the electric field in an arbitrary layer, we observe that there is no up-going
wave field in the last layer, or, equivalently, setting rN = 0 and uN = (1, 0)T for the last
layer, and work up to the desired layer.

In the simplest case, we have only two layers. Suppose z1 = 0 is the interface between
two media with refractive indices n1 and n2. Again, we set u2 = (t2, r2)T = (1, 0)T, in (4) to
obtain t1 and r1. If we normalize t1 to unity, this yields the Fresnel equations

t2 =
2kz,1

kz,1 + kz,2
r1 =

kz,1 − kz,2
kz,1 + kz,2

.

The total field actually consists of multiple scattering waves inside each layer. We can
demonstrate this by taking just one layer and considering the reflected and transmitted field
as figure 2 shows.
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Figure 2: wave from medium 0 going through medium 1 to medium 2

Total fields above the layer, inside the layer and below the layer should satisfy the fol-
lowing equations.

u0 = r01d0 + t10u1eikz1h (5)

d1e−ikz1h = t01d0 + r10u1eikz1h (6)

u1 = r12d1 (7)

d2 = t12d1 (8)
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where rij, tij denotes the reflection and transmission coefficients through the interface from
medium i to j respectively, kz1 is the z component of the wave vector in medium 1.

Solving (5)-(8) for u0/d0, we find

u0

d0

= r01 + t10e
ikz1h

t01r12eikz1h

1− r12r10e2ikz1h

= r01 + t10t01r12e2ikz1h

∞∑
j=0

(r12r10e2ikz1h)j

Consider the general term in the geometric series, t10t01r12e2ikz1h(r12r10e2ikz1h)j. It actu-
ally describes the wave which is reflected 2j + 1 times inside the layer and then transmitted
through the top.

Similarly, we can calculate the total transmission below the layer compared with the
incident wave.

d2

d0

=
t12u1

r12d0

=
t01t12eikz1h

1− r12r10e2ikz1h

= t01t12eikz1h

∞∑
j=0

(r12r10e2ikz1h)j

Consider the general term in the geometric series, t01t12eikz,1h(r12r10e2ikz,1h)j, it is just the
wave reflected 2j times inside the layer and then transmitted through the bottom.

Thus by the transfer-matrix method, we solve the total field containing multiple scattering
waves.

Now that we have solved the general problem of reflection and transmission through
many layers, we can return to the specific case we are interested in. For the Bragg reflector,
the layers alternate between two materials–molybdenum and silicon– (plus a capping layer of
ruthenium at the top), and the layers of the respective materials all have the same thickness,
so there are only three different 2× 2 matrices involved in the computation. Thus, this step
of the process can be calculated very quickly.
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3 Transmission Matrix for the Absorber

In this section, we describe difraction of S-polarized plane waves by an absorbing body. Let
us consider an absorber that stretches infinitely along the y-axis and has a rectangular cross-
section in the xz-plane. Let us also assume that the incident plane wave hits the absorber
at a small angle. The geometry for the S-polarized waves and an infinitely long absorber is
simple; however, the ideas we describe here form a building block for simulating diffraction
in more complicated settings.

Ein

Eout

θ

E(j)

E(j+1)

z

x

Figure 3: Sliced absorber with incident and transmitted waves (left). Incomming and out-
going waves on (j + 1)st slice.

We use a perturbation approach to solving for the electromagnetic field known as the
Born approximation. Let us note, however, that we adapt the method for our needs. To
make sure the Born approximation is accurate, we need to take care of two things. First,
we assume that permittivity of the absorber is nearly the same as that of the vacuum. This
allows us to use the solutions of Maxwell’s equations as a leading order contribution to the
solution. Next, to make sure the variation of the field is small in our solution scheme, we
successively find the solution on boundaries of thin rectangular slices of the absorber moving
down along the z-axis (see Figure 3).

3.1 Perturbation Approach

As an electromagnetic wave propagates along the absorber, it experiences only small variation
in each of the slices shown on Figure 3. Using the perturbation techniques we derive a method
for computing the field inside each slice given the field at its top surface.

Let us assume that the permittivity of the absorber, ε, is varying only in the x̂ and ẑ
directions. The electromagnetic field is governed by the time-harmonic Maxwell’s equations
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∇×E = iωµ0H (9)

∇×H = −iωεE (10)

where permittivity is ε = ε0 + δε, and ε0 and µ0 are constant permittivity and permeability
of vacuum. Assuming that |δε| � ε0, let us look for E and H in a small neighborhood of the
incident field E0, H0. Let us write the solution in the form E = E0 + δE, H = H0 + δH ,
where E0, H0 are the electromagnetic waves in vacuum satisfying

∇×E0 = iωµ0H0 (11)

∇×H0 = −iωε0E0 (12)

Taking the curl of (12) we find that E0 is divergence-free. Now, using equations (9) and
(10) for the free field, we rewrite (9) and (10) in the following form:

∇× δE = iωµ0δH (13)

∇× δH = −iω (ε0δE + E0δε+ δε · δE) (14)

For a thin slice, δE is small, so we can drop the second-order term δε · δE. By taking
the curl of (13), we eliminate the magnetic field and find the equation for the first order
correction to the E-field:

∇×∇× δE = ω2µ0ε0δE + ω2µ0E0δε (15)

Taking the divergence of (14) we find that

∇ · δE = − 1

ε0
E0 · ∇δε

Since the incident field E0 is S-polarized and ∇δε lies in xz-plane, we have E0 · ∇δε = 0.
Finally, using the identity ∇ × ∇ × δE = −∆δE + ∇(∇ · δE), we reduce equation (15) to
the Helmholtz equation (

∆ + k2
0

)
δE = −k2

0

δε

ε0
E0 (16)

where k0 = 2π/λ is the wave number of the incident wave. Clearly, this equation can
be solved using the Green’s function for the operator ∆ + k2

0, thus providing the solution
E = E0 + δE in the first slice.

It is important to point out that equation (16) can be used to solve for the field in a slab
of absorber. Let zj denote the height of the jth slice top surface, with j increasing as we
go down along z-axis. Let us also decompose the electromagnetic field and permittivity in
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(j + 1)st slice as E[j+1] = E[j] + δE[j+1]. Then, the iterative scheme for finding the solution
for the sliced Born approximation can be written as(

∆ + k2
0

)
δE[j+1] = −k2

0

δε

ε0
E[j] E[j+1] = E[j] + δE[j+1] (17)

This approximation ignores the reflection off of other slabs (multiple scattering), in ad-
dition to the second order term in equation (14).

3.2 Updating the Field between Slices

In this section, we prepare for the numerical computation of the electromagnetic field in the
presence of absorber. We derive the explicit expression for the field perturbations {δE[j]} in
equation (17) and discuss the cost of its numerical computation.

Suppose we have an S-polarized wave with electromagnetic field E hitting a thin absorber
of thickness d. We find the electromagnetic field inside the slice in Born approximation by
adding δE, found from (17), to the incoming field. Solving the inhomogeneous equation (17)
we get

δE(x) =
k2

0

ε0

∫
Ω

g0(x,x′)δε(x′)E(x′) dx′ (18)

where Ω = R2 × [0, d] and g0 is the free-space Green’s function satisfying the Helmholtz
equation ∆g0 + k2

0g0 = −δ(x,x′) in 3-D:

g0(x,x′) =
eik0|x−x′ |

4π |x− x′|
= −

∫
R2

eik′x(x−x′)+ik′y(y−y′)+ik′z |z−z′ |

8π2ik′z
dk′x dk′y

with k′z =
√
k2

0 − (k′x)
2 − (k′y)

2. To proceed with numerical computations, we assume that

the absorber is periodic in the x direction with period p, where p is large. (This gives
reasonable boundary conditions.) We can then write

δε(x) = ε0(n2
A − 1)q(x)

where nA is the index of refraction of the absorber, and q(x + x̂p) = q(x). Note, however,
that the geometry of the absorber does not have to be restricted to that shown in Figure 3.

We expand the structure function q in Fourier modes, q(x) =
∑∞

n=−∞ cnei 2πn
p
x, and use

the Bloch-periodic ansatz for the electromagnetic field:

E(x) = E(x, z) =
∞∑

n=−∞

Eneikx,nx−ikz,nz δE(x) = δE(x, z) =
∞∑

n=−∞

δEneikx,nx−ikz,nz

where kx,n = k0 sin θ + 2πn
p

, kz,n =
√
k2

0 − k2
x,n, and E stands for the y-component of the

field. With the above expansions for the incident field, permittivity and Green’s function,
formula (18) yields the following value of the field at the bottom of the slice
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δE(x, z) = −k2
0(n2

A − 1)

∫
Ω

∫
R2

eik′x(x−x′)+ik′y(y−y′)+ik′z |z−z′ |

8π2ik′z

∞∑
m,n=−∞

cmEneikx,n+mx′−ikz,nz′ dk′x dk′y dx′

= −k
2
0(n2

A − 1)

8π2i

∞∑
m,n=−∞

∫ d

0

∫
R2

ei(k′xx+k′yy+k′z |z−z′ |−kz,nz′)cm−nEn(2π)2δ(kx,m − k′x)δ(−k′y)
dk′x dk′y
k′z

dz′

= −k
2
0(n2

A − 1)

2i

∞∑
m,n=−∞

cm−nEn
eikx,mx−ikz,mz

kz,m

∫ d

0

ei(kz,m−kz,n)z′ dz′ ( z′ > z )

The integration in z′ can be explicitly calculated via a sinc function. By comparing the series
coefficients, we find a correction for mth Bloch mode:

δEm = −k
2
0(n2

A − 1)d

2i

∞∑
n=−∞

cm−n
ei(kz,m−kz,n)d/2

kz,m
sinc((kz,m − kz,n)d/2)En (19)

At the bottom of the slice, the resulting electric field is computed by the following formula

E[j+1](x, z) = E[j](x, z) + δE[j + 1](x, z)

and advancing each mode of E[j+1](x, z) by a factor of eikz,md.
This can also be written as an iterative formula in the frequency domain:

E[j+1]
m =

∞∑
n=−∞

eikz,md[I +M(d)]m,nE
[j]
n (20)

where I is the identity matrix, and the coefficients of matrix M are given by

[M(d)]m,n = −k
2
0(n2

A − 1)d

2i
cm−n

ei(kz,m−kz,n)d/2

kz,m
sinc((kz,m − kz,n)d/2) (21)

The operation of updating the field is not a convolution because the matrix M depends on
kz,m − kz,n. Hence, to compute the field using (20), we need to work out O(N2) operation,
with N being the size of the matrix, or the number of truncated Fourier modes m,n ∈
[−N/2, . . . , N/2]. To imrove the speed of computations, we expand the elements of matrix M
in the small parameter d in a Taylor series. We observe that ei(kz,m−kz,n)d ≈ 1+i(kz,m−kz,n)d
by the first order Taylor approximation and

ei(kz,m−kz,n)d/2 sinc((kz,m − kz,n)d/2) = d−1 ei(kz,m−kz,n)d − 1

i(kz,m − kz,n)
≈ 1

provided |kz,m − kz,n | |d| � 1. Since |kz,n |2 =
∣∣∣k2

0 − (k0 + 2πn
p

)2
∣∣∣ ≤ C · πN

p
, the approxima-

tions give a good result, provided d � p
2πN

. The matrix M can be replaced, using these
approximations, by

[M̃(d)]m,n = −k
2
0(n2

A − 1)d

2i

cm−n
kz,m

(22)
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The computation of the field with this matrix involves O(N log2N) operations.

Figure 4: The simulation of real parts of the total field obtained by sliced Born and FEM
with incident wavelength 13.5 nm only containing a single mode 0 in Fourier space. The
scatterer is a periodic array of 60 nm thick, 80 nm wide, infinitely long strips of TaBN
(nA = 0.91654 + 0.04375i), with period 200 nm, the angle of incidence being 6 deg. No
Bragg reflector is present.

Comparing the result of the sliced Born approximation with FEM, the profiles are quite
similar; we show the error between them in figure 5. The first two figures are generated
by the Born approximation with the exact matrix (21). The solution of the sliced Born
approximation converges as the number of slices is increased and the absolute error of these
two methods decreases. However, the error stagnates at 5% of the incident field amplitude
when there are more than 50 slices. This illustrates that the sliced Born approximation gives
us a convergent solution with some small error (< 10−1). Running time increases a little
bit, but not significantly, for more slices. The last two figures in figure 5 are generated by
the sliced Born approximation with the approximate matrix (22). Since we can write this
operation as a convolution, the running time is decreased while the convergence rate and
error remain almost the same.

Figure 5: The comparison of the sliced Born and FEM simulations of transmitted fields
passing through the absorber (with no Bragg reflector), and the convergent tests for the
sliced Born with fixed number of Fourier modes. The sliced Born iteration is applied by the
matrix (21) (left) and (22) (right).

10



4 Simulation Procedure for the Photomask Diffraction

The whole diffraction process is as follows: An EUV wave, say S-polarized, passes through
the absorber, is reflected by the Bragg reflector under the absorber, and passes through the
absorber again.

Figure 6: The plots of S-polarized wave fields using sliced Born approximation (first two
rows) and FEM (the last row).

Figure 6 shows the profiles in one period of the absorber when the wave completes the
entire process. The last two rows show that the sliced Born approximation and FEM give
very similar total fields.
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Figure 7: Comparison of the transmitted field on the top of the absorber after the absortion,
transmition, and reflection process. The sliced Born iteration is applied by the exact matrix
(21) (left) and the approximate matrix (22) (right).

We show the error and convergence of the Born approximation for the whole process in
figure 7. We can see that the method is convergent and the limit solution is within 10% of
the FEM solution for the incident field amplitude.

5 P-polarization

With the same assumptions on the absorber (say, it is inhomogeneous and p-periodic in
the x direction), the above methods can be applied to a P-polarized plane wave; however,
the gradient of δε = δε(x) is no longer perpendicular to E. More explicitly, the P-polarized
incident field is of the following form

E[0](x, z) =

cos θ
0

sin θ

 eikx,0x−ikz,0z,

and the electric field interacting with the absorber is then Bloch periodic:

E(x, z) =
∞∑

n=−∞

vneikx,nx−ikz,nz

where vn is a vector sequence whose second component is zero;
The resulting equation for the perturbation field δE is of the form

∇×∇× δE − k2
0δE = ω2µ0 δEE

and the solution can be represented by the vector Green’s function (as shown in the ap-
pendix).

12



The numerical simulation is shown in figure 8, 9 and 10. By the profiles of the total fields
in the x and z directions compared with FEM, we know the sliced Born method gives quite
accurate results. The error can be observed numerically in figure 10. The calculated fields
Ex and Ez differ from the FEM solution by 10% and 3.5%, respectively, of the incident field
amplitude. The greatest error occurs at the edges of the absorber.

Figure 8: Agreement between FEM and sliced-Born with the reflector on Ex component.

Figure 9: Agreement between FEM and sliced-Born with the reflector on Ez component.
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Figure 10: The comparison between FEM and sliced-Borm at the top of the absorber, for
component Ex (left) and Ey (right) respectively. The largest relative error (≈ 10%) occurs
at the edge (x = −40nm) of the absorber.
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A Appendix

A.1 Helmholtz Equations for Time Harmonic Maxwell Equations

Let’s begin with the free space time-harmonic Maxwell equation with a current source J :

∇×E = iωµ0H (23)

∇×H = −iωε0E + J (24)

where ε0 = 8.85×10−3[F/nm] and µ0 are constant permittivity and permeability in vacuum.
Taking divergence of (23) gives ∇ ·H = 0, and thus

H = ∇×A (25)

where A is a vector potential, and (23) yields ∇× (E − iωµ0A) = 0, or equivalently

E − iωµ0A = −∇φ (26)

for some scalar potential φ. Note that (A, φ) determines (E,H).
Now take the curl of (24):

∇×H = ∇×∇×A = ∇(∇ ·A)−∆A

= −iωε0(iωµ0A−∇φ) + J .

By rearranging the terms and imposing the Gauge condition

∇ ·A− iωε0φ = 0 (27)

we have

(∆ + k2
0)A = −J (28)

By taking divergence on (26), we see that

∇ ·E − iωµ0∇ ·A = −∆φ

By (27) and taking ∇· on (24), it gives

(∆ + k2
0)φ = −∇ ·E = −∇ · J

iωε0
(29)

Equations (28) and (29) are Helmholtz equations, whose solution can be represented by
the Green’s function

A(x) =

∫
g(x,x′)J(x′) dx′

φ(x) =
1

iωε0

∫
g(x,x′)∇′ · J(x′) dx′

15



where g(x,x′) = g(x− x′) is the Green’s function for free space Helmholtz equation

(∆ + k2
0)g = −δ

Once A and φ are solved, E and H are solved by their definition (26), (25). Note that, by
the divergence theorem and the relation ∇′g(x,x′) = −∇g(x,x′), we have

∇
∫
g(x,x′)∇′ · J(x′) dx′ = −∇

∫
(∇′g(x,x′)) · J(x′) dx′ = +∇

∫
∇g(x,x′) · J(x) dx′

So we have

E(x) = iωµ0

∫ [(
I +
∇∇
k2

0

)
g(x,x′)

]
J(x′) dx′ (30)

H(x) =

∫
[∇g(x,x′)×]J(x′) dx′. (31)

A.2 Green’s Function for 1D Helmholtz Equation

The 1D Helmholtz Equation is indeed an ODE, and the Green’s function satisfies

d2

dz2
g + k2g = −δ(z)

The solution g is

g(z) =
eik|z |

−2ik

(One may check d
dz
|z | = sgn(z), d

dz
sgn(z) = 2δ(z), and d

dz
g = sgn(z)

−2
eik|z |, d2

dz2
g = −δ(z) +

ik
−2

eik|z |.)

A.3 Green’s Function for 3D Helmholtz Equation

Now consider ∆g + k2
0g = −δ(x). To solve this, by taking Fourier transform w.r.t x and y

to the equation, it leads to

(∆ + k2
0)

∫∫
eikxx+ikyyĝ(kx, ky, z) dkx dky = −δ(z)

∫∫
eikxx+ikyy

4π2
dkx dky

or equivalently
∂2

∂z2
ĝ + k2

z ĝ = −δ(z)

4π2
k2
z = k2

0 − k2
x − k2

y

By Green’s function in 1D, we know ĝ(kx, ky, z) = eikz |z |
−2ikz

, and thus

g(x) =

∫∫
eikxx+ikyy+ikz |z |

−8π2ikz
dkx dky =

eik0‖x‖

4π ‖x‖
kz =

√
k2

0 − k2
x − k2

y

‖x‖ =
√
x2 + y2 + z2

16



A.4 The Vector Green’s Function

The Green’s matrix G(x,x′) =
[(
I + ∇∇

k20

)
g(x,x′)

]
for (30) has the Fourier integral repre-

sentation

G(x,x′) = −
∫∫

R2

ei(kx(x−x′)+ky(y−y′)+kz |z−z′ |)

8π2ikz
dkx dky

where kz =
√
k2

0 − k2
x − k2

y and

K =


1− k2

x

k2
0

−kxky
k20

−kxkz
k20

sgn(z − z′)

−kxky
k2

0

1− k2y
k20

−kykz
k20

sgn(z − z′)

−kxkz
k2

0

sgn(z − z′) −kykz
k20

sgn(z − z′) 1− k2z
k20

+ 2ikz
k2
δ(z − z′)


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