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Abstract. A novel adaptive approach to compute the eigenenergies and eigenfunc-
tions of the two-particle (electron-hole) Schrödinger equation including Coulomb at-
traction is presented. As an example, we analyze the energetically lowest exciton
state of a thin one-dimensional semiconductor quantum wire in the presence of dis-
order which arises from the non-smooth interface between the wire and surrounding
material. The eigenvalues of the corresponding Schrödinger equation, i.e., the one-
dimensional exciton Wannier equation with disorder, correspond to the energies of
excitons in the quantum wire. The wavefunctions, in turn, provide information on the
optical properties of the wire.
We reformulate the problem of two interacting particles that both can move in one
dimension as a stationary eigenvalue problem with two spacial dimensions in an ap-
propriate weak form whose bilinear form is arranged to be symmetric, continuous,
and coercive. The disorder of the wire is modelled by adding a potential in the Hamil-
tonian which is generated by normally distributed random numbers. The numerical
solution of this problem is based on adaptive wavelets. Our scheme allows for a con-
vergence proof of the resulting scheme together with complexity estimates. Numerical
examples demonstrate the behavior of the smallest eigenvalue, the ground state ener-
gies of the exciton, together with the eigenstates depending on the strength and spatial
correlation of disorder.
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1 Introduction

Semiconductors and semiconductor nanostructures, e.g., wells, wires, and dots, play a
prominent role in modern technology: computer chips are based on their electronic prop-
erties; the optical and optoelectronic properties of semiconductors are exploited in solar
cells, light emitting diodes, and lasers, and, furthermore, future applications in the area of
quantum communications and computing are expected to be within reach of current tech-
nology [3,12,17,24]. In this paper, we consider thin semiconductor quantum wires which
are essentially one-dimensional systems, see Figure 1. This approximation is appropriate
if the diameter is much smaller than the intrinsic electronic length scale of the problem
which is the exciton Bohr radius since we study the optical absorption close to the funda-
mental band gap. By optical excitation, one generates an electron-hole pair whose states
are described by a two-particle time-dependent Schrödinger equation. Due to the un-
avoidable imperfections during the growth of such structures, the interface between the
wire and the surrounding material cannot be considered to be perfectly smooth. We call
this a disordered quantum wire and model it by an additional disorder potential in the
Hamiltonian describing the spatial variation of the electron and hole energies. Thus, we
analyze a model with diagonal disorder [2, 36], which has recently been used to study
linear and nonlinear optical properties of semiconductor nanostructures together with a
tight-binding model, see, e.g., [14, 22, 24, 27]. From this, we formulate a stationary eigen-
value problem in two spatial dimensions describing the two interacting one-dimensional
particles.

For the numerical solution, we seek for a highly efficient method, i.e., employing
degrees of freedom for the computation and representation of eigenenergies and eigen-
states only where actually needed. This paradigm has, from a numerical point of view,
triggered much more substantial advancements in highly accurate simulations than in-
creased computer power and larger storage systems. Thus, for us, it is indispensable
to utilize a) an adaptive method which introduces during the computation and depend-
ing on the residuals of the operator equation and singularities of the problem additional
degrees of freedom according to a user-specified accuracy. In view of extensions to quan-
tum films and a resulting partial differential operator in four space dimensions to be
considered at a later stage, we want to ensure that our method could b) systematically
be adapted to higher spatial dimensions. In addition, it is important to us to c) be able
to prove convergence of the numerical method. This means that an addition of degrees
of freedom provably reduces the numerical error. Lastly, we want to assure that d) our
method provides optimal computational complexity. This means that the algorithm has an
optimal work/accuracy balance, in a sense specified below.

In view of all of these requests, for the numerical solution of the eigenvalue prob-
lem, adaptive methods based on finite elements like in [23], finite differences or spectral
methods are excluded. Our method of choice are adaptive wavelets for which conver-
gence and complexity results can be expected, in view of the paradigm of an adaptive
wavelet method for stationary linear variational partial differential equations. These re-
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sults were developed firstly in [5]. Recall that wavelets provide a Riesz basis for a whole
range of Sobolev spaces, allowing us to represent functions belonging to these spaces as
infinite vectors, i.e., their coefficients in a wavelet expansion. Similarly, operator equa-
tions defined on Hilbert spaces can be represented in terms of infinite vectors. Thus,
initially, one can stay as close as possible to the functional analytic formulation of the
problem. Moreover, an appropriate scaling of wavelet coefficient vectors ensures well-
conditioned systems in the `2 topology, thereby ensuring fast convergence of iterative
methods. Now computational routines can be developed which mimic the application of
biinfinite linear operators. It is characteristic for this approach that the adaptive scheme
is solely governed by the desired final accuracy; any a–priori user–selected finest level
of resolution is not required. This strategy not only ensures convergence of the adap-
tive scheme: one is able to prove optimal complexity of the solution when compared to
its wavelet-best N-term approximation. This means the following: if the exact solution
was known, one could ask for the best possible approximation with a prescribed number
of degrees of freedom N. Given the regularity of the solution in certain Besov spaces
which are much larger smoothness classes than Sobolev spaces and which allow, e.g.,
for isolated singularities, one can prove that the wavelet–best N–approximation can be
achieved with a rate depending on this regularity. Moreover, the method exhibits an op-
timal work/accuracy balance meaning that the amount of arithmetic operations to compute
the solution is proportional to N. For general surveys on the application of wavelets to
operator equations, we refer to [4, 8], and to [11] for the newest state of research on this
topic. For the time-dependent Schrödinger equation, a collocation method on uniform
grids employing Daubechies’ orthogonal scaling functions has been proposed recently,
see [35] and the original article it refers to.

The idea of solving eigenvalue problems with a linear elliptic operator employing
adaptive wavelets has been proposed in [9] together with a convergence proof and com-
plexity estimates. Here we follow to some extent an improved version of the algorithm
from [31]. For many details concerning the material in this paper, we refer to [26], see
also [21].

The remainder of this paper is organized as follows. In the next section, we describe
the physical model. We derive the resulting eigenvalue problem in a weak form in Sec-
tion 3 and show boundedness and coercivity of an appropriately shifted bilinear form.
Moreover, we prove a certain decay property of the involved operators which later allow
the approximate application of the operators in wavelet coordinates. The necessary in-
gredients of wavelets are collected in Section 4 which are then applied to the eigenvalue
problem in Section 5. Section 6 contains various numerical results. We conclude in Sec-
tion 7 with a short summary and some outlook. In the future, we plan to extend our
adaptive approach to be applicable to multi-scale time-dependent problems.
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2 The Physical Model

The descriptions in this section concerning semiconductor nanostructures and their prop-
erties are only very rough since we wish to focus on the numerical solution scheme. Thus,
the model introduced here shall only serve as a model problem. For extensive and de-
tailed information and further problem formulations concerning optical and electrical
properties of semiconductors, we refer to [17, 24, 27].

We consider a disordered semiconductor quantum wire, see Figure 1. This is essen-
tially a one-dimensional semiconductor nanostructure which is made of two semiconduc-
tor materials with different band gaps such that the free electron motion is confined to one
space dimensions. The wire consists of the semiconductor material SCM1 and the direct
neighborhood of the other semiconductor material SCM2. In this neighborhood, there is
a higher potential implying that the electrons can only move in the one-dimensional hor-
izontal direction since they cannot leave the semiconductor material SCM1. Because of
production restrictions, one cannot assume that the interface between the two semicon-
ductors is perfectly plain or smooth. These fluctuations of the interface are called disorder
and lead to a disorder potential on the interface. The physical effect of optical absorption

SCM2

SCM2

SCM1−+

Figure 1: Schematical drawing of a semiconductor quantum wire. The wire itself consists
of a semiconductor material SCM1 which is surrounded by another semiconductor ma-
terial SCM2 which has a higher band gap than SCM1. As a result, the electron (yellow)
and the hole (red) can move in one dimension only.

in semiconductors can be explained with the aid of a so–called energy band model. Here,
we restrict our analysis to a two band model and include one valence band and one con-
duction band in our analysis. Between these two bands there is a valence-conduction band
gap of width Eg =Ec−Ev where Ev is the highest possible energy in the valence band and
Ec the lowest energy in the conduction band. If the valence band is completely filled and
the conduction band is empty, no current is flowing if a weak static electric field is ap-
plied. This state is the ground state, i.e., the state with the smallest energy of the system,
of the intrinsic (undoped) semiconductor.

The effect described next is utilized for power generation with the aid of, e.g., solar
cells. An optical excitation by light of a frequency ω with h̄ω > Eg causes an increase
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of energy of an electron in the valence band and lifts it over the energy gap into the
conduction band, thereby causing an interband transition. Here h̄ = 1,054×10−34 Js =
6,582×10−16 eVs is Planck’s constant. Consequently, the conduction band is no longer
empty: there is a movable electron inside. Because the electron is no longer located in the
valence band, a so–called hole has been created at this position. This hole may be viewed
as an imaginary positively charged particle which explains the attraction between the
electron and the hole. This process is called electron-hole pair generation. A bound electron-
hole pair is also called exciton.

The main difference between a semiconductor, an insulator and a metal is the value
of the factor Eg. In an insulator, this energy gap is very high such that, in principle, an
electron cannot jump over this gap. In a metal, this gap does not exist or is close to zero.
Since there is no explicit value of the energy gap Eg which clearly classifies materials, one
usually does not distinguish between semiconductors and insulators.

The model yields a time-dependent two-particle Schrödinger equation with an optical
excitation, i.e.,

ih̄ ∂
∂t p(xe,xh,t) =

(
Eg+ Ĥkin+ Ĥattr+ Ĥdis

)
p(xe,xh,t) (2.1)

−µ̂E(xh,t)δ(xe−xh),

which describes the (complex-valued) state function p(xe,xh,t) of the electron-hole pair.
Here

Ĥkin :=− h̄2

2m∗e
∂2

∂x2
e
− h̄2

2m∗h
∂2

∂x2
h

(2.2)

denotes the Hamiltonian operator of two free particles,

Ĥattr :=
−e2

4πε̂0 ε̂r
(
min{|xe−xh|,|xe−xh±L|}+γ̂R̂

) (2.3)

describes the electron-hole attraction and

Ĥdis =Vdis,e (xe)+Vdis,h (xh) (2.4)

models the disorder of the interface of the wire which will be specified below in (2.8).
The term

−µE(xh,t)δ(xe−xh) (2.5)

describes the optical excitation where the Dirac delta δ(x) models the excitation and
E(xh,t) denotes the function of the electric field of the optical excitation, i.e., the elec-
tric field of the incident light. In (2.2), m∗e is the effective mass of an electron and m∗h
the effective mass of a hole. Moreoever, in (2.3), e = 1e = 1,602×10−19 C is the elemen-
tary charge, ε̂0 = 8,854×10−12 C

Vm is the electric constant or vacuum permittivity, ε̂r the
relative permittivity and γ̂R̂ a regularization parameter. In (2.5), µ̂ denotes the optical
dipole-matrix-element. The length L>0 of the quantum wire appearing in (2.3) and also
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its diameter which in turn defines the regularization parameter γ̂R̂ is determined by the
type of wire.

The electronic Schrödinger equation (2.1) is a (complex-valued) partial differential
equation (PDE) formulated over a domain (0,L)2× I where I := [t0,T̂]⊆R denotes the
time interval with fixed initial time t0 and (flexible) end time T̂. We equip the PDE (2.1)
with periodic boundary conditions

p(0,xh,t) = p(L,xh,t), for all xh∈ [0,L], t∈ I, (2.6)
p(xe,0,t) = p(xe,L,t), for all xe∈ [0,L], t∈ I,

and the same for the first derivatives of p, and zero initial conditions

p(xe,xh,t0)=0 for all (xe,xh)∈ (0,L)2. (2.7)

The minimum in Ĥattr reflects the periodic model for the Schrödinger equation since the
Coulomb interaction is determined by the smallest distance |xe−xh| or |xe−xh±L|. In
many cases, one has a homogeneous optical excitation such that the electric field only
depends on time, i.e., E(xh,t) simplifies to E(t). This is the case, for example, when
E(t)∼exp(−(t/τ̂)2) with a constant parameter τ̂∈R.

In the case of an ideal wire, i.e., a quantum wire with a completely straight interface,
the expression Ĥdis vanishes. However, due to production processes involving a random
disorder of the interface with the surrounding material, we have to deal with a non-ideal
wire. The potential functions Vdis,h and Vdis,e appearing in (2.4) may therefore be assumed
to be a periodic potential function on (0,L) or, more realistically, may be modelled as a
stochastic perturbation on (0,L). This we describe using a piecewise constant function
with randomly chosen step heights,

Vdis,e(xe) :=
M

∑
i=1

Randis,e(i)Char[(i−1) L
M ,i L

M )(xe), (2.8)

where Char Î(xe) :=1 for xe∈ Î and zero otherwise denotes the characteristic function on
an interval Î and M is the number of steps. Furthermore, Randis,e(i)∼N (0,σ2) for all i∈N

are the corresponding randomly chosen step heights, that is, Randis,e(i) is for each i∈N a
normally distributed random number with expectation zero and variance σ2. Expectation
zero states that the fluctuations of the interface are uniform in the sense that the average
deviation of the thickness with respect to the ideal wire with the corresponding energy
gap Eg is zero. Moreover, the size of the variance describes the amount of the probability
for large deviations, meaning that the variance is a quantity for the size of the stochastic
perturbation. One can also use a moving or sliding average of the data set.

The explicit realization of the disorder potentials, that is, of the random numbers, is
performed for our numerical experiments following the recipes provided in [30], see [26]
for details: first we generate uniformly distributed random numbers on the interval
(0,1) using Marsaglia’s 64-bit Xorshift random number generator in combination with
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a multiply-with-carry and a linear congruential random number generator. The authors
of [30] call this combination “our suspender-and-belt, full-body-armor, never-any-doubt
generator”. We have employed this up-to-date perhaps most sophisticated choice since
we wanted to assure that the randomness of the wire interfaces resembles to a high
amount the actual production process. Afterwards, we employ the Box-Muller method to
derive standard normally distributed random numbers with expectation zero and vari-
ance one. Finally, multiplying these numbers by σ yields normally distributed random
numbers ∼N (0,σ2).

The disorder potential for the hole Vdis,h(xh) can be chosen analogously, or it can be
defined as Vdis,h(xh) := m∗e

m∗h
Vdis,e(xe) which means that one only has to generate one of the

disorder potentials. This so-called correlated disorder will be employed in the sequel.

3 The Eigenvalue Problem

3.1 Classical Formulation

Next we formulate the PDE (2.1) as an eigenvalue problem using a standard separation
of variables approach; its detailed derivation can be found in [26].

Proposition 3.1. Consider the time independent part of the Hamiltonian and assume that
the state function p(xe,xh,t) can be expressed as a product

p(xe,xh,t)= X(x)T(t), x :=(xe,xh)T, (3.1)

for all (x,t) ∈ (0,L)2× I. Then the instationary Schrödinger equation (2.1) implies the
stationary eigenvalue equation

ÊX(x)= ĤX(x), x∈ (0,L)2, (3.2)

where Ê∈C is constant and the Hamilton operator

Ĥ := Eg+ Ĥkin+ Ĥattr+ Ĥdis (3.3)

is the time independent part of the Schrödinger equation (2.1).

Note that we can write Ĥ(X(x))= ĤX(x) since Ĥ is a linear operator. The eigenval-
ues of (3.2) can be interpreted as the energy of the system in the state described by the
state function, i.e., the energy of the electron-hole pair. Physically relevant are the lowest
energies, that means, the smallest eigenvalues. Moreover, the probability density is given
by |X(x)|2. These quantities are interesting from a quantum-physical point of view: with
their aid, one can determine the probability to find an exciton with a certain energy given
by the eigenvalues of (3.2) in a certain area of the quantum wire.

At this point, we would like to mention that it is possible to express the time-
dependent solution p(x,t) in terms of a sum over the the eigenfunctions X(x) multi-
plied with coefficients and the corresponding time-dependent oscillatory exponential,
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see [17]. In the following, we will restrict ourselves to compute the smallest eigenvalues
and the corresponding eigenfunctions of the eigenvalue problem with periodic boundary
conditions(3.2). Extensions, i.e., the computatation of energetically higher eigenfunctions
are possible if one projects out the space spanned by the energetically lower eigenfunc-
tions.

In [26], the stationary eigenvalue problem (3.2) was rewritten into (Hartree) atomic
units. In these units, the length is expressed in terms of the Bohr radius with respect to a
hydrogen atom a0 =5,292×10−11 m and the energy in terms of the corresponding Hartree
Energy Eh =4,360×10−18 J.

3.2 Weak Formulation

Our numerical solution will be based on an appropriate weak form of (3.2). Recall from,
e.g., [10] that weak or variational forms involving elliptic PDE operators typically require
less smoothness of the solution than the classical strong form (3.2) in order to establish
convergence results of discretizations. Following [34], we can, in particular, for the weak
form derive properties on the spectrum of operators defined via the bilinear form (3.7)
below which will be essential for the solution scheme employed later.

In view of the periodic boundary conditions (2.6) of the problem (3.2), we will em-
ploy as test and trial spaces a periodic Sobolev space using the space C∞

per([0,L]2) of
infinitely many times differentiable functions which are periodic on [0,L]2, that is, all
their derivatives at 0 coincide with the derivatives at L in each variable. We then de-
fine the periodic Sobolev space of order one as the closure of this space with respect to the
norm of the classical Sobolev space H1(Ω) on the domain Ω := (0,L)2, i.e., H1

per(Ω) :=
clos‖·‖H1(Ω)

(C∞
per(Ω)). Recall from, e.g., [1] on detailed definitions and information on

Sobolev spaces that this is equivalent to defining H1
per(Ω) := {v ∈ H1(Ω) : v(0,xh) =

v(L,xh) for all xh∈ [0,L] and v(xe,0)= v(xe,L) for all xe∈ [0,L]} (considering equalities in
the sense of traces). Using these spaces, problem (3.2) subject to (2.6) can be expressed in
the following weak form: find u∈H1

per(Ω) and Ê∈C such that

â(u,v)= Ê(u,v)L2(Ω) for all v∈H1
per(Ω), (3.4)

where (u,v)L2(Ω) :=
∫

Ω u(x)v(x)dx is the standard inner product for the Lebesgue
space L2(Ω) with Lebesgue measure dx and inducing the L2(Ω)-norm ‖v‖2

L2(Ω) :=∫
Ω v(x)v(x)dx. Moreover, â : H1

per(Ω)×H1
per(Ω)→R is the bilinear form defined by

â(u,v) := Eg (u,v)L2(Ω)

+ h̄2

2m∗e
( ∂

∂xe
u, ∂

∂xe
v)L2(Ω)+ h̄2

2m∗h
( ∂

∂xh
u, ∂

∂xh
v)L2(Ω) (3.5)

−
∫

Ω

e2

4πε̂0 ε̂r(min{|xe−xh|,|xe−xh±L|}+γ̂R̂) u(x)v(x)dx
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+
M

∑
i=1

Randis,e(i)
∫ L

0

∫ i L
M

(i−1) L
M

u(x)v(x)dxe dxh

+
M

∑
i=1

Randis,h(i)
∫ i L

M

(i−1) L
M

∫ L

0
u(x)v(x)dxe dxh.

In order to derive that the spectrum of the operator in (3.4) is strictly positive which
is a comfortable property for solving (3.4), one condition requires that the bilinear form
â(·,·) is coercive on H1

per(Ω) which it is not in this form. However, we can achieve this by
shifting both sides of (3.4) as follows: problem (3.4) is equivalent to the problem to find
u∈H1

per(Ω) and Ê∈C such that

a(u,v)=(Ê+Es)(u,v)L2(Ω) for all v∈H1
per(Ω), (3.6)

with
a(u,v) := â(u,v)+Es (u,v)L2(Ω) (3.7)

with a constant shift parameter Es∈R chosen such that

Es >−min
{

Eg,− e2

4πε̂0 ε̂r γ̂R̂
, min
i=1,...,M

{Randis,e(i),Randis,h(i)}
}

>0. (3.8)

Then we can establish the following theoretical result whose proof also reveals the choice
of the shift (3.8).

Theorem 3.2. For a fixed given realization of the random terms Randis,e and Randis,h, the bilinear
form a(·,·) defined in (3.7) is symmetric, bounded and coercive on H1

per(Ω): there exist some
constants 0< cA≤CA <∞ such that

a(u,v) ≤ CA‖u‖H1
per(Ω)‖v‖H1

per(Ω), u,v∈H1
per(Ω), (3.9)

a(u,u) ≥ cA‖u‖2
H1

per(Ω), u∈H1
per(Ω), (3.10)

employing ‖v‖2
H1

per(Ω) :=(v,v)L2(Ω)+(∇v,∇v)L2(Ω).

Proof. For a fixed given realization of the random terms Randis,e and Randis,h, we imme-
diately see by inspection that a(u,v)= a(v,u) for all u,v∈H1

per(Ω).
The boundedness of a(·,·) can be shown by estimating each term in a straightforward

fashion. First observe that

−
∫

Ω

e2 u(xe,xh)v(xe,xh)
4πε̂0 ε̂r

(
min{|xe−xh|,|xe−xh±L|}+γ̂R̂

)dx

≤− e2

4πε̂0 ε̂r(L/2+γ̂R̂)

∫
Ω

u(xe,xh)v(xe,xh)dx

≤
∫

Ω
u(xe,xh)v(xe,xh)dx (3.11)
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since minxe,xh∈(0,L){|xe−xh|,|xe−xh±L|}≤ L/2 and ε̂, ε̂0, L, γ̂R̂>0. Next, for a fixed real-
ization of Randis,e and Randis,h, we have

∫
Ω

M

∑
i=1

Randis,e(i)Char[(i−1) L
M ,i L

M )(xe)u(xe,xh)v(xe,xh)dx

≤ max
i=1,...,M

{Randis,e(i)}
∫

Ω
u(xe,xh)v(xe,xh)dx. (3.12)

In view of the definition (3.7) and putting (3.11), (3.12) together, we arrive at

a(u,v) = â(u,v)+Es (u,v)L2(Ω)

≤ max
{

Eg, h̄2

2m∗e
, h̄2

2m∗e
, max
i=1,...,M

{|Randis,e(i)|,|Randis,h(i)|},1
}

×
∫

Ω
(4uv+( ∂

∂xe
u)( ∂

∂xe
v)+( ∂

∂xh
u)( ∂

∂xh
v))dx+Es (u,v)L2(Ω)

.
∫

Ω
(uv+∇u·∇v)dx=(u,v)H1

per(Ω)≤‖u‖H1
per(Ω)‖v‖H1

per(Ω)

i.e., the bilinear form is bounded (3.9) for any u,v∈H1
per(Ω). Here we have omitted for

better readability the dependencies in u=u(xe,xh), v=v(xe,xh), and the abbreviation b.c
means that b can be bounded from above by a constant multiple of c.

As for the coercivity, we first estimate the unshifted bilinear form â(·,·) defined in
(3.5) from below. To this end, observe that

−
∫

Ω

e2 u(xe,xh)2

4πε̂0 ε̂r
(
min{|xe−xh|,|xe−xh±L|}+γ̂R̂

) dx

≥− e2

4πε̂0 ε̂rγ̂R̂

∫
Ω

u(xe,xh)2 dx

since min{|xe−xh|,|xe−xh±L|}+γ̂R̂≥0. Thus, we obtain

â(u,u) ≥ min
{

Eg,− e2

4πε̂0 ε̂rγ̂R̂
, min
i=1,...,M

{Randis,e(i),Randis,h(i)}
}

×
∫

Ω
4u2dx+min

{
h̄2

2m∗e
, h̄2

2m∗e

}∫
Ω

(
( ∂

∂xe
u)2+( ∂

∂xh
u)2
)

dx

≥ min
{

Eg,− e2

4πε̂0 ε̂r+γ̂R̂
, h̄2

2m∗e
, h̄2

2m∗h
, min
i=1,...,M

{Randis,e(i),Randis,h(i)}
}

×
∫

Ω
(4u2+( ∂

∂xe
u)2+( ∂

∂xh
u)2)dx.

We see here that the constant bounding â(·,·) from below is negative so that the bilinear
form â(·,·) is not coercive. Such kind of estimates with a possibly negative constant with
respect to the L2(Ω)-norm are also considered in a slightly different context of PDEs in
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connection with the Gårding inequality, see e.g., [15] from which we borrow the follow-
ing idea. We reformulate the corresponding eigenvalue problem by shifting the left and
right hand side by a suitable constant times (u,v)L2(Ω). To this end, note that the eigen-
value problem (3.4) is equivalent to the eigenvalue problem (3.6) with a constant shift
parameter Es∈R. Therefore, shifting â(·,·) with a fixed constant Es such that Es satisfies
(3.8) yields

a(u,u) = â(u,u)+Es(u,u)L2(Ω)

≥
(

min
{

Eg,− e2

4πε̂0 ε̂r γ̂R̂
, min
i=1,...,M

{Randis,e(i),Randis,h(i)}
}

+Es

)
×
∫

Ω
4u2dx+min

{
h̄2

2m∗e
, h̄2

2m∗h

}∫
Ω

(
( ∂

∂xe
u)2+( ∂

∂xh
u)2
)

dx

≥ C
∫

Ω

(
4u2+( ∂

∂xh
u)2
)

dx

&
∫

Ω
(u2+(∇u)2)dx=‖u‖2

H1(Ω),

where the involved constant C>0 is defined as

C :=min{c1,c2}>0

with

c1 :=min
{

Eg,− e2

4πε̂0 ε̂r γ̂R̂
, min
i=1,···,M

{Randis,e(i),Randis,h(i)}
}

+Es (3.13)

and
c2 :=min

{
h̄2

2m∗e
, h̄2

2m∗h

}
. (3.14)

Thus, the bilinear form a(·,·) with respect to the reformulated eigenvalue problem (3.6)
is now coercive on H1

per(Ω). �

The appearing function spaces are chosen such that we have the Gelfand triple

H1
per(Ω) ↪→L2(Ω)∼=(L2(Ω))′ ↪→H−1

per(Ω), (3.15)

where ↪→means continuous embedding, i.e., there exists a constant ce >0 such that

‖v‖L2(Ω)≤ ce‖v‖H1(Ω) for any v∈H1(Ω), (3.16)

and the pivot space L2(Ω) is identified with its dual (L2(Ω))′. Even stronger, the em-
bedding H1

per(Ω) ↪→ L2(Ω) can be shown to be compact [1]. Together with the fact that,
according to Theorem 3.2, the bilinear form a(·,·) defined in (3.7) is symmetric, bounded
and coercive on H1(Ω), we can conclude the following result [34].

Corollary 3.3. All eigenvalues of a(·,·) are real, strictly positive and bounded from below
by ca/c2

e > 0. Moreover, the lower part of the spectrum is discrete, meaning that it is a
set of isolated eigenvalues of finite multiplicity, and all other eigenvalues accumulate at
infinity.
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The following result is an immediate consequence of Riesz’ representation theorem
together with the definition of operator norms, see, e.g., [15].

Corollary 3.4. The bilinear form a(·,·) uniquely defines a linear operator A : H1
per(Ω)→

(H1
per(Ω))′ by 〈Au,v〉 := a(u,v) for u,v ∈ H1

per(Ω) where 〈·,·〉 denotes the dual pairing
between the topological dual H−1

per(Ω) of H1
per(Ω) and H1

per(Ω). Moreover, the operator
A is self-adjoint, bounded and positive on H1

per(Ω) with the same constants cA and CA
from (3.9), (3.10) so that A satisfies the mapping property

cA‖u‖H1
per(Ω)≤‖Au‖H−1

per(Ω)≤CA‖u‖H1
per(Ω) for any u∈H1

per(Ω), (3.17)

i.e., A is boundedly invertible, written shortly as

‖Au‖H−1
per(Ω)∼‖u‖H1

per(Ω) for any u∈H1
per(Ω). (3.18)

Next we briefly derive a suitable operator form of (3.6). By Riesz’ representation the-
orem, the inner product (·,·)L2(Ω) also uniquely defines a linear operator R : L2(Ω)→
(L2(Ω))′ by 〈Ru,v〉 := (u,v)L2(Ω) for u,v ∈ L2(Ω) (with the corresponding dual form)
called a Riesz operator. For an appropriate operator form of (3.6), we need the restric-
tion R|H1

per(Ω) : H1
per(Ω)→H−1

per(Ω). Due to the continuous embedding (3.16), R|H1
per(Ω) is

bounded as an operator defined on R|H1
per(Ω) with values in H−1

per(Ω) as well. For simplic-
ity, we denote the restriction R|H1

per(Ω) again by R.
In the following, we will use capital letters to denote operators like A,R, and we

exchange the letter denoting the eigenvalue Ê in (3.2) by µ. We can formulate the (weak)
eigenvalue problem (3.6) in terms of operators as follows: find the smallest eigenvalue
µ∈C and corresponding eigenfunction u∈H1

per(Ω)\{0} such that

Au=µRu. (3.19)

The eigenvalue solution scheme in [31] is formulated for this operator equation on infinite
Hilbert spaces. Our explicit realization of this method will be expressed below in terms
of wavelets in Section 4.2.

4 Wavelets

4.1 Basic Properties

We shall assume that for the underlying Hilbert space H := H1
per(Ω) we have at our dis-

posal a collection of functions, a wavelet basis,

Ψ={ψλ : λ∈I}⊂H (4.1)

with the following properties. I is an infinite index set whose elements λ represent in-
dices (j,k,e) where j := |λ| stands for a scale of resolution or refinement level, k denotes
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the spatial location and e classifies the type of (tensor-product) basic wavelet. Instead
of giving technical details of the actual constructions of biorthogonal spline-wavelets on
periodic domains from [8] employed here, we collect only those properties which are
relevant in the present context:
Locality (L): The functions ψλ are local; the widths of their support decrease with grow-
ing discretization level |λ|,

diam(suppψλ) ∼ 2−|λ|. (4.2)

Cancellation property (CanP): There exists an integer d̃ such that

〈v,ψλ〉 <∼ 2−|λ|(d̃+1) ess sup
x∈suppψλ

|v(d̃)(x)|, (4.3)

where v(d̃) denotes the weak d̃-th weak derivative of v. We say that Ψ has d̃ vanishing
moments: integration of v against a wavelet has the effect of taking an d̃-th order differ-
ence, annihilating the smooth part of v. It is this property which entails quasi–sparse
representations of a wide class of operators which is essential for a fast application of the
operators A and R in Section 5.2, see [6, 7].

To realize this property, one typically constructs Ψ in such a way that it possesses a
dual or biorthogonal basis Ψ̃⊂H′ such that the multiresolution spaces S̃j :=span{ψ̃λ : |λ|< j}
contain all polynomials of order d̃. Here dual basis means that 〈ψλ,ψ̃ν〉=δλ,ν, λ,ν∈I.

Riesz basis property (R): Every v∈H has a unique expansion in terms of Ψ,

v= ∑
λ∈I

vλ ψλ =: vT Ψ, v :=(vλ)λ∈I, (4.4)

and its expansion coefficients satisfy the following norm equivalence: There exist finite
positive constants cH,CH such that

cΨ‖v‖`2(I)≤‖vTΨ‖H≤CΨ‖v‖`2(I), v∈ `2(I) (4.5)

where ‖v‖`2(I) :=
(

∑λ∈`2(I) |vλ|2
)1/2

and `2(I) contains all infinite sequences of vectors
for which ‖v‖`2(I) < ∞. In other words, die Riesz basis property means that wavelet
expansions induce isomorphisms between certain function spaces and sequence spaces.
This is a crucial requirement for mimicking problem formulations in infinite spaces as we
intend to do to prepare for appropriate numerical schemes. Using duality arguments, one
can show that (4.5) is equivalent to the existence of a biorthogonal collection of functions

Ψ̃ :={ψ̃λ : λ∈I}⊂H′ such that 〈ψλ,ψ̃µ〉=δλ,µ, λ,µ∈I, (4.6)

which is a Riesz basis inH′, see, e.g., [8].
We will systematically use the following shorthand notation. We will view Ψ both

as in (4.1) as a collection of functions as well as an infinite column vector containing all
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functions, always assembled in some fixed order. For a countable collection of functions
Θ and some single function σ, the term 〈Θ,σ〉 is to be understood as the column vector
with entries 〈θ,σ〉, and 〈σ,Θ〉 as a row vector. For two collections Θ,Σ, the quantity
〈Θ,Σ〉 is then a possibly infinite matrix with entries (〈θ,σ〉)θ∈Θ, σ∈Σ for which 〈Θ,Σ〉=
〈Σ,Θ〉T. This implies for a possibly infinite matrix C that 〈CΘ,Σ〉=C〈Θ,Σ〉 and 〈Θ,CΣ〉=
〈Θ,Σ〉CT. In this notation, the expansion coefficients in (4.4) can explicitly be expressed
as vT = 〈v,Ψ̃〉. Moreover, the biorthogonality or duality conditions (4.6) can be reexpressed
as 〈Ψ,Ψ̃〉= I with the infinite identity matrix.

For a biinfinite matrix C : `2(I)→ `2(I), we denote its operator norm as

‖C‖ :=‖C‖`2(I)→`2(I) := sup
‖w‖`2(I)≤1

‖Cw‖`2(I). (4.7)

4.2 Wavelet Representation of Operators

Now we are ready to derive wavelet representations of operators in terms of the wavelet
basis Ψ with dual basis Ψ̃. Let A :H→H′ be the linear operator introduced in Corollary
3.4 and R : L2(Ω)→ (L2(Ω))′∼= L2(Ω) the Riesz operator defined before (3.19). We now
derive a wavelet representation for problem (3.19).

Any image Aw∈H′ can naturally be expanded with respect to Ψ̃ as Aw = 〈Aw,Ψ〉Ψ̃.
Representing w∈H in its expansion w =wTΨ with respect to Ψ and inserting this in the
previous expression yields

Aw=wT〈AΨ,Ψ〉Ψ̃=(〈Ψ,AΨ〉w)TΨ̃. (4.8)

Lemma 4.1. The wavelet representation of A :H→H′ with respect to the bases Ψ,Ψ̃ ofH,H′ is
given by

A := 〈Ψ,AΨ〉, Aw=(Aw)TΨ̃, (4.9)

i.e., the expansion coefficients of Aw are obtained by applying the biinfinite matrix A= 〈Ψ,AΨ〉
to the coefficient vector w of w. Moreover, A : `2(I)→ `2(I) is boundedly invertible, i.e.,

cAc2
Ψ‖v‖`2(I)≤‖Av‖`2(I)≤CAC2

Ψ‖v‖`2(I). (4.10)

Analogously, we obtain that R : `2(I)→ `2(I) defined by

R= 〈Ψ,RΨ〉 (4.11)

is symmetric positive definite and bounded; the latter follows from the continuous em-
bedding (3.16) by

(Rv,w)`2(I) = (v,w)L2(Ω)≤‖v‖L2(Ω)‖w‖L2(Ω)

≤ c2
e‖v‖H‖w‖H≤ c2

e C2
Ψ‖v‖`2(I)‖w‖`2(I). (4.12)

Since the inverse direction ‖v‖H . ‖v‖L2(Ω) in general does not hold, R is usually not
coercive. However, we can establish coercivity on a set where the Rayleigh quotient is
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bounded. In fact, if we assume the existence of a constant K∈R such that the Rayleigh
quotient satisfies

µ(v) :=
(Av,v)`2(I)

(Rv,v)`2(I)
≤K, (4.13)

then it follows that

(Rv,v)`2(I)≥
1
K

(Av,v)`2(I)≥
cAc2

Ψ
K
‖v‖2

`2(I). (4.14)

Thus, we have established the following result.

Lemma 4.2. If there exists a constant K ∈R such that (4.13) holds, the Riesz operator R in
wavelet coordinates is boundedly invertible with bounds provided by (4.12) and (4.14).

4.3 Compression of Operators in Wavelet Representation

An essential ingredient of the solution algorithm for (3.19) will be that the operators A
and R in terms of a wavelet basis derived from the bilinear form a(·,·) and (·,·)L2(Ω),
respectively, fulfil certain Lipschitz and compression properties, see [6] for a derivation
of the essential notions and [26] for details in the present context. The Lipschitz properties
for A, R follow immediately from the boundedness (4.10) and (4.12).

It was shown in [26] that for the situation at hand, it suffices for our problem (3.19) to
prove the following compression estimate for wavelets ψλ, λ∈ I (except for the coarsest
level consisting of generator functions indexed by Ij0).

Theorem 4.1. The entries of A, R satisfy

〈Aψν,ψλ〉.2−σ||λ|−|ν||, 〈Rψν,ψλ〉.2−σ||λ|−|ν|| (4.15)

with respect to the wavelet basis Ψ of H1
per(Ω), for all λ ∈ I\Ij0 and ν ∈ I with a parameter

σ > γ > 1 in order to obtain a suitable decay parameter γ > 1 in the compression according to
Assumption 2 in [7].

Proof. We briefly sketch the proof to bring out the main mechanisms. Firstly, A, R are
local operators meaning that 〈Au,v〉= a(u,v) = 0 for all u,v ∈ H1

per(Ω) as soon as the
interiors of the supports of u,v do not intersect, and correspondingly for R. To achieve
(4.15), we estimate Au in a possibly high Sobolev norm. For u∈Ht

per(Ω) and t≥ 2, one

has
∫

Ω( ∂
∂xe

u)( ∂
∂xe

v)dx =−∫Ω( ∂2

∂x2
e
u)vdx. Thus, for u∈H2

per(Ω), the operator A coincides

with the operator H :=Eg+Es+Ĥkin+Ĥattr+Ĥdis since 〈Au,v〉=(Hu,v)L2(Ω) and 〈Au,v〉=
(Au,v)L2(Ω) for all v∈L2(Ω) if Au∈L2(Ω)∼=(L2(Ω))′ by definition of the dual pairing in
terms of a Gelfand triple (3.15). Similar to the proof of (3.9) in Theorem 3.2, we can now
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estimate

‖Au‖L2(Ω) ≤ max
{

Eg+Es, h̄2

2m∗e
, h̄2

2m∗e
, max
i=1,...,M

{|Randis,e(i)|,|Randis,h(i)|},1
}

×
∫

Ω
(4u+ ∂2

∂x2
e
u+ ∂2

∂x2
h
u)2 dx

. ∑
|α|≤2
‖Dαu‖2

L2(Ω) =:‖u‖2
H2(Ω).

That means, by Remark 7.2 in [6], the compression property (4.15) for A is fulfilled with
σ=2>1 for a wavelet basis of H1

per(Ω) of the above form.
Analogously, we have to estimate Ru in a possibly high Sobolev norm. By the defi-

nition of R, one has for Hs+1
per (Ω) that ‖Ru‖Hs−1(Ω) = ‖u‖Hs−1(Ω) implying ‖Ru‖Hs−1(Ω).

‖u‖Hs+1(Ω) for all s∈N0. That is, again by Remark 7.2 in [6] the compression property
(4.15) with respect to R is fulfilled with σ = 2 > 1 depending on the regularity of the
wavelet basis of H1

per(Ω). Finally, by Proposition 5.5.5 in [26], we obtain a suitable decay
parameter γ>1. �

5 An Adaptive Wavelet Method for the Eigenvalue Problem

5.1 An Idealized Scheme in Infinite Wavelet Coordinates

Next we state a basic iteration scheme which is yet in an idealized form since it is still
in infinite wavelet coordinates. In view of the properties of A stated in Lemma 4.1, the
operator

P :=
cAc2

Ψ+CAC2
Ψ

2
I (5.1)

is a bijective and self-adjoint preconditioner for A such that

‖I−P−1A‖A≤$<1 (5.2)

where ‖v‖2
A :=(Av,v)`2(I) for v∈ `2(I) defines a norm on `2(I) and $ := CAC2

Ψ−cAc2
Ψ

CAC2
Ψ+cAc2

Ψ
. Now

we can state an idealized iteration in terms of operators in a perturbed realizable form.

Definition 5.1. Given an initial guess v(0) ∈ `2(I) with v(0) 6= 0, the perturbed precondi-
tioned inverse iteration (PPINVIT) generates a sequence of vectors (v(n))n≥0 and associated
Rayleigh quotients (µ(n))n≥0 by

v(n+1) = v(n)−P−1(Av(n)−µ(v(n))Rv(n))+ξ(n)

µ(n+1) = µ(v(n+1)),

where µ(v)=
(Av,v)`2(I)

(Rv,v)`2(I)
denotes the generalized Rayleigh quotient of v and (ξ(n))n≥0 are

perturbations with ξ(n)∈ `2(I) for all n≥0.
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This scheme is the one from [20] generalized to the situation of infinite matrices. In
principle, the convergence proof of PPINVIT can be found in [20] or [19] since it can be
generalized to the infinite case, cf. [31]. Details are provided in [21, 26].

5.2 The Perturbed Realizable Scheme

We are finally in the position to formulate our algorithm with approximations of A, R
defined as follows.

Definition 5.2. For Av and Rv we define its approximations Aε(v) and Rε(v) for any
v∈ `2(I) and ε>0 such that

‖Aε(v)−Av‖`2(I)≤ ε‖v‖`2(I), ‖Rε(v)−Rv‖`2(I)≤ ε‖v‖`2(I). (5.3)

Moreover, we define the resulting perturbed Rayleigh quotient as

µε(v) :=
(Aε(v),v)`2(I)

(Rε(v),v)`2(I)
. (5.4)

Note that this definition differs from the corresponding definition of the approxima-
tions in [31] in the way that we have the same norms on the right-hand side of the es-
timates above here. Obviously, this will result in slightly modified proofs of the corre-
sponding statements in [31].

The adaptive operator applications needed here are performed in the context of a
scheme APPLY on tree-structured index sets, see [6] for the theoretical development in-
volving nonlinear local operators. This has been implemented based on piecewise poly-
nomials in [33] for two-dimensional problems and in [28] for wavelets of tensor product
structure in arbitrary dimensions.

Our final realizable version of PPINVIT based on adaptive approximate operator
applications in wavelet discretization is now as follows, see [21, 26] for the problem-
dependent specifications of the constants c0,c2,c3. For a given user-specified tolerance
τ and input vector v, it outputs the eigenstate u.

Algorithm 5.1. PPINVIT(A,v,τ)→u
ε← c0
repeat

r←Aε(v)−µε(v)Rε(v)
ρ(v)←‖r‖P−1 /‖v‖P
if ε≤ c3ρ(v) then

v←v−P−1r
else

ε← ε/2
until (1−$)−1ρ(v)+2c2ε≤τ
return v.
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Concerning the convergence of Algorithm 5.1, our main result similar to the one in
[31] is the following [21, 26].

Theorem 5.2. For an arbitrary initial guess v(0) 6= 0 with corresponding Rayleigh quotient
µ(v)<µ2, Algorithm 5.1 has the following properties:

1. In each iteration step, the Rayleigh quotient decays like

µ′−µ1

µ2−µ′
≤q2 µ−µ1

µ2−µ
, q :=1−(1−γ̃)

µ2−µ1

µ2
<1, (5.5)

where µ,µ′ are the Rayleigh quotients of the vectors one iteration step earlier and later,
respectively, µ1,µ2 are the smallest and second smallest eigenvalues of A, and γ̃:=$+γξ<1
with γξ a constant bounding the perturbations ξ;

2. the residual ρ(v) decreases in each iteration step;

3. the accuracy ε is proportional to the residual ρ(v) in each step if ε is small enough;

4. the maximal accuracy ε needed for the approximate application of A and R remains bounded
by

ε&max{τ,ρ(v)};

5. the final output vector u fulfills ρ(u)≤τ.

It is very likely that Algorithm 5.1 is asymptotically optimal according to this notion
known in the wavelet context from, e.g., [5], if one uses the optimal application scheme
derived in [21,26]. The similarity of the PPINVIT scheme above with the GROW algorithm
from [13] in the context of partial differential equations and the numerical results in Sec-
tion 6 corroborate this assertion; in particular, it seems that we do not need an additional
coarsening of the iterands.

6 Numerical Results

The numerical results have been developed in [26] based on the AWM toolbox developed
in [33] for the adaptive wavelet part combined with the programs from [31] and the ma-
trix eigenvalue solver BLOPEX from [18].

Our setup is the following. We will employ periodized and isotropic tensorized scaled
B-spline wavelets of order d=2, i.e., consisting of continuous piecewise linear polynomi-
als, with vanishing moments d̃ = 2 as the underlying wavelet basis of H1

per((0,L)2). We
fix in each realization the constants

me∗
me

:=0.067,
mh∗
me

:=0.8, γ̂R̂ :=80a0, Eg :=0,
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(b) : Active Wavelets

Figure 2: Eigenfunction without disorder with respect to wire length L=15120a0 (left) and
used active wavelets after some PPINVIT iteration steps (right). Each dot corresponds to
the center of the support of a used wavelet. That is, more dots in one area correspond to
more used degrees of freedom in this area.

with a0 the Bohr radius. For the computations and the subsequent plots, we always
transform the problem onto the unit cube [0,1]2.

We set the shift in (3.8) to Es = 0.001 with respect to the calculations without dis-
order and possibly choose a larger shift when it comes to calculations with the disor-
der term, depending on the disorder potential itself. Moreover, we scale the eigenvalue
problem with a scaling factor 105 in order to scale the eigenvalues. That is, we consider
the eigenvalue problem of finding the smallest eigenvalue Ẽ and corresponding eigen-
function u∈H1

per((0,L)2) such that ã(u,v) = Ẽ (u,v)L2((0,L)2) for all v∈H1
per((0,L)2) with

ã(u,v) := 105[â(u,v)+0.001(u,v)L2((0,L)2)
]

and Ẽ = 105(Ê+0.001) from (3.6). Obviously,
the original eigenvalue can now be computed setting Ê=10−5 Ẽ−0.001.

Recall from Theorem 4.1 that the decay parameter γ for A,R which enters into the
APPLY scheme has been proven to staisfy γ < 2. However, this choice is much too pes-
simistic, as observed already in [33], so that we have also chosen γ=4 for the application
of A and R in the following.

The initial vector needs to be small enough in the sense that its Rayleigh quotient
needs to be smaller than the second smallest eigenvalue, i.e., µ(v(0))<µ2. To achieve this,
we generate an initial vector by solving a comparatively small eigenvalue problem on a
fixed index set with the iterative eigenvalue solver BLOPEX developed in [18].
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Figure 3: ’Exact’ eigenvalues with respect to uniform grids in comparison to approxima-
tions by the adaptive PPINVIT scheme with L=15120a0.

Adaptivity

First we want to investigate the adaptivity of our scheme. Figure 2 shows the approxi-
mation of an eigenfunction with respect to the smallest eigenvalue without disorder and
the corresponding distribution of the degrees of freedom which are used in the calcu-
lation. Here, we plot the active wavelets with respect to an intermediate iterand after
some PPINVIT steps. Each dot corresponds to the center of the support of a used wavelet
respectively scaling function. If one takes a look at the eigenfunction, one can easily see
that one would likes to have the highest resolution along the diagonal and at the corners,
and a low resolution elsewhere. Due to the translational invariance of our system, the
solution does only depend on the difference between the electron and hole coordinate
(evaluated taking into account the periodic boundary conditions) and has the expected
exponentially decaying form of a 1s function. One can see that exactly such a desired
distribution of degrees of freedom is generated by the adaptive wavelet scheme, see Fig-
ure 2.
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Figure 4: Computational complexity of the PPINVIT scheme.

Performance of the PPINVIT Scheme

In order to compare the approximation error with respect to uniform grids and adaptive
grids, we set the solution on a uniform grid in relation with an approximation on an
adaptive grid with comparably size, as it is done in Figure 3. Each big cross corresponds
to the approximation error of the smallest eigenvalue with respect to a fixed uniform
grid. One can see that the approximation on an adaptively generated grid in connection
with the PPINVIT scheme yields much more accurate approximations then the best possible
uniform approximation with the same number of degrees of freedom. Consequently, one
needs much less degrees of freedom in order to achieve the same accuracy.

Another important aspect for the efficiency of adaptive solution methods is the com-
putational effort of the scheme. Figure 4 shows the computational complexity of the
adaptive scheme by setting the used number of degrees of freedom in relation to time.
Since the memory access of the elements in each involved vector can be performed in
constant time, see [33], the time can be chosen as a measure for the number of arithmetic
and sorting operations. One can see that the time needed to obtain an approximation
of the eigenvalue with N degrees of freedom increases like N log(N). That is, the adap-
tive scheme has an asymptotically near optimal computational complexity. It is important
to note that one can get rid of the additional log-factor by using quasi sorting based on
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binary binning instead of exact sorting in the involved vector approximation scheme.

Results with Disorder

Finally, we will briefly present some results with disorder of different strengths. Recalling
the definition of the disorder potential (2.8) the strength of disorder is controlled by the
variances of the random numbers. Since the explicit value of an eigenvalue of one single
realization is not meaningful and differs for each disorder potential even if the variance
σ2 and number of steps M in the potential are the same, we will only show the qualitative
behavior of the eigenfunctions under the influence of a fixed disorder potential.

Some eigenfunctions for different strengths of disorder are shown in Figure 5. Here
we have used the same set of random numbers and varied the scalings according to
the variance σ2. This choice has the advantage that one can more clearly observe the
influence of the magnitude of the variance in some sense, since the potential, in principle,
up to a scaling stays the same. We see that a weak disorder yields only a small change
of the eigenfunction in comparison to the eigenfunction without disorder, and that a
stronger disorder results in a significant modification of the eigenfunction, see, e.g., [24].
It can be observed that for stronger disorder the peak on the diagonal becomes more
and more localized on a smaller spatial region. Further calculations have shown that, in
principle, all realizations have a similar behavior, such that the eigenfunctions in Figure
5 illustrate the general effects qualitatively quite well.

In order to investigate on which area the peak becomes localized, one needs to take
a look at the explicit realization of the disorder potential in more detail. According to
Figure 6 it can be oberved that the peak is concentrated at the area which corresponds
to the smallest value in the disorder potential. That is, the area corresponding to the
smallest random number. From a physical point of view, this effect can be explained by
the fact that the ground state describes the state with the smallest possible energy of the
exciton. Obviously, a smaller potential results in a smaller energy of the exciton so that
the probability to find an exciton in an area with small disorder potential is higher than
elsewhere in the wire.

If we choose a larger number of steps M in the disorder potential, i.e., a smaller length
of each step, the effect itself stays the same. The difference is that using more steps M,
i.e., decreasing the step length, reduces the localization effect so that one needs a stronger
disorder in order to obtain a comparable localization.

Finally, in Figure 8 we have plotted the distribution of degrees of freedom for the
different disorder potentials from Figure 5. Just as in the ideal case, cf. Figure 2, the
resolution is much higher in the region of the peak than elsewhere so that the adaptive
scheme resolves the peak appropriately.
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Figure 5: Eigenfunctions with respect to different potentials for L = 1890a0 and M = 16
steps in the disorder potential leading to a step length of L/M≈ 118a0. We have used
the same set of random numbers but with different scalings according to the standard
deviation σ.
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Figure 6: Eigenfunctions with respect to different realizations of disorder potentials for
L =1890a0 and M =16 steps in the disorder potential, i.e., a step length of L/M≈118a0,
with standard deviation σ =5×10−6 Eh. The area corresponding to the smallest disorder
potential is stated under the figures a) and b).

7 Summary and Outlook

We have presented a method for the adaptive numerical computation of eigenenergies
and corresponding eigenstates with respect to the Schrödinger equation induced by a
semiconductor quantum wire with and without disorder of the interface. It has been
shown that the induced weak eigenvalue problem, respectively, its representation in
terms of a suitable wavelet basis, can be modified in such a way that it fulfills all nec-
essary conditions needed to apply an adaptive eigenvalue solver based on wavelets. Fi-
nally, in section 6 we have presented some numerical results and, in particular, focused
on the adaptivity and the influence of the disorder. The results clearly demonstrate that
one obtains much better results by using the introduced adaptive wavelet method instead
of any method acting on uniform grids, cf. Figure 2 and 3.

In this paper, we have considered the eigenvalue problem determined by a quan-
tum wire, that is, a quasi one-dimensional semiconductor nanostructure. A next step
could be to consider higher dimensional structures which would entail a higher dimen-
sional Schrödinger equation. This in turn means that one would need a higher dimen-
sional wavelet basis. Since the used AWM-Toolbox from [33] is developed for the two-
dimensional setting, one cannot use this directly but would have to modify the data struc-
tures substantially. Instead, we can employ the new software package by Roland Pabel
using tensorized wavelet bases in arbitrary dimensions [28, 29].

Another modification considers the handling of the stochastic influence. In this pa-
per, we have considered explicit realizations of the disorder potential and analyzed the
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Figure 7: Eigenfunctions with respect to different disorder potentials for L =1890a0 and
M=4096 steps in the disorder potential, i.e., a step length of L/M≈0.5a0. We have used
the same set of random numbers but with different scalings according to σ.
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Figure 8: Active wavelets for different disorder potentials for L=1890a0 and M=16 steps
in the disorder potential, i.e., a step length of L/M≈118a0, after some PPINVIT iteration
steps. Each dot corresponds to the center of the support of a used wavelet. That is, more
dots in one area correspond to more used degrees of freedom in this area.
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Figure 9: Example of an absorption spectra with respect to a quantum wire with length
L=40000a0≈2,116µm.

influence of the stochastic perturbation with respect to the eigenfunctions. In order to
obtain quantitative results for the stochastic part, one would have to calculate several
realizations and average characteristics. For handling such kind of problems, we could
employ the method recently introduced in [16]. Here the original stochastic problem is
transformed into a parametric deterministic one followed by low-rank approximations
based on the pivoted Cholesky decomposition.

From a physical point of view, one is typically interested in, e.g., absorption spectra
of certain nanostructures as shown in Figure 9. Such an absorption spectrum can be
calculated with the aid of several eigenvalues or by solving the complete time-dependent
equation for p(x,t) and performing a Fourier transformation [17,24]. The PPINVIT scheme
provides an approximation of the smallest eigenvalue and not of larger eigenvalues. It is
possible to generalize the PPINVIT scheme to the case where the m smallest eigenvalues
are computed simultaneously by a subspace or block iteration method. Such a block
version was already introduced in [20] for the case of finite matrices. Therefore, one
could mimic this block version and consider a perturbed version similar as it is done
in [31] for the present version of the PPINVIT scheme.

Another possibility to obtain the absorption spectra is via the polarization which in
turn is given by the solution of the time dependent Schrödinger equation, see [24]. To
this end, one could numerically solve the time dependent Schrödinger equation instead
of the derived eigenvalue problem. This could be done by conventional time stepping
schemes or, much more sophisticated, using the novel wavelet approach from [32] based
on a weak space-time form of the parabolic equation. First steps in this direction have
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been made for the time dependent Schrödinger equation in preparation of [25].
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