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1 Introduction

We consider the stationary 3D-Navier-Stokes equations with the Coriolis force:

(v · ∇)v + Ωe3 × v −∆v +∇p = F, ∇ · v = 0 in R3, (1.1)

where v = v(x) = (v1(x), v2(x), v3(x)) is the unknown velocity vector field and p = p(x) is
the unknown scalar pressure at the point x = (x1, x2, x3) ∈ R3 in space, and F is a given
external force. Here Ω ∈ R is the Coriolis parameter, which is twice the angular velocity
of the rotation around the vertical unit vector e3 = (0, 0, 1), the kinematic viscosity
coefficient is normalized by one. By × we denote the exterior product, and hence, the
Coriolis term is represented by e3×u = Ju with the corresponding skew-symmetric 3× 3
matrix J .

Problems concerning large-scale atmospheric and oceanic flows are known to be dom-
inated by rotational effects. Almost all of the models of oceanography and meteorology
dealing with large-scale phenomena include the Coriolis force. For example, oceanic cir-
culation featuring a hurricane is caused by the large rotation. There is no doubt that
other physical effects are of similar significance like salinity, natural boundary conditions
and so on. However the first step in the study of more complex model is to understand
the behavior of rotating fluids. To this end, we treat in a standard manner the Navier-
Stokes equations with the Coriolis force.

Let us look back on the history of the Coriolis force. In 1868 Kelvin observed that a
sphere moving along the axis of uniformly rotating water takes with it a column of liquid
as if this were a rigid mass (see [9] for references). After that, Hough [16], Taylor [20]
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and Proudmann [19] made important contributions. Mathematically it was investigated
by Poincaré [19], more recently, Babin, Mahalov and Nicolaenko [1, 2] considered non-
stationary Navier-Stokes equations with Coriolis force in periodic case. The periodicity is
extended to the almost periodic case by several authors. For the results of local existence
of non-stationary rotating Navier- Stokes equations with spatially almost periodic data
and its properties, see [10, 13, 14]. Moreover, for the results of global existence and long
time existence in the almost periodic setting, see [11, 12, 21] for example.

On the other hand, Chemin, Desjardins, Gallagher and Grenier (CDGG)[7] considered
decaying data case. CDGG derived dispersion estimates on a linearized version of the 3D-
Navier-Stokes equations with the Coriolis force to show existence of global solution to the
non-stationary rotating Navier-Stokes system. To construct such estimate, they handled
eigenvalues and eigenfunctions of the Coriolis operator.

The main result of this paper is to show existence of the solution to the stationary
Navier-Stokes equations with the Coriolis force for arbitrary large external force provided
that the Coriolis force is sufficiently large (compare it with results for the Navier-Stokes
equations (1.1) with Ω = 0, for example [18] for the case of exterior domain). To do
so, we handle new type of function spaces, namely, Fourier Besov spaces (FB) which are
designed to present in a clear way how the Coriolis force has influence on the solution
to the considered system. A similar approach to introduce function spaces which make
analysis of specific features of a system much easier has been shown in a paper by the first
author and P. B. Mucha in [17], where they investigate asymptotic structure of solution
to the stationary Navier-Stokes equations in R2.

In FB spaces, we cannot expect to use energy type estimates and the structure of
Hilbert spaces as CDGG used. The main motivation to introduce those spaces is that in
this framework we are able to present directly dispersive effect of the Coriolis force (see
Proposition 2.4), which is in principle different from the dispersive effect from CDGG.

To show usefulness of introduced spaces we prove existence to the non-stationary
Navier-Stokes-Coriolis system in function spaces which are counterparts for well known
classical results in the Navier-Stokes theory (see [3, 5, 6]). Moreover we can considerably
simplify other results for the Navier-Stokes-Coriolis system, like recent results by Giga,
Inui, Mahalov and Saal [12].

1.1 Preliminaries

In this section we would like to recall basic facts of Littlewood-Paley theory. We denote
by ϕ ∈ S(R3) a radially symmetric supported in {ξ ∈ R3 : 3

4
≤ |ξ| ≤ 8

3
} such that∑

j∈Z

ϕ(2−jξ) = 1 for all ξ 6= 0.

We also introduce the following functions:

ϕj(ξ) = ϕ(2−jξ), ψj(ξ) =
∑
k≤j−1

ϕk(ξ).

Now we define standard localization operators:

∆jf = ϕjf, Sjf =
∑
k≤j−1

∆kf = ψjf, for j ∈ Z. (1.2)
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It is then easy to verify the following identities:

∆j∆kf = 0 if |j − k| ≥ 2, (1.3)

∆j(Sk−1f∆kf) = 0 if |j − k| ≥ 5. (1.4)

Moreover one can follow Bony (see [4]) and introduce the following decomposition:

fg = Tfg + Tgf +R(f, g), (1.5)

where
Tfg =

∑
j∈Z

Sj−1f∆jg, R(f, g) =
∑
j∈Z

∆jf∆̃jg, ∆̃jg =
∑
|j′−j|≤1

∆j′g. (1.6)

The framework for our results is determined by the Fourier-Besov spaces defined as
follows:

Definition 1.1 We introduce the following homogeneous function spaces (called Fourier-
Besov spaces):

• ˙FB
s

p,q(Rn) = {f ∈ S ′ : f̂ ∈ L1
loc, ‖f‖ ˙FB

s
p,q(Rn) =

(∑
k∈Z 2ksq‖ϕkf̂‖qLp(Rn)

)1/q

< ∞},
1 ≤ p ≤ ∞, 1 ≤ q <∞,

• ˙FB
s

p,∞(Rn) = {f ∈ S ′ : ‖f‖ ˙FB
s
p,∞(Rn) = supk∈Z 2ks‖ϕkf̂‖Lp(Rn) <∞}.

In our considerations we are using results for the Stokes problem with the Coriolis
force: 

ut − ν∆u+ Ωe3 × u+∇p = F,

div u = 0,

u(0, x) = u0(x).

(1.7)

For this system one has the following formula for the solution (see [10]):

û(t, ξ) = cos

(
Ω
ξ3

|ξ|
t

)
e−ν|ξ|

2tIû0(ξ)+sin

(
Ω
ξ3

|ξ|
t

)
e−ν|ξ|

2tR(ξ)û0(ξ), t ≥ 0, ξ ∈ R3, (1.8)

where I is the identity matrix and

R(ξ) =

 0 ξ3
|ξ| −

ξ2
|ξ|

− ξ3
|ξ| 0 ξ1

|ξ|
ξ2
|ξ| −

ξ1
|ξ| 0

 . (1.9)

An important observation is that

|û(t, ξ)| ≤ 2e−ν|ξ|
2t|û0(ξ)|, t ≥ 0, ξ ∈ R3. (1.10)

2 Main results

In this section we formulate our main results for the non-stationary and stationary Navier-
Stokes equations with the Coriolis force. We would like to mention that it is not difficult
to obtain also other results (like stability of solutions to the non-stationary case) in this
framework. We refer readers to the paper by Cannone and Karch [5] as a reference for
what can be expected. We do not prove those results to keep the paper more readable.
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2.1 Non-stationary case

In the following theorem we consider mild solutions to the following non-stationary Navier-
Stokes system with the Coriolis force:

ut − ν∆ + Ωe3 × u+ u · ∇u+∇p = 0, (2.1)

div u = 0, (2.2)

u(0, x) = u0(x). (2.3)

Theorem 2.1 Let Ω ∈ R be an arbitrary constant. Let u0 ∈ X0 and ‖u0‖X0 be small
enough (independently of Ω). Then there exists a unique global in time solution u ∈ Y to
problem (2.1)-(2.3), where X0 and Y one can take as follows:

• X0 = ˙FB
2−3/p

p,∞ , Y = Cw([0,∞); ˙FB
2−3/p

p,∞ ) ∩ L∞(0,∞; ˙FB
2−3/p

p,∞ ), where 3 < p ≤ ∞,

• X0 = ˙FB
2−3/p

p,p , Y = C([0,∞); ˙FB
2−3/p

p,p ) ∩ L∞(0,∞; ˙FB
2−3/p

p,p ), where 3 < p <∞,

• X0 = ˙FB
−1

1,1 ∩ ˙FB
0

1,1, Y = C([0,∞); ˙FB
0

1,1) ∩ L2(0,∞; ˙FB
−1

1,1 ∩ ˙FB
0

1,1).

Moreover the following case is valid:

• X0 = ˙FB
2−3/p

p,∞ ,

Y = L∞(0,∞; ˙FB
2−3/p

p,∞ )∩L1(0,∞; ˙FB
4−3/p

p,∞ )∩Cw([0,∞); ˙FB
2−3/p

p,∞ ), for 1 < p ≤ ∞,

Note: The mentioned cases have their counterparts in the current literature for the

non-stationary Navier-Stokes equations. For example the case ˙FB
2

∞,∞ was considered by

Cannone and Karch in [5], the case Ḃ
3/p−1
p,∞ (which is a counterpart for ˙FB

2−3/p

p,∞ ) in the

paper [6] by Cannone. The case ˙FB
2−3/p

p,p was treated by Biswas and Swanson for periodic
case in [3]. Their result covers the whole range 1 < p ≤ ∞ due to the periodicity – more
precisely in their case the authors do not have problems with integrability (summability)
close to 0 in the Fourier space. In our case analysis close to 0 in the Fourier space requires

the assumption p > 3. An analogue of the case ˙FB
−1

1,1 ∩ ˙FB
0

1,1, that is FM−1
0 ∩ FM0

spaces, has been published recently by Giga, Inui, Mahalov and Saal in [12].
In this paper consider those results in our setting, which seems to be more suitable for

the Navier-Stokes equations with the Coriolis force. Unfortunately using these methods
we were not able to include the case p = 2, q = 2 which has been recently proven by
Hieber and Shibata in [15].

2.2 Stationary case

In the following theorem we consider mild solutions to the Navier-Stokes system with the
Coriolis force (1.1).

Definition 2.2 For the sake of the stationary case with Coriolis force we introduce the
following function space for 1 ≤ p ≤ ∞,

Xp
C,Ω = {f ∈ S ′ : ‖f‖Xp

C,Ω
= ‖w1(·)f̂(·)‖Lp + ‖w2(·)f̂(·)‖Lp <∞}, (2.4)
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where

w1(ξ) =
|ξ|6−3/p

|ξ|6 + Ω2|ξ3|2
, w2(ξ) =

Ω|ξ3||ξ|3−3/p

|ξ|6 + Ω2|ξ3|2
R(ξ),

and R(ξ) is the matrix (1.9).

The following theorem is the main result of our paper.

Theorem 2.3 Stationary case. Let 3 < p ≤ ∞. Then for all F ∈ Xp
C,Ω such that

‖F‖Xp
C,Ω

is small enough there exists a unique solution u to the problem (1.1) such that

u ∈ ˙FB
2−3/p

p,p and the following estimate is valid:

‖u‖ ˙FB
2−3/p
p,p

≤ C‖F‖Xp
C,Ω
. (2.5)

Note: Analogous result holds also for the spaces ˙FB
2−3/p

p,∞ .

Remark: An important fact about the space Xp
C,Ω is that ˙FB

−3/p

p,p ( Xp
C,Ω for Ω 6= 0

(see the proof of Proposition 2.4). This means that the Coriolis force not only helps to
weaken smallness assumptions on the force F (see [5] and Lemma 2.4 below) but extends
considerably the class of admissible external forces (for which we have existence result).
For example the following function (its Fourier transform):

|ξ|6 + Ω2ξ2
2

|ξ|6
·
(
ξ1ξ3

|ξ|2
,
ξ2ξ3

|ξ|2
,
ξ2

3

|ξ|2

)
(2.6)

is an element of X∞C,Ω for which (up to a constant) we have existence. This function,

however, is not an element of the space of pseudo-measures PM = ˙FB
0

∞,∞ from the
paper [5].

In the case F ∈ ˙FB
−3/p

p,p we can remove the smallness assumption provided that the
Coriolis parameter Ω is large enough. This is being precised in the following Proposition

(compare it with the case F ∈ ˙FB
−3/p

p,∞ in Remark 2 after the proof of the Proposition).

Proposition 2.4 Let 3 < p <∞. Then for any given function F ∈ ˙FB
−3/p

p,p there exists
Ω0 such that for all Ω ∈ R satisfying |Ω| ≥ Ω0 there exists the unique solution u to problem

(1.1) such that u ∈ ˙FB
2−3/p

p,p (R3).

Proof of the Proposition. First we will show that for each F ∈ ˙FB
−3/p

p,p and for
all ε there exists Ω0 such that for all |Ω| ≥ Ω0,

‖F‖Xp
C,Ω
≤ ε‖F‖ ˙FB

−3/p
p,p

. (2.7)

This fact together with Theorem 2.3 proves the Proposition.

First we have ˙FB
−3/p

p,p ⊂ Xp
C,Ω. This is a simple observation since:

|ξ|4

|ξ|6 + Ω2|ξ3|2
=

∫ ∞
0

e−t|ξ|
2

cos(Ω
ξ3

|ξ|
t)dt ≤

∫ ∞
0

e−t|ξ|
2

dt = |ξ|−2 (2.8)
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and
Ωξ3|ξ|

|ξ|6 + Ω2|ξ3|2
=

∫ ∞
0

e−t|ξ|
2

sin(Ω
ξ3

|ξ|
t)dt ≤

∫ ∞
0

e−t|ξ|
2

dt = |ξ|−2. (2.9)

The proof of (2.7) is fairly simple. First we decompose R3 into three regions: R3 =
Aδ + Bδ + Cδ, where Aδ = {ξ : |ξ3| > δ and δ < |ξ| < 1

δ
}, Bδ = {ξ : |ξ3| > δ and |ξ| > 1

δ
}

and Cδ = {ξ : |ξ3| < δ}.
For fixed F there exists a compact set K ⊂ R3 such that ‖|ξ|−3/pF‖Lp(R3\K) ≤ ε/3 and

by (2.8) and (2.9) we have the following estimates, uniform with respect to Ω:(
|ξ|6−3/p

|ξ|6 + Ω2|ξ3|2
|F̂ |
)p
≤
(
|ξ|−3/p|F̂ |

)p
(2.10)

and (
Ωξ3|ξ|3−3/p

|ξ|6 + Ω2|ξ3|2
|R(ξ)||F̂ |

)p
≤
(
|ξ|−3/p|F̂ |

)p
. (2.11)

From the definition of Bδ and Cδ we get that |K ∩ (Bδ ∪ Cδ)| → 0 as δ → 0, hence
for δ small enough we have ‖F‖Xp

C,Ω(K∩(Bδ∪Cδ)) ≤ ε/2. Once δ is fixed we get back to the

integral over K ∩ Aδ:(∫
Xp
C,Ω(K∩Aδ)

(
|ξ|6−3/p

|ξ|6 + Ω2|ξ3|2
|F̂ |
)p

dξ

)1/p

≤ (1/δ)6

δ6 + Ω2δ2
‖F‖ ˙FB

−3/p
p,p
≤ ε/4, (2.12)

for Ω large enough (depending on ε, δ and ‖F‖). Similarly(∫
Xp
C,Ω(K∩Aδ)

(
Ωξ3|ξ|3−3/p

|ξ|6 + Ω2|ξ3|2
|F̂ |
)p

dξ

)1/p

≤ Ω(1/δ)4

δ6 + Ω2δ2
‖F‖ ˙FB

−3/p
p,p
≤ ε/4, (2.13)

for Ω large enough.
This completes the proof. �

Remark 2: The counterpart of Proposition 2.4 for the case when F ∈ ˙FB
−3/p

p,∞ requires
additional assumptions on F . Method which we presented in the previous proof requires
smallness assumptions of the following form: there exists a number K such that

sup
|k|≥K

2−3k/p
(
‖ϕkw1F̂‖Lp + ‖ϕkw2F̂‖Lp

)
is small enough, (2.14)

where w1(ξ) and w2(ξ) are weights from the definition (2.4) of the spaceXp
C,Ω. In particular

this condition allows one to have ‖F‖ ˙FB
−3/p
p,∞

arbitrary large not only in frequences within

the region [−K,K] but also for |k| ≥ K provided weights w1 and w2 make them small
enough. The proof of this fact is analogous to the proof of Proposition 2.4.
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3 Proofs of main results

3.1 Proof of Theorem 2.1

We use a rather standard approach to show existence, namely via the following Banach
fixed point theorem ([5]):

Lemma 3.1 Let (X , ‖ · ‖X ) be a Banach space and B : X × X → X a bounded bilinear
form satisfying ‖B(x1, x2)‖X ≤ η‖x1‖X‖x2‖X for all x1, x2 ∈ X and a constant η > 0.
Then if 0 < ε < 1/(4η) and if y ∈ X such that ‖y‖X < ε, the equation x = y+B(x, x) has
a solution in X such that ‖x‖X ≤ 2ε. This solution is the only one in the ball B(0, 2ε).
Moreover, the solution depends continuously on y in the following sense: if ‖ỹ‖X ≤ ε,
x̃ = ỹ +B(x̃, x̃), and ‖x̃‖X ≤ 2ε then

‖x− x̃‖X ≤
1

1− 4ηε
‖y − ỹ‖X .

In our case the bilinear form B is defined as follows:

B(u, v)(t) = −
∫ t

0

G(t− τ)Pdiv(u⊗ v)dτ, (3.1)

where G was defined in (3.5).
It is then straightforward that in order to prove existence we have to prove corre-

sponding estimates in all cases of space X.

• In case X0 = ˙FB
2−3/p

p,∞ , where 3 < p ≤ ∞ we use Lemma 3.5 with r =∞ to get:∥∥∥∥∫ t

0

G(t− τ)f(τ)dτ

∥∥∥∥
L∞T ( ˙FB

s
p,∞)

≤ 1

ν
‖f‖

L∞T ( ˙FB
s−2
p,∞)

. (3.2)

and then for f = div(u⊗ v) we use inequality (3.13).
Estimate for convolution with initial data u0 comes from Lemma 3.4.

• In the case X0 = ˙FB
2−3/p

p,p , where 3 < p < ∞ we use Lemma 3.10 to estimate the
bilinear form. Initial data u0 estimates trivially.

• In the case X0 = ˙FB
−1

1,1 ∩ ˙FB
0

1,1 we make two steps. First we use Lemma 3.9
with s = 0 combined with Lemma 3.8 (inequality (3.20)) to estimate bilinear form

B(u, v) in the space L2([0,∞); ˙FB
0

1,1) and Lemma 3.7 with s = 0 to estimate initial

data u0. This gives us the unique solution in the space L2([0,∞); ˙FB
0

1,1). In the
second step we notice that using inequality (3.21) and again Lemma 3.9 with s = 1

we obtain that the solution is in fact in the space L2([0,∞); ˙FB
1

1,1 ∩ ˙FB
0

1,1). This
improved regularity is essential to show (in an elementary way) strong continuity of

the solution, i.e. u ∈ C([0,∞); ˙FB
0

1,1).

To prove the second part of Theorem 2.1, that is for 1 < p ≤ ∞ one uses the same
results as in the case 3 < p ≤ ∞ but with estimate (3.12). Since this cases are of less
interest to us (our paper focuses on the stationary case) we do not include more details
in order to keep the paper more consistent.
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3.2 Proof of Theorem 2.3

To prove existence results in the stationary case one may use the results from Theorem

2.1 in case 3 < p ≤ ∞ and X = ˙FB
2−3/p

p,∞ or X = ˙FB
2−3/p

p,p and repeat reasoning from the
paper by Cannone and Karch [5]. The authors there use the following Lemma which is
essential to obtain this result:

Proposition 3.2 The following two facts are equivalent

• u = u(x) is a stationary mild solution to the problem (2.1)-(2.2), that is

u = G(t)u−
∫ t

0

G(t− τ)Pdiv (u⊗ u)dτ +

∫ t

0

G(τ)PFdτ (3.3)

for every t > 0.

• u = u(x) satisfies the integral equation

u = −
∫ ∞

0

G(τ)Pdiv (u⊗ u)dτ +

∫ ∞
0

G(τ)PFdτ, (3.4)

where P is the Helmholtz projection.

Using this proposition and results for non-stationary case we see that in order to obtain
existence of solution using a fixed point argument we just need to obtain estimates for
the term with the force F . We use the formula for the Stokes-Coriolis semigroup, that is:

Ĝ(t) = cos

(
Ω
ξ3

|ξ|
t

)
e−ν|ξ|

2tI + sin

(
Ω
ξ3

|ξ|
t

)
e−ν|ξ|

2tR(ξ). (3.5)

Integrating this formula with respect to t from 0 to ∞ we get:∫ ∞
0

Ĝ(t)dt =
|ξ|4

|ξ|6 + ξ2
3Ω2

I +
ξ3|ξ|

|ξ|6 + ξ2
3Ω2

R(ξ) (3.6)

It is then straightforward (from the definition of X p
C,Ω) that∥∥∥∥∫ ∞

0

GFdt
∥∥∥∥

˙FB
2−3/p
p,p

≤ ‖F‖X pC,Ω . (3.7)

3.3 Main estimates

Lemma 3.3 For 1 ≤ q ≤ p ≤ ∞ and any multiindex γ the following inequalities are
valid:

• supp f̂ ⊂ {|ξ| ≤ A2j} ⇒ ‖(iξ)γ f̂‖Lq(Rn) ≤ C2j|γ|+nj(
1
q
− 1
p

)‖f̂‖Lp(Rn).

• supp f̂ ⊂ {B12j ≤ |ξ| ≤ B22j} ⇒ ‖f̂‖Lq(Rn) ≤ C2−j|γ| sup|β|=|γ| ‖(iξ)β f̂‖Lp(Rn).
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Lemma 3.4 For p ∈ [1,∞] and u0 ∈ ˙FB
2−3/p

p,∞ one has:

‖G(t)u0‖L∞(0,T ; ˙FB
2−3/p
p,∞ ∩L1(0,T ; ˙FB

4−3/p
p,∞ ))

≤ max (1,
1

ν
)‖u0‖ ˙FB

2−3/p
p,∞

. (3.8)

Moreover one also has:
‖G(t)u0‖L∞T ( ˙FB

s
p,p) ≤ ‖u0‖ ˙FB

s
p,p
. (3.9)

Proof . While the second estimate is straightforward let us focus on the first
inequality. We consider the case p < ∞. The case p = ∞ can be obtained analogously.
Let us first estimate the norm ‖G(t)u‖

L∞T ( ˙FB
2−3/p
p,∞ )

:

‖G(t)u‖
L∞T ( ˙FB

2−3/p
p,∞ )

≤ sup
0≤t<T

sup
k

2k(2−3/p)‖ϕkû0‖Lp ≤ ‖u0‖ ˙FB
2−3/p
p,∞

The second part estimates as follows:

‖G(t)u‖
L1
T ( ˙FB

4−3/p
p,∞ )

≤
∫ T

0

sup
k

2k(4−3/p)e−νt2
2k‖ϕkû0‖Lpdt

≤ sup
k

1

ν
2−2k2k(4−3/p)‖ϕkû0‖Lp ≤

1

ν
‖u0‖ ˙FB

2−3/p
p,∞

. (3.10)

This finishes the proof of this Lemma. �

Lemma 3.5 Let s ∈ R, p, q ∈ [1,∞] and f ∈ LrT ( ˙FB
s

p,∞). Then the following estimate
is valid: ∥∥∥∥∫ t

0

G(t− τ)f(τ)dτ

∥∥∥∥
LqT ( ˙FB

s
p,∞)

≤ 1

ν
‖f‖

LrT ( ˙FB
s−2−2/q+2/r
p,∞ )

. (3.11)

Proof . Since∥∥∥∥∫ t

0

G(t− τ)f(τ)dτ

∥∥∥∥
LqT ( ˙FB

s
p,∞)

= sup
k

2sk
∥∥∥∥∫ t

0

‖Ĝ(t− τ)f̂(τ)ϕk‖Lpdτ
∥∥∥∥
LqT

we may fix k and estimate the corresponding term:

2ks
∥∥∥∥∫ t

0

‖Ĝ(t− τ)f̂(τ)ϕk‖Lpdτ
∥∥∥∥
LqT

≤ 2 · 2ks
∥∥∥∥∫ t

0

e(t−τ)22k‖f̂(τ)ϕk‖Lpdτ
∥∥∥∥
LqT

Using Young’s inequality with q̃ such that 1 + 1
q

= 1
q̃

+ 1
r
, that is: 1

q̃
= 1 + 1

q
− 1

r
we get:

2ks
∥∥∥∥∫ t

0

e(t−τ)22k‖f̂(τ)ϕk‖Lpdτ
∥∥∥∥
LqT

≤ 2ks‖et22k‖Lq̃T ‖f̂(t)ϕk‖LrT (Lp)

≤ 2k(s−2− 2
q

+ 2
r

)‖f̂(t)ϕk‖LrT (Lp).

Taking supremum over all k ∈ Z one obtains the desired estimate. �
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Lemma 3.6 The following estimates are valid:

• For 1 < p ≤ ∞ and V = L∞T (0, T ; ˙FB
2−3/p

p,∞ (R3) ∩ L1
T (0, T ; ˙FB

4−3/p

p,∞ )) (introduced
here for readability):

‖uv‖
L1
T ( ˙FB

3− 3
p

p,∞ )
≤ C‖u‖V ‖v‖V . (3.12)

• For p > 3:
‖uv‖

L∞T ( ˙FB
1− 3

p
p,∞ )
≤ C‖u‖

L∞T ( ˙FB
2−3/p
p,∞ )

‖v‖
L∞T ( ˙FB

2−3/p
p,∞ )

. (3.13)

Proof . In the following proof we follow in principle the reasoning from [8]. Let us focus
on the first inequality. From the definition we have:

‖uv‖
L1
T ( ˙FB

3− 3
p

p,∞ )
=

∫ T

0

sup
j

2j(3−
3
p

)‖∆̂j(uv)‖Lpdt. (3.14)

For ∆j(uv) we use decomposition (1.5), that is:

∆j(uv) =
∑
|k−j|≤4

∆j(Sk−1u∆kv) +
∑
|k−j|≤4

∆j(Sk−1v∆ku) +
∑
k≥j−2

∆j(∆ku∆̃kv), (3.15)

and denote each corresponding integral from (3.14) as Ij, IIj and IIIj.

Ij =

∫ T

0

2j(3−3/p)‖
∑
|k−j|≤4

ϕj(ψk−1û ∗ ϕkv̂)‖Lpdt ≤
∫ T

0

2j(3−3/p)
∑
|k−j|≤4

‖ψk−1û‖L1‖ϕkv̂‖Lpdt.

(3.16)
Now using Lemma 3.3 we have the following inequality:

‖ψk−1û‖L1 ≤
∑
k′<k

‖ϕk′û‖L1 ≤
∑
k′<k

2k
′3(1−1/p)‖ϕk′û‖Lp , (3.17)

which allows us to estimate Ij as follows:

Ij ≤
∫ T

0

2j(3−3/p)
∑
|k−j|≤4

∑
k′<k

2k
′
2k
′(2−3/p)‖ϕk′û‖Lp‖ϕkv̂‖Lpdt

≤
∫ T

0

2j(3−3/p)
∑
|k−j|≤4

2k sup
k′

2k
′(2−3/p)‖ϕk′û‖Lp‖ϕkv̂‖Lpdt

≤
∫ T

0

2j(4−3/p)‖ϕkv̂‖Lpdt sup
k′

2k
′(2−3/p)‖ϕk′û‖Lp

≤ ‖v‖
L1
T ( ˙FB

4−3/p
p,∞ )

‖u‖
L∞T ( ˙FB

2−3/p
p,∞ )

,

where we used the fact that since |j − k| < 4 then 2j ∼ 2k.
Integral IIj is easily estimated in the same way as Ij. We will now focus on integral

IIIj.
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IIIj =

∫ T

0

2j(3−3/p)
∑
k≥j−2

‖ϕjϕkuϕ̃kv‖Lpdt ≤
∫ T

0

2j(3−3/p)
∑
k≥j−2

‖ϕkû‖L1‖ϕkv̂‖Lpdt

=

∫ T

0

∑
k≥j−2

2(j−k)(3−3/p)‖ϕkû‖Lp2k(2−3/p)‖ϕ̃kv̂‖Lp2k(4−3/p)dt

≤ sup
k
‖ϕkû‖Lp2k(2−3/p)

∫ T

0

sup
k
‖ϕ̃kv̂‖Lp2k(4−3/p)dt ≤ ‖u‖

L∞T ( ˙FB
2−3/p
p,∞ )

‖v‖
L1
T ( ˙FB

4−3/p
p,∞ )

,

where we again used Lemma 3.3.
In order to obtain estimate (3.13) one proceeds in a similar way as for the case of

(3.12), applying proper changes like 3 − 3/p is replaced by 1 − 3/p. The requirement
that p > 3 comes from estimate of IIIj, that is in the case of (3.12) one has the term∑

k≥j−2 2(j−k)(3−3/p), which is finite for p > 1, while in case of estimate (3.13) one encoun-

ters the term
∑

k≥j−2 2(j−k)(1−3/p), which is finite for p > 3.
�

In what follows we focus on estimates for the space L2
T ( ˙FB

0

1,1).

Lemma 3.7 The following estimate is valid:

‖et∆u0‖L2
T ( ˙FB

s
1,1) ≤ ‖u0‖ ˙FB

s−1
1,1
. (3.18)

Proof . This inequality is easily obtained:

‖et∆u0‖L2
T ( ˙FB

s
1,1) =

∫ T

0

(∑
k

∫
R3

ϕke
−t|ξ|2|ξ|su0(ξ)dξ

)2

dτ

1/2

≤
∑
k

(∫ T

0

e−t2
2k+1

2sk‖ϕku0(ξ)‖2
L1dτ

)1/2

≤
∑
k

2(s−1)k‖ϕku0(ξ)‖L1 = ‖u0‖ ˙FB
s−1
1,1

(3.19)

�

Lemma 3.8 The following estimate is valid:

‖uv‖
L1
T ( ˙FB

0
1,1)
≤ ‖u‖

L2
T ( ˙FB

0
1,1)
‖v‖

L2
T ( ˙FB

0
1,1)
. (3.20)

Moreover if u, v ∈ L2
T ( ˙FB

0

1,1 ∩ ˙FB
1

1,1) then the following estimate is valid:

‖uv‖
L1
T ( ˙FB

1
1,1)
≤ ‖u‖

L2
T ( ˙FB

0
1,1∩ ˙FB

1
1,1)
‖v‖

L2
T ( ˙FB

0
1,1∩ ˙FB

1
1,1)
. (3.21)
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Proof . First we note that f ∈ ˙FB
0

1,1 ⇔ f̂ ∈ L1. Then our inequality (3.20) is proven
in the following way:

‖uv‖
L1
T ( ˙FB

0
1,1)

=

∫ T

0

‖û ∗ v̂‖L1 ≤
∫ T

0

‖û‖L1‖v̂‖L1

≤ ‖û‖L2
T (L1)‖v̂‖L2

T (L1) = ‖u‖
L2
T ( ˙FB

0
1,1)
‖v‖

L2
T ( ˙FB

0
1,1)

To prove inequality (3.21) we proceed in a similar way:

‖uv‖
L1
T ( ˙FB

1
1,1)

=

∫ T

0

∫
Rn
|ξ|
∫

Rn
û(ξ − η, τ)v̂(η, τ)dηdξdτ ≤∫ T

0

∫
Rn

∫
Rn

(|ξ − η|+ |η|)û(ξ − η, τ)v̂(η, τ)dξdηdτ

≤ ‖ξû(ξ)‖L2
T (L1)‖v̂‖L2

T (L1) + ‖û(ξ)‖L2
T (L1)‖ηv̂(η)‖L2

T (L1),

which finishes the proof of the Lemma 3.8. �

Lemma 3.9 The following inequality is valid:∥∥∥∥∫ t

0

G(t− τ)f(τ)dτ

∥∥∥∥
L2
T ( ˙FB

s
1,1)

≤ 1

ν
‖f‖

L1
T ( ˙FB

s−1
1,1 )

. (3.22)

Proof . As previously we use triangle and Young’s inequality to obtain:∥∥∥∥∫ t

0

G(t− τ)f(τ)dτ

∥∥∥∥
L2
T ( ˙FB

s
1,1)

≤

∥∥∥∥∥∑
k

∫ t

0

e(t−τ)22k

2sk‖ϕkf(τ)‖L1dτ

∥∥∥∥∥
L2
T

≤
∑
k

∥∥∥et22k
∥∥∥
L2
T

2sk‖ϕkf(τ)‖L1
T (L1) =

∑
k

2(s−1)k‖ϕkf(τ)‖L1
T (L1) = ‖f‖

L1
T ( ˙FB

s−1
1,1 )

.

�

In what follows we focus on estimates for the space L∞T ( ˙FB
2−3/p

p,p ), where p > 3.

Lemma 3.10 The following estimate is valid:∥∥∥∥∫ t

0

G(t− τ)∇(u⊗ v)dτ

∥∥∥∥
L∞T ( ˙FB

2−3/p
p,p )

≤ ‖u‖
L∞T ( ˙FB

2−3/p
p,p )

‖v‖
L∞T ( ˙FB

2−3/p
p,p )

(3.23)

Proof . First let us estimate the convolution û ∗ v̂. We do this as follows:

|û ∗ v̂(ξ)| ≤
∫

R3

1

|η|2−3/p

1

|ξ − η|2−3/p
|ξ − η|2−3/p|v̂(ξ − η)||η|2−3/p|û(η)|dη

≤

(∫
R3

(
1

|η|2−3/p

1

|ξ − η|2−3/p

)p′
dη

)1/p′

·
(∫

R3

(
|ξ − η|2−3/p|v̂(ξ − η)||η|2−3/p|û(η)|

)p
dη

)1/p

.
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Now in order to estimate the convolution 1
|ξ|(2−3/p)p̃ ∗ 1

|ξ|(2−3/p)p′ we use the well known fact

F(|ξ|−α)(x) = Cα,n|x|α−n, (3.24)

for 0 < α < n. Taking the Fourier transform of this convolution we get:

F
(

1

|ξ|(2−3/p)p′
∗ 1

|ξ|(2−3/p)p′

)
(x) = Cα|x|2[(2−3/p)p′−3].

Now using inverse Fourier transform we get:

1

|ξ|(2−3/p)p′
∗ 1

|ξ|(2−3/p)p′
∼ |ξ|−2[(2−3/p)p′−3]−3 = |ξ|−2p′(2−3/p)+3.

This formula holds for p > 3 (in dimension 3) in order to satisfy (two times) condition
for validity of (3.24). We thus obtained the following formula:(∫

R3

(
1

|η|2−3/p

1

|ξ − η|2−3/p

)p′
dη

)1/p′

∼ |ξ|−2(2−3/p)+3/p′ . (3.25)

Going back to our main estimate:∥∥∥∥∫ t

0

G(t− τ)∇(uv)dτ

∥∥∥∥
L∞T ( ˙FB

2−3/p
p,p )

≤

sup
t

(∫
R3

|ξ|(2−3/p)p(

∫ t

0

etξ
2

dt)p|ξ|p|û ∗ v̂(ξ)|pdξ
)1/p

≤ sup
t

(∫
R3

|ξ|A|ξ|B
(∫

R3

(
|η|2−3/pv̂(η)|ξ − η|2−3/pû(ξ − η)

)p
dη

)p/p
dξ

)1/p

,

where A = 2p− 3− 2p+ p and B = [−2(2− 3/p) + 3/p′] · p.
It is not hard to notice that A+B = 0 and thus the proof of the lemma follows easily

from integration of the last term first with respect to ξ and then η.
�
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