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Weak solution to compressible hydrodynamic flow of

liquid crystals in dimension one

Shijin Ding∗ Changyou Wang† Huanyao Wen∗

Abstract

We consider the equation modeling the compressible hydrodynamic flow of

liquid crystals in one dimension. In this paper, we establish the existence of

a weak solution (ρ, u, n) of such a system when the initial density function

0 ≤ ρ0 ∈ Lγ for γ > 1, u0 ∈ L2, and n0 ∈ H1. This extends a previous result

by [12], where the existence of a weak solution was obtained under the stronger

assumption that the initial density function 0 < c ≤ ρ0 ∈ H1, u0 ∈ L2, and

n0 ∈ H1.

Key Words: Liquid crystal, compressible hydrodynamic flow, global weak solu-

tion.

1 Introduction

In this paper, we consider the one dimensional initial-boundary value problem:
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + a(ργ)x = µuxx − λ(|nx|2)x,

nt + unx = θ(nxx + |nx|2n),

(1.1)
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for (x, t) ∈ (0, 1)× (0,+∞), with the initial condition:

(ρ, ρu, n)
∣∣
t=0

= (ρ0, m0, n0) in [0, 1], (1.2)

where n0 : [0, 1]→ S2 and the boundary condition:

(u, nx)
∣∣
∂[0,1]

= (0, 0), t > 0, (1.3)

where ρ : [0, 1] × [0,+∞) → R+ is the density function, u : [0, 1] × [0,+∞) → R

is the scalar-valued velocity field in dimension one, n : [0, 1] × [0,+∞) → S2 is the

optical axis vector of the liquid crystal, with S2 = {y ∈ R3 : |y| = 1} the unit sphere

in R3, the constants µ > 0, λ > 0, θ > 0 are the fluid viscosity, competition between

kinetic and potential energy, and microscopic elastic relaxation time respectively,

and γ > 1 and a > 0 are given constants.

The hydrodynamic flow of compressible (or incompressible) liquid crystals was

first derived by Ericksen [1] and Leslie [2] in 1960’s. However, its rigorous mathemat-

ical analysis was not taken place until 1990’s, when Lin [3] and Lin-Liu [4, 5, 6] made

some important progress towards the existence of global weak solutions and partial

regularity of the incompressible hydrodynamic flow equation of liquid crystals.

When the Ossen-Frank energy configuration functional reduces to the Dirichlet

energy functional, the hydrodynamic flow equation of liquid crystals in Ω ⊂ Rd can

be written as follows (see Lin [3]):
ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) + a∇(ργ) = µ∆u− λdiv
(
∇n�∇n− |∇n|

2

2 Id
)
,

nt + u · ∇n = θ(∆n+ |∇n|2n),

(?)

where ρ : Ω × R+ → R+ is the density function, u : Ω × R+ → Rd is the velocity

field, n : Ω × R+ → S2 is the director field, u ⊗ u is the matrix of order d, whose

(i, j)-th entry is uiuj for 1 ≤ i, j ≤ d, and ∇n�∇n is the matrix of order d whose

(i, j)-th entry is nxi · nxj for 1 ≤ i, j ≤ d.

Observe that for d = 1, since ∇n�∇n− |∇n|
2

2 Id = 1
2 |nx|

2, the system (?) reduces

to (1.1) with λ replaced by 2λ. If the density function ρ is a positive constant,

then (?) becomes the hydrodynamic flow equation of incompressible liquid crystals

2



(i.e., div u = 0). In a series of papers, Lin [3] and Lin-Liu [4, 5, 6] addressed the

existence and partial regularity theory of suitable weak solution to the incompress-

ible hydrodynamic flow of liquid crystals of variable length. More precisely, they

considered the approximate equation of incompressible hydrodynamic flow of liquid

crystals in which ρ = 1 and |∇n|2n in (?)3 is replaced by
(1− |n|2)n

ε2
, and proved

in [4], among other results, both the existence of local classical solutions and the

global existence of weak solutions in dimension two and three. For any fixed ε > 0,

they also showed the existence and uniqueness of global classical solution either in

dimension two or dimension three when the fluid viscosity µ is sufficiently large;

in [6], Lin and Liu extended the classical theorem by Caffarelli-Kohn-Nirenberg [7]

on the Navier-Stokes equation that asserts the one dimensional parabolic Hausdorff

measure of the singular set of any suitable weak solution is zero. See also [8, 9] for

relevant results. For the incompressible case ρ = 1 and div u = 0, it remains to

be an open problem that for ε ↓ 0 whether a sequence of solutions (uε, nε) to the

approximate equation converges to a solution of the original equation (?). It is also

an open problem to ask for d = 3, whether there exists a global weak solution to

the incompressible hydrodynamic flow equation (?) similar to the Leray-Hopf type

solutions in the context of Naiver-Stokes equation. We answered this later question

for d = 2 in [10]. For ρ ≥ 0, divu = 0, and d = 2 or 3, Ding and Wen showed in [11]

(i) the existence of a unique local strong solution to (?), and (ii) for d = 2 if initial

density ρ0 ≥ c > 0, then there exists a unique global strong solution for small initial

data.

For the compressible hydrodynamic flow equation (?) in dimension d = 1, in a

previous work [12] Ding-Lin-Wang-Wen obtained both the existence and uniqueness

of a global strong solution (ρ, u, n) when the initial data ρ0 ∈ H1([0, 1]) has a posi-

tive lower bound ρ0 ≥ c0 > 0, and u0 ∈ H1([0, 1]), n0 ∈ H2([0, 1], S2). Moreover, by

suitable approximation the method in [12] can yield the existence of a global weak

solution under the assumption that 0 < c0 ≤ ρ0 ∈ H1([0, 1]), u0 ∈ L2([0, 1]), n0 ∈

H1([0, 1], S2). Based on the energy inequality of (?), we conjectured in [12] (see

[12] Remark 1.1) the existence of a global weak solution (ρ, u, n) of (?) whenever

(ρ0, u0, n0) ∈ Lγ([0, 1] × L2([0, 1]) ×H1([0, 1], S2). The main purpose of this paper
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is to answer this question by adopting the ideas of weak convergence and compen-

sated compactness by Feireisl-Navotný-Petzeltová [15] on the compressible isentropic

Navier-Stokes equation.

In fact, when the optical axis n is a constant unit vector, (?) reduces to the

compressible isentropic Navier-Stokes equation and there have been many works on

the existence of weak solutions to the compressible isentropic Navier-Stokes equation.

For example, P.L. Lions obtained in [13] the existence of a global weak solution for

γ ≥ 9
5 and d = 3. S. Jiang and P. Zhang obtained in [14] the existence of a global

weak solution to the Cauchy problem for spherically symmetric initial data ρ0 ∈ Lγ

for any γ > 1 in dimensions d = 2 or 3. For general initial data ρ0 and d = 3,

E. Feireisl et al in [15] extended the earlier work by P.L. Lions in [13] to the cases

γ > 3
2 .

While our ideas were originated mainly from [15], the proof is simpler, since we

exploit such of the one-dimensional features and use integrals instead of commuta-

tors. Moreover, our argument works for all γ > 1.

Since the exact values of constants a and µ, λ, θ in (1.1) don’t play any role in

the analysis, we assume henceforth that

µ = λ = θ = a = 1.

Notations:

(1) I = (0, 1), ∂I = {0, 1}, QT = I × (0, T ) for T > 0.

(2) f̂ : f̂(x) = f(x) for x ∈ I, and f̂(x) = 0 for x ∈ R \ I.

(3) ησ(·) = 1
σd
η( ·σ ), where η is a standard mollifier.

(4) C([0, T ];X − ω): f ∈ C([0, T ];X − ω)⇔ ∀g ∈ X ′, 〈f(t), g〉X×X′ ∈ C([0, T ]).

(5) H1(I, S2) = {v ∈ H1(I,R3) : |v(x)| = 1 a.e. x ∈ I}.

(6) D′(QT ) = (C∞0 (QT ))′ is the dual space of C∞0 (QT ).

Definition 1.1 We call (ρ, u, n) : Q∞ → R+ × R × S2 a global weak solution of

4



(1.1)-(1.3) if for any 0 < T < +∞,

(1) ρ ∈ L∞(0, T ;Lγ(I)), ρu2 ∈ L∞(0, T ;L1(I)), ρ ≥ 0 a.e. in QT ,

u ∈ L2(0, T ;H1
0 (I)), n ∈ L∞(0, T ; (H1(I))3) ∩ L2(0, T ; (H2(I))3),

nt ∈ L2(0, T ; (L2(I))3), |n| = 1 in QT ,

(ρ, ρu)(x, 0) = (ρ0(x),m0(x)), weakly in Lγ(I)× L
2γ
γ+1 (I),

n(x, 0) = n0(x) in I, (nx(0, t), nx(1, t)) = 0 a.e. in (0, T ).

(2) (1.1)1, (1.1)2 are satisfied in D ′(QT ), and (1.1)3 holds a.e. in QT .

(3)
∫
I

(
ρu2

2
+

ργ

γ − 1
+ |nx|2

)
(t) +

∫
I×[0,t]

(
u2
x + 2

∣∣nxx + |nx|2n
∣∣2)

≤
∫
I

(
m2

0

2ρ0
+

ργ0
γ − 1

+ |(n0)x|2
)
, for a.e. t ∈ (0, T ). (1.4)

Our main result is as follows

Theorem 1.1 If ρ0 ≥ 0, ρ0 ∈ Lγ(I), m0√
ρ0
∈ L2(I), and n0 ∈ H1(I, S2), then there

exists a global weak solution (ρ, u, n) : I × [0,+∞) → R+ × R × S2 to (1.1)-(1.3)

such that for any T > 0, ∫
QT

ρ2γ ≤ c(E0, T ),

where

E0 :=
∫
I

(
m2

0

2ρ0
+

ργ0
γ − 1

+ |(n0)x|2
)

is the total energy of the initial data.

The rest of the paper is organized as follows. In section 2, we present some useful

Lemmas which will be needed. In section 3, we derive some a priori estimates for

the approximate solutions of (1.1)-(1.3), and prove the existence of weak solution.

2 Preliminaries

Lemma 2.1 ([16]). Assume X ⊂ E ⊂ Y are Banach spaces and X ⊂ E is compact.

Then

(i)
{
ϕ : ϕ ∈ Lq(0, T ;X),

∂ϕ

∂t
∈ L1(0, T ;Y )

}
⊂ Lq(0, T ;E) is compact for q ≥ 1,

(ii)
{
ϕ : ϕ ∈ L∞(0, T ;X),

∂ϕ

∂t
∈ Lr(0, T ;Y )

}
⊂ C([0, T ];E) is compact for r > 1.
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Lemma 2.2 ([15]). Let ρ ∈ L2(Ω× (0, T )) and u ∈ L2(0, T ;H1
0 (Ω; Rd)) solve

ρt + div(ρu) = 0 in D ′(Ω× (0, T )). (2.1)

Then

∂t(b(ρ)) + div(b(ρ)u) + [b′(ρ)ρ− b(ρ)]divu = 0, in D ′(Ω× (0, T )), (2.2)

for any b ∈ C1(R) such that b′(z) ≡ 0 for all z ∈ R large enough.

Lemma 2.3 ([20]). There exists C > 0 such that for any ρ ∈ L2(Rd) and u ∈

H1(Rd),

‖ησ ∗ div(ρu)− div(u(ρ ∗ ησ))‖L1(Rd) ≤ C‖u‖H1(Rd)‖ρ‖L2(Rd).

In addition,

ησ ∗ div(ρu)− div(u(ρ ∗ ησ))→ 0 in L1(Rd), as σ → 0.

Lemma 2.4 ([19]). For a bounded Lipschitz domain Ω ⊂ Rd, let ρ ∈ L2(Ω× (0, T ))

and u ∈ L2(0, T ;H1
0 (Ω; Rd)) solve (2.1). Then (ρ, u) solve (2.1) in D ′(Rd × (0, T ))

provided (ρ, u) were extended to be zero outside Ω.

Lemma 2.5 ([19]). Let O ⊂ RM be a compact set and X be a separable Banach

space. Assume that vm : O → X∗, m ∈ Z+, is a sequence of measurable functions

such that

esssup
t∈O

‖vm(t)‖X∗ ≤ N, uniformly in m.

Moreover, let the family of functions

〈vm,Φ〉 : t→ 〈vm(t),Φ〉, t ∈ O

be equi-continuous for any Φ belonging to a dense subset in X. Then vm ∈ C(O;X−

ω) for m ∈ Z+, and there exists v ∈ C(O;X − ω) such that after taking possible

subsequences,

vm → v in C(O;X − ω), as m→∞.
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Lemma 2.6 ([19]). Let O ⊂ RN be a measurable set and vm ∈ L1(O; RM ), m ∈ Z+,

be such that

vm → v weakly in L1(O; RM ).

Let Φ : RM → (−∞,∞] be a lower semi-continuous convex function such that

Φ(vm) ∈ L1(O) for any m, and

Φ(vm)→ Φ(v), weakly in L1(O).

Then

Φ(v) ≤ Φ(v), a.e. in O.

3 Existence of weak solution

In this section, we approximate the initial data (ρ0, u0, n0) by a sequence of smooth

initial data (ρ0δ, u0δ, n0δ) such that ρ0δ has positive lower bounds, solve (1.1) with

these smooth initial data to get a sequence of classical solutions (ρδ, uδ, nδ), and

then derive some a priori estimates of such solutions. The main difficulty is to show

the convergence of the pressure functions ργδ , which is achieved by Lemmas 3.2-3.4.

By the Sobolev’s extension theorem (see [18]), there exists ñ0 ∈ H1(R) ∩ C0(R)

such that ñ0 = n0 in I. We mollify the initial data as follows.

ρ0δ = ηδ ? ρ̂0 + δ,

u0δ =
1
√
ρ0δ

ηδ ? (̂
m0√
ρ0

),

n0δ =
ηδ ? ñ0

|ηδ ? ñ0|
.

Then ρ0δ ≥ δ > 0, (ρ0δ, u0δ, n0δ) ∈ C2+α(I) for 0 < α < 1, and

ρ0δ → ρ0, in L
γ(I),

√
ρ0δu0δ → m0√

ρ0
in L2(I),

ρ0δu0δ → m0 in L
2γ
γ+1 (I),

n0δ → n0 in H
1(I),

(3.1)′
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as δ → 0. From [12], there exists a sequence of global classical solutions (ρδ, uδ, nδ)

to 
(ρδ)t + (ρδuδ)x = 0, ρδ > 0,

(ρδuδ)t + (ρδu2
δ)x + (ργδ )x = (uδ)xx − (|(nδ)x|2)x,

(nδ)t + uδ(nδ)x = (nδ)xx + |(nδ)x|2nδ, |nδ| = 1,

(3.1)

for (x, t) ∈ [0, 1]× (0,+∞), with the initial and boundary conditions:

(ρδ, uδ, nδ)
∣∣
t=0

= (ρ0δ, u0δ, n0δ) in [0, 1],

(uδ, ∂xnδ)
∣∣
∂I

= (0, 0).

For such solutions, the following Lemma has been proven by [12].

Lemma 3.1 ([12]) For any T > 0 and 0 ≤ t ≤ T , it holds∫
I

(
ρδu

2
δ

2
+

ργδ
γ − 1

+ |(nδ)x|2
)

(t) +
∫ t

0

∫
I

(
|(uδ)x|2 + 2

∣∣(nδ)xx + |(nδ)x|2nδ
∣∣2)

=
∫
I

(
ρ0δu

2
0δ

2
+

ργ0δ
γ − 1

+ |(n0δ)x|2
)
, (3.2)

and ∫
QT

(
|nδ)t|2 + |(nδ)xx|2

)
≤ c(E0, T ). (3.3)

From (3.2), we have ργδ ∈ L
∞(0, T ;L1(I)). To take limits of ργδ as δ → 0, we need

more regularity of ρδ with respect to the space variable. More precisely, we have

Lemma 3.2 ∫
QT

ρ2γ
δ ≤ c(E0, T ).

Proof. Multiplying (3.1)2 by
(∫ x

0 ρ
γ
δ − x

∫
I ρ

γ
δ

)
, integrating the resulting equation

over QT , and using integration by parts, we get∫
QT

ρ2γ
δ =

∫
I
ρδuδ

(∫ x

0
ργδ − x

∫
I
ργδ

) ∣∣T
0
−
∫ T

0

∫
I
ρδuδ

[∫ x

0
(ργδ )t − x

∫
I
(ργδ )t

]
−

∫ T

0

∫
I
(ρδu2

δ)
(
ργδ −

∫
I
ργδ

)
+
∫ T

0

(∫
I
ργδ

)2

+
∫ T

0

∫
I
(uδ)x

(
ργδ −

∫
I
ργδ

)
−

∫ T

0

∫
I
|(nδ)x|2

(
ργδ −

∫
I
ργδ

)
= I + II + III + IV + V + V I.
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I =
∫
I
ρδuδ

(∫ x

0
ργδ − x

∫
I
ργδ

) ∣∣T
0

≤ c sup
0≤t≤T

(∫
I
ρδ|uδ|

∫
I
ργδ

)
≤ c sup

0≤t≤T

(∫
I
ρδu

2
δ

∫
I
ργδ

)
+ c sup

0≤t≤T

(∫
I
ρδ

∫
I
ργδ

)
≤ c(E0),

where we have used (3.2). To estimate II, we multiply (3.1)1 by γργ−1
δ and get

(ργδ )t + (ργδuδ)x + (γ − 1)ργδ (uδ)x = 0. (3.4)

Therefore, we have from (3.4) that

II =
∫ T

0

∫
I
ρδuδ

∫ x

0

[
(ργδuδ)x + (γ − 1)ργδ (uδ)x

]
−

∫ T

0

∫
I
xρδuδ

∫
I

[
(ργδuδ)x + (γ − 1)ργδ (uδ)x

]
=

∫
QT

ργ+1
δ u2

δ + (γ − 1)
∫ T

0

∫
I
ρδuδ

∫ x

0
ργδ (uδ)x

− (γ − 1)
∫ T

0

∫
I
xρδuδ

∫
I
ργδ (uδ)x

≤
∫
QT

ργ+1
δ u2

δ + c

∫ T

0

∫
I
ρδ|uδ|

∫
I
ργδ |(uδ)x|

≤
∫
QT

ργ+1
δ u2

δ + c

∫ T

0

∫
I
ργδ |(uδ)x|

∫
I

(
ρδ + ρδu

2
δ

)
≤

∫
QT

ργ+1
δ u2

δ + c(E0)
∫ T

0

∫
I
ργδ |(uδ)x|.

By Cauchy’s inequality, Hölder’s inequality, and (3.2), we have

II ≤
∫
QT

ργ+1
δ u2

δ + c(E0)
∫ T

0
‖ρδ‖γL2γ(I)

‖(uδ)x‖L2(I)

≤
∫
QT

ργ+1
δ u2

δ +
1
4

∫
QT

ρ2γ
δ + c(E0).

III + IV = −
∫ T

0

∫
I
(ρδu2

δ)
(
ργδ −

∫
I
ργδ

)
+
∫ T

0

(∫
I
ργδ

)2

= −
∫
QT

ργ+1
δ u2

δ +
∫ T

0

∫
I
ρδu

2
δ

∫
I
ργδ +

∫ T

0

(∫
I
ργδ

)2

≤ −
∫
QT

ργ+1
δ u2

δ + c(E0, T ).
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V =
∫ T

0

∫
I
(uδ)xρ

γ
δ −

∫ T

0

∫
I
(uδ)x

∫
I
ργδ

≤
∫ T

0
‖(uδ)x‖L2(I)‖ρδ‖

γ
L2γ(I)

+
1
2

sup
0≤t≤T

∫
I
ργδ

∫
QT

(|(uδ)x|2 + 1)

≤ 1
4

∫
QT

ρ2γ
δ + c(E0, T ).

V I = −
∫ T

0

∫
I
|(nδ)x|2

(
ργδ −

∫
I
ργδ

)
≤ sup

0≤t≤T

∫
I
ργδ

∫ T

0

∫
I
|(nδ)x|2

≤ c(E0, T ).

Putting all these inequalities together, we have∫
QT

ρ2γ
δ = I + II + III + IV + V + V I

≤ 1
2

∫
QT

ρ2γ
δ + c(E0, T ).

This completes the proof. 2

It follows from Lemma 3.1 and 3.2 that there exists a subsequence of (ρδ, uδ, nδ),

still denoted by (ρδ, uδ, nδ), such that for any T > 0, as δ → 0 it holds

ρδ → ρ weak ? in L∞(0, T ;Lγ(I)), and weakly in L2γ(QT ), (3.5)

ργδ → ργ weakly in L2(QT ), (3.6)

uδ → u weakly in L2(0, T ;H1
0 (I)), (3.7)

nδ → n weak ? in L∞(QT ), (3.8)

(nδ)x → nx weak ? in L∞(0, T ;L2), (3.9)

((nδ)t, (nδ)xx)→ (nt, nxx) weakly in L2(QT ). (3.10)

Since ρδ ∈ L2γ(QT ), uδ ∈ L2(0, T ;H1
0 (I)) ⊂ L2(0, T ;L∞(I)), we have

ρδuδ ∈ L
2γ
γ+1 (0, T ;L2γ(I)).

Therefore, ∂tρδ = −(ρδuδ)x ∈ L
2γ
γ+1 (0, T ;H−1(I)). Since 2γ

γ+1 > 1, ρδ ∈ L∞(0, T ;Lγ(I)),

and Lγ ⊂ H−1(I) is compact, Lemma 2.1 and Lemma 2.5 imply

ρδ → ρ in C([0, T ];Lγ − ω), (3.11)
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ρδ → ρ in C([0, T ];H−1). (3.12)

(3.7) and (3.12) imply

ρδuδ → ρu in D ′(QT ). (3.13)

Hence,

ρt + (ρu)x = 0 in D ′(QT ). (3.14)

Moreover,
√
ρδuδ ∈ L∞(0, T ;L2) and

√
ρδ ∈ L∞(0, T ;L2γ) imply

ρδuδ ∈ L∞(0, T ;L
2γ
γ+1 ).

From (3.1)2, we get

(ρδuδ)t = −(ρδu2
δ)x − (ργδ )x + (uδ)xx − (|(nδ)x|2)x ∈ L2(0, T ;W−1, 2γ

γ+1 ).

By (3.13), Lemma 2.1 and Lemma 2.5, we obtain

ρδuδ → ρu in C([0, T ];L
2γ
γ+1 − ω), (3.15)

ρδuδ → ρu, in C([0, T ];H−1) (also weak ? in L∞(0, T ;L
2γ
γ+1 )). (3.16)

From (3.7) and (3.16), we have

ρδu
2
δ → ρu2 in D ′(QT ) (also weakly in L2(0, T ;L

2γ
γ+1 )). (3.17)

Similar to the above argument, (3.8)-(3.10) and Lemma 2.1 imply

nδ → n in C(QT ), (3.18)

nδ → n in L2(0, T ;C1([0, 1])). (3.19)

This, together with (3.6), (3.7), (3.9), (3.10), (3.13), and (3.17), implies

(ρu)t + (ρu2)x + (ργ)x = uxx − (|nx|2)x in D ′(QT ), (3.20)

nt + unx = nxx + |nx|2n in L2(0, T ;L2). (3.21)

It follows from (3.1)′1, (3.1)′3, (3.11), and (3.15) that

(ρ, ρu)(x, 0) = (ρ0(x),m0(x)) weakly in Lγ(I)× L
2γ
γ+1 (I).
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By (3.1)′4 and (3.18), and |nδ| = 1, we have

n(x, 0) = n0(x) in [0, 1] and |n| = 1 in QT .

(1.3) follows from (3.7) and (3.19). Since ρδ > 0 in QT , (3.5) implies∫
QT

ρf = lim
δ→0

∫
QT

ρδf ≥ 0,

for any nonnegative f ∈ C∞0 (QT ). Since f ≥ 0 is arbitrary, we have

ρ ≥ 0 a.e. in QT .

From (3.17), we have

1
ε

∫ t+ε

t

∫
I
ρu2 =

1
ε

lim
δ→0

∫ t+ε

t

∫
I
ρδu

2
δ

≤ 1
ε

∫ t+ε

t
lim
δ→0

∫
I
ρδu

2
δ(s),

for t ∈ (0, T ) and ε > 0. Let ε→ 0+ and apply Lebesgue’s density theorem, we get∫
I
ρu2(t) ≤ lim

δ→0

∫
I
ρδu

2
δ(t) for a.e. t ∈ QT .

This, together with (3.1)′, (3.2), and the lower semi-continuity, implies the energy

inequality (1.4). 2

We need to prove ργ = ργ . This follows from the following lemmas.

Lemma 3.3 As δ → 0, we have[
(uδ)x − ργδ

]
ρδ → (ux − ργ) ρ in D ′(QT ).

Proof. For any ϕ ∈ C∞0 ((0, T )), φ ∈ C∞0 ((0, 1)), multiplying (3.1)2 by ϕφ
∫ x
0 ρδ,

integrating the resulting equation over QT , and using integration by parts, we have∫
QT

ϕ(t)φ(x)
[
(uδ)x − ργδ

]
ρδ

=
∫
QT

ϕ′(t)φ(x)ρδuδ

∫ x

0
ρδ +

∫
QT

ϕ(t)φ(x)ρδuδ

(∫ x

0
ρδ

)
t

+
∫
QT

ϕ(t)φ(x)ρ2
δu

2
δ

+
∫
QT

ϕ(t)φ′(x)ρδu2
δ

∫ x

0
ρδ +

∫
QT

ϕ(t)φ′(x)ργδ

∫ x

0
ρδ −

∫
QT

ϕ(t)φ′(x)(uδ)x
∫ x

0
ρδ

+
∫
QT

ϕ(t)φ′(x)|(nδ)x|2
∫ x

0
ρδ +

∫
QT

ϕ(t)φ(x)|(nδ)x|2ρδ

=
∫
QT

ϕ′(t)φ(x)ρδuδ

∫ x

0
ρδ +

∫
QT

ϕ(t)φ′(x)ρδu2
δ

∫ x

0
ρδ +

∫
QT

ϕ(t)φ′(x)ργδ

∫ x

0
ρδ

−
∫
QT

ϕ(t)φ′(x)(uδ)x
∫ x

0
ρδ +

∫
QT

ϕ(t)φ′(x)|(nδ)x|2
∫ x

0
ρδ +

∫
QT

ϕ(t)φ(x)|(nδ)x|2ρδ,
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where we have used (3.1)1.

Since
∫ x
0 ρδ ∈ L

∞(0, T ;W 1,γ), ∂t(
∫ x
0 ρδ) = −ρδuδ ∈ L∞(0, T ;L

2γ
γ+1 ), Lemma 2.1

and (3.5) imply ∫ x

0
ρδ →

∫ x

0
ρ in C(QT ), as δ → 0. (3.22)

This, combined with (3.5)-(3.7), (3.16), (3.17), and (3.19), gives

lim
δ→0

∫
QT

ϕ(t)φ(x)[(uδ)x − ργδ ]ρδ (3.23)

=
∫
QT

ϕ′(t)φ(x)ρu
∫ x

0
ρ+

∫
QT

ϕ(t)φ′(x)ρu2

∫ x

0
ρ+

∫
QT

ϕ(t)φ′(x)ργ
∫ x

0
ρ

−
∫
QT

ϕ(t)φ′(x)ux
∫ x

0
ρ+

∫
QT

ϕ(t)φ′(x)|nx|2
∫ x

0
ρ+

∫
QT

ϕ(t)φ(x)|nx|2ρ.

To complete the proof, it suffices to show that the right side of (3.23) is equal to∫
QT

ϕ(t)φ(x)(ux − ργ)ρ. The main difficulty is ρu /∈ L2(QT ). To overcome it, take

ϕφ
∫ x
0 〈ρ̂〉σ as a test function of (3.20), where 〈ρ̂〉σ = ησ ∗ ρ̂, we have∫

QT

ϕ(t)φ(x)(ux − ργ)〈ρ̂〉σ

=
∫
QT

ϕ′(t)φ(x)ρu
∫ x

0
〈ρ̂〉σ +

∫
QT

ϕ(t)φ(x)ρu(
∫ x

0
〈ρ̂〉σ)t +∫

QT

ϕ(t)φ(x)ρu2〈ρ̂〉σ +
∫
QT

ϕ(t)φ′(x)ρu2

∫ x

0
〈ρ̂〉σ +∫

QT

ϕ(t)φ′(x)ργ
∫ x

0
〈ρ̂〉σ −

∫
QT

ϕ(t)φ′(x)ux
∫ x

0
〈ρ̂〉σ +∫

QT

ϕ(t)φ′(x)|nx|2
∫ x

0
〈ρ̂〉σ +

∫
QT

ϕ(t)φ(x)|nx|2〈ρ̂〉σ. (3.24)

Since ρ ∈ L2(QT ), u ∈ L2(0, T ;H1
0 (I)), Lemma 2.4 implies

(ρ̂)t + (ρ̂û)x = 0 in D ′(R× (0, T )). (3.25)

Denote rσ = (〈ρ̂〉σû)x−〈(ρ̂û)x〉σ. It follows from Lemma 2.3 that rσ ∈ L1(R×(0, T )),

and

rσ → 0 in L1(R× (0, T )), as σ → 0. (3.26)

Take ησ(x− ·) as a test function of (3.25), we have

(〈ρ̂〉σ)t + (〈ρ̂〉σû)x = rσ a.e. in R× (0, T ). (3.27)
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Integrating (3.27) over (0, x), for 0 < x ≤ 1, we have

(
∫ x

0
〈ρ̂〉σ)t = −〈ρ̂〉σû+

∫ x

0
rσ.

Therefore we obtain∫
QT

ϕ(t)φ(x)ρu(
∫ x

0
〈ρ̂〉σ)t +

∫
QT

ϕ(t)φ(x)ρu2〈ρ̂〉σ

= −
∫
QT

ϕ(t)φ(x)ρu〈ρ̂〉σû+
∫
QT

ϕ(t)φ(x)ρu
∫ x

0
rσ +

∫
QT

ϕ(t)φ(x)ρu2〈ρ̂〉σ

=
∫
QT

ϕ(t)φ(x)ρu
∫ x

0
rσ,

where we have used û = u in QT . This, together with (3.24), implies∫
QT

ϕ(t)φ(x)(ux − ργ)〈ρ̂〉σ

=
∫
QT

ϕ′(t)φ(x)ρu
∫ x

0
〈ρ̂〉σ +

∫
QT

ϕ(t)φ(x)ρu
∫ x

0
rσ

+
∫
QT

ϕ(t)φ′(x)ρu2

∫ x

0
〈ρ̂〉σ +

∫
QT

ϕ(t)φ′(x)ργ
∫ x

0
〈ρ̂〉σ

−
∫
QT

ϕ(t)φ′(x)ux
∫ x

0
〈ρ̂〉σ +

∫
QT

ϕ(t)φ′(x)|nx|2
∫ x

0
〈ρ̂〉σ

+
∫
QT

ϕ(t)φ(x)|nx|2〈ρ̂〉σ. (3.28)

By the regularities of (ρ, u, n), (3.26), Lebesgue’s Dominated convergence theorem,

(3.28) implies, after taking σ → 0,∫
QT

ϕ(t)φ(x)(ux − ργ)ρ (3.29)

=
∫
QT

ϕ′(t)φ(x)ρu
∫ x

0
ρ+

∫
QT

ϕ(t)φ′(x)ρu2

∫ x

0
ρ+

∫
QT

ϕ(t)φ′(x)ργ
∫ x

0
ρ

−
∫
QT

ϕ(t)φ′(x)ux
∫ x

0
ρ+

∫
QT

ϕ(t)φ′(x)|nx|2
∫ x

0
ρ+

∫
QT

ϕ(t)φ(x)|nx|2ρ.

The conclusion now follows from (3.23) and (3.29). This completes the proof. 2

Lemma 3.4 The following holds

lim
δ→0

∫
QT

ρδ(uδ)x ≤
∫
QT

ρux.
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Proof. Since ρ ∈ L2γ(QT ), u ∈ L2(0, T ;H1
0 ), we replace b in (2.2) by blj (j, l ∈ Z+),

where blj ∈ C1(R) is given by

blj(z) = (z +
1
l
) log(z +

1
l
), for 0 ≤ z ≤ j,

= (j + 1 +
1
l
) log(j + 1 +

1
l
), for z ≥ j + 1.

Since ρ ∈ L∞(0, T ;Lγ), we have ρ < +∞ a.e. in QT . This implies

blj(ρ)→ (ρ+
1
l
) log(ρ+

1
l
) a.e. in QT , as j →∞.

Let j →∞ in (2.2), the Lebesgue’s Dominated convergence theorem implies

∂t

[
(ρ+

1
l
) log(ρ+

1
l
)
]
+
[
(ρ+

1
l
) log(ρ+

1
l
)u
]
x

+ρux−
1
l
ux log(ρ+

1
l
) = 0 inD ′(QT ).

(3.30)

Since ρ ∈ L2γ(QT ), we have (ρ + 1
l ) log(ρ + 1

l ) ∈ L
2(QT ). Similar to (3.25)-(3.27),

we extend ρ, u in (3.30) to be zero outside I, mollify (3.30), integrate the resulting

equation over QT , and take limits, we obtain∫
QT

ρux =
∫
I
(ρ0 +

1
l
) log(ρ0 +

1
l
)−

∫
I
(ρ+

1
l
) log(ρ+

1
l
)(T )

+
1
l

∫
QT

ux log(ρ+
1
l
). (3.31)

Since (3.1)1 is valid in the classical sense, a direct calculation gives

∂t

[
(ρδ +

1
l
) log(ρδ +

1
l
)
]
+
[
(ρδ +

1
l
) log(ρδ +

1
l
)uδ

]
x

+ρδ(uδ)x−
1
l
(uδ)x log(ρδ+

1
l
) = 0.

(3.32)

Integrating (3.32) over QT , we have∫
QT

ρδ(uδ)x =
∫
I
(ρ0δ +

1
l
) log(ρ0δ +

1
l
)−

∫
I
(ρδ +

1
l
) log(ρδ +

1
l
)(T )

+
1
l

∫
QT

(uδ)x log(ρδ +
1
l
)

≤
∫
I
(ρ0δ +

1
l
) log(ρ0δ +

1
l
)−

∫
I
(ρδ +

1
l
) log(ρδ +

1
l
)(T )

+
1
l
‖(uδ)x‖L2(QT )‖ρδ + 1‖L2(QT )

≤
∫
I
(ρ0δ +

1
l
) log(ρ0δ +

1
l
)−

∫
I
(ρδ +

1
l
) log(ρδ +

1
l
)(T )

+
1
l
c(E0, T ), (3.33)
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where we have used Hölder inequality, Lemma 3.1, and Lemma 3.2.

Since ρδ ∈ L∞(0, T ;Lγ), we have

(ρδ +
1
l
) log(ρδ +

1
l
) ∈ L∞(0, T ;Lτ ), (3.34)

for some τ > 1. From (3.32), we get

∂t[(ρδ +
1
l
) log(ρδ +

1
l
)] ∈ L

2γ
γ+1 (0, T ;W−1, 2γ

γ+1 ). (3.35)

(3.34), (3.35), and Lemma 2.5 give

(ρδ +
1
l
) log(ρδ +

1
l
)→ (ρ+

1
l
) log(ρ+

1
l
) in C([0, T ];Lτ − ω), as δ → 0.

This implies

lim
δ→0

∫
I
(ρδ +

1
l
) log(ρδ +

1
l
)(T ) =

∫
I

(ρ+
1
l
) log(ρ+

1
l
)(T ).

Since the function (z + 1
l ) log(z + 1

l ) is convex for z ≥ 0, Lemma 2.6 implies

(ρ+
1
l
) log(ρ+

1
l
) ≤ (ρ+

1
l
) log(ρ+

1
l
) a.e. in QT .

Therefore,

lim
δ→0

∫
I
(ρδ +

1
l
) log(ρδ +

1
l
)(T ) ≥

∫
I
(ρ+

1
l
) log(ρ+

1
l
)(T ). (3.36)

Take lim
δ→0

in (3.33), and use (3.36), we get

lim
δ→0

∫
QT

ρδ(uδ)x

≤
∫
I
(ρ0 +

1
l
) log(ρ0 +

1
l
)− lim

δ→0

∫
I
(ρδ +

1
l
) log(ρδ +

1
l
)(T ) +

1
l
c(E0, T )

≤
∫
I
(ρ0 +

1
l
) log(ρ0 +

1
l
)−

∫
I
(ρ+

1
l
) log(ρ+

1
l
)(T ) +

1
l
c(E0, T )

=
∫
QT

ρux −
1
l

∫
QT

ux log(ρ+
1
l
) +

1
l
c(E0, T )

≤
∫
QT

ρux +
1
l
‖ux‖L2(QT )‖ρ+ 1‖L2(QT ) +

1
l
c(E0, T ).

Since ux ∈ L2(QT ), and ρ ∈ L2(QT ), sending l→∞ yields

lim
δ→0

∫
QT

ρδ(uδ)x ≤
∫
QT

ρux.
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The proof of the Lemma is complete. 2

Now we return to the proof of ργ = ργ . Assume ϕm ∈ C∞0 (0, T ), φm ∈ C∞0 (0, 1),

0 ≤ ϕm, φm ≤ 1, and ϕm, φm → 1 as m → ∞. For any ψ ∈ C∞0 (QT ), denote

v = ρ− εψ for ε > 0, then∫
QT

(ργ − vγ)(ρ− v)

=
∫
QT

ϕmφm(ργ − vγ)(ρ− v) +
∫
QT

(1− ϕmφm)(ργ − vγ)(ρ− v)

=
∫
QT

ϕmφm(ργρ− ργv − vγρ+ vγ+1) +
∫
QT

(1− ϕmφm)(ργ − vγ)(ρ− v)

=
∫
QT

ϕmφm(ργ − ux)ρ+
∫
QT

(ϕmφm − 1)ρux +
∫
QT

ρux

+
∫
QT

ϕmφm(−ργv − vγρ+ vγ+1) +
∫
QT

(1− ϕmφm)(ργ − vγ)(ρ− v).

Denote Am =
∫
QT

(ϕmφm − 1)ρux +
∫
QT

(1−ϕmφm)(ργ − vγ)(ρ− v). Together with

Lemma 3.3 and 3.4, (3.5), and (3.6), we have∫
QT

(ργ − vγ)(ρ− v)

≥ lim
δ→0

∫
QT

ϕmφm[ργδ − (uδ)x]ρδ + lim
δ→0

∫
QT

ρδ(uδ)x

+ lim
δ→0

∫
QT

ϕmφm(−ργδv − v
γρδ + vγ+1) +Am

≥ lim
δ→0

[
∫
QT

ϕmφm[ργδ − (uδ)x]ρδ +
∫
QT

ϕmφmρδ(uδ)x

+
∫
QT

ϕmφm(−ργδv − v
γρδ + vγ+1)]− lim

δ→0

∫
QT

ρδ|1− ϕmφm||(uδ)x|+Am

= lim
δ→0

∫
QT

ϕmφm(ργδ − v
γ)(ρδ − v)− lim

δ→0

∫
QT

ρδ|1− ϕmφm||(uδ)x|+Am.

By the monotonicity of zγ , we have∫
QT

ϕmφm(ργδ − v
γ)(ρδ − v) ≥ 0.

Therefore,∫
QT

(ργ − vγ)(ρ− v) ≥ −lim
δ→0

∫
QT

ρδ|1− ϕmφm||uδx|+Am

≥ −lim
δ→0
‖1− ϕmφm‖

L
2γ
γ−1 (QT )

‖ρδ‖L2γ(QT )‖uδx‖L2(QT ) +Am

≥ −c(E0, T )‖1− ϕmφm‖
L

2γ
γ−1 (QT )

+Am, (3.37)
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where we have used Hölder inequality, Lemma 3.1, and Lemma 3.2. By the Lebesgue’s

Dominated Convergence Theorem, we have

‖1− ϕmφm‖
L

2γ
γ−1 (QT )

→ 0, Am → 0 as m→∞.

Let m→∞ in (3.37), we get∫
QT

(ργ − vγ)(ρ− v) ≥ 0.

Since v = ρ− εψ, and ε > 0, we have∫
QT

[ργ − (ρ− εψ)γ ]ψ ≥ 0. (3.38)

Sending ε ↓ 0 yields ∫
QT

(ργ − ργ)ψ ≥ 0.

This clearly implies

ργ = ργ a.e. in QT .

The proof of Theorem 1.1 is complete. 2
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