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Abstract

Sparse modeling is a powerful framework for data analysis and processing. Traditionally, encoding in

this framework is performed by solving an `1-regularized linear regression problem, commonly referred

to as Lasso or basis pursuit. In this work we combine the sparsity-inducing property of the Lasso model

at the individual feature level, with the block-sparsity property of the Group Lasso model, where sparse

groups of features are jointly encoded, obtaining a sparsity pattern hierarchically structured. This results in

the Hierarchical Lasso (HiLasso), which shows important practical modeling advantages. We then extend

this approach to the collaborative case, where a set of simultaneously coded signals share the same sparsity

pattern at the higher (group) level, but not necessarily at the lower (inside the group) level, obtaining the

collaborative HiLasso model (C-HiLasso). Such signals then share the same active groups, or classes,

but not necessarily the same active set. This model is very well suited for applications such as source

identification and separation. An efficient optimization procedure, which guarantees convergence to the

global optimum, is developed for these new models. The underlying presentation of the new framework

and optimization approach is complemented with experimental examples and theoretical results regarding

recovery guarantees for the proposed models.

I. INTRODUCTION AND MOTIVATION

Sparse signal modeling has been shown to lead to numerous state-of-the-art results in signal processing,

in addition to being very attractive at the theoretical level. The standard model assumes that a signal can

be efficiently represented by a sparse linear combination of atoms from a given or learned dictionary.

†P. S. and I. R. contributed equally to this work.
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The selected atoms form what is usually referred to as the active set, whose cardinality is significantly

smaller than the size of the dictionary and the dimension of the signal.

In recent years, it has been shown that adding structural constraints to this active set has value both at

the level of representation robustness and at the level of signal interpretation (in particular when the active

set indicates some physical properties of the signal); see [1], [2], [3] and references therein. This leads

to group or structured sparse coding, where instead of considering the atoms as singletons, the atoms are

grouped, and a few groups are active at a time. An alternative way to add structure (and robustness) to

the problem is to consider the simultaneous encoding of multiple signals, requesting that they all share

the same active set. This is a natural collaborative filtering approach to sparse coding; see, for example,

[4], [5], [6], [7], [8], [9].

In this work we extend these models in a number of directions. First, we present a hierarchical sparse

model, where not only a few (sparse) groups of atoms are active at a time, but also each group enjoys

internal sparsity.1 At the conceptual level, this means that the signal is represented by a few groups

(classes), and inside each group only a few members are active at a time. A simple example of this is a

piece of music (numerous applications in genomics and image processing exist as well), where only a few

instruments are active at a time (each instrument is a group), and the sound produced by each instrument

at each instant is efficiently represented by a few atoms of the sub-dictionary/group corresponding to

it. Thereby, this proposed hierarchical sparse coding framework permits to efficiently perform source

identification and separation, where the individual sources (classes/groups) that generated the signal are

identified at the same time as their representation is reconstructed (via the sparse code inside the group).

An efficient optimization procedure, guaranteed to converge to the global optimum, is proposed to solve

the hierarchical sparse coding problems that arise in our framework. Theoretical recovery bounds are

derived for this hierarchical sparse model (HiLasso).

Then, we go one step beyond this. Continuing with the above example, if we know that the same few

instruments will be playing simultaneously during different passages of the piece, then we can assume

that the active groups at each instant, within the same passage, will be the same. We can then exploit this

information by applying the new hierarchical sparse coding approach in a collaborative way, enforcing

that the same groups will be active at all instants within a passage (since they are of the same instruments

and then efficiently representable by the same sub-dictionaries), while allowing each group for each music

1While we here consider only 2 levels of sparsity, the proposed framework is easily extended to multiple levels.
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instant to have its own unique internal sparsity pattern (depending on how the sound of each instrument is

represented at each instant). We propose a collaborative hierarchical sparse coding framework addressing

exactly this (C-HiLasso).2 An efficient optimization procedure for this case is derived as well. For this

case, we comment on results regarding the correct recovery of the underlying active groups.

Our proposed optimization technique for both sparse coding problems combines the Sparse Reconstruc-

tion by Separable Approximation (SpaRSA) [10], with the Alternating Direction Method of Multipliers

(ADMOM) [11], a general purpose optimization tool that has been successfully employed to efficiently

solve `1-constrained regularization problems [12], [13], [14]. Our algorithm iteratively alternates between

a scalar thresholding at the coefficient level and a vector thresholding at the group level, naturally yielding

to the desired hierarchical sparsity patterns in the solutions and converges to the global optimum.

The rest of the paper is organized as follows: Section II provides an introduction to traditional sparse

modeling and presents our proposed HiLasso and C-HiLasso models. After introducing the models, we

discuss their relationship with the recent works of [2], [15], [16], [17], [18], [19] is detailed. In Section III

we describe the optimization techniques applied to solve the resulting sparse coding problems. Recovery

guarantees for HiLasso in the noiseless setting are developed in Section IV. We also comment on existing

results regarding correct recovery of group-sparse patterns in the collaborative case. Experimental results

and simulations are given in Section V, and finally concluding remarks are presented in Section VI.

II. COLLABORATIVE HIERARCHICAL CODING

A. Background: Lasso and Group Lasso

Assume we have a set of data samples xj ∈ Rm, j = 1, . . . , n, and a dictionary of p atoms in

Rm, assembled as a matrix D ∈ Rm×p, D = [d1d2 . . .dp]. Each sample xj can be written as xj =

Daj + ε, aj ∈ Rp, ε ∈ Rm, that is, as a linear combination of the atoms in the dictionary D plus some

perturbation ε, satisfying ‖ε‖2 � ‖xj‖2. The basic underlying assumption in sparse modeling is that, for

all or most j, the “optimal” reconstruction aj has only a few nonzero elements. Formally, if we define

the `0 cost as the pseudo-norm counting the number of nonzero elements of aj , ‖aj‖0 = |{k : akj 6= 0}|,

then we expect that ‖aj‖0 � p and ‖aj‖0 � m for all or most j.

2Note that different recordings can also have different instruments, so some of them will share the same groups while not

necessarily all of them will be exactly the same.
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The `0 optimization is non-convex and known to be NP-hard. To determine aj in practice, a multitude

of efficient algorithms have been proposed, which achieve high recovery rates. The `1-minimization

method is the most extensively studied recovery technique. In this approach, the non-convex `0 norm is

replaced by the convex `1 norm, leading to

min
a∈Rp

‖a‖1 s.t. ‖xj −Da‖22 ≤ ε. (II.1)

The use of general purpose or specialized convex optimization techniques allows for efficient reconstruc-

tion using this strategy. The above approximation is known as the Lasso [20] or basis pursuit [21], [22].

A popular variant is to use the unconstrained version

min
a∈Rp

1

2
‖xj −Da‖22 + λ ‖a‖1 , (II.2)

where λ is an appropriate parameter value, usually found by cross-validation.

The fact that the ‖·‖1 regularizer induces sparsity in the solution aj is desirable not only from a

regularization point of view, but also from a model selection perspective, where one wants to identify the

relevant features or factors (atoms) that conform each sample xj . In many situations, however, the goal

is to represent the relevant factors not as singletons but as groups of atoms. For a dictionary of p atoms,

we define groups of atoms through their indexes, G ⊆ {1, . . . , p}. Given a group G of atoms from a

dictionary D, we denote the subdictionary formed by them as DG, and the corresponding set of linear

reconstruction coefficients as aG. Define G = {G1, . . . , G|G|} to be a partition of {1, . . . , p}.3 In order

to perform model selection at the group level (relative to the partition G), the Group Lasso problem was

introduced in [1],

min
a∈Rp

1

2
‖xj −Da‖22 + λψG(a), (II.3)

where ψG is the Group Lasso regularizer defined in terms of G as ψG(a) =
∑

G∈G ‖aG‖2. The function

ψG can be seen as an `1 norm on Euclidean norms of the vectors formed by coefficients belonging to the

same group aG. This is a generalization of the `1 regularizer, as the latter arises from the special case

G = {1, 2, . . . , p} (the groups are singletons), and as such, its effect on the groups of a is also a natural

generalization of the one obtained with the Lasso: it “turns on/off” atoms in groups.

We can always consider the “noiseless” sparse coding problem mina∈Rp {λψ(a) : xj = Da},

for a generic regularizer ψ(·), as the limit of the Lagrangian sparse coding problem

3While in this paper we concentrate and develop the important non-overlapping case, it will be clear that the concepts of

collaborative hierarchical sparse modeling introduced here apply to the case of overlapping groups as well.
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Fig. 1. Sparsity patterns induced by HiLasso (left) and collaborative HiLasso (right) model selection programs. Notice that the

C-HiLasso imposes the same group-sparsity pattern in all the samples (same class), whereas the in-group sparsity patterns can

vary between samples (samples themselves are different).

mina∈Rp

{
1
2 ‖xj −Da‖22 + λψ(a)

}
when λ → 0. In the remainder of this section, as well as in

Section III, we only present the corresponding Lagrangian formulations.

B. The Hierarchical Lasso

The Group Lasso trades sparsity at the single-coefficient level with sparsity at a group level, while,

inside each group, the solution is generally dense. Let us consider for example that each group is a

sub-dictionary trained to efficiently represent, via sparse modeling, an instrument or a type of image, or

a given class of signals in general. The entire dictionary D is then appropriate to represent all classes

of the signal as well as mixtures of them, and Group Lasso will properly represent sparse mixtures with

one group or sub-dictionary per class). At the same time, since each class is properly represented in a

sparse mode via its corresponding group or sub-dictionary, we expect sparsity inside its groups as well

(this is not achieved by group Lasso, whose solutions are dense inside each group). This will become

even more critical in the collaborative case, where signals will share groups because they are of the same

class, but will not necessarily share the full active sets, since they are not the same signal. To achieve the

desired in-group sparsity, we simply re-introduce the `1 regularizer together with the group regularizer,

leading to the proposed Hierarchical Lasso (HiLasso) model,4

min
a∈Rp

1

2
‖xj −Da‖22 + λ2ψG(a) + λ1 ‖a‖1 . (II.4)

The hierarchical sparsity pattern produced by the solutions of (II.4) is depicted in Figure 1(left). For

simplicity of the description, we assume that all the groups have the same number of elements. The

extension to the general case is obtained by multiplying each group norm by the square root of the

4We can similarly define a hierarchical sparsity model with `0 instead of `1.
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Fig. 2. Effect of different combinations of λ1 and λ2 on the solutions of the HiLasso coding problem. Three cases are given

in which we want to recover a sparse signal (red crosses) a0 by means of the solution a of the HiLasso problem (blue dots). In

this example we have two active groups out of ten possible (the sub dictionaries associated to each group have 30 atoms) and

a0 = 8 (four non-zero coefficient per active group). The best estimate is shown in the top left. As the ratio λ2/λ1 increases

(bottom left), the level sets of the regularizer ψG(·) become rounder, thus encouraging denser solutions. This is depicted in the

rightmost figure for a simple case of |G| = 1. Increasing λ1 again (bottom right) increases sparsity, although here the final effect

is too strong and some non-zero coefficients are not detected.

corresponding group size. This model then achieves the desired effect of promoting sparsity at the

group/class level while at the same time leading to overall sparse feature selection.

The selection of λ1 and λ2 has an important influence on the sparsity of the obtained solution. Intuitively

as λ2/λ1 increases, the group constraint becomes dominant and the solution tends to be more sparse at

a group level but less sparse within groups (see Figure 2).

C. Collaborative Hierarchical Lasso

In numerous applications, one expects that certain collections of samples xj share the same active

components from the dictionary, that is, that the indexes of the nonzero coefficients in aj are the same

for all the samples in the collection. Imposing such dependency in the `1 regularized regression problem
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gives rise to the so called collaborative (also called “multitask” or “simultaneous”) sparse coding problem

[4], [8], [9], [23].

More specifically, if we consider the matrix of coefficients A = [a1, . . . ,an] ∈ Rp×n associated with

the reconstruction of the samples X = [x1, . . . ,xn] ∈ Rm×n, the collaborative sparse coding model is

given by

min
A∈Rp×n

1

2
‖X−DA‖2F + λ

p∑
k=1

∥∥∥ak∥∥∥
2
, (II.5)

where ak ∈ Rn is the k-th row of A, that is, the vector of the n different values that the coefficient

associated to the k-th atom takes for each sample j = 1, . . . , n. If we now extend this idea to the Group

Lasso, we obtain a collaborative Group Lasso (C-GLasso) formulation,

min
A∈Rp×n

1

2
‖X−DA‖2F + λψG(A), (II.6)

where ψG(A) =
∑

G∈G
∥∥AG

∥∥
F

, being AG the submatrix formed by all the rows belonging to group G.

This regularizer is the natural extension of the regularizer in (II.3) for the collaborative case.

In this paper we are moving one step forward and treat this together with the hierarchical extension

presented in the previous section. The combined model that we propose, C-HiLasso, is given by

min
A∈Rp×n

1

2
‖X−DA‖2F + λ2ψG(A) +

n∑
j=1

λ1 ‖aj‖1 . (II.7)

The sparsity patterns obtained with solutions to (II.7) is shown in Figure 1(right). The collaborative

Group Lasso is a particular case of our model when λ1 is zero. On the other hand, one can obtain

independent Lasso for each xi by setting λ2 to zero. We see that (II.7) encourages all the signals to share

the same groups (classes), while the active set inside each groups is signal dependent. We thereby obtain

a collaborative hierarchical sparse model, with collaboration at the class level (all signals collaborate

to identify the classes), and freedom at the individual levels inside the class to adapt to each particular

signal. This new model is particularly well suited, for example, when the data vectors have missing

components. In this case combining the information from all the samples is very important in order to

lead to a correct representation and model (group) selection. This can be done by slightly changing the

data term in (II.7). For each data vector xj one computes the reconstruction error using only the observed

elements. Note that the missing components do not affect the other terms of the equation. Examples will

be shown in Section V.
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D. Relationship to Recent Literature

A number of recent works have addressed hierarchy, grouping and collaboration within the sparse

modeling community. We now discuss the most closely related to the proposed C-HiLasso model.

In [2], the authors propose a general framework in which one can define a regularization term to

encourage a variety of sparsity patterns, and provide theoretical results (different than the ones developed

here) for the single-signal case. The HiLasso model presented here, in the single signal scenario, can

be seen as a particular case of that model (were the groups in [2] should be blocks and singletons),

although the particularly and important case of hierarchical structure introduced here is not mentioned in

that paper. In [15] the authors simultaneously (see [14]) proposed a model that coincides with ours again

in the single-signal scenario. None of these approaches develop the collaborative framework introduced

here nor the theoretical guarantees we develop.

The recovery of mixed signals with `0 optimization was addressed in [19]. This model does not include

block sparsity (no hierarchy), neither collaboration. The theoretical results we obtain are not present in

[19].

The special case of C-HiLasso when λ1 = 0, which we refer to as collaborative Group Lasso (C-

GLasso) here, is investigated in [24], where a theoretical analysis of the signal recovery properties of

the model is developed. Collaborative coding with structured sparsity has also been used recently in

the context of gene expression analysis [16], [17]. In [16], the authors propose a model, that can be

interpreted as a particular case of the collaborative approach presented here, in which a set of signals

is simultaneously coded using a small (sparse) number of atoms of the dictionary. They modify the

classical collaborative sparse coding regularization so that each signal can use any subset of the detected

atoms. This is equivalent to our model when the groups have only one element and therefore there is

no hierarchy in the coding. A collaborative model is presented in [17], where signals sharing the same

active atoms are grouped together in a hierarchical way by means of a tree structure. The regularization

term proposed is analogous to the one proposed in our work, but it is used to group signals rather than

atoms (features), having once again no hierarchical coding.

Trees have also been used recently to learn dictionaries [18]. The tree-based sparse coding is such that

if a particular learned atom is not used in the decomposition of a signal, then none of its descendants

(in terms of the given tree structure) can be used.

To conclude, while particular instances of the proposed C-HiLasso have been recently reported in the
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literature, none of them are as comprehensive. C-HiLasso includes both collaboration, at a block/group

level, and hierarchical coding. Such collaborative hierarchical structure is novel and fundamental to

address new important problems such as collaborative source identification and separation. The new

theoretical results presented here which extend the block sparsity results of [3], [25] complement the

previous modeling and algorithmic work.

III. OPTIMIZATION

A. Single-Signal Problem: HiLasso

In the last decade, optimization of problems of the form of (II.2) and (II.3) have been deeply studied, and

there exist very efficient algorithms for solving them. Recently, Wright et. al [10] proposed a framework,

SpaRSA, for solving the general problem

min
a∈Rp

f(a) + λψ(a). (III.8)

To guarantee convergence, f : Rp → R needs to be a smooth and convex function, while ψ : Rp → R only

needs to be finite in Rp. This formulation includes as important particular cases the Lasso, Group-Lasso

and HiLasso problems by setting f(·) as the reconstruction error and then choosing the corresponding

regularizers for ψ(·). When the regularizer, ψ(·), is group separable, the optimization can be subdivided

into smaller problems, one per group. The framework becomes powerful when these subproblems can be

solved efficiently. This is the case of the Lasso and Group Lasso (with non overlapping groups) settings

but is not immediate with the HiLasso regularizer (II.4). In this work we combine SpaRSA with the

ADMOM method [11] to efficiently solve the HiLasso problem.

The SpaRSA algorithm generates a sequence of iterates {a(t)}t∈N that, under certain conditions,

converges to the solution of (III.8). At each iteration, a(t+1) is obtained by solving

min
z∈Rp

(z− a(t))T∇f(a(t)) +
α(t)

2

∥∥∥z− a(t)
∥∥∥2

2
+ λψ(z), (III.9)

for some sequence of parameters {α(t)}t∈N, α(t) ∈ R+, which needs to be chosen properly for the

algorithm to converge (see [10] for details). It is easy to show that (III.9) is equivalent to

min
z∈Rp

1

2

∥∥∥z− u(t)
∥∥∥2

2
+

λ

α(t)
ψ(z), (III.10)

where u(t) = a(t)− 1
α(t)∇f(a(t)). In this new formulation, it is clear that the first term in the cost function

can be separated element-wise. Thus, when the regularization function ψ(z) is group separable, so is the
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overall optimization, and one can solve (III.10) independently for each group, leading to

min
zG∈R|G|

1

2

∥∥∥zG − u
(t)
G

∥∥∥2

2
+

λ

α(t)
ψG(zG),

zG being the corresponding variable for the group. In the case of HiLasso, this becomes,

min
b∈R|G|

1

2
‖b−w‖22 +

λ2

α(t)
‖b‖2 +

λ1

α(t)
‖b‖1 , (III.11)

where w = u
(t)
G is the subvector of u(t) = a(t)− 1

α(t)D
(t)(Da(t)−x) indexed by G. Problem (III.11) is a

second order cone programing (SOCP), for which one could use generic solvers. However, this subproblem

needs to be solved many times within the SpaRSA iterations, so it is crucial to solve it efficiently.

To obtain an efficient implementation of SpaRSA, we use the ADMOM method [11]. The idea is to

solve the artificially constrained equivalent problem,

min
b∈R|G|

1

2
‖b−w‖22 + λ̃2 ‖β‖2 + λ̃1 ‖b‖1 , s.t. b = β,

where λ̃i = λi/α
(t). The algorithm generates a set of iterates {b(t), β(t),p(t)}t∈N+ which converges to

the minimum of the Augmented Lagrangian

Lc(b, β,p) =
1

2
‖b−w‖22 + λ̃2 ‖β‖2 + λ̃1 ‖b‖1 + pT (b− β) +

c

2
‖b− β‖22 .

The elements of p are the so called Lagrangian multipliers, and c > 0 is the augmented Lagrangian

penalty term, which is a parameter of the algorithm. The idea of adding a quadratic term c
2 ‖b− β‖

2
2 to

the Lagrangian is to render the corresponding primal cost function strictly convex, so that the dual function

is differentiable. This in turn allows the optimization to be carried out using primal-dual iterations, where

the dual variables, in this case p, can be updated efficiently using gradient ascent. The method always

converges to the optimum, and the parameter c needs to be chosen empirically in order to obtain a good

convergence rate.

Each iteration of the ADMOM method updates b, β and p, one at a time, while leaving the others

fixed. The updates of b and β are obtained via exact minimization of the augmented Lagrangian in b and

β respectively, while the update of the Lagrangian multiplier p is a gradient ascent towards the solution

of the dual problem. This leads to the iterations:

b(t+1) =argmin
b

1

2
‖b−w‖22 + λ̃1 ‖b‖1 + bTp +

c

2
‖b− β‖22 , (III.12)

β(t+1) =argmin
β

λ̃2 ‖β‖2 − β
Tp +

c

2

∥∥∥b(t+1) − β
∥∥∥2

2
,

p(t+1) =p + c(b(t+1) − β(t+1)).
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For convenience of notation we omitted the super-indexes for the iterates at step t, just explicitly indexing

them at step t+ 1. For more details on augmented Lagrangian methods see [11, Chapter 3].

The update for b is separable into scalar subproblems on the coordinates of b. The optimality conditions

on the subgradient of each of these scalar problems leads to a simple variant of the well known soft-

thresholding operator, S(wi, λ) = sgn(wi) max {0, |wi| − λ}. We use S(w, λ) to denote the vector

obtained when applying the soft-thresholding operator (with parameter λ) to each element of w. On

the other hand, the update for β is not separable into scalar subproblems. However, we show now that its

solution can be obtained in closed form via vector shrinkage. For this, we write the optimality conditions

on the subgradient of (III.12),

λ̃2∂ ‖β‖2 − p− c(b− β) 3 0⇒ cβ + λ̃2∂ ‖β‖2 − p− cb 3 0,

and perform the change of variables β′ = cβ and b′ = p + cb. Since the subgradient of ‖b‖2 is not

modified by a constant scaling of the argument, we obtain an equivalent optimality condition, β′ +

λ̃2∂ ‖β′‖2 − b′ 3 0, which is exactly the one leading to the vector shrinkage operator, Sv described

in [1] for the Group Lasso (actually much simpler, since there is no matrix multiplication involved),

Sv(b′, λ̃2) =
[
1− λ̃2

‖b′‖
2

]
+
b′. After reverting the change of variables, we get closed form updates for b

and β,

b =
1

c+1
S(w+cβ− p, λ̃1) and β =

1

c
Sv(p+ cb, λ̃2).

The complete HiLasso optimization algorithm is summarized in Algorithm 1. The parameter η is needed

to guarantee the convergence of SpaRSA and has very little influence in the overall performance (see [10]

for details), we used η = 2 in all our experiments. An additional speed up is obtained by bypassing

ADMOM when a whole group is not active. From the optimality conditions of (III.11), it follows that if 0

is a solution when λ1 = 0 (standard Group Lasso) or λ2 = 0 (Lasso), it is also a solution in the general

case. This can be simply checked by evaluating Sv(w , λ̃2) > 0 and S(w , λ̃1) > 0 before proceeding

with the ADMOM algorithm.

It is interesting to note that when either λ1 = 0 or λ2 = 0, the ADMOM technique is not needed

and the SpaRSA subproblem (III.11) is solved exactly in one step using either a soft thresholding (when

λ2 = 0) or a vector thresholding (when λ1 = 0). In particular, when λ2 = 0, the proposed optimization

then reduces to the Iterative Soft Thresholding algorithm [26].
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Input: Data X, dictionary D, group set G, constants η > 1, c > 0, 0 < αmin < αmax

Output: The optimal point a∗

Initialize t := 0,a(0) := 0;

while stopping criterion is not satisfied do
choose α(t) ∈ [αmin, αmax];

set u(t) := a(t) − 1

α(t)∇f(a(t));

while stopping criterion is not satisfied do

// Here we use the group separability of (III.10) and solve (III.11) for each group

for i := 1 to |G| do

if Sv(w, λ̃2) > 0 then
set r := 0;

choose an initial p0, β0,b0;

while stopping criterion is not satisfied do
b(r+1) = 1

c+1
S(u(t)

i + cβ(r) − p(r), λ̃1);

β(r+1) = 1
c
Sv(p(r) + cb(r+1), λ̃2);

p(r+1) = p(r) + c(b(r+1) − β(r+1));

set r := r + 1 ;
end

set a(t+1)
G := br+1 ;

else
set a(t+1)

G := 0;

end

end

set α(t) := ηα(t);
end

set t := t+ 1 ;
end

Algorithm 1: HiLasso optimization algorithm.

B. Optimization of the Collaborative HiLasso

We now propose an optimization algorithm to efficiently solve the collaborative HiLasso. The main

idea is to include a second use of ADMOM in order to divide the overall problem into two subproblems:

one that breaks the multi-signal problem into n single-signal `1-based sparse codings, and another that

treats the multi-signal case as a single Group Lasso-like problem. In this way we take advantage of the

separability of each term.

We define a constrained optimization problem,

min
A,B∈Rp×n

1

2
‖X−DA‖2F + λ1

∑
j

‖aj‖1+λ2ψG(B) s.t.A=B.
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The ADMOM iterations are given by (we omitted the super-index for variables at iteration t for notational

convenience).

A(t+1) =argmin
A

1

2
‖X−DA‖2F + λ1

∑
j

‖aj‖1 + Tr(ATP) +
c

2
‖B−A‖2F , (III.13)

B(t+1) =argmin
B

c

2

∥∥∥B−A(t+1)
∥∥∥2

F
+ Tr(BTP) + λ2ψG(B), (III.14)

P(t+1) =P + c(A(t+1) −B(t+1)).

Solving for A(t+1): Problem (III.13) can be separated into n single-signal subproblems by updating one

column of the matrix A at a time,

min
aj∈Rp

1

2
‖x−Daj‖22 + pTj aj +

c

2
‖aj− b‖22 + λ1 ‖aj‖1 .

This problem can be solved using the SpaRSA framework following the ideas used in the previous section.

In this case the function f on (III.8) would be the first three terms on the equation above and ψ is the

standard `1 regularization term. The idea is to consider the first three terms of the cost as f(·) in Equation

(III.8). The associated computational cost is equivalent to the one of the Lasso, since the regularizer is

the standard `1 norm.

Solving for B(t+1): The problem given by (III.14) is group separable, as a direct consequence of the

separability of ψG for the case of non overlapping groups. Thus, we need to solve |G| optimization

problems of the form,

min
BG∈Rg×n

c

2

∥∥∥BG −A
(t+1)
G

∥∥∥2

F
+ Tr(P

(t+1)
G BT

G) + λ2 ‖BG‖F ,

where AG, BG and PG are the |G| × n sub-matrices of A, B and P associated with the group G

respectively. We express them as column vectors (each with |G|n components) by concatenating their

columns, obtaining bG,aG and pG respectively, and rewrite the optimization problem in vectorial form

as

min
b∈R|G|n

λ2 ‖b‖2 − pTGb +
c

2

∥∥∥a(t+1)
G − b

∥∥∥2

2
.

This problem is identical to (III.12) and can be reduced to a Group Lasso problem by simply changing

variables and thus, it is solved using vector thresholding.

Similarly to what we obtained in the single signal case, the developed optimization procedure alternates

between a Lasso-like problem (solved by an iterative shrinkage procedure, via SpaRSA) applied to each

signal independently, and a vector soft-thresholding at a group level. The important difference here is that

the group thresholding is applied considering all the signals. Intuitively this means that for a group to be
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treated as active, the atoms of its corresponding subdictionary need to be relevant for all (or a significant

number of) the signals in the set, which translates into robustness in the model (class) selection.

As with models such as Lasso and Group Lasso, the optimal parameters λ1 and λ2 are application and

data dependent. In some specific cases, closed form solutions exist for such parameters. For example, for

signal restoration in the presence of noise and using Lasso (λ2 = 0), the GSURE method gives a closed

form solution for λ1 [27]. As extending such methods to C-HiLasso is beyond the scope of this work,

we rely on cross-validation for the choice of such parameters. Our optimization technique also relies on

the choice of the augmented Lagrangian quadratic penalty c. Although there is no closed form solution

for an optimal value of c, in practice the performance of the algorithms is very robust to its choice, and

a small coarse grid is enough to choose a single suitable value that works well for the range of problems

in Section V.

IV. THEORETICAL GUARANTEES

In our current theoretical analysis, we analyze the case of a single measurement vector (signal) x (we

comment on the collaborative case at the end of this section), and assume that there is no measurement

noise or perturbation, so that x = Da. We attempt to recover a by solving the noise-free HiLasso

problem:

min
a∈Rp

{λψG(a) + (1− λ) ‖a‖1 s.t. x = Da} . (IV.15)

Note that we have replaced the two regularization parameters λ1 and λ2 by a single parameter λ, since

scaling does not effect the optimal solution. We can always assume that λ1 + λ2 = 1.

Our goal is to develop guarantees under which the HiLasso program of (IV.15) will recover the true

unknown vector a. We assume throughout this section that a has group sparsity k, namely, not more

than k of the group vectors aG, G ∈ G, have non-zero norm. In addition, within each group, we assume

that not more than s elements are non zero, that is, ‖aG‖0 ≤ s. Without loss of generality, we further

assume that the length of each vector aG is equal to g.

For λ = 1 the problem (IV.15) reduces to the mixed `2/`1 problem formally studied in [3], [25]. When

λ = 0, (IV.15) becomes equivalent to the well-known Lasso, or basis pursuit algorithm. Both cases have

been treated previously in the literature and sufficient conditions have been derived on the sparsity levels

and on the dictionary D to ensure that the resulting optimization problem recovers the true unknown

vector. For example, in [3], [28], [29] conditions are given in terms of the restricted isometry property
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(RIP) of D. An alternative line of work [25], [30], focused on coherence guarantees, which are easier to

compute. Here, we follow the same spirit and consider coherence bounds that ensure recovery using the

HiLasso approach. We also draw from [9] to briefly describe conditions under which the probability of

error of recovering the correct groups, using the special case of the C-HiLasso with λ1 = 0 (C-GLasso),

falls exponentially to 0 as the number of collaborating samples n grows.

A. Block-Sparse Coherence

We begin by reviewing previously proposed coherence measures. For a given dictionary D, the

(standard) coherence is defined as µ = maxi,j 6=i |dTi dj |, where di denotes the ith column of the dictionary

D. This coherence was extended to the block-sparse setting in [25], leading to the definition of block

coherence:5

µB = max
i,j 6=i

1

g
ρ(DT

i Dj),

where ρ(·) is the spectral norm, that is, ρ(Z) = λ
1/2
max(ZTZ) with λmax(W) denoting the largest eigenvalue

of the positive semi-definite matrix W. When g = 1 (each block is a singleton), Di = di, so that as

expected, µB = µ. While µB quantifies global properties of the dictionary D, local properties are

characterized by the sub-coherence of D, defined as

ν = max
G∈G

{
max
i,j 6=i
|dTi dj |, di,dj ∈ DG

}
. (IV.16)

We define ν = 0 for g = 1. Clearly, if the columns of DG are orthonormal for each group G, then ν = 0.

Assuming the columns of D have unit norm, it can be easily shown that µ, ν and µB all lie in the range

[0, 1]. In addition, we can easily prove that ν ≤ µ and µB ≤ µ. In our setting a is block sparse, but has

further internal structure: each subvector of a is also sparse. Therefore, we expect that an appropriate

coherence measure will be based on the definition of block sparsity, but will further incorporate the

internal sparsity. Let M = DTD denote the Gram matrix of inner products of the column of D. Then,

the standard block coherence µ is defined in terms of the largest singular value of an off-diagonal sub-

block of M. In a similar fashion, we will define sparse block coherence in terms of sparse singular

values. As we will see, two different definitions will play a role, depending on where exactly the sparsity

within the block enters.

5Each sub-dictionary Di corresponds to one of the (non-overlapping) groups in G considered in HiLasso.
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To define the sparse block coherence measures, we note that the spectral norm ρ(Z) of a matrix Z

can be defined as

ρ(Z) = max
x,y
|xTZy| s.t. ‖x‖ = 1, ‖y‖ = 1.

Alternatively, we can define ρ(Z) as above, via the largest eigenvalue λmax of W = ZTZ: ρ(Z) =√
λmax(W). Formally, for any W � 0,

λmax(W) = max
y

yTWy s.t. |y‖ = 1,

We now develop sparse analogs of ρ(Z) and λmax(ZTZ). As we will see, the simple square-root

relation no longer holds in this case. To define the sparse largest singular value, we restrict x and y to

be s-sparse [31]:

ρss(Z) = max
x,y
|xTZy| s.t. ‖x‖ = 1, ‖y‖ = 1, ‖x‖0 ≤ s, ‖y‖0 ≤ s. (IV.17)

Similarly, the largest sparse eigenvalue of W = ZTZ is defined as [31], [32], [33]

λsmax(W) = max
y

yTWy s.t. ‖y‖ = 1, ‖y‖0 ≤ s. (IV.18)

The sparse matrix norm is then given by

ρs(Z) =
√
λsmax(ZTZ). (IV.19)

Note that in general ρs(Z) is not equal to ρss(Z). It is easy to see that ρss(Z) ≤ ρs(Z). Efficient

algorithms for computing ρs(Z) (also referred to in the literature as sparse PCA) and ρss(Z) can be

found in [31], [32], [33]. For any matrix Z, ρss(Z) = ρ(̃ITZĨ) and ρs(Z) = ρ(ZĨ), where Ĩ is a matrix

with s columns, which consist of s nonzero rows and all remaining rows identically zero. The nonzero

rows contain only one nonzero element, taking on the value 1. The location of the ones are chosen to

maximize the corresponding singular value. In the definition of ρss, the two matrices Ĩ do not necessarily

correspond to the same support selection. However, in order to not further complicate the notation, we

denote both matrices by Ĩ.

Using (IV.17) and (IV.19), we define two sparse block coherence measures:

µB
ss = max

i,j 6=i

1

g
ρss(DT

i Dj), (IV.20)

and

µB
s = max

i,j 6=i

1

g
ρs(DT

i Dj). (IV.21)
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The choice of scaling is to ensure that µBs, µBss ≤ µB. We also extend the notion of sub-coherence to

account for the internal sparsity. Specifically, we define

νs = max
i

1

g
ρ(̃ITDT

i Di), (IV.22)

where Di denotes the g− s columns of Di not selected by Ĩ. In other words, νs measures the coherence

between the active part of each block and the non-active section.

The following proposition establishes some relations between these new definitions and the standard

coherence measures.

Proposition 1. The sparse block-coherence measures µBss, µBs satisfy

0 ≤ µBss ≤
s

g
µ, 0 ≤ µBs ≤

√
s

g
µ. (IV.23)

The sparse sub-coherence satisfies

0 ≤ νs ≤
√
s(g − s)
g

ν. (IV.24)

Proof: The inequalities µBss, µBs ≥ 0 follow immediately from the definition. We obtain the upper

bounds by rewriting ρss(Z) and ρs(Z) and then using the Gueršgorin disc theorem,

ρss(Z) = λ1/2
max(̃ITZT Ĩ̃ITZĨ)

(a)

≤

√√√√max
l

s∑
r=1

|elr| ≤
√
smax

l,r
|elr| (IV.25)

ρs(Z) = λ1/2
max(̃ITZTZĨ)

(b)

≤

√√√√max
l

s∑
r=1

|e′lr| ≤
√
smax

l,r
|e′lr| (IV.26)

where elr and e′lr are the elements of E = MT
ij Ĩ̃I

TMij and E′ = MT
ijMij , and (a), (b) are a consequence

of Geršgorin’s disc theorem. The entries of Mij = DT
i Dj for i 6= j have absolute value smaller than

or equal to µ, and the size of Mij is g × g. Therefore, |ek`| ≤ sµ2 and |e′k`| ≤ gµ2. Substituting these

values into (IV.25) and (IV.26) concludes the proof of the upper bounds on µBss and µBs.

The proof of νs follows a similar path where now the size of Mij = DT
i Di is g × (g − s).

B. Recovery Proof

To formally state our main recovery result, suppose that a0 is a block k-sparse vector with blocks

of length g, where each block has sparsity s, and let x = Da0. Our theorem relies on the following
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definitions, which we will use throughout this section. Let D0 denote the matrix whose blocks correspond

to the nonzero blocks of a0, and let c0 be the corresponding coefficient blocks. Denote by cS0 the nonzero

elements of c0 (namely, the nonzero values in each block), and similarly let DS
0 indicate the respective

matrices on the support S so that x = D0c0 = DS
0 c

S
0 . We let D0 be the matrix which contains the

blocks of size g of D that are not in D0, and let DS
0 contain the columns of D0 that are not in DS

0 .

Finally, we define D as the matrix containing all columns not in DS
0 . In terms of our other definitions,

D is a concatenation of D0 and DS
0 .

An important observation that we will rely on throughout, is that the columns of DS
0 must be linearly

independent for any choice of D0 and S in order to guarantee a unique sparse representation in our

problem. Otherwise, we can have two sparse vectors cS0 and cS that satisfy DS
0 c

S
0 = DS

0 c
S and no

algorithm will be able to distinguish between them. Under this assumption, (DS
0 )TDS

0 is invertible and

we can define the pseudo-inverse (DS
0 )† = ((DS

0 )TDS
0 )−1(DS

0 )T . Equipped with these definitions we

can now state our main result.

Theorem 1. Let a0 be a block k-sparse vector with blocks of length g, where each block has sparsity s.

Let x = Da0 for a given matrix D. A sufficient condition for the HiLasso algorithm (IV.15) to recover

a0 is that

ρc((D
S
0 )†D0) < 1 (IV.27)

ρc((D
S
0 )†DS

0 ) < 1 (IV.28)

‖(DS
0 )†D‖1,1 < 1. (IV.29)

Here ρc(Z) = maxr
∑

` ρ(Z`r), Z`r denoting the (`, r)th s × p block of Z where p = g in (IV.27) and

p = g − s in (IV.28), and ‖Z‖1,1 = maxr ‖zr‖1, where zr is the rth column of Z.

Note that (IV.27) and (IV.28) imply that for all r, ρc(D
†
0[D0]r) < 1 and ρc(D

†
0[DS

0 ]r) < 1. From

(IV.29) we have that ‖(DS
0 )†dr‖1 < 1, for every column dr of D. On the other hand, when dr is a

column from DS
0 , (DS

0 )†dr is a vector containing the value 1 in the location corresponding to dr, and

zero everywhere else, thus ‖(DS
0 )†dr‖1 = 1. Combining the last two observations we conclude that

‖(DS
0 )†dr‖1 ≤ 1, ∀ r (IV.30)

We will use this result in the proof of the theorem.

The sufficient conditions (IV.27)–(IV.29) depend on DS
0 and therefore on the nonzero blocks in c0,
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and the nonzero locations within the blocks, which, of course, are not known in advance. Nonetheless,

below we will prove sufficient conditions that ensure that (IV.27)–(IV.29) holds, which depend only on

µB
ss, µB

s, νs and ν, associated with the dictionary D.

We now prove Theorem 1.

Proof: To prove that (IV.15) recovers the correct vector a0, let a′ be an alternative solution satisfying

x = Da′. Denote by c0 the blocks consisting of the nonzero values of a0 and by D0 the corresponding

columns of D. Similarly, let c′ denote the blocks consisting of the nonzero values of a′ and let D′ denote

the corresponding columns of D. Then x = D0c0 = D′c′.

In each block of c0 there are at most s nonzero values. We denote by cS0 the nonzero elements of c0,

and similarly let DS
0 indicate the respective matrices on the support S. Relying on the fact that DS

0 has

linearly independent columns, we can write

cS0 = (DS
0 )†DS

0 c
S
0 = QDS

0 c
S
0 , (IV.31)

where we denoted Q = (DS
0 )† for brevity. Noting that DS

0 c
S
0 = D0c0 = D′c′, (IV.31) becomes

cS0 = QD′c′. (IV.32)

To proceed, we separate D′ into two parts: blocks that are contained in D0, which we denote by B,

and blocks that are not contained in D0, which we denote as R. Thus, with appropriate permutations of

the blocks of D′ we can write D′ = [B R]. We perform the same permutation on c′ resulting in vectors

b and r such that D′c′ = Bb+Rr. Since the vector b corresponds to blocks that are contained in D0,

we can further decompose b as bS +bS where bS indicates the values in b that correspond to columns

in DS
0 supported on S, and bS correspond to the remaining columns. We similarly decompose the matrix

B into BS and BS . Next we note that QBSbS = ZbS , where Z is a ks × rs matrix consisting of

blocks of size s × s that are either equal to the identity, or to zero. Here r is the number of blocks in

BS , namely, the number of blocks shared by D0 and D′. The blocks equal to the identity correspond to

shared blocks. Substituting into (IV.32),

c0 = Q(BSbS + Rr) + ZbS . (IV.33)

Therefore, for the groups sparsity regularization term we have

ψG(c0) ≤ ψG(bS) + ψG(QBSbS) + ψG(QRr). (IV.34)
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We now analyze the last two terms in (IV.34). To this end, we rely on the following lemma [25, Lemma

3].

Lemma 1. Let v be a vector with ‖vG‖2 > 0, for all g. Then for any matrix Z with appropriate

dimensions, ψG(Zv) ≤ ρc(Z)ψG(v).

Since BS is contained in DS
0 and R is contained in D0, it follows from (IV.27) and (IV.28) that

ρc(QBS) < 1 and ρc(QR) < 1. Combining this observation with Lemma 1 and (IV.34) we conclude

that

ψG(c0) < ψG(bS) + ψG(bS) + ψG(r) = ψG(c′). (IV.35)

The last equality is a result of the fact that c′ is a concatenation of bS ,bS and r. Since ψG(c0) = ψG(a0)

and ψG(c′) = ψG(a′) we have that ψG(a0) < ψG(a′).

We now show in a similar fashion that ‖c0‖1 < ‖c′‖1 or, equivalently, ‖a0‖1 < ‖a′‖1. From [30,

Theorem 3.3] we have that

‖c0‖1 < ‖QD′‖1,1‖c′‖1. (IV.36)

This result is true as long as there is at least one column in D′ that is not in DS
0 . But this must be the

case since by assumption, the columns of DS
0 are linearly independent. Therefore, if D′ and DS

0 are

equal, then we must have that cS0 = c′. Combining (IV.36) with (IV.30) we conclude that ‖c0‖1 < ‖c′‖1.

Combining this result with (IV.35) we have,

λψG(a0) + (1− λ) ‖a0‖1 < λψG(a′) + (1− λ)‖a′‖1, (IV.37)

so that a0 has the minimal objective from all possible solutions a′ such that x = Da′.

We conclude that we can guarantee recovery for every choice of λ as long as (IV.27)–(IV.29) are

satisfied. We therefore turn to study these conditions in more detail.

Theorem 2. Let µBss, µBs, νs be the sparse block-coherence measures defined in (IV.20),(IV.21) and

(IV.22), and let ν be the sub-coherence of the dictionary D defined by (IV.16). Then the conditions in
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(IV.27)–(IV.29) are satisfied if

kgµB
s

1− (s− 1)ν − (k − 1)gµBss
< 1 (IV.38)

kgνs

1− (s− 1)ν − (k − 1)gµBss
< 1 (IV.39)

ksµ

1− (s− 1)ν − (k − 1)sµ
< 1. (IV.40)

We also assume that all denominators are positive.

Recall from Proposition 1 that gµBss ≤ sµ. Therefore, the denominators in (IV.38) and (IV.39) are

smaller than that in (IV.40). However, there is no general ordering between the numerators. In the special

case in which the individual dictionaries Di consist of orthonormal columns, ν = νs = 0.

Proof: We begin by developing a bound on ρc(QD0). In [25] it is shown that ρc(·) is submultiplicative.6

Therefore,

ρc(QD0) ≤ ρc(((DS
0 )TDS

0 )−1)ρc((D
S
0 )TD0). (IV.41)

By definition,

ρc((D
S
0 )TD0) = max

j /∈Λ0

∑
i∈Λ0

ρ(̃ITDT
i Dj), (IV.42)

where Λ0 is the set of indices ` for which D` is in D0. Every element in the sum is bounded above by

gµB
s. Since Λ0 contains k indices, we conclude that

ρc(QD) ≤ ρc(((DS
0 )TDS

0 )−1)kgµB
s. (IV.43)

It remains to develop a bound for ρc(((DS
0 )TDS

0 )−1). To this end, we express (DS
0 )TDS

0 as (DS
0 )TDS

0 =

I + W, where W is a (ks) × (ks) matrix with blocks W`,r of size s × s such that W`,r[i, i] = 0, for

all i. This follows from the fact that the columns of D are normalized. Since W`,r = [DS
0 ]T` [DS

0 ]r, for

all ` 6= r, and Wr,r = [DS
0 ]Tr [DS

0 ]r − Is, we have

ρc(W) = max
r

∑
`

ρ(W`,r) ≤ max
r
ρ(Wr,r) + max

r

∑
`6=r

ρ(W`,r) (IV.44)

≤ (s− 1)ν + (k − 1)gµB
ss. (IV.45)

By our assumptions, (s − 1)ν + (k − 1)gµB
ss < 1. Therefore, ρc(W) < 1. We next use the following

result from [25].

6A matrix norm is called submultiplicative if ‖ZW‖ ≤ ‖Z‖ ‖W‖ for all matrixes Z,W ∈ Rn×n.
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Lemma 2. Suppose that ρc(W) < 1. Then (I + W)−1 =
∑∞

k=0(−W)k.

Using Lemma 2, we have that

ρc(((D
S
0 )TDS

0 )−1) = ρc

( ∞∑
k=0

(−W)k

)
(a)

≤
∞∑
k=0

(ρc(W))k

=
1

1− ρc(W)

(b)

≤ 1

1− (s− 1)ν − (k − 1)gµBss
. (IV.46)

Here, (a) is a consequence of ρc(W) satisfying the triangle inequality and being submultiplicative, and

(b) follows by using (IV.45). Combining (IV.46) with (IV.43), we obtain

ρc(QD0) ≤ kgµB
s

1− (s− 1)ν − (k − 1)gµBss
, (IV.47)

from which (IV.38) follows.

We now use the same technique to bound ρc(QDS
0 ). Using the same method as above we will get a

similar bound, with the only difference being in the term ρc((D
S
0 )TDS

0 ). By definition,

ρc((D
S
0 )TDS

0 ) = max
i∈Λ0

∑
i∈Λ0

ρ(̃ITDT
i Di), (IV.48)

where Di indicates the columns of Di not chosen by Ĩ. Each element ρ(̃ITDT
i D

S
i ) is bounded by gνs.

Since there are k elements in the sum, ρc((DS
0 )TDS

0 ) ≤ kgνs from which (IV.39) follows.

Finally, we use the same ideas to bound ‖QD‖1,1 and derive (IV.40). Specifically,

‖QD‖1,1 ≤ ‖((DS
0 )TDS

0 )−1‖1,1‖(DS
0 )TD‖1,1. (IV.49)

Now

‖(DS
0 )TD‖1,1 = max

j /∈Λ0

∑
i∈Λ0

|dTi dj |,

where Λ0 is the set of active dictionary columns. Now, Λ0 contains ks indices, so that

‖(DS
0 )TD‖1,1 ≤ ksµ, which allows us to conclude that ‖QD‖1,1 ≤ ‖((DS

0 )TDS
0 )−1‖1,1ksµ. It remains

to develop a bound on ‖((DS
0 )TDS

0 )−1‖1,1. To this end we express (DS
0 )TDS

0 as (DS
0 )TDS

0 = I + W,

and bound ‖W‖1,1, ‖W‖1,1 ≤ (s− 1)ν + (k − 1)sµ. Continuing as before leads to (IV.40).

The above results are for the non-collaborative case. For the collaborative case there exist results

that show that both the C-Lasso [9] and C-GLasso [24] will recover the true shared active set with a

probability of error that vanishes exponentially with n. Since the in-group active sets are not necessarily
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equal for all samples in X, C-HiLasso could only help in recovering the group sparsity pattern. Since

the C-GLasso is a special case of C-HiLasso when λ1 = 0, we can conjecture that when λ1 > 0, the

accuracy of the C-HiLasso in recovering the correct groups can only improve with larger n. Furthermore,

since our results for the non-collaborative HiLasso improve on those of the non-collaborative C-GLasso,

it is to be expected that the accuracy of C-HiLasso, for an appropriate λ1 > 0, will be better than that

of C-GLasso.

As an intuitive explanation of why this may happen, the proofs in [9] and [24] assume a continuous

probability distribution on the non-zero coefficients of the signals, and give recovery results for the

average case. On the other hand, the in-group sparsity assumption of C-HiLasso implies that only s out

of g samples will be nonzero within each group. This implies that, for the same group sparsity pattern,

there will be much less (exactly a fraction s/g) non-zero elements in the possible signals compared to

the ones that can occur under the hypothesis of C-GLasso. Since any assumed distribution of the signals

under the in-group sparsity hypothesis has to be concentrated on this much smaller set of possible signals,

they should be easier to recover correctly from solutions to the C-HiLasso program, compared to the

dense group case of C-GLasso.

V. EXPERIMENTAL RESULTS

In this section we show the strength of the proposed HiLasso and C-HiLasso models. We start by

comparing our model with the standard Lasso and Group Lasso using synthetic data. We created |G|

dictionaries, Di, with g = 64 atoms of dimension m = 64, with i.i.d. Gaussian entries. The columns

were normalized to have unit `2 norm. Then we randomly chose two groups to be active at each time

(on all the signals). Sets of n = 200 normalized testing signals were generated, one per active group, as

linear combinations of s � 64 elements of the dictionaries, xij = Dia
i
j . The mixtures were created by

summing these signals and (eventually) adding Gaussian noise of standard deviation σ. The generated

testing signals have a hierarchical sparsity structure and while they share groups, they do not necessarily

share the sparsity pattern inside the groups.

We then built a single dictionary by concatenating the sub-dictionaries, D = [D1, . . . ,D|G|], and used

it to solve the Lasso, group Lasso, HiLasso and C-HiLasso problems. Table I summarizes the Mean

Squared Error (MSE) and Hamming distance of the recovered coefficient vectors. We observe that our

model is able to exploit the hierarchical structure of the data as well as the collaborative structure. Group

Lasso selects in general the correct blocks but it does not give a sparse solution within them. On the
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σ = 0.1 41.7/22.0 117.3/361.6

33.0/19.8 16.3/13.3

σ = 0.2 56.4/21.6 118.2/378.3

39.9/22.7 24.9 /17.1

σ = 0.4 96.5/22.7 137.8/340.3

65.6/19.5 59.5 /27.4

s = 8 38.8/22.0 118.4/318.2

27.2/19.5 9.6/16.2

s = 12 120.0/36.2 116.6/350.4

70.4/26.5 41.3/29.1

s = 16 164.1/43.9 109.3/338.6

110.0/32.2 55.1/35.0

|G| = 4 108.0/27.8 191.6/221.7

100.9/29.8 74.2 / 30.2

|G| = 8 120.0/36.2 116.6/350.4

70.4/26.5 41.3 / 29.1

|G| = 12 103.0/41.8 84.0/447.7

66.2/26.4 0.37/ 29.8

TABLE I

SIMULATED SIGNAL RESULTS. IN EACH TABLE, EACH 2×2 CELL CONTAINS, TOP TO BOTTOM, LEFT TO RIGHT, THE RESULT

OF LASSO, GLASSO, HILASSO AND C-HILASSO. FOR EACH METHOD, THE SEPARATION ERROR (MULTIPLIED BY 103) AND

HAMMING DISTANCE ARE SHOWN AS (MSE/HAMMING). IN THE FIRST CASE (LEFT) WE VARY THE NOISE σ WHILE

KEEPING |G| = 8 AND s = 8 FIXED. IN THE SECOND AND THIRD CASES WE HAVE σ = 0. FOR THE SECOND EXPERIMENT

(CENTER) WE FIXED |G| = 8 WHILE CHANGING s. IN THE THIRD CASE WE FIX s = 12 AND VARY THE NUMBER OF GROUPS

|G|. BOLD INDICATES THE BEST RESULTS, ALWAYS OBTAINED FOR THE PROPOSED MODELS.

other hand, Lasso gives a solution that has nonzero elements belonging to groups that were not active

in the original signal, leading to a wrong model/class selection. HiLasso gives a sparse solution that

picks atoms form the correct groups but still presents some minor mistakes. For the collaborative case,

in all the tested configurations, no coefficients were selected outside the correct active groups, and the

recovered coefficients are consistently the best ones.

In all the examples, and for each method, the regularization parameters were the ones for which the

best results where obtained. One can scale the parameter λ2 to account for different number of signals.

This situation is analogous to a change in the size of the dictionary, thus, λ2 should be proportional to

the square root of the number of signals to code.

We then experimented with the USPS digits dataset, which has been shown to be well represented

in the sparse modeling framework [34]. Here the signals are vectors containing the unwrapped gray

intensities of 16× 16 images (m = 256). We obtained each of the n = 200 samples in the testing data

set as the mixture of two randomly chosen digits, one from each of the two drawn set of digits. In this

case we only have ground truth at the group level. We measure the recovery performance in terms of

the “separation error” [35], 1
n|G|

∑|G|
i=1

∑n
j=1

∥∥∥xij − x̂ij

∥∥∥2

2
, where xij is the component corresponding to

source i in the signal j, and x̂ij is the recovered one.

Using the usual training-testing split for USPS we first learned a dictionary for each digit. We then
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experiment Lasso Glasso HiLasso C-GLasso C-HiLasso

APSNR Hamm APSNR Hamm APSNR Hamm APSNR Hamm APSNR Hamm

1 digit 0.06 0.43 0.07 0.78 0.02 0.19 0.01 0.02 0.02 0.06

1 digit+n 0.08 1.31 0.08 0.87 0.04 0.48 0.05 0.25 0.02 0.01

2 digit 0.09 1.46 0.08 1.86 0.02 1.18 0.01 0.74 0.02 0.90

2 digit+n 0.11 2.21 0.08 1.99 0.04 1.46 0.09 1.60 0.03 0.70

TABLE II

NOISY DIGIT MIXTURES RESULTS. FOUR DIFFERENT CASES ARE SHOWN: WHEN EACH SIGNAL IS A SINGLE DIGIT AND

WHEN IT IS THE MIXTURE OF TWO DIFFERENT (RANDOMLY SELECTED) DIGITS, WITH AND WITHOUT ADDITIVE GAUSSIAN

NOISE WITH STANDARD DEVIATION 10% OF THE PEAK VALUE. FOR THE 2 DIGITS CASE, RESULTS ARE THE AVERAGE OF 8

RUNS (IN EACH ROUND A NEW PAIR OF DIGITS WAS RANDOMLY SELECTED). IN THE SINGLE DIGIT CASE, THE RESULT IS

THE AVERAGE OF THE TEN POSSIBLE SITUATIONS. WITHOUT NOISE, BOTH C-GLASSO AND C-HILASSO YIELD VERY GOOD

RESULTS. HOWEVER, IN THE NOISY CASE, C-HILASSO IS CLEARLY SUPERIOR, SHOWING THE ADVANTAGE OF ADDING

REGULARIZATION INSIDE THE GROUPS FROM A ROBUSTNESS PERSPECTIVE. SEE ALSO FIGURE 3.

Fig. 3. In this example we used C-HiLasso to analyze mixtures where the data set contains different number and types of

sources/classes. We used a set containing 180 mixture of digit images. The first 150 images are obtained as the sum/mixture of

a number “3” and an number “5” (randomly selected). Each of the last 30 images in the set are the mixture of three numbers:

“3” ,“5” and “7” (the 180 images are of course presented at random, the algorithm is not apriori aware which images contain 2

sources and which contain 3). The figure shows the active sets of the recovered coefficients matrix A as a binary matrix the same

size as A (atom indexes in the vertical and sample indexes in the horizontal), where black dots indicate nonzero coefficients.

C-HiLasso managed to identify the active blocks while the sub-dictionary corresponding to “7” is mostly active for the last 30

images. The accuracy of this result depends on the relationship between the sub-dictionaries corresponding to each digit.

created a single dictionary by concatenating them. In Table II we show the separation error obtained while

summing two different numbers. We also consider the situation were only on digit is present. C-HiLasso

automatically detects the number of sources while achieving the best recovery performance. As in the
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synthetic case, only the collaborative method was able to successfully detect the true active classes. In

Figure 3 we relax the assumption that all the signals have to contain exactly the same type and amount

of classes in the mixture, further demonstrating the flexibility of the proposed C-HiLasso model.

We also used the digits dataset to experiment with missing data. We randomly discarded an average

of 60% of the pixels per mixed image and then applied C-Hilasso. The algorithm is capable of correctly

detecting which digits are present in the images. Some example results for this case are shown in Figure 4.

Note that this is a quite different problem than the one commonly addressed in the matrix completion

literature. Here we do not aim to recover signals that all belong to a unique unknown sub-space, but

signals that are the combination of two non-unique spaces to be automatically identified from the available

dictionary. Such unknown spaces have common models/groups for all the signals in question (the coarse

level of the hierarchy), but not necessarily the exact same atoms inside the groups and therefore not

necessarily belong to the same sub-spaces. Both levels of the hierarchy are automatically detected, e.g.,

that the groups are those corresponding to “3” and “5,” and the corresponding reconstructing atoms (sub-

spaces) in each group, these last ones possibly different for each signal in the set. While we consider that

the possible sub-spaces are to be selected from the provided dictionary (learned off-line from training

data), in Section VI we discuss learning such dictionaries as part of the optimization as well (see also

[36]). In such case, the standard matrix completion problem becomes a particular case of the C-HiLasso

framework (with a single group and all the signals having the same active set, sub-space, in the group),

naturally opening numerous theoretical questions for this new more general model.7

Finally, we compared the performance of C-HiLasso, Lasso, Group Lasso (GLasso) and C-GLasso

(without hierarchy) in the task of separating mixed textures in an image. We chose 8 textures from the

Brodatz dataset and trained one dictionary for each one of them (these form the 8 groups of the dictionary).

Then we created an image as the sum of two textures (the testing images were not used in the training

stage). One can think of this experiment as a generalization to the texture separation problem proposed

in [35] (without additive noise), where only two textures are present. The experiment was repeated for

all possible combinations of two textures from the 8 possible ones, and the results are summarized in

Table III. A detailed example is shown in Figure 5. For each algorithm, the best parameters were chosen

using grid search, ensuring that those were not in the edges of the grid. For Lasso and C-HiLasso the best

λ1 is 0.0625. For GLasso and C-GLasso, the best λ2 was, respectively, 0.05 and 75. From Table III we

7Prof. Carin and collaborators have new results on the case of a single group and signals in possible different sub-spaces of

the group, an intermediate model between standard matrix completion and C-HiLasso (personal communication).
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Fig. 4. Example of recovered digits (3 and 5) from a mixture with 60% of missing components. From left to right: noiseless

mixture, observed mixture with missing pixels highlighted in red, recovered digits 3 and 5, and active set recovered for all

samples using the C-HiLasso and Lasso respectively. In the last two figures, the active sets are represented as in Figure 3. The

coefficients corresponding to the subdictionaries for digits 3 and 5 are marked as pink bands. Notice that the C-HiLasso exploits

efficiently the hypothesis of collaborative group-sparsity, succeeding in recovering the correct active groups in all the samples.

The Lasso, which lacks this prior knowledge, is clearly not capable of doing so, and active sets spread all over the groups.

Fig. 5. Texture separation results. Left to right: sample mixture, corresponding C-HiLasso separated textures, and comparison

of the active set diagrams obtained by the Lasso (as in Figure 4). The one for Lasso is shown on top, where all groups are

wrongly active , and the one for C-HiLasso on bottom, showing that only the two correct groups are selected.

can conclude that the C-HiLasso is significantly better than the competing algorithms, both in PSNR of

the recovered signals (we show the average PSNR of recovering both active signals), and in the average

Hamming distance between the recovered group-wise active sets and the true ones. In the latter case we

observe that, in many cases, the C-HiLasso active set recovery performance is perfect (Hamming distance

0) or near perfect, whereas the other methods seldom approach a Hamming distance lower than 1.

VI. DISCUSSION

We introduced a new framework of collaborative hierarchical sparse coding, where multiple signals

collaborate in their encoding, sharing code groups (models) and having (possible disjoint) sparse

representations inside the corresponding groups. An efficient optimization approach was developed, which

guarantees convergence to the global minimum, and examples illustrating the power of this framework

were presented. At the practical level, we are currently working on the applications of this proposed
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19.6 16.7 27.4 21.3 22.0 21.1 27.2 23.3 20.7 17.6 19.7 13.5 31.5 23.7

19.3 21.6 21.6 27.5 19.0 24.2 23.3 27.5 18.8 22.9 19.9 23.8 25.7 34.9

2.80 0.42 19.7 21.2 18.5 18.9 20.4 20.8 17.2 16.3 16.2 16.6 21.7 19.8

1.36 0.00 17.4 21.7 16.8 19.9 20.0 21.1 15.9 18.5 16.1 17.5 20.2 27.3

0.33 0.25 3.65 0.00 22.8 23.8 24.6 22.1 19.8 19.5 17.9 18.5 26.8 20.3

2.06 0.00 2.67 0.02 18.0 23.7 20.8 25.4 16.7 22.1 17.0 19.7 19.9 30.0

0.96 0.01 3.69 0.07 1.74 0.00 23.1 21.4 19.1 18.4 17.4 18.3 25.8 20.5

1.97 0.00 2.30 0.00 2.42 0.00 20.9 22.6 16.5 20.1 16.7 19.7 20.7 30.0

1.02 1.00 3.55 1.00 1.42 1.00 2.25 1.00 20.7 21.2 19.2 20.6 28.3 22.0

2.25 0.09 2.52 0.94 3.39 0.16 2.85 0.35 19.2 22.3 19.7 21.5 23.9 30.4

2.26 0.32 4.12 0.53 3.48 0.44 3.49 0.32 3.16 1.00 16.4 16.2 22.5 20.2

2.50 0.00 3.23 0.82 3.54 0.20 3.11 0.01 4.07 0.40 16.1 17.9 19.3 25.7

4.37 1.39 4.47 0.08 4.09 0.13 4.23 0.12 4.20 1.00 4.42 0.42 20.0 19.5

2.51 0.02 2.39 0.22 2.42 0.02 2.76 0.02 2.24 0.20 2.96 0.11 19.9 22.9

0.09 0.98 3.77 1.00 0.31 1.00 1.83 1.00 1.13 1.00 3.14 0.97 4.30 1.00

0.53 0.00 1.75 0.01 2.04 0.00 1.82 0.00 2.18 0.00 3.04 0.24 1.90 0.18

TABLE III

TEXTURE SEPARATION RESULTS. THE ROWS AND COLUMNS INDICATE THE ACTIVE TEXTURES IN EACH CELL. THE UPPER

TRIANGLE CONTAINS THE PSNR RESULTS, WHILE THE LOWER TRIANGLE SHOWS THE HAMMING ERROR IN THE

GROUP-WISE ACTIVE SET RECOVERY. WITHIN EACH CELL, RESULTS ARE SHOWN FOR THE LASSO (TOP LEFT), GROUP

LASSO (BOTTOM LEFT), COLLABORATIVE GROUP LASSO (TOP RIGHT) AND COLLABORATIVE HIERARCHICAL LASSO

(BOTTOM RIGHT). THE BEST RESULTS ARE IN BLUE BOLD.

framework in a number of directions, including collaborative instruments separation in music, signal

classification, and speaker recognition, following the here demonstrated capability to collectively select

the correct groups/models.

At the theoretical level, a whole family of new problems is opened by this proposed framework, some

of which we already addressed in this work. A critical one is the overall capability of selecting the correct

groups in the collaborative scenario, with missing information, and thereby of performing correct model

selection and source identification and separation. Results in this direction will be reported in the future.

Finally, we have also developed an initial framework for learning the dictionary for collaborative

hierarchical sparse coding, meaning the optimization is simultaneously on the dictionary and the code.
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As it is the case with standard dictionary learning, this is expected to lead to significant performance

improvements (see [34] for the particular case of this with a single group active at a time).
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