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STRUCTURAL STABILITY OF GENERALIZED FORCHHEIMER
EQUATIONS FOR COMPRESSIBLE FLUIDS IN POROUS MEDIA

LUAN HOANG AND AKIF IBRAGIMOV†

Abstract. We study the generalized Forchheimer equations for slightly com-

pressible fluids in porous media. The structural stability is established with

respect to either the boundary data or the coefficients of the Forchheimer
polynomials. An inhomogeneous Poincare-Sobolev inequality related to the

non-linearity of the equation is used to study the asymptotic behavior of the

solutions. Moreover, we prove a perturbed monotonicity property of the vector
field associated with the resulting non-Darcy equation, where the correction is

linear in the coefficients of the Forchheimer polynomials.
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1. Introduction

The Forchheimer equations were introduced to describe the fluid flows in porous
media in cases when the Darcy Law does not apply [15, 10, 21]. The classical
Forchheimer equations are generalized and used to study an increasing number of
nonlinear phenomena in porous media [5, 11, 23]. In [13] non-classical non-linear
Forchheimer equations were obtained via homogenization procedure from Navier-
Stokes system defined in the media with periodic geometry. Another approach
to non-linear Darcy equations is based on the application of mixture theory [23]
to account the inertia forces due to interactions between the fluid and the matrix
of porous media. Other arguments for derivation of the non-linear Forchheimer
equation are discussed in [22, 25], and in the concluding remarks of [13]. Forch-
heimer flows in porous media for incompressible fluids is intensively studied within
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long-time dynamics, stability.
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context of the Brinkman-Forchheimer model, c.f. [17, 18, 19, 20, 24, 6]. Other
numerical studies of classical and generalized Forchheimer equations can be found
in [7, 8, 9, 16].

In this work we investigate generalized Forchheimer flows for porous media sub-
jected to mixed boundary conditions. These flows are characterized by the poly-
nomial equation g(|u|)u = −∇p relating velocity field u to gradient of the pressure
∇p. This is widely used to match experimental field data and to calculate hy-
drodynamical parameters of the processes in the porous media by physicists and
engineers [5, 4, 23, 11, 3]. For slightly compressible fluid, the system of equations
describing the fluid motion reduces to a scalar equation of pressure function. This
is a non-linear parabolic equation, which degenerates as the pressure gradient goes
to infinity [1]. This reduction of the original system to parabolic equation enables
the investigation of qualitative properties of the corresponding solutions for wide
class of the boundary conditions. The essence of our study is understanding the
relations between the solution, the non-linearity of the Forchheimer polynomial and
the non-homogeneous boundary data by exploring the structure of the the equation.

The first topic of the paper is the the structural stability of the initial boundary
value problem (IBVP) with respect to the boundary data. This topic was studied
in our previous work [1] for the boundary regime of special type (called (S)) when
the permeability inside the domain is much smaller than that on the boundary.
Under this constraint, the boundary data are split in time and spatial variables
(see [1] for details) for all times. Though the splitting condition presents clear
dynamical features of the equation, it is restrictive from theoretical and applied
points of view. In this paper the general Dirichlet boundary data on a part of the
boundary is considered. The dependence of the solutions on the boundary data is
analyzed, particularly, the relations between their asymptotic behaviors.

The second topic is the stability of the hydrodynamical quantities of fluid flows
with respect to parameters of the constitutive equations. We establish the quanti-
fied continuous dependence of the energy norms of the solutions on the coefficients
of the Forchheimer polynomials. Under certain controls of the degree of the Forch-
heimer polynomials and the related growth conditions on the boundary data the
asymptotic deviation between solutions are determined by that between the coeffi-
cients.

For these purposes, various a priori estimates for individual solutions need be
obtained including those for the Lebesgue norms as well as Sobolev norms in both
time and space variables. As in [1], we make use of a Lyapunov-like functional,
which is comparable to the Sobolev norms of the solutions. Refined estimates of
this functional are obtained. Inhomogeneous Poincare-Sobolev inequalities of a par-
ticular weighted form related to the non-linearity of the Forchheimer polynomials
are also used (see Lemma 2.4).

The structure of the equation has an important degenerate monotonicity prop-
erty, which allows comparisons between two solutions via their gradients. A priori
bounds for individual solutions in terms of the boundary data are used to control
the degeneracy of the monotonicity. This leads to the establishment of the stability
with respect to the boundary data. The asymptotic behavior of the solution is
uniquely determined by the asymptotic behavior of the boundary data. Moreover,
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for Forchheimer polynomials with varying coefficients, the structure of monotonic-
ity is preserved upto a correction which is comparable to the difference between
coefficients of two Forchheimer polynomials (see Lemma 5.2).

The paper is organized as follows. In Sect. 2, we recall main definitions and
properties of degenerate parabolic operator. We re-estimate the non-linear perme-
ability functions with the constants having explicit dependence on the coefficients
of the Forchheimer polynomials. In Sect. 3, we obtain various a priori estimates for
the individual solutions of the IBVP. These include the estimates for spatial and
temporal derivatives of the solutions. In case the Forchheimer polynomial has small
degree, inhomogeneous Poincare-Sobolev inequality related to the non-linearity of
the Forchheimer polynomial is used to obtain estimates of the energy type norms
for the pressure function. These estimates are basic for our study of the asymptotic
properties of the solutions as t→∞. In Sect. 4, we establish the structural stabil-
ity of the solutions with respect to the boundary data. In Subsection 4.1 we prove
the convergence in Sobolev norms with respect to time and space of the solutions
with spatial homogeneous boundary data and their perturbations. In Subsect. 4.2,
we study the convergence and stability in L2-norm of the solutions with general
boundary data. Under certain conditions on the long time behavior of the data,
the asymptotic and Lyapunov type stability is obtained. It is noteworthy to point
out that the boundary data can be unbounded when time is large. In Sect. 5, we
show the continuous dependence of the solutions on the Forchheimer polynomials.
For this, we prove a perturbed monotonicity property which depends continuously
on the coefficients of the Forchheimer polynomials. In the Appendix, we prove an
estimate of solutions to a particular differential inequality. This is used to improve
main a priori estimates in Sect. 3.

2. Preliminaries and Auxiliary Results

Consider fluid flows with velocity u(x, t), pressure p(x, t) and density ρ(x, t). For
porous media, the following empirical relations are studied:

Darcy’s law: αu = −∇p;
Forchheimer’s laws: αu + β|u|u = −∇p, αu + β|u|u + γ|u|2u = −∇p, and

αu+ β|u|m−1u = −∇p.
A generalized Forchheimer equation that covers most applications is studied in

[1] and is of the form:

(2.1) g(|u|)u = −∇p,

where g(s) ≥ 0 is a function defined on [0,∞).
From (2.1) one can solve u implicitly in terms of ∇p and derives a non-linear

Darcy equation:

(2.2) u =
−∇p

g(G−1(|∇p|))
= −K(|∇p|)∇p,

where G(s) = sg(s) and the function K : R+ → R+, where R+ = [0,∞), is defined
by

(2.3) K(ξ) =
1

g(G−1(ξ))
, ξ ≥ 0.
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Other equations governing the motion of the fluid are the equation of continuity:

(2.4)
d

dt
ρ = ∇ · (ρu),

and the equation of state which, for slightly compressible fluids (cf. [5, 15]), has the
following form:

(2.5) ρ(p) = ρ0 exp(
p− p0

κ
) or

dρ

dp
=
ρ

κ
, κ > 0.

From (2.2), (2.4) and (2.5) one derives a scalar equation for the pressure:

(2.6)
∂p

∂t
= −κ∇ · (K(|∇p|)∇p)−K(|∇p|)|∇p|2.

Since for most slightly compressible fluids in porous media the constant κ is
large, we neglect the last term in (2.6) and study the reduced degenerate parabolic
equation of the form:

(2.7)
∂p

∂t
= −κ∇ · (K(|∇p|)∇p).

Note that this reduction is commonly used in engineering.
By changing the reference system, we obtain a non-dimensional equation which

is (2.7) with κ = 1.
Among many possible generalizations of the classical Forchheimer equations, we

consider the following models which cover most of the applications. In this paper,
we study the case when the function g in (2.1) is a generalized polynomial with
non-negative coefficients. Specifically, the function g : R+ × RN+1

+ → R is of the
form

(2.8) g(s,~a) = g(s,~a; ~α) = a0s
α0 + a1s

α1 + . . .+ aNs
αN ,

where α0 = 0 < α1 < . . . < αN , the coefficients a0, a1, . . . , aN are non-negative
with a0 > 0 and aN > 0.

The number αN is the degree of g and is denoted by deg(g). We call ~α =
(α0, . . . , αN ) the exponent vector and ~a = (a0, . . . , aN ) the coefficient vector. The
number N + 1 is the length of g. This class of functions g(s,~a) is denoted by
FP(N, ~α), which is the abbreviation of “Forchheimer polynomials”.

When the function g in (2.1) belongs to FP(N, ~α), it is referred to as the Forch-
heimer polynomial of the equation.

Let N and ~α be fixed. Let

(2.9) R(N) = {~a = (a0, a1, . . . , aN ) ⊂ RN+1 : a0, aN > 0, a1, . . . , aN−1 ≥ 0}.
Let g = g(s,~a) be in FP(N, ~α) with ~a ∈ R(N). We denote

(2.10) a =
αN

1 + αN
,

(2.11) χ(~a) = max
{

1, a0, a1, . . . , aN ,
1
a0
,

1
aN

}
.

Many estimates below will have constants depending on χ(~a).
For each ξ ≥ 0, we denote by s = s(ξ,~a) the unique solution of the equation

sg(s,~a) = ξ, i.e., one has

(2.12) s(ξ,~a)g(s(ξ,~a),~a) = ξ.
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The same as (2.3), we define

(2.13) K(ξ,~a) =
1

g(s(ξ,~a),~a)
.

In [1], we have the following properties for K(ξ, a): it is decreasing in the variable
ξ and satisfies

(2.14) K(ξ,~a) ≤ K(0,~a) = a−1
0 ≤ χ(~a),

(2.15) C1(1 + ξ)−a ≤ K(ξ,~a) ≤ C2(1 + ξ)−a.

The constants C1 and C2 above were not computed explicitly in [1]. For our
present study, the dependence of those constants on the coefficient vector is impor-
tant, hence we carefully re-estimate K(ξ,~a) and specify this dependence.

Lemma 2.1. Let g(s,~a) be in class FP(N, ~α). One has for any ξ ≥ 0 that

(2.16)
C−1

0 χ(~a)−1−a

(1 + ξ)a
≤ K(ξ,~a) ≤ C0χ(~a)1+a

(1 + ξ)a
,

and for any m ≥ 1, δ > 0 that

(2.17) C−1
0 χ(~a)−1−a δa

(1 + δ)a
(ξm−a − δm−a) ≤ K(ξ,~a)ξm ≤ C0χ(~a)1+aξm−a.

where C0 = C0(N,αN ) depends on N , αN only.
In particular, when m = 2, δ = 1, one has

(2.18) 2−aC−1
0 χ(~a)−1−a(ξ2−a − 1) ≤ K(ξ,~a)ξ2 ≤ C0χ(~a)1+aξ2−a.

Proof. Let g(s) = g(s,~a) and K(ξ) = K(ξ,~a). On one hand,

g(s) =
N∑
j=0

ajs
αj ≤ max

j=0,...,N
{aj}(1 +

N∑
j=2

(1 + s)αj + sαN )

≤ max
j=0,...,N

{aj}(N + 1)(1 + s)αN ,

g(s) =
N∑
j=0

ajs
αj ≥ a0 + aNs

αN ≥ min{a0, aN}(1 + sαN )

≥ 2−αN min{a0, aN}(1 + s)αN .

On the other hand,

1 + ξ = 1 + sg(s) ≤ max
j=0,...,N

{1, aj}(1 +
N∑
j=0

sαj+1)

≤ max
j=0,...,N

{1, aj}(N + 2)(1 + s)αN+1,

1 + ξ = 1 + sg(s) ≥ 1 + aNs
αN+1 ≥ 2−αN−1 min{1, aN}(1 + s)αN+1.

Hence

K(ξ) =
1
g(s)

≤ 2αN

min{a0, aN}(1 + s)αN

≤ 2αN (maxj=0,...,N{1, aj}(N + 2))
αN
αN+1

min{a0, aN}(1 + ξ)
αN
αN+1

=
C ′2

(1 + ξ)a
,
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K(ξ) =
1
g(s)

≥ 1
maxj=0,...,N{aj}(N + 1)(1 + s)αN

≥ (2−αN−1 min{1, aN})
αN
αN+1

maxj=0,...,N{aj}(N + 1)(1 + ξ)
αN
αN+1

=
C ′1

(1 + ξ)a
,

where

C ′1 =
(min{1, aN})a

2αN+1(N + 1) maxj=0,...,N{aj}
, C ′2 =

2αN (N + 2)a(maxj=0,...,N{1, aj})2

min{a0, aN}
.

One easily sees that there is C0 = C0(N,αN ) such that

(2.19) C1 = C−1
0 χ(~a)−1−a ≤ C ′1 ≤ C0χ(~a),

(2.20) C−1
0 χ(~a)−1 ≤ C ′2 ≤ C0χ(~a)1+a = C2.

Hence (2.16) follows.
For (2.17), one notes that its second inequality immediately follows (2.16). For

its first inequality, one considers two cases:
If ξ > δ then

K(ξ)ξm ≥ C−1
0 χ(~a)−1−aξm(1 + ξ)−a ≥ C−1

0 χ(~a)−1−aξm(
ξ

δ
+ ξ)−a

= C−1
0 χ(~a)−1−a

( δ

1 + δ

)a
ξm−a ≥ C−1

0 χ(~a)−1−a
( δ

1 + δ

)a
(ξm−a − δm−a).

If ξ ≤ δ then

K(ξ)ξm ≥ 0 ≥ C−1
0 χ(~a)−1−a

( δ

1 + δ

)a
(ξm−a − δm−a).

The proof is complete. �

It is also proved in Lemmas III.5 and III.9 of [1] that for ξ ≥ 0, one has

(2.21) −aK(ξ,~a) ≤ (∂ξK(ξ,~a)) ξ ≤ 0.

Next, we introduce the function H which, roughly speaking, will play the role of
a Lyapunov function in our estimates.

Definition 2.2. For any ξ ≥ 0, one defines

(2.22) H(ξ,~a) =
∫ ξ2

0

K(
√
s,~a)ds.

The function H(ξ,~a) can be compared with ξ and K(ξ,~a) as follows (see [1]):

(2.23) K(ξ,~a)ξ2 ≤ H(ξ,~a) ≤ 2K(ξ,~a)ξ2,

(2.24) H(ξ,~a) ≤ K(0,~a)ξ2 = a−1
0 ξ2 ≤ χ(~a)ξ2.

As a consequence of (2.23) and (2.18), one has:

(2.25) C3(ξ2−a − 1) ≤ H(ξ,~a) ≤ C4ξ
2−a.

where C3 and C4 depend on N , αN and χ(~a).
Taking into account the explicit estimate (2.16), the monotonicity properties in

Proposition III.6 and Lemma III.11 of [1] can now be rewritten as:.
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Lemma 2.3 ([1]). (i) For any y, y′ ∈ Rn, one has

(2.26)
(
K(|y|,~a)y −K(|y′|,~a)y′

)
·
(
y − y′

)
≥ aK(max{|y|, |y′|},~a)|y − y′|2.

(ii) For any functions p1 and p2 one has

(2.27)
∫
U

(
K(|∇p1|,~a)∇p1 −K(|∇p2|,~a)∇p2

)
·
(
∇p1 −∇p2

)
dx

≥ a
(∫

U

K(max{|∇p1|, |∇p2|},~a)|∇p1 −∇p2|2dx
)

≥ C5

(∫
U

|∇p1 −∇p2|2−adx
) 2

2−a (
1 + max{‖∇p1‖L2−a(U), ‖∇p2‖L2−a(U)}

)−a
,

where C5 = C5(N, deg(g), χ(~a)).

Degree Condition (DC): The following condition on the degree of the Forch-
heimer polynomial will be vital to our study of long time behavior of the solutions:

(2.28) deg(g) ≤ 4
n− 2

.

We will refer to it as the Degree Condition.
The following inhomogeneous Sobolev-Poincare inequality of weighted form will

be used to obtain a priori estimates of the solution.

Lemma 2.4. Let f(x) and ξ(x) be two functions on U with f(x) vanishing on Γ1

and ξ(x) ≥ 0 . Then
(2.29)(∫

U

|f(x)|(2−a)∗dx
) 2

(2−a)∗ ≤ C6

(∫
U

K(ξ(x),~a)|∇f(x)|2dx
)(

1+
∫
U

H(ξ(x),~a)dx
) a

2−a
,

where (2− a)∗ = n(2− a)/(n− (2− a)) and C6 = C6(N, deg(g), χ(~a), U).
Subsequently, when deg(g) ≤ 4/(n− 2) one has

(2.30)
∫
U

|f(x)|2dx ≤ C7

(∫
U

K(ξ(x),~a)|∇f(x)|2dx
)(

1 +
∫
U

H(ξ(x),~a)dx
) a

2−a
,

where C7 = C7(N, deg(g), χ(~a), U).

Proof. Let K(ξ) = K(ξ,~a) and H(ξ) = H(ξ,~a). Let r ≥ 1 and r∗ = nr/(n − r).
Using Poincare-Sobolev inequality ([12]) and then Holder inequality, one derives

(
∫
U

|f |r
∗
dx)

2
r∗ ≤ C

(∫
U

|∇f |rdx
) 2
r

= C
(∫

U

|∇f |rK(ξ)
r
2K(ξ)−

r
2 dx

) 2
r

≤ C
(∫

U

|∇f |2K(ξ)dx
)(∫

U

K(ξ)−
r
2 ·

2
2−r dx

) 2
r ·

2−r
2

= C
(∫

U

|∇f |2K(ξ)dx
)(∫

U

K(ξ)−
r

2−r dx
) 2−r

r

.

By relations (2.16) and (2.25), it follows that

(
∫
U

|f |r
∗
dx)

2
r∗ ≤ C

(∫
U

|∇f |2K(ξ)dx
)(∫

U

(1 + ξ)a·
r

2−r dx
) 2−r

r

,
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(2.31) (
∫
U

|f |r
∗
dx)

2
r∗ ≤ C

(∫
U

K(ξ)|∇f |2dx
)(∫

U

1 +H(ξ)
ar

(2−a)(2−r) dx
) 2−r

r

.

Taking r = 2− a in (2.31) one obtains (2.29).
When the Degree Condition (2.28) holds, one has 2 ≤ (2 − a)∗, hence (2.30)

follows by (2.29) and Holder inequality. �

Notes on Notations: We will drop the constants’ indices. The values of
C,C1, C2, etc., may vary from line to line unless mentioned otherwise. Also, we use
different notations for partial derivatives. For example, ∂p

∂t = ∂tp = pt.

3. Bounds for the Solutions

Our aim is to study the equation (2.7) for pressure of slightly compressible fluids
in a bounded domain in a porous media. The fluid flows are subject to some
conditions on the boundary.

Let U be a bounded, open, connected subset of Rn, n = 2, 3, . . ., with C2 bound-
ary ∂U . (Though we focus on the case n = 3, the analysis applies to other dimen-
sions.) Let ∂U = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 6= ∅ and the (n − 1)-dimensional Lebesgue
measure of Γ1 is nonzero.

In this section, the length (N + 1), the exponent vector ~α and the Forchheimer
polynomial g(s,~a) ∈ FP (N, ~α) with ~a ∈ R(N) are fixed. Throughout, g(s) =
g(s,~a), K(ξ) = K(ξ,~a) and H(ξ) = H(ξ,~a).

Consider the initial boundary value problem for pressure:
∂p

∂t
(x, t) = ∇ · (K(|∇p(x, t)|)∇p(x, t)) on U × (0,∞),(3.1a)

p(x, 0) = p0(x) on U,(3.1b)
∂p

∂ν
(x, t) = 0 on Γ2 × (0,∞),(3.1c)

p(x, t) = ψ(x, t) on Γ1 × (0,∞),(3.1d)

where ν is the outer normal vector on the boundary ∂U .
Since our priority is to study the dynamical properties of solutions rather than

their regularity, we consider solutions to be classical. The results, however, will
be applicable to weak solutions with enough regularities. The boundary data are
assumed to have certain regularities accordingly.

For the rest of this section, p(x, t) denotes a solution to the above IBVP (3.1a)–
(3.1d) with given p0(x, t) and ψ(x, t).

To deal with the non-homogeneous boundary condition, we extend the Dirichlet
boundary data ψ(x, t) from Γ1 to the whole domain U . Let Ψ(x, t) be such an
extension. For the existence and estimates of Ψ(x, t), see Remark 3.18 below.

Let p = p−Ψ, then p satisfies

(3.2)
∂p

∂t
= ∇ · (K(|∇p|)∇p)−Ψt on U × (0,∞),

(3.3) p = 0 on Γ1 × (0,∞).

We will derive a priori estimates for solutions p(x, t). Henceforward all constants
C,C1, C2, . . . in this section depend only on parameters N , αN , χ(~a), the spatial
dimension n, and the domain U .

We denote H(x, t) = H[p](x, t) = H(|∇p(x, t)|,~a), see Definition 2.2.
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We start with a basic differential inequality for the L2-norm of p.

Lemma 3.1. One has

(3.4)
1
2
d

dt

∫
U

p2(x, t)dx ≤ −C
∫
U

H(x, t)dx+ CG1(t),

where
(3.5)

G1(t) =
∫
U

|∇Ψ(x, t)|2dx+
(∫

U

|Ψt(x, t)|r0dx
) 2−a
r0(1−a)

+
(∫

U

|Ψt(x, t)|r0dx
) 1
r0
,

with r0 denoting the conjugate exponent of (2− a)∗ = n(2− a)/(n− (2− a)), thus
explicitly having the value

(3.6) r0 =
n(2− a)

(2− a)(n+ 1)− n
=

n(2 + αN )
n+ 2 + αN

.

Proof. Multiplying the equation (3.2) by p and integrating over U , one obtains

1
2
d

dt

∫
U

p2dx = −
∫
U

K(|∇p|)∇p · ∇pdx+
∫

Γ1∪Γ2

K(|∇p|)(∇p · ν) pdσ −
∫
U

Ψtpdx.

Because of the boundary conditions (3.1c) and (3.3) on p and p, the integrals
over the boundaries vanish. Hence

1
2
d

dt

∫
U

p2dx = −
∫
U

K(|∇p|)|∇p|2dx+
∫
U

K(|∇p|)∇p · ∇Ψdx−
∫
U

Ψtpdx(3.7)

First, thanks to relation (2.23) the first integral on the RHS of (3.7) satisfies

−
∫
U

K(|∇p|)|∇p|2dx ≤ −C
∫
U

H(x, t)dx.

We estimate the second integral on the RHS of (3.7) by Holder inequality and
the use of relation (2.14):∣∣∣∣∫

U

K(|∇p|)∇p · ∇Ψdx
∣∣∣∣ ≤ (

∫
U

(K(|∇p|)|∇p|2dx)
1
2 (
∫
U

(K(|∇p|)|∇Ψ|2dx)
1
2

≤ C(
∫
U

H(x, t)dx)
1
2 (
∫
U

|∇Ψ|2dx)
1
2 .

By Young’s inequality, this leads to

(3.8)
∣∣∣∣∫
U

K(|∇p|)∇p · ∇Ψdx
∣∣∣∣ ≤ ε∫

U

H(x, t)dx+ C

∫
U

|∇Ψ|2dx.

For the third integral on the RHS of (3.7), let b = a/(2 − a) and r = r0. Using
Holder inequality, applying Sobolev-Poincare inequality (2.29) with f = p and
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ξ = |∇p|, and using relation (2.23), one obtains∫
U

|Ψtp|dx ≤ (
∫
U

|Ψt|rdx)1/r(
∫
U

|p|(2−a)∗dx)1/(2−a)∗

≤ C(
∫
U

|Ψt|rdx)1/r(
∫
U

K(|∇p|)|∇p|2dx)
1
2 (
∫

1 +K(|∇p|)|∇p|2dx)
b
2

≤ C(
∫
U

|Ψt|rdx)1/r(
∫
U

H(x, t) + |∇Ψ|2dx)
1
2 (
∫

1 +H(x, t)dx)
b
2

≤ C(
∫
U

|Ψt|rdx)1/r
(

(
∫
U

H(x, t)dx)b+1 +
∫
U

H(x, t)dx+
∫
|∇Ψ|2dx

+
∫
|∇Ψ|2dx(

∫
H(x, t)dx)b

) 1
2

≤ C(
∫
U

|Ψt|rdx)1/r
(

1 + (
∫
U

H(x, t)dx)b+1 + (
∫
|∇Ψ|2dx)b+1

) 1
2

≤ C(
∫
U

|Ψt|rdx)1/r + C(
∫
U

|Ψt|rdx)1/r
(

(
∫
U

H(x, t)dx)
1

2−a + (
∫
|∇Ψ|2dx)

1
2−a

)
.

Applying Young inequality yields∫
U

|Ψtp|dx ≤ ε
∫
U

H(x, t)dx+ C

∫
U

|∇Ψ|2dx+ C(
∫
U

|Ψt|rdx)
1
r

+ C(
∫
U

|Ψt|rdx)
2−a
r(1−a) .

Summing up the above estimates with sufficiently small ε, one obtains

1
2
d

dt

∫
U

p2dx ≤− C
∫
U

H(x, t)dx+ C

∫
U

|∇Ψ|2dx

+ C(
∫
U

|Ψt|rdx)1/r + C

∫
U

|Ψt|rdx)
2−a
r(1−a) .

This proves (3.4). �

One then obtains the first L2-estimates for p.

Corollary 3.2. One has for t ≥ 0 that

(3.9)
∫
U

p2(x, t)dx ≤
∫
U

p2(x, 0)dx+ CΛ1(t),

where

(3.10) Λ1(t) =
∫ t

0

G1(τ)dτ.

In the case deg(g) ≤ 4/(n− 2) one has

(3.11)
∫
U

p2(x, t)dx ≤
∫
U

p2(x, 0)dx+ CΛ2(t),

where

(3.12) Λ2(t) = 1 + Env(G1)
2

2−a (t),

with Env(G1)(t) being a continuous, increasing envelop of the function G1(t) (see
Definition A.1).
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Proof. The first inequality (3.9) results from integrating Ineq. (3.4) in time and
dropping the first term on its RHS.

To prove the second inequality (3.11), one first observes on one hand that

(3.13)
∫
U

|∇p|2−adx ≤ C
∫
U

H(x, t)dx+ C

∫
U

|∇Ψ|2−adx+ C.

On another hand, the condition on the degree of the polynomial g infers that
2 ≤ (2− a)∗. Thus one has by Poincare-Sobolev inequality:

(3.14)
(∫

U

p2dx

) 2−a
2

≤ C
∫
U

|∇p|2−adx.

Therefore (3.4), (3.13), and (3.14) give

(3.15)
1
2
d

dt

∫
U

p2dx ≤ −C
(∫

U

p2dx

) 2−a
2

+ CG1(t) + C

∫
U

|∇Ψ|2−adx+ C.

Since the integral
∫
U
|∇Ψ|2−adx is already present in G1(t), one can adjust the

constant C to have

(3.16)
1
2
d

dt

∫
U

p2dx ≤ −C
(∫

U

p2dx

) 2−a
2

+ CG1(t) + C.

Applying Lemma A.2 in the Appendix with y(t) =
∫
U
p(x, t)2dx, f(t) = C(1 +

G1(t)) and α = (2− a)/2 yields (3.11). �

Note that the L2-estimate for p easily follows by using∫
U

p2dx ≤ 2
∫
U

p2dx+ 2
∫
U

Ψ2dx.

We will not explicate more on this.
Next, we find estimates for ∇p by using the function H(x, t).

Lemma 3.3. For any ε > 0, one has

(3.17)
d

dt

∫
U

H(x, t)dx+
∫
U

p2
t (x, t)dx ≤ ε

∫
U

H(x, t)dx+ CεG2(t),

where Cε is positive and

(3.18) G2(t) =
∫
U

|∇Ψt(x, t)|2dx+
∫
U

|Ψt(x, t)|2dx.

Consequently, one has

(3.19)
d

dt

[∫
U

H(x, t) + p2(x, t)dx
]

+
∫
U

p2
t (x, t)dx ≤ −C

∫
U

H(x, t)dx+ CG3(t),

where

(3.20) G3(t) = G1(t) +G2(t).
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Proof. Multiplying (3.2) by ∂p/∂t, integrating over U and using the boundary
conditions of p and p, one obtains

∫
U

(
∂p

∂t

)2

dx = −
∫
U

K(|∇p|)∇p · ∂
∂t

(∇p)dx+
∫
U

Ψt
∂p

∂t
dx

= −
∫
U

K(|∇p|)∇p · ∂
∂t

(∇p)dx+
∫
U

K(|∇p|)∇p · ∇Ψtdx−
∫
U

Ψt
∂p

∂t
dx

= −1
2

∫
U

∂

∂t
H(x, t)dx+

∫
U

K(|∇p|)∇p · ∇Ψtdx−
∫
U

Ψt
∂p

∂t
.

Hence

∫
U

(
∂p

∂t

)2

dx+
1
2
d

dt

∫
U

H(x, t)dx =
∫
U

K(|∇p|)∇p · ∇Ψtdx−
∫
U

Ψt
∂p

∂t
.(3.21)

Same as the estimate (3.8), one has

(3.22)
∣∣∣∣∫
U

K(|∇p|)∇p · ∇Ψtdx

∣∣∣∣ ≤ ε∫
U

H(x, t)dx+ C

∫
U

|∇Ψt|2dx.

For the last integral of (3.21) one uses Cauchy inequality:

(3.23)
∣∣∣∣∫
U

Ψt
∂p

∂t

∣∣∣∣ ≤ 1
2

∫
U

(
∂p

∂t

)2

dx+
1
2

∫
U

Ψ2
tdx.

Combining (3.21), (3.22) and (3.23), one obtains (3.17).
Adding (3.4) to (3.17) with sufficiently small ε yields

d

dt

[∫
U

H(x, t) + p2dx

]
+
∫
U

(
∂p

∂t

)2

dx ≤ −C
∫
U

H(x, t)dx+ CG1(t) + CG2(t).

Therefore (3.19) follows. �

Remark 3.4. The estimates in Lemma 3.1, Corollary 3.2 and Lemma 3.3 can be
improved slightly by replacing G1(t) and G2(t) by the following G1(t) and G2(t)
respectively:

G1(t) =
∫
U

|∇Ψ(x, t)|2−adx+
(∫

U

|∇Ψ(x, t)|2−adx
) 1

2−a
(3.24)

+
(∫

U

|Ψt(x, t)|r0dx
) 2−a
r0(1−a)

+
(∫

U

|Ψt(x, t)|r0dx
)1/r0

,(3.25)

G2(t) =
∫
U

|∇Ψt|2−adx+
(∫

U

|∇Ψt|2−adx
) 1

2−a
+
∫
U

Ψ2
tdx.(3.26)
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For the proof, one needs to re-estimate (3.8) and (3.22). For instance, one can
estimate

∣∣∫
U
K(|∇p|)∇p · ∇Ψdx

∣∣ in (3.8) as∣∣∣∣∫
U

K(|∇p|)∇p · ∇Ψdx
∣∣∣∣ ≤ C ∫

U

(|∇p|1−a + 1)|∇Ψ|dx

≤ C(
∫
U

|∇p|2−a + 1dx)
1−a
2−a (

∫
U

|∇Ψ|2−adx)
1

2−a

≤ C(
∫
U

H(x, t) + 1dx)
1−a
2−a (

∫
U

|∇Ψ|2−adx)
1

2−a

≤ C(
∫
U

H(x, t)dx)
1−a
2−a (

∫
U

|∇Ψ|2−adx)
1

2−a + C(
∫
U

|∇Ψ|2−adx)
1

2−a

≤ ε
∫
U

H(x, t)dx+ C

∫
U

|∇Ψ|2−adx+ C(
∫
U

|∇Ψ|2−adx)
1

2−a .

The estimate in (3.22) can be treated similarly. �

The first inequality (3.17) of Lemma 3.3 immediately yields the estimate of
H(x, t) in terms of its initial values.

Corollary 3.5. Given δ > 0, there is Cδ > 0 such that for all t ≥ 0 one has

(3.27)
∫
U

H(x, t)dx ≤ eδt
∫
U

H(x, 0)dx+ Cδ

∫ t

0

eδ(t−τ)G2(τ)dτ,

and consequently,

(3.28)
∫
U

|∇p(x, t)|2−adx ≤ eδt
∫
U

|∇p(x, 0)|2−adx+ C + Cδ

∫ t

0

eδ(t−τ)G2(τ)dτ.

Proof. The estimate (3.27) is obtained by letting ε = δ and integrating (3.17) in
time. Ineq. (3.28) follows by using the relation (2.25). �

Remark 3.6. The above estimate for
∫
U
|∇p|2−adx is a direct consequence of the

estimate for
∫
U
H(x, t)dx and the relation (2.25). Therefore we will not repeat this

derivation in the future.

The estimates in Corollary 3.5 with an exponential growth in time are not ap-
propriate to the study of the asymptotic stability of the solutions. However, they
can be improved when combined with the estimate of

∫
U
p2(x, t)dx.

Corollary 3.7. For t ≥ 0, one has

(3.29)

∫
U

H(x, t)dx ≤e−C1t

∫
U

H(x, 0)dx+ C

∫
U

p2(x, 0)dx

+ C

∫ t

0

e−C1(t−τ)
(

Λ1(τ) +G3(τ)
)
dτ.

In case deg(g) ≤ 4/(n− 2), one has for t ≥ 0 that

(3.30)

∫
U

H(x, t)dx ≤e−C1t

∫
U

H(x, 0)dx+ C

∫
U

p2(x, 0)dx

+ C

∫ t

0

e−C1(t−τ)
(

Λ2(τ) +G3(τ)
)
dτ.
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Proof. From (3.19), one has

d

dt

∫
U

H(x, t) + C

∫
U

ptpdx+
∫
U

p2
tdx ≤ −C1

∫
U

H(x, t)dx+ CG3(t).

Applying Cauchy inequality to the term
∫
U
pptdx and using the estimate (3.9)

one obtains

d

dt

∫
U

H(x, t)dx+
1
2

∫
U

p2
tdx ≤ −C1

∫
U

H(x, t)dx+ C

∫
U

p2dx+ CG3(t)

≤ −C1

∫
U

H(x, t)dx+ C

∫
U

p2(x, 0)dx+ CΛ1(t) + CG3(t).

Neglecting the second integral on the LHS and using Gronwall’s inequality one
derives∫

U

H(x, t)dx ≤e−C1t

∫
U

H(x, 0)dx

+
∫ t

0

e−C1(t−τ)(
∫
U

p2(x, 0)dx+ CΛ1(τ) + CG3(τ))dτ,

thus proving (3.29).
When deg(g) ≤ 4/(n − 2), using estimate (3.11) instead of (3.9) in the above

proof one obtains (3.30). �

To take advantage of the dissipation term on the RHS of (3.19), one needs to
compare

∫
U
Hdx and

∫
U
p2dx. Hence the following weighted Poincare inequality is

needed.

Lemma 3.8. Suppose deg(g) ≤ 4
n−2 . Then

(3.31)
∫
U

p2(x, t)dx ≤ Ch(t)
(∫

U

H(x, t)dx+
∫
U

|∇Ψ(x, t)|2dx
)
,

(3.32)
(∫

U

p2(x, t)dx
) 2−a

2 ≤ C
(

1 +
∫
U

H(x, t)dx
)

+ C

∫
U

|∇Ψ(x, t)|2dx,

where

(3.33) h(t) =
(

1 +
∫
U

H(x, t)dx
) a

2−a
.

Proof. First, one applies (2.30) with f = p and ξ = |∇p| to obtain∫
U

p2dx ≤ Ch(t)
(∫

U

K(|∇p|)|∇p|2dx
)

≤ Ch(t)
(∫

U

K(|∇p|)(|∇p|2 + |∇Ψ|2)dx
)
.

Hence (3.31) follows.
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One derives from (3.31) and Young inequality:∫
U

p2dx ≤ C(1 +
∫
U

H(x, t)dx)1+ a
2−a + C(1 +

∫
U

H(x, t)dx)
a

2−a

∫
U

|∇Ψ|2dx

≤ C(1 +
∫
U

H(x, t)dx)
2

2−a + C(1 +
∫
U

H(x, t)dx)
a

2−a ·
2
a + (

∫
U

|∇Ψ|2dx)
2

2−a

≤ C(1 +
∫
U

H(x, t)dx)
2

2−a + (
∫
U

|∇Ψ|2dx)
2

2−a .

Therefore one obtains (3.32). �

Remark 3.9. Concerning the estimate for H(x, t) in Corollary 3.7, thanks to
Ineq. (3.32), the second integrals on the RHS of (3.29) and (3.30) can be bounded
by

C
{

1 +
(∫

U

H(x, 0)dx
) 2

2−a
+
(∫

U

|∇Ψ(x, 0)|2dx
) 2

2−a
}
,

which contains the initial values H(x, 0).

Proposition 3.10. Suppose deg(g) ≤ 4
n−2 . One has the following two estimates

(3.34)

∫
U

H(x, t) + p(x, t)2dx ≤ e−C1
R t
0 h
−1(τ)dτ

(∫
U

H(x, 0) + p(x, 0)2dx
)

+ C

∫ t

0

e−C1
R t
τ
h−1(θ)dθG3(τ)dτ,

and

(3.35)
∫
U

H(x, t) + p(x, t)2dx ≤
∫
U

H(x, 0) + p(x, 0)2dx+C
(
1 + Env(G3)

2
2−a (t)

)
.

Proof. From Proposition 3.3:

d

dt

[ ∫
U

H(x, t) + p2dx
]

+
∫
U

(
∂p

∂t

)2

dx

≤ −C
2

∫
U

H(x, t)dx− C

2

∫
U

H(x, t)dx+ CG3(t)

≤ −C
2

∫
U

H(x, t)dx− C

h(t)

∫
U

p2dx+ CG3(t) +
∫
|∇Ψ|2dx

≤ −C
2

∫
U

H(x, t)dx− C

h(t)

∫
U

p2dx+ CG3(t).

Note that h(t) ≥ 1. Therefore

(3.36)

d

dt

[∫
U

H(x, t) + p2dx

]
+
∫
U

(
∂p

∂t

)2

dx

≤ −Ch−1(t)
[∫

U

H(x, t) + p2dx

]
+ CG3(t).

Applying Gronwall’s inequality to (3.36) yields (3.34).
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Similarly, by using (3.32):

d

dt

[∫
U

H(x, t) + p2dx

]
+
∫
U

(
∂p

∂t

)2

dx

≤ −C
2

∫
U

H(x, t)dx+ C +
∫
U

|∇Ψ|2dx− C
(∫

U

p2dx
) 2−a

2
+ CG3(t)

≤ −C(1 +
∫
U

H(x, t)dx)− C
(∫

U

p2dx
) 2−a

2
+ C(1 +G3(t)).

Since (2− a)/2 ≤ 1 and 1 +
∫
U
Hdx ≥ 1, the above inequality implies

(3.37)

d

dt

[
1 +

∫
U

H(x, t) + p2dx

]
+
∫
U

(
∂p

∂t

)2

dx

≤ −C
[
1 +

∫
U

H(x, t) + p2dx

] 2−a
2

+ C(1 +G3(t)).

Then apply Lemma A.2 with y(t) = 1 +
∫
U
H(x, t)dx +

∫
U
p2(x, t)dx to have

y(t) ≤ y(0) + C(1 + Env(G3)(t))
2

2−a . Cancelling out numbers 1’s from both sides
yields (3.35). �

Note that in the case when h(t) is unbounded, the estimate (3.35) is more suitable
than (3.34).

When the solution has more regularity in the time variable, we derive estimates
for ∂p/∂t. As one can see below, this requires more regularity for Ψ. We start with
a differential inequality for ∂p/∂t.

We denote

q(x, t) = pt(x, t) and q(x, t) = pt(x, t) = pt(x, t)−Ψt(x, t).

One has q|Γi = 0, ∇q = ∇q−∇Ψt, and the function q(x, t) satisfies the equation

(3.38)
dq

dt
= ∇ · (K(|∇p|)∇q) +∇ ·

(
K ′(|∇p|)∇p · ∇q

|∇p|
∇p
)
−Ψtt(x, t).

Lemma 3.11. One has for t > 0 that

(3.39)
d

dt

∫
U

q2dx ≤ −C
∫
U

K(|∇p|)|∇q|2dx+ C

∫
U

|∇Ψt|2dx+
∫
U

|q||Ψtt|dx.

Proof. Multiplying Eq. (3.38) by q, integrating over U and performing integration
by parts one gets
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d

dt

∫
U

q2dx

=−
∫
U

K(|∇p|)∇q · ∇qdx−
∫
U

K ′(|∇p|) (∇p · ∇q)(∇p · ∇q)
|∇p|

dx−
∫
U

qΨtt(x, t)dx

=−
∫
U

K(|∇p|)|∇q|2dx+
∫
U

K(|∇p|)∇q · ∇Ψtdx

−
∫
U

K ′(|∇p|) (∇p · ∇q)(∇p · ∇q)
|∇p|

dx+
∫
U

K ′(|∇p|) (∇p · ∇q)(∇p · ∇Ψt)
|∇p|

dx

−
∫
U

qΨtt(x, t)dx.

By Cauchy-Schwarz inequality and (2.21), one has

K(|∇p|)|∇q · ∇Ψt| ≤ K(|∇p|)|∇q||∇Ψt|,∣∣∣∣K ′(|∇p|) (∇p · ∇q)2

|∇p|

∣∣∣∣ ≤ |K ′(|∇p|)| |∇p||∇q|2 ≤ aK(|∇p|)|∇q|2,

and ∣∣∣∣K ′(|∇p|) (∇p · ∇q)(∇p · ∇Ψt)
|∇p|

∣∣∣∣ ≤ |K ′(|∇p|)| |∇p||∇q||∇Ψt|

≤ aK(|∇p|)|∇q||∇Ψt|,

where a ∈ [0, 1) is defined in (2.10). Therefore

(3.40)

d

dt

∫
U

q2dx ≤− (1− a)
∫
U

K(|∇p|)|∇q|2dx

+ (1 + a)
∫
U

K(|∇p|)|∇q||∇Ψt|dx+
∫
U

|q||Ψtt|dx.

By Cauchy inequality:

(3.41)
∫
U

K(|∇p|)|∇q||∇Ψt|dx ≤ ε
∫
U

K(|∇p|)|∇q|2 + Cε

∫
U

|∇Ψt|2dx.

Combining (3.40) and (3.41) with sufficiently small ε one obtains (3.39). �

We obtain L2-estimates for q.

Proposition 3.12. One has

(3.42)

∫
U

p2
t (x, t)dx ≤

∫
U

p2
t (x, 0)dx

+ C

∫ t

0

{∫
U

|∇Ψt(x, τ)|2dx+ h(τ)
(∫

U

|Ψtt(x, τ)|r0dx
) 2
r0

}
dτ.

In case deg(g) ≤ 4
n−2 , one has

(3.43)

∫
U

p2
t (x, t)dx ≤ e

−C1
R t
0

1
h(τ)dτ

∫
U

p2
t (x, 0)dx

+ C

∫ t

0

e−C1
R t
τ

1
h(θ)dθ

(∫
U

|∇Ψt(x, τ)|2dx+ h(τ)
∫
U

|Ψtt(x, τ)|2dx
)
dτ.
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Proof. Applying (2.29) with f = q and ξ = |∇p| to estimate the first integral on
the RHS of (3.39), applying Holder then Cauchy inequalities to its last integral,
one obtains

d

dt

∫
U

q2dx ≤− C
∫
U

K(|∇p|)|∇q|2dx+ C

∫
U

|∇Ψt|2dx+
∫
U

|q||Ψtt|dx

≤− C

h(t)
(
∫
U

|q|(2−a)∗dx)
2

(2−a)∗ + C

∫
U

|∇Ψt|2dx

+ (
∫
U

|q|(2−a)∗dx)
1

(2−a)∗ (
∫
U

|Ψtt|r0dx)
1
r0

≤− C

h(t)
(
∫
U

|q|(2−a)∗dx)
2

(2−a)∗ + C

∫
U

|∇Ψt|2dx

+
Cε

h(t)
(
∫
U

|q|(2−a)∗dx)
2

(2−a)∗ + Cεh(t)(
∫
U

|Ψtt|r0dx)
2
r0 .

With sufficient small ε it follows that
(3.44)
d

dt

∫
U

q2dx ≤ − C

h(t)
(
∫
U

|q|(2−a)∗dx)
2

(2−a)∗+C
∫
U

|∇Ψt|2dx+Ch(t)(
∫
U

|Ψtt|r0dx)
2
r0 .

Neglecting the first term on the RHS and integrating in time yield (3.42).
Now when deg(g) ≤ 4

n−2 , one has 2 ≤ (2 − a)∗. By using Holder inequality in
(3.44), one asserts

d

dt

∫
U

q2dx ≤ − C

h(t)

∫
U

q2dx+ C

∫
U

|∇Ψt|2dx+ Ch(t)
∫
U

|Ψtt|2dx.

Then apply Gronwall’s inequality to obtain (3.43). �

Now one relates the estimate of pt with those of H(x, t) and p.

Lemma 3.13. One has for all t ≥ 0 that

1
2
d

dt

[∫
U

H(x, t) + p2
t (x, t) + p2(x, t)dx

]
≤ −C1

[∫
U

H(x, t) + p2
tdx

]
+ CG4(t),

(3.45)

where

(3.46) G4(t) = G3(t) +
∫
U

Ψ2
tt(x, t)dx.

Proof. Applying Cauchy inequality to the last integral of (3.39) yields
(3.47)
d

dt

∫
U

q2dx ≤ −C
∫
U

K(|∇p|)|∇q|2dx+ C

∫
U

|∇Ψt|2dx+ ε

∫
U

q2 + C

∫
U

Ψ2
ttdx.

Summing up (3.19) and (3.47), one obtains

1
2
d

dt

[∫
U

H(x, t) + p2
t + p2dx

]
≤ −C1

∫
U

H(x, t)dx− C
∫
U

p2
tdx

− C1

∫
U

K(|∇p|)|∇q|2dx+ ε

∫
U

p2
tdx+ CG3(t) + C

∫
U

|∇Ψt|2dx+ C

∫
U

Ψ2
ttdx.

By selecting ε sufficiently small, one obtains (3.45). �
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We estimate the Lebesgue norms of the space-time derivatives of p.

Corollary 3.14. One has for t ≥ 0,

(3.48)

∫
U

H(x, t)dx+
∫
U

p2
t (x, t)dx ≤ e−C1t

(∫
U

H(x, 0)dx+
∫
U

p2
t (x, 0)dx

)
+ C

∫
U

p2(x, 0)dx+ C

∫ t

0

e−C1(t−τ)(Λ1(τ) +G4(τ))dτ.

Proof. The proof is similar to Corollary 3.7. In (3.45), one applies Cauchy inequality
to the term

d

dt

∫
U

p2dx = 2
∫
U

pt p dx,

and uses the estimate (3.9):

1
2
d

dt

[∫
U

H(x, t) + p2
tdx

]
≤ −C

[∫
U

H(x, t) + p2
tdx

]
+ C

∫
U

p(x, t)2dx+ CG4(t),

≤ −C
[∫

U

H(x, t) + p2
tdx

]
+ C

∫
U

p(x, 0)2dx+ CΛ1(t) + CG4(t).

Then (3.48) follows by the Gronwall inequality. �

Under the Degree Condition (2.28), one can combine the estimate of the deriva-
tives of p above with that of p itself to obtain a stronger result.

Proposition 3.15. Suppose deg(g) ≤ 4/(n− 2). Then

(3.49)

[ ∫
U

H(x, t) + p2
t (x, t) + p2(x, t)dx

]
≤ e−C1

R t
0 h
−1(τ)dτ

[ ∫
U

H(x, 0) + p2
t (x, 0) + p2(x, 0)dx

]
+ C

∫ t

0

e−C1
R t
τ
h−1(θ)dθG4(τ)dτ.

Assume, in addition, that

(3.50)
∫ t

0

e−C1(t−τ)
(

Λ2(t) +G3(t)
)
dτ ≤ C2 for all t > 0.

Then there is d0 > 0 depending on the initial data of the solution so that

(3.51)

[∫
U

H(x, t) + p2
t (x, t) + p2(x, t)dx

]
≤ e−d0t

[∫
U

H(x, 0) + p2
t (x, 0) + p2(x, 0)dx

]
+ C

∫ t

0

e−d0(t−τ)G4(τ)dτ.
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Proof. One can easily obtain from (3.45) and (3.31) that

1
2
d

dt

[∫
U

H(x, t) + p2
t + p2dx

]
≤ −C1

2

∫
U

H(x, t)dx− C1

2

∫
U

H(x, t)dx− C1

∫
U

p2
tdx+ CG4(t)

≤ −C1

2

∫
U

H(x, t)dx− Ch−1(t)
∫
U

p2dx+ C

∫
U

|∇Ψ|2dx− C1

∫
U

p2
tdx+ CG4(t)

≤ −Ch−1(t)
[∫

U

H(x, t) + p2
t + p2dx

]
+ CG4(t).

Then applying Gronwall’s inequality yields (3.49).
Under condition (3.50), one observes from estimate (3.30) of Corollary 3.7 that∫

U
H(x, t)dx ≤ d1 for all t ≥ 0. Hence h(t) ≤ d2 and h−1(t) ≥ d3 for all t > 0.

Therefore (3.51) follows from (3.49). �

Remark 3.16. Condition (3.50) guarantees the Poincare inequality∫
U

p2(x, t)dx ≤ d∗
∫
U

K(|∇p|)|∇p|2dx ≤ d∗
∫
U

H(x, t)dx+ d∗

∫
U

|∇Ψ(x, t)|2dx,

where d∗ > 0 is independent of time.

When no condition on h(t) is imposed, one obtains an alternative but simpler
estimate than (3.49).

Proposition 3.17. Suppose deg(g) ≤ 4
n−2 . One has

(3.52)

∫
U

H(x, t) + p2
t (x, t) + p2(x, t)dx ≤

∫
U

H(x, 0) + p2
t (x, 0) + p2(x, 0)dx

+ C
(
1 + Env(G4)

2
2−a (t)

)
.

Proof. Similar to the proof of (3.35), but starting from (3.45) instead of (3.19) one
has

(3.53)

1
2
d

dt

[
1 +

∫
U

H(x, t) + p2
t + p2dx

]
≤ −C1

[
1 +

∫
U

H(x, t) + p2
t + p2dx

] 2−a
2

+ C(1 +G4(t)).

Then applying Lemma A.2 yields (3.52). �

Remark 3.18. The IBVP (3.1a)–(3.1d) is formulated in terms of the boundary
profile ψ(x, t). However, in all the results above, the estimates of the solutions
depend on a particular extension Ψ(x, t) and its properties. Nonetheless, one can
always relate the estimates concerning Ψ in U to those of ψ on Γ1. For instance,
one can use the following harmonic extension Ψ of ψ:

(3.54) ∆Ψ = 0 on U and Ψ
∣∣∣
Γ1

= ψ,
∂Ψ
∂ν

∣∣∣
Γ2

= 0.

We denote such Ψ by H(ψ). Then we have

(3.55) ‖∂ktH(ψ)‖W 1,s(U) ≤ C(k, s)‖∂kt ψ‖W 1,s(Γ1),

for k = 0, 1, 2, and s ≥ 1, c.f. [14].
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4. Dependence on the Boundary Data

First, we recall from [1] that the solution of IBVP (3.1a)–(3.1d) with a fixed
boundary data ψ(x, t) is unique and Lyapunov stable. More precisely, if p1 and p2

are two such solutions, then for t ≥ 0 one has

(4.1) ‖p1(·, t)− p2(·, t)‖L2(U) ≤ ‖p1(·, 0)− p2(·, 0)‖L2(U).

We now turn to studying the IBVP (3.1a)–(3.1d) with varying boundary data.

4.1. Spatial homogeneous boundary data and their perturbations. In this
subsection, qualitative behavior of the solutions are studied using the results ob-
tained in sections 2 and 3. The simplest consideration is the stability, with respect
to perturbations of the boundary data, of the homogeneous solutions in time and
space, i.e., p(x, t) = const., or, |∇p(x, t)| = pt(x, t) = 0. In this case the initial and
boundary data are also constants. More generally, we consider the boundary data
which depends on time only, i.e., homogeneous in the spatial variables. This bound-
ary condition models processes on the boundary, when the domain adjacent to Γ1

possesses infinite conductivity. Perturbations of those data and their corresponding
solutions are studied.

First, we quickly obtain the Lyapunov stability for homogeneous solutions.

Proposition 4.1. Suppose deg(g) ≤ 4/(n− 2). Assume that ψ(x, t) = A+ φ(x, t)
on Γ1 with φ(x, t) satisfying

(4.2) sup
[0,∞)

‖φ(·, t)‖W 1,2(Γ1), sup
[0,∞)

‖φt(·, t)‖W 1,2(Γ1), sup
[0,∞)

‖φtt(·, t)‖W 1,2(Γ1) <∞.

Let p(x, t) be the corresponding solution to IBVP (3.1a)–(3.1d) and z(x, t) =
p(x, t)−A. Then

(4.3) sup
[0,∞)

∫
U

|∇z(x, t)|2−a + z2
t (x, t) + z2(x, t)dx

≤ C
∫
U

|∇z(x, 0)|2−a + z2
t (x, 0) + z2(x, 0)dx+ C

{
sup

[0,∞)

‖φ(·, t)‖2W 1,2(Γ1)

+ sup
[0,∞)

‖φt(·, t)‖W 1,2(Γ1) + sup
[0,∞)

‖φt(·, t)‖
2−a
1−a
W 1,2(Γ1) + sup

[0,∞)

‖φtt(·, t)‖2W 1,2(Γ1)

}
.

Proof. Let Φ(x, t) be the harmonic extension of φ(x, t) as defined in Remark 3.18.
Let Ψ(x, t) = A+ Φ(x, t). Then one has p = p−Ψ = z − Φ. Note that ∇Ψ = ∇Φ
and Ψt = Φt.

Let D∗ = 1 + (sup[0,∞)G1(t))
2

2−a + sup[0,∞)G2(t). Using the estimate in Re-
mark 3.18 and condition (4.2), one has D∗ <∞ and

G1(t), G2(t), G3(t),Λ2(t) ≤ CD∗,

hence h(t) ≤ CDb
∗. By (3.51) in Proposition 3.15, one has
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[ ∫
U

H(x, t) + p2
t (x, t) + p2(x, t)dx

]
≤ e−C1

R t
0 h
−1(τ)dτ

[ ∫
U

H(x, 0) + p2
t (x, 0) + p2(x, 0)dx

]
+
∫ t

0

e−C1
R t
τ
h−1(θ)dθG4(τ)dτ

≤
[ ∫

U

H(x, 0) + p2
t (x, 0) + p2(x, 0)dx

]
+
∫ t

0

e−C1D
−b
∗ (t−τ)G4dτ

≤
[ ∫

U

H(x, 0) + p2
t (x, 0) + p2(x, 0)dx

]
+ CDb

∗ sup
[0,∞)

G4(t).

Since ∇p = ∇z and pt = zt, therefore[ ∫
U

|∇z(x, t)|2−a + z2
t (x, t) + z2(x, t)dx

]
≤ C

[ ∫
U

|∇z(x, 0)|2−a + z2
t (x, 0) + z2(x, 0)dx

]
+ C sup

[0,∞)

‖Φ(·, t)‖2L2

+ C sup
[0,∞)

‖Φt(·, t)‖2L2 + CDb
∗ sup

[0,∞)

G4(t)

≤ C
[ ∫

U

|∇z(x, 0)|2−a + z2
t (x, 0) + z2(x, 0)dx

]
+ C sup

[0,∞)

‖Φ(·, t)‖2L2

+ C sup
[0,∞)

‖Φt(·, t)‖2L2 + CDb
∗ sup

[0,∞)

{
‖Φt(·, t)‖2L2 + ‖Φt(·, t)‖Lr0

+ ‖Φt(·, t)‖
2−a
1−a
Lr0 + ‖Φtt(·, t)‖2L2 + ‖∇Φ(·, t)‖2L2 + ‖∇Φt(·, t)‖2L2

}
.

By Holder inequality with r0 ≤ 2 and Young inequality with 1 < 2 ≤ 2−a
1−a one

has

‖Φt(·, t)‖2L2 + ‖Φt(·, t)‖Lr0 + ‖Φt(·, t)‖
2−a
1−a
Lr0 ≤ C(‖Φt(·, t)‖L2 + ‖Φt(·, t)‖

2−a
1−a
L2 ).

Using the estimates of Φ and its derivatives in Remark 3.18 again, one obtains
(4.3). �

We now focus on the asymptotic stability. We formulate a result for more general
boundary data with some decay at infinity. This decay is expressed in terms of the
extension Ψ(x, t).

Proposition 4.2. Suppose deg(g) ≤ 4/(n− 2). Assume that

(a) lim
t→∞

‖∇Ψ(·, t)‖L2 = 0, (b) lim
t→∞

‖Ψt(·, t)‖L2 = 0, (c) lim
t→∞

‖∇Ψt(·, t)‖L2 = 0.

Then:
(i) The functional

(4.4) E1(t) def==
∫
U

(
H(x, t) + |p(x, t)−Ψ(x, t)|2

)
dx→ 0, as t→∞.

(ii) If, in addition, ‖Ψ(·, t)‖L2 → 0 as t→∞ then

(4.5) I1(t) def==
∫
U

(
|∇p(x, t)|2−a + p2(x, t)

)
dx→ 0, as t→∞.
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Proof. (i) The condition on deg(g) gives r0 ≤ 2, therefore (b) yields ‖Ψt‖Lr0 → 0.
Three conditions (a)-(c) imply that G1(t), G2(t) and G3(t) defined by (3.5), (3.18),
and (3.20), respectively, converge to zero as t → ∞. Therefore Λ2 in (3.12) is
bounded, which implies

∫
U
H(x, t)dx ≤ d1, by (3.30), where d1 depends also on the

initial data of the solution. Subsequently, 1 ≤ h(t) ≤ d−1
2 and hence

(4.6) d2t ≤ S(t) def==
∫ t

0

h−1(τ)dτ ≤ t and lim
t→∞

S(t) =∞.

By (3.34) one has

(4.7) E1(t) ≤ e−d3tE1(0) + Ce−d3S(t)J1(t),

where J1(t) =
∫ t

0
ed3S(τ)G3(τ)dτ with d3 depending on the initial data.

In the case J1(t) is bounded, one obviously sees from (4.7) and (4.6) that E1(t)
decays exponentially. Otherwise, one applies L’Hôpital’s Rule and the fact that
limt→∞ h(t)G3(t) = 0 to conclude that the second term on the RHS of (4.7) also
converges to zero. Therefore one obtains (4.4).

(ii) By virtue of inequalities (2.23) and (4.7) one has

(4.8)
I1(t) ≤ Cδ

∫
U

H(x, t)dx+ Cδ2−a +
∫
U

p2(x, t)dx

≤ CδE1(t) + Cδ2−a + Cδ

∫
U

|Ψ(x, t)|2dx.

Therefore lim supt→∞ I1(t) ≤ Cδ2−a for all δ > 0. Thus limt→∞ I1(t) = 0. �

Furthermore, if the second derivative Ψtt(x, t) decays at infinity, then one can
also control the L2-norm of pt.

Proposition 4.3. Suppose deg(g) ≤ 4/(n − 2). Assume in addition to (a)-(c) in
Proposition 4.2 that one has

(d) lim
t→∞

‖Ψtt(·, t)‖L2 = 0.

Then:
(i) The functional

(4.9) E2(t) def== E1(t) +
∫
U

p2
t (x, t)dx→ 0, as t→∞.

(ii) If, in addition, limt→∞ ‖Ψ(·, t)‖L2 = 0 then

(4.10) I2(t) def== I1(t) +
∫
U

p2
t (x, t)dx→ 0, as t→∞.

Proof. The proof is similar to that of Proposition 4.2 with the use of Proposi-
tion 3.15. One has Gk(t) → 0 as t → ∞ for k = 1, 2, 3, 4, and Λ2(t) ≤ C. Hence
the condition (3.50) is satisfied. The estimate (3.51) gives

(4.11)
E2(t) ≤ Ce−Ct

[
E2(0) +

∫
U

Ψt(x, 0))2dx

]
+ C

∫ t

0

e−C(t−τ)G4(τ)dτ + C

∫
U

Ψ2
t (x, t)dx.

The proof now proceeds as in Propositions 4.2. We omit the details. �
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The case of spatial homogeneous boundary data and their perturbations is a
direct consequence of Propositions 4.2 and 4.3.

Corollary 4.4. Suppose deg(g) ≤ 4/(n − 2). Let p(x, t), be the solution of IBVP
(3.1a)–(3.1d) with boundary data ψ(x, t) = γ(t) + φ(x, t), on Γ1.

(i) Assume

(4.12) lim
t→∞

(|γ′(t)|+ ‖φ(·, t)‖W 1,2(Γ1) + ‖φt(·, t)‖W 1,2(Γ1)) = 0.

Then

(4.13) lim
t→∞

∫
U

(
|∇p(x, t)|2−a + |p(x, t)− γ(t)|2

)
dx = 0.

(ii) If in addition one has

(4.14) lim
t→∞

(|γ′′(t)|+ ‖φtt(·, t)‖L2(Γ1)) = 0

then

(4.15) lim
t→∞

∫
U

(
|∇p(x, t)|2−a + |p(x, t)− γ(t)|2 + |pt(x, t)|2

)
dx = 0.

In particular, let pγ(x, t) be the solution corresponding to the case ψ(x, t) = γ(t).
Then (4.13) and (4.15) hold for p(x, t) = pγ(x, t). Consequently, we have the
asymptotic stability:

(4.16) lim
t→∞

∫
U

|p(x, t)− pγ(x, t)|2dx = 0,

for any perturbed solution p(x, t) as in Corollary 4.4,

Proof of Corollary 4.4. Set the extension Ψ(x, t) to be γ(t)+Φ(x, t), where Φ(x, t) =
H(φ) - the harmonic extension of φ(x, t) defined in Remark 3.18. One can estimate
Ψ(x, t) as:

(4.17)

‖Ψ(·, t)‖L2(U) ≤ C|γ(t)|+ C‖φ(·, t)‖L2(Γ1),

‖∇Ψ(·, t)‖L2(U) ≤ C‖φ(·, t)‖W 1,2(Γ1),

‖Ψt(·, t)‖L2(U) ≤ C|γ′(t)|+ C‖φt(·, t)‖L2(Γ1),

‖∇Ψt(·, t)‖L2(U) ≤ C‖φt(x, t)‖W 1,2(Γ1),

‖Ψtt(·, t)‖L2(U) ≤ C|γ′′(t)|+ C‖φtt(·, t)‖L2(Γ1).

Note also that limt→∞ ‖Φ(·, t)‖L2 = 0.
(i) From the estimates in (4.17) and (4.12), one easily verify (a)–(c) in Proposi-

tion 4.2. Therefore

(4.18) lim
t→∞

∫
U

(
|∇p(x, t)|2−a + |p(x, t)−Ψ(x, t)|2

)
dx = 0.

Since

(4.19) lim
t→∞

∫
U

|Ψ(x, t)− γ(t)|2dx = lim
t→∞

∫
U

|Φ(x, t)|2dx = 0

one obtains (4.13).
(ii) The proof of (4.15) is similar noting that (4.17) and (4.14) imply (d) in

Proposition 4.3.. �
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Example 4.5. In the previous corollary, let γ(t) = Atβ with β < 1, i.e.,

(4.20) ψ(x, t) = Atβ + φ(x, t) on Γ1,

then from (4.18) and (4.19) one has

(4.21) lim
t→∞

∫
U

|∇p(x, t)|2−a + |p(x, t)−Atβ |2dx = 0.

If, in addition, one has limt→∞ ‖φtt(·, t)‖L2(Γ1) = 0 then

(4.22) lim
t→∞

∫
U

|∇p(x, t)|2−a + |p(x, t)−Atβ |2 + p2
t (x, t)dx = 0.

Remark 4.6. As one can see that the limit (4.4) makes sense only when any two
extensions Ψ1 and Ψ2 satisfying (a)–(c) of the same boundary data ψ converge to
each other as t→∞. If that is the case then the limit in (4.4) does not depend on
such an extension. This fact is indeed guaranteed by condition (a) and Poincare
inequality:

‖Ψ1(·, t)−Ψ2(·, t)‖L2 ≤ C‖∇Ψ1(·, t)−∇Ψ2(·, t)‖L2

≤ C(‖∇Ψ1(·, t)‖L2 + ‖∇Ψ2(·, t)‖L2)→ 0 as t→∞.

However, there are cases so that ‖p(·, t) − Ψ(·, t)‖L2 → 0 even when Ψ(x, t)
does not satisfy (a)–(c). For instance, in contrast to Example 4.5 above, let
ψ(x, t) = t. Set Ψ1(x, t) = t + W (x) - the corresponding pseudo-steady state
solution, where W (x) 6≡ 0 is the basic pseudo-steady state profile (c.f. [1]). It is
proved in [1] (see Theorem VII.3 and Example VII.5 with γ(t) = t and ϕ(x) = 0)
that any solution p(x, t) to the IBVP with this boundary data ψ(x, t) satisfies
limt→∞ ‖p(x, t)−Ψ1(x, t)‖L2 = 0. Note that Ψ1(x, t) satisfies neither condition (a)
nor (b). Obviously, ψ(x, t) also admits another extension Ψ2(x, t) = t which does
not satisfy limt→∞ ‖Ψ2(·, t)−Ψ1(·, t)‖ = 0.

4.2. Continuous dependence on the boundary data. We now study the struc-
tural stability of the IBVP (3.1a)–(3.1d) with respect to general boundary data
ψ(x, t). Let p1(x, t) and p2(x, t) be two solutions of the IBVP (3.1a)–(3.1d) with
the boundary profiles ψ1(x, t) and ψ2(x, t), respectively.

Let Ψk(x, t) be an extension of ψk(x, t), for k = 1, 2.
We denote

(4.23) z(x, t) = p1(x, t)− p2(x, t), Ψ(x, t) = Ψ1(x, t)−Ψ2(x, t),

(4.24) pk = pk −Ψk, k = 1, 2, z = p1 − p2 = z −Ψ.

Let Hk(x, t) = H[pk](x, t) = H(|∇pk(x, t)|) for k = 1, 2.
Recall that a = deg(g)

deg(g)+1 . Let b = a
2−a = deg(g)

deg(g)+2 .

We will establish various estimates for Z(t) def==
∫
U
z2(x, t)dx, for t ≥ 0. First, we

derive a general differential inequality for z.
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Lemma 4.7. One has for all t ≥ 0,

(4.25)

1
2
d

dt

∫
U

z2dx ≤− C
(∫

U

|∇z|2−adx
) 2

2−a
(1 + ‖H1‖L1 + ‖H2‖L1)−b

+ C(1 + ‖H1‖L1 + ‖H2‖L1)−b‖∇Ψ‖2L2−a

+ C(‖H1‖L1 + ‖H2‖L1)1/2‖∇Ψ‖L2

+ C (1 + ‖H1‖L1 + ‖H2‖L1)b ‖Ψt‖2Lr0 ,

where r0 is defined by (3.6) and the constants depend on χ(~a).

Proof. Note that z
∣∣∣
Γ1

= 0. Using Eq. (3.2) for each pk, one easily finds

(4.26)

1
2
d

dt

∫
U

z2dx = −
∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · (∇p1 −∇p2)dx

+
∫
U

K(|∇p1|)∇p1 · ∇Ψdx−
∫
U

K(|∇p2|)∇p2 · ∇Ψdx−
∫
U

Ψtzdx.

By (2.27) and Holder inequality, one derives

1
2
d

dt

∫
U

z2dx

≤ −C
[∫

U

|∇(p1 − p2)|2−adx
] 2

2−a

[1 + max(‖∇p1‖L2−a , ‖∇p2‖L2−a)]−a

+ C2(‖H1‖1/2L1 + ‖H2‖1/2L1 )‖∇Ψ‖L2 +
∫
U

|Ψt||z|dx.

Hence by virtue of the relation (2.25) applied for |∇pk|2−a and Hk

(4.27)

1
2
d

dt

∫
U

z2dx ≤− C
[∫

U

|∇(p1 − p2)|2−adx
] 2

2−a

(1 + ‖H1‖L1 + ‖H2‖L1)−b

+ C2(‖H1‖1/2L1 + ‖H2‖1/2L1 )‖∇Ψ‖L2 +
∫
U

|Ψt||z|dx

≤− C
[∫

U

|∇z|2−adx
] 2

2−a

(1 + ‖H1‖L1 + ‖H2‖L1)−b

+ C‖∇Ψ‖2L2−a(1 + ‖H1‖L1 + ‖H2‖L1)−b

+ C2(‖H1‖1/2L1 + ‖H2‖1/2L1 )‖∇Ψ‖L2 +
∫
U

|Ψt||z|dx.

By Holder, Sobolev and then Cauchy inequalities one obtains∫
U

|Ψt||z|dx ≤ ‖Ψt‖Lr‖z‖L(2−a)∗ ≤ C‖Ψt‖Lr‖∇z‖L2−a

≤ Cε(1 + ‖H1‖L1 + ‖H2‖L1)−b‖∇z‖2L2−a

+ Cε(1 + ‖H1‖L1 + ‖H2‖L1)b‖Ψt‖2Lr0 .

Using this estimate for the RHS of (4.27), and choosing an appropriate ε one
obtains (4.25). �
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It follows from Lemma 4.7 that the solutions of IBVP (3.1a)–(3.1d) continuously
depend on the initial and boundary data, (in any finite time intervals), without any
restrictions on the degree of the Forchheimer polynomial.

Let Gj [Ψk], k = 1, 2, j = 1, 2, 3, 4, denote the quantity Gj , defined in (3.5),
(3.18), (3.20), and (3.46) for corresponding solution pk with boundary data exten-
sion Ψk.

Similarly, let Λj [Ψk], k = 1, 2, j = 1, 2, denote the corresponding quantity Λj
defined in (3.10) and (3.12) for Ψk.

Let m(t) = m1(t) +m2(t), where for k = 1, 2,

(4.28)
mk(t) = e−C1t

∫
U
Hk(x, 0)dx+

∫
U
p2
k(x, 0)dx

+
∫ t

0
e−C1(t−τ)

(
Λ1[Ψk](τ) +G3[Ψk](τ)

)
dτ,

with C1 being the positive constant in Corollary 3.7.

Theorem 4.8. One has for all t ≥ 0 that

(4.29)

∫
U

z2(x, t)dx ≤
∫
U

z2(x, 0)dx+ C

∫ t

0

(
‖∇Ψ(·, τ)‖2L2−a

+m(τ)1/2‖∇Ψ(·, τ)‖L2 + (1 +m(τ))b‖Ψt(·, τ)‖2Lr0
)
dτ.

Consequently, for any give T > 0,

(4.30)

sup
[0,T ]

∫
U

z2(x, t)dx ≤ 4
∫
U

z2(x, 0)dx+ 6 sup
[0,T ]

‖Ψ(·, t)‖2L2 + CT sup
[0,T ]

‖∇Ψ(·, t)‖2L2−a

+ CT (1 +A∗ +D∗(T ))δ
(

sup
[0,T ]

‖∇Ψ(·, t)‖L2 + sup
[0,T ]

‖Ψt(·, t)‖2Lr0
)
,

where δ = max{1/2, b},

(4.31) A∗ =
∫
U

H1(x, 0)dx+
∫
U

p2
1(x, 0)dx+

∫
U

H2(x, 0)dx+
∫
U

p2
2(x, 0)dx,

(4.32) D∗(T ) =
2∑
k=1

sup
[0,T ]

∫ t

0

e−C1(t−τ)
(

Λ1[Ψk](τ) +G3[Ψk](τ)
)
dτ.

Proof. By virtue of estimate (3.29) in Corollary 3.7, one has ‖Hk(·, t)‖L1 ≤ Cmk(t).
Neglecting the negative term on the RHS of (4.25) one obtains
(4.33)

d

dt

∫
U

z2(x, t)dx ≤ C1‖∇Ψ‖2L2−a + C2m(t)1/2‖∇Ψ‖L2 + C3(1 +m(t))b‖Ψt‖2Lr .

Integrating this differential inequality from 0 to t yields (4.29).
Let T > 0. Note for t ∈ [0, T ] that m(t) ≤ A∗ +D∗(T ). From (4.29) it follows

(4.34)
sup
[0,T ]

∫
U

z2(x, t)dx ≤
∫
U

z2(x, 0)dx+ CT sup
[0,T ]

‖∇Ψ(·, t)‖2L2−a

+ CT (1 +A∗ +D∗(T ))δ
(

sup
[0,T ]

‖∇Ψ(·, t)‖L2 + sup
[0,T ]

‖Ψt(·, t)‖2Lr0
)
.

One then obtains (4.30) by applying Cauchy inequalities: z2 ≤ 2(z2 + Ψ2) and
z2 ≤ 2(z2 + Ψ2). �
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In particular, when growth rates of different norms of Ψk are specified, one has:

Corollary 4.9. Suppose for both k = 1, 2 and t ≥ 0 one has

(4.35) ‖∇Ψk(·, t)‖2L2 + ‖(Ψk)t(·, t)‖
2−a
1−a
Lr0 ≤ C(1 + t)r1

and

(4.36) ‖∇(Ψk)t(·, t)‖2L2 + ‖(Ψk)t(·, t)‖2L2 ≤ C(1 + t)r2 ,

where r1, r2 > 0. Let r3 = 1 + max{r1 + 1, r2}. Then

(4.37)
∫
U

z2(x, t)dx ≤
∫
U

z2(x, 0)dx

+ C∗

∫ t

0

(1 + τ)r3/2‖∇Ψ(·, τ)‖L2 + (1 + τ)r3b‖Ψt(·, τ)‖2Lrdτ,

where C∗ depends also on the initial data of the solutions p1 and p2.

Proof. One easily finds

G1[pk](t) ≤ C
(

1 +
∫
U

|∇Ψ|2dx+ (
∫
U

|Ψt|r0dx)
2−a

r0(1−a)
)
≤ C(1 + t)r1 .

Similarly,

G2[Ψk](t) ≤ C(1 + t)r2 ,

Λ1[Ψk](t) ≤ C(1 + t)r1+1 ≤ C(1 + t)r3−1,

G3[Ψk](t) ≤ C(1 + t)r3−1.

Therefore

m(t) ≤ C∗ + C(1 + t)r3 ≤ C∗(1 + t)r3 .

Note also that

‖∇Ψ‖2L2−a ≤ C(‖∇Ψ1‖L2 + ‖∇Ψ2‖L2)‖∇Ψ‖L2 ≤ C(1 + t)r3/2‖∇Ψ‖L2 .

Then (4.37) follows the estimate (4.29). �

For the asymptotic stability of the solutions with respect to the boundary data,
we will use Lemma 4.7 and estimate (3.30) for functions H[pk], (k = 1, 2). Therefore
we denote

(4.38)
mk(t) = e−C1t

∫
U

Hk(x, 0)dx+
∫
U

p2
k(x, 0)dx

+
∫ t

0

e−C1(t−τ)
(

Λ2[Ψk](τ) +G3[Ψk](τ)
)
dτ, k = 1, 2.

Again C1 here is the same constant C1 in Corollary 3.7. Also, let

(4.39) m(t) = m1(t) +m2(t) and S(t′, t) =
∫ t

t′
(1 +m(τ))−bdτ.

One then has:
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Theorem 4.10. Suppose deg(g) ≤ 4/(n− 2). Then for all t ≥ 0 one has

(4.40)

∫
U

z2(x, t)dx ≤ e−C1S(0,t)

∫
U

z2(x, 0)dx

+ C

∫ t

0

e−C1S(τ,t)
(
‖∇Ψ(·, τ)‖2L2−a

+m(τ)1/2‖∇Ψ(·, τ)‖L2 + (1 +m(τ))b‖Ψt(·, τ)‖2Lr0
)
dτ.

Proof. From (4.25) one easily finds

(4.41)

1
2
d

dt

∫
U

z2dx ≤− C
(∫

U

|∇z|2−adx
) 2

2−a
(1 + ‖H1‖L1 + ‖H2‖L1)−b

+ C (1 + ‖H1‖L1 + ‖H2‖L1)−b ‖∇Ψ‖2L2−a

+ C(‖H1‖L1 + ‖H2‖L1)1/2‖∇Ψ‖L2

+ C (1 + ‖H1‖L1 + ‖H2‖L1)b ‖Ψt‖2Lr0 .

The condition on deg(g) implies 2 ≤ (2−a)∗, hence one has the Sobolev inequal-
ity:

(4.42) ‖z‖L2 ≤ C‖∇z‖L2−a .

Using (4.42) in RHS of the equation (4.41) one obtains

(4.43)
d

dt
Z(t) ≤− CZ(t)(1 +m(t))−b + C‖∇Ψ‖2L2−a

+ Cm(t)1/2‖∇Ψ‖L2 + (1 +m(t))b‖Ψt‖2Lr0 .

Applying Gronwall inequality to (4.43) yields (4.40). �

The Lyapunov stability immediately follows for a class of the individual Ψk(x, t).
In particular one has:

Corollary 4.11. Suppose deg(g) ≤ 4/(n− 2). Assume that

(4.44)
2∑
k=1

(
sup

[0,∞)

Λ2[Ψk](t) + sup
[0,∞)

G3[Ψk](t)
)
<∞.

Then one has

(4.45)
sup

[0,∞)

∫
U

z2(x, t)dx ≤ 4
∫
U

z2(x, 0)dx+ C sup
[0,∞)

‖Ψ(·, t)‖2L2

+ C sup
[0,∞)

(
Ab∗‖∇Ψ(·, t)‖2L2−a +A

b+ 1
2

∗ ‖∇Ψ(·, t)‖L2 +A2b
∗ ‖Ψt(·, t)‖2Lr0

)
,

where

A∗ = 1+
2∑
k=1

(∫
U

|∇pk(x, 0)|2−a+p2
k(x, 0)dx+ sup

[0,∞)

Λ2[Ψk](t)+ sup
[0,∞)

G3[Ψk](t)
)
<∞.
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Proof. One has m(t) ≤ CA∗ and hence S(τ, t) ≥ CA−b∗ (t − τ). Therefore, by the
virtue of (4.40), it follows that

sup
[0,∞)

∫
U

z2(x, t)dx ≤
∫
U

z2(x, 0)dx+ C sup
[0,∞)

(
Ab∗‖∇Ψ(·, t)‖2L2−a

+A
b+ 1

2
∗ ‖∇Ψ(·, t)‖L2 +A2b

∗ ‖Ψt(·, t)‖2Lr0
)
.

Then (4.45) follows by Cauchy inequality. �

Furthermore, for the asymptotic stability, one has:

Corollary 4.12. Suppose deg(g) ≤ 4/(n− 2). Assume that

(4.46) lim
t→∞

S(0, t) =∞,

(4.47) lim
t→∞

(1 +m(t))b+
1
2 ‖∇Ψ(·, t)‖L2 = 0, lim

t→∞
(1 +m(t))b‖Ψt(·, t)‖Lr0 = 0.

Then limt→∞
∫
U
z2(x, t)dx = 0.

Proof. The first term on the RHS of (4.40), under condition (4.46), obviously
converges to zero. Next let us rewrite the second term on the RHS of (4.40) as
e−C1S(0,t)J(t) where

J(t) =
∫ t

0

eC1S(0,τ)
[
‖∇Ψ(·, τ)‖2L2−a +m(τ)1/2‖∇Ψ(·, τ)‖L2

+ (1 +m(τ))b‖Ψt(·, τ)‖2Lr
]
dτ.

In case J(t) is bounded, one has Z(t) =
∫
U
z2(x, t)dx→ 0 thanks to e−C1S(0,t) →

0 as t→∞.
In case limt→∞ J(t) =∞, applying the Hôpital rule and condition (4.47), to the

term e−C1S(0,t)J(t) noting that

(1 +m(t))b‖∇Ψ(·, t)‖2L2−a ≤ (1 +m(t))2(b+ 1
2 )‖∇Ψ(·, t)‖2L2 ,

one again asserts Z(t)→ 0 as t→∞. �

An interesting case from application point of view is the following generalization
of the pseudo-steady state boundary conditions [2, 3, 1].

Corollary 4.13. Suppose deg(g) ≤ 4/(n − 2) and the boundary data ψk(x, t) =
γk(t) + φk(x, t) on Γ1. Assume

(4.48) |γ′k(t)| = O(tr) as t→∞,

(4.49) ‖φk(·, t)‖W 1,2(Γ1), ‖(φk)t(·, t)‖W 1,2(Γ1) ≤ C, for all t ≥ 0,

for k = 1, 2. Let φ = φ1 − φ2 and γ = γ1 − γ2. Then

(4.50) lim
t→∞

∫
U

|z(x, t)− γ(t)|2dx = 0,

if either
(i) the exponent r < 0 and

(4.51) lim
t→∞

‖φ(·, t)‖W 1,2(Γ1) = lim
t→∞

‖φt(·, t)‖W 1,2(Γ1) = 0;

or,
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(ii) the exponent r ≥ 0 satisfies

(4.52) r <
2 + a2

a
− 3

2
and
(4.53)

lim
t→∞

t
r(2b+1)

1−a ‖φ(·, t)‖W 1,2(Γ1) = lim
t→∞

t
2rb
1−a ‖φt(·, t)‖W 1,2(Γ1) = lim

t→∞
t

2rb
1−a γ′(t) = 0.

Proof. Let Φk(x, t) be the harmonic extension H(φk) defined in Remark 3.18. Note
that

‖Φk(·, t)‖L2(U) + ‖(Φk)t(·, t)‖L2(U) ≤ C.
Let the extension Ψk of ψk be γk+Φk. Let Φ = Φ1−Φ2 and Ψ = Ψ1−Ψ2 = γ+Φ.

One has z = z − γ − Φ.
(i) Case r < 0: One has

G1[Ψk] ≤ C, G2[Ψk] ≤ C, Λ2[Ψk] ≤ C.

Consequently, m(t) ≤ C hence (4.46) holds. Also, (4.51) implies (4.47). By Corol-
lary 4.12, one then has

∫
U
z2(x, t)dx → 0 as t → ∞. Since ‖Φ(·, t)‖L2 → 0 as

t→∞, this implies (4.50).
(ii) Case r ≥ 0: Using the estimates in Remark 3.18, one finds

G1[Ψk] ≤ C(1 + t)r(2−a)/(1−a), G2 ≤ C(1 + t)2r,

Λ2[Ψk] ≤ C(1 + t)2r/(1−a).

Hence m(t) ≤ C(1 + t)
2r

1−a . For t ≥ T0 � 1 one has

(4.54) S(0, t) ≥ C
∫ t

T0

τ−b
2r

1−a dτ ≥ Ct−
2rb
1−a+1.

Condition (4.52) is equivalent to r < (1−a)(2−a)
2a = 1−a

2b , hence 1 − 2rb
1−a > 0 and

limt→∞ S(0, t) = ∞. Since Φ = H(φ), by using the estimate (4.17) for Φ and
condition (4.53) one obtains (4.47). Applying Corollary 4.12 once again gives the
convergence limt→∞

∫
U
z2(x, t)dx = 0. The limit (4.50) then follows by this and

the fact that limt→∞ ‖Φ(·, t)‖L2 = 0. �

5. Dependence on the Forchheimer Polynomials

In this section, we study the continuous dependence of the solutions to IBVP
(3.1a)–(3.1d) on the coefficient vector ~a of the Forchheimer polynomials g(s,~a).

Let N and the exponent vector ~α be fixed. Let the Forchheimer polynomial
g(s,~a) belong to the class FP(N, ~α). First we calculate partial derivatives of the
function K(ξ,~a) defined by (2.13) with respect to all variables.

Lemma 5.1. One has for ξ ≥ 0 and ~a = (a0, a1, . . . , aN ) that

(5.1) Kξ(ξ,~a) = −K(ξ,~a)
gs

g2(s,~a) + ξgs(s,~a)
,

(5.2) Kai(ξ,~a) = −K(ξ,~a)
gai(s,~a)

g(s,~a) + sgs(s,~a)
,

where s = s(ξ,~a) is defined by (2.12).
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Proof. Note that

(5.3) gs(s,~a) =
N∑
i=0

aiαis
αi−1 and gai(s,~a) = sαi .

Taking derivative of (2.12) with respect to ξ one has

(5.4) sξg(s,~a) + sgs(s,~a)sξ = 1,

hence

(5.5)
∂s

∂ξ
(ξ,~a) =

1
g(s,~a) + sgs(s,~a)

∣∣∣∣
s=s(ξ,~a)

.

Therefore the partial derivative of K(ξ,~a) with respect to ξ is

Kξ(ξ,~a) = −gs(s,~a)sξ(ξ,~a)
g2(s,~a)

= −K(ξ,~a)
gs(ξ,~a)
g2 + ξgs

.

Thus one obtains (5.1). Similarly, taking derivative of (2.12) with respect to ai one
has

(5.6) saig(s,~a) + sgs(s,~a)sai + sgai(s,~a) = 0,

hence
∂s

∂ai
(ξ,~a) =

−sgai
g(s,~a) + sgs(s,~a)

∣∣∣∣
s=s(ξ,~a)

,

Kai(ξ,~a) = −gssai + gai
g2

= −K(ξ,~a)
gs(
−sgai
g+sgs

) + gai

g
= −K(ξ,~a)

gaig

g(g + sgs)
.

Therefore one obtains (5.2). �

Let ~a and ~a′ be two arbitrary vectors. We denote by ~a ∨ ~a′ and ~a ∧ ~a′ the
maximum and minimum vectors of the two, respectively, with components

(5.7) (~a ∨ ~a′)j = max{aj , a′j} and (~a ∧ ~a′)j = min{aj , a′j}.

Then component-wise one has ~a ∧ ~a′ ≤ ~a,~a′ ≤ ~a ∨ ~a′.
Define χ(~a,~a′) = max{χ(~a), χ(~a′)}. Note that

(5.8) χ(~a ∨ ~a′), χ(~a ∧ ~a′) ≤ χ(~a,~a′),

(5.9) χ(t~a+ (1− t)~a′) ≤ χ(~a,~a′) ∀t ∈ [0, 1].

Perturbing the coefficient vector ~a in the monotonicity (2.26), one has the fol-
lowing version:

Lemma 5.2. Let g(s,~a) and g(s,~a′) belong to class FP(N,α). Then for any y, y′

in Rn, one has

(5.10) (K(|y|,~a)y −K(|y′|,~a′)y′) · (y − y′) ≥ (1− a)K(|y| ∨ |y′|, a ∨ ~a′)|y − y′|2

− C0χ(~a,~a′)|a− ~a′|K(|y| ∨ |y′|, a ∧ ~a′)(|y| ∨ |y′|)|y − y′|,

where a ∈ [0, 1) is defined in (2.10), the positive constant C0 depends on N , αN .
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Proof. Let γ(t) = ty + (1 − t)y′ and ~b(t) = (b0, b1, . . . , bN )(t) = t~a + (1 − t)~a′

for t ∈ [0, 1]. Note that |y| ∧ |y′| ≤ |γ(t)| ≤ |y| ∨ |y′|, a ∧ ~a′ ≤ ~b(t) ≤ ~a ∨ ~a′
(component-wise) and χ(~b(t)) ≤ χ(~a,~a′).

Let F (t) = K(|γ(t)|,~b(t)) γ(t) · (y − y′). Then there is t0 in (0, 1) such that

(5.11) (K(|y|,~a)y −K(|y′|,~a′)y′) · (y − y′) = F (1)− F (0) = F ′(t0).

In the calculations right below, s = s(t) = s(|γ(t)|,~b(t)) and g = g(s(t),~b(t)).
Using the formulas in 5.1 one has

F ′(t) = K(|γ(t)|,~b(t))|y − y′|2 +Kξ(|γ(t)|,~b(t)) γ · γ
′

|γ(t)|
γ(t) · (y − y′)

+Kaj (|γ(t)|,~b(t))b′j(t)γ(t) · (y − y′)

= K(|γ(t)|,~b(t))
{
|y − y′|2 − gs

g2 + |γ(t)|gs
· |γ(t) · (y − y′)|2

|γ(t)|

+

∑
gaj (aj − a′j)
g + sgs

γ(t) · (y − y′)
}
.

Thus

(5.12)

F ′(t) ≥ K(|γ(t)|,~b(t))
{
|y − y′|2 − gs

g2 + |γ(t)|gs
|γ(t)||y − y′|2

−
|
∑
gaj (aj − a′j)|
g + sgs

|γ(t)||y − y′|
}
.

First, consider the case N > 0. One has αN > 0 and g ≥ α−1
N sgs. Hence

g2 + |γ|gs ≤ g (α−1
N sgs) + |γ|gs = |γ|(α−1

N + 1)gs = |γ|a−1gs.

Also, we estimate

|
∑N
j=0 gaj (aj − a′j)|
g + sgs

≤
|a− ~a′|

∑N
j=0 s

αj∑N
j=0 aj(1 + αj)sαj

≤
|a− ~a′|

∑N
j=0 s

αj

b0(t) + bN (t)(1 + αN )sαN

≤ |a− ~a′|C0χ(~b(t))(N + 1)(1 + s)αN

(1 + s)αN

≤ C0χ(~a,~a′)|~a− ~a′|.

Thus

(5.13) F ′(t) ≥ (1− a)K(|γ(t)|,~b(t))|y − y′|2

− C0χ(~a,~a′)|~a− ~a′|K(|γ(t)|,~b(t))|γ(t)||y − y′|.

By the decrease of K(ξ,~a) in ξ and aj ; and the increase of K(ξ,~a)ξ in ξ, one has
from (5.13) that

F ′(t) ≥ (1− a)K(|y| ∨ |y′|,~a ∨ ~a′)|y − y′|2

− C0χ(~a,~a′)|~a− ~a′|K(|y| ∨ |y′|,~a ∧ ~a′)(|y| ∨ |y′|)|y − y′|.

Combining with (5.11), we obtain (5.10).
When N = 0 one has αN = 0, a = 0, ~a = a0, ~a′ = a′0, ~b(t) = b(t) = b0(t),

g(s, b) = b0, and K(ξ, b) = b−1
0 , and gs = 0, ga0 = 1. One has from (5.12)

F ′(t) ≥ K(|γ(t)|, b0(t))
{
|y − y′|2 − b0(t)−1|a0 − a′0||γ(t)||y − y′|

}
.
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Same as above, by the monotonicity of K(ξ,~a) and K(ξ,~a)ξ one then obtains
(5.10). �

Let g1 = g(s,~a(1)) and g2 = g(s,~a(2)) be two functions of class FP(N,α). Let pk
(k = 1, 2) be the solution of

(5.14)
∂pk
∂t

= ∇ · (K(|∇pk|,~a(k))∇pk),

satisfying the Dirichlet boundary condition (3.1d) on Γ1 with the same data ψ, and
the Neumann condition (3.1c) on Γ2.

Let p = p1 − p2, then

(5.15)
∂p

∂t
= ∇ · (K(|∇p1|,~a(1))∇p1)−∇ · (K(|∇p2|,~a(2))∇p2).

Multiplying this equation by p and integrating by parts over the domain yield

(5.16)
1
2
d

dt

∫
U

p2dx = −
∫
U

(K(|∇p1|,~a(1))∇p1 −K(|∇p2|,~a(2))∇p1) · (∇p1 −∇p2)dx.

Let Hk(ξ) = H(ξ,~a(k)), Kk(ξ) = K(ξ,~a(k)) for k = 1, 2.
The upper bound of the integral

∫
U
|∇pk(x, t)|2−adx established in (3.29) of

Corollary 3.7 is needed in our later estimates, hence let

(5.17)
Mk(t) = 1 + e−C1t

∫
U

|∇pk(x, 0)|2−adx+
∫
U

p2
k(x, 0)dx

+
∫ t

0

e−C1(t−τ)
(
Λ1(τ) +G3(τ)

)
dτ, k = 1, 2,

and M = M1 +M2. One has

(5.18)
∫
U

K(|∇pk|,~a(1) ∧ ~a(2))|∇pk|2dx ≤ C + C

∫
U

|∇pk|2−adx ≤ CMk,

where C depends on χ(~a(1) ∧ ~a(2)) and χ(~a(k)).

Proposition 5.3. For t ≥ 0 one has

(5.19)

∫
U

|p1(x, t)− p2(x, t)|2dx ≤
∫
U

|p1(x, 0)− p2(x, 0)|2dx

+ C|~a(1) − ~a(2)|
∫ t

0

M(τ)dτ,

where C > 0 depends on N , αN , and χ(~a(1),~a(2)). Consequently, the solution
p(x, t;~a) depends continuously (in finite time intervals) on the initial data and the
coefficient vector ~a ∈ R(N).

Proof. By (5.16) and the monotonicity of K(|y|,~a)y established in Lemma 5.2 one
immediately obtains

(5.20)
1
2
d

dt

∫
U

|p1 − p2|2dx ≤ −(1− a)
∫
U

K(|∇p1| ∨ |∇p2|,~a(1) ∨ ~a(2))|∇p1 −∇p2|2dx

+ C|~a(1) − ~a(2)|
∫
U

K(|∇p1| ∨ |∇p2|,~a(1) ∧ ~a(2))(|∇p1| ∨ |∇p2|)|∇p1 −∇p2|dx,
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where the positive constant C depends on N , αN , χ(~a(1),~a(2)).
Applying Lemma 2.3 one estimates the first integral on the RHS of (5.20) and

obtains

1
2
d

dt

∫
U

|p1 − p2|2dx ≤ −C(
∫
U

|∇p1 −∇p2|2−adx)
2

2−a (1 + ‖H1‖L1 + ‖H2‖L1)−a

+ C|~a(1) − ~a(2)|
∫
U

K(|∇p1| ∨ |∇p2|,~a(1) ∧ ~a(2))(|∇p1| ∨ |∇p2|)2dx

≤ −C(
∫
U

|∇p1 −∇p2|2−adx)
2

2−a (1 + ‖H1‖L1 + ‖H2‖L1)−a

+ Cχ(~a(1) ∧ ~a(2))|~a(1) − ~a(2)|
∫
U

(|∇p1| ∨ |∇p2|)2−adx

≤ −C(
∫
U

|∇p1 −∇p2|2−adx)
2

2−a (1 + ‖H1‖L1 + ‖H2‖L1)−a

+ Cχ(~a(1),~a(2))|~a(1) − ~a(2)|
∫
U

(|∇p1|+ |∇p2|)2−adx.

Therefore one obtains

(5.21)
1
2
d

dt

∫
U

|p1 − p2|2dx ≤ −C(
∫
U

|∇p1 −∇p2|2−adx)
2

2−a (1 + ‖H1‖L1 + ‖H2‖L1)−a

+ C|~a(1) − ~a(2)|
∫
U

(|∇p1|2−a + |∇p2|2−a)dx.

where the positive constant C depends on N , αN , χ(~a(1),~a(2)).
Taking into account (5.18), one derives

1
2
d

dt

∫
U

|p1 − p2|2dx ≤ −C(
∫
U

|∇p1 −∇p2|2−adx)
2

2−a (M1(t) +M2(t))−b

+ C|~a(1) − ~a(2)|(M1(t) +M2(t)).

Neglecting the negative term on the RHS and integrating this inequality in time
yields (5.19). �

Under the Degree Condition (2.28) and a growth constraint on the boundary
data as t → ∞, we obtain the Lyapunov stability, i.e., the continuous dependence
(with respect to the L2-norm) of the solution on the coefficient vector ~a uniformly
in time t over [0,∞).

We will use the upper bound of the integral
∫
U
|∇pk(x, t)|2−adx established in

(3.30), hence define

Mk(t) = 1 + e−C1t

∫
U

|∇pk(x, 0)|2−adx+
∫
U

p2
k(x, 0)dx

+
∫ t

0

e−C1(t−τ)
(
Λ2(τ) +G3(τ)

)
dτ, k = 1, 2,

and M(t) = M1(t) +M2(t).
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Proposition 5.4. Suppose deg(g) ≤ 4/(n− 2). Then for t ≥ 0,

(5.22)

∫
U

|p1(x, t)− p2(x, t)|2dx ≤ e−C1
R t
0 M(τ)−b(τ)dτ

∫
U

|p1(x, 0)− p2(x, 0)|2dx

+ C|~a(1) − ~a(2)|
∫ t

0

e−C1
R t
τ
M(θ)−b(θ)dθM(τ)dτ.

Assume, in addition, that sup[0,∞)M(t) <∞ then
(5.23)∫

U

|p1(x, t)− p2(x, t)|2dx ≤ e−C2t

∫
U

|p1(x, 0)− p2(x, 0)|2dx+ C3|~a(1) − ~a(2)|

for all t ≥ 0, and consequently

(5.24) lim sup
t→∞

∫
U

|p1(x, t)− p2(x, t)|2dx ≤ C3|~a(1) − ~a(2)|.

Proof. Similar to the proof of Proposition 5.3 above, one has from (5.21)

d

dt

∫
U

|p1 − p2|2dx ≤ −C(
∫
U

|∇p1 −∇p2|2−adx)
2

2−aM(t) + C|~a(1) − ~a(2)|M(t).

Then by Poincare-Sobolev inequality:

d

dt

∫
U

|p1 − p2|2dx ≤ −CM(t)
∫
U

|p1 − p2|2dx+ C|~a(1) − ~a(2)|M(t).

Thus (5.22) follows by Gronwall’s inequality.
The relations (5.23) and (5.24) are then obvious consequences. We omit further

details. �

Remark 5.5. In the above, g1 and g2 have the same length (N + 1) and exponent
vector ~α. This is only for the sake of simplicity. The results apply also to the case
when they have different lengths. Indeed, suppose gk has length (Nk + 1) with ~α(k)

and ~a(k), for k = 1, 2. Merge two vectors ~α(1) and ~α(2) to form a new common
exponent vector ~α with length (N + 1). Insert zero components into ~a(k) to have
new coefficient vector ~A(k) with length (N + 1). Then one has g(s,~a(k); ~α(k)) =
g(s, ~A(k); ~α) for all s ≥ 0 and k = 1, 2.

For example, suppose ~α(1) = (0, 1.5, 3, 4, 5.8), ~a(1) = (a0, a1, a2, a3, a4) and
~α(2) = (0, 2, 3, 5.8), ~a(2) = (b0, b1, b2, b3). Then ~α = (0, 1.5, 2, 3, 4, 5.8), ~A(1) =
(a0, a1, 0, a2, a3, a4) and ~A(2) = (b0, 0, b1, b2, 0, b3).

We now discuss the uniform continuity of solution p(x, t;~a) in ~a.
Let D be a compact set in R(N), see (2.9). Define

(5.25) χ̂(D) = max{χ(~a), ~a ∈ D}.

Note that χ̂(D) ∈ (0,∞) and for any ~a ∈ D, one has

χ̂(D)−1 ≤ χ(~a)−1 ≤ χ(~a) ≤ χ̂(D);

therefore the dependence of constants in Sect. 3 on individual χ(~a) can now be
replaced by the dependence on the common parameter χ̂(D).

Let ~a(k) belong to D, k = 1, 2. Set

A∗ = 1+
∫
U

|∇p1(x, 0)|2−adx+
∫
U

p2
1(x, 0)dx+

∫
U

|∇p2(x, 0)|2−adx+
∫
U

p2
2(x, 0)dx,
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λ(t) = 1 +
∫ t

0

e−C1(t−τ)
(
Λ1(τ) +G3(τ)

)
dτ,

λ(t) = 1 +
∫ t

0

e−C1(t−τ)
(
Λ2(τ) +G3(τ)

)
dτ,

where C1 depends on N , αN and χ̂(D).
Then

(5.26) M(t) ≤ A∗λ(t),

(5.27) M(t) ≤ A∗λ(t).

Proposition 5.3 and (5.26) lead to:

Theorem 5.6. Fix N and ~α with αN ≤ 4/(n − 2). Let D be a compact subset of
R(N). Let ~a(k) be in D and pk(x, t) = pk(x, t;~a(k)) be the corresponding solution to
the IBVP (3.1a)–(3.1d) with Forchheimer polynomial g(s,~a(k)), for k = 1, 2. For
t ≥ 0 one has

(5.28)

∫
U

|p1(x, t)− p2(x, t)|2dx ≤
∫
U

|p1(x, 0)− p2(x, 0)|2dx

+ CA∗|~a(1) − ~a(2)|
∫ t

0

λ(τ)dτ,

where C > 0 depends on N , αN , and χ̂(D).

Proposition 5.4 leads to:

Theorem 5.7. Fix N and ~α with αN ≤ 4/(n − 2). Let D be a compact subset of
R(N). Let ~a(k) be in D and pk(x, t) = pk(x, t;~a(k)) be the corresponding solution
to the IBVP (3.1a)–(3.1d) with Forchheimer polynomial g(s,~a(k)), for k = 1, 2.

(i) One has for t ≥ 0 that

(5.29)

∫
U

|p1(x, t)− p2(x, t)|2dx ≤ e−C1B∗
R t
0 λ(τ)−bdτ

∫
U

|p1(x, 0)− p2(x, 0)|2dx

+ C2A∗|~a(1) − ~a(2)|
∫ t

0

e−C1B∗
R t
τ
λ(θ)−bdθλ(τ)dτ,

where B∗ = A−b∗ , and the constants C1, C2 depend on N , αN , χ̂(D).
(ii) Assume, in addition, that λ(t) ≤ C3 for all t ≥ 0 then

(5.30)

∫
U

|p1(x, t)− p2(x, t)|2dx ≤e−C4B∗t

∫
U

|p1(x, 0)− p2(x, 0)|2dx

+ C5A
1+b
∗ |~a(1) − ~a(2)|,

where C4, C5 depend on N,αN , χ̂(D) and C3. Consequently

(5.31) lim sup
t→∞

∫
U

|p1(x, t)− p2(x, t)|2dx ≤ C5A
1+b
∗ |~a(1) − ~a(2)|.

(iii) Particularly, if limt→∞ λ(t) = L ∈ (0,∞) then

(5.32) lim sup
t→∞

∫
U

|p1(x, t)− p2(x, t)|2dx ≤ C6L
1+bA1+b

∗ |~a(1) − ~a(2)|,

where C6 depends on N , αN and χ̂(D).
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Proof. Parts (i) and (ii) are direct consequences of Proposition 5.4 and (5.27).
For (iii), first note that limt→∞

∫ t
0
λ(τ)−bdτ =∞; then apply the L’Hôpital Rule

to the term A∗e
−CB∗

R t
0 λ(θ)−bdθ

∫ t
0
eCB∗

R τ
0 λ(θ)−bdθλ(τ)dτ when taking the limit of

the RHS of (5.29) as t→∞. �

Appendix A

We will prove an estimate for solutions of a particular differential inequality
which is used in Sect. 3.

Definition A.1. Given f(t) defined on an interval I. A function F (t) is called an
(upper) envelop of f(t) on I if F (t) ≥ f(t) for all t ∈ I. We denote an envelop
function of f(t) by Env(f).

Lemma A.2. Suppose

(A.1) y′ ≤ −Ayα + f(t),

for all t > 0, with A,α > 0 and y(t), f(t) ≥ 0.
Let F (t) be a continuous, increasing envelop of f(t) on [0,∞). Then one has

(A.2) y(t) ≤ y(0) +A−1/αF (t)1/α, ∀t ≥ 0.

Proof. One has form (A.1) that

(A.3) y′ ≤ −Ayα + F (t), ∀t > 0.

Note that −Ayα + F (t) ≤ 0 iff y(t) ≥ BF (t)1/α, where B = A−1/α.
Claim: For any δ > 0,

(A.4) y(t) ≤ y(0) + δ +BF (t)1/α, ∀t ≥ 0.

Then letting δ → 0 in (A.4) yields (A.2).
Proof of (A.4): Suppose the statement is false. Then by using the function

g(t) = y(t)− y(0)−BF (t)1/α one can show that there are t1 < t2 such that

(A.5) y(t1) = y(0) +BF (t1)1/α,

(A.6) y(t2) = y(0) + δ +BF (t2)1/α,

and

(A.7) y(t) ≥ y(0) +BF (t)1/α, ∀t ∈ [t1, t2).

The last inequality yields y′(t) ≤ 0 for all t ∈ [t1, t2), hence

(A.8) y(t2) ≤ y(t1) ≤ y(0) +BF (t1)1/α ≤ y(0) +BF (t2)1/α < y(t2),

which is a contradiction. Therefore one has (A.4). �

In the following, we presents a construction of smooth, increasing envelop func-
tions.

Let f(t) ≥ 0 be defined on [0,∞) and locally bounded. Define for t ≥ 0

(A.9) F1(t) = sup{f(s), 0 ≤ s ≤ t}.
and for t < 0

(A.10) F1(t) = F1(0) = f(0).

Then F1(t) is an increasing function on R and F1(t) ≥ f(t) for all t ≥ 0.
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For 0 < ε < 1, define the mollifier

(A.11) F ε(t) =
∫ ∞
−∞

ηε(t− τ)F1(τ + ε)dτ =
∫ ∞
−∞

ηε(τ)F1(t− τ + ε)dτ.

Then F ε(t) is an increasing, smooth function and for t ≥ 0 one has

(A.12) F ε(t) =
∫ t+ε

t−ε
ηε(t−τ)F1(τ+ε)dτ ≥

∫ t+ε

t−ε
ηε(t−τ)F1(t)dτ = F1(t) ≥ f(t).

If f(t) is a L∞loc([0,∞)) function, then F ε(t) ≥ f(t) a.e. on [0,∞); and conse-
quently, this holds at the points t which f is continuous.
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