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Abstract

Sparse data models have gained considerable attention in recent years, and their
use has led to state-of-the-art results in many signal and image processing tasks. The
learning of sparse models has been mostly concerned with adapting the dictionary
to tasks such as classification and reconstruction, optimizing extrinsic properties of
the trained dictionaries. In this work, we first propose a learning method aimed at
enhancing both extrinsic and intrinsic properties of the dictionaries, such as the mutual
and cumulative coherence and the Gram matrix norm, characteristics known to improve
the efficiency and performance of sparse coding algorithms. We then use tools from
information theory to propose a sparsity regularization term which has several desirable
theoretical and practical advantages over the more standard `0 or `1 ones. These new
sparse modeling components lead to improved coding performance and accuracy in
reconstruction tasks.

1 Introduction

Sparse modeling calls for constructing a succinct representation of some data as a combina-
tion of a few typical patterns (atoms) learned from the data itself. Significant contributions
to the theory and practice of learning such collections of atoms (usually called dictionaries
or codebooks), e.g., [1, 12, 24], and of representing the actual data in terms of them, e.g.,
[6, 7, 8], have been developed in recent years, leading to state-of-the-art results in many
signal and image processing tasks [10, 18, 22, 20, 25]. We refer the reader for example to
[3] for a recent review on the subject.

In all cases, the actual dictionary plays a critical role. Current techniques for obtaining
such dictionaries involve the optimization of their extrinsic properties in terms of the task
to be performed (i.e., representation [12], denoising [10, 22], or classification [20]). However,
theoretical results addressing the success in recovering sparse signals, as well as the efficiency
of sparse coding algorithms, are related to intrinsic properties of the dictionary such as the
mutual coherence, the cumulative coherence, and the Gram matrix norm of the dictionary
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[9, 30]. We will provide precise definitions of these magnitudes in the sequel. Addressing
these important intrinsic properties is one of the goals of the work here presented.

A critical component of sparse modeling is the actual sparsity of the solution, which
is controlled by some critical model parameters. Choosing the optimal values of these
parameters for the actual signals to model and the problem at hand is a challenging task.
Several solutions to this problem have been proposed, ranging from the automatic tuning of
the parameters [15] to Bayesian hierarchical models, where these parameters are themselves
considered as random variables [14, 15, 31]. In this paper we address this challenge, and at
the same time further generalize the standard sparsifying penalty functions, exploiting tools
from information theory.

The first contribution of this work is the explicit incorporation of a new term in the sparse
modeling formulation that induces the desired intrinsic properties of low mutual coherence
and low Gram matrix norm in the learned dictionaries. We show how this leads to the better
performance of coding algorithms. The learned dictionaries also exhibit desirable extrinsic
properties such as reduced overfitting, a direct consequence of the reduced coherence between
the dictionary atoms. Our second contribution is the substitution of the traditional `0 or
`1 sparsity-inducing priors by one which we derive using information-theoretic tools. This
prior has several desirable theoretical and practical properties such as statistical consistency,
improved robustness to outliers in the data, and leads to a better sparse reconstruction than
`0 and `1-based techniques in practice.

The rest of this paper is organized as follows: in Section 2 we introduce the standard
framework of sparse modeling. Sections 3 to 5 are dedicated to the derivation of our proposed
model. Section 6 gives details on the implementation of the learning algorithm. Sections 7
and 8 present experimental results showing the importance of the proposed sparse model
for image representation. Concluding remarks are given in Section 9.

2 Sparse modeling

Let X ∈ Rn×N be a set of N column data vectors Xj ∈ Rn, D ∈ Rn×K be a dictionary
of K atoms represented as columns Dk ∈ Rn, and A = {αij} ∈ RK×N ,Aj ∈ RK , be a
set of reconstruction coefficients such that X = DA. For each j = 1, . . . , N we define the
active set of Aj as Aj = {i : αij 6= 0}, and ‖Aj‖0 = |Aj | as its cardinalty. The goal of
sparse modeling is to design a dictionary D such that X = DA with ‖Aj‖0 sufficiently
small (usually below some threshold) for all or most data samples Xj . For a fixed D, the
actual computation of A is called sparse coding (SC).

We begin our discussion with the standard `1 penalty modeling problem,

(A∗,D∗) = arg min
A,D

{
‖X−DA‖2F + λ ‖A‖1

}
(1)

where ‖·‖F denotes Frobenius norm. The cost function to be minimized in (1) consists of a
quadratic fitting term and an `1 regularization term for each column of A, the balance of the
two being defined by the penalty parameter λ. The `1 norm is used as an approximation to `0,
making the problem convex in A while still encouraging sparse solutions [3]. Furthermore,
it has been shown that under certain conditions on D and X, the solutions to the `1-based
and `0-based sparse coding problems coincide, e.g., [4]. The dictionaries learned with the
model here proposed explicitly encourage such conditions.
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3 Learning incoherent dictionaries

Most techniques for dictionary learning are concerned with the extrinsic properties of the
learned dictionaries, e.g., requiring small reconstruction errors while simultaneously impos-
ing a sparsity constraint [10, 12, 22, 24]. However, recent results [3, 7, 30] in sparse coding
theory indicate that certain intrinsic properties of the dictionaries have a direct impact on
the performance of coding algorithms. Optimizing for such intrinsic properties is the goal
of this section.

In the context of compressed sensing, the idea of learning the sensing matrix, not quite
the dictionary as here proposed, targeted at the optimization of intrinsic (effective) dictio-
nary properties, has been recently proposed in [9] (see also [28]). It has been also shown that
designing the sensing matrix can accelerate the sparse coding optimization [17]. In this sec-
tion we propose to learn dictionaries that in addition to achieving small reconstruction errors
with sparse representations, have intrinsic properties that lead to important performance
improvements.

Let us assume that the atoms are normalized, ‖Dk‖ = 1. The L-cumulative coherence
of D is defined as µ̄L(D) ∆= max

{
maxi/∈J

∑
j∈J |DT

i Dj | : J ⊆ {1, . . . ,K} , |J | = L
}

[30].
When L is not specified, we assume it to be its maximum value K − 1, so that µ̄(D) =
µ̄K−1(D). Assuming there is a true sparse representation for the data, the success in
recovering it by approximating the `0 sparse formulation using Orthogonal Matching Pursuit
(omp) [23], or by solving the Basis Pursuit (BP) [6] problem [30], is influenced by these
quantities, which we optimize for below.

Another important property of D is its Gram matrix G = DTD, whose matrix `2-norm
ρ(D) is known to influence the speed of convergence of popular shrinkage-based coding
algorithms [7, 11]. We recall that ρ(D) = ‖G‖2 = max {|γ| : γ ∈ γ(G)}, where γ(G) denotes
the set of eigenvalues of G. Let γmax denote the eigenvalue with largest absolute value, that
is, ρ(D) = |γmax|. By the Gershgorin Circle Theorem [16, pp. 320–321], we have that
γ(G) ⊆ ∪Kk=1Ck, where Ck = {y : |y− gkk| ≤

∑
r 6=k |gkr|} and gkr = DT

kDr are the elements
of G. For normalized atoms we have for all k that gkk = 1, and thus

∑
r 6=k |gkr| ≤ µ̄(D).

Plugging these values in the Gershgorin Theorem we obtain that ρ(D) = |γmax| ≤ 1+ µ̄(D).
Therefore, we can simultaneously reduce ρ(D) and µ̄(D) by imposing small off-diagonal
elements in G. This suggests the addition of the following term to Equation (1)∥∥DTD− IK

∥∥2

F
, (2)

where IK is the K×K identity matrix. In Section 8 we will show that this new term helps
to improve reconstruction accuracy and speed. The final proposed cost function is shown
later in Section 5 after a further modification to Equation (1), which we discuss next.

4 Universal models for sparse coding

Sparse models are often presented in a probabilistic framework [19, 24]. From this point
of view, the solution for D∗ in (1) can be seen as an approximate solution to a Maximum
Likelihood estimation of D given X, that is, with a slight abuse of notation,

D∗ = arg max
D

{
p(X|D) =

∫
Ω

p(X,A|D)dA =
∫

Ω

p(X|A,D)p(A|D)dA
}
, (3)
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where Ω represents the space where A takes its values. In this framework, A is considered
to be a hidden state variable which is marginalized in the integral. A direct solution of the
integral in (3) is generally not possible, so approximate solutions are sought instead. One
such approximation, followed in [24], is to maximize the mode of the integrand p(X,A|D)
instead of the whole integral, which occurs at (X,A∗). This is roughly justified by assuming
that p(X,A|D) is unimodal and highly peaked, so that its value at the mode accounts for
most of the value of the integral. The maximization is then carried on in the logarithmic
scale, resulting in

D∗ = arg max
D

{
max
A
{log p(X|A,D) + log p(A|D)}

}
. (4)

The formulation (1) is then obtained from (4) considering the reconstruction error to be iid

Gaussian with mean 0 and variance σ2, p(X|A,D) ∝ exp(− 1
2σ2 ‖X−DA‖22); and an iid

Laplacian prior with mean 0 and parameter θ on the reconstruction coefficients, which is
furthermore assumed to be independent of D, p(A|D) ∼ p(A|θ) ∝ e−θ‖A‖1 . Equation (1)
follows by taking the logarithms of both priors and factorizing σ2 into λ = 2σ2θ.

Considering D fixed we now turn to the problem of finding the aforementioned mode
of p(X,A|D). For a Laplacian prior, this is the sparse coding problem that appears in (1)
when optimizing only over A. When considering the statistical modeling of small patches
from natural images, the assumption that transform coefficients (e.g., dct or wavelet) are
well modeled by a Laplacian distribution is widely accepted. Assuming the coefficients of
A to be iid leads to the sparse coding problem in (1), as discussed above. Even under these
strong assumptions, the selection of an optimal value of λ (or θ for known σ2), is already a
challenging problem (see [15] for example).

It can be argued that a better model would be one with different Laplacian parameters
for coefficients associated to different atoms (that is, different rows of A), as it happens with
dct coefficients associated with different basis functions. Even so, an iid assumption for the
rows of A also seems inadequate for natural images, whose statistics vary across different
regions (e.g., textures, boundaries). Therefore, instead of tuning for a fixed λ or multiple
values of λ, we look for a more general prior that can fit, without knowing A in advance,
almost as well as a Laplacian whose parameter θ was tuned for that specific instance of
A. The answer to such problem is given by the information-theoretic concept of universal
coding which lies at the core of the Minimum Description Length (mdl) principle [2]: given
a set of probability models M = {p(·|θ) : θ ∈ Θ} parameterized by some θ, it is possible
to construct a probability model q(·) that fits the data to be modeled approximately as
well as the probability model p(·|θ̂) in M that best fits the data. Here θ̂ is the Maximum
Likelihood Estimator (mle) of θ. One way to construct such a universal prior is through
a Bayesian mixture. In a Bayesian mixture q(·), the probability of a given coefficient value
q(α) = Pr(αij = α) is obtained by averaging the probability assigned to α by p(·|θ), for all
θ ∈ Θ,

q(α) =
∫

Θ

p(α|θ)w(θ)dθ, (5)

where w(θ) is an (hyper-)prior on θ. In Bayesian theory, w(θ) reflects the prior belief
on the values of θ. This is the main idea behind sparse Bayesian coding works such as
[14, 29]. However, in universal coding/mdl theory such interpretation is not necessary, and
it can be shown that any smooth choice w(θ) is enough to guarantee the universality of the
resulting mixture [2]. This allows us to obtain a closed form solution of (5) for Laplacian
p(·|θ) in the following way. Since the Laplacian is a symmetrized version of the Exponential
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distribution, we can perform the mixture on the Exponential distribution and then add back
the symmetry by substituting α with |α| and dividing the normalization constant by 1/2. A
closed form solution of (5) can be obtained by using the conjugate prior for the Exponential,
which is the Gamma distribution,

w(θ|κ, β) = Γ(κ)−1
θκ−1βκe−βθ,

where κ and β are its shape and scale parameters respectively. By using the Gamma prior,
and later re-symmetrizing the distribution we arrive at the following symmetric distribution,

qmol(α|β, κ) = κβκ(|α|+ β)−(κ+1), (6)

which we call a Mixture of Laplacians (mol). Although the resulting prior has two param-
eters to deal with instead of one, it will be shown later in Section 7.1, that a single mol
distribution can fit each of the K rows of A better than K separate Laplacian distributions
fine-tuned to these rows, for a total of K parameters to be estimated. Furthermore, both
κ and β are easily computed using the method of moments. It is easy to see that the non
central moment of order j of the mol distribution is µj = βj/

(
κ−1
j

)
. Thus, given sample

estimates µ̂1 = 1
n

∑n
i=1 |α| and µ̂2 = 1

n

∑n
i=1 |α|2 we have

κ̂ = 2(µ̂2 − µ̂2
1)/(µ̂2 − 2µ̂2

1) and β̂ = (κ̂− 1)µ̂1, (7)

When the mol prior is plugged into (4), the following new cost function is obtained,

f(X,A|D) = ‖X−DA‖2F + τ

N∑
j=1

K∑
i=1

log (|αij |+ β) , (8)

where τ = 2σ2(κ + 1). The resulting logarithmic non-convex mol regularization term,
log p(A|D), is known in robust statistics as the Lorentzian norm, also known to be more
robust to outliers than the `1 norm. We also know from the statistics literature that the mol
regularizaton term leads to consistent estimators of regression coefficients which are able to
identify the relevant variables in a regression model (oracle property) [13]. This is not the
case for the `1 regularizer [31]. This same regularizer has also been recently proposed in the
context of compressive sensing [5], where it is conjectured to be better than the `1-term at
recovering sparse signals.1 Our results in Section 7 give evidence that this is indeed the case,
with the direct consequence of a much improved reconstruction accuracy of sparse data. We
also show in Section 7 that the mol prior is much better to model reconstruction coefficients
drawn from a large database of image patches. We will also see next that although the mol
regularizer is non-convex, simple and effective methods are available to solve the resulting
sparse coding (or regression) problems.

Remark: Instead of using a Gamma prior (which actually already fits the empirical statis-
tics of image data very good [26]), we can use for example the Jeffreys prior, which has
several interesting properties both from the information-theoretic and statistical points of
view. The Jeffreys prior for a given distribution is defined as

wJ(θ) =

√
I(θ)∫

Θ

√
I(θ)dθ

1In [5], the logarithmic regularizer arises from approximating the `0 pseudo-norm as a `1-normalized
element-wise sum.
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where I(θ) is the Fisher Information matrix of a parametric distribution of parameter θ:

I(θ) =
{
Ep(·|θ̃)

[
− ∂2

∂θ̃2
log p(x|θ̃)

]}∣∣∣∣
θ̃=θ

. (9)

For the Exponential distribution (which is the one-sided version of the Laplacian) we have
that I(θ) = 1

θ2 . Clearly, if we let Θ = (0,∞), the integral in (9) evaluates to ∞. To get a
proper integral, we restrict Θ to be a closed interval [a, b], 0 < a < b < ∞. For this choice
we get wJ(θ) = 1

ln(b/a)
1
θ . The resulting mixture, after being symmetrized around 0, has the

following form

qjol(α) =
1

ln(b/a)
1
|α|

(
e−a|α| − e−b|α|

)
. (10)

We refer to this prior as a Jeffreys mixture of Laplacians (jol). Note that although qjol

is not defined for α = 0, its limit when α → 0 is finite and evaluates to b−a
2 ln(b/a) . Thus,

by defining qjol(0) = b−a
2 ln(b/a) we obtain a prior that is well defined and continuous for all

α ∈ R. Experimental results with this prior, as well as the full mathematical details of the
derivations here described are provided in [27].

5 Proposed sparse model

To the model in (8), which replaces the more classical (1), we add the term for dictionary
incoherence introduced in Section 3, leading to the proposed sparse model

f(X,D,A) = ‖X−DA‖2F +τ
N∑
j=1

K∑
i=1

log (|αij |+ β)+ζ
∥∥DTD− IK

∥∥2

F
+η

K∑
k=1

(‖Dk‖22−1)2.

(11)
The last term is added as a standard way to maintain the atom norms close to one.2 This
(soft) normalization was empirically observed to yield better results than a forced projection
of the atoms after each update, which is the approach followed in [1, 12, 24].

6 Numerical optimization

To minimize (11) we apply the standard approach of alternate minimization. We start
with an arbitrary initial dictionary D(0) and repeat the following sequence of updates until
convergence

sc : A(t+1) = arg min
A

{
f(X,D(t),A)

}
and du : D(t+1) = arg min

D

{
f(X,D,A(t+1))

}
.

(12)

Sparse coding (sc) For fixed D, the cost function in (11) is non-convex in A. We handle
this issue as in [5], using a surrogate function technique where the optimal solution A(t+1)

to the sc problem is the limit of solutions to a sequence of subproblems, where the non-
convex cost function is approximated by convex functions that are easy to solve. More
specifically, we have that A(t+1) = limz→∞{Ψ(z)}, with Ψ(z) = arg minΨ

{
h(z)(X,D,Ψ)

}
.

2Note that the term
‚‚DT D− IK

‚‚2

F
does not enforce the atoms to be normalized.
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The surrogate h(z)(·) is obtained by a first order expansion of the logarithmic terms in f(·)
around the previous iterate Ψ(z−1),

log(|ψ|+ β) ≤ log(|ψ(z−1)|+ β) +
|ψ| − |ψ(z−1)|
|ψ(z−1)|+ β

,

where ψ denotes a generic element of the matrix Ψ. This optimization technique is a
special case of the Local Linear Approximation (lla) technique described in [32], where it
was shown to converge to a stationary point. Discarding the constant terms and defining
a

(z−1)
ij = (|ψ(z−1)

ij |+ β)−1, we get the following sequence of subproblems:

Ψ(z) = arg min
Ψ

‖X−DΨ‖22 + τ

N∑
j=1

K∑
i=1

a
(z−1)
ij |ψij |

 . (13)

We set ψ(0)
ij = 0, so that the first iterate Ψ(1) is the solution to the unmixed model (1) with

λ = 2σ2(κ + 1)/β, which we expect to be a good starting point for the minimization. For
z > 1, the problem in (13) corresponds to a weighted version of (1), which can be solved
with any `1 solver.

Dictionary update (du) Given a current estimation for A, a popular choice for the
dictionary update step, used in many current state of the art applications (e.g. [21]), is the
Method of Optimal Directions (mod) [12] (k-svd could be similarly used). The mod updates
D using the standard least squares estimator D(t+1) = X(A(t+1))T (A(t+1)(A(t+1))T )−1. In
our case, the updated dictionary D∗ is obtained by taking the derivative ∇Df(D) of (11)
with respect to D, and solving ∇Df(D) = 0 for D. The resulting update is called mocod
(Method of Optimal COherence-COnstrained Directions),

D(t+1) =
(
X(A(t+1))T + 2(ζ + η)D(t)

)
×[

A(t+1)(A(t+1))T + 2 ζ (D(t))TD(t) + 2 η diag
(

(D(t))TD(t)
) ]−1

. (14)

Note that when ζ = 0 and η = 0 the mocod update (14) coincides with mod.

7 Experimental results: Sparse coding using mol

In the following experiments, all images are converted to grayscale with an intensity range
of [0, 1] and then broken into patches of size 8×8 pixels, yielding data vectors of dimension
n = 64. Similar results to those shown here are also obtained for other patch sizes. We
choose not to include them due to space constrains.

The first set of experiments studies the properties of the mol distribution for sparse
coding only. Its properties with respect to the whole dictionary learning model will be
discussed in Section 8 along with the other added terms. For these experiments we use a
global dictionary of K = 256 atoms trained to the Pascal VOC2006 training subset3 using
the model (1) with λ = 0.1. These parameter values are typical in sparse coding applications
and produce dictionaries D that lead to state-of-the-art results [1, 20, 22].

3http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html#VOC2006
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Figure 1: (a) Empirical distribution of reconstruction coefficients for image patches and the best
fitting distributions. (b) Variation of the Laplacian parameter θ̂k in pk

l for all atoms (sorted in
ascending θ̂k). (c) Differences between the Kullback-Leibler Divergences for the best fitting distri-
butions computed per atom (see Section 7.1 for details). (d) Reconstruction psnr for the proposed
mol and classical `1 formulations for different `0 (see Section 7.3 for details).

7.1 MOL as a prior for reconstruction coefficients

We now evaluate the goodness of fit of the Laplacian and mol distributions to the empirical
distribution of the reconstruction coefficients A obtained by considering all its elements
{αkj} as iid. We compute A using bp to obtain an exact reconstruction,

min {‖A‖1 s.t.X = DA} ,

and then restrict our study to the nonzero elements of A. X corresponds to all 8×8 patches
from the 2600 testing images from the Pascal VOC2006 dataset.

The empirical distribution of A, pe, is plotted in Figure 1a (green dots) along with the
best fitting Laplacian, pl, (in blue) and mol, pm, distributions (in red). The fitting is done
using the mle estimator for the Laplacian parameter, θ̂ = N/ ‖A‖1, and for mol we fix κ = 3
and compute β using the method of moments, which gives β̂ = (κ− 1) ‖A‖1 /N . The best
fitting distributions were obtained for θ̂ = 55 and β̂ = 0.05 respectively. Visual inspection of
Figure 1a reveals a much better fitting of mol to the empirical distribution. For an objective
measure of the goodness of fit we use the standard Kullback-Leibler Divergence (KLD)
between pe and each of the fitted distributions pl and pm, yielding KLD(pe, pl) = 0.30 bits
and KLD(pe, pm) = 0.04, confirming the improved fitting properties of mol. The empirical
entropy is H(pe) = 3.00 bits.

Figure 1b shows that the optimal Laplacian parameter θ̂k varies greatly with each atom
(sorted in ascending θ̂k). This justifies the following experiment, where different Laplacian
and mol distributions are fitted to each k row of A, Ak, each corresponding to the k-th atom
in D. We then compare the fitting obtained by the row-specific empirical distributions, pke ,
against the row-specific fitted Laplacian, pkl , and mol, pkm, and against the globally-fitted
ones pl and mol pm. Figure 1c plots the difference between the KLDs for the computed
distributions and KLD(pke , pm), with the horizontal axis sorted by increasing KLD(pke , p

k
l )−

KLD(pke , pm). Clearly, the distributions of the same type (Laplacian or mol) fitted to each
row should be at least as accurate for the statistics of that row as the globally fitted ones,
and this can be verified in Figure 1c. We then observe that pm is significantly better than
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pl for every k. Furthermore, we observe that in 251 out of 256 cases the global pm performs
better than the row-specific pkl . Finally, in all cases, the row-specific pkm are better than the
corresponding pkl by an approximately constant, significant margin.

We conclude that mol, with the same number of free parameters than a Laplacian, is
significantly better for the probabilistic modeling of reconstruction coefficients. This also
holds for row-wise elements, providing further evidence that the univeral approach is a
suitable strategy for handling the non-stationary nature of image patch statistics. Finally,
the fact that a single globally fitted mol distribution performs better, in almost all cases,
than K Laplacians fitted specifically to each row, shows that our approach is also more
accurate, with only one parameter, than a weighted `1 model with K parameters.

Wether these significantly improved fittings have a practical impact on the performance
of the sparse coding stage is explored in the following experiments.

7.2 Active set recovery

For the following experiments we consider data, available as part of the sipi database,4

consisting of the six widely used grayscale images Barbara, Boats, Baboon, Goldhill, Lena
and Peppers. We perform an empirical study on the active set recovery properties of the
mol prior compared to those of the `1-based one. To this end, we first decompose the
images of the dataset into non-overlapping 8× 8 patches and obtain sparse approximations
to them using omp for different considered target sparsity levels `0. This way we have a
set of signals which have a true sparse representation under the dictionary D, and whose
active set can be used as a ground truth. For each target maximum `0 norm we do an
exact reconstruction of the patches using bp (corresponding to the `1 cost) and the “BP
equivalent” for the mol prior,

A∗ = arg min
A


N∑
j=1

K∑
i=1

log (|αij |+ β) s.t. X = DA

 .

We then measure the accuracy of the recovery of each method as the percentage of cases
H(nε) in which the size of the symmetric difference between the true and recovered active
sets, |(A\B)∪ (B \A)|, is no larger than a certain target value nε. In order to quantify how
this accuracy relates to the final reconstruction quality of the patches, we measure the recon-
struction psnr obtained using an Ordinary Least Squares (ols) approximation restricted
to the recovered active sets (this is of course the appropriate reconstruction procedure once
the active set is determined).

Table 1a shows these results for different maximum `0 values. As can be observed, in all
cases the mol-based recovery is significantly more successful in recovering the true active
sets, and this translates into a much better reconstruction performance.

7.3 Sparse coding performance of MOL

Given the previous results, we expect sparse coding based on the mol prior (8) to out-
perform the one obtained using an `1 prior (1). Clearly both priors have different forms,
whose parameters play different roles, and thus comparing the reconstruction psnr of both
formulations needs to be done by carefully matching the regularization strength of the `1

4http://sipi.usc.edu/database/
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and mol terms. Since mol is a mixture of Laplacians, one such way is to fix the same value
of σ2 in both formulations and let λ = 2σ2θ̄ where θ̄ = E[θ] is the expected value of θ under
the Gamma distribution used as a prior on θ for computing the mol distribution.

For this case we encode the sipi subset by solving both `1 and mol-based sparse coding
problems. We use κ = 3 and the optimal scale parameter β = 0.05 found in Section 7.1 for
(8) and a range of values of θ = {0.3, 0.6, 1.3, 1.6} θ̄ where θ̄ = κ/β is the expected value of
θ corresponding to β, as discussed in Section 4. In both cases we set σ = 3% of the peak
value in order to define λ in (1) and τ in (8). In order to better observe the differences
in performance, we truncate the solutions to have a fixed maximum `0 norm and compute
the reconstruction using ols based on the columns of D chosen by the active set only. The
results in Figure 1d show that we indeed have a better sparse reconstruction with a single
value of β than any value of λ, thus confirming the advantages of using mol in this case as
well.

8 Experimental results: Testing mocod

We now show that the complete proposed model (Section 5) improves both the reconstruc-
tion accuracy and the speed of leading sparse coding techniques.

8.1 Reconstruction and generalization properties

The following experiment deals with the generalization properties of globally trained dic-
tionaries. In this case we expect that the designed incoherence, which can be seen as a
constrain on how close the different learned atoms are in RK , reduces overfitting to the
training data by avoiding the clumping of atoms in regions where there are exceptional
concentrations of similar training vectors.

We take the images from the sipi subset and perform a leave-one-out cross-validation
procedure where each image is encoded using a dictionary trained with the other images.
For training, a small amount of white Gaussian noise with standard deviation σ = 2% of
the peak pixel value is added so that the parameter σ2 that defines λ in (1) and τ in (8) is
known. The initial dictionary is the one used in Section 7. After the dictionary is learned,
the patches of the target image are approximated using omp with a maximum of `0 = 12
nonzero reconstruction coefficients per patch. The image patches in the reconstruction step
are non-overlapping.5 The mol parameters were set to κ = 3 and the global optimum found
in Section 7.1 β = 0.05, and θ = {0.5, 1.0, 1.6} θ̄, where θ̄ = κ/β.

The results are shown in Table 1b, where we compare mocod against mod, showing that
dictionaries trained with mocod yield a significant average improvement of up to 1 dB in
reconstruction psnr, thus providing evidence of the improved generalization properties. In
all cases we see that the Gram matrix norm ρ(D) and the cumulative coherence µ̄(D) are
significantly reduced as expected. We omit a comparison to k-svd [1] since it was observed
in [21] that both mod and k-svd give very similar results in general.

5For reconstruction, specially for denoising, state-of-the art algorithms rely on overlapping. We use non-
overlapping patches in these experiment so that differences in the quality of the reconstructed patches are
not averaged out.
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`0 nε sc H(nε)
ols
psnr

3 0
`1 35.6 37.4

mol 71.1 42.6

5 1
`1 10.6 36.9

mol 43.2 42.2

8 2
`1 7.6 37.6

mol 30.8 42.3

(a)

du sc ρ µ̄
omp ist
psnr t (sec.) psnr

mod
`1 (θ = 150)

15.8 39.5 38.7 8.3 33.8
mocod 7.5 24.9 39.1 4.9 34.0

mod
`1 (θ = 60)

11.5 31.3 38.0 7.2 33.6
mocod 7.1 24.7 39.0 4.7 33.9

mod
`1 (θ = 30)

15.1 36.5 38.4 8.1 33.8
mocod 6.8 24.4 38.9 4.5 33.8

mod
mol (β = 0.05)

20.0 43.2 38.6 9.7 33.8
mocod 7.0 24.6 39.0 4.8 33.9

(b)

Table 1: (a) Accuracy of the recovery of active set and its psnr (see text, Section 7.2). (b)
Reconstruction properties. The best results for each case are in bold. The values of β, θ, ρ and µ̄
and the omp psnr (in dB) columns correspond to the experiment of Section 8.1, while the last two
columns are for the ist performance results of Section 8.2.

8.2 Improved computational efficiency of shrinkage methods and
active set recovery

As mentioned in Section 3, the convergence rate of Iterated Shrinkage/Thresholding [7], and
of state-of-the art sparse coding methods based on it (see [11] for a review), are known
to depend on the Gram matrix norm ρ(D). Since mocod induces a reduction in ρ(D),
it is expected that dictionaries learned with mocod lead to a faster convergence than the
ones obtained without the additional coherence penalty. The last two columns in Table 1b
account for the running time and final psnr obtained using ist for a fixed value of λ = 0.1
and the corresponding D.6 The coding time obtained with the dictionaries trained with
mocod is consistently reduced by an amount roughly proportional to the reduction in
ρ(D), while the psnr remains approximately the same (or improves slightly).

Finally, we repeated the experiment in Section 7.2 using the complete mocod and ob-
served further significant improvements of the values in the two rightmost columns in Fig-
ure 1a, for example, an improvement of 61% in H(nε) for `0 = 8, nε = 2, and of 2.7dB in
psnr for `0 = 3. This being a direct consequence of reducing µ̄(D), it further shows that the
incoherence term, on top of mol, is very important for efficient and accurate reconstruction
of both the active set and the signal itself.

9 Concluding remarks

A new sparse model was introduced in this work. The model includes two new terms.
The first new component encourages intrinsic properties of the learning dictionary which
are critical for sparse coding and generalization. The second term replaces the classical
sparsifying penalties by a logarithmic one formally derived following the framework of mdl.
Both the theoretical and practical advantages of such new model were presented.

The critical properties of the proposed model, such as increased stability of the active set
and improved generalization, hint to the possible implications of this model for classification

6Timings were obtained using a single-threaded C implementation compiled with GCC 4.3.2, on a Lenovo
T400 with Core2 Duo T9400 (at full speed) running Linux 2.6.27.
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tasks such as those described in [20]. We are currently investigating this and results, together
with the theoretical details on the derivations here presented, will be reported elsewhere.
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