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Abstract

Navigation systems capable of estimating the six-degrees-of-freedom (d.o.f.) posi-

tion and orientation (pose) of an object while in motion have been actively developed

within the research community for several decades. Numerous potential applications

include human-navigation aids for the visually impaired, first responders, and firefight-

ers, as well as localization systems for autonomous vehicles such as submarines, ground

robots, unmanned aerial vehicles, and spacecraft. The mobile industry has also recently

become interested in six-dof localization for enabling interesting new applications on

smart phones and tablets, such as games that are aware of motions in 3D space. The

Global Positioning System (GPS) satellite network has been relied on extensively in

pose-estimation applications; however, both humans and vehicles often need to operate

in a wide variety of environments that preclude the use of GPS (e.g., underwater, inside

buildings, in the urban canyon, and on other planets).

In order to estimate the 3D motion of person or robot in GPS-denied areas, it is

requisite to employ sensors to determine the platform’s displacement over time. To this

end, inertial measurement units (IMUs) that sense the three-d.o.f rotational velocity as

well as three-d.o.f. linear acceleration have been extensively used. IMU measurements,

however, are corrupted by both sensor noise and bias, causing the resulting pose esti-

mates to quickly become unreliable for navigation purposes. Although high-accuracy

IMUs exist, they remain prohibitively expensive for widespread use. For this reason, it

is common to aid an inertial navigation system (INS) with an alternative sensor such

as a laser scanner, sonar, radar, or camera whose measurements can be employed to

determine the platform’s pose (or motion) with respect to the surrounding environment.

Of these possible aiding sources, cameras have received significant attention due to their

small size and weight, and the rich information that they supply.

State-of-the-art vision-aided inertial navigation systems (VINS) are able to provide

highly-accurate pose estimates over short periods of time, however, they continue to ex-

hibit limitations that prevent them from being used in critical applications for long-term

deployment. Most notably, current approaches produce inconsistent state estimates,

i.e., the errors are biased and the corresponding uncertainty in the estimate is unduely
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small. In this thesis, we examine two key sources of estimator inconsistency for VINS,

and propose solutions to mitigate these issues.
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Chapter 1

Introduction

1.1 Motivation

Mobile robotics has long been heralded as a catalyst for the next major advancement

in our technological revolution. By enabling greater efficiency in manufacturing, safer

transportation through autonomous vehicles, time savings with house cleaning and ser-

vice robots, and improved medical care with surgical robotics and caretakers for the

elderly, robots promise to have a prodigious impact in the quality of our lives. Localiza-

tion, i.e., the ability of a robot to determine its own position and orientation (pose) in

three-dimensions (3D), is one of the fundamental requirements for enabling the devel-

opment of autonomous robots. Similar to humans, mobile robots must be able to sense

their motion, observe and memorize landmarks around them, and track their location

with respect to important points of reference as they move. This information about the

state of the world and its own pose within the world, is what will allow a robot to tackle

complex high-level tasks such as planning an efficient path between two locations, while

avoiding obstacles.

Figure 1.1 displays several pertinent examples in which a robot or intelligent system

uses its sensor information to fulfill task-specific objectives in a mobile setting. In the

first scenario [see Fig. 1.1(a)], a GPS-based navigation aid [1] provides turn-by-turn

walking directions to a visually-impaired user. The system must employ information

from both user input, via a braille keyboard, and its own sensor data (e.g., GPS, com-

pass, and altimeter), in order to provide timely feedback to the person. In Fig. 1.1(b), a

1
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(a) (b) (c)

Figure 1.1: (a) Sendero BrailleNote localization system [1], which employs the GPS
network to determine the user’s position, and relays navigation information to the user
via a braille display. (b) NASA planetary rover [2] exploring the surface of Mars col-
lecting visual data and geological samples. (c) Honeywell T-Hawk MAV [3] performing
hovering surveillance of an area of interest.

NASA rover [2] explores the surface of Mars, collecting imagery and geological samples

as it visits important sites of interest. In order to maximize the scientific benefits of the

mission, the rover must maintain an accurate pose estimate so that the spatial distri-

bution of samples can be properly determined and studied by scientists back on earth.

Lastly, Fig. 1.1(c) depicts a Honeywell T-Hawk micro aerial vehicle (MAV) [3] that may

be deployed in surveillance missions, such as border patrol or building security. This

robot has the advantage of being able to hover and stare at a scene from a variety of

vantage points, making it ideal for detecting suspicious activities and assessing potential

security threats. In order, however, for law enforcement or security personell to make

use of the surveillance footage, the vehicle pose must be available at all times.

In each of the above scenarios, the localization system employed should be able to

determine the pose of the platform using only its onboard sensing modalities. Although

GPS can provide accurate position information, it should not be relied upon as a pri-

mary aid for localization since many environments preclude its usage. For example, an

earthbound robot will be GPS-denied when it is indoors, underground, or underwater,

and will experience severe signal degradation in dense foliage, next to tall buildings (i.e.,

in the urban canyon), and on the battlefield where GPS may be jammed. Furthermore,

even if GPS is available, it may not be accurate enough to enable a robot to maneuver in

tight spaces, and since it does not directly provide orientation information, sole reliance
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on GPS may lead a robot to become disoriented during stationary intervals.

As an alternative to GPS, a robot localization system can utilize artificial land-

marks such as radio frequency identification (RFID) tags [4] or visual markers [5] placed

throughout the environment. Subsequently, any robot with a map of the landmarks can

safely navigate through the area, updating its pose whenever a landmark is within its

detection range. This beacon-based approach has the key benefit that each landmark

can be uniquely identified and validated via its digital signature, which virtually elim-

inates the possibility of misdetection. Unfortunately, beacons may be sparsely placed,

and a robot may travel large distances between landmarks without precise knowledge

of its location. Furthermore, since such systems must be installed and calibrated to

determine the precise position of each landmark, beacon-based localization systems re-

main too costly for wide-spread adoption and have seen only limited testing in public

buildings such as museums [6].

A more flexible approach is to develop a localization system that utilizes onboard

sensors to infer the location of the robot. Sensors can broadly be classified in two cat-

egories: (i) proprioceptive and (ii) exteroceptive. Proprioceptive sensors measure some

portion of the robot’s state. For example, an odometer on a wheeled vehicle can mea-

sure its linear and rotational velocities as it moves on the ground plane. In applications

that involve tracking 3D motions, the de facto proprioceptive sensor employed is an

inertial measurement unit (IMU), which measures the 3D rotational velocity and linear

acceleration of the sensing platform. Exteroceptive sensors, on the other hand, observe

the environment from the robot’s point of view. By tracking the apparent motion of

distinctive objects that belong to the static scene, the robot can infer some degrees of

freedom (d.o.f.) of its egomotion. For example, if a camera-equipped robot observes a

chair moving from right-to-left through its field of view, it can infer that its own motion

is left-to-right, since the chair is stationary.

This thesis focuses on the development and improvement of so-called aided inertial

navigation systems, which utilize an IMU in conjunction with a camera or laser scanner

to improve the accuracy and robustness of long-term localization. In both vision-aided

and laser-aided inertial navigation systems (hereafter referred to as VINS and LINS,

respectively), the system model governing the time evolution of the state, as well as the

measurement models describing the camera and laser scanner observations are nonlinear.
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Thus, even if the sensor noise terms can be well-characterized by Gaussian probability

density functions (pdfs), the true pdf of the state (i.e., robot pose and environment)

will be non-Gaussian and multimodal. Unfortunately, no general estimation framework

exists for nonlinear systems, hence, in practice we resort to using linearized estimators,

which typically approximate the pdf of the state as a unimodal Gaussian distribution. As

we will show, the estimation errors incurred during this process can lead to inconsistent

estimates which are both overconfident (i.e., the estimated pdf covariance is smaller

than the true) and error prone [7].

1.2 Research Objectives

The principal research objective of this thesis is to analyze and mitigate two sources of

VINS inconsistency, specifically: (i) improving consistency by ensuring that the number

of unobservable directions of the estimator’s (linearized) system matches that of the

underlying true (nonlinear) system, and (ii) directly computing all solutions of the VINS

pose-estimation problem to prevent errors due to tracking a single, incorrect solution.

• Reducing estimator inconsistency due to mismatched un/observable

directions: A key source of estimation error arises due to the mismatch in the

observability properties of nonlinear systems and their linearized counterparts

used for estimation purposes. For instance, it is common practice to employ the

extended Kalman filter (EKF) [8] to estimate the state of a nonlinear system

by assuming that the nonlinear plant and measurement equations can be well

approximated as locally linear, through first-order Taylor series expansion. Un-

fortunately, as has been shown for certain 2D localization problems [9, 10, 11], this

approximation can fundamentally alter the structure of the system’s observable

and unobservable subspaces, allowing spurious information to be surreptitiously

obtained along directions in which it should not. Our objective in this research

thread is to understand the interplay between observability and consistency in

VINS and propose estimator modifications that reduce or eliminate the inconsis-

tency.

• Reducing estimator inconsistency due to multiple pose hypotheses: A

second source of pose error arises from not properly accounting for the existence
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of multiple solutions for the vision-based pose determination problem1 in the

static-sensor, single-image case [12, 13]. In particular, tracking the trajectory of

the sensing package through time is a nonlinear estimation problem (requiring

the determination of a multimodal pdf over the quantities to be estimated) that

can be addressed recursively within a filtering framework (e.g., iterated extended

Kalman filter (I-EKF) [8]), or refined in a batch form over several time-steps in a

maximum a posteriori (MAP) estimator [14]. Although the true pdf is multimodal,

many parametric estimators (e.g., I-EKF, unscented Kalman filter [15], and MAP)

approximate the estimated pdf as unimodal, therefore they can only track one of

the possible hypotheses, which, depending on the accuracy of the prior, may be an

incorrect solution. In order to address this issue, we propose to directly solve the

vision-based pose determination problem from a single image given observations

of known landmarks. We formulate this as a nonlinear batch least-squares (BLS)

optimization problem, whose minima we can determine directly by solving the

corresponding Karush-Kuhn-Tucker (KKT) optimality conditions [16].

In order to accomplish these research objectives, we begin by introducing a LINS for

the visually impaired that exploits measurements of structural planes indoors to track

the person’s pose as they move. This system is analyzed in detail, including its observ-

ability properties as well as practical issues of laser-to-IMU extrinsic calibration. Due to

limitations in scanning a 3D world with a moving, arbitrarily oriented 2D laser scanner,

the LINS position error drifts unless three or more orthogonal structural planes are con-

currently observed. Unfortunately, small-sized, human-portable 2D laser scanners do

not have sufficient range to ensure that this three-orthogonal-plane condition is always

met in realistic scenarios. This motivates the use of alternative exteroceptive sensors

that do not place stringent constraints on the environment composition or layout.

We extend our investigation to VINS in three stages, beginning with the general case,

and gradually reducing the amount of information available until we reach the static

camera scenario. First, we consider an IMU and camera package that moves along an

1 Vision-based pose determination is the task of estimating the six-d.o.f. pose of a camera from
observations of three or more known features in a single image. In the computer vision literature,
this problem is commonly referred to as the perspective-n-point problem. It is typically addressed by
assuming the measurements are noise free, and analytically solving for the camera pose in the nonlinear
measurement equations [12].
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arbitrary trajectory in a general indoor or outdoor environment. In this case, we focus

on mitigating inconsistency caused by a mismatch in the observability properties of the

true system and the one employed by the estimator. Second, we consider the vision-

based navigation system that does not receive any inputs from an IMU. By using a

local-velocity tracking model, we show that a camera alone can be used for navigation

purposes, but the scale of the motion and scene will be arbitrary. We extend our

consistency analysis to show how the drift of the scale estimate causes inconsistency in

vision-only navigation, and propose a method to address it. Third, we consider the case

of pose determination from a single, stationary camera observing known point features.

This parameter-estimation problem is different compared to the two cases above, since

no motion model is involved. As we will show, a key source of inconsistency in this case

arises from not properly accounting for all system solutions, when multiple solutions

exist.

1.3 Organization of the Manuscript

The remainder of this dissertation is organized in the following manner: Chapters 2

through 5 detail our specific accomplishments in the analysis and improvement of aided

inertial navigation, focussing on the cases of LINS and VINS, while Chapter 6 presents

our conclusions and future research directions. In particular,

• Chapter 2 describes a novel 3D indoor LINS for the visually impaired. An EKF

fuses information from an IMU and a 2D laser scanner, to concurrently estimate

the six d.o.f. pose of the sensing package and a 3D map of the environment. Rather

than constraining the person to purely planar motion, the IMU measurements are

integrated to estimate the pose along a general 3D trajectory. To mitigate the

accumulation of inertial drift errors, the pose estimates are corrected using laser

measurements, namely line-to-plane correspondences between linear segments in

the laser-scan data and structural planes of the building. Utilizing orthogonal

building planes as map features results in a human-interpretable layout of the

environment, and ensures that the each feature can be efficiently initialized and

estimated. A practical method is presented to initialize the pose and the IMU

biases using observations of known planes and zero-velocity updates, respectively.
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In addition to the filter design, the observability properties of the nonlinear system

are studied to show under which measurement conditions the 3D pose can be

accurately estimated. Lastly, an approach for utilizing the sensors’ measurements

to perform on-line calibration of the laser-to-IMU transformation is developed,

which enables the highest possible localization accuracy. The proposed LINS is

experimentally validated by a person traveling in both known and unknown 3D

environments to demonstrate its reliability and accuracy for indoor localization

and mapping.

• In Chapter 3, we study estimator inconsistency in VINS from a standpoint of sys-

tem observability. We postulate that a leading cause of inconsistency is the gain

of spurious information along unobservable directions, resulting in smaller uncer-

tainties, larger estimation errors, and divergence. We develop an observability-

constrained VINS (OC-VINS), which explicitly enforces the unobservable direc-

tions of the system, hence preventing spurious information gain and reducing

inconsistency. This framework is applicable to several variants of the VINS prob-

lem such as visual simultaneous localization and mapping (V-SLAM) as well as

visual-inertial odometry using the multi-state constraint Kalman filter (MSC-KF).

Our analysis, along with the proposed method for reducing inconsistency, are ex-

tensively validated in simulation and experimentally.

• In Chapter 4, we study the problem of estimator inconsistency in single-camera

simultaneous localization and mapping (MonoSLAM). Using a local-velocity track-

ing model for the camera motion, we study the system observability properties for

MonoSLAM and show that scale becomes erroneously observable due to lineariza-

tion errors when using linearized estimation approaches. Moreover, we introduce

an observability-constrained MonoSLAM (OC-MonoSLAM) approach, following

the methodology of OC-VINS, which explicitly enforces the unobservable direc-

tions of the system, hence preventing spurious information gain and reducing

inconsistency. Our analysis, along with the proposed method for reducing incon-

sistency, are validated in simulation and through real-world experimentation.

• In Chapter 5, we present a direct least-squares (DLS) method for computing all

solutions of the perspective-n-point (PnP) camera pose determination problem
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for the general case when n ≥ 3. Specifically, based on the camera measurement

equations, we formulate a nonlinear least-squares (LS) cost function whose opti-

mality conditions constitute a system of three third-order polynomial equations.

Subsequently, we employ the multiplication matrix to determine all the roots of

the system analytically, and hence all minima of the LS cost function, without

requiring iterations or an initial guess of the parameters. A key advantage of our

method is scalability, since the order of the polynomial system that we solve is

independent of the number of points. We compare the performance of our algo-

rithm with the leading PnP approaches, both in simulation and experimentally,

and demonstrate that DLS consistently achieves accuracy close to the maximum-

likelihood estimator (MLE).

• Chapter 6 reviews the contributions of this thesis and presents an overview of the

future research directions. In particular, we would like to extend our investigation

to several areas that are outside the scope of the current work. For example, it

may be possible to improve consistency further by making use of known motion

constraints, such as a dynamics model on a vehicle, to augment the information

processed by the estimator. Moreover, accuracy can be improved by employing

motion models when the device is in an environment with fewer features than

necessary for enabling estimation of the system’s observable modes (e.g., when all

visual features are far away for the camera, it is not possible to resolve the device’s

linear velocity).



Chapter 2

Laser-aided Inertial Navigation in

Unknown Indoor Environments

2.1 Introduction

For humans, safe and efficient navigation requires knowledge of the environmental lay-

out, path planning, obstacle avoidance, and determining one’s pose with respect to the

world. For a visually-impaired person, these tasks can be exceedingly difficult to ac-

complish, and there are high risks associated with failure in any of them. To address

some of these issues, guide dogs and white canes are widely used for the purposes of

wayfinding and environment sensing. The former, however, has costly training require-

ments, while the latter can only provide cues about one’s immediate surroundings. On

the other hand, commercially available electronic navigation systems designed for the

visually impaired (e.g., [17], [1]) rely on GPS signals and cannot be utilized indoors,

under tree cover, or next to tall buildings where reception is poor.

In the academic community, numerous electronic navigation systems for GPS-denied

environments have been proposed. However, the majority of the existing algorithms

are designed for mobile robots that are limited to move on planar surfaces [18, 19] or

require heavy sensors, such as a 3D laser scanner [20, 21], that cannot be carried by a

human. Other algorithms, which have relied on visual information [22, 23], are sensitive

to variable lighting conditions and require processing resources that are not typically

available on portable computing devices.

9
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To address these issues, we aim to design a personal indoor navigation system that

fulfills the following requirements:

• The system must accurately track the six-d.o.f. pose of the visually impaired

person, allowing them to safely navigate in a 3D environment.

• The navigation aid should enable the person to walk through previously unknown

buildings without getting lost. This requires constructing a map of the explored

area and localizing with respect to it in real-time.

• The selected sensors should be robust to environmental changes, such as lighting

conditions, reliable in the presence of clutter and moving objects, and work within

the computational and memory limits of a portable computing device.

• The navigation aid should be compact, unobtrusive to the person, and lightweight

enough to be carried without fatigue.

To meet these objectives, we focus on designing an indoor LINS using an IMU and a

2D laser scanner, based upon our preliminary results in [24, 25]. Employing this sensor

pair ensures feasibility of manufacturing a light-weight and compact sensor package that

can be carried by a person, since a wide variety of small IMUs (e.g., Memsense nIMU)

and compact-size 2D laser scanners (e.g., Hokuyo URG) are commercially available.

Additionally, using a laser scanner instead of a camera provides greater reliability and

robustness under poor lighting conditions.

The proposed algorithm tracks the six-d.o.f. pose of the person by integrating the

IMU measurements (linear acceleration and rotational velocity) using an EKF. However,

without corrections from an exteroceptive sensor, the IMU measurement noise and bias

drift would cause the pose estimation errors to grow unbounded over time. To mitigate

this issue, we propose to update the pose estimates by utilizing straight-line features

extracted from the 2D laser scans. In particular, as the person moves, the laser scanner’s

attitude changes which causes its scanning plane to intersect a variety of structural

planes of the building (i.e., the walls, floor, and ceiling). If the structural planes are

known a priori from a building map, we can use the information from the line-to-plane

measurements in order to update the person’s pose estimates [24]. Unfortunately, in

many cases in practice, a building map is not available in advance. To overcome this
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challenge, we simultaneously construct a building map in order to utilize previously

unknown structural planes in the localization process [25]. We exploit the fact that

most indoor structural planes are orthogonal to each other, which allows us to fix each

plane’s orientation the first time it is observed, and only estimate its distance to the

origin of the global reference frame.

Constructing the map based on orthogonal planar structures has the advantage of

keeping the person’s orientation error bounded [26] in addition to providing inherent

robustness to clutter and moving objects. Furthermore, the estimated map directly

provides a human-interpretable layout of the building that can simplify the task of

wayfinding towards a destination. Moreover, due to the limited number of structural

planes in each building, the computational load of the algorithm remains bounded.

This, together with the low processing cost of line-segment extraction from the 2D laser

scans, ensures the real-time execution of the algorithm on a hand-held computer with

limited computational and memory resources.

We demonstrate the validity and reliability of the proposed approach with real-world

experiments in both known and unknown environments. In the first case, we present

a loop trajectory of 120 m in length that covers part of one floor of the Keller Hall at

the University of Minnesota. The second test covers multiple levels of Akerman Hall

at the University of Minnesota. In this 270 m trajectory, the person traverses several

staircases and a disability access ramp. In addition, both test environments includes

significant clutter (e.g., trashcans, storage boxes, and furniture), as well as a normal

flow of pedestrian traffic. Despite these challenges, our algorithm accurately tracks the

person’s pose, and correctly estimates a map of the building layout.

In order to ensure that the IMU and the laser scanner measurements provide suf-

ficient information for estimating the person’s pose, we study the observability of the

corresponding nonlinear system. We also address the more practical matter of how to

efficiently initialize the filter. Lastly, we provide a novel on-line method for calibrat-

ing the laser-to-IMU transformation using either previously known or unknown planar

features, since inaccurate calibration can lead to biased filter estimates.

The remainder of the chapter is organized as follows: In Section 2.2, we begin with

an overview of the related literature. Section 2.3 presents the core of our algorithm,

which is an EKF-based pose estimator. We describe how to efficiently initialize the
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state of the filter in Section 2.4. In Section 2.5, we study the observability properties

of the map-based localization system, and show the system is observable under mild

conditions that are typically fulfilled in practice. Subsequently, we describe our approach

for calibrating the laser-to-IMU transformation using line-to-plane correspondences in

Section 2.6. Experimental validation of the proposed method is provided in Section 2.7.

Lastly, we conclude the paper and present future research directions in Section 2.8.

2.2 Related Work

Recent work has focused primarily on developing hazard-detection aids for the visually

impaired with the purpose of detecting and avoiding obstacles [27, 28] and describing

objects’ size and color [29]. These systems cannot be directly used as wayfinding aids

without the development of appropriate algorithms for localization. In contrast to the

above systems, navigation aids have been designed that explicitly track a person’s loca-

tion and heading direction. Most relevant efforts have primarily addressed GPS-based

outdoor navigation which cannot be used inside a building [30, 31]. Indoor navigation

is more challenging, since pose information can only be inferred from ego-motion and

environmental cues. In what follows, we provide a discussion of several existing indoor

navigation systems.

Navigating using ego-motion

Dead-reckoning systems track a person’s pose without any external references. Com-

mon approaches are based on foot-mounted accelerometers [32]. As a person walks,

their position is computed by double integration of the acceleration measurements. Un-

fortunately, the accelerometer bias and noise are integrated as well, which causes the

position error to grow unbounded. Even if the rate of position-error increase can be

reduced with static-period drift corrections [33, 34], dead-reckoning systems still remain

unreliable over long time intervals.

Navigating with known references

Unlike dead-reckoning approaches that do not employ external references, map-based

systems infer position and orientation information from known landmarks or beacons
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in the environment. For example, in [4], a robot is attached at the end of a leash as a

substitute for a guide dog, and localizes using odometry and a network of RFID tags.

In [5], the authors presented another approach in which a hand-held camera identifies

retro-reflective digital signs. Similar methods also exist based on ultrasound [31] and

infrared [35] beacons. In [36], we presented a map-based indoor localization aid for

the visually impaired comprised of a pedometer, a tri-axial gyroscope, and a 2D laser

scanner. We exploited known corners at hallway intersections (computed from the

building blueprints) as landmarks for localization. Unfortunately, all map-based or

beacon-based localization methods suffer from common limitations which include: (i)

time and cost associated with acquiring the map or installing the beacons, (ii) the

system’s inability to adapt to spatial layout changes, and (iii) the restriction of use to

previously mapped areas.

Navigating in unknown environments

The most flexible navigation aids are those that can exploit environment sensing to

perform SLAM. The majority of the proposed systems for SLAM consider either 2D

map and sensor motion [37, 38], or restrict the sensor motion to planar surfaces and

create a 3D map of the surroundings [18, 19, 26]. These algorithms are not generally

suitable for use on a personal navigation system since the motion of a human is not

limited to a planar surface (e.g., when climbing stairs).

There exist several approaches for estimating a 3D map and the six-d.o.f. pose of

a robot (3D SLAM) that employ 3D point cloud matching techniques [e.g., Iterative

Closest Point (ICP)] [20, 21, 39, 40, 41]. However, the computational requirements for

matching 3D point clouds are typically prohibitive for real-time implementation. More

importantly, the 3D laser scanners needed for acquiring the point clouds are too large

and heavy for a person to carry, thus making these systems inappropriate for use as a

personal navigation aid. Alternative methods for performing 3D SLAM employ cam-

eras to map the environment based on visual landmarks [22, 23]. The main drawback of

camera-based systems is their sensitivity to variable lighting conditions, which restricts

their use as navigation aids for the visually impaired where reliability is of paramount

importance. Additionally, processing images and extracting visual features are typically
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computationally intensive tasks that are impractical to carry out on hand-held comput-

ing devices. Furthermore, constructing a map of the 3D locations of visual landmarks

(e.g., SIFT features [42]) often used in these approaches may not be geometrically mean-

ingful or interpretable by humans. Finally, extracting and matching visual landmarks

in indoor environments can be challenging and unreliable due to insufficient texture.

To address these limitations, we propose an LINS based on a 2D laser scanner and

an IMU. The key differentiating factor of our work is that we can explore and map

3D environments with a sensing package that follows arbitrary 3D trajectories, despite

the fact that the exteroceptive sensor employed only senses in 2D during each laser

scan. Specifically, our system tracks the six-d.o.f. pose of the person and measures both

known building planes as well as new planes which it maps as the unknown portions

of the environment are explored. We note that using commonly-occurring structural

planes as map features ensures the applicability of the method in practice. The esti-

mated structural planes directly represent the geometric layout of the building that can

be easily interpreted by humans. Moreover, due to the limited number of structural

planes in each building, the computational requirements of our algorithm do not grow

unbounded over time, since the size of the estimated state vector remains bounded.

Finally, our algorithm can perform on-line calibration of the relative pose between laser

and IMU, which may not be accurately known a priori.

2.3 Algorithm Description

A hand-held computer collects measurements from the navigation aid consisting of an

IMU and a 2D laser scanner, which are rigidly connected (see Fig. 2.1). The sensor data

is fused in an EKF to concurrently estimate the six-d.o.f. pose of the sensor platform,

as well as the 3D map of the building’s perpendicular structural planes (i.e., the walls,

floor, and ceiling). In what follows, we present the propagation and update models used

by the EKF.
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Figure 2.1: As the IMU-laser sensor platform moves, the laser scan plane intersects a
structural planar surface, Πi, described by di and Gπi, which are the Hessian normal
form components of the plane with respect to the global frame of reference, {G}. The
shortest vector in the laser scan plane from the origin of the laser frame, {L}, to Πi has
length ρ and direction L`, with respect to {L}. The line of intersection has direction,
L`⊥, with respect to {L} and is described by the polar parameters (ρ, φ). The vector
from the intersection of Gπi and Πi to the intersection of ρL` and Πi, is Gt. The IMU-
laser transformation is denoted by (IpL,

Iq̄L), while the IMU pose with respect to {G} is
(GpI ,

Gq̄I).

2.3.1 Filter Propagation

The EKF estimates the IMU pose and linear velocity together with the time-varying

IMU biases and the map. The filter state is the (16 +N)× 1 vector:

x =
[
I q̄TG bTg

GvTI bTa
GpTI | d1 · · · dN

]T
=
[
xTs | xTd

]T
, (2.1)

where xs(t) is the 16 × 1 sensor platform state, and xd(t) is the N × 1 state of the

structural plane map. The first component of the sensor platform state is, I q̄G(t), which
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is the unit quaternion representing the orientation of the global frame {G} in the IMU

frame, {I}, at time t. The frame {I} is attached to the IMU (see Fig. 2.1), while

{G} is an inertial reference frame whose origin coincides with the initial IMU position,

and whose orientation is aligned with the perpendicular structural planes according to

the filter initialization procedure described in Section 2.4. The sensor platform state

also includes the position and velocity of {I} in {G}, denoted by the 3 × 1 vectors

GpI(t) and GvI(t), respectively. The remaining components are the biases, bg(t) and

ba(t), affecting the gyroscope and accelerometer measurements, which are modeled

as random-walk processes driven by the zero-mean, white Gaussian noise nwg(t) and

nwa(t), respectively.

The building map is comprised of N static planar features Πi, i = 1, . . . , N , which

includes all planes (if any) that are known from the building blue prints, and grows as

new planes are detected. Each plane is described by its Hessian normal form components

di and Gπi, which are the distance from the plane to the origin of {G}, and the 3 × 1

normal vector of the plane expressed in {G}, respectively.1 The map state, xd, consists

of the scalar distances, di, i = 1, . . . , N , which are estimated along with the state of the

sensing package. We only map perpendicular structural planes, hence, we do not need

to estimate each plane’s normal-vector. Instead, we store them in the map parameter

vector
[
GπT1 . . .

GπTN

]T
, where each component Gπi is determined once during the new

plane initialization step (see Section 2.3.3) or is available from the blueprint layout.

With the state of the system now defined, we turn our attention to the continuous-time

dynamical model which governs the state of the system.

1 A point Gp lies on plane Πi if GπTi
Gp− di = 0.



17

Continuous-time model

The system model describing the time evolution of the state is (see [43, 44]):

I
G

˙̄q(t) =
1

2
Ω(ω(t))I q̄G(t) (2.2)

GṗI(t) = GvI(t) (2.3)

Gv̇I(t) = Ga(t) (2.4)

ḃg(t) = nwg(t) (2.5)

ḃa(t) = nwa(t) (2.6)

ḋi(t) = 0 , i = 1, . . . , N. (2.7)

In these expressions, ω(t) = [ω1(t) ω2(t) ω3(t)]T is the rotational velocity of the IMU,

expressed in {I}, Ga is the IMU acceleration expressed in {G}, and

Ω(ω) =

[
−bω×c ω

−ωT 0

]
, bω×c ,


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
The gyroscope and accelerometer measurements, ωm and am, used for state propagation,

are

ωm(t) = ω(t) + bg(t) + ng(t) (2.8)

am(t) = C(I q̄G(t)) (Ga(t)− Gg) + ba(t) + na(t), (2.9)

where ng and na are zero-mean, white Gaussian noise processes, and Gg is the gravi-

tational acceleration. The matrix C(q̄) is the rotation matrix corresponding to q̄. Also

note that the distances to the building planes are fixed with respect to {G}, thus their

time derivatives are zero [see (2.7)].

Linearizing at the current estimates and applying the expectation operator on both
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sides of (2.2)-(2.7), we obtain the state estimate propagation model

I
G

˙̄̂q(t) =
1

2
Ω(ω̂(t))IG ˆ̄q(t) (2.10)

G ˙̂pI(t) = Gv̂I(t) (2.11)

G ˙̂vI(t) = CT (IG ˆ̄q(t)) â(t) + Gg (2.12)

˙̂
bg(t) = 03×1 (2.13)

˙̂
ba(t) = 03×1 (2.14)

˙̂
di (t) = 0 , i = 1, . . . , N, (2.15)

with â(t)=am(t)−b̂a(t), and ω̂(t)=ωm(t)−b̂g(t).

The (15 +N)× 1 error-state vector is defined as

x̃ =
[
IδθTG b̃Tg

GṽTI b̃Ta
Gp̃TI | d̃1 · · · d̃N

]T
=
[
x̃Ts | x̃Td

]T
, (2.16)

where x̃s(t) is the 15 × 1 error state corresponding to the sensing platform, and x̃d(t)

is the N × 1 error state of the map. For the IMU position, velocity, biases, and the

map, an additive error model is utilized (i.e., x̃ = x − x̂ is the error in the estimate x̂

of a quantity x). However, for the quaternion we employ a multiplicative error model.

Specifically, the error between the quaternion q̄ and its estimate ˆ̄q is the 3×1 angle-error

vector, δθ, implicitly defined by the error quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

T 1
]T
, (2.17)

where δq̄ describes the small rotation that causes the true and estimated attitude to

coincide. The main advantage of this error definition is that it allows us to represent

the attitude uncertainty by the 3× 3 covariance matrix E{δθδθT}. Since the attitude

corresponds to three d.o.f., this is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x =

[
Fs,c 015×N

0N×15 IN

]
x̃ +

[
Gs,c

0N×15

]
n

= Fc x̃ + Gc n , (2.18)
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where IN denotes the N × N identity matrix, Fs,c is the continuous-time error-state

transition matrix corresponding to the sensor platform state, and Gs,c is the continuous

time input noise matrix, i.e.,

Fs,c=



−bω̂×c −I3 03 03 03

03 03 03 03 03

−CT (IG ˆ̄q)bâ×c 03 03 −CT (IG ˆ̄q) 03

03 03 03 03 03

03 03 I3 03 03



Gs,c =



−I3 03 03 03

03 I3 03 03

03 03 −CT (IG ˆ̄q) 03

03 03 03 I3

03 03 03 03


, n =


ng

nwg

na

nwa

 ,

where 03 is the 3× 3 matrix of zeros. The system noise covariance matrix Qc depends

on the IMU noise characteristics and is computed off-line [44].

Discrete-time implementation

The IMU signals ωm and am are sampled at a constant rate 1/T , where T , tk+1 − tk.
Every time a new IMU measurement is received, the state estimate is propagated us-

ing 4th-order Runge-Kutta numerical integration of (2.10)–(2.15). In order to derive

the discrete-time covariance propagation equation, we evaluate the discrete-time state

transition matrix

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ)dτ

)
(2.19)

and the discrete-time system noise covariance matrix

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T
cΦT (tk+1, τ)dτ. (2.20)

The propagated covariance is then computed as

Pk+1|k = ΦkPk|kΦ
T
k + Qd,k. (2.21)
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After processing the IMU measurements to propagate the filter state and covariance,

we process any available laser scan measurements in the filter update step (see Sec-

tion 2.3.2).

2.3.2 Landmark Update

As the IMU-laser platform moves in an indoor environment, the laser-scan plane in-

tersects the perpendicular structural planes of the building. These measurements are

exploited to update the state estimate. To simplify the discussion, we consider a single

line measurement, L`⊥, corresponding to the intersection of the laser-scan plane and

map plane, Πi (see Fig. 2.1). The line is described in the laser frame, {L}, by (ρ, φ),

where ρ is the distance from the origin of {L} to the line, and φ is the angle of the

vector L` perpendicular to the line.2 We will hereafter express the line direction in

{I}, as I`⊥ = C(I q̄L)
[
sinφ −cosφ 0

]T
, where I q̄L is the unit quaternion representing

the orientation of the laser frame in the IMU frame (see Sect. 2.6). In what follows, we

describe how each line is exploited to define two measurement constraints, which are

used by the EKF to update the state estimates.

Orientation Constraint

The first constraint is on the orientation of {I} with respect to {G}. The normal to

the plane Πi, vector Gπi, is perpendicular to CT(I q̄G) I`⊥ (see Fig. 2.1), which yields the

following orientation measurement constraint

z1 = GπTi CT(I q̄G) I`⊥ = 0 . (2.22)

The expected measurement is

ẑ1 = GπTi CT(I ˆ̄qG) I`⊥m , (2.23)

where I`⊥m = C(I q̄L)
[
sinφm − cosφm 0

]T
is the measured line direction with φm =

φ−φ̃. The measurement residual is r1 = z1 − ẑ1 = −ẑ1 and the corresponding linearized

2 We utilized the Split-and-Merge algorithm [45] to segment the laser-scan data and a weighted
line-fitting algorithm [46] to estimate the line parameters (ρ, φ) for each line.
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error model is

z̃1 '
[
−GπTi CT (I ˆ̄qG)bI`⊥m×c 01×12

]
x̃s +

[
01×N

]
x̃d +

[
GπTi CT (I ˆ̄qG)I`m 0

] [φ̃
ρ̃

]
= hT1,s x̃s + hT1,d x̃d + γT1 n`, (2.24)

where I`m = C(I q̄L)
[
cosφm sinφm 0

]T
is the perpendicular to the measured line

direction and ρm = ρ − ρ̃ is the measured distance to the line. The vectors hT1,s, hT1,d,

and γT1 are the Jacobians of (2.22) with respect to the state and line parameters. The

2×1 error vector n` is assumed to be zero-mean, white Gaussian, with covariance matrix

R = E{n`nT` } computed for each line from the weighted line-fitting procedure [46].

Distance Constraint

From Fig. 2.1, the following geometric relationship holds:

GpI + CT(I q̄G) (IpL + ρ I`) = di
Gπi +Gt, (2.25)

where I` = C(I q̄L)
[
cosφ sinφ 0

]T
is the perpendicular to the line direction, and IpL

is the position of the laser scanner in the IMU frame. Since the vector Gt is unknown

and cannot be measured we need to eliminate it from the equation. We do so by

projecting (2.25) onto GπTi , yielding the distance measurement constraint

z2 = GπTi (GpI + CT (I q̄G) (IpL + ρ I`))− di = 0. (2.26)

The expected measurement is

ẑ2 = GπTi
(
Gp̂I + CT(I ˆ̄qG) (IpL + ρm

I`m)
)
− d̂i. (2.27)

The measurement residual is r2 = z2− ẑ2 = −ẑ2 and the corresponding linearized error

model is

z̃2 '
[
−GπTi CT

(
I ˆ̄qG
)
bIpL + ρm

I`m×c 01×9
GπTi

]
x̃s +

[
01×(i−1) −1 01×(N−i)

]
x̃d

+
[
−GπTi CT

(
I ˆ̄qG
)
ρm

I`⊥m
GπTi CT

(
I ˆ̄qG
)
I`m

] [φ̃
ρ̃

]
= hT2,s x̃s + hT2,d x̃d + γT2 n`, (2.28)
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where the vectors hT2,s, hT2,d, and γT2 are the Jacobians of (2.26) with respect to the state

and line parameters, respectively.

We process the two measurement constraints together; stacking (2.24) and (2.28),

we obtain the measurement Jacobians

H =

[
hT1,s hT1,d

hT2,s hT2,d

]
, Γ =

[
γT1

γT2

]
, (2.29)

which are used in the expression for the Kalman gain

K = Pk+1|kH
T
(
HPk+1|kH

T + ΓRΓT
)−1

. (2.30)

The residual vector is r =
[
r1 r2

]T
, and the state and the covariance update equations

are

x̂k+1|k+1 = x̂k+1|k + Kr (2.31)

Pk+1|k+1 = (I−KH)Pk+1|k(I−KH)T + KΓRΓTKT . (2.32)

After updating the state and covariance with measurements to planes currently in the

map, we may have additional measurements to process corresponding to planes that

have not been observed previously. In Section 2.3.3 we describe how to augment the

map with an initial estimate of each new feature.

2.3.3 Landmark Initialization

There are three cases which we distinguish for plane initialization. The first is planes

which are known perfectly a priori (e.g., from “as-built” building blueprints). The

second class are planes which are approximately known (e.g., extracted from imprecise

building blueprints, or “as-designed”). The third type are the unknown planes that

occur in the principal building directions (i.e., the floor, ceiling, and orthogonal building

walls). While we do not know the location or number of these planes, whenever we

observe them, we know they exhibit one of the three known principle orientations, and

only the distance to the plane must be estimated.

Perfectly known planes

Perfectly known planes are straight forward to exploit in our navigation framework since

all three d.o.f. of the plane parameters are known a priori. We could include each plane
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in the state vector with an associated zero-covariance and zero-correlation to the rest of

the state. However, in practice we simply maintain an additional parameter vector of

known planes, which reduces the computational cost of the filter by limiting the state

size even further. When observing a perfectly known plane, we follow the procedure in

Section 2.3.2 to update the state, with the caveat that the Jacobians taken with respect

to the known plane parameters are set identically to zero [see (2.24) and (2.28)].

Approximately known planes

Planes which are known approximately are the most common to arise in typical im-

plementations when a blueprint of the building is available. This occurs because for

practical reasons during building construction, walls are not always placed precisely

where they were designated and building tolerances permit some room for error. In

these instances, we include an initial estimate of each building plane in the map, and

we set the covariance for each plane according to the accuracy of the blueprints. In

practice, if the quality of the blueprints is unknown, it suffices to hand-measure a small

number of the building planes in order to characterize the blueprint accuracy. We as-

sume that the errors in the initial estimates of the approximately known planes are

uncorrelated with each other and the sensor platform state, and set the corresponding

cross-correlation entries in P to zero.

Unknown planes

When measuring a new plane, ΠN+1, we first determine if the plane’s orientation,

GπN+1, corresponds to one of the three cardinal directions, ej , j = 1, 2, 3, consid-

ered in the map. We employ a Mahalanobis distance test to measure the probability

of correspondence between the plane’s orientation and each of the cardinal directions

in the map. Specifically, we compute the orientation residual r1,j = −eTj CT
(
I ˆ̄qG
)
I`⊥m,

j = 1, 2, 3, and the covariance of the residual

sj =
[
hT1,s hT1,d

]
Pk+1|k

[
h1,s

h1,d

]
+ σ2

φγ
T
1 γ1, (2.33)
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where h1,s and γ1 are the measurement Jacobians defined in (2.24) evaluated at Gπi =

ej , and σ2
φ is the (1, 1) element of R. If the smallest Mahalanobis distance

µ2
jmin = min

j

r2
1,j

sj
(2.34)

is less than a probabilistic threshold, then a new landmark is initialized with normal

vector GπN+1 = ejmin. After determining the new plane’s orientation, we compute the

distance to the new plane by solving (2.27) for d̂N+1, i.e.,

d̂N+1 =GπTN+1

(
Gp̂I+ CT(I ˆ̄qG) (IpL+ρm

I`m)
)

(2.35)

and augment the state vector as x̂aug ,
[
x̂T | d̂N+1

]T
. Next, we need to augment

the filter’s covariance, which requires first partitioning the prior covariance into

Pk+1|k =

[
Pss Psd

Pds Pdd

]
, (2.36)

where Pss is the 15 × 15 sensor error-state covariance, Pdd is the N × N map error-

state covariance, and Psd = PT
ds are the 15×N cross-correlation components. We then

compute the scalar variance of the new plane, Pd′d′ , and the correlation between the

new plane and the current state, Pd′x, as:

Pd′d′ = hT2,sPssh2,s + γT2 Rγ2 (2.37)

Pd′x = PT
xd′ =

[
hT2,sPss hT2,sPsd

]
(2.38)

where h2,s and γ2 are defined in (2.28). Lastly, the augmented covariance, Paug, is

computed as:

Paug =

[
Pk+1|k Pxd′

Pd′x Pd′d′

]
. (2.39)

After performing state and covariance augmentation during the landmark initialization

step, we return to the propagation step and process the next IMU measurement (see

Section 2.3.1).
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2.3.4 Zero-Velocity Update

When the laser scanner does not detect any structural planes along certain directions

for an extended period of time, the pose estimates accumulate errors due to drifts in

the accelerometer and gyroscope biases. In addition, build up of orientation errors

can cause the filter to incorrectly integrate a portion of the gravitational acceleration.

This effect is closely related to the system’s observability (see Section 2.5) and can be

compensated by means of drift correction during instantaneous stationary periods of

the motion (e.g., when a shoe-mounted IMU is stationary during the stance phase while

walking, see [33]).

This procedure, termed a zero-velocity update, is challenging for two reasons: (i) the

stationary periods must be identified without an external reference, and (ii) the IMU

drift error must be corrected while properly accounting for the state uncertainty and

IMU noise. Existing methods typically detect stationary periods based on a threshold

check for the accelerometer measurement. These require significant hand tuning, and

cannot account for the uncertainty in the current state estimate.

In contrast, we formulate the zero-velocity constraint as an EKF measurement and

use the Mahalanobis distance test to identify the stationary intervals. Specifically, for

the zero-velocity update, we employ the following measurement constraints for the linear

acceleration, and linear and rotational velocities which are (instantaneously) equal to

zero

zζ =
[
aT ωT GvTI

]T
= 09×1. (2.40)

The zero-velocity measurement residual is

rζ = zζ − ẑζ =


am − b̂a + C

(
I ˆ̄qG
)
Gg

ωm − b̂g

−Gv̂I

 (2.41)

and the corresponding linearized error model is

z̃ζ'


−bC

(
I ˆ̄qG
)
Gg×c 03×3 03×3 I3 03×3

03×3 I3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

x̃+


na

ng

nv


= Hζ x̃ + nζ , (2.42)
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where Hζ is the Jacobian of the zero-velocity measurement with respect to the state, and

nζ is a zero-mean, white Gaussian process noise that acts as a regularization term for

computing the inverse of the measurement residuals’ covariance. Based on this update

model, at time step k we compute the Mahalanobis distance χ2 = rTζ S−1
k rζ , where

Sk = HζPk|kH
T
ζ +Rζ is the covariance of the measurement residual and Rζ = E{nζnTζ }

is the measurement noise covariance. If χ2 is less than a chosen probabilistic threshold,

a stationary interval is detected and the state vector and the covariance matrix are

updated using (2.40)-(2.42). We note that once we use the inertial measurements for

an update, we cannot use them for propagation. However, this is not an issue, since the

IMU is static and we do not need to use the kinematic model (2.2)-(2.7) to propagate

the state estimates. Instead we employ the following equations:

I
G

˙̄q(t) = 04×1 (2.43)

GṗI(t) = 03×1 (2.44)

Gv̇I(t) = 03×1 (2.45)

ḃg(t) = nwg(t) (2.46)

ḃa(t) = nwa(t). (2.47)

In essence, this static-IMU propagation model indicates that the state vector and the

covariance matrix of all components are kept constant. The only exceptions are the co-

variances of the errors in the gyroscope and accelerometer bias estimates which increase

at each time step to reflect the effect of the random walk model.

2.4 Filter State Initialization

Before using the EKF to fuse measurements from the laser scanner and the IMU, we

need to initialize the state vector estimate x̂0|0 along with its covariance P0|0. This

is performed in three sequential stages: (i) the gyroscopes’ biases, bg, are initialized

using the partial zero-velocity updates (Section 2.4.1), (ii) the IMU orientation, I q̄G, is

initialized employing the laser scans (Section 2.4.2), and (iii) the accelerometers’ biases,

ba, are initialized using zero-velocity updates (Section 2.4.3). Once these three stages

are completed, we initialize the position of the sensing platform, GpI . However, we note

that if there are no structural planes in the building map initially known (i.e., if no
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blue print was provided), we can arbitrarily select the origin of the global frame. Thus,

for our convenience, we set the origin of the global frame to coincide with the origin

of the initial IMU frame, i.e., GpI = 03×1. The initial covariance for Gp̃I is set to zero

accordingly.

2.4.1 Gyroscopes’ Biases Initialization

The complete zero-velocity update described in Section 2.3.4 cannot be directly applied

to initialize the gyroscope biases. This is due to the fact that an estimate of the orien-

tation I q̄G, required for evaluating Hζ [see (2.42)], cannot be obtained before estimating

the gyroscope biases (Section 2.4.2). Instead, to provide an initial estimate for the

gyroscope biases, bg, we use partial zero-velocity updates. In particular, we initially

set b̂g to an arbitrary value (e.g., zero), while its covariance is set to a large value,

reflecting the lack of a priori knowledge about the estimates. Then, we keep the IMU

static (i.e., ω = 03×1) and use the second block row of (2.40)-(2.42) to perform a par-

tial zero-velocity update. This process is equivalent to averaging the (static) gyroscope

measurements to compute an initial estimate of the bias.

2.4.2 Orientation Initialization

Since the IMU and the laser scanner are rigidly connected and their relative transfor-

mation is known (see Section 2.6), the initial orientation of the IMU can be directly

computed from the initial orientation of the laser scanner. We describe two methods

to compute the orientation of the laser scanner using line measurements of three planes

with linearly-independent normal vectors. The first method, adapted from [47], requires

observation of all three planes from the same viewpoint, while the second method is ca-

pable of using laser scan measurements taken from different perspectives by exploiting

the motion information from the gyroscopes.

Concurrent observation of three planes

When three non-parallel planes are scanned from the same viewpoint (i.e., the same

frame of reference), the estimate of the orientation I q̄G is initialized using the method

of [47]. In this case, three quadratic constraints in terms of the unit quaternion I q̄G
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are obtained from the laser scans [see (2.22)], each of them describing the relationship

between a line measurement and the corresponding plane:

z1,i = GπTi CT(I q̄G) I`⊥i = 0, i = 1, . . . , 3. (2.48)

Chen’s algorithm algebraically manipulates the rotation matrix to convert this system

of equations to an eighth-order univariate polynomial in one of the d.o.f. of the unknown

rotation. Eight solutions for this univariate polynomial are obtained, for example, us-

ing the Companion matrix [48]. The remaining two d.o.f. of the rotation, I q̄G, are

subsequently determined by back-substitution. In general, an external reference is re-

quired to identify the true solution from the eight possibilities. In our work, we employ

the gravity measurement from the accelerometers and the planes’ identities to find the

unique solution.

Motion-aided orientation initialization

In order to use Chen’s method for initializing the orientation, all three line measurements

must be expressed with respect to the same frame of reference; hence three non-parallel

planes must be concurrently observed by the laser scanner from the same viewpoint.

However, satisfying this prerequisite is quite limiting since it requires facing a corner of

a room, for example, where three structural planes intersect. In this work, we address

this issue by using the gyroscope measurements to transform the laser scans, taken from

different viewpoints at different time instants, to a common frame of reference. We

choose as the common frame, the IMU frame when the first laser scan is recorded (i.e.,

at time t1), and denote it by {I1}. In this way, we can rewrite the inferred measurement

constraints (2.22) at time tj , j = 2, 3 as

GπTj CT (I q̄G(tj))
I`⊥j (tj) = GπTj CT (I q̄G(t1))I1`⊥j (tj) = 0 (2.49)

where I1`⊥j (tj) = C(I1 q̄Ij )
I`⊥j (tj) is the line direction corresponding to the plane Πj ,

recorded at time tj , and transformed to the frame {I1}. Since the gyroscope biases are

already initialized, the quaternions I1 q̄Ij can be obtained by integrating the rotational

velocity measurements [see (2.8) and (2.10)] between time instants t1 and tj . Once

all the line directions, I`⊥j (tj), are expressed with respect to {I1}, we employ Chen’s

algorithm, described before, to find the initial orientation, I q̄G(t1).
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The covariance of the initial orientation estimate is obtained by computing the cor-

responding Jacobians [by linearizing (2.49)] and using the uncertainty (covariance) in

the estimates of I`⊥j and I1 q̄Ij . However, note that the estimates of the relative transfor-

mations I1 q̄I2 and I1 q̄I3 are correlated. To account for these correlations, we employ the

stochastic cloning technique [49] to augment the state vector and the covariance matrix

of the EKF with I1 q̄Ij at time tj (assuming we have started integrating from time t1).

In this way, we are able to estimate the IMU orientation by integrating the gyroscope

measurements, and concurrently compute the correlations between the IMU orientation

estimates at the time instants when laser scans are recorded.

2.4.3 Accelerometers’ Biases Initialization

In this step, similar to the gyroscope bias initialization, we set the estimate for the

accelerometer biases, ba, to an arbitrary value (e.g., zero), and set its covariance to a

sufficiently large value, representing our uncertainty about the arbitrary initial estimate.

Since the IMU is initially static, we set the velocity estimate, GvI , and its covariance

to zero. Then, keeping the IMU static, we utilize the complete zero-velocity update

described in Section 2.3.4 to initialize the accelerometer biases.

2.5 Observability Analysis

A key task when designing any estimator is to study the observability properties of

the underlying system, to determine if the available measurements will provide enough

information to estimate the state. In this section, we prove that the presented system

for IMU-laser scanner localization is observable when three known planes (i.e., available

from the “as-built” or “as-designed” blueprints), whose normal vectors are linearly

independent, are concurrently observed by the laser scanner. Under this condition,

which is fulfilled in most practical scenarios (e.g., if the scan plane intersects two walls

and the floor), we can employ the pose estimation method described in Section 2.4

to estimate (GpI ,
I q̄G). For the purpose of observability analysis, we introduce two

new inferred measurements h∗1 and h∗2 that replace the laser scan measurements (2.22),
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(2.26):

I q̄G = h∗1(x) = ξ1(I`1,
I`2,

I`3) (2.50)

GpI = h∗2(x) = ξ2(I`1,
I`2,

I`3). (2.51)

The two functions ξ1 and ξ2 in (2.50) and (2.51) do not need to be known explicitly;

only their functional relation with the random variables, I q̄G and GpI , is required for

the observability analysis. Our approach uses the Lie derivatives [50] of the above

inferred measurements (2.50) and (2.51) for the system in (2.2)-(2.7), to show that the

corresponding observability matrix is full rank. For this purpose, we first rearrange

the nonlinear kinematic equations (2.2)-(2.7) in a suitable form for computing the Lie

derivatives:



I ˙̄qG

ḃg
Gv̇I

ḃa
GṗI


=



−1
2Ξ(I q̄G)bg

03×1

Gg−CT(I q̄G)ba

03×1

GvI


︸ ︷︷ ︸

f0

+



1
2Ξ(I q̄G)

03×3

03×3

03×3

03×3


︸ ︷︷ ︸

f1

ωm+



04×3

03×3

CT (I q̄G)

03×3

03×3


︸ ︷︷ ︸

f2

am , (2.52)

where ωm and am are considered the control inputs, and

Ξ(q̄) ,

[
q4I3 + bq×c
−qT

]
with q̄ =

[
q

q4

]
. (2.53)

Note also that f0 is a 16×1 vector, while f1 and f2 are matrices of dimensions 16×3.

In order to prove that the system is locally weakly observable, it suffices to show

that the observability matrix, whose rows comprise the gradients of the Lie derivatives

of the measurements h∗1 and h∗2 with respect to f0, f1, and f2 [see (2.52)], is full rank [50].

Since the measurement and kinematic equations describing the IMU-laser scanner lo-

calization are infinitely smooth, the observability matrix has an infinite number of rows.

However, to prove it is full rank, it suffices to show that a subset of its rows are lin-

early independent. The following matrix contains one such subset of rows whose linear
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independence can be easily shown using block Gaussian elimination [51]:

∇L0
f0

h∗1

∇L0
f0

h∗2

∇L1
f0

h∗1

∇L1
f0

h∗2

∇L2
f0

h∗2


=



I4 04×3 04×3 04×3 04×3

03×4 03×3 03×3 03×3 I3

X1 −1
2Ξ(I q̄G) 04×3 04×3 04×3

03×4 03×3 I3 03×3 03×3

X2 03×3 03×3 CT (I q̄G) 03×3


.

In this matrix, Lif0h
∗
j (x) denotes the i-th order Lie derivative of h∗j (x) with respect to

f0. The matrices X1 and X2 have dimensions 4× 4 and 3× 4, respectively, and do not

need to be computed explicitly since they will be eliminated by the block element (1, 1)

of the matrix, i.e., the identity matrix I4. Since Ξ(q̄) and C(q̄) are always full rank for

any unit quaternion q̄ [51], all the rows of the above matrix are linearly independent.

Hence, we conclude the observability analysis with the following lemma:

Lemma 1 Given line measurements corresponding to three known planes with linearly

independent normal vectors, the system describing the IMU-laser scanner localization is

locally weakly observable.

Simply put, as long as the laser scanner measures the walls, as well as the floor or ceiling,

the filter should be able to maintain an accurate estimate the pose of the person. As the

person moves through the environment, the laser scanner measures different planes over

time, leading to higher accuracy estimates. When the sensing platform stops moving,

we can apply zero velocity updates (see Section 2.3.4), to reduce drift.

2.6 IMU-Laser Scanner Extrinsic Calibration

The laser scan measurements must be transformed to the IMU frame before an EKF up-

date can be performed. In particular, in the orientation constraint (2.22), the measured

line direction L`⊥ that is registered in the laser scan frame, is expressed with respect

to the IMU frame, {I}. Similarly, in the distance constraint (2.26), the perpendicular

vector to the line direction, L`, is first transformed to the IMU frame. To perform these

transformations, we need to know (I q̄L,
IpL), i.e., the rotation and translation between

the IMU frame and the laser frame. If the transformation between the IMU and the

laser scanner is not precisely known, the constraints (2.22) and (2.26) will not hold,
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and updating the filter based on them can result in inconsistency and divergence of the

estimator.

Some methods exist in the literature for extrinsic laser scanner calibration (e.g.,

[52, 53]), however, these have primarily focused on recovering the relative orientation of

the sensor (i.e., roll, pitch, and yaw angles), and utilize GPS as an additional aid in the

calibration process. In contrast, we seek to compute the frame transformation between

the laser and IMU using only the sensors’ own motion and measurements to planes in

the environment.

To address this issue, we have employed a method similar to our previous work for

IMU-camera calibration [54] to calibrate the transformation between the IMU and the

laser scanner. For this purpose, we have included (IqL,
IpL) in the state vector of the

EKF, i.e.,

xaug =
[
I q̄TG bTg

GvTI bTa
GpTI | I q̄TL

IpTL | d1 · · · dN

]T
=
[
xTs | xTc | xTd

]T
. (2.54)

We augment the system equations (2.2)-(2.7) with

I ˙̄qTL = 0 , IṗTL = 0 (2.55)

which specify that the IMU-laser transformation is rigid and does not change with time.

We also extend (2.24) and (2.28) to include the corresponding Jacobians with respect

to the IpL and I q̄L. We do so by first writing the orientation and distance constraints

explicitly in terms of the laser-to-IMU transformation parameters (I q̄L,
IpL), i.e.,

z1 = GπTi CT(I q̄G) C(I q̄L) L`⊥ = 0 (2.56)

z2 = GπTi (GpI + CT (I q̄G) (IpL + ρ C(I q̄L)L`))− di = 0. (2.57)

The linearized error models for (2.56) and (2.57) are

z̃1 ' hT1,s x̃s + hT1,d x̃d + γT1 n` +
[
GπTi CT

(
I ˆ̄qG
)
bC
(
I ˆ̄qL
)
L`⊥m×c 01×3

]
x̃c

= hT1,s x̃s + hT1,c x̃c + hT1,d x̃d + γT1 n`, (2.58)

z̃2 ' hT2,s x̃s + hT2,d x̃d + γT2 n` +
[
GπTi CT

(
I ˆ̄qG
)
bC
(
I ˆ̄qL
)
ρL`m×c GπTi CT

(
I ˆ̄qG
)]

x̃c

= hT2,s x̃s + hT2,c x̃c + hT2,d x̃d + γT2 n`, (2.59)
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where the calibration error-state is x̃c =
[
IδθL

Ip̃TL

]T
, the Jacobians with respect to

the state and line parameters, hTi,s, hTi,d, γ
T
i , i = 1, 2, are defined in (2.24) and (2.28),

and the Jacobians with respect to the calibration parameters, hTi,c, i = 1, 2 are implicitly

defined in (2.58) and (2.59).

The key idea for IMU-laser calibration is to estimate the augmented state xaug while

in a known or unknown environment with at least three perpendicular walls. Note that

since there is not enough information to estimate the calibration from a single viewpoint,

we must employ a “motion-induced” calibration strategy. In particular, based on a

Lie derivative analysis of the system observability properties (see Section 2.5, as well

as [51, 54]), we have shown that the IMU-laser calibration parameters are observable

when at least two rotations are performed about different axes, but we omit the details

here for brevity. We move the sensor package and collect data until a satisfactory level

of accuracy for the calibration parameters (based on the 3σ bounds computed from the

estimated covariance matrix) has been achieved. The results of our on-line calibration

process, obtained while exploring an unknown area, are presented in Section 2.7.3.

2.7 Experimental Results

Our proposed IMU-laser localization and mapping algorithm was evaluated with a sens-

ing package comprised of a solid-state ISIS IMU operating at 100 Hz and a SICK LMS200

laser scanner operating at 10 Hz, mounted on a navigation box to log data. These sensors

were interfaced to a laptop via RS-232 which recorded the time-stamped measurements.

The data-logging software was implemented in C++, whereas the EKF was written in

Matlab.

2.7.1 Navigation in a known environment

During the first experiment we tested the navigation algorithm in a known environ-

ment along a trajectory loop of 120 m in length.3 The motion profile of the sensor

platform contained instantaneous stationary time periods to allow for zero-velocity up-

dates. These updates cause small reductions in the position estimate’s covariance [see

Fig. 2.5(a)]. Larger reductions in the covariance take place whenever the laser scanner

3 Video available at http://mars.cs.umn.edu/videos/IMU-Laser.m4v
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Figure 2.2: (a) 3D view of the estimated trajectory. The sensing package was initially
placed on the ground for the purpose of IMU-bias initialization, and subsequently picked
up and carried in a clock-wise loop of 120 m in length through the building hallways.
(b) Top-view of the estimated 3D trajectory during an 8.5 min experiment. The red
circle indicates the starting position (on the floor), and the dashed red lines indicate
the walls which were included in the building map.

detects three planes whose normal vectors are linearly independent (e.g., two perpen-

dicular walls and the ceiling) within a short period of time; an event that typically

occurs at hallway intersections (e.g., t = 49 sec). The a priori known map, available

from the building blueprints, contained 9 walls and the ceiling. Employing this map,

nearly 12, 000 measurement updates were performed during the 8.5 minute trial. The

combination of the laser measurements and zero-velocity updates allowed the filter to

maintain a precise pose estimate of the sensor platform. Specifically, the maximum un-

certainty in the position estimates was 9.16 cm (1σ), while the maximum uncertainty in

the attitude estimates was 0.1 deg (1σ) [see Fig. 2.5(a) and Fig. 2.5(b)]. The final posi-

tion uncertainty was
[
27.5 1.2 1.3

]
cm (3σ). Note that the x-direction uncertainty is

larger in the final corridor, since no planes are observed that provide information along

the x-axis.
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2.7.2 Navigation in a previously unknown environment

We conducted a second experiment in a previously unknown indoor environment, along a

closed-loop path of approximately 270 m in length (see Fig. 2.4(a) and Fig. 2.4(b)). The

3D trajectory covered two floors of Akerman Hall at the University of Minnesota, which

included traversing two stairways and a ramp. The environment contained a multitude

of clutter (e.g., trash cans, open and closed doors, storage boxes, and furniture), as

well as normal pedestrian traffic flow. Despite the large amount of non-planar objects

observed by the laser scanner, our localization aid accurately captured the 3D layout of

the building, which in turn enabled precise localization.

During the experiment, as in the known map case, the motion profile of the sen-

sor platform contained instantaneous stationary time periods to allow for zero-velocity

updates. These updates caused small reductions in the position estimates’ covariance

[see Fig. 2.5(a)]. Larger reductions in the covariance occurred whenever an estimated

structural plane was re-detected (e.g., t = 555 sec, x-axis update). The trajectory was

accurately tracked, with an average position uncertainty of 3.18 cm (1σ), and an average

attitude uncertainty of 0.02 deg (1σ) [see Fig. 2.5(a) and Fig. 2.5(b)]. The final position

uncertainty after loop closure was
[
2.29 6.84 0.43

]
cm (1σ). In addition to tracking

the six-d.o.f. pose of the person, a map was constructed which contained 16 walls and

the ceilings of both building levels (see Fig. 2.4(a) and Fig. 2.4(b)). The uncertainty of

the least accurately estimated distance to a wall was 4.57 cm (1σ), whereas the average

uncertainty for all planes was 1.51 cm (1σ). The quality of the map and trajectory

estimates is due to more than 19, 000 measurement updates that were performed during

the 13 minute trial.

2.7.3 Extrinsic laser-to-IMU calibration

We now present the results of our extrinsic laser-to-IMU calibration process. Follow-

ing the procedure of Section 2.6, we augmented the state vector with the laser-to-IMU

transformation {I q̄L, IpL}, and concurrently estimated these parameters while navigat-

ing in a previously unknown building (see Section 2.7.2). We note that calibration can

be made more accurate and converge faster if completed during a separate initialization

phase in an environment with perfectly known planes; however, our algorithm performs
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accurately in both scenarios.

Figures 2.6(a) and 2.6(b) depict the results for the position and orientation esti-

mates, respectively. In order to demonstrate the consistency of the calibration process,

we compute the error of the estimates with respect to the final estimate, along with

the corresponding 3σ bounds. We note that since this is an experimental trial, it is

impossible to know the true value of the rotation and translation between the laser and

IMU; however, the obtained results match closely with the best estimates that we could

achieve through hand-measured techniques. The estimated laser-to-camera translation

vector was IpL =
[
25.91 −3.13 −13.42

]
cm, and the estimated orientation was 177.44

deg in roll, 67.4 deg in pitch, and -2.29 deg in yaw, which we converted from quaternion

to roll-pitch-yaw convention for ease of presentation. The most uncertain axis for po-

sition was 1.47 cm (3σ) along z, while the most uncertain axis for orientation was 0.11

deg (3σ) about y.

2.8 Summary

This chapter presented a novel LINS, based on a 2D laser scanner and an IMU, capable

of 3D localization and mapping in indoor environments. In the proposed method, the

orthogonal structural planes of the building are employed as landmarks to aid in local-

ization. Since the building layout may be partially or completely unknown, the planes’

parameters are estimated concurrently with the six-d.o.f. pose of the person. To this

end, an EKF is utilized to fuse information from an IMU and a 2D laser scanner, and

estimate the person’s motion, and the building’s structural planes. We presented a prac-

tical method for filter initialization using line-to-plane correspondences to initialize the

orientation and zero-velocity updates to initialize the IMU bias estimates. Furthermore,

we studied the observability properties of the system to determine a sufficient condition

on the number and type of measurements so as to ensure the pose can be estimated.

As a final contribution of this chapter, we proposed a laser-to-IMU calibration method

which is capable of on-line estimation of the laser-to-IMU transformation. The validity

of the proposed method is demonstrated in experimental trials in both previously known

and unknown environments, which include challenging 3D building structures such as

staircases, a disability access ramp, and long corridors. Furthermore, the environments
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contained a typical amount of office clutter (e.g., chairs and desks) as well as pedestrian

traffic.



38

0 100 200 300 400 500
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

tr
(P

) 
(m

2
)

Time (sec)

(a)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

tr
(P

) 
(r

a
d

2
)

Time (sec)

(b)

Figure 2.3: (a) The trace of the position covariance. During the run, the maximum
uncertainty along any axis was 9.16 cm. (1σ). (b) The trace of the attitude covariance.
During the run, the maximum uncertainty about any axis was 0.1 deg. (1σ).
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Figure 2.4: (a) As the person walks with the sensing package, the filter estimates their
3D trajectory as well as a 3D representation of the unknown environment comprised of
planar features. A side-view of the estimated 270 m trajectory is shown, which covers
two floors of the building. The estimated walls on the first and second floors are depicted,
but the estimated ceiling and floor planes have been omitted for clarity of presentation.
(b) A top-view of the estimated 3D trajectory during the 13 min experiment. The
total length of the trajectory is 270 m. The trajectory starts on the first floor (bottom
figure), climbs up the disability ramp and the front stairs (picture A), and traverses
the corridors (picture B) of the second floor clockwise (top figure). Subsequently, it
descends back to the first floor on the second staircase (picture C), and traverses the
first floor (bottom figure) counter clockwise, returning to the origin. Picture D shows
the curved intersection of the two corridors where no wall was detected. The estimated
walls are depicted in blue, and the ceiling and floor have been omitted for clarity of
presentation.
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Figure 2.5: (a) The 1σ for the x, y, and z axes. During the run, the maximum uncer-
tainty along any axis was 43.94 cm (1σ), while the average 1σ for the least accurate
axis was 5.16 cm. (b) The 1σ for the roll, pitch, and yaw angles computed from the
angle-error covariance. During the run, the maximum uncertainty about any axis was
0.06 deg. (1σ).
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Figure 2.6: (a) The relative-translation error (computed versus the final estimate) and
the corresponding 3σ bounds for the laser-to-IMU translation vector. The final uncer-
tainties were 0.54 cm along x, 0.76 cm along y, and 1.47 cm along z (3σ). The final
translation estimate was IpL = [25.91 − 3.13 − 13.42]T cm, which agrees with our
best hand-measured estimates. (b) The relative-orientation error (computed versus the
final estimate) and the corresponding 3σ bounds for the laser-to-IMU rotation I q̄L. The
final uncertainties were 0.02 deg in roll, 0.11 deg in pitch, and 0.08 deg in yaw (3σ).
The final orientation estimate was 177.44 deg in roll, 67.4 deg in pitch, and -2.29 deg
in yaw (converted from quaternion to roll-pitch-yaw convention), which agrees with our
best hand-measured estimates.



Chapter 3

Observability-constrained

Vision-aided Inertial Navigation

3.1 Introduction

Wide adoption of robotic technologies hinges on the ability of robots to freely navigate

in our human-centric world. To do so, robots must maintain an accurate estimate of

their six-degrees-of-freedom (d.o.f.) position and orientation (pose) as they navigate in

3D. Ideally, a localization algorithm should work seamlessly outdoors and indoors. This

unfortunately prohibits reliance on GPS, since coverage is not available everywhere.

For this reason, researchers have focused on designing localization methods that fuse

onboard sensor data to estimate the robot’s ego motion.

Tracking 3D motion can be accomplished by integrating the rotational velocity and

linear acceleration signals provided by an Inertial Measurement Unit (IMU). However,

due to integration of sensor noise and bias, pose estimates based on IMU data alone

will quickly accumulate errors. To reduce the impact of these errors, so-called aided In-

ertial Navigation Systems (INS) have been proposed. Laser-aided INS (LINS) methods

typically rely on the existence of structural planes [25] or height invariance in semi-

structured spaces [55], and are not easily generalizable to cluttered or unstructured

environments. On the other hand, Vision-aided INS (VINS) approaches, which fuse

data from a camera and an IMU, can operate in both structured and unstructured ar-

eas. VINS methods have the additional benefit that both inertial and visual sensors are

42
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lightweight, inexpensive (available in most mobile devices today), and passive, hence

requiring a smaller power budget compared to LINS.

Existing work on VINS has employed a number of different estimators such as the

Extended Kalman Filter (EKF) [22, 56, 49], the Unscented Kalman Filter (UKF) [57],

and Batch-least Squares (BLS) [58]. Non-parametric estimators, such as the Particle

Filter (PF), have also been used for visual-inertial odometry (e.g., [59, 60]). However,

these have focused on the reduced problem of estimating a 2D robot pose, since the

number of particles required is exponential in the size of the state vector. Within

these works, a number of challenging issues have been addressed, such as reducing the

computational cost of VINS [49, 61], dealing with delayed measurements [62], increasing

the accuracy of feature initialization and estimation [63], and improving the robustness

to estimator initialization errors [64]. Only limited attention, however, has been devoted

to understanding how estimator inconsistency affects VINS.1 The work described in

this chapter, addresses this limitation through the following three main contributions:

• We introduce a novel methodology for identifying the unobservable modes of a

nonlinear system. Contrary to previous methods [50] that require investigating

an infinite number of Lie derivatives, our approach employs a factorization of the

observability matrix, according to the observable and unobservable modes, and

only requires computing a finite number of Lie derivatives.

• We apply our method to VINS and determine its unobservable directions, provid-

ing their analytical form as functions of the system states.

• We leverage our results to improve the consistency and accuracy of VINS, and

extensively validate the proposed estimation framework both in simulations and

real-world experiments.

The rest of this chapter is organized as follows: We begin with an overview of the

related work (Section 3.2). In Section 3.3, we describe the system and measurement

models used in VINS. Subsequently, we introduce our methodology for analyzing the

observability properties of unobservable nonlinear systems (Section 3.4), which we lever-

age for determining the unobservable directions of the VINS model (Section 3.5). In

1 As defined in [7], a state estimator is consistent if the estimation errors are zero-mean and have
covariance equal to the one calculated by the filter.
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Section 3.6, we present an overview of the analogous observability properties for the

linearized system employed for estimation purposes, and show how linearization errors

can lead to a violation of the observability properties, gain of spurious information, and

estimator inconsistency. We propose an estimator modification to mitigate this issue in

Section 3.6.3, and validate our algorithm in simulations and experimentally (Sections 3.7

and 3.8). Finally, we provide our concluding remarks and outline our future research

directions in Section 3.9.

3.2 Related Work

The interplay between a nonlinear system’s observability properties and the consistency

of the corresponding linearized estimator has become a topic of increasing interest within

the robotics community in recent years. Huang et al. [9, 10, 11] first studied this con-

nection for 2D Simultaneous Localization and Mapping (SLAM) and extended their

work to 2D cooperative multi-robot localization. In both cases, they proved that a

mismatch exists between the number of unobservable directions of the true nonlinear

system and the linearized system used for estimation purposes. Specifically, the esti-

mated (linearized) system has one-fewer unobservable direction than the true system,

allowing the estimator to surreptitiously gain spurious information along the direction

corresponding to global orientation.

Extending this analysis to 3D VINS is a formidable task, most notably since the

VINS system state has 15 d.o.f. instead of 3. Some authors have attempted to avoid this

complexity by using abstract models (e.g., by assuming a 3D odometer that measures

6-d.o.f. pose displacements [65]); though these approaches cannot be easily extended

to the VINS. The observability properties of VINS have been examined for a variety of

scenarios. For example, Mirzaei and Roumeliotis [54] as well as Kelly and Sukhatme [66]

have studied the observability properties of IMU-camera extrinsic calibration using Lie

derivatives [50]. The former analysis, however, relies on known feature coordinates,

while the latter employs an inferred measurement model (i.e., assuming the camera

observes its pose in the world frame, up to scale), which requires a non-minimal set

of visual measurements. This limitation is also shared by Weiss [67], who employs

symbolic/numeric software tools, rather than providing an analytical study.
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Jones and Soatto [63] investigated VINS observability by examining the indistin-

guishable trajectories of the system [68] under different sensor configurations (i.e., in-

ertial only, vision only, vision and inertial). Their analysis, however, is restrictive due

to: (i) the use of a stochastic tracking model (constant translational jerk and rotational

acceleration), which cannot adequately describe arbitrary trajectories, and (ii) consid-

ering the IMU biases to be known, which is a limiting assumption. They conclude that

the VINS state is observable, if the 6 d.o.f. of the first frame are fixed (e.g., by following

the approach in [69]). As a result, their analysis does not provide an explicit form of

the unobservable directions, nor does it fully characterize the observability properties

of rotation (i.e., that yaw is unobservable).

Finally, Martinelli [70] used the concept of continuous symmetries to show that the

IMU biases, 3D velocity, and absolute roll and pitch angles are observable for VINS. In

this case, the unobservable directions are determined analytically for the special case of

a single point feature located at the origin, but the unobservable directions for the case

of multiple points are not provided. More importantly, however, among these VINS

observability studies, no one has examined the link between observability and estimator

consistency, or used their observability study to bolster estimator performance.

We presented preliminary results on VINS observability at the International Work-

shop on the Algorithmic Foundations of Robotics [71] and the International Symposium

on Experimental Robotics [72], focussing on analytically showing the observability prop-

erties of the nonlinear system and the linearized system used for estimation purposes.

Li and Mourikis [73, 74] have also presented an investigation of estimator inconsis-

tency utilizing linearized observability analysis of a bias-free VINS model. Based on

their findings, they leveraged the First-Estimates Jacobian (FEJ) methodology of [9] to

reduce the impact of inconsistency in Visual-Inertial Odometry (VIO). In contrast, our

observability analysis encompasses both the nonlinear and linearized systems, using the

full VINS state (i.e., including IMU biases). Furthermore, the implementation of our ap-

proach is more flexible since any linearization method can be employed (e.g., computing

Jacobians analytically, numerically, or using sample points) by the estimator.

In what follows, we analytically determine the observability properties of both the
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nonlinear VINS model and its linearized counterpart to prove that they have four unob-

servable degrees of freedom, corresponding to three-d.o.f. global translations and one-

d.o.f. global rotation about the gravity vector. Then, we show that due to linearization

errors, the number of unobservable directions is reduced in a standard EKF-based VINS

approach, allowing the estimator to gain spurious information and leading to inconsis-

tency. Finally, we propose a solution for reducing estimator inconsistency in VINS that

is general, and can be directly applied in a variety of linearized estimation frameworks

such as the EKF and UKF both for Visual SLAM (V-SLAM) and VIO.

3.3 VINS Estimator Description

Figure 3.1: The pose of the camera-IMU frame {I} with respect to the global frame
{G} is expressed by the position vector GpI and the quaternion of orientation I q̄G. The
observed feature is expressed in the global frame by its 3× 1 position coordinate vector
Gpf , and in the sensor frame by Ipf = C (I q̄G) (Gpf − GpI).

We begin with an overview of the VINS propagation and measurement models,

and describe the EKF employed for fusing the camera and IMU measurements. In the

following analysis, we consider the general case, in which the system state contains both

the sensor platform state (i.e., pose, velocity, and IMU biases) and the observed features.

However, it is important to note that the same analysis applies to VINS applications

that do not explicitly estimate a map of the environment, such as VIO [49].
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3.3.1 System State and Propagation Model

The system state comprises the IMU pose and linear velocity together with the time-

varying IMU biases and a map of visual features. The (16 + 3N)× 1 state vector is

x =
[
I q̄TG bTg

GvTI bTa
GpTI | GpTf1

· · · GpTfN

]T
=
[
xTs | xTm

]T
, (3.1)

where xs(t) is the 16 × 1 sensor platform state, and xm(t) is the 3N × 1 state of the

map. The first component of the sensor platform state, I q̄G(t), is the unit quaternion

representing the orientation of the global frame {G} in the IMU frame, {I}, at time t (see

Fig. 3.1). The frame {I} is attached to the IMU, while {G} is a local-vertical reference

frame whose origin coincides with the initial IMU position. The sensor platform state

also includes the position and velocity of {I} in {G}, denoted by the 3 × 1 vectors

GpI(t) and GvI(t), respectively. The remaining components are the biases, bg(t) and

ba(t), affecting the gyroscope and accelerometer measurements, which are modeled

as random-walk processes driven by the zero-mean, white Gaussian noise nwg(t) and

nwa(t), respectively. The map, xm, comprises N visual features Gpfi , i = 1, . . . , N .

Note that for the case of VIO, the features are not stored in the state vector, but can

be processed and marginalized on-the-fly [49] (see Section 3.3.2). With the state of

the system now defined, we turn our attention to the continuous-time kinematic model

which governs the time evolution of the system state.

Continuous-time model

The system model describing the time evolution of the state is (see [75, 76]):

I
G

˙̄q(t) =
1

2
Ω(ω(t))I q̄G(t) (3.2)

GṗI(t) = GvI(t) (3.3)

Gv̇I(t) = GaI(t) (3.4)

ḃg(t) = nwg(t) (3.5)

ḃa(t) = nwa(t) (3.6)

Gṗfi(t) = 03×1 , i = 1, . . . , N. (3.7)
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In these expressions, ω(t) = [ω1(t) ω2(t) ω3(t)]T is the rotational velocity of the IMU,

expressed in {I}, GaI(t) is the body acceleration expressed in {G}, and

Ω(ω) =

[
−bω×c ω

−ωT 0

]
, bω×c ,


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
The gyroscope and accelerometer measurements, ωm and am, are modeled as

ωm(t) = ω(t) + bg(t) + ng(t)

am(t) = C(I q̄G(t)) (GaI(t)− Gg) + ba(t) + na(t),

where ng and na are zero-mean, white Gaussian noise processes, and Gg is the grav-

itational acceleration. The matrix C(q̄) is the rotation matrix corresponding to q̄.

The observed features belong to a static scene, hence, their time derivatives are zero

[see (3.7)]. Linearizing at the current estimates and applying the expectation operator

on both sides of (3.2)-(3.7), we obtain the state estimate propagation model

I
G

˙̄̂q(t) =
1

2
Ω(ω̂(t))IG ˆ̄q(t) (3.8)

G ˙̂pI(t) = Gv̂I(t) (3.9)

G ˙̂vI(t) = CT (IG ˆ̄q(t)) âI(t) + Gg (3.10)

˙̂
bg(t) = 03×1 (3.11)

˙̂
ba(t) = 03×1 (3.12)

G ˙̂pfi (t) = 03×1 , i = 1, . . . , N, (3.13)

where âI(t) = am(t)− b̂a(t), and ω̂(t) = ωm(t)− b̂g(t). The (15 + 3N) × 1 error-state

vector is defined as

x̃ =
[
IδθTG b̃Tg

GṽTI b̃Ta
Gp̃TI | Gp̃Tf1

· · ·G p̃TfN

]T
=
[
x̃Ts | x̃Tm

]T
,

where x̃s(t) is the 15×1 error state corresponding to the sensing platform, and x̃m(t) is

the 3N × 1 error state of the map. For the IMU position, velocity, biases, and the map,

an additive error model is employed (i.e., ỹ = y − ŷ is the error in the estimate ŷ of a
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quantity y). However, for the quaternion we employ a multiplicative error model [76].

Specifically, the error between the quaternion q̄ and its estimate ˆ̄q is the 3×1 angle-error

vector, δθ, implicitly defined by the error quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

T 1
]T
,

where δq̄ describes the small rotation that causes the true and estimated attitude to

coincide. This allows us to represent the attitude uncertainty by the 3 × 3 covariance

matrix E[δθδθT ], which is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x =

[
Fs 015×3N

03N×15 03N

]
x̃ +

[
Gs

03N×12

]
n

= Fc x̃ + Gc n (3.14)

where 03N denotes the 3N × 3N matrix of zeros, n =
[
nTg nTwg nTa nTwa

]T
is the

system noise, Fs is the continuous-time error-state transition matrix corresponding to

the sensor platform state, and Gs is the continuous-time input noise matrix, i.e.,

Fs =



−bω̂×c −I3 03 03 03

03 03 03 03 03

−CT (IG ˆ̄q)bâI ×c 03 03 −CT (IG ˆ̄q) 03

03 03 03 03 03

03 03 I3 03 03



Gs =



−I3 03 03 03

03 I3 03 03

03 03 −CT (IG ˆ̄q) 03

03 03 03 I3

03 03 03 03


where 03 is the 3 × 3 matrix of zeros. The system noise is modelled as a zero-mean

white Gaussian process with autocorrelation E[n(t)nT (τ)] = Qcδ(t− τ) which depends

on the IMU noise characteristics and is computed off-line [76].
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Discrete-time implementation

The IMU signals ωm and am are sampled at a constant rate 1/δt, where δt , tk+1 − tk.
Every time a new IMU measurement is received, the state estimate is propagated using

numerical integration of (3.8)–(3.13). In order to derive the covariance propagation

equation, we compute the discrete-time state transition matrix, Φk+1,k, from time-step

tk to tk+1, as the solution to the following matrix differential equation:

Φ̇k+1,k = FcΦk+1,k (3.15)

initial condition Φk,k = I15+3N

which can be calculated analytically as we show in [77] or numerically. We also compute

the discrete-time system noise covariance matrix, Qd,k,

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T
cΦT (tk+1, τ)dτ.

The propagated covariance is then computed as

Pk+1|k = Φk+1,kPk|kΦ
T
k+1,k + Qd,k. (3.16)

3.3.2 Measurement Update Model

As the camera-IMU platform moves, the camera observes visual features which are

tracked over multiple image frames. These measurements are exploited to estimate the

motion of the sensing platform and (optionally) the map of the environment.

To simplify the discussion, we consider the observation of a single point pfi . The

camera measures zi, which is the perspective projection of the 3D point Ipfi expressed

in the current IMU frame {I}, onto the image plane, i.e.,

zi =
1

pz

[
px

py

]
+ ηi, (3.17)

where


px

py

pz

 = Ipfi = C (IqG) (Gpfi −
GpI) , (3.18)

where the measurement noise, ηi, is modeled as zero mean, white Gaussian with covari-

ance Ri. We note that, without loss of generality, we consider the image measurement
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in normalized pixel coordinates, and define the camera frame to be coincident with

the IMU. In practice, we perform both intrinsic and extrinsic camera-IMU calibration

off-line [54, 78].

The linearized error model is

z̃i = zi − ẑi ' Hi x̃ + ηi, (3.19)

where ẑ = h (x̂) is the expected measurement computed by evaluating (3.17)-(3.18) at

the current state estimate, and the measurement Jacobian, Hi, is

Hi = Hc

[
Hθ 03×9 Hp | 03 · · · Hfi · · · 03

]
(3.20)

where the partial derivatives are

Hc =
∂h

∂Ipfi
=

1

p2
z

[
pz 0 −px
0 pz −py

]

Hθ =
∂Ipfi
∂θ

= bC (I q̄G) (Gpfi −
GpI) ×c

Hp =
∂Ipfi
∂GpI

= −C (I q̄G)

Hfi =
∂Ipfi
∂Gpfi

= C (I q̄G)

i.e., Hc, is the Jacobian of the perspective projection with respect to Ipfi , while Hθ,

Hp, and Hfi , are the Jacobians of Ipfi with respect to IqG, GpI , and Gpfi , respectively.

This measurement model is used, independently of whether the map of the envi-

ronment xm is part of the state vector (V-SLAM) or not (VIO). Specifically, for the

case of V-SLAM, when features that are already mapped are observed, the measure-

ment model (3.17)-(3.20) can be directly applied to update the filter. In particular, we

compute the measurement residual,

ri = zi − ẑi

the covariance of the residual,

Si = HiPk+1|kHi
T + Ri
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and the Kalman gain,

Ki = Pk+1|kHi
TS−1

i .

Employing these quantities, we compute the EKF state and covariance update as

x̂k+1|k+1 = x̂k+1|k + Ki ri

Pk+1|k+1 = Pk+1|k −Ki Si K
T
i .

When features are first observed in V-SLAM, we initialize them into the feature map.

To accomplish this, we compute an initial estimate, along with covariance and cross-

correlations, by solving a bundle-adjustment over a short time window [77]. Finally,

for the case of VIO, the map is not estimated explicitly; instead we use the Multi-

State Constraint Kalman Filter (MSC-KF) approach [49] to impose a filter update

constraining all the views from which a feature was seen. To accomplish this, we employ

stochastic cloning [79] over a window of M camera poses.

3.4 Nonlinear System Observability Analysis

In this section, we provide a brief overview of the method in [50] for studying the ob-

servability of nonlinear systems and then introduce a new methodology for determining

its unobservable directions.

3.4.1 Observability Analysis with Lie Derivatives

Consider a nonlinear, continuous-time system:{
ẋ = f0(x) +

∑`
i=1 fi(x)ui

z = h(x)
(3.21)

where u =
[
u1 . . . u`

]T
is the control input, x =

[
x1 . . . xm

]T
is the state vector,

z is the output, and the vector functions fi, i = 0, . . . , `, comprise the process model.

Our objective is to study the observability properties of the system and to determine

the directions in state-space that the measurements provide information. To this end,
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we compute the Lie derivatives of the system. The zeroth-order Lie derivative of the

measurement function h is defined as the function itself [50]:

L0h = h(x).

Each subsequent Lie derivative is formed recursively from the definition of L0h. Specif-

ically, for any i-th-order Lie derivative, Lih, the (i + 1)-th-order Lie derivative Li+1
fj

h

with respect to a process function fj is computed as:

Li+1
fj

h = ∇Lih · fj ,

where ∇Lih denotes the span of the i-th-order Lie derivative, i.e.,

∇Lih =
[
∂Lih
∂x1

∂Lih
∂x2

. . . ∂Lih
∂xm

]
.

In order to determine the directions along which information can be acquired, we

examine the span of the Lie derivatives. We do this by forming the observability matrix,

O, whose block-rows comprise the spans of the Lie derivatives of the system, i.e.,

O =



∇L0h

∇L1
fi
h

∇L2
fifj

h

∇L3
fifjfk

h
...


where i, j, k = 1, . . . , `. Based on [50], to prove that a system is observable, it suffices

to show that a submatrix of O comprising a subset of its rows is of full column rank.

In contrast, to prove that a system is unobservable and find its unobservable directions,

we need to: (i) Show that the infinitely many block rows of O can be written as a linear

combination of a subset of its block rows, which form a submatrix O′; (ii) Find the

nullspace of O′ in order to determine the system’s unobservable directions. Although

accomplishing (ii) can be straightforward for certain systems, achieving (i) is extremely

challenging especially for high-dimensional systems, such as the one describing VINS.

To address this issue, in the following section, we present a new methodology that

relies on a change of variables for proving that a system is unobservable and finding its

unobservable directions.
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3.4.2 Observability Analysis with Basis Functions

In order to gain intuition for the following derivations, we provide a brief overview of

the motivation for this methodology. As stated in the previous section, following the

approach of [50] for analyzing the observability properties of a nonlinear system is quite

challenging. The main issue is that we must analytically compute the nullspace of a

matrix with an infinite number of rows (since there are infinitely many Lie derivatives).

However, our analysis can be significantly simplified if we can find a process for decom-

posing the observability matrix into a product of two matrices: (i) a full-rank matrix

with infinitely many rows, and (ii) a rank-deficient matrix with only a limited number of

rows. In what follows, we show how to achieve such a factorization of the observability

matrix, by computing a set of basis functions of the state, which comprise its observable

modes.

We start by proving the following:

Theorem 1: Assume that there exists a nonlinear transformation

β(x) =
[
β1(x)T . . . βt(x)T

]T
. These bases are functions of the variable x in (3.21),

and the number of basis elements, t, is defined so as to fulfill:

(C1) β1(x) = h(x);

(C2) ∂β
∂x · fi, i = 0, . . . , ` is a function of β;

(C3) The system: {
β̇ = g0(β) +

∑`
i=1 gi(β)ui

z = h = β1

(3.22)

where gi(β) = ∂β
∂x fi(x), i = 0, . . . , `, is observable.

Then:

(i) The observability matrix of (3.21) can be factorized as:

O = Ξ ·B,

where Ξ is the observability matrix of system (3.22) and B , ∂β
∂x

(ii) null(O) = null(B)

Proof:

(i) Based on the chain rule, the span of any Lie derivative ∇Lih can be written as:

∇Lih =
∂Lih

∂x
=
∂Lih

∂β

∂β

∂x
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Thus, the observability matrix O of (3.21) can be factorized as:

O =



∇L0h

∇L1
fi
h

∇L2
fifj

h

∇L3
fifjfk

h
...


=



∂L0h
∂β

∂L1
fi

h

∂β
∂L2

fifj
h

∂β
∂L3

fifj fk
h

∂β
...


∂β

∂x
= Ξ ·B (3.23)

Next we prove that Ξ is the observability matrix of the system (3.22) by induction.

To distinguish the Lie derivatives of system (3.21), let I denote the Lie derivatives

of system (3.22). Then, the span of its zeroth-order Lie derivative is:

∇I0h =
∂h

∂β
=
∂L0h

∂β

which corresponds to the first block row of Ξ.

Assume that the span of the i-th-order Lie derivative of (3.22) along any direction

can be written as ∇Iih = ∂Lih
∂β , which corresponds to a block row of Ξ. Then the

span of the (i+ 1)-th-order Lie derivative ∇Ii+1
gj h along the process function gj can be

computed as:

∇Ii+1
gj h =

∂Ii+1
gj h

∂β
=
∂(∇Iih · gj)

∂β
=
∂(∂L

ih
∂β ·

∂β
∂x fj(x))

∂β

=
∂(∂L

ih
∂x · fj(x))

∂β
=
∂Li+1

fj
h

∂β

which is also a block row of Ξ. Therefore, we conclude that Ξ is a matrix whose rows

are the span of all the Lie derivatives of system (3.22), and thus it is the observability

matrix of system (3.22). �

(ii) From O = Ξ B, we have null(O) = null(B) + null(Ξ) ∩ range(B) (see (4.5.1)

in [80]). Moreover, from condition (C3) system (3.22) is observable, and Ξ is of full

column rank. Therefore null(O) = null(B). �

Based on Theorem 1, the unobservable directions can be determined with signifi-

cantly less effort. Specifically, to find a system’s unobservable directions, we first need

to define the basis functions that satisfy conditions (C1) and (C2), and prove that

matrix Ξ is of full column rank, which is condition (C3). Once all the conditions are
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satisfied, the unobservable directions of (3.21) correspond to the nullspace of matrix B,

which has finite dimensions and thus is fairly easy to find.

In the following sections, we will leverage Theorem 1 to prove that the VINS model

is unobservable and find its unobservable directions. To do this, in Section 3.5.1 we first

review the VINS model. In Section 3.5.2, we find the set of basis functions that satisfy

conditions (C1) and (C2) of Theorem 1, and construct the basis functions’ system as

in (3.22) for this particular problem. In Section 3.5.3, we prove that the observability

matrix Ξ for the basis functions’ system is of full column rank, which is condition (C3)

of Theorem 1. Lastly, we determine the unobservable directions of the VINS model by

finding the nullspace of matrix B.

3.5 Observability Analysis of the VINS Model

In this section, we present the observability analysis for the VINS model using basis

functions.

3.5.1 Revisiting the System Model

For the purpose of simplifying the observability analysis, we express the IMU orientation

using the Cayley-Gibbs-Rodriguez (CGR) parameterization [81], which is a minimal

representation. Specifically, the orientation of {G} with respect to {I} is the 3 × 1

vector of CGR parameters, IsG. Hence, we rewrite (3.1) as

x =
[
IsTG bTg

GvTI bTa
GpTI

GpTf

]T
.

The time evolution of IsG is

I ṡG(t) = D (Iω(t)− bg(t)) (3.24)

where D ,
∂s

∂θ
=

1

2

(
I3 + bs×c+ ssT

)
. (3.25)

3.5.2 Determining the System’s Basis Functions

In this section, we define the basis functions for the VINS model that satisfy conditions

(C1), (C2) of Theorem 1. We achieve this by applying (C1) to obtain β1 and recursively

employing (C2) to define the additional elements βj , j = 2, . . . , 6. We note that at each
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step of this process there may be multiple options for selecting βj , and we mitigate this

by favoring bases that have a meaningful physical interpretation. After determining the

bases, we present the model of the corresponding system (3.44), and show that it is

observable in the next section.

To preserve the clarity of presentation, we retain only a few of the subscripts and

superscripts in the state elements and write the system state vector as:

x =
[
sT bTg vT bTa pT pTf

]T
.

The VINS model [see (3.2)-(3.7), (3.17)-(3.18), and (3.24)] is expressed in input-affine

form as: 

ṡ

ḃg

v̇

ḃa

ṗ

ṗf


=



−D bg

03×1

g −CTba

03×1

v

03×1


︸ ︷︷ ︸

f0

+



D

03

03

03

03

03


︸ ︷︷ ︸

f1

ω +



03

03

CT

03

03

03


︸ ︷︷ ︸

f2

a (3.26)

z =
1

pz

[
px

py

]
, where


px

py

pz

 = Ipf = C (pf − p) (3.27)

and C , C(s). Note that f0 is an 18×1 vector, while f1 and f2 are both 18×3 matrices

which is a compact way for representing three process functions:

f1ω = f11 · ω1 + f12 · ω2 + f13 · ω3

f2a = f21 · a1 + f22 · a2 + f23 · a3.

Using this model, we define the bases for this system by applying the conditions of The-

orem 1. Specifically, we (i) select β1 as the measurement function z, and (ii) recursively

determine the remaining bases so that
∂βj
∂x · fi can be expressed in terms of β for all the

process functions. Note also that the definition of the bases is not unique, any basis

functions that satisfy the conditions of Theorem 1 span the same space.
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The first basis is defined as the measurement function:

β1 , h (x) =
1

pz

[
px

py

]
.

In order to compute the remaining basis elements, we must ensure that the properties

of Theorem 1 are satisfied. We do so by applying (C2) to β1.

Satisfying Condition (C2) of Theorem 1 for β1

We start by computing the span of β1 with respect to x, i.e.,

∂β1

∂x
=
[
∂β1

∂θ
∂θ
∂s

∂β1

∂bg
∂β1

∂v
∂β1

∂ba
∂β1

∂p
∂β1

∂pf

]
=

 1
pz

0 −px
p2
z

0 1
pz
−py
p2
z


︸ ︷︷ ︸

∂h

∂Ipf

[
bIpf ×c∂θ∂s 03 03 03 −C C

]
︸ ︷︷ ︸

∂Ipf
∂x

(3.28)

where ∂θ
∂s = D−1 [see (3.25)]. Once the span of the first basis function β1 is obtained,

we project it onto all the process functions, f0, f1, and f2 [see (3.26)], in order to

determine the other basis functions that satisfy condition (C2) of Theorem 1. During

this procedure, our aim is to ensure that every term in the resulting product is a function

of the existing basis elements. Whenever a term cannot be expressed by the previously

defined basis functions, we incorporate it as a new basis function.

Specifically, beginning with the projection of ∂β1

∂x along f0 we obtain

∂β1

∂x
· f0 =

 1
pz

0 −px
p2
z

0 1
pz
−py
p2
z

 (−bIpf ×cbg −C v)

=
[
I2 −β1

](
−b

[
β1

1

]
×cbg −

1

pz
C v

)
. (3.29)

This is a function of β1 and of other elements of the state x, namely bg and v, as well

as functions of x, which are 1
pz

and C. Hence, in order to satisfy (C2), we must define
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new basis elements, which we select as physically interpretable quantities:

β2 ,
1

pz
(3.30)

β3 , C v

β4 , bg,

where β2 is the inverse depth to the point, β3 is the velocity expressed in the local

frame, and β4 is the gyroscope bias. Rewriting (3.29) using these definitions we have:

∂β1

∂x
· f0 ,

[
I2 −β1

](
−b

[
β1

1

]
×cβ4 − β2 β3

)
.

Note that later on we will need to ensure that the properties of Theorem 1 are also

satisfied for these new elements, β2, β3, and β4, but first we examine the projections of

the span of β1 along f1 and f2.

The projections of ∂β1

∂x along the three directions of f1 (i.e., f1ei, i = 1, 2, 3, where[
e1 e2 e3

]
= I3) are

∂β1

∂x
· f1ei =

 1
pz

0 −px
p2
z

0 1
pz
−py
p2
z

 bIpf ×cei
=
[
I2 −β1

]
b

[
β1

1

]
×cei, i = 1, 2, 3. (3.31)

Note that in this case no new basis functions need to be defined since (3.31) already sat-

isfies condition (C2) of Theorem 1. Lastly, the projections of ∂β1

∂x along the f2 directions

are

∂β1

∂x
· f2ei = 02×1, i = 1, 2, 3.

Hence, by adding the new basis elements β2, β3, and β4, we ensure that the properties

of Theorem 1 are fulfilled for β1. To make the newly defined basis functions, β2, β3,

and β4, satisfy condition (C2), we proceed by projecting their spans on the process

functions.
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Satisfying Condition (C2) of Theorem 1 for β2

The derivative of β2 [see (3.30)] with respect to the state is:

∂β2

∂x
= − 1

p2
z

eT3

[
bIpf ×c∂θ∂s 03 03 03 −C C

]
. (3.32)

Projecting (3.32) along f0 we obtain

∂β2

∂x
· f0 = − 1

p2
z

eT3 (−bGpf ×cbg −C v)

= −β2e
T
3

(
−b

[
β1

1

]
×cβ4 − β2 β3

)
,

which is a function of only the currently enumerated basis elements.

We also project ∂β2

∂x along the remaining input directions, i.e., fj ei, j = 1, 2, i =

1, 2, 3.

∂β2

∂x
· f1ei = − 1

p2
z

eT3 bGpf ×cei

= −β2e
T
3 b

[
β1

1

]
×cei, i = 1, 2, 3 (3.33)

∂β2

∂x
· f2ei = 0, i = 1, 2, 3,

which does not admit any new basis elements. Thus, we see that β2 fulfills the properties

of Theorem 1 without requiring us to define any new basis elements.

Satisfying Condition (C2) of Theorem 1 for β3

Following the same procedure again, we compute the span of β3 with respect to x:

∂β3

∂x
=
[
bC v×c∂θ∂s 03 C 03 03 03

]
(3.34)

and then the projection of (3.34) along the input direction f0

∂β3

∂x
· f0 = −bC v×cbg + C g − ba

, −bβ3×cβ4 + β5 − β6,
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where we assign two new basis elements, i.e.,

β5 , C g

β6 , ba.

Note again that we selected physically interpretable functions: (i) β5 is the gravity

vector expressed in the local frame, and (ii) β6 is the accelerometer bias. The projections

of (3.34) along fj ei, j = 1, 2, i = 1, 2, 3, are

∂β3

∂x
· f1ei = bC v×cei = bβ3×cei, i = 1, 2, 3

∂β3

∂x
· f2ei = I3ei = ei, i = 1, 2, 3

which do not produce additional bases.

Satisfying Condition (C2) of Theorem 1 for β4

We proceed by examining the span of β4 with respect to x, i.e.,

∂β4

∂x
=
[
03 I3 03 03 03 03

]
(3.35)

with corresponding projections

∂β4

∂x
· f0 = 03×1

∂β4

∂x
· fjei = 03×1, j = 1, 2, i = 1, 2, 3.

We note here that no additional basis elements are produced.

Satisfying Condition (C2) of Theorem 1 for β5

The derivative of β5 with respect to x is:

∂β5

∂x
=
[
bC g×c∂θ∂s 03 03 03 03 03

]
. (3.36)

Projecting (3.36) along the input directions, we obtain

∂β5

∂x
· f0 = −bC g×cbg = −bβ5×cβ4

∂β5

∂x
· f1ei = bC g×cei = bβ5×cei, i = 1, 2, 3

∂β5

∂x
· f2ei = 03×1, i = 1, 2, 3.
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All of these are either a function of the existing basis elements, or are equal to zero, and

thus we do not need to define any additional bases.

Satisfying Condition (C2) of Theorem 1 for β6

Lastly, we examine the span of the remaining basis element β6, i.e.,

∂β6

∂x
=
[
03 03 03 I3 03 03

]
. (3.37)

The projections of (3.37) along the input directions are

∂β6

∂x
· f0 = 03×1

∂β6

∂x
· fjei = 03×1, j = 1, 2, i = 1, 2, 3,

which do not produce any additional basis elements.

At this point, we have proved that the conditions (C1) and (C2) of Theorem 1 are

satisfied for all of the basis elements; hence, we have defined a complete basis set for

the VINS model:

β1 = h (x) (3.38)

β2 =
1

pz
(3.39)

β3 = C v (3.40)

β4 = bg (3.41)

β5 = C g (3.42)

β6 = ba. (3.43)

These correspond to the landmark projection on the image plane (3.38), the inverse

depth to the landmark (3.39), the velocity expressed in the local frame (3.40), the gyro

bias (3.41), the gravity vector expressed in the local frame (3.42), and the accelerometer

bias (3.43). Based on Theorem 1, the resulting system in the basis functions [see (3.22)]

is:
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

β̇1

β̇2

β̇3

β̇4

β̇5

β̇6


=



¯̄β1

(
−bβ̄1×cβ4 − β2 β3

)
β2e

T
3

(
bβ̄1×cβ4 + β2 β3

)
−bβ3×cβ4 + β5 − β6

03×1

−bβ5×cβ4

03×1


︸ ︷︷ ︸

g0

+



¯̄β1bβ̄1×c
−β2e

T
3 bβ̄1×c
bβ3×c

03

bβ5×c
03


︸ ︷︷ ︸

g1

ω +



02×3

01×3

I3

03

03

03


︸ ︷︷ ︸

g2

a

y = β1, (3.44)

where β̄1 =
[
βT1 1

]T
denotes β1 expressed as a 3 × 1 homogeneous vector, and ¯̄β1 =[

I2 −β1

]
. In the next section, we will show that system (3.44) is observable by proving

its observability matrix Ξ is of full column rank. Therefore, the basis functions β1 to β6

correspond to the observable modes of system (3.26)-(3.27), and the system model (3.44)

governs the time evolution of the observable state.

3.5.3 Determining the System’s Observability Matrix and its Unob-

servable Directions

Based on Theorem 1, the observability matrix O of the VINS model [see (3.26)] is the

product of the observability matrix Ξ of system (3.44) with the matrix B comprising the

derivatives of the basis functions. In what follows, we first prove that matrix Ξ is of full

column rank. Then, we find the nullspace of matrix B, which according to Theorem 1

corresponds to the unobservable directions of the VINS model.

Lemma 2: System (3.44) is observable.

Proof: See Appendix B.

Since system (3.44) is observable, based on Theorem 1, we can find the unobservable

directions of system (3.26) from the nullspace of matrix B.

Theorem 3: The VINS model (3.26) is unobservable, and its unobservable sub-

space is spanned by four directions [see (3.46)] corresponding to the IMU-camera global

position and its rotation around the gravity vector in the global frame.

Proof: System (3.44) satisfies the conditions of Theorem 1. Therefore, null(O) =

null(B), which spans the unobservable subspace of the original system (3.26). Stacking

the derivatives of the basis functions with respect to the variable x, the matrix B can
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be written as [see (3.28), (3.32), (3.34), (3.35), (3.36), and (3.37)]:

B=



ζ 03 03 03 03

03 I3 03 03 03

03 03 I3 03 03

03 03 03 I3 03

03 03 03 03 I3


︸ ︷︷ ︸

B1



bIpf ×c∂θ∂s 03 03 03 −C C

bC v×c∂θ∂s 03 C 03 03 03

03 I3 03 03 03 03

bC g×c∂θ∂s 03 03 03 03 03

03 03 03 I3 03 03


︸ ︷︷ ︸

B2

(3.45)

where we have factorized B = B1B2 to further simplify the proof, and for conciseness,

we have denoted the first subblock of B1 as

ζ =


1
pz

0 −px
p2
z

0 1
pz
−py
p2
z

0 0 − 1
p2
z

 .
It is easy to verify that B1 is full rank, since it is comprised of block-diagonal identity

matrices, as well as the 3× 3 upper-triangular matrix ζ, which is itself full rank (since
1
pz
6= 0). Hence, we can study the unobservable modes of VINS by examining the right

nullspace of B2.

The 15×18 matrix B2 is rank deficient by exactly four, and these four unobservable

modes are spanned by the columns of the following matrix

N =



03
∂s
∂θC g

03 03×1

03 −bv×cg
03 03×1

I3 −bp×cg
I3 −bpf ×cg


. (3.46)

By multiplying B2 from the right with N, it is straightforward to verify that N is indeed

the right nullspace of B2 [see (3.45) and (3.46)]. We note that the first three columns

of N correspond to globally translating the feature and the IMU-camera sensor pair

together, while the fourth column corresponds to global rotations about the gravity

vector.

We further prove that there are no additional right nullspace directions by showing

that the 15× 18 matrix B2 has rank 14 (note that if B2 had 5 or more right nullspace
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directions, then it would be of rank 13 or less). To do so, we examine the left nullspace

of B2. Specifically, we postulate that B2 has a left nullspace comprising the block

elements M1, . . . ,M5, i.e.,

0 =
[
M1 M2 M3 M4 M5

]


bIpf ×c ∂θ∂s 03 03 03 −C C

bC v×c ∂θ
∂s

03 C 03 03 03

03 I3 03 03 03 03

bC g×c ∂θ
∂s

03 03 03 03 03

03 03 03 I3 03 03


Based on the relationships involving the second and fourth block columns of B2, we see

that M3I3 = 0 and M5I3 = 0, which can only hold if both M3 and M5 are zero. From

the third and sixth columns of B2 we see that M2C = 0 and M1C = 0, which again

can only hold if M1 and M2 are zero, since the rotation matrix C is full rank. Thus

far, the only potentially nonzero element in the left nullspace of B2 is M4. By writing

the relationship involving the first block column of B2, we obtain

M4bC g×c∂θ
∂s

= 0.

The matrix ∂θ
∂s is full rank, hence, the only nonzero M4 which can satisfy this relationship

is

M4 = ± (C g)T .

Therefore, we conclude that B2 has a one dimensional left nullspace, i.e.,

M =
[
01×3 01×3 01×3 (C g)T 01×3

]
. (3.47)

Since B2 is a matrix of dimensions 15× 18 with exactly one left null vector [see (3.47)],

it is of rank 14. Applying this fact to determine the dimension of the right nullspace,

we see that the right nullspace comprises 18− 14 = 4 directions, which are spanned by

N [see (3.46)]. �

3.6 VINS Observability Analysis

In this section, we examine the observability properties of the linearized VINS model

in the general case when a single point feature is observed by a sensor platform per-

forming arbitrary motion.2 Specifically, we first study and analytically determine the

2 An accompanying technical report [77] is available online: http://www-users.cs.umn.edu/~joel/
_files/Joel_Hesch_TR12.pdf

http://www-users.cs.umn.edu/~joel/_files/Joel_Hesch_TR12.pdf
http://www-users.cs.umn.edu/~joel/_files/Joel_Hesch_TR12.pdf
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four unobservable directions of the ideal linearized VINS model (i.e., the system whose

Jacobians are evaluated at the true states). Subsequently, we show that the linearized

VINS model used by the EKF, whose Jacobians are evaluated using the current state

estimates, has only three unobservable directions (i.e., the ones corresponding to global

translation), while the one corresponding to global rotation about the gravity vector

becomes (erroneously) observable. The key findings of this analysis are then employed

in Section 3.6.3 for improving the consistency of the EKF-based VINS.

The Observability matrix M is defined as a function of the linearized measurement

model, H, and the discrete-time state transition matrix, Φ [8]. These, in turn, are

functions of the linearization point, x?, i.e.,

M (x?) =


H1

H2Φ2,1

...

HkΦk,1

 (3.48)

where Φk,1 = Φk−1 · · ·Φ1 is the state transition matrix from time-step 1 to k, and Hk,

is the jacobian of the measurement model [see (3.17)], for the feature observation at

time-step k. If M (x?) was full column rank, then the linearized VINS model would

be observable. However, as we will show in the following analysis, M (x?) is rank

deficient and hence the VINS model is unobservable. More importantly, the number of

unobservable directions (right nullspace dimensions) differs depending on the selection

of the linearization point (i.e., x? = x in the ideal model, or x? = x̂ for the estimated

one).

3.6.1 Observability analysis of the ideal linearized VINS model

In the ideal linearized VINS model, the corresponding Jacobians are evaluated at the

true system state (i.e., x? = x). Based on this definition, the first block-row of M (x)

is written as [see (3.20)] (for i = 1 feature):

Hk = Ψ1

[
Ψ2 03 03 03 −I3 I3

]
(3.49)
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where

Ψ1 = Hc,kC (Ik q̄G) (3.50)

Ψ2 = bGf − GpIk ×cC (Ik q̄G)T (3.51)

and Ik q̄G, denotes the rotation of {G} with respect to frame {Ik} at time-step k = 1. We

note that here we focus on the observation of a single point, for the purpose of simplifying

the presentation, but the analysis is extensible to the case of multiple features.

To compute the remaining block rows of the observability matrix, we require Φk,1,

which is defined from the following matrix differential equation [8]:

Φ̇k,1 = FΦk,1 (3.52)

initial condition Φ1,1 = I18 (3.53)

where F is defined in (3.14). By examining the block elements of (3.52), we can obtain

a solution analytically. For example, the (2, 1) element of Φ̇k,1 is the product of the

second block row of F [i.e., F(2,:) = 03×18, see (3.14)] and the first block column of Φk,1

[i.e., Φ
(:,1)
k,1 =

[
I3 03×15

]T
, see (3.52)].3 Hence Φ̇

(2,1)
k,1 = 03, and recalling the initial

condition, Φ
(2,1)
1,1 = 03 [see (3.53)], we obtain

Φ
(2,1)
k,1 = 03. (3.54)

Following a similar approach, we can determine the other block elements of Φk,1 that

are either 03 or I3, respectively. Specifically, Φk,1 has the following structure:

Φk,1 =



Φ
(1,1)
k,1 Φ

(1,2)
k,1 03 03 03 03

03 I3 03 03 03 03

Φ
(3,1)
k,1 Φ

(3,2)
k,1 I3 Φ

(3,4)
k,1 03 03

03 03 03 I3 03 03

Φ
(5,1)
k,1 Φ

(5,2)
k,1 δtkI3 Φ

(5,4)
k,1 I3 03

03 03 03 03 03 I3


, (3.55)

where δtk = δt(k − 1), is the time difference between time-steps 1 and k.

3 The superscript notations E(i,:) and E(:,i) refer to the i-th block row and block column of matrix
E, respectively, while E(i,j) references the block element (i, j).
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Of the remaining block elements, we only require a few in analytic form here, the

others we provide explicitly in [77]. We begin by computing Φ
(1,1)
k,1 . Proceeding from

equation (3.52),

Φ̇
(1,1)
k,1 = F(1,:)Φ

(:,1)
k,1

=
[
−bIkω×c −I3 03 03 03 03

]


Φ
(1,1)
k,1

03

Φ
(3,1)
k,1

03

Φ
(5,1)
k,1

03


= −bIkω×cΦ(1,1)

k,1 . (3.56)

Thus, the solution for Φ
(1,1)
k,1 is computed as

Φ
(1,1)
k,1 = Φ

(1,1)
1,1 exp

(∫ tk

t1

−bIτω×cdτ
)

= exp

(
−
∫ tk

t1

bIτω×cdτ
)

= C(Ik q̄I1), (3.57)

where we have employed the initial condition Φ
(1,1)
1,1 = I3. We follow an analogous

approach to compute the other elements pertinent to the observability study, i.e.,

Φ
(1,2)
k,1 = −

∫ tk

t1

C (Ik q̄Iτ ) dτ (3.58)

Φ
(3,1)
k,1 = −b(GvIk − GvI1) + Gg δtk ×cC (Gq̄I1) (3.59)

Φ
(5,1)
k,1 = bGpI1 + GvI1δtk −

1

2
Gg δt2k − GpIk ×cC(Gq̄I1) (3.60)

Φ
(5,2)
k,1 =

∫ tk

t1

∫ θ

t1

C(Gq̄Is)bIsa×c
∫ s

t1

C(Is q̄Iτ ) dτ dsdθ (3.61)

Φ
(5,4)
k,1 = −

∫ tk

t1

∫ s

t1

C(Gq̄Iτ ) dτ ds. (3.62)

Using these expressions, we can obtain the k-th block row of M, for any k > 1, by
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multiplying out (3.49), i.e.,

Mk = HkΦk,1

= Γ1

[
Γ2 Γ3 −δtkI3 Γ4 −I3 I3

]
(3.63)

where

Γ1 = Hc,kC (Ik q̄G) (3.64)

Γ2 = bGf − GpI1 − GvI1δtk +
1

2
Gg δt2k×cC (I1 q̄G)T (3.65)

Γ3 = bGf − GpIk ×cC
T (Ik q̄G)Φ

(1,2)
k,1 −Φ

(5,2)
k,1 (3.66)

Γ4 = −Φ
(5,4)
k,1 . (3.67)

We note that for generic motions (i.e., ω 6= 03×1, a 6= 03×1) both Γ3 and Γ4 are

time varying matrices, whose columns are linearly independent. The structure of the

remaining block elements, Γ1 and Γ2, is employed to form a basis of the nullspace of M

analytically.

At this point, we state the main result of our analysis:

Theorem 3.1 The right nullspace N1 of the observability matrix M(x) [see (3.48)] of

the linearized VINS model

M(x)N1 = 0 (3.68)

is spanned by the following four directions:

N1 =



03 C (I1 q̄G) Gg

03 03×1

03 −bGvI1 ×cGg

03 03×1

I3 −bGpI1 ×cGg

I3 −bGf ×cGg


=
[
Nt,1 | Nr,1

]
. (3.69)

Proof 3.1 The fact that N1 is indeed the right nullspace of M(x) can be verified by
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multiplying each block row of M [see (3.63)] with Nt,1 and Nr,1 in (3.69). Specifically,

MkNt,1 = Γ1

[
Γ2 Γ3 −δtkI3 Γ4 −I3 I3

]


03

03

03

03

I3

I3


= Γ1(−I3 + I3) = 02×3 (3.70)

while,

MkNr,1 = Γ1

[
Γ2 Γ3 −δtkI3 Γ4 −I3 I3

]


C (I1 q̄G)Gg

03×1

−bGvI1 ×cGg

03×1

−bGpI1 ×cGg

−bGf ×cGg


= Γ1(bGf − GpI1 −

GvI1δtk +
1

2
Gg δt2k ×cC

(
I1 q̄G

)T
C
(
I1 q̄G

)
Gg

+ δtkbGvI1 ×c
Gg + bGpI1 ×c

Gg − bGf ×cGg)

= Γ1

((
bGf − Gf ×cGg

)
+
(
b−GpI1 + GpI1 ×c

Gg
))

+ Γ1

(
b−GvI1 + GvI1 ×c

Ggδtk
)

+ Γ1

(
bGg×cGg

) 1

2
δt2k = 02×1 (3.71)

Since MkNt,1 = 0 and MkNr,1 = 0, ∀k ≥ 1 it follows that MN1 = 0. Hence N1

belongs to the right nullspace of M. The fact that the right nullspace contains only the

four directions of N1 follows from the structure of Γ3 and Γ4, which are full rank and

time varying [see (3.66) and (3.67)].

Remark 1 The 18× 3 block column Nt,1 corresponds to global translations, i.e., trans-

lating both the sensing platform and the landmark by the same amount.

Remark 2 The 18× 1 column Nr,1 corresponds to global rotations of the sensing plat-

form and the landmark about the gravity vector.

3.6.2 Observability analysis of the EKF linearized VINS model

Ideally, any VINS estimator should employ a linearized system with an unobservable

subspace that matches the true unobservable directions (3.69), both in number and
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structure. However, when linearizing about the estimated state x̂, M̂ = M (x̂) gains

rank due to errors in the state estimates across time [77]. In particular, the last two

block elements of Mk comprise identity matrices, and hence, are not a function of the

linearization point. This, in effect, preserves the left nullspace directions corresponding

to translation, i.e.,

M (x̂) Nt,1 = 0. (3.72)

In contrast, the remaining of the block elements of (3.63), in particular Γ2, are functions

of the linearization point. Over time, evaluating the system and measurement Jacobians

at the current state estimate invalidates the structure in (3.65), due to the presence of

linearization errors. This causes the direction corresponding to global rotations (which

hits Γ2), Nr,1, not to be in the nullspace of M (x̂), and as a result the rank of the

observability matrix M̂ corresponding to the EKF linearized VINS model increases by

one. This effect can also be verified by numerically evaluating the observability matrix

during any experiment.

In order to address this issue, in the next section we describe our methodology for

adapting existing linearized VINS estimation approaches in order to account for our

knowledge of the number and structure of the unobservable directions. We pursue this

strategy since it provides a simple direct extension of existing methods, which allows

us to estimate the full VINS state. We note that there are potentially other ways to

restrict the directions in which an estimator gains information. For example, it may

be possible to decompose the system model, into observable and unobservable states

(analogous to the Kalman canonical decomposition for linear systems), and construct

an estimator around only the subsystem comprising the observable states. While this

approach may sound appealing, it contains several limiting factors. First, although

decomposing a linear system into observable and unobservable modes is a trivial matter,

for nonlinear systems, particularly high dimensional ones such as VINS, this is not a

straightforward task. Second, even if such a decomposition is obtained, the resulting

estimates of the observable states may not be useful for navigation purposes (most

notable, no estimate would be computed for the unobservable global yaw angle). Third,

although work exists [70] to examine the observable modes of VINS, it has focussed only

on the deterministic solution under the simplifying assumption that the gyroscopes are
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bias free.

3.6.3 OC-VINS: Algorithm Description

Hereafter, we present our OC-VINS algorithm which enforces the observability con-

straints dictated by the VINS system structure. Rather than changing the linearization

points explicitly (e.g., as in [9]), we maintain the nullspace, Nk, at each time step, and

use it to enforce the unobservable directions. We refer to the first set of block rows

of Nk as the nullspace corresponding to the robot state, which we term NR
k , whereas

the last block row of Nk is the nullspace corresponding to the feature state, i.e., Nf
k .

Specifically, the 15 × 4 nullspace sub-block, NR
k , corresponding to the robot state is

analytically defined as [see (3.69) and [77]]:

NR
1 =



03 C
(
I ˆ̄qG,1|1

)
Gg

03 03×1

03 −bGv̂I,1|1×cGg

03 03×1

I3 −bGp̂I,1|1×cGg



NR
k =



03 C
(
I ˆ̄qG,k|k−1

)
Gg

03 03×1

03 −bGv̂I,k|k−1×cGg

03 03×1

I3 −bGp̂I,k|k−1×cGg


=
[
NR
t,k | NR

r,k

]
. (3.73)

The 3× 4 nullspace sub-block, Nf
k , corresponding to the feature state, is a function of

the feature estimate at time t` when it was initialized, i.e.,

Nf
k =

[
I3 −bGp̂f`|` ×c

Gg
]
. (3.74)

Modification of the State Transition Matrix Φ

During the propagation step, we must ensure that (3.75) is satisfied. We expand (3.75)

by substituting the definitions of the state transition matrix (3.55) and the nullspace



73

for both the robot state (3.73) and the feature (3.74), i.e.,

Nk+1 = Φk+1,kNk

⇔

[
NR
k+1

Nf
k+1

]
=

[
ΦR
k+1,k 015×3

03×15 I3

][
NR
k

Nf
k

]
which, after multiplying out, provides two relationships that should be satisfied:

NR
k+1 = ΦR

k+1,k NR
k (3.75)

Nf
k+1 = Nf

k . (3.76)

From the definition of Nf
k [see (3.74)], it is clear that (3.76) holds automatically, and

does not require any modification of Φk+1,k. However, (3.75) will in general not hold,

and hence it requires changing ΦR
k+1,k such that NR

k+1 = ΦR
k+1,k NR

k .

In order to determine which elements of ΦR
k+1,k should be modified to satisfy (3.75),

we further analyze the structure of this constraint. To do so, we partition NR
k into two

components: (i) the first three columns corresponding to the unobservable translation,

NR
t,k, and (ii) the fourth column corresponding to the unobservable rotation about the

gravity vector, NR
r,k [see (3.69)]. We rewrite (3.75) based on this partitioning to obtain:

NR
k+1 = ΦR

k+1,k NR
k

⇔
[
NR
t,k+1 NR

r,k+1

]
= ΦR

k+1,k

[
NR
t,k NR

r,k

]
which is equivalent to satisfying the following two relationships simultaneously, i.e.,

NR
t,k+1 = ΦR

k+1,k NR
t,k (3.77)

NR
r,k+1 = ΦR

k+1,k NR
r,k. (3.78)

Treating these in order, we see that (3.77) is automatically satisfied, since every block

row results in 03 = 03 or I3 = I3, i.e.,

NR
t,k+1 = ΦR

k+1,k NR
t,k

⇔



03

03

03

03

I3


=



Φ11 Φ12 03 03 03

03 I3 03 03 03

Φ31 Φ32 I3 Φ34 03

03 03 03 I3 03

Φ51 Φ52 δtI3 Φ54 I3





03

03

03

03

I3


.
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We proceed by expanding the second relationship element-wise [see (3.78)] and we obtain

NR
r,k+1 = ΦRk+1,k NR

r,k ⇔

C
(
I ˆ̄qG,k+1|k

)
Gg

03×1

−bGv̂I,k+1|k ×cGg

03×1

−bGp̂I,k+1|k ×cGg


=



Φ11 Φ12 03 03 03

03 I3 03 03 03

Φ31 Φ32 I3 Φ34 03

03 03 03 I3 03

Φ51 Φ52 δtI3 Φ54 I3





C
(
I ˆ̄qG,k|k−1

)
Gg

03×1

−bGv̂I,k|k−1×cGg

03×1

−bGp̂I,k|k−1×cGg


.

From the first block row we have that

C
(
I ˆ̄qG,k+1|k

)
Gg = Φ11C

(
I ˆ̄qG,k|k−1

)
Gg

⇒ Φ11 = C
(
I,k+1|k ˆ̄qI,k|k−1

)
. (3.79)

The requirements for the third and fifth block rows are:

Φ31C
(
I ˆ̄qG,k|k−1

)
Gg = bGv̂I,k|k−1×cGg − bGv̂I,k+1|k ×cGg (3.80)

Φ51C
(
I ˆ̄qG,k|k−1

)
Gg = δtbGv̂I,k|k−1×cGg + bGp̂I,k|k−1×cGg

− bGp̂I,k+1|k ×cGg. (3.81)

both of which are of the form Au = w, where u and w comprise nullspace elements that

are fixed [see (3.73)], and we seek to find a perturbed A∗, for A = Φ31 and A = Φ51 that

fulfills the constraint. To compute the minimum perturbation, A∗, of A, we formulate

the following minimization problem

min
A∗
||A∗ −A||2F , s.t. A∗u = w (3.82)

where || · ||F denotes the Frobenius matrix norm. After employing the method of La-

grange multipliers, and solving the corresponding KKT optimality conditions [16], the

optimal A∗ that fulfills (3.82) is:

A∗ = A− (Au−w)(uTu)−1uT . (3.83)

In summary, satisfying (3.75) only requires modifying three block elements of Φk

during each propagation step. Specifically, we compute the modified Φ11 from (3.79),

and Φ31 and Φ51 from (3.82)-(3.83) and construct the observability-constrained discrete-

time state transition matrix. We then proceed with covariance propagation [see (3.16)].
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Modification of the Measurement Jacobian H

During each update step, we seek to satisfy (3.68), i.e., HkNk = 0. Based on (3.20), (3.73),

and (3.74) we can write this relationship per feature as

Hc

[
Hθ 03×9 Hp | Hf

]


03 C
(
I ˆ̄qG,k|k−1

)
Gg

03 03×1

03 −bGv̂I,k|k−1×cGg

03 03×1

I3 −bGp̂I,k|k−1×cGg

I3 −bGp̂f`|` ×c
Gg


= 0. (3.84)

The first block column of (3.84) requires that Hf = −Hp. Hence, we rewrite the second

block column of (3.84) as

Hc

[
Hθ Hp

] C
(
I ˆ̄qG,k|k−1

)
Gg(

bGp̂f`|` ×c − b
Gp̂I,k|k−1×c

)
Gg

 = 0

This is a constraint of the form Au = 0, where u is a fixed quantity determined by

elements in the nullspace, and A comprises elements of the measurement Jacobian Hk.

We compute the optimal A∗ that satisfies this relationship using (3.82)-(3.83), which is

a special case of this optimization problem when w = 0. After computing the optimal

A∗, we recover the Jacobian as

HcHθ = A∗1:2,1:3 (3.85)

HcHp = A∗1:2,4:6 (3.86)

HcHf = −A∗1:2,4:6 (3.87)

where the subscripts (i:j, m:n) denote the matrix sub-block spanning rows i to j, and

columns m to n. After computing the modified measurement Jacobian, we proceed with

the filter update as described in Section 3.3.2.

3.6.4 Application to the MSC-KF

The MSC-KF [49] is a VINS that performs tightly-coupled visual-inertial odometry

over a sliding window of M poses, while maintaining linear complexity in the number
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of observed features. The key advantage of the MSC-KF is that it exploits all the

constraints for each feature observed by the camera over M poses, without requiring to

build a map or estimate the features as part of the state vector. We hereafter describe

how to apply our OC-VINS methodology to the MSC-KF.

Each time the camera records an image, the MSC-KF creates a stochastic clone [79]

of the sensor pose. This enables the MSC-KF to use delayed image measurements;

in particular, it allows all of the observations of a given feature pfi to be processed

during a single update step (when the first pose that observed the feature is about to be

marginalized). Every time the current pose is cloned, we also clone the corresponding

nullspace elements to obtain an augmented nullspace, i.e.,

Naug
k =

[
Nk

Nk,clone

]

where Nk,clone =

[
03 C

(
I ˆ̄qG,k|k−1

)
Gg

I3 −bGp̂I,k|k−1×cGg

]
.

During propagation, the current state estimate evolves forward in time by integrat-

ing (3.8)-(3.13), while the current clone poses are static. Moreover, we employ (3.79)

and solve in closed form the optimization problem (3.82) for the constraints (3.80)-

(3.81), using (3.83), so as to compute the observability-constrained discrete-time state

transition matrix Φk+1,k, and propagate the covariance as

Paug
k+1|k = Φaug

k+1,kP
aug
k|k ΦaugT

k+1,k +

[
Qk 015×6M

06M×15 06M

]

Φaug
k+1,k =

[
Φk+1,k 015×6M

06M×15 I6M

]

where Paug
i|j denotes the covariance of the augmented state corresponding to M cloned

poses, along with the current state.

During the MSC-KF update step, we process all measurements of the features ob-

served by the M -th clone (i.e., the one about to be marginalized from the sliding window

of poses). We use (3.85)-(3.87) to compute the observability-constrained measurement

Jacobian, Ĥk, for each measurement and stack all observations of the i-th feature across
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M time steps into a large measurement vector
z̃k
...

z̃k−M

 =


Hk

...

Hk−M


[
x̃aug

p̃f

]
+


ηk
...

ηk−M

 = Hxx̃
aug + Hf p̃f + η (3.88)

where Hx and Hf are the Jacobians corresponding to the augmented state vector x̃aug,

and to the feature, respectively. To avoid including pf into the state, we marginalize it

by projecting (3.88) onto the left nullspace of Hf , which we term W. This yields

WT z̃ = WTHxx̃
aug + WTη ⇒ z̃′ = H′xx̃

aug + η′,

which we employ to update the state estimate and covariance using the standard EKF

update equations [49].

3.7 Simulations

We conducted Monte-Carlo simulations to evaluate the impact of the proposed Observa-

bility-Constrained VINS (OC-VINS) method on estimator consistency. We applied the

proposed methodology to two VINS systems: (i) Visual Simultaneous Localization and

Mapping (V-SLAM) (see Section 3.7.1), and (ii) the Multi-state Constraint Kalman

Filter (MSC-KF), which performs visual-inertial localization without constructing a

map (see Section 3.7.2).

3.7.1 Simulation 1: Application of the proposed framework to V-

SLAM

In this section, we present the results of applying our proposed OC-VINS to V-SLAM,

which we term OC-V-SLAM. We compared its performance to the standard V-SLAM

(Std-V-SLAM), as well as the ideal V-SLAM that linearizes about the true state.4

Specifically, we computed the Root Mean Squared Error (RMSE) and Normalized

Estimation Error Squared (NEES) over 20 trials in which the camera-IMU platform

traversed a circular trajectory of radius 5 m at an average velocity of 60 cm/s. The

4 Since the ideal V-SLAM has access to the true state, it is not realizable in practice, but we include
it here as a baseline comparison.
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camera5 observed visual features distributed on the interior wall of a circumscribing

cylinder with radius 6 m and height 2 m [see Fig. 3.2(e)]. The effect of inconsistency

during a single run is depicted in Fig. 3.7.1. The error and corresponding 3σ bounds

of uncertainty are plotted for the rotation about the gravity vector. It is clear that the

Std-V-SLAM gains spurious information, hence reducing its 3σ bounds of uncertainty,

while the Ideal-V-SLAM and the OC-V-SLAM do not. The Std-V-SLAM becomes

inconsistent on this run as the orientation errors fall outside of the uncertainty bounds,

while both the Ideal-V-SLAM and the OC-V-SLAM remain consistent. Figure 3.2

also displays the RMSE and NEES plots, in which we observe that the OC-V-SLAM

attains orientation accuracy and consistency levels similar to the Ideal-V-SLAM, while

significantly outperforming the Std-V-SLAM. Similarly, the OC-V-SLAM obtains better

positioning accuracy compared to the Std-V-SLAM.

3.7.2 Simulation 2: Application of the proposed framework to MSC-

KF

We applied our OC-VINS methodology to the MSC-KF, which we term the OC-MSC-

KF. In the MSC-KF framework, all the measurements to a given OF are incorporated

during a single update step of the filter, after which each OF is marginalized. Hence, in

the OC-MSC-KF, we do not maintain the sub-blocks of the nullspace corresponding to

the features [i.e., Nfi , i = 1, . . . , N , see (3.74)]. Instead, we propagate forward only the

portion of the nullspace corresponding to the sensor platform state, and we form the

feature nullspace block for each feature, only when it is processed in an update.

We conducted Monte-Carlo simulations to evaluate the consistency of the proposed

method applied to the MSC-KF [82]. Specifically, we compared the standard MSC-KF

(Std-MSC-KF), with the Observability-Constrained MSC-KF (OC-MSC-KF), which is

obtained by applying the methodology described in Section 3.6.3, as well as the Ideal-

MSC-KF, whose Jacobians are linearized at the true states, which we use as a bench-

mark. We evaluated the RMSE and NEES over 30 trials (see Fig. 3.3) in which the

camera-IMU platform traversed a circular trajectory of radius 5 m at an average speed

of 60 cm/s, and observed 50 randomly distributed features per image. As evident, the

5 The camera had a 45 degree field of view, with σpx = 1 px, while the IMU was modeled after
MEMS quality sensors.
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OC-MSC-KF outperforms the Std-MSC-KF and attains performance almost indistin-

guishable from the Ideal-MSC-KF in terms of RMSE and NEES.

3.8 Experimental Results

The proposed OC-VINS framework has been validated experimentally and compared

with standard VINS approaches. Specifically, we evaluated the performance of OC-V-

SLAM (Section 3.8.2) and OC-MSC-KF (Section 3.8.3 and Section 3.8.4) on both indoor

and outdoor datasets. In our experimental setup, we utilized a light-weight sensing

platform comprised of an InterSense NavChip IMU and a PointGrey Chameleon camera

(see Fig. 3.4). During the indoor experimental tests (see Section 3.8.2 and Section 3.8.3),

the sensing platform was mounted on an Ascending Technologies Pelican quadrotor

equipped with a VersaLogic Core 2 Duo single board computer. For the outdoor dataset,

the sensing platform was head-mounted on a bicycle helmet (see Section 3.8.4), and

interfaced to a handheld Sony Vaio. We hereafter provide an overview of the system

implementation, along with a discussion of the experimental setup and results.

3.8.1 Implementation remarks

The image processing is separated into two components: one for extracting and tracking

short-term OFs, and one for extracting DFs to use in V-SLAM.

OFs are extracted from images using the Shi-Tomasi corner detector [83]. After

acquiring image k, it is inserted into a sliding window buffer of m images, {k −m+ 1,

k−m+2, . . . , k}. We then extract features from the first image in the window and track

them pairwise through the window using the KLT tracking algorithm [84]. To remove

outliers from the resulting tracks, we use a two-point algorithm to find the essential

matrix between successive frames. Specifically, given the filter’s estimated rotation (from

the gyroscopes’ measurements) between image i and j, i ˆ̄qj , we estimate the essential

matrix from only two feature correspondences. This approach is more robust than

the five-point algorithm [85] because it provides two solutions for the essential matrix

rather than up to ten. Moreover, it requires only two data points, and thus it reaches

a consensus with fewer hypotheses when used in a RANSAC framework.

The DFs are extracted using SIFT descriptors [42]. To identify global features
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observed from several different images, we first utilize a vocabulary tree (VT) structure

for image matching [86]. Specifically, for an image taken at time k, the VT is used to

select which image(s) taken at times 1, 2, . . . , k−1 correspond to the same physical scene.

Among those images that the VT reports as potential matches, the SIFT descriptors

from each of them are compared to those from image k to create tentative feature

correspondences. The epipolar constraint is then enforced using RANSAC and Nister’s

five-point algorithm [85] to eliminate outliers. It is important to note that the images

used to construct the VT (offline) are not taken along our experimental trajectory, but

rather are randomly selected from a set of representative images.

3.8.2 Experiment 1: Indoor validation of OC-V-SLAM

In the first experimental trial, we compared the performance of OC-V-SLAM to that of

Std-V-SLAM on an indoor trajectory. The sensing platform traveled a total distance

of 172.5 m, covering three loops over two floors in Walter Library at the University

of Minnesota. The quadrotor was returned to its starting location at the end of the

trajectory, to provide a quantitative characterization of the achieved accuracy.

Opportunistic features were tracked using a window of m = 10 images. Every m

camera frames, up to 30 features from all available DFs are initialized and the state

vector is augmented with their 3D coordinates. The process of initializing DFs [77] is

continued until the occurrence of the first loop closure; from that point on, no new DFs

are considered and the filter relies upon the re-observation of previously initialized DFs

and the processing of OFs.

For both the Std-V-SLAM and the OC-V-SLAM, the final position error was ap-

proximately 34 cm, which is less than 0.2% of the total distance traveled (see Fig. 3.5).

However, the estimated covariances from the Std-V-SLAM are smaller than those from

the OC-V-SLAM (see Fig. 3.6). Furthermore, uncertainty estimates from the Std-V-

SLAM decreased in directions that are unobservable (i.e., rotations about the gravity

vector); this violates the observability properties of the system and demonstrates that

spurious information is injected to the filter.

Figure 3.6(a) highlights the difference in estimated yaw uncertainty between the

OC-V-SLAM and the Std-V-SLAM. In contrast to the OC-V-SLAM, the Std-V-SLAM
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covariance rapidly decreases, violating the observability properties of the system. Sim-

ilarly, large differences can be seen in the covariance estimates for the x-axis position

estimates [see Fig. 3.6(b)]. The Std-V-SLAM estimates a much smaller uncertainty than

the OC-V-SLAM, supporting the claim that the Std-V-SLAM tends to be inconsistent.

3.8.3 Experiment 2: Indoor validation of OC-MSC-KF

We validated the proposed OC-MSC-KF on real-world data. The first test comprised

a trajectory 50 m in length that covered three loops in an indoor area, after which the

testbed was returned to its initial position. At the end of the trajectory, the Std-MSC-

KF had a position error of 18.73 cm, while the final error for the OC-MSC-KF was

16.39 cm (approx. 0.38% and 0.33% of the distance traveled, respectively). In order to

assess the impact of inconsistency on the orientation estimates of both methods, we used

as ground truth the rotation between the first and last images computed independently

using BLS and feature point matches. The Std-MSC-KF had final orientation error[
0.15 −0.23 −5.13

]
deg for roll, pitch, and yaw (rpy), while the rpy errors for the

OC-MSC-KF were
[
0.19 −0.20 −1.32

]
deg, respectively.

In addition to achieving higher accuracy, for yaw in particular, the OC-MSC-KF is

more conservative since it strictly adheres to the unobservable directions of the system.

This is evident in both the position and orientation uncertainties. We plot the y-axis

position and yaw angle uncertainties in Fig. 3.7, as representative results. Most notably,

the yaw uncertainty of the OC-MSC-KF remains approximately 1.13 deg (3σ), while

for the Std-MSC-KF it reduces to 0.87 deg (3σ). This indicates that the Std-MSC-KF

gains spurious orientation information, which leads to inconsistency. Lastly, in Fig. 3.8

we show the 3D trajectory along with an overhead (x-y) view. It is evident that the

Std-MSC-KF yaw error impacts the position accuracy, as the Std-MSC-KF trajectory

exhibits a rotation with respect to the OC-MSC-KF.

3.8.4 Experiment 3: Outdoor validation of OC-MSC-KF

In our final experimental trial, we tested the OC-MSC-KF on a large outdoor dataset

(approx. 1.5 km in length). Figure 3.9(a) depicts the OC-MSC-KF (red) and the Std-

MSC-KF (blue) trajectory estimates, along with position markers from a low-grade
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onboard GPS receiver (green). In order to assess the accuracy of both filters, the

estimates are overlaid on an overhead image taken from Google-Earth.

Figure 3.9(b) depicts a zoomed-in plot of the starting location (center) for both

filters, along with the final position estimates. In order to evaluate the accuracy of the

proposed method, the sensing platform was returned to its starting location at the end

of the trajectory. The OC-MSC-KF obtains a final position error of 4.38 m (approx.

0.3% of the distance travelled), while the Std-MSC-KF obtains a final position error of

10.97 m. This represents an improvement in performance of approximately 60%.

The filters’ performance is also illustrated visually in Fig. 3.9(c) which shows a

zoomed-in plot of the turn-around point. The OC-MSC-KF estimates remain on the

light-brown portion of the ground (which is the sidewalk), which coincides with the

true trajectory. In contrast, the Std-MSC-KF estimates drift over the dark triangles

in the image, which are wading pools filled with water. This shifting of the trajectory

represents a slight rotation around the vertical axis, indicating a violation of the rotation

nullspace direction Nr.

Figure 3.10 depicts the uncertainty in the position estimates along the x-axis (per-

pendicular to the direction of motion), along with the uncertainty in yaw (corresponding

to rotations about the gravity vector). It is clear that the Std-MSC-KF reduces its un-

certainty in its heading direction, indicating that the filter gains spurious information,

while the OC-MSC-KF does not gain information for the rotation around the gravity

vector.

3.9 Summary

In this chapter, we analyzed the inconsistency of VINS from the standpoint of observ-

ability. Specifically, we showed that standard EKF-based filtering approaches lead to

spurious information gain since they do not adhere to the unobservable directions of the

true system. Furthermore, we introduced an observability-constrained VINS approach

to mitigate estimator inconsistency by enforcing the nullspace explicitly. We presented

extensive simulation and experimental results to support our claims and validated the

proposed estimator, by applying it to both V-SLAM and the MSC-KF.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Simulation 1: The RMSE and NEES errors for orientation (a)-(b) and
position (d)-(e) plotted for all three filters, averaged per time step over 20 Monte Carlo
trials. (c) Camera-IMU trajectory and 3D features. (f) Error and 3σ bounds for the
rotation about the gravity vector, plotted for the first 100 sec of a representative run.
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Figure 3.3: Simulation 2: The average RMSE and NEES over 30 Monte-Carlo simulation
trials for orientation (above) and position (below). Note that the OC-MSC-KF attains
performance almost indistinguishable to the Ideal-MSC-KF.

(a) (b)

Figure 3.4: (a) The experimental testbed comprises a light-weight InterSense NavChip
IMU and a Point Grey Chameleon Camera. IMU signals are sampled at a frequency
of 100 Hz while camera images are acquired at 7.5 Hz. The dimensions of the sensing
package are approximately 6 cm tall, by 5 cm wide, by 8 cm deep. (b) An AscTech
Pelican on which the camera-IMU package was mounted during the indoor experiments
(see Section 3.8.2 and Section 3.8.3).
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(a) (b)

(c)

Figure 3.5: Experiment 1: The estimated 3D trajectory over the three traversals of the
two floors of the building, along with the estimated positions of the persistent features.
(a) projection on the x and y axis, (b) projection on the y and z axis, (c) 3D view of
the overall trajectory and the estimated features.

(a)

(b)

Figure 3.6: Experiment 1: Comparison of the estimated 3σ error bounds for attitude
and position between Std-V-SLAM and OC-V-SLAM.
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(a) (b)

Figure 3.7: Experiment 2: The position (a) and orientation (b) uncertainties (3σ
bounds) for the yaw angle and the y-axis, which demonstrate that the Std-MSC-KF
gains spurious information about its orientation.

(a) (b)

Figure 3.8: Experiment 2: The 3D trajectory (a) and corresponding overhead (x-y)
view (b).
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(a)

(b) (c)

Figure 3.9: Experiment 3: (a) An outdoor experimental trajectory covering 1.5 km
across the University of Minnesota campus. The red (blue) line denotes the OC-MSC-
KF (Std-MSC-KF) estimated trajectory. The green circles denote a low-quality GPS-
based estimate of the position across the trajectory. (b) A zoom-in view of the beginning
/ end of the run. Both filters start with the same initial pose estimate, however, the
error for the Std-MSC-KF at the end of the run is 10.97 m, while for the OC-MSC-KF
the final error is 4.38 m (an improvement of approx. 60%). Furthermore, the final error
for the OC-MSC-KF is approximately 0.3% of the distance traveled. (c) A zoomed-in
view of the turn-around point. The Std-MSC-KF trajectory is shifted compared to the
OC-MSC-KF, which remains on the path (light-brown region).
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(a) (b)

Figure 3.10: Experiment 3: (a) Position uncertainty along the x-axis (perpendicular
to the direction of motion) for the Std-MSC-KF, and OC-MSC-KF respectively. The
OC-MSC-KF maintains more conservative estimates for position, indicating that the
Std-MSC-KF may be inconsistent. (b) Orientation uncertainty about the vertical axis
(z). Since rotations about gravity are unobservable, the Std-MSC-KF should not gain
any information in this direction. However, as evident from this plot, the Std-MSC-KF
uncertainty reduces, indicating inconsistency. For the OC-MSC-KF, the uncertainty
does not decrease, indicating that the OC-MSC-KF respects the unobservable system
directions.



Chapter 4

Observability-constrained

Vision-only Navigation

4.1 Introduction

In egocentric vision tasks, it is often necessary to maintain an estimate of the camera’s

pose over time as the person moves around. For example, a navigation aid for the visu-

ally impaired (e.g., [87]) must estimate its pose as the person walks, in order to provide

them with turn-by-turn directions from point A to B. In a human-worn augmented

reality system (e.g., [88]), maintaining the camera pose along with the environment

structure, is necessary to annotate the scene with information.

Numerous vision-based localization approaches have been presented in the litera-

ture, including methods based on the EKF [89], UKF [90], BLS [91, 92], and PF [60].

While most existing works focus on vision navigation systems working in real-time [89]

or providing dense-realistic maps [92], a key issue that has not yet been addressed in

the literature is how estimator inconsistency impacts monocular localization. As de-

fined in [7], a state estimator is consistent if the estimation errors are zero-mean and

have covariance smaller than or equal to the one calculated by the filter. As we will

demonstrate, a leading cause of inconsistency in monocular localization is due to spu-

rious information gained about the scale of the scene, which is unobservable (i.e., scale

cannot be determined using a monocular camera alone).

Until recently, little attention was paid to the effects that observability properties can

89
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have on nonlinear estimator consistency. The work by Huang et al. [9, 10, 11] was the

first to identify this connection for several 2D localization problems (i.e., simultaneous

localization and mapping, cooperative localization). The authors showed that, for these

problems, a mismatch exists between the number of unobservable directions of the true

nonlinear system and the linearized system used for estimation purposes. In particular,

the estimated (linearized) system has one-fewer unobservable direction than the true

system, allowing the estimator to surreptitiously gain spurious information along the

direction corresponding to global orientation (yaw). This increases the estimation errors

while reducing the estimator uncertainty, and leads to inconsistency.

In this chapter, we analyze and improve consistency for monocular Simultaneous

Localization and Mapping (MonoSLAM). The main contributions of this work are:

• We provide an overview of the MonoSLAM observability analysis using the system

observability matrix, and show that seven d.o.f. are unobservable. These corre-

spond to three-d.o.f. global translation, three-d.o.f. global rotation, and global

scale.

• We report on MonoSLAM inconsistency, and demonstrate that a standard EKF-

based MonoSLAM approach can gain spurious information about the scale of the

system, leading to estimator inconsistency.

• We introduce an Observability-Constrained MonoSLAM (OC-MonoSLAM) algo-

rithm which explicitly adheres to the system observability properties, and hence

mitigates inconsistency. We validate our method with Monte-Carlo simulations

and experimental results to show that it has increased consistency and lower errors

compared to standard MonoSLAM.

The rest of this chapter is organized as follows: In Section 4.2, we describe the

system and measurement models, followed by our analysis of MonoSLAM inconsistency

in Section 4.3. The proposed estimator modification is presented in Section 4.3.1, and

subsequently validated both in simulations and experimentally (Sects. 4.4 and 4.5).

Finally, we provide our concluding remarks and outline our future research directions

in Section 4.6.
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4.2 Estimator Description

We begin with an overview of the propagation and measurement models which govern

the MonoSLAM system. We adopt the EKF as our framework for fusing the camera

measurements across time, and we employ a tracking model to predict the camera’s

motion between images. The sensing platform moves in a previously unknown envi-

ronment, and localizes solely using DFs (e.g., SIFT keys [42]), which can be reliably

tracked across images, and redetected when revisiting an area.1

4.2.1 System State and Propagation Model

The EKF estimates the camera pose, as well as its linear and rotational velocities, and

a map corresponding to the 3D coordinates of features in the environment. The filter

state is the (13 + 3N)× 1 vector:

x =
[
GpTS

S q̄TG
SvT SωT | GfT1 · · · GfTN

]T
=
[
xTs | xTm

]T
, (4.1)

where xs(t) is the 13×1 sensor platform state, and xm(t) is the 3N×1 state of the map.

The sensor platform state comprises S q̄G(t) which is the unit quaternion representing

the orientation of the global frame {G} in the sensor frame, {S}, at time t. The frame

{S} is attached to the camera, while {G} is a reference frame whose origin coincides

with the initial camera position. The linear and rotational velocities of the camera,

Sv(t) and Sω(t), are expressed with respect to {S}, while the camera’s position, GpS(t),

is expressed in {G}.
The map, xm, comprises N DFs, Gfi, i = 1, . . . , N , and grows as new DFs are

observed. With the state of the system now defined, we turn our attention to the

continuous-time model we utilize to track the system state.

1 While we focus on the case of the EKF, our observability analysis and proposed algorithm for
improving consistency are extensible to any linearized estimation architecture (e.g., UKF and sliding
window filter).
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Continuous-time model

We employ a constant-velocity tracking model, in which both linear and rotational

velocities are expressed in the sensor frame. This has the advantage of being more flex-

ible than the “constant-global-velocity” model originally proposed for MonoSLAM [89],

while at the same time enabling a simpler estimator framework than the Interacting

Multiple Model (IMM) approach of Civera et al. [93].

S
G

˙̄q(t) =
1

2
Ω(Sω(t))S q̄G(t), Sω̇(t) = ηω (4.2)

GṗS(t) = GvS(t) = S
GCT Sv(t), Sv̇(t) = ηv (4.3)

Gḟi(t) = 03×1 , i = 1, . . . , N. (4.4)

where S
GC is the rotational matrix corresponding to S q̄G(t), and Ω(ω) is the matrix

governing the quaternion time derivative, i.e.,

Ω(ω) =

[
−bω×c ω

−ωT 0

]
, bω×c ,


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
The time derivatives of the rotational and linear velocities, Sω and Sv, are modeled as

zero-mean white Gaussian processes, ηω and ηv, respectively. The DFs belong to the

static scene, thus, their time derivatives are zero [see (4.4)].

Linearizing at the current estimates and applying the expectation operator on both

sides of (4.2)-(4.4), we obtain the state estimate propagation model

S
G

˙̄̂q(t) =
1

2
Ω(ω̂(t))SG ˆ̄q(t), S ˙̂ω(t) = 03×1 (4.5)

G ˙̂pS(t) = S
GĈT Sv̂S(t), S ˙̂v(t) = 03×1 (4.6)

G˙̂
fi (t) = 03×1 , i = 1, . . . , N. (4.7)

The (12 + 3N)× 1 error-state vector is defined as

x̃ =
[
Gp̃TS

SδθTG
SṽT Sω̃T | Gf̃T1 · · · Gf̃TN

]T
=
[
x̃Ts | x̃Tm

]T
, (4.8)

where x̃s(t) is the 12 × 1 error state corresponding to the sensing platform, and x̃m(t)

is the 3N × 1 error state of the map. For the position, linear and rotational velocities,
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and the map, an additive error model is utilized (i.e., x̃ = x − x̂ is the error in the

estimate x̂ of a quantity x). However, for the quaternion we employ a multiplicative

error model [44]. Specifically, the error between the quaternion q̄ and its estimate ˆ̄q is

the 3× 1 angle-error vector, δθ, implicitly defined by the error quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

T 1
]T
, (4.9)

where δq̄ describes the small rotation that causes the true and estimated attitude to

coincide. This allows us to represent the attitude uncertainty by the 3 × 3 covariance

matrix E[δθδθT ], which is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x =

[
Fs 012×3N

03N×12 03N

]
x̃ +

[
Gs

03N×6

]
n

= Fc x̃ + Gc n , (4.10)

where 03N denotes the 3N × 3N matrix of zeros, n =
[
ηTω ηTv

]T
is the system noise,

which is modeled as a zero-mean white Gaussian process with autocorrelation E[n(t)nT (τ)] =

Qcδ(t − τ). The matrix Fs is the continuous-time error-state transition matrix corre-

sponding to the camera state, and Gs is the continuous-time input noise matrix, i.e.,

Fs=


03 −SGCT bSv×c S

GCT 03

03 −bSω×c 03 I3

03 03 03 03

03 03 03 03

 , Gs=


03 03

03 03

I3 03

03 I3

 .

Discrete-time implementation

In order to propagate the state forward in time, we employ Euler integration of (4.5)–

(4.7), with a specified step size, δt, selected to be significantly smaller than the camera

frame-rate. Moreover, to derive the covariance propagation equation, we evaluate the

discrete-time state transition matrix, Φk, and the discrete-time system noise covariance
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matrix, Qd,k, as

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ)dτ

)
(4.11)

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T
cΦT (tk+1, τ)dτ.

The propagated covariance is then computed as

Pk+1|k = ΦkPk|kΦ
T
k + Qd,k. (4.12)

4.2.2 Measurement Update Model

As the camera moves it observes visual features. These measurements are exploited

to concurrently estimate the motion of the sensing platform and the map of DFs. To

simplify the discussion, we consider the observation of a single DF fi. The camera

measures zi, which is the perspective projection of the 3D point, Sfi =
[
x y z

]T
,

expressed in the current camera frame {S}, onto the image plane2 , i.e.,

zi =
1

z

[
x

y

]
+ ηi,

Sfi = S
GC (Gfi − GpS) . (4.13)

The measurement noise, ηi, is modeled as zero mean white Gaussian with covariance

Ri. The linearized error model is z̃i = zi − ẑi ' Hix̃ + ηi, where ẑ is the expected

measurement computed by evaluating (4.13) at the current state estimate, and the

measurement Jacobian, Hi, is

Hi = Hcam

[
Hp 03 Hq̄ 03 |03 · · · Hfi · · · 03

]
(4.14)

Hcam =
1

z2

[
z 0 −x
0 z −y

]
, Hp = −SGC

Hq̄ = bSGC (Gfi − GpS) ×c, Hfi = S
GC.

Here, Hcam, is the Jacobian of the perspective projection with respect to Sfi, while Hq̄,

Hp, and Hfi , are the Jacobians of Sfi with respect to SqG, GpS, and Gfi, respectively.

2 Without loss of generality, we express the image measurement in normalized pixel coordinates [78].
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For DFs that are already in the map, we directly apply the measurement model (4.13)-

(4.14) to update the filter. We compute the measurement residual, the covariance of

the residual, and the Kalman gain

ri = zi − ẑi (4.15)

Si = HiPk+1|kHi
T + Ri (4.16)

K = Pk+1|kHi
TS−1

i . (4.17)

Employing these quantities, we compute the EKF state and covariance update as

x̂k+1|k+1 = x̂k+1|k + Kri (4.18)

Pk+1|k+1 = Pk+1|k−Pk+1|kHi
TS−1

i HiPk+1|k. (4.19)

For previously unseen DFs, we compute an initial estimate, along with covariance and

cross-correlations by solving a bundle-adjustment over a short time window [14].

4.3 Observability-constrained MonoSLAM

Using the system and measurement models presented above, we hereafter describe how

the system observability properties influence estimator consistency. In particular, we

show that MonoSLAM has seven unobservable directions, corresponding to global trans-

lation, global rotation, and global scale. However, when using a linearized estimator,

such as the EKF, errors in linearization while evaluating the system and measurement

Jacobians change the directions in which information is acquired by the estimator. Over

time, these directions can span the whole state space, including directions which should

be unobservable. In particular, for MonoSLAM we observe that the estimator gains

scale information, which can lead to scale drift over time. When spurious information

is gained along unobservable directions, it leads to larger errors, smaller uncertainties,

and inconsistency. In what follows, we first analyze the system observability proper-

ties and show why the standard MonoSLAM violates them. Subsequently, we present

an Observability-Constrained MonoSLAM (OC-MonoSLAM) estimation algorithm that

explicitly adheres to the observability properties of the system.

The observability matrix [8] is defined as a function of the linearized measurement

model, H, and the discrete-time state transition matrix, Φ, which are in turn functions
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of the linearization point, x, i.e.,

M (x) =


H1

H2Φ2,1

...

HkΦk,1

 (4.20)

where Φk,1 = Φk−1 · · ·Φ1 is the state transition matrix from time step t1 to tk. We

compute the discrete-time state transition matrix, Φk,1 as the solution to the following

matrix differential equation,

Φ̇t,t1 = Fc(t)Φt,t1 , initial condition Φt1,t1 = I. (4.21)

To simplify the discussion, we consider only a single landmark in the state vector. Using

the initial condition and the structure of Fc [see (4.10)], we obtain Φt,t1 as

Φt,t1 =



I3 Φ[1,2] Φ[1,3] Φ[1,4] 03

03 Φ[2,2] 0 Φ[2,4] 03

03 03 I3 03 03

03 03 03 I3 03

03 03 03 03 I3


(4.22)

where

Φ[1,2] = −bGpS(t) − GpS(t1)×c GS(t1)C (4.23)

Φ[1,3] =

∫ t

t1

G

S(τ)C dτ (4.24)

Φ[1,4] = −
∫ t

t1
bGvS(r)×c

∫ r

t1

G

S(τ)C dτ dκ (4.25)

Φ[2,2] =
S(t)
S(t1)C (4.26)

Φ[2,4] =

∫ t

t1

S(t)
S(τ)C dτ (4.27)

where S(t) denotes the frame {S} at time t. Employing (4.14) and (4.22), the k-th

block row of the observability matrix [see (4.20)] is

HkΦk,1 = A1

[
−I3 A2 A3 A4 I3

]
(4.28)
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where

A1 = Hcam,k ·
S(k)
G C (4.29)

A2 = bGf − GpS(k)×c GS(1)C (4.30)

A3 = −
∫ tk

t1

G

S(τ)C dτ (4.31)

A4 = bGf − GpS(k)×c
∫ tk

t1

G

S(τ)C dτ −Φ[1,4]. (4.32)

It is straightforward to verify that the right nullspace of M (x) spans seven directions,

i.e., M (x) N1 = 0, where

N1 =



I3 −bGpS(1)×c GpS(1)

03
S(1)
G C 03×1

03 03
S(1)v

03 03 03×1

I3 −bGf ×c Gf


=
[
Nt,1 | Nr,1 | Ns,1

]
(4.33)

where Nt,1 corresponds to global translations of the camera and landmark together, Nr,1

corresponds to global rotations of both together, and Ns,1 is the direction corresponding

to global scale (see Fig. 4.1).

Ideally, any estimator we employ should correspond to a system with an unobservable

subspace that matches these directions, both in number and structure. However, when

linearizing about the estimated state x̂, M (x̂) gains rank due to errors in the state

estimates across time. This can be easily verified by numerically evaluating (4.20)

during any experiment. To address this problem and ensure that (4.33) is orthogonal

to every block row of M when the state estimates are used for computing H`, and Φ`,1,

` = 1, . . . , k, we must ensure that H`Φ`,1N1 = 0, ` = 1, . . . , k.

One way to enforce this is by requiring that at each time step

N`+1 = Φ`N` (4.34)

H`N` = 0, ` = 1, . . . , k (4.35)

both hold. This can be accomplished by propagating the nullspace in time and appro-

priately modifying H` following the process described in the next section.
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Figure 4.1: The unobservable directions are depicted in gold. Ns corresponds to global
scale (i.e., translating the whole scene and the camera towards or away from the origin).
Nt corresponds to global translations of the scene and camera along any of the cardinal
axes. Nr corresponds to rotating the whole scene and the camera about the cardinal
axes.

4.3.1 OC-MonoSLAM: Algorithm Description

Hereafter, we present our OC-MonoSLAM algorithm which enforces the observability

constraints dictated by the MonoSLAM system structure. Rather than changing the

linearization points explicitly (e.g., as in [9]), we maintain the nullspace, Nk, at each

time step, and use it to enforce the unobservable directions.

Nullspace initialization for the camera

The initial nullspace corresponding to the camera state elements is analytically defined

as

N1 =


I3 −bGp̂I,0|0×c Gp̂I,0|0

03 C
(
I ˆ̄qG,0|0

)
03×1

03 03
Iv̂0|0

03 03 03×1

 (4.36)
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where the x̂i|j denotes the estimate of x at time step i based on all measurements up

to time step j. We note that in SLAM it is common to (arbitrarily) assign the global

frame to coincide with the initial camera frame, while the initial velocity can be set to

be unity along the estimated direction of translation between the first image pair, to set

the scale. However, any other preferred method for initializing the MonoSLAM state

can also be employed to initialize the nullspace.

Nullspace initialization for new landmarks

Each time a new landmark is initialized into the state vector, we must augment the

nullspace, Nk, so as to account for the new feature, and fulfill (4.34) and (4.35) at

subsequent time steps. To accomplish this, we form the 3× 7 block row

Nfi =
[
I3 −bGf̂k|k×c Gf̂k|k

]
(4.37)

which we concatenate with the current nullspace Nk.

Nullspace propagation

During the propagation step, we need to compute the new nullspace at time k+1, Nk+1.

Based on the observability constraint (4.34), this entails propagating the nullspace from

time step k to k + 1 using the computed state transition matrix Φk.

Modification of H

During each update step, we must ensure that HkNk = 0 is satisfied. Hence, we seek

a modified Hk that fulfills (4.35), while maintaining its structure. Based on (4.14), we

can write this relationship per feature as

02×7 = Hcam

[
Hp Hq̄ 03 03 | Hf

]


I3 −bGp̂I,k|k−1×c Gp̂I,k|k−1

03 C
(
I ˆ̄qG,k|k−1

)
03×1

03 03
Gv̂I,k|k−1

03 03 03×1

I3 −bGf̂k|k−1×c Gf̂k|k−1


(4.38)
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The first block column of (4.38) requires that Hf = −Hp. Hence, we rewrite the second

and third block columns of (4.38) as

02×4 = Hcam

[
Hp Hq̄

] [bGf̂k|k−1 − Gp̂I,k|k−1×c Gp̂I,k|k−1 − Gf̂k|k−1

C
(
I ˆ̄qG,k|k−1

)
03×1

]
(4.39)

This is a constraint of the form 0 = AU, where U is a fixed quantity determined by ele-

ments in the nullspace, and A comprises elements of the measurement Jacobian, which

we seek to modify. To compute the minimum perturbation, A∗, of A, we formulate the

following minimization problem

min
A∗
||A∗ −A||2F (4.40)

subject to A∗U = 0

where || · ||F denotes the Frobenius matrix norm. After employing the method of La-

grange multipliers, and solving the corresponding KKT optimality conditions, the op-

timal A∗ that fulfills (4.40) is A∗ = A−AU(UTU)−1UT . Finally, the elements of the

measurement Jacobian are computed as

HcamHp = A∗1:2,1:3 (4.41)

HcamHf = −A∗1:2,1:3 (4.42)

HcamHq̄ = A∗1:2,4:6 (4.43)

where the subscripts (i:j, m:n) denote the submatrix spanning rows i to j, and columns

m to n. After computing the modified measurement Jacobian, we proceed with the filter

update as described in Section 4.2.2.

4.4 Simulations

We conducted Monte-Carlo simulations to evaluate the impact of the proposed Observa-

bility-Constrained MonoSLAM (OC-MonoSLAM) method on estimator consistency. We

compared its performance to standard MonoSLAM (Std-MonoSLAM), as well as an

ideal MonoSLAM method that linearizes the Jacobians at the true state. We note that

the ideal MonoSLAM is not realizable in practice, but is utilized as a benchmark for

performance comparison.
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(a) (b)

Figure 4.2: Errors and 3σ bounds plotted for the x-axis position (left) and δθ1 orientation
(right) for the first 200 seconds of a representative run.

To evaluate the accuracy and consistency of the proposed approach, we computed

the RMSE and NEES [7] over 50 trials in which a simulated camera traversed a circular

trajectory for 500 sec at an average speed of 11 cm/s.3 The environment contained

72 visual features distributed in a planar grid pattern, which the camera observed while

moving.

The effect of inconsistency during a single run is demonstrated in Fig. 4.2 where

we depict the error and corresponding 3σ bounds for the x-axis position and δθ1 ori-

entation. All three filters attain comparable accuracy and uncertainty for orientation,

which is not surprising since there are sufficient points in the scene to precisely track

the camera’s rotations. However, from the position error plot, it is clear that the 3σ

bounds for the Std-MonoSLAM are smaller than for either the OC-MonoSLAM, or the

Ideal-MonoSLAM. This indicates that the Std-MonoSLAM gains spurious information.

Furthermore, the x-axis position error for Std-MonoSLAM starts to increase over time,

eventually causing inconsistency.

Figure 4.3 displays the RMSE and NEES, in which we observe that all three filters

obtain similar accuracy and consistency performance for orientation. However, the OC-

MonoSLAM attains significantly better positioning accuracy and consistency compared

to Std-MonoSLAM, and is almost indistinguishable from the Ideal-MonoSLAM. Based

on our analysis and these results, we postulate that the key source of position error and

inconsistency in the Std-MonoSLAM is violation of the unobservable scale direction [i.e.,

3 The camera was simulated with a 45x45 deg fov, with σpx = 1 px.
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Ns, see (4.33)].

(a) (b)

(c) (d)

Figure 4.3: The NEES and RMSE for orientation (left) and position (right) plotted for
all three filters, averaged per time step over 50 Monte-Carlo trials.

4.5 Experimental Validation

Our experimental set-up comprised a monochrome Point Grey Chameleon camera which

recorded images at 7.5 Hz. We moved the camera on a circular trajectory in front of a

calibration board comprising 72 corner features, whose positions are accurately known

Fig. 4.4.

Using the observations of the visual features over 25 seconds (approx. 4.5 rota-

tions), we estimated the camera trajectory and corresponding map using both the Std-

MonoSLAM and the OC-MonoSLAM methods. The filters were initialized using the

PnP estimate of the camera pose at the first image, along with the linear and rotation

velocities computed between the first two images. In order to obtain an “approximate”

ground truth trajectory, we utilized DLS-PnP [94] to compute the camera pose inde-

pendently for each image, given the known landmark locations.

The estimated 3D trajectories and maps are depicted in Fig. 4.4. The PnP trajectory
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is plotted in black and closely coincides with the one computed by OC-MonoSLAM,

while the Std-MonoSLAM position estimates follow an estimated circular trajectory

with a smaller radius (indicating inconsistent scale). The scale inconsistency is also

visually apparent in Fig. 4.4 (right), which depicts a top view of the landmarks and

trajectories. The true landmarks lie in the y = 0 cm plane, hence, the Std-MonoSLAM

underestimates the depth to the scene.

(a) (b)

Figure 4.4: (left) The estimated 3D trajectory for the Std-MonoSLAM and the OC-
MonoSLAM, along with the estimated map. The PnP estimated trajectory is plotted
in black, and is overlapped by the OC-MonoSLAM estimate. (right) A top view of
the trajectories and landmarks. The true landmarks lie on the y = 0 plane, hence the
Std-MonoSLAM underestimates the depth to the scene, demonstrating scale drift.

In Fig. 4.5, we plot the estimated 3σ bounds and corresponding errors with respect to

the PnP trajectory for two representative axes (i.e., x-axis position and δθ1 orientation).

It is evident that the orientation performance of both filters is comparable, while the

OC-MonoSLAM outperforms the Std-MonoSLAM in position accuracy. In addition,

the OC-MonoSLAM is more conservative that the Std-MonoSLAM in terms of position

uncertainty.

4.6 Summary

In this chapter, we analyzed the inconsistency of MonoSLAM from the standpoint of

observability. Specifically, we showed that using a standard EKF-based approach leads
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(a) (b)

Figure 4.5: (left) The position error and corresponding 3σ bounds for the x-axis com-
puted with respect to the PnP pose estimates. (right) The orientation error and 3σ
bounds for δθ1.

to spurious information gain, in particular for scale, since it does not adhere to the

unobservable directions of the true system. Moreover, we introduced an observability-

constrained MonoSLAM method to mitigate estimator inconsistency by enforcing the

nullspace explicitly. Finally, we presented simulation and experimental results to sup-

port our claims and validate the proposed estimator.



Chapter 5

Direct Least-squares PnP

5.1 Introduction

The task of determining the six-d.o.f. camera pose from observations of known points in

the scene has numerous applications in computer vision and robotics. Examples include

robot localization [95], spacecraft pose estimation during descent and landing [82], pose

determination for model-based vision [96], as well as hand-eye calibration [97].

PnP has been studied for various numbers of points (from the minimum of 3, to the

general case of n), and several different solution approaches exist, such as: (i) directly

solving the nonlinear geometric constraint equations in the minimal case [98], (ii) for-

mulating an overdetermined linear system of equations in the non-minimal case [99],

and (iii) iteratively minimizing a nonlinear least-squares cost function, which accounts

for the measurement noise [100].

Currently, no approach exists that directly provides all solutions for PnP (n ≥ 3),

in a Maximum-Likelihood sense, without the need for initialization or approximations

in the problem treatment. Some authors have proposed methods which reach close to

the global optimum, e.g., based on successive Linear Matrix Inequality (LMI) relax-

ations [101], transformation to a Semi-Definite Program (SDP) [102], or a geometric

transformation of the problem [103]. However, these approaches are only applicable

when PnP admits a unique solution, which can only be guaranteed when n ≥ 6, and

some approaches require special treatment (e.g., when all points are co-planar).

105
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The proposed DLS method seeks to overcome the limitations of the current ap-

proaches:

• It computes all pose solutions, as the minima of a nonlinear least-squares cost

function, in the general case of n ≥ 3 points.

• No initialization is required, and the performance is consistently better than com-

peting methods and close to that of MLE.

• The method is scalable, since the size of the nonlinear least-squares cost function

which is minimized is not dependent on the number of points.

The rest of this chapter is organized as follows: Section 5.2 provides an overview

of the related work on PnP. We describe our proposed approach in Section 5.3, while

we present simulation and experimental comparisons to alternative approaches in Sec-

tion 5.4. Lastly, we provide our concluding remarks in Section 5.5.

5.2 Related Work

The minimal PnP problem (i.e., P3P) has typically been addressed by treating the

geometric constraint equations as noise-free, and solving for the camera pose [98, 104].

Haralick et al. [12] provided a comparison of the classical P3P methods and an analysis of

singular configurations. Direct solutions have also been proposed for the overdetermined

case (i.e., PnP, n ≥ 4). For instance, Horaud et al. [105] addressed the P4P problem

by connecting the four known points to form three known lines, and exploiting the

nonlinear line projection equations to compute the camera pose. Linear methods (e.g.,

based on lifting) also exist for both P4P and PnP [99, 103, 106, 107]. Significant work

has also focused on characterizing the number of solutions for P3P [108, 109, 110], and

PnP [110, 111].

A key drawback of the approaches which consider noise-free measurements is that

they may return inaccurate or even erroneous solutions in the presence of noise. Hence,

these analytic methods are most often employed as an initialization step for an MLE of

the camera pose [14].

Several authors have addressed the PnP problem from a least-squares perspective,

by iteratively minimizing a cost function which is the sum of the squared errors (either
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reprojection or geometric) for each point [14, 100]. These methods are more accurate,

since they explicitly account for the measurement noise, and under certain noise as-

sumptions, return the maximum-likelihood estimate of the camera pose. However, they

can only compute one solution (out of possibly many), and require a good initial guess

of the camera pose to converge.

Other approaches exist that seek to directly compute a global optimum without

initialization. For instance, Kahl and Henrion [101] proposed a method based on a

series of LMI relaxations, while Schweighofer and Pinz [102] presented an approach

which first transforms the PnP problem into an SDP before optimizing for the camera

pose. Unfortunately, these approaches do not provide a method for computing multiple

solutions when they exist, and may require special treatment if the known points are

co-planar.

In contrast to the above methods, we present a DLS approach for PnP which ac-

counts for the measurement noise, and admits all solutions to the problem without re-

quiring iterations or an initial guess of the camera pose. Specifically, we reparametrize

the constraint equations to obtain a polynomial cost function that only depends on the

unknown orientation. We then solve the corresponding optimality conditions analyti-

cally, and recover all minima (pose hypotheses) of the LS problem directly.

5.3 Problem Formulation

5.3.1 Measurement Model

The camera observation of known points in the scene projected onto the image plane

can be described by the spherical camera model:

zi = S r̄i + ηi (5.1)

Sri = S
GCGri + SpG (5.2)

where zi is the measurement of the unit-vector direction, S r̄i =
Sri
||Sri||

, from the sensor

frame {S} towards point i, which is corrupted by noise ηi. The point’s coordinates

in the sensing frame {S} are a function of the known coordinates, Gri, in the global

frame {G}, as well as the unknown global-to-sensor transformation described by the

rotation matrix S
GC and translation vector SpG. Figure 5.1 depicts the observation of
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Figure 5.1: This figure depicts the observations of points ri, i = 1, 2, 3 via the unit-
vector directions S r̄i from the origin of the camera frame {S} towards each point. The
distance from {S} to each point is αi = ||Sri||. The vector SpG is the origin of {G} with
respect to {S}, the rotation matrix from {G} to {S} is S

GC, and Gri is the position of
each point in {G}.

three non-collinear points, which is the minimal case required in order to be able to

solve the measurement equations and recover the camera pose.

5.3.2 Cost function

PnP can be formulated as the following constrained nonlinear least-squares minimization

problem:

{α∗i , SGC∗, Sp∗G} = arg min J (5.3)

subject to S
GCT S

GC = I3, det (SGC) = 1

αi = ||SGC Gri + SpG||

where the cost function J is the sum of the squared measurement errors, i.e.,
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J =

n∑
i=1

||zi − S r̄i||2

=

n∑
i=1

||zi −
1

αi
(SGC Gri + SpG) ||2. (5.4)

Unfortunately, J is nonlinear in the unknown quantities, and computing all of its

local minima is quite challenging. One approach is to select an initial guess for the pa-

rameter vector and employ an iterative minimization technique, such as Gauss-Newton,

to numerically compute a single local minimum of J . A clear limitation of this approach

is that it can only converge to one of the minima of the cost function, and even with

multiple restarts, we are not guaranteed to obtain all minima of J [112]. An alternative

approach is to attempt to analytically solve the system of equations provided by the

KKT optimality conditions of (5.3) for the unknown quantities. However, this method

is also challenging since the KKT conditions form a nonlinear system of equations in

6 + n unknowns (3 from S
GC, 3 from GpS, and n from αi, i = 1, . . . , n).1 A third

strategy is to relax the original optimization problem [see (5.3)] and manipulate the

measurement equations to reduce the number of unknowns. This leads to a modified

LS problem for the reduced set of parameters, which can be solved analytically.

In this chapter, we follow the third approach, which is described in Sects. 5.3.3-

5.3.5. Before discussing our method in detail, we first provide a brief overview. We

satisfy the constraints in the following way: (i) We employ the Cayley-Gibbs-Rodriguez

(CGR) parametrization of the rotation matrix S
GC and utilize the three CGR parame-

ters as unconstrained optimization variables. In this way we satisfy the rotation matrix

constraints, S
GCT S

GC = I and det (SGC) = 1, exactly. (ii) We relax the scale constraint

αi = ||SGC Gri + SpG||, treating each αi as a free parameter. Note that this relaxation

is reasonable since solving the optimality conditions results in α∗i = zTi (SGC Gri + SpG),

which exactly satisfies the constraint when the measurements are noise free (see Ap-

pendix F). Subsequently, in order to reduce the number of unknown parameters in the

LS cost function, we manipulate the measurement equations, and express SpG and αi as

1 Note that in this case, the KKT conditions can be written as a system of polynomial equations
whose degree and number of variables depend linearly on the number of measurements. Given the
doubly exponential (in the degree and number of variables) complexity of current methods for solving
polynomial systems, this approach is only practical for small-scale problems.
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functions of the unknown rotation S
GC. We then directly solve a modified LS problem

to obtain all rotation hypotheses (local minima), from which we recover the scale αi

and translation SpG.

5.3.3 Modified measurement equations

We first consider the noise-free geometric constraints which appear in the measurement

model (5.1),

αi
S r̄i = S

GC Gri + SpG, i = 1, . . . , n. (5.5)

This system of equations contains unknown quantities (αi,
S
GC, SpG), and quantities

which are either known perfectly (Gri), or are measured by the camera (S r̄i). We

would like to reparametrize this system of equations in terms of fewer unknowns. Since

both the scale and translation parameters appear linearly, they are good candidates for

reduction. We can rewrite (5.5) in matrix-vector form as


S r̄1 −I

. . .
...

S r̄n −I


︸ ︷︷ ︸

A


α1

...

αn
SpG


︸ ︷︷ ︸

x

=


S
GC

. . .

S
GC


︸ ︷︷ ︸

W


Gr1

...

Grn


︸ ︷︷ ︸

b

⇔ Ax = Wb (5.6)

where A and b comprise quantities that are known or measured, x is the vector of

unknowns which we wish to eliminate from the system of equations, and W is a block

diagonal matrix of the unknown rotational matrix. From (5.6), we can express SpG and

αi, i = 1, . . . , n in terms of the other system quantities as

x = (ATA)−1 ATWb =

[
U

V

]
Wb (5.7)

where we have partitioned (ATA)−1 AT into U and V such that the scale parameters are

a function of U and the translation is a function of V. Exploiting the sparse structure

of A, U and V in (5.7) are computed in closed form (see Appendix F).
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We note that both SpG and αi are linear functions of the unknown rotation matrix

S
GC, i.e.,

αi = uTi Wb, i = 1, . . . , n (5.8)

SpG = VWb, (5.9)

where uTi corresponds to the i-th row of matrix U [see (5.7)]. Hence, we can rewrite

the constraint equations (5.5) as

uTi Wb︸ ︷︷ ︸
αi

S r̄i = S
GC Gri + VWb︸ ︷︷ ︸

SpG

, i = 1, . . . , n. (5.10)

At this point, we have reduced the number of unknown parameters from 6 + n down

to 3. Furthermore, we express the rotation matrix in terms of the CGR parameters

s =
[
s1 s2 s3

]T
, where

S
GC =

C̄

1 + sTs
(5.11)

C̄ , ((1− sTs) I3 + 2bs×c+ 2ssT ) , (5.12)

where I3 denotes the 3 × 3 identity matrix, and bs×c is the skew-symmetric matrix

parametrized by s. Using the CGR parameters will allow us to formulate a LS mini-

mization problem in s that automatically satisfies the rotation matrix constraints, i.e.,

S
GCT S

GC = I, det (SGC) = 1. We can explicitly show the dependence of (5.10) on s, i.e.,

uTi W(SGC(s)) bS r̄i = S
GC(s) Gri+VW(SGC (s)) b. (5.13)

Note that S
GC (s) appears linearly in this equation. This allows one further simplifi-

cation, specifically, we can cancel the denominator 1 + sTs from the constraint equa-

tion (5.13) [see (5.11)], i.e.,

uTi W
(
C̄ (s)

)
bS r̄i = C̄ (s) Gri + VW

(
C̄ (s)

)
b, (5.14)

which renders constraints that are quadratic in s.

To summarize, we began with the original geometric constraint relationship between

a known point coordinate Gri and its noise-free observation S r̄i, and reparametrized the
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geometric constraint to be only a function of the unknown rotation matrix S
GC. To do

so, we treated the unknown scales αi, i = 1, . . . , n, as independent variables, relaxing the

original problem formulation (5.3). Subsequently, we employed the CGR parameters to

express orientation, and as a final step, we canceled the denominator from the CGR

rotation matrix. Hence, this approach results in constraints which are quadratic in the

elements of s.

5.3.4 Modified cost function

We employ the modified measurement constraint (5.14) to formulate a LS minimiza-

tion problem for computing the optimal CGR rotation parameters s. Recalling that

the measured unit-vector direction towards each point is zi = r̄i + ηi, we rewrite the

measurement constraints as

uTi W
(
C̄(s)

)
b (zi−ηi)=C̄ (s)Gri + VW

(
C̄ (s)

)
b (5.15)

⇒ uTi W
(
C̄ (s)

)
b zi − C̄ (s) Gri −VW

(
C̄ (s)

)
b = η′i (5.16)

where η′i is a zero-mean noise term that is a function of ηi, but whose covariance depends

on the system parameters, and both ui and V are evaluated at S r̄i = zi.

Based on (5.16), the pose-determination problem can be reformulated as the follow-

ing unconstrained least-squares minimization problem

{s∗1, s∗2, s∗3} = arg min J ′ (5.17)

where the cost function J ′ is the sum of the squared constraint errors from (5.16), i.e.,

J ′ =

n∑
i=1

||uTi W
(
C̄ (s)

)
b zi−C̄(s) Gri−VW

(
C̄ (s)

)
b||2

=

n∑
i=1

η′Ti η
′
i. (5.18)

Note that each summand in J ′ is quartic in the elements of s, and J ′ contains all

monomials up to degree four, i.e., {1, s1, s2, s3, s1s2, s1s3, s2s3, . . . , s
4
1, s

4
2, s

4
3}.
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Since J ′ is a fourth-order polynomial, the corresponding optimality conditions form

a system of three third-order polynomials. What we show next, is how to employ the

Macaulay matrix to directly compute all of the critical points of J ′ by finding the roots of

the polynomial system. A key benefit of our proposed approach is that the polynomial

system we solve is of a constant degree, independent of the number of points in the

PnP problem. Changing the number of points only affects the coefficients appearing

in the system. Thus, we need only compute the Macaulay matrix symbolically once.

Subsequently, we simply form the elements of the Macaulay matrix from the data (an

operation which is linear in the number of points), and directly find the roots via the

eigen decomposition of the Schur complement of the Macaulay matrix (see Sect. 5.3.5).2

5.3.5 Directly computing the local minima

What follows next is a brief overview of how we employ the Macaulay matrix [113, 114]

to directly determine the roots of a system of polynomial equations. We refer the

interested reader to “Using Algebraic Geometry” by Cox et al. [48] for a more complete

perspective.

Since J ′ is a fourth-order polynomial function in three unknowns, the corresponding

optimality conditions form a system of polynomial equations, i.e.,

∇siJ ′ = Fi = 0, i = 1, 2, 3. (5.19)

Each Fi is a polynomial of degree three in the variables s1, s2, s3. The Bézout bound

(i.e., the maximum number of possible solutions) for this system of equations is 27.

Under mild conditions [48], which are met for general PnP instantiations, the Bézout

bound is reached.

Our goal is to compute the multiplication matrix from which we can directly obtain

all the solutions to our system via eigen decomposition [115]. We obtain the multiplica-

tion matrix by first constructing the Macaulay resultant matrix. To do so, we augment

our polynomial system with an additional linear equation, which is generally non-zero

2 We compute the Schur complement of a sparse 120 × 120 matrix, followed by the eigen decom-
position of a non-sparse 27 × 27 matrix. The total time to complete both operations in Matlab is
approximately 15 ms.
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at the roots of our system, i.e., F0 = u0 +u1s1 +u2s2 +u3s3, where each uj , j = 0, . . . , 3

is randomly generated. We denote the set of all monomials up to degree 7 as

S = {sγ :
∑

jγj ≤ 7} (5.20)

where we use the notation sγ , sγ1
1 s

γ2
2 s

γ3
3 , γi ∈ Z≥0, to denote a specific monomial. The

set S is important, since, using S we can expand our original system of polynomials to

obtain a square system that has the same number of equations as monomials. To do

so, we first partition S into four subsets, such that S3 contains all monomials that can

be divided by s3
3, S2 contains all monomials that can be divided by s3

2 but not s3
3, S1

contains all monomials that can be divided by s3
1 but not by s3

2 or s3
3, and S0 contains

the remaining monomials, i.e.,

S0 = {1, s1, s
2
1, s2, s1s2, s

2
1s2, s

2
2, s1s

2
2, s

2
1s

2
2, s3, s1s3, s

2
1s3,

s2s3, s1s2s3, s
2
1s2s3, s

2
2s3, s1s

2
2s3, s

2
1s

2
2s3, s

2
3, s1s

2
3,

s2
1s

2
3, s2s

2
3, s1s2s

2
3, s

2
1s2s

2
3, s

2
2s

2
3, s1s

2
2s

2
3, s

2
1s

2
2s

2
3}.

Note that the second, fourth, and tenth elements of S0 are the three CGR rotation

parameters {s1, s2, s3}; a fact that we will exploit later.

We next form an extended system of equations by multiplying F0 with each of the

monomials in S0, and multiplying Fi with each of the monomials in Si divided by s3
i ,

i = 1, 2, 3. We denote polynomials obtained from extending Fi as Gi,j , j = 1, . . . , |Si|.
Thus, the extended set of polynomial equations is



G0,1

G0,2

...

G1,1

...


=



cT0,1

cT0,2
...

cT1,1
...


sγ = Msγ = M

[
sα

sβ

]
(5.21)

where each polynomial Gi,j is expressed as an inner product between the coefficient

vector, cTi,j , and the vector of all monomials sγ , i.e., Gi,j = cTi,js
γ . The Macaulay matrix
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M is formed by stacking the coefficient vectors. Finally, we partition sγ such that sα

comprises monomials in S0, and sβ contains the remaining monomials.

If we evaluate (5.21) at a root, p =
[
p1 p2 p3

]T
, of the original system (5.19),

then all polynomials Gi,j extended from Fi, i = 1, 2, 3 will be zero, since Fi(p) = 0 by

definition. However, F0 and hence G0,j , j = 1, . . . , |S0| will not generally be zero, i.e.,



G0,1(p)
...

G0,|S0|(p)

0
...

0


= M

[
pα

pβ

]
⇔

[
F0(p)pα

0

]
= M

[
pα

pβ

]
(5.22)

where pα and pβ denote the monomial vectors evaluated at p, i.e., sα(p) = pα and

sβ(p) = pβ. Based on this observation, we partition M into four blocks where M00 is

of dimension |S0| × |S0|, and rewrite (5.22) as[
F0(p)pα

0

]
=

[
M00 M01

M10 M11

][
pα

pβ

]
. (5.23)

Finally, exploiting the Schur complement, we obtain

F0(p)pα =MF0p
α (5.24)

where MF0 = M00 −M01M
−1
11 M10 is the multiplication matrix corresponding to F0.

From (5.24) we see that F0(p) is an eigenvalue of MF0 with corresponding eigenvector

pα. We can directly obtain all 27 solutions to our system of equations (5.19) via eigen

decomposition, since the eigenvectors ofMF0 are the monomials of S0 evaluated at each

of the 27 roots. Since the first element in S0 is 1, we normalize each eigenvector by its

first element, and read off the solution for si, i = 1, 2, 3, from the second, fourth, and

tenth elements of the eigenvector.

Through this procedure we obtain 27 critical points, which include real and imag-

inary minima, maxima, and saddle points of the cost function (5.18). In practice, we

have only observed up to 4 real local minima that place the points in front of the center
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of perspectivity. In almost all cases, when n ≥ 6 we obtain a single real minimum of

the function. After obtaining the minima, we evaluate the cost function to find the

optimal orientation, and compute the corresponding translation from (5.9). Additional

details about the DLS PnP algorithm implementation are available as supplemental

material [116].

5.4 Simulation and Experimental Results

5.4.1 Simulations

We hereafter present simulation results which compare the accuracy of our method to

the leading PnP approaches:

• NPL: The N-Point Linear (NPL) method of Ansar and Daniilidis [99].

• EPnP: The approach of Lepitit et al. [103].

• SDP: The Semi Definite Program (SDP) approach of Schweighofer and Pinz [102].

• DLS: The Direct Least-Squares (DLS) solution presented in this paper. An open

source implementation of DLS is available at www.umn.edu/~joel

• DLS-LM: Maximum-likelihood estimate, computed using iterative Levenberg-

Marquardt (LM) minimization of the sum of the squared reprojection errors, ini-

tialized with DLS.

To test the NPL, EPnP, and SDP methods, we obtained the authors’ own Matlab

implementations, which were either provided via e-mail request or publicly available on

the web.

We first examine the performance of the above algorithms versus number of points.

We randomly distribute points within the field of view (45 × 45 deg) of an internally

calibrated camera (focal length 600 px), at distances between 0.5 and 5.5 m. We perturb

each image measurement (point projection on the image plane) by independent zero-

mean Gaussian noise (σ = 1.5 px along both u and v axes). We vary the number of

points from 3 to 10, noting that for the methods which require a unique solution to

www.umn.edu/~joel


117

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of points

A
v
e
ra

g
e
 T

ilt
 A

n
g
le

 E
rr

o
r 

N
o
rm

 (
ra

d
)

 

 

NPL

EPnP

SDP

DLS

DLS+LM

(a)

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

number of points

A
v
e
ra

g
e
 P

o
s
it
io

n
 E

rr
o
r 

N
o
rm

 (
m

)

 

 

NPL

EPnP

SDP

DLS

DLS+LM

(b)

4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

number of points

A
v
e
ra

g
e
 P

o
s
it
io

n
 E

rr
o
r 

N
o
rm

 (
m

)

 

 

SDP

DLS

DLS+LM

(c)

Figure 5.2: Accuracy comparison depicted as the average error norm, over 100 trials for
each number of points, for orientation 5.2(a) and position 5.2(b). The results for just
SDP, DLS, and DLS+LM are depicted in 5.2(c).

work (i.e., NPL, EPnP, and SDP), we only show results for 4 or more points (when a

unique solution is probable).

Figure 5.2 shows the results comparing the five approaches based on their average

error norm computed over 100 trials. We compute the position error norm as ||SpG,true−
SpG,est||, while we compute the tilt-angle (orientation) error norm as ||δθ|| = 2||s̃||,
where s̃ is the CGR parameter obtained from S

GC̃ = S
GCT

true
S
GCest. We see that DLS

performs consistently better than other approaches, and obtains results close to the

MLE estimate (DLS-LM). The SDP method treats strictly planar scenes differently

than non-planar scenes [102], by using two different SDP relaxations. However in some

cases, when the points are close to a coplanar configuration, neither SDP approach

provides accurate results [e.g., n = 6 in Fig. 5.2(c), the average error is larger due

to a few nearly coplanar cases out of the 100 trials]. We also note that NPL is least

accurate since it sometimes returns imaginary solutions (due to recovery of the original

parameters after lifting). In these instances, we compute a real solution by projecting

the imaginary solution back onto the real axis.

We also examine the performance of the five approaches as a function of the pixel

noise. We vary the pixel noise standard deviation between σ = 0 px and σ = 7 px,

noting that we only permit noise between ±3σ (to prevent outliers). Figure 5.3 displays

the results of the average error norm over 100 trials for position and orientation. We

note that DLS again outperforms the existing methods and is very close to the MLE
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Figure 5.3: Accuracy comparison depicted as the average error norm, over 100 trials
for each value of σ, for orientation 5.4(a) and position 5.4(b). The results for just SDP,
DLS, and DLS+LM are depicted in 5.3(c).

estimate (DLS-LM).

5.4.2 Experiments

We evaluated our method experimentally with observations of 7 known points at the

corners of a cube. We computed the camera pose with each method (using 3, 4, and 7

known points), and compared the resulting pose value to the MLE estimate obtained

using all 7 points. Table 5.1 lists the errors for orientation and position for each method.

Figure 5.4 depicts the visual results of the experiment. We show the back-projection

of the known global points on the image as green circles, for DLS3 [Fig. 5.4(a)], and

DLS7 [Fig. 5.4(b)]. In order to further validate the results visually, we also back-project

a virtual box (of identical dimensions as the real box) next to the real box. Additional

trials are included in the supplemental material [116].

5.4.3 Processing time comparison

The speed of the four direct methods was evaluated in Matlab 7.8 running on a Linux

(kernel 2.6.32) computer with a 2.4 GHz Intel Core 2 Duo processor. NPL and EPnP

were the fastest algorithms, requiring approximately 10 ms and 5 ms, respectively, to

solve a four-point problem. Our algorithm required approximately 15 ms to compute

all local minima of the LS cost function using the Macaulay resultants method. The
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(a) (b)

Figure 5.4: The solution computed using DLS with 3 known points is depicted in 5.4(a),
where the green circles represent the 3 known points back-projected onto the image using
the computed transformation. 5.4(b) is the result obtained using DLS with 7 known
points. In both cases, we also back-project a virtual cube, placed next to the real one,
to aid visual verification of the result.

slowest approach was SDP which required approximately 200 ms to solve the semi-

definite program (using SeDuMi). Since the implementations are Matlab-based and not

optimized for speed, we provide these only as “ball-park” figures for performance. Part

of our ongoing work is to compare the run-time of these methods using efficient C/C++

implementations.

5.5 Summary

In this chapter, we have presented a DLS method for PnP which has several advantages

compared to existing approaches. First, it is flexible in that it can handle any number

of points from the minimal case of 3, to the general case of n ≥ 4. It computes all pose

solutions analytically, as the minima of a nonlinear least-squares cost function, without

the need for initialization. Instead, using a reformulation of the geometric constraints,

we obtain LS optimality conditions that form a system of three third-order polynomials,

which are solved efficiently using the multiplication matrix.

We have validated the proposed method alongside three leading PnP algorithms as
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well as the MLE, both in simulation and experimentally. Compared to existing ap-

proaches, DLS is consistently more accurate, attaining performance close to the MLE.

DLS is also efficient, since the order of the polynomial system that it solves is inde-

pendent of the number of measurements. Lastly, in contrast to other techniques which

seek to obtain a single global optimum (e.g., SDP and EPnP) DLS has the unique

characteristic that it analytically computes all minima of the LS cost function.
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n-points Ori. Error Norm (rad) Pos. Error Norm (m)

NPL4 2.87×10−3 8.67×10−3

NPL7 2.12×10−3 2.42×10−3

EPnP4 2.49×10−2 2.33×10−2

EPnP7 1.24×10−2 3.41×10−3

SDP4 4.26×10−3 9.82×10−3

SDP7 3.86×10−4 3.49×10−4

DLS3 5.41×10−3 1.02×10−2

DLS4 4.28×10−3 9.83×10−3

DLS7 4.29×10−4 3.35×10−4

Table 5.1: The orientation and position errors for different numbers of points. Errors
are computed with respect to the MLE estimate of the camera pose computed using all
7 points.



Chapter 6

Concluding Remarks

6.1 Summary of contributions

This thesis focuses on analyzing and improving the performance of six d.o.f. localization

using onboard sensors. In particular, we evaluate the interplay of system observability

properties and estimator consistency for laser-aided and vision-aided inertial naviga-

tion systems (LINS and VINS, respectively). The following is a summary of the key

contributions:

• An approach for Laser-aided Inertial Navigation

In Chapter 2, we presented a novel LINS, based on a 2D laser scanner and an

IMU, capable of 3D localization and mapping in indoor environments. In the pro-

posed method, the orthogonal structural planes of the building are employed as

landmarks to aid in localization. Since the building’s layout may be partially or

completely unknown, the planes’ parameters are estimated concurrently with the

six d.o.f. pose of the person. To this end, an EKF is utilized to fuse information

from an IMU and a 2D laser scanner, and estimate the person’s motion and the

building’s structural planes. We presented a practical method for filter initializa-

tion that employs line-to-plane correspondences to initialize the orientation and

zero-velocity updates to initialize the IMU bias estimates. Furthermore, we stud-

ied the observability properties of the system to determine a sufficient condition

on the number and type of measurements so as to ensure that the pose can be es-

timated. As a final contribution of this chapter, we introduced an on-line extrinsic

122
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calibration approach for estimating the laser-to-IMU transformation. The validity

of the proposed method is demonstrated experimentally in both previously known

and unknown environments, which include challenging 3D building structures such

as staircases, a disability access ramp, and long corridors. Furthermore, the en-

vironments contained a typical amount of office clutter (e.g., chairs and desks) as

well as pedestrian traffic.

• Consistency analysis and improvement for VINS

In Chapter 3, we analyzed the inconsistency of VINS from the standpoint of ob-

servability. Specifically, we showed that standard EKF-based filtering approaches

lead to spurious information gain since they do not adhere to the unobservable

directions of the nonlinear system. Furthermore, we introduced an observability-

constrained VINS approach to mitigate estimator inconsistency by enforcing the

nullspace explicitly. We presented extensive simulation and experimental results

to support our claims and validated the proposed estimator, by applying it to

both V-SLAM and the MSC-KF.

• Towards consistent single-camera localization

In Chapter 4, we analyzed the inconsistency of MonoSLAM from the standpoint of

observability. Specifically, we showed that using a standard EKF-based approach

leads to spurious information gain, in particular for scale, since it does not ad-

here to the unobservable directions of the true system. Moreover, we introduced

an observability-constrained MonoSLAM method to mitigate estimator inconsis-

tency by enforcing the nullspace explicitly. Finally, we presented simulation and

experimental results to support our claims and validate the proposed estimator.

• A direct-least squares method for PnP

In Chapter 5, we presented a direct least-squares (DLS) method for PnP which

has several advantages compared to existing approaches. Firstly, it is flexible

in that it can handle any number of points from the minimal case of 3, to the

general case of n ≥ 4. Additionally, it computes all pose solutions analytically,

as the minima of a nonlinear least-squares cost function, without the need for

initialization. Specifically, using a reformulation of the geometric constraints, we

obtain LS optimality conditions that form a system of three third-order polynomial
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equations, which are solved efficiently using the multiplication matrix.

We have validated the proposed method alongside three leading PnP algorithms

as well as the MLE, both in simulation and experimentally. Compared to existing

approaches, DLS is consistently more accurate, attaining performance close to

the MLE. DLS is also efficient, since the order of the polynomial system that it

solves is independent of the number of measurements. Lastly, in contrast to other

techniques which seek to obtain a single global optimum (e.g., SDP and EPnP)

DLS has the unique characteristic that it analytically computes all minima of the

LS cost function.

6.2 Future Work

The accuracy of VINS is significantly reduced in areas containing a small number of

visual cues, such as when traversing long corridors with mono-color walls or sparse,

clutter-free office environments. In these instances, an estimator may become increas-

ingly reliant on inertial sensing which can lead to large estimation errors, hence invali-

dating the small linearization-error assumption. To mitigate this issue, we believe it is

pertinent to investigate methods for exploiting information provided by stochastic and

deterministic motion constraints to reduce the drift effects. For example, under normal

walking conditions, a person’s heading direction lies along their dorsoventral (back-to-

front) axis, while their velocity is constrained by their limb length and step frequency.

This information (specific to each person), can be expressed as a state constraint and

used to improve estimation accuracy (e.g., by restricting the direction of travel as well

as the magnitude of linear and rotational velocities).

In many applications, we have prior knowledge about how the vehicle or person

moves in space. Examples include the maximum velocity or turning radius of a car

specified by engineering design, or, in the case of a human, average walking speed.

Through careful system modeling, a more complex understanding of the vehicle dy-

namics can also be developed, including masses, moments of inertia, contact forces, and

material interaction properties. Exploiting this additional information has the potential

to improve the accuracy and consistency of the estimation process, particularly in areas

in which little visual information is available for constraining the IMU drift.
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To put this idea in a historical context, one of the first Kalman filters for estimating

3D attitude, particularly for early satellites such as Nimbus I (NASA circa 1964), were

designed around complex dynamical models of motion (used for propagation), while all

sensor measurements (including IMU data) were used for state updates [8]. Despite

the significant time and effort that was invested in generating an accurate dynamical

model, the resulting pose accuracy was insufficient. Additionally, the complexity of

the state-space in terms of number of parameters became prohibitively large for the

computational resources available at that time. For these reasons, most modern inertial

navigation systems rely on kinematics-based motion models that integrate the IMU

signals in order to propagate the state estimates. This paradigm shift was ideal in

many ways; first and foremost it provided higher accuracy 3D pose estimation, but

more importantly, it permitted porting the navigation system from vehicle to vehicle

without the need to redesign the system model.

We believe, however, that performance can be improved if we reintroduce the model-

based motion constraints in the context of VINS, as an additional information source

that can improve estimation accuracy, particularly when few visual features are avail-

able. The difference of what we are proposing compared to past approaches, is that

instead of employing motion models at the core of the estimation process (e.g., in the

EKF propagation phase), we should exploit this information as additional “measure-

ments” which can be applied flexibly, whenever the corresponding model or constraint

is valid. This represents a key novelty of our future work and a necessary caution, since

during certain periods a motion constraint may be valid, while not at other times (e.g.,

a human may exhibit nominal walking behavior while on level ground inside a building,

but when struggling to walk up a sand dune, their stride length and frequency, as well

as foot-to-ground interaction and slippage will differ significantly).

6.2.1 Example sources of additional motion information

Tracking models: The first and most general type of motion information that we can

exploit are statistical tracking models which characterize how a vehicle or person moves

under nominal conditions [7, 117]. Common models include zero-velocity and zero-

acceleration, which assume that velocity or acceleration change only as a random walk.

For example, a simple discrete-time zero-acceleration tracking model can be expressed
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as: [
pk+1

vk+1

]
=

[
I3 δtI3

03 I3

][
pk

vk

]
+

[
0

wk

]
(6.1)

where p and v denote position and velocity, respectively, and the noise driving the

system, wk, is distributed as a zero-mean Gaussian random vector with covariance Qk.

The statistics of wk can be inferred based on prior knowledge of vehicle capabilities and

mission, or can be learned from training data.

Gait models: A second type of motion information, particularly focused on human

navigation, are gait models which describe the distance traveled during each gait cy-

cle (e.g., walking step). For instance, during one walking step a human might move

d meters, which can be expressed as the following measurement constraint

||pk+` − pk|| = d+ η (6.2)

where tk+`−tk is the duration of a single walking step, and η is a noise term capturing the

uncertainty in the model. A näıve approach would be to consider both ` and d constant

for everyone (i.e., all humans walk at the same pace with the same step size). This,

however, has obvious limitations given the difference in body geometry (e.g., height and

limb length) and walking styles among people. Furthermore, a single person may walk

at different gait frequencies depending on if they are on a leisurely walk in the park, or

if they are running late for a meeting. For these reasons, recent work (e.g., [118, 119])

has focused on answering the following questions: (i) What is the person’s current gait

(e.g., walking, running, or crawling)? (ii) How fast is the person executing the gait?

(iii) What is the functional relationship between the distance traveled in one step, the

frequency of motion, and the person’s body geometry?

Other motion information: Additional motion information can also be inferred

from the mechanical design of a vehicle (e.g., Ackerman or skid steering model, wheel-

base length), as well as knowledge about the environment. For instance, in most practi-

cal circumstances, ground vehicles and people both traverse support planes while they

move; hence motion in the vertical direction is kept to a minimum. These additional

sources of information can also provide constraints on the system’s motion which can

be exploited to improve VINS performance.



127

6.2.2 Exploiting motion information as state constraints

We propose to incorporate additional sources of motion information within the MAP

(or sliding-window filtering) estimation framework. Specifically, constraints in the form

of (6.1) and (6.2) can be written as

||g (xk, . . . , xk+`, ζ) ||2D (6.3)

where the, in general nonlinear, constraint function g involves the state of the system

over time-steps k through k+ `, and the vector ζ comprises parameters involved in the

constraint relationship (e.g., vehicle wheel base, or the person’s biometric information).

The weighting matrix D corresponds to the uncertainty of the motion information and

can be learned from training data or selected based on knowledge of the system or mo-

tion. The motion-model constraints are independent of the other sensor measurements,

and will appear as additional cost terms in the estimator’s cost function.

For each state constraint that we investigate, we will answer the following questions:

(i) Which states does it directly impact? (ii) How does it affect the system observability

properties? (iii) What conditions must be satisfied in order to employ this constraint?

(iv) What is a realistic uncertainty model, and how to perform uncertainty character-

ization? (v) What are its practical benefits and limitations (i.e., how does it work in

real-world conditions)?
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Appendix A

Nomenclature and Abbreviations

C (q̄) rotation matrix parametrized by the quaternion q̄

Wr vector r expressed with respect to frame {W}
WpZ origin of frame {Z} expressed with respect to frame {W}
In the n× n identity matrix

0m×n the m× n matrix of zeros

3D three dimensions

BLS Batch Least Squares

CGR Cayley-Gibbs-Rodriguez

d.o.f. degrees of freedom

DR Dead Reckoning

DLS Direct Least Squares

EKF Extended Kalman Filter

FEJ First-Estimates Jacobian

f.o.v. field of view

GPS Global Positioning System

142



143

ICP Iterative Closest Point

IMM Interacting Multiple Model

IMU Inertial Measurement Unit

INS Inertial Navigation System

KKT Karush-Kuhn-Tucker

KF Kalman Filter

LINS Laser-aided Inertial Navigation System

LM Levenberg-Marquardt

LMI Linear Matrix Inequality

MAP Maximum A Posteriori

MAV Micro Aerial Vehicle

MonoSLAM Monocular Simultaneous Localization and Mapping

NEES Normalized Estimation Error Squared

OC Observability Constrained

PF Particle Filter

P3P Perspective 3-point Pose Determination Problem

pdf probability density function

PnP Perspective n-point Pose Determination Problem

PNA Personal Navigation System

pose position and orientation

RANSAC Random Sample Consensus

RMSE Root Mean Squared Error
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rpy roll, pitch, and yaw

SDP Semi-Definite Program

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

UKF Unscented Kalman Filter

VINS Vision-aided Inertial Navigation System

VIO Visual-Inertial Odometry

VT Vocabulary Tree



Appendix B

VINS: Lie derivative

observability matrix

In this section, we study the observability properties of system (3.44), by showing that

its observability matrix, Ξ [see (3.23)], is of full column rank; thus system (3.44) is ob-

servable and the basis functions β are the observable modes of the original system (3.26).

Although the observability matrix comprising the spans of all the Lie derivatives of

the system (3.26)-(3.27) will, in general, have infinite number of rows, we will only use

a subset of its Lie derivatives to prove that it is observable. In particular, since we aim

to prove that Ξ is of full column rank, we need only to select a subset of its rows that

are linearly independent. Specifically, we select the set

L = {L0h,L3
g0g13g21

h,L1
g0

h,L3
g0g13g13

h,L3
g0g0g21

h,L2
g0g0

h,L3
g0g0g13

h,L3
g0g0g0

h} (B.1)

where we have used the abbreviated notation gij to denote the j-th component of the

i-th input, i.e., gij = giej . The ordering of L has been selected so as to admit an

advantageous structure for analyzing the observability matrix.
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The observability sub-matrix corresponding to these Lie derivatives is

Ξ′ =



∂L0h
∂β

∂L3
g0g13g21

h

∂β
∂L1

g0
h

∂β
∂L3

g0g13g13
h

∂β
∂L3

g0g0g21
h

∂β
∂L2

g0g0
h

∂β
∂L3

g0g0g13
h

∂β
∂L3

g0g0g0
h

∂β



(B.2)

which, after expanding all of the spans of the Lie derivatives in (B.2), has the following

structure:

Ξ′ =


I3×3 03×6 03×6

01×3 01×6 01×6

X6×3 Ψ6×6 06×6

Y6×3 Z6×6 Θ6×6

 . (B.3)

Since the second block row of Ξ′ is all zero, we drop it, defining a new matrix Ξ′′ whose

rank is the same, i.e.,

Ξ′′ =


I3×3 03×6 03×6

X6×3 Ψ6×6 06×6

Y6×3 Z6×6 Θ6×6

 . (B.4)

Hence, we can prove that system (3.44) is observable, by showing that the matrix Ξ′′

is of full column rank.

The first step in our proof consists of showing that both Ψ6×6 and Θ6×6 are full-rank

matrices. Specifically,

Ψ =



−β21 0 β11β21 −β11 β12 β2
11 + 1 −β12

0 −β21 β12 β21 −β2
12 − 1 β11β12 β11

β21 0 −β11β21 4β11β12 2β2
12 − 2β2

11 β12

0 β21 −β12β21 2β2
12 − 2β2

11 −4β11β12 −β11

0 0 −2β2
21 2β12β21 −4β11β21 0

0 0 0 0 −2β12β21 −2β21


(B.5)
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where βij denotes the j-th component of basis element βi. Examining the determinant

of Ψ, we see that

det (Ψ) = −4β5
21

(
β2

11 + β2
12 − 1

) (
2β2

11 + 2β2
12 + 1

)
= −4

1

p5
z

(
p2
x

p2
z

+
p2
y

p2
z

− 1

)(
2
p2
x

p2
z

+ 2
p2
y

p2
z

+ 1

)
, (B.6)

where for the purpose of analyzing the determinant, we have substituted the basis el-

ement definitions [see (3.38) and (3.39)]. First, we note that since the observed point

cannot be coincident with the camera center (due to the physical size of the lens and

optics), pz 6= 0. Moreover, since we only process features whose positions can be tri-

angulated from multiple views (i.e., features that are not at infinite distance from the

camera) 1
pz
6= 0. Second, we note that all quantities in the last term are nonnegative,

hence, (
2
p2
x

p2
z

+ 2
p2
y

p2
z

+ 1

)
≥ 1. (B.7)

This means that Ψ is only rank deficient when the relationship(
p2
x

p2
z

+
p2
y

p2
z

− 1

)
= 0 (B.8)

holds. This equation is satisfied when the observed point lies on a circle with radius

1 on the normalized image plane (i.e., at focal length 1 from the optical center). The

corresponding bearing angle to a point on this circle is 45 deg. This corresponds to

a zero-probability event, since the control inputs of the system take arbitrary values

across time. Thus, we conclude that Ψ is generically full rank.

We now turn our attention to the 6× 6 submatrix Θ:

Θ =



−β21 0 β11 β21 β21 0 −β11 β21

0 −β21 β12 β21 0 β21 −β12 β21

0 −β21 β12 β21 0 0 −β12 β21

β21 0 −β11 β21 0 0 β11 β21

Θ5,1 Θ5,2 Θ5,3 Θ5,4 Θ5,5 Θ5,6

Θ6,1 Θ6,2 Θ6,3 Θ6,4 Θ6,5 Θ6,6


(B.9)
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where Θi,j denotes the element in the i-th row and j-th column of the matrix Θ, with

Θ5,1 = −2β21 (β11β42 − β12β41 + β21β33)

− β21 (2β11β42 − β12β41 + β21β33)− 2β11β21β42 (B.10)

Θ5,2 = 2β21 β43 + β21 (β43 + β11 β41) + 2β11 β21 β41 (B.11)

Θ5,3 = 2β21 (β42 − β21β31 − β12β43

+β11 (β11β42 − β12β41 + β21β33))− 2β21 β42

− β21
2 (β31 − β11 β33)− β12 β21 (β43 + β11 β41)

+ 2β11 β21 (β11 β42 − β12 β41 + β21 β33)

+ β11 β21 (2β11 β42 − β12 β41 + β21 β33) (B.12)

Θ5,4 = 2β21 (β11 β42 − β12 β41 + β21 β33)

+ β21 (2β11 β42 − β12 β41 + β21 β33) + β11 β21 β42 (B.13)

Θ5,5 = −β21 β43 − β21 (β43 + β11 β41)− β11 β21 β41 (B.14)

Θ5,6 = β21
2 (β31 − β11 β33) + β21 β42 − 2β21 (β42 − β21 β31

−β12 β43 + β11 (β11 β42 − β12 β41 + β21 β33))

+ β12 β21 (β43 + β11 β41)

− 2β11 β21 (β11 β42 − β12 β41 + β21 β33)

− β11 β21 (2β11 β42 − β12 β41 + β21 β33) (B.15)

Θ6,1 = −2β21 β43 − β21 (β43 + β12 β42)− 2β12 β21 β42 (B.16)

Θ6,2 = 2β12 β21 β41 − β21 (β11 β42 − 2β12 β41 + β21 β33)

− 2β21 (β11 β42 − β12 β41 + β21 β33) (B.17)

Θ6,3 = 2β21 β41 − β21
2 (β32 − β12 β33)

− 2β21 (β41 + β21 β32 − β11 β43

−β12 (β11 β42 − β12 β41 + β21 β33))

+ β11 β21 (β43 + β12 β42)

+ 2β12 β21 (β11 β42 − β12 β41 + β21 β33)

+ β12 β21 (β11 β42 − 2β12 β41 + β21 β33) (B.18)
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Θ6,4 = β21 β43 + β21 (β43 + β12 β42) + β12 β21 β42 (B.19)

Θ6,5 = 2β21 (β11 β42 − β12 β41 + β21 β33)

+ β21 (β11 β42 − 2β12 β41 + β21 β33)− β12 β21 β41 (B.20)

Θ6,6 = β21
2 (β32 − β12 β33)− β21 β41

+ 2β21 (β41 + β21 β32 − β11 β43

−β12 (β11 β42 − β12 β41 + β21 β33))

− β11 β21 (β43 + β12 β42)

− 2β12 β21 (β11 β42 − β12 β41 + β21 β33)

− β12 β21 (β11 β42 − 2β12 β41 + β21 β33) . (B.21)

Again, by examining the matrix determinant, we can show that Θ is generically full

rank. Specifically,

det (Θ) = 3β7
21 (β11 β33 β41 − β32 β42 − β31 β41 + β12 β33 β42)

= 3β7
21

[
β11 β33 − β31 β12 β33 − β32

] [β41

β42

]
. (B.22)

We hereafter employ the definitions of the basis elements [see (3.38)-(3.41)] in order to

analyze det (Θ). As before, the first term β21 = 1
pz

is strictly positive and finite. For

the remaining two terms, it suffices to show that they and their product are generically

non-zero.

Starting from the last term, we note that this is zero only when bg = β4 = 03×1.

However, this corresponds to a different system whose system equations would need to

be modified to reflect that its gyro is bias free.1

The second term is a function of the feature observation, β1 = h, and the velocity

expressed in the local frame, β3 = C v, which can be written in a matrix vector form

as [
β11 β33 − β31 β12 β33 − β32

]T
= Aβ3 (B.23)

where A =
[
−I2 β1

]
. Since, generically, β3 6= 03×1 (the camera is moving), and A is

full column rank, their product cannot be zero. Thus, it suffices to examine the case

1 The observability analysis of such an ideal system is outside the scope of this work.
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for which [
β11 β33 − β31 β12 β33 − β32

] [β41

β42

]
= 0 (B.24)

⇔
[
β41 β42

]
Aβ3 = 0 (B.25)

⇔ Aβ3 = λ

[
β42

−β41

]
, λ ∈ R. (B.26)

This condition, for particular values of β41 and β42 (constant), and for time-varying

values of β1 and hence A, restricts β3 = C v to always reside in a manifold. This

condition, however, cannot hold given that arbitrary control inputs (linear acceleration

and rotational velocity) are applied to the system.

We have shown that the diagonal elements of Ξ′′, i.e., Ψ and Θ are both full rank

[see (B.6) and (B.22)]. We can now apply block-Gaussian elimination in order to show

that Ξ′′ itself is full rank. Specifically, we begin by eliminating both X6×3 and Y6×3

using the identity matrix in the upper-left 3 × 3 sub block. Subsequently, we can

eliminate Z6×6 using Ψ6×6 to obtain the following matrix whose columns span the same

space:

Ξ′′′ =


I3×3 03×6 03×6

06×3 Ψ6×6 06×6

06×3 06×6 Θ6×6

 . (B.27)

Since the block-diagonal elements of Ξ′′′ are all full-rank, and all its off-diagonal block

elements are zero, we conclude that Ξ′′′ is full column rank. This implies that the matri-

ces Ξ′′, Ξ′, and Ξ are also full column rank. Therefore system (3.44) is observable, and

our defined basis functions comprise the observable modes of the original system (3.26).



Appendix C

VINS: state transition matrix

We wish to compute the null space of M. To simplify the discussion, we consider a state

vector containing a single landmark. We wish to show that our conjectured initial null

space N1,

N1 =



03 C
(
I,1q̄G

)
Gg

03 03

03 −bGvI,1×cGg

03 03

I3 −bGpI,1×cGg

I3 −bGf ×cGg


(C.1)

spans the nullspace of M. We can show this in terms of block rows of M, i.e. it is

equivalent to say

MkN1 = 02×4 ∀ k (C.2)

with the block rows of M, Mk, given as

Mk = HkΦ(tk, t1) (C.3)

where Φ(tk, t1) denotes the state transition matrix from t1 to tk, i.e. from time step 1

to time step k.

We can further break up the problem by showing (C.2) in terms of the columns of

151
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Nk:

MkN1(:,1:3) = 02×3 (C.4)

MkN1(:,4) = 02×1 (C.5)

where N1(:,1:3) denotes the submatrix comprising all rows of the first three columns of

N1 and N1(:,4) denotes all rows of the fourth column of N1.

To show that equations (C.4) and (C.5) hold, we must compute the rows Mk and

hence the matrix Φ(t, t0).

C.1 The State transition matrix Φ(t, t0)

We can analytically calculate the elements of Φ from the matrix differential equation

Φ̇(t, t0) = Fc(t)Φ(t, t0) (C.6)

where Fc(t) is the continuous time error-state transition matrix, given by

Fc(t) =



−bL(t)ω̂×c −I3 03 03 03 03

03 03 03 03 03 03

−CT (L(t)q̄G)bL(t)â×c 03 03 −CT (L(t)q̄G) 03 03

03 03 03 03 03 03

03 03 I3 03 03 03

03 03 03 03 03 03


(C.7)

where L(t) denotes the local IMU frame at time t. Here the vectors L(t)ω̂ and L(t)â

do not refer to estimates, but rather, to the true (i.e., noise and bias free) rotational

velocity and linear acceleration (see (2.8) and (2.9)).
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The structure of Φ(t, t0)

To simplify our derivation, we will first show that Φ(t, t0) has the structure (omitting

the time parameters here for clarity)

Φ(t, t0) =



Φ11 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36

Φ41 Φ42 Φ43 Φ44 Φ45 Φ46

Φ51 Φ52 Φ53 Φ54 Φ55 Φ56

Φ61 Φ62 Φ63 Φ64 Φ65 Φ66


=



Φ11 Φ12 03 03 03 03

03 I3 03 03 03 03

Φ31 Φ32 I3 Φ34 03 03

03 03 03 I3 03 03

Φ51 Φ52 Φ53 Φ54 I3 03

03 03 03 03 03 I3


(C.8)

To show this structure, we take advantage of the Fc matrix structure. Specifically,

notice that its second and fourth rows are zero; from (C.6), we then have

Φ̇2,:(t, t0) = 0 (C.9)

So we see that the block row Φ2,: is constant for all t. Then, because the block matrix

Φ2,j(t0, t0) is I3 if j = 2 or 03 if j 6= 2, we then have

Φ2,j = 03 ∀j 6= 2 (C.10)

Φ2,2 = I3 (C.11)

Using the same observation, we can reveal the elements of Φ4,:

Φ̇4,:(t, t0) = 0 =⇒ Φ4j(t, t0) = 0 (C.12)

for j 6= 4, while

Φ44(t, t0) = I3 (C.13)

since Φ44(t0, t0) = I3. The same applies to the elements of Φ that correspond to the

landmark.

Φ̇6,:(t, t0) = 0 =⇒ Φ6j(t, t0) = 0 (C.14)

Φ̇:,6(t, t0) = 0 =⇒ Φj6(t, t0) = 0 (C.15)
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for j 6= 6, while

Φ66(t, t0) = I3 (C.16)

We can now take advantage of the structure of Φ2,:, so as to derive the corresponding

elements of Φ1,:. In detail,

Φ̇13(t, t0) = −bL(t)ω̂×cΦ13 (C.17)

C.2 Proof of Φ matrix

The solution to this differential equation can be found as

Φ13(t, t0) = Φ13(t0, t0) exp

(∫ t

t0

−bL(τ)ω̂×cdτ
)

= 03 (C.18)

because Φ13(t0, t0) = 03.

The same differential equation appears for Φ14, Φ15. More precisely,

Φ̇14(t, t0) = −bL(τ)ω̂×cΦ14 =⇒ Φ14(t, t0) = 03 (C.19)

Φ̇15(t, t0) = −bL(τ)ω̂×cΦ15 =⇒ Φ15(t, t0) = 03 (C.20)

Turning our attention to, Φ35, which is governed by:

Φ̇35 =
[
−CT (L(t)qG)bL(t)â×c 03 03 −CT (L(t)qG) 03

]


0

0

Φ35

0

Φ55


= −CT (L(t)qG)bL(t)â×cΦ15 −CT (L(t)qG)Φ45 = 0 =⇒

Φ35(t, t0) = Φ35(t0, t0) = 0 (C.21)
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Similarly for, Φ33,

Φ̇33 = F3,:Φ:,3 =
[
−CT (L(t)qG)bL(t)â×c 03 03 −CT (L(t)qG) 03

]


0

0

Φ33

0

Φ53


=⇒

Φ̇33 = 0 =⇒ Φ33(t, t0) = Φ33(t0, t0) = I3 (C.22)

And Φ55, which is described by:

Φ̇55 = F5,:Φ:,5 =
[
0 0 I3 0 0

]


0

0

0

0

Φ55


= 0 =⇒

Φ55(t, t0) = Φ55(t0, t0) = I3. (C.23)

Analytic expressions for the elements of Φ(t, t0)

We begin by computing Φ11(t, t0). Proceeding from equation (C.6),

Φ̇11(t, t0) = F1,:Φ:,1

=
[
−bL(t)ω̂×c −I3 03 03 03 03

]


Φ11

03

Φ31

03

Φ51

03


= −bL(t)ω̂×cΦ11 (C.24)
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Thus, Φ11 is given as

Φ11(t, t0) = Φ11(t0, t0) exp

(∫ t

t0

−bL(τ)ω̂×cdτ
)

= exp

(
−
∫ t

t0

bL(τ)ω̂×cdτ
)

(C.25)

= C(L(t)qL(t0)) (C.26)

where (C.25) holds because Φii(t, t) = I3 for all i, t, and (C.26) holds from [44].

We now turn our attention to Φ31(t, t0). Again, from (C.6),

Φ̇31(t, t0) = F3,:Φ:,1

=
[
−CT (L(t)qG)bL(t)â×c 03 03 −CT (L(t)qG) 03 03

]


Φ11

03

Φ31

03

Φ51

03


= −CT (L(t)qG)bL(t)â×cΦ11

= −bCT (L(t)qG)L(t)â×cCT (L(t)qG)Φ11

= −bCT (L(t)qG)L(t)â×cCT (L(t)qG)C(L(t)qL(t0))

= −bCT (L(t)qG)L(t)â×cC(GqL(t0))

= −bGâ×cC(GqL(t)) (C.27)

Thus,

Φ31(t, t0) = −
∫ t

t0

bGâ(τ)×cC(GqL(t0))dτ

= −
(∫ t

t0

bGâ(τ)×cdτ
)

C(GqL(t0))

= −
(∫ t

t0

bGa(τ) + Gg×cdτ
)

C(GqL(t0))

= −b
(
GvL(t) − GvL(t0)

)
+ Gg (t− t0) ×cC(GqL(t0)) (C.28)
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Now, we can compute Φ51

Φ̇51(t, t0) = F5,:Φ:,1

=
[
03 03 I3 03 03 03

]


Φ11

03

Φ31

03

Φ51

03


= Φ31(t, t0)

= −b
(
GvL(t) − GvL(t0)

)
+ Gg (t− t0) ×cC(GqL(t0)) (C.29)

Thus,

Φ51(t, t0) = −
∫ t

t0

b
(
GvL(τ) − GvL(t0)

)
+ Gg (τ − t0) ×cC(GqL(t0))dτ

= −
(∫ t

t0

b
(
GvL(τ) − GvL(t0)

)
+ Gg (τ − t0) ×cdτ

)
C(GqL(t0))

= −
(
bGpL(t) − GpL(t0) − GvL(t0)(t− t0) +

1

2
Gg(t− t0)2×c

)
C(GqL(t0))

= bGpL(t0) + GvL(t0)(t− t0)− 1

2
Gg(t− t0)2 − GpL(t)×cC(GqL(t0)) (C.30)

Now, we will compute Φ12(t, t0).

Φ̇12(t, t0) = F1,:Φ:,2

=
[
−bL(t)ω̂×c −I3 03 03 03 03

]


Φ12

I3

Φ32

03

Φ52

03


= −bL(t)ω̂×cΦ12 − I3 (C.31)

Or,

Φ̇12 + bL(t)ω̂×cΦ12 = −I3 (C.32)
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To solve (C.32), multiply by an integrating factor exp
(∫ t

t0
bL(τ)ω̂×cdτ

)
Φ̇12 + bL(t)ω̂×cΦ12 = −I3

exp

(∫ t

t0

bL(τ)ω̂×cdτ
)(

Φ̇12 + bL(t)ω̂×cΦ12

)
= − exp

(∫ t

t0

bL(τ)ω̂×cdτ
)

d

dt

[
exp

(∫ t

t0

bL(τ)ω̂×cdτ
)

Φ12

]
= − exp

(∫ t

t0

bL(τ)ω̂×cdτ
)

d

dt

[
CT (L(t)qL(t0))Φ12

]
= −CT (L(t)qL(t0)) (C.33)

Then,

Φ12 = −C(L(t)qL(t0))

∫ t

t0

CT (L(τ)qL(t0))dτ

= −
∫ t

t0

C(L(t)qL(t0))C
T (L(τ)qL(t0))dτ

= −
∫ t

t0

CT (L(τ)qL(t))dτ (C.34)

Now Φ32

Φ̇32(t, t0) = F3,:Φ:,2

=
[
−CT (L(t)qG)bL(t)â×c 03 03 −CT (L(t)qG) 03 03

]


Φ12

I3

Φ32

03

Φ52

03


= −CT (L(t)qG)bL(t)â×cΦ12

= CT (L(t)qG)bL(t)â×c
∫ t

t0

CT (L(τ)qL(t))dτ (C.35)

Then, we have

Φ32(t, t0) =

∫ t

t0

CT (L(s)qG)bL(s)â×c
∫ s

t0

CT (L(τ)qL(s))dτds (C.36)
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Now, Φ52:

Φ̇52(t, t0) = F5,:Φ:,2

=
[
03 03 I3 03 03 03

]


Φ12

I3

Φ32

03

Φ52

03


= Φ32

=

∫ t

t0

CT (L(s)qG)bL(s)â×c
∫ s

t0

CT (L(τ)qL(s))dτds (C.37)

Thus,

Φ52 =

∫ t

t0

∫ θ

t0

CT (L(s)qG)bL(s)â×c
∫ s

t0

CT (L(τ)qL(s))dτdsdθ (C.38)

Now, Φ53:

Φ̇53(t, t0) = F5,:Φ:,3 =
[
03 03 I3 03 03 03

]


03

03

I3

03

Φ53

03


= I3 (C.39)

Thus, we simply have

Φ53(t, t0) =

∫ t

t0

I3dt = I3(t− t0) (C.40)
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Now we’ll compute Φ34:

Φ̇34(t, t0) = F3,:Φ:,4

=
[
−CT (L(t)qG)bL(t)â×c 03 03 −CT (L(t)qG) 03 03

]


03

03

Φ34

I3

Φ54

03


= −CT (L(t)qG) (C.41)

Then,

Φ34 = −
∫ t

t0

CT (L(τ)qG)dτ (C.42)

Now Φ54:

Φ̇54(t, t0) = F5,:Φ:,4

=
[
03 03 I3 03 03 03

]


03

03

Φ34

I3

Φ54

03


= Φ34

= −
∫ t

t0

CT (L(τ)qG)dτ (C.43)

Thus

Φ54 = −
∫ t

t0

∫ s

t0

CT (L(τ)qG)dτds (C.44)

So we now have the entire matrix Φ(t, t0).



161

The inverse state transition matrix Φ(t0, t) = Φ(t, t0)−1

Let us partition, Φ(t, t0) in matrix blocks and apply the block matrix inversion lemma

(BMIL):

Φ(t, t0) =



Φ11 Φ12 | 03 03 03 | 03

03 I3 | 03 03 03 | 03

− − − − − −
Φ31 Φ32 | I3 Φ34 03 | 03

03 03 | 03 I3 03 | 03

Φ51 Φ52 | Φ53 Φ54 I3 | 03

− − − − − −
03 03 03 03 03 I3


=


Γ6×6 06×9 06×3

∆9×6 E9×9 09×3

03×6 03×9 I3×3

 =⇒

Φ(t, t0)−1 = Φ(t0, t) =


Γ−1 06,9 06×3

−E−1∆Γ−1 E−1 09×3

03×6 03×9 I3×3

 (C.45)

Where, Γ−1, E−1 and ∆ can be written in elements of Φ = Φ(t, t0). Specifically, by

using BMIL on Γ and E,

Γ =

[
Φ11 Φ12

03 I3

]
=⇒ Γ−1 =

[
ΦT

11 −ΦT
11Φ12

03 I3

]
(C.46)

where we used the fact that Φ11 is a rotation matrix, hence Φ−1
11 = ΦT

11. In the same

way, we approach E, which we partition in blocks and apply BMIL:

E =


I3×3 Φ34 | 03×3

03×3 I3×3 | 03×3

− − − −
Φ53 Φ54 | I3×3

 =

[
Z6×6 06×3

H3×6 I3×3

]
=⇒

E−1 =

[
Z−1 0

−HZ−1 I

]
(C.47)

where Z−1 can be computed using the BMIL:

Z =

[
I Φ34

0 I

]
=⇒ Z−1 =

[
I −Φ34

0 I

]
(C.48)
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Hence,

E−1 =


I −Φ34 0

0 I 0

−Φ53 Φ53Φ34 − Φ54 I

 (C.49)

In conclusion, we can retieve Φ(t, t0)−1, by substituting our results into (C.45).

Φ(t, t0)
−1

=



ΦT11 −ΦT11Φ12 03 03 03 03

03 I3 03 03 03 03

−Φ31ΦT11 Φ31ΦT11Φ12 − Φ32 I3 −Φ34 03 03

03 03 03 I3 03 03

Φ53Φ31ΦT11 − Φ51ΦT11 −Φ53Φ31ΦT11Φ12 + Φ51ΦT11Φ12 + Φ53Φ32 − Φ52 −Φ53 Φ53Φ34 − Φ54 I3 03

03 03 03 03 03 I3


(C.50)

where 03 denotes the 3× 3 matrix of zeros, and I3 is the 3× 3 identity matrix.

The state transition matrix Φ(t2, t1)

Using the results above, we can also derive the analytic expression for Φ(t2, t1) =

Φ(t2, t0)Φ(t1, t0)−1, that is the transition between a past and a future state. Let us

define

Φ(t)ij , [Φ(t, t0)]i,j (C.51)

Substituting (C.8) and (C.50) in Φ(t2, t0) and Φ(t1, t0)−1 respectivelly and multiplying,

we get:

Φ(t2, t1) =



Φ(t2)11Φ(t1)T11 K 03 03 03 03

03 I3 03 03 03 03

Λ Ξ I3 −Φ(t1)34 + Φ(t2)34 03 03

03 03 03 I3 03 03

Π P Φ(t2)53 − Φ(t1)53 T I3 03

03 03 03 03 03 I3


(C.52)

where
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K = −Φ(t2)11Φ(t1)T11Φ(t1)12 + Φ(t2)12 (C.53)

Λ = Φ(t2)31Φ(t1)T11 − Φ(t1)31Φ(t1)T11 = (Φ(t2)31 − Φ(t1)31) Φ(t1)T11 (C.54)

Ξ = −Φ(t2)31Φ(t1)T11Φ(t1)12 + Φ(t2)32 + Φ(t1)31Φ(t1)T11Φ(t1)12 − Φ(t1)32 (C.55)

Π = Φ(t2)51Φ(t1)T11 − Φ(t2)53Φ(t1)31Φ(t1)T11 + Φ(t1)53Φ(t1)31Φ(t1)T11 − Φ(t1)51Φ(t1)T11

(C.56)

T = −Φ(t2)53Φ(t1)34 + Φ(t2)54 + Φ(t1)53Φ(t1)34 − Φ(t1)54 (C.57)

P = −Φ(t2)51Φ(t1)T11Φ(t1)12 + Φ(t2)52 + Φ(t2)53Φ(t1)31Φ(t1)T11Φ(t1)12

− Φ(t2)53Φ(t1)32 − Φ(t1)53Φ(t1)31Φ(t1)T11Φ(t1)12+

Φ(t1)51Φ(t1)T11Φ(t1)12 + Φ(t1)53Φ(t1)32 − Φ(t1)52 (C.58)

The rows of the observability matrix Mk

We can now compute the block rows Mk as

Mk = HkΦ(tk, t0)

= Hcam,1C(L(k)qG)
[
bGf − GpL(k)×cCT (L(k)qG) 03 03 03 − I3 I3

]
Φ(k, 1)

(C.59)

Performing this multiplication, we see

Mk = Hcam,kC(
L(k)

qG)

·
[(
bGf − GpL(k) ×cC

T (L(k)qG)Φ11 − Φ51

) (
bGf − GpL(k) ×cC

T (L(k)qG)Φ12 − Φ52

)
−Φ53 −Φ54 −I I

]
(C.60)

where we let Φij , Φij(k, 1) for clarity. Let us examine the first block column Mk,1

in this matrix Mk. Substituting in the terms Φij and letting Bk denote the constant

factor Hcam,kC(L(k)qG), we have

Mk,1 = Bk

(
bGf − GpL(k) ×cC

T
(
L(k)

qG)Φ11 − Φ51

)
= Bk

(
bGf − GpL(k) ×cC

T
(
L(k)

qG)C(
L(k)

qL(1))− Φ51

)
= Bk

(
bGf − GpL(k) ×cC

T
(
L(1)

qG)− Φ51

)
= Bk

(
bGf − GpL(k) ×cC

T
(
L(1)

qG)− bGpL(1) +
G
vL(1)(k − 1)δt−

1

2

G
g((k − 1)δt)

2 − GpL(k) ×cC(
G
qL(1))

)
= Bk

(
bGf − GpL(k) ×c − b

G
pL(1) +

G
vL(1)(k − 1)δt−

1

2

G
g((k − 1)δt)

2 − GpL(k) ×c
)

C
T

(
L(1)

qG)

= Bkb
G
f − GpL(k) −

G
pL(1) −

G
vL(1)(k − 1)δt +

1

2

G
g((k − 1)δt)

2
+
G
pL(k) ×cC

T
(
L(1)

qG)

= Bkb
G
f − GpL(1) −

G
vL(1)(k − 1)δt +

1

2

G
g((k − 1)δt)

2 ×cCT (
L(1)

qG) (C.61)
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Thus, we have

Mk = Bk

[
T V −I3(k − 1)δt

∫ t
t0

∫ s
t0

CT (L(τ)qG)dτds −I I
]

(C.62)

where

T =

(
bGf − GpL(1) − GvL(1)(k − 1)δt+

1

2
Gg((k − 1)δt)2×cCT (L(1)qG)

)
(C.63)

V =
(
bGf − GpL(k)×cCT (L(k)qG)Φ12 − Φ52

)
(C.64)

We can easily see now that equation (C.4) holds. From equations (C.62) and (C.1),

we have

MkN1,1:3 = Bk (−I3 + I3)

= Bk03×3

= 02×3 (C.65)

To show that equation (C.5) holds, we proceed similarly. As the terms in the product
MkN1,4 are so large, we will examine them individually. First, we have the product of
the first block column of Mk and the first block row of N1,4:

Mk,1N1,4,1 = BkbGf − GpL(t1) − GvL(t1)(k − 1)δt+
1

2
Gg((k − 1)δt)2×cCT (L(t1)qG)C(L(t1)qG)Gg

= BkbGf − GpL(t1) − GvL(t1)(k − 1)δt+
1

2
Gg((k − 1)δt)2×cGg

= BkbGf − GpL(t1) − GvL(t1)(k − 1)δt×cGg (C.66)

The second product Mk,2N1,4,2 is zero because N1,4,2 = 03×1. The third product is

Mk,3N1,4,3 = BkI3(k − 1)δtbGvL(t1)×cGg = (k − 1)δtBkbGvL(t1)×cGg (C.67)

The fourth product is zero again. The fifth is

Mk,5N1,4,5 = BkbGpL(t1)×cGg (C.68)

and the sixth is

Mk,6N1,4,6 = −BkbGf ×cGg (C.69)
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The final product MkN1,4 is then the sum of the above six products, or

MkN1,4 = Bk

(
bGf − GpL(t1) −

G
vL(t1)(k − 1)δt×cGg + (k − 1)δtbGvL(t1) ×c

G
g + bGpL(t1) ×c

G
g − bGf ×cGg

)
= Bkb

G
f − GpL(t1) −

G
vL(t1)(k − 1)δt + (k − 1)δt

G
vL(t1) +

G
pL(t1) −

G
f ×cGg

= Bkb
G
f − Gf − GpL(t1) +

G
pL(t1) −

G
vL(t1)(k − 1)δt + (k − 1)δt

G
vL(t1) ×c

G
g

= Bk03×3
G
g

= 02×1 (C.70)



Appendix D

VINS: nullspace propagation

As we have shown the unobservable subspace, at time t1 is spanned by

Nt1 =



03 C
(
I,t1qG

)
Gg

03 03

03 −bGvI,t1 ×cGg

03 03

I3 −bGpI,t1 ×cGg

I3 −bGf ×cGg


(D.1)

We will show that Nt2 can be estimated with a propagation of Nt1 in time, described

with the state transition matrix Φ(t2, t1). Let

N′t2 = Φ(t2, t1)Nt1 (D.2)

In what follows, we will prove that N′t2 = Nt2 Multiplying Φ(t2, t1) (C.52) with the

first block column of Nt1 ,we get:

N′t2 [:,1] = Φ(t2, t1)[:,5] + Φ(t2, t1)[:,6] =
[
03 03 03 03 I3 I3

]T
=⇒ N′t2 [:,1] = Nt2 [:,1] (D.3)
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Next, we proceed with the second column of N′t2

N′t2 [1,2] = Φ(t2)11Φ(t1)T11C
(
I,t1qG

)
Gg

= C
(
I,t2qI,t0

)
C
(
I,t0qI,t1

)
C
(
I,t1qG

)
Gg

= C
(
I,t2qG

)
Gg

= Nt2 [1,2] (D.4)

N′t2 [2,2] = 03 = Nt2 [2,2] (D.5)

N′t2 [3,2] = (Φ(t2)31 − Φ(t1)31) Φ(t1)T11C
(
I,t1qG

)
Gg − bGvI,t1 ×cGg

=
(
−b
(
GvL(t2) − GvI,t0

)
+ Gg (t2 − t0) ×c+ b(GvI,t1 + GvI,t0)− Gg (t1 − t0) ×c

)
C(GqI,t0)C

(
I,t0qI,t1

)
C
(
I,t1qG

)
Gg − bGvI,t1 ×cGg

= −bGvI,t2 ×cGg = Nt2 [2,2]

(D.6)

N′t2 [4,2] = 03 = Nt2 [4,2] (D.7)

N′t2 [5,2] = (Φ(t2)51 − Φ(t2)53Φ(t1)31 + Φ(t1)53Φ(t1)31 − Φ(t1)51) Φ(t1)T11C
(
I,t1qG

)
Gg

− (Φ(t2)53 − Φ(t1)53) bGvI,t1 ×cGg

−bGpI,t1 ×cGg =⇒

N′t2 [5,2] = ([Φ(t2)51 − Φ(t1)51] + [Φ(t1)53 − Φ(t2)53] Φ(t1)31) g

− (Φ(t2)53 − Φ(t1)53) bGvI,t1 ×cGg

−bGpI,t1 ×cGg =⇒

N′t2 [5,2] =

([
bGpI,t0 + GvI,t0(t2 − t0)− 1

2
Gg(t2 − t0)2 − GpI,t2 ×c

])
g

−
([
bGpI,t0 + GvI,t0(t1 − t0)− 1

2
Gg(t1 − t0)2 − GpI,t1 ×c

])
g

+ ([(t1 − t0)− (t2 − t0)] b(GvI,t1 − GvI,t0) + Gg (t− t0) ×c) g

− ((t2 − t0)− (t1 − t0)) bGvI,t1 ×cGg

−bGpI,t1 ×cGg =⇒

N′t2 [5,2] = −bGpI,t2 ×cGg = Nt2 [5,2] (D.8)
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N′t2 [6,2] = −bGf ×cGg = Nt2 [6,2] (D.9)

Which completes our proof that the basis of the unobservable subspace at time t1

evolves to time t2, through the state transition matrix Φ(t2, t1). That is,

Nt2 = Φ(t2, t1)Nt1 (D.10)



Appendix E

VINS: feature initialization

As the camera-IMU platform moves into new environments, new features must be added

into the map. This entails intersecting the bearing measurements from multiple camera

observations to obtain an initial estimate of each new feature’s 3D location, as well

as computing the initial covariance and cross-correlation between the new landmark

estimate and the state. We solve this as a minimization problem over a parameter

vector x =
[
xTs,1 · · · xTs,m | fT

]T
, where xs,i, i = 1 . . .m, are the m camera poses

which the new landmark, f , was observed from. Specifically, we minimize

C (x) =
1

2
{(x− x̂)T

[
P−1
ss 0

0 0

]
(x− x̂)

+
∑
i

(zi − h (x))T R−1
i (zi − h (x))} (E.1)

where P−1
ss is the information matrix (prior) of the state estimates across all poses

obtained from the filter1 , and we have no initial information about the feature location

(denoted by the block (2,2) element of the prior information being equal to zero). The

m measurements zi, i = 1 . . .m are the perspective projection observations of the point

[see (4.13)].

We obtain an initial guess for the landmark location using any intersection method,

and then we iteratively minimize (E.1). At each iteration, we need to solve the following

1 We employ stochastic cloning over m time steps to ensure that the cross-correlation between the
camera poses are properly accounted for [79].
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linear system of equations[
P−1
ss + HT

sR−1Hs HT
sR−1Hf

HT
fR−1Hs HT

fR−1Hf

][
x̃s

x̃f

]
=

[
HT
sR−1

HT
fR−1

]
z̃

↔

[
A U

V C

]
x̃ =

[
P

Q

]
z̃ (E.2)

Applying the Sherman-Morrison-Woodbury matrix identity, we solve the system by

inverting the matrix on the left-hand side as[
A U

V C

]−1

=

[
Υ1 Υ2

Υ3 Υ4

]
(E.3)

where

Υ1 =
(
A−UC−1V

)−1

= Pss −PssH
T
s

· {M−1 −M−1Hf

(
HT
fM−1Hf

)−1
HT
fM−1}HsPss (E.4)

Υ2 = ΥT
3 = −

(
A−UC−1V

)−1
UC−1

= −PssH
T
sM−1Hf

(
HT
fM−1Hf

)−1
(E.5)

Υ4 = C−1V
(
A−UC−1V

)−1
UC−1 + C−1

=
(
HT
fM−1Hf

)−1
. (E.6)

Here, M = HsPssH
T
s + R. During each iteration, the parameter vector is updated as

x⊕ = x	 +

[
A U

V C

]−1 [
P

Q

]
z̃. (E.7)

After the minimization process converges, we compute the posterior covariance of the

new state (including the initialized feature) as

P⊕ =

[
A U

V C

]−1

(E.8)

where each element is defined from (E.4)-(E.5).



Appendix F

Analytic Substitution of scale and

translation in PnP

Employing the expression for A from (5.6) we have:

ATA =


1 −S r̄T1

. . .
...

1 −S r̄Tn
−S r̄1 . . . −S r̄n nI

 (F.1)

where we have exploited the fact that S r̄Ti
S r̄i = 1. Using block-matrix inversion yields

(ATA)
−1

=

[
E F
G H

]
(F.2)

E = I +


S r̄T1

...
S r̄Tn

H [S r̄1 . . . S r̄n] , F =


S r̄T1

...
S r̄Tn

H
G = H

[
S r̄1 . . .

S r̄n

]
, H =

(
nI−

n∑
i=1

S r̄i
S r̄Ti

)−1
.
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Next, we compute the block matrices U and V in (5.7) by post-multiplying the above

expression with AT , i.e.,[
U

V

]
= (ATA)

−1
AT (F.3)

U =


S r̄T1

. . .

S r̄Tn

+


S r̄T1

...
S r̄Tn

V (F.4)

V = H
[
S r̄1

S r̄T1 − I . . . S r̄n
S r̄Tn − I

]
(F.5)

where U is n× 3n and V is 3× 3n. Based on (5.6), (5.7), and (F.3), we compute both

the scale and the translation as a function of the unknown rotation matrix:

SpG = H
n∑
i=1

(S r̄i
S r̄Ti − I) SGCGri (F.6)

αi = S r̄Ti (SGCGri + SpG) . (F.7)



Appendix G

Transformed measurement noise

for modified PnP constraint

In the following appendix, we show the form of the noise term η′ from the modified

geometric constraint equation in (5.16). Our objective is to substitute for S r̄i in (5.15),

and obtain a set of constraint equations that are a function of the measurements and a

modified noise term η′i. To do so, we note that S r̄i appears as a linear term (multiplying

b) on the left-hand side of (5.14), however, it also enters nonlinearly through uTi and

V. We linearize ui and V in the measurement constraint (i.e., apply first-order Taylor

series expansion) at the point S r̄i = zi to obtain

(ui (z) +∇r̄uiη)T W
(
C̄ (s)

)
b (zi − ηi)

' C̄ (s) Gri + (V (z) +∇r̄Vη) W
(
C̄ (s)

)
b (G.1)

where z denotes a stacked vector containing all the measurements, η is a stacked vector

containing all the noise terms, r̄ is a stacked vector of all r̄i unit-vectors, ∇r̄ui is the

Jacobian of ui with respect to r̄, and ∇r̄V is the Jacobian of V with respect to r̄.1

We expand (G.1) and bring all quantities involving a noise term on the right-hand

side, while all quantities involving non-noise terms we bring to the left, i.e.,

ui(z)T W
(
C̄ (s)

)
b zi − C̄(s) Gri −V(z) W

(
C̄ (s)

)
b=η′i (G.2)

1 Since both ui and V are available in closed form, their corresponding Jacobians with respect to r̄
can be computed element by element. However, due to the structure of the ui and V, we have not yet
found a simplified form in which to present them.
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which is the modified geometric constraint equation (5.16). The new noise term η′i is

η′i = ∇r̄VηW
(
C̄ (s)

)
b−∇r̄uiηW

(
C̄ (s)

)
bzi

+ ui (z)T W
(
C̄ (s)

)
bηi (G.3)

where we have kept all terms which are linear in original noise η, however, we have

omitted the quadratic noise term, since its impact is negligible. The expected value of

η′i = 0, since it depends linearly on terms that contain η, which is zero-mean, i.e.,

E
[
η′i
]

= E
[
∇r̄VηW

(
C̄ (s)

)
b−∇r̄uiηW

(
C̄ (s)

)
bzi

+ui (z)T W
(
C̄ (s)

)
bηi
]

= E
[
∇r̄VηW

(
C̄ (s)

)
b
]
−E

[
∇r̄uiηW

(
C̄ (s)

)
bzi
]

+ E
[
ui (z)T W

(
C̄ (s)

)
bηi
]

= ∇r̄VE[η] W
(
C̄ (s)

)
b−∇r̄uiE[η] W

(
C̄ (s)

)
bzi

+ ui (z)T W
(
C̄ (s)

)
bE [ηi]

= 0 (G.4)

The covariance of η′i is E
[
(η′i − E [η′i]) (η′i − E [η′i])

T
]

= E [η′iη
′T
i ]. However, we note

that in the LS minimization problem we formulate in (5.17), we do not rely on the noise

covariance to compute a solution (i.e., we perform unweighted least-squares), thus we

omit the full expression of E [η′iη
′T
i ] here for brevity.
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