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Abstract

The work is devoted to the investigation of critical phenomena using the geometric theory of
singular perturbations, namely, the black swans and canards techniques. The interest to critical
phenomena is occasioned by not only of safety reason, in many cases namely the critical regime
is the most effective in technological processes. The sense of criticality here is as follows. The
critical regime corresponds to chemical reaction separating the domains of self-accelerating
reactions and domains of slow reactions. Recall that a canard (or French duck) is a trajectory
of a singularly perturbed system of differential equations if it, at first, follows a stable slow
integral manifold, and then an unstable one. In both cases the distances travelled are more
than infinitesimally small. The slow integral manifold is defined as an invariant surface of slow
motions. A canard trajectory may be considered as the result of gluing stable (attractive) and
unstable (repulsive) slow integral manifolds at one point of the breakdown surface, due to the
availability of an additional scalar parameter in the differential system. If we take an additional
function of a vector variable parameterizing the breakdown surface, we can glue the stable and
unstable slow integral manifolds at all points of the breakdown surface simultaneously. As a
result we obtain the continuous stable/unstable integral surface or black swan. It is possible to
consider the gluing function as a special kind of incomplete feedback control. This guarantees
the safety of chemical regimes, even with perturbations, during a chemical process.

Keywords: canards, black swans, invariant manifolds, singular perturbations, thermal ex-
plosion, chemical kinetics.
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Chapter 1

Introduction

The problem of evaluation of critical regimes thought of as regimes separating the regions of
explosive and nonexplosive ways of chemical reactions is the main mathematical problem of the
thermal explosion theory. The interest to critical phenomena is occasioned by not only of safety
reason, in many cases namely the critical regime is the most effective in technological processes.
The sense of criticality here is as follows. The critical regime corresponds to chemical reaction
separating the domains of self–accelerating reactions and domains of slow reactions.

Investigation of critical phenomena of the thermal explosion theory was hold by N. N. Se-
menov [31], Ya. B. Zeldovich [50], D. A. Frank-Kamenetsky [9], O. M. Todes and P. V. Me-
lent’ev [44], A. G. Merzhanov and F. I. Dubovitsky [24, 25], B. Gray [16] et al. Because of
considerable difference between velocities of thermal and concentrational changes, singularly
perturbed systems [27] of differential equations serve as mathematical models of such problems.
But in the above works the authors restrict their consideration to the study of zero order ap-
proximation. It does not let them explain the strong parametric sensitivity of this problem as
well as to examine the transformation of solutions in the vicinity of the limit of self–ignition.

The important part of the paper is dedicated to modelling of critical regimes of combustion
and critical values of control parameters using the new mathematical methods based on the
theory of “canards” [5]. In a majority of the papers devoted to canards the term “canard” is
associated with the periodic trajectories [6]. In our work a canard is a trajectory of a singularly
perturbed system of differential equations if it follows at first a stable invariant manifold, and
then an unstable one. In both cases the distances travelled are not infinitesimally small. It should
be noted that a canard may be considered as a result of gluing stable (attractive) and unstable
(repelling) slow invariant manifolds at one point of the breakdown surface due to the availability
of an additional scalar parameter in the differential system. We shall use canards as separating
solutions corresponding to the critical regimes of chemical reactions. This approach was proposed
for the first time in [13, 14] and was then applied in [15, 35, 40, 41]. This approach permits to
work out the algorithms of asymptotic representations of the critical values of the parameter
of initial conditions and to describe the transfer regimes. A canard trajectory is considered as
the result of gluing stable (attractive) and unstable (repulsive) slow integral manifolds at one
point of the breakdown surface, due to the availability of an additional control parameter in the
differential system. If we take an additional function of a vector variable parameterizing the
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breakdown surface, we can glue the stable (attractive) and unstable (repulsive) slow integral
manifolds at all points of the breakdown curve at the same time. As a result we obtain the
continuous stable/unstable (attractive/repulsive) integral surface or black swan [33, 34]. Such
surfaces are considered as a multidimensional analogue of the notion of a canard. It is possible
to consider the gluing function as a special kind of partial feedback control. This guarantees the
safety of chemical regimes, even with perturbations, during a chemical process.

1.1 Singular perturbations and canards

The main object of our consideration is the following singularly perturbed system

dx

dt
= f(x, y, ε), (1.1)

ε
dy

dt
= g(x, y, α, ε), (1.2)

where ε is a small positive parameter, α is a scalar parameter, y is a scalar variable, x is a vector
of dimension n. The case of the vector variable y can be considered also.

Recall (see [26]) that the slow surface S (or Sα) of system (1.9), (1.10) is the surface described
by the equation

g(x, y, α, 0) = 0. (1.3)

Let y = φ(x, α) be an isolated solution of equation (1.10). We call the subset Ss
α (Su

α) of S
defined by

∂g

∂y
(x, φ(x, α), α, 0) < 0 (> 0)

the stable (unstable) subset of Sα.
The set of irregular points (critical points of the projection of the slow surface onto the base)

defined by
∂g

∂y
(x, φ(x, α), α, 0) = 0

on Sα is called the breakdown surface. Its dimension is equal to n − 1. At all points of this
surface the linearization of the fast subsystem (1.10) in a fiber has a zero eigenvalue [1].

In an ε–neighborhood of Ss
α (Su

α) there exists a stable (unstable) slow invariant manifold
Ss

α,ε (Su
α,ε). This means that the slow surface is an approximation of slow invariant manifold

(for ε = 0) [39].
The availability of the additional scalar parameter α provides the possibility of gluing the

stable and unstable invariant manifolds at one point of the breakdown surface. The canard
trajectory passes through this point.

It should be noted that in the early papers devoted to canards in the case dimx = 1, the
existence of a unique canard corresponding to a unique value of the parameter α = α∗ was stated
(more precisely, the ”canard” value of parameter α∗ exists on an interval of order O(e−1/ε)). But
in the case dimx > 1 another picture is beginning to emerge. It was shown that a one–parameter
family of canards exists [40].
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1.2 Examples

Example 1

Consider the planar system

ẋ = 1− y,
(1.4)

εẏ = y − x,

for some small positive parameter ε on t ≥ 0 .
Setting ε = 0, we obtain the degenerate problem:

ẋ = y,
(1.5)

0 = y − x.

The slow curve is described by the equation

0 = y − x.

The solution to (1.4) is

x(t) = xslow + xfast, y(t) = yslow + yfast,

where
xslow = C1e

−λ1t + 1, yslow = C1λ1e
−λ1t + 1,

xfast = C2e
λ2t, yfast = C2λ2e

λ2t,

and λ1, λ2 are given by

λ1 =
−1 +

√
1 + 4ε

2ε
= 1− ε + O(ε2), λ2 =

1 +
√

1 + 4ε
2ε

= ε−1(1 + ε + O(ε2)),

as ε → 0, and C1, C2 are arbitrary constants.
An important role is played by the the straight line

y = λ1x + µ, µ =
ελ1

1 + ελ1
= 1− λ1 = ε + O(ε2).

This line is not a trajectory, it consists of three trajectories

y = λ1x + µ, x < 1; x = y = 1; y = λ1x + µ, x > 1.

Using the asymptotic representations λ1 = 1− ε + O(ε2), λ2 = ε−1(1 + ε + O(ε2)) as ε → 0, it
is easy to see that the line y = λ1x + µ is repulsive.

It is possible to say that y = λ1x + µ is the slow invariant manifold and it plays the role
of a watershed line in the system under consideration. Fig. 1.1 demonstrates the behaviour of
trajectories.
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Figure 1.1: The slow curve (dash-dotted straight line), and trajectories (red lines) running away
from the slow invariant manifold (black solid straight line)(ε = 0.1).

Example 2

As the simplest system with a canard we propose

ẋ = 1, εẏ = 2xy + α. (1.6)

It is clear that for α = 0, the trajectory y = 0 is a canard, and it plays the role of a watershed
line.

Example 3

For example, in the system
dx

dt
= 1, ε

dy

dt
= y2 − x2 + α, (1.7)

with α = ±ε, the lines y = ±x pass along the slow curve y2 − x2 + α = 0 over an infinitely
long distance, see Fig. 3.2. Note that the canard is only the y = x trajectory. In this example
[14], the point x = 0, y = 0 is the point of self–intersection of the slow curve at α = 0. Such
problems were examined in [1, 13, 14]. The same systems appear in thermal explosion models
in the case of autocatalytic reactions. In this case the canards are the natural mathematical
objects which allow us to model critical phenomena and discover critical parameter values as
asymptotic expansions involving powers of the small parameter ε.

In this case the canard plays the role of a watershed line.

Example 4: Jump point

Consider the following piecewise linear differential system
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Figure 1.2: Canard (black) and the trajectories of the system (1.6) with different initial points
(red) for ε = 0.05.
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Figure 1.3: Canard (green) and false canard (blue) of the system (1.7). Canard corresponds to
α = ε, false canard corresponds to α = −ε.
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Figure 1.4: The slow curve (dash-dotted straight line), and trajectories (red lines) of the system
(1.7) with different initial points for α = 0 and (a) ε = 0.05, (b) ε = 0.2.

ẋ = −1,

εẏ = x− 1− α + |y − 1|, (1.8)

corresponding to the phase plane equation

ε
dy

dx
= x− 1− α + |y − 1|.

The slow curve is described by the equation

x− 1− α + |y − 1| = 0,

and consists of an attractive part (y < 1) and a repulsive one (y > 1), which are separated by
the jump point x = 1 + α, y = 1.

As usual, an important role is played by the attractive slow invariant manifold

y = x + ε− α, y < 1

and the repulsive slow invariant manifold

y = −x + 2 + ε + α, y > 1,

hand in hand with their extensions

y =
{ −x + 2 + ε + α, x < 1 + ε + α

−2εe(x−1−α−ε)/ε + x− α + ε, x ≥ 1 + ε + α,

and

y =





x + ε− α, x < 1− ε + α,

−2εe−(x−1+ε−α)/ε − x + 2 + α + ε, 1− ε + α ≤ x < 1− ε + α + εν,

−ενe(x−1+ε−α−νε)/ε + x− α + ε, 1− ε + α + εν ≤ x,
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Figure 1.5: The slow curve (dash-dotted line), attractive (green) and repulsive (blue) slow
invariant manifolds and their extensions.

Figure 1.6: Slow invariant manifolds, their extensions and the trajectories of (1.8) with different
initial points (ε = 0.09).
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where ν is the root of 2e−ν + ν − 2 = 0 (see Fig. 1.5).
The phenomenon of a jump point is common in the theory of relaxation oscillations [26]. In

this case the attractive slow invariant manifold together with its extension plays the role of a
watershed line.

Consider now α as a control parameter. Let it is necessary to choose the value of α in such
a way that the trajectory involving the repulsive slow invariant line y = −x+2+ ε+α, y > 1 is
satisfies the fixed initial condition y = 0 as x = 1. This condition in the case under consideration
takes the form

0 = −2εe−(1−1−α−ε)/ε + 1− α + ε.

It is a straightforward exercise now to obtain the following asymptotic representation

α = ε ln ε + ε(ln 2− 1) + ε2 ln ε + O(ε2)

from the last equality. It should be noted that problems of this sort appear in the combustion
theory and we shall consider these problems later.

1.3 Black swans

In a majority of papers devoted to canards the term “canard” is associated with periodic tra-
jectories. In our work a canard is a trajectory of a singularly perturbed system of differential
equations if it, at first, follows a stable integral manifold, and then an unstable one. In both
cases the distances travelled are more than infinitesimally small. A canard may be considered
as the result of gluing stable (attractive) and unstable (repelling) slow integral manifolds at one
point of the breakdown surface, due to the availability of an additional scalar parameter in the
differential system. If we take an additional function of a vector variable parameterizing the
breakdown surface, we can glue the stable (attractive) and unstable (repelling) slow integral
manifolds at all points of the breakdown curve at the same time. As a result we obtain the con-
tinuous stable/unstable (attractive/repelling) integral surface or black swan. Such surfaces are
considered as a multidimensional analogue of the notion of a canard. It is possible to consider
the gluing function as a special kind of incomplete feedback control. This guarantees the safety
of chemical regimes, even with perturbations, during a chemical process.

We shall use canards as separating solutions (watershed line) corresponding to the critical
regimes of chemical reactions and this approach is extended to black swans.

The main object of our consideration is the following singularly perturbed system

ẋ = f(x, y, z, ε),

ẏ = g(x, y, z, ε), (1.9)

εż = p(x, y, z, α, ε),

where ε is a small positive parameter, α is a scalar parameter, x and z are scalar variables, y
is a vector of dimension n, and the dot refers to differentiation with respect to time t. Note
that we detach the variable x for the following reason: it will be used as a new independent
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variable when the original variable t is excluded. For nonautonomous systems the variable t
plays the role of the variable x and f ≡ 1 in this case. The case of a vector variable z will also
be considered.

Recall that the slow surface S (or Sα) of the system (1.9) is the surface described by the
equation

p(x, y, z, α, 0) = 0. (1.10)

Let z = φ(x, y, α) be an isolated solution of equation (1.10). We call the subset Ss
α (Su

α) of
S, defined by

∂p

∂z
(x, y, φ(x, y), α, 0) < 0, (> 0),

the stable (unstable) subset of Sα.
The subset of Sα defined by

∂p

∂z
(x, y, φ(x, y), α, 0) = 0

is called the breakdown surface. Its dimension is equal to dim y.
In an ε–neighborhood of Ss

α (Su
α) there exists a stable (unstable) slow integral manifold. The

slow integral manifold is defined as a invariant surface of slow motions.
The availability of the additional scalar parameter α provides the possibility of gluing the

stable and unstable integral manifolds at one point of the breakdown surface. The canard
trajectory passes through this point.

It should be noted that in the early papers devoted to canards in the case dim y = 0, the
existence of a unique canard corresponding to a unique value of the parameter α = α∗ was stated
(more precisely, the “canard” value of the parameter α∗ exists on an interval of order O(e−1/ε)).
This property is known as the short life of canards. But, in the case dim y = 1, another picture
is beginning to emerge. It was shown that a one-parameter family of canards exists [40]. If we
take the parameter α as a function of y we can glue the stable and unstable integral manifolds
along all points of the breakdown curve at the same time.

Example 5.

Consider the system
ẋ = 1, ẏ = 0, εż = 2xz + α− y.

If α is a parameter then the different canards are determined by

ẋ = 1, y = y0, z = 0,

that is, they pass through the unique gluing point x = 0, y = y0, z = 0 on the breakdown curve
x = 0 of the slow surface 2xz + y0 − y = 0 for α = y0.

If α is a function of the variable y then for α = y the integral manifold z = 0 is attractive
for x < 0 and repulsive for x > 0.

12



Example 6.

In the system
ẋ = x2 + z2, εż = xz,

the straight line z = 0 plays the role of a black swan on a plane. It should be noted that this line
represents an invariant manifold, but it is not a canard trajectory because it is not a trajectory;
it consists of three trajectories: x < 0, z = 0; x = z = 0, and x > 0, z = 0.

It is important to note, that it is impossible without loss of generality to consider the black
swan as a canard surface [21, 22, 45]. Additionally to the previous example, consider

Example 7.

ẋ = 0, ẏ = 0, εż = xz.

The plane z = 0 is a black swan with attractive part x < 0, z = 0 and repulsive part x > 0, z = 0,
but there is no canards in the system under consideration.

13



Chapter 2

Critical Phenomena in Combustion
Models

2.1 The classical combustion models

Thermal explosion occurs when chemical reactions produce heat too rapidly for a stable balance
between heat production and loss. The exothermic oxidation reaction is usually modelled as a
single step reaction obeying an Arrhenius temperature dependence. The first model for the self-
ignition was constructed by Semenov in 1928 (see, for example [32]). The basic idea of the model
was a competition between heat production in the reactant vessel (due to an exothermic reaction)
and heat losses on the vessel’s surface. Heat losses were assumed proportional to the temperature
excess over the ambient temperature (Newtonian cooling). The main assumption was that there
is no reactant conversion during the fast highly exothermic reaction. This assumption implies the
absence of the energy conservation law in the model. This gave the possibility of constructing an
extremely simple and attractive mathematical model. Spatial uniformity of the temperature was
also assumed so that the governing equation was one first-order ordinary differential equation
for the temperature changes:

cρV
dT

dt
= QV

(
−dC

dt

)
− χS(T − T0),

−dC

dt
= Ψ(C)A exp

(
− E

RT

)
,

where Ψ expresses the dependence of reaction rate on reactant concentration. Here Q is an
exothermicity per mole reactant; C and C0 are a reactant concentration and its initial value;
A is constant which is known as a pre-exponential rate factor; c is specific heat capacity; ρ is
reactant density; χ is the heat-transfer coefficient; E is the Arrhenius activation energy; R is
the universal gas constant; V is the reactant vessel volume; S is the surface area of the reactant
vessel; t is a time variable; T is absolute temperature; T0 is ambient temperature. The initial
temperature is assumed to be equal to the ambient temperature T0.
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Dimensionless variables τ , η, θ are introduced by

τ = tCn−1
0 A exp

(
− E

RT0

)
, η = 1− C/C0, θ =

E

RT0
(T − T0),

(n is the order of the chemical reaction) and we obtain the classical model of thermal explosion
with reactant consumption [16, 50]:

ε
dθ

dτ
= Ψ(η) exp (θ/ (1 + βθ))− αθ, (2.1)

dη

dτ
= Ψ(η) exp (θ/ (1 + βθ)), (2.2)

η(0) = η0/ (1 + η0) = η̄0, θ(0) = 0.

Here η0 is the criterion for autocatalyticity, where the small dimensionless parameters

β =
RT0

E
and ε =

cρ

QC0

E

RT 2
0

characterize the physical properties of gas mixture, and

α =
χS

V QCn
0 A

RT 2
0

E
exp

(
E

RT0

)

is the dimensionless heat loss parameter.
The following cases are examined:

Ψ(η) =
{

1− η, first-order reaction(η0 = 0),
η(1− η), autocatalytic reaction.

It should be noted that the system (2.1), (2.2) is singularly perturbed. According to the standard
approach to such systems the limiting case ε → 0 is examined, and discontinuous solutions of the
reduced system are analyzed. This makes it possible to determine some critical values of initial
conditions, which provide a jump transition from the slow regime to the explosive ones. The
study of transitional regimes requires the application of higher approximations in the asymptotic
analysis of the systems of the type given in equation (2.1), (2.2). The integral manifold technique
[39, 42, 43] is applied below to the qualitative analysis of critical and transitional regimes for
both types of chemical reaction.

2.1.1 Autocatalytic reaction

The system showing autocatalytic features of the reaction is [16] The system showing autocat-
alytic features of reaction is

ε
dθ

dτ
= η(1− η) exp (θ/ (1 + βθ))− αθ, (2.3)

dη

dτ
= η(1− η) exp (θ/ (1 + βθ)). (2.4)
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Figure 2.1: The slow curve of the system (2.3), (2.4) in the case β = 0.

To simplify the demonstration of the main qualitative effects we use a widespread assumption,
β = 0, in thermal explosion theory (more detailed analysis shows that the differences between
the results obtained for cases β = 0 and β 6= 0 are not essential). In the case β = 0 the slow
curve S of the system (2.3), (2.4) is described by the equation

η(1− η)eθ − αθ = 0.

The curve S has a different form depending on whether α > e/4 or α < e/4 (see Figure 2.1). In
the region θ < 1 connected components of the curve S will be stable and in the region θ > 1 it
will be unstable. We shall denote a stable part S as Ss and an unstable part as Su. There exist
invariant manifolds Ss

ε and Su
ε at a distance of O(ε) from the curve S, corresponding to Ss and

Su.
We shall give a qualitative description of the behavior of the system (2.3), (2.4) with the

changing parameter α. When α > e/4 the trajectories of the system in the phase plane move
along the stable branch Ss and the value of θ does not exceed 1. These trajectories correspond
to the slow regimes.

With α < e/4 the stable part Ss of the curve S consists of two separated branches and the
system’s trajectories, having reached the jump point at the tempo of the slow variable along Ss,
jumps into the explosive regime.

Due to the continuous dependence the right–hand side of (2.3), (2.4) on the parameter α we
can consider that there are some intermediate trajectories in the region between those shown
above in the neighborhood of α = e/4, and a critical one also. With α = e/4 the slow curve Ss

has a self–intersection point (1, 1/2), and in this case it is possible to find the critical value of
the parameter α in the form

α = α(ε) = α0 + εα1 + ε2α2 + ... , α0 = e/4. (2.5)

There are two values of parameter α = α∗ and α = α∗∗ at which the trajectory of (2.3),

16
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Figure 2.2: Canard trajectories of the system for ε = 0.05, α′ = 0.659941603, α′′ =
0.659941646, α′′′ = 0.659952218.

(2.4) passes along the stable and the unstable parts of the slow curve for times that are not
infinitesimally small.

The value α = α∗ corresponds to the canard, passing along the lower part of Ss and then
along the upper part of Su. The canard is taken as a mathematical object to model the critical
trajectory, which corresponds to a chemical reaction separating the domain of self–acceleration
reactions (α < α∗) and the domain of non–explosive reactions (α > α∗).

The value α = α∗∗ is also important in the qualitative analysis of the system (2.3), (2.4).
With α = α∗∗ there exist the trajectory (so–called false canard), passing along the lower part
of Su and then along the upper part of Ss. At α > α∗∗ we get a region of slow regimes and the
trajectories of system (2.3), (2.4) will pass along the stable part of slow curve.

Figure 2.2 shows numerical investigations of the canard trajectories of the system (2.3), (2.4)
for α from the interval (α∗, α∗∗) (α∗ < α′ < α′′ < α′′′ < α∗∗).

The coefficients of the asymptotic series for α∗ and α∗∗ can be found by the methods of [13].
To calculate the critical value of the parameter α = α∗ we substitute (2.5) and the expression
for corresponding canard

η = H(θ, ε) ≡ H0(θ) + εH1(θ) + . . .

into (2.3), (2.4) and obtain
(
H(θ, ε) (1−H(θ, ε)) eθ − α(ε)θ

)
H ′(θ, ε) = εH(θ, ε) (1−H(θ, ε)) eθ

or, in more detailed form,
(

(H0(θ) + εH1(θ) + . . . ) (1−H0(θ)− εH1(θ)− . . . ) eθ

−(α0 + εα1 + . . . )θ
) [

H
′
0(θ) + εH

′
1(θ) + . . .

]
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= ε (H0(θ) + εH1(θ) + . . . ) (1−H0(θ)− εH1(θ)− . . . ) eθ.

Equating the coefficients of like powers of ε in the left and right members of last equation, we
obtain

H0(θ) =
1
2
±

√
1
4
− α0θe−θ,

H1(θ) =
θ(α1H

′
0 + α0)

H ′
0(1− 2H0)eθ

,

H2(θ) =
θ (α1H

′
1 + α2H

′
0) + H ′

0H
2
1eθ + H1 (1−H ′

1) (1− 2H0) eθ

H ′
0(1− 2H0)eθ

.

The coefficients in the expression (2.5) αi (i = 0, 1, 2, . . . ) are found due to functions Hi = Hi(θ)
continuity at θ = 1. Thus, we have

α∗ = e/4(1− 2
√

2ε− 49/9ε2) + O(ε3).

In the case β 6= 0 we obtain the following approximate formula

α∗ = (1− β)e/4(1− 2
√

2ε) + . . . .

The value α = α∗∗ and corresponding false canard can be found by the same way. For this
case we obtain

α∗∗ = e/4(1 + 2
√

2ε− 49/9ε2) + O(ε3).

The transition trajectories between Ss
ε and Su

ε correspond to the interval (α∗, α∗∗). The
canard corresponding to α∗ is given by the formulas, see [13, 14]

η = H(θ, ε) ≡ H0(θ) + εH1(θ) + . . . .

H0(θ) =
1
2
±

√
1
4
− α0θe−θ,

H1(θ) =
θ(α1H

′
0 + α0)

H ′
0(1− 2H0)eθ

,

H2(θ) =
θ (α1H

′
1 + α2H

′
0) + H ′

0H
2
1eθ + H1 (1−H ′

1) (1− 2H0) eθ

H ′
0(1− 2H0)eθ

.
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Figure 2.3: The slow curve (the dashed line) and trajectory of (2.3)–(2.4) (the solid line) in the
limiting case: (a) slow combustion; (b) thermal explosion; (c) critical regime.
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2.1.2 First-order reaction

Now we consider the system (2.1), (2.2) with the first–order reaction case, when Ψ(η) = 1 − η
and the dimensionless concentration η̄ = 1− η replaces η. The system (2.1), (2.2) in this case is

ε
dθ

dτ
= η̄ exp (θ/ (1 + βθ))− αθ, (2.6)

dη̄

dτ
= −η̄ exp (θ/ (1 + βθ)). (2.7)

The initial conditions are
η̄(0) = 1, θ(0) = 0. (2.8)

The control parameter α characterizes the initial state of the chemical system. Depending on
its value the chemical reaction either changes to a slow regime with decay of the reaction, or
into a regime of self–acceleration which leads to an explosion. For some value of α (we call it
critical) the reaction is maintained and gives rise to a rather sharp transition from slow motions
to explosive ones. The transition region from slow regimes to explosive ones exists due to the
continuous dependence of the system (2.6), (2.7) on the parameter α. To find the critical value
of the parameter α, it is possible to use special asymptotic formulae [26]. That approach was
used in [4, 20, 3, 14].

The equation
η̄ exp (θ/ (1 + βθ))− αθ = 0

gives the slow curve S of the system (2.6), (2.7). The curve S has two jump points given by the
equation

∂

∂θ
(η̄ exp (θ/ (1 + βθ))− αθ) = 0.

The jump points divide the slow curve into three parts Ss
1, Su

2 , Ss
3 (see Fig. 3.7 ) which are

zeroth order approximations for the corresponding slow integral manifolds Ss
1,ε, Su

2,ε and Ss
3,ε.

Manifolds Ss
1,ε and Ss

3,ε are stable and Su
2,ε is unstable. It is clear that each value of α has a

corresponding slow curve but these curves merge in the domain of critical values. Each manifold
Ss

1,ε, Su
2,ε and Ss

3,ε is at the same time part of some trajectory of the system (2.6), (2.7).
With some values of α, trajectories of equations (2.6)–(2.8) move along the manifold Su

2,ε,
sooner or later either falling into an explosive regime, or rapidly passing into a slow regime (see
Fig. 3.7). The value of α2, at which the trajectory T2 of (2.6)–(2.8) contains manifold Su

2,ε,
is supposed to be critical. This regime is not slow, since θ > 1, and is not explosive, as the
temperature increases at the tempo of the slow variable. The value α1, at which the trajectory
T1 contains the manifold Ss

1,ε (see Fig. 2.8), is called the slow critical value. The trajectory T3

contains the manifold Ss
3,ε and does not determine any critical regime, since it does not intersect

the axis η̄. We point out that any trajectory of the system starting at the point η̄ = 1, θ = 0
runs to the left from T3.

Thus the value of α1 gives the critical trajectory. It separates the transition region from slow
regimes which are characterized by a slowdown of the reaction with small degrees of conversion
and heating up is limited from above by θ < 1.
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α′′ = 2.0803865, α′′′ = 2.080386

The region of slow transitional trajectories corresponds to the interval (α2, α1). They are
characterized by a comparatively rapid (but not explosive) flow of the reaction till the essential
degree of conversion takes place and then a jump slow-down and a transition to the slow flow
of the reaction, Fig. 3.9.

The critical value α2 was obtained by means of the asymptotic expansion technique given in
[26]:

α2 = e(1− β)
[
1− Ω0

3
√

2
(

1 +
7
3
β

)
ε2/3 +

4
9
(1 + 6β)ε ln

1
ε

]
+ O(ε + β2),

where Ω0 = 2.338107.

2.2 Gas combustion in a dust–laden medium

We now consider models of combustion of a rarefied gas mixture in an inert porous or in a dusty
medium. We assume that the temperature distribution and phase–to–phase heat exchange are
uniform. The chemical conversion kinetics are represented by a one–stage, irreversible reaction.
The dimensionless model in this case has the form [4, 12]

εθ̇ = Ψ(η) exp (θ/ (1 + βθ))− α(θ − θc)− δθ,

γcθ̇c = α(θ − θc),

η̇ = Ψ(η) exp (θ/ (1 + βθ)),
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η(0) = η0/ (1 + η0) = η̄0, θ(0) = θc(0) = 0.

Here, θ and θc are the dimensionless temperatures of the reactant phase and of the inert one;
η is the depth of conversion; η0 is the criterion of autocatalyticity; the small parameters β and ε
characterize the physical properties of a gas mixture. The terms −δθ and −α(θ− θc) reflect the
external heat dissipation and phase-to-phase heat exchange. The parameter γc characterizes the
physical features of the inert phase. Depending on the relation between values of the parameters,
the chemical reaction either changes to a slow regime with decay of reaction, or into a regime of
self–acceleration which leads to an explosion. So, if we change the value of one parameter with
fixed values of the other parameters we can change the type of chemical reaction. Thus, it is
possible to consider this problem as a special control problem. For example, if we take a heat
loss from the gas phase as a control action, we consider δ as a control variable. If the control
variable is γc it means a regulation of the dust level in the reactant vessel.

The following cases are considered:

Ψ(η) =
{

1− η, first-order reaction(η0 = 0),
η(1− η), autocatalytic reaction.

2.2.1 Autocatalytic reaction

Let us consider the combustion model for the case of autocatalytic reaction (Ψ(η) = η(1− η)).
In the absence of external heat dissipation (δ = 0) the system of differential equations

possesses a first integral
η − εθ − γcθc = η̄0,

and therefore we obtain

ε
dθ

dτ
= η(1− η) exp

(
θ

1 + βθ

)
− α

(
1 +

ε

γc

)
θ +

α

γc
(η − η̄0), (2.9)

dη

dτ
= η(1− η) exp

(
θ

1 + βθ

)
, (2.10)

with initial conditions
η(0) = η̄0, θ(0) = 0.

The dependence of the slow curve S

F (η, θ, α) = η(1− η) exp
(

θ

1 + βθ

)
− α

(
θ − η − η̄0

γc

)
= 0

on the relation between parameter values gives different forms (see Figures 3.2).
We take α as control parameter with fixed γc. The point θ = θ∗, η = η∗ is the self–intersection

point of the slow curve at α = α0. Here, α = α0, θ = θ∗, η = η∗ satisfy the system

F (η, θ, α) = Fη(η, θ, α) = Fθ(η, θ, α) = 0.
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Figure 2.7: The trajectories (the solid line) of the system (2.9), (2.10) and the slow curve (the
dashed line) in various cases.
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In the case α > α0 each set Ss and Su of S consists of a single connected curve, see Figure
3.2 (a). Hence the system has an stable invariant manifold Ss

ε and a unstable invariant manifold
Su

ε near Ss and Su, respectively.
Since the initial point (0, η̄0) belongs to the basin of attraction of the set Ss

ε , after a short
time the trajectory follows the stable slow invariant manifold Ss

ε and tends to the equilibrium
P ((1− η̄0)/(ε + γc), 1) as t tends to ∞. This behavior corresponds to the slow combustion
regime.

In the case α < α0 each set Ss and Su consists of two different components (Figure 3.2 (b))
and the system has an stable invariant manifold Ss

ε (unstable invariant manifold Su
ε ) near each

component of Ss (Su). For ε sufficiently small and after a short time, the solution will follow the
component of Ss

ε to breakdown point. After this time, θ(t) will increase rapidly. This behavior
characterizes the explosive regime.

The transition region from the slow regime to explosive one exists due to the continuous
dependence of our system on the parameters α and γc (γc > 0). In this special case (α = α0) the
slow curve has an intersection point (θ∗, η∗), see Figure 3.2 (c). Here the system has an stable
invariant manifold Ss

ε (unstable invariant manifold Su
ε ) near each component of the slow curve

Ss (Su).
We can observe the existence of canard solutions which describe the following regime: the

temperature increases as high as is possible but without explosion, that may be the aim of
technological process. We note that this regime is critical, and it corresponds to a chemical
reaction separating the domain of self–accelerating reactions and the domain of slow reactions.

We can find the canard solution and corresponding value of α by following asymptotic ex-
pansions

α∗ = α(ε) = α0 + εα1 + ε2α2 + ...,

η = H(θ, ε) = H0(θ) + εH1(θ) + ε2H2(θ) + ... .

We substitute these expansions into (2.9), (2.10) and obtain
(

H(θ, ε) (1−H(θ, ε)) exp
(

θ

1 + βθ

)
− α(ε)

(
1 +

ε

γc

)
θ

+
α(ε)
γc

(H(θ, ε)− η̄0)
)

H ′(θ, ε) = εH(θ, ε) (1−H(θ, ε)) exp
(

θ

1 + βθ

)

or, in more detailed form,
(

(H0(θ) + εH1(θ) + . . . ) (1−H0(θ)− εH1(θ)− . . . ) exp
(

θ

1 + βθ

)

−(α0 + εα1 + . . . )
(

1 +
ε

γc

)
θ

+
(α0 + εα1 + . . . )

γc
(H0(θ) + εH1(θ) + · · · − η̄0)

) [
H
′
0(θ) + εH

′
1(θ) + . . .

]

= ε (H0(θ) + εH1(θ) + . . . ) (1−H0(θ)− εH1(θ)− . . . ) exp
(

θ

1 + βθ

)
.
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Equating the coefficients of like powers of ε in the left and right members of last equation and
using the continuity condition for functions Hi = Hi(θ) (i = 0, 1, 2, . . . ) at θ = θ∗, we obtain

α0 = γc(2η∗ − 1) exp
(

θ∗

1 + βθ∗

)
,

α1 = −α0

[
θ∗

γcθ∗ − η∗ + η̄0

+
−1 + 2η∗ +

√
(1− 2η∗)2 + 2η∗(1− η∗) (1− 2β(1 + βθ∗))
η∗(1− η∗) (1− 2β(1 + βθ∗))

×(1 + βθ∗)2
]
.

Here, θ = θ∗ is a root of the equation

γc (1 + βθ)4 = γcθ
2 − θ(1− 2η̄0) + γ−1

c (η̄2
0 − η̄0),

and η∗ = H0(θ∗), where the function H0 = H0(θ) is determined by

H0(1−H0) exp
(

θ

1 + βθ

)
− α0θ + α0

H0 − η̄0

γc
= 0.

In the case β = 0 we have

θ∗|β=0 = θ∗0 =
1
2

(
γ−1

c (1− 2η̄0) +
√

4 + γ−2
c

)
,

η∗|β=0 =
1
2

(
1 +

√
1 + 4γ2

c

)
− γc,

α0|β=0 =
exp θ∗0

2 +
√

4 + γ−2
c

.

For example, in the case η̄0 = 0, the asymptotic expansion of the canard value of parameter
α is [40, 41] (we take the zero–approximation term with order O(β) and the first–approximation
term with order O(ε))

α∗ =
1− βθ∗0

2

2 +
√

4 + γ−2
c

eθ0
∗
[
1− ε

(
1
2
γ−2

c +
1
2
γ−1

c

(
2 +

√
4 + γ−2

c

)

+ 4

√
4 + γ−2

c

√
2 +

√
4 + γ−2

c

)]
, θ∗0 =

1
2

(
γ−1

c +
√

4 + γ−2
c

)
.

In the case δ 6= 0 we obtain the problem of construction of critical trajectory in R3. The
breakdown curve separates the stable subset (Ss) of the slow surface S and the unstable one
(Su), see Figure 2.8. Here S is described by the equation

F (η, θ, θc, α) = η(1− η) exp
(

θ

1 + βθ

)
− α(θ − θc)− δθ = 0,
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Ss = {(η, θ, θc) : Fθ(η, θ, θc, α) < 0},
Su = {(η, θ, θc) : Fθ(η, θ, θc, α) > 0}.

The different types of chemical regimes take place depending on the relation between values
of the parameters, see Figures 3.9–3.11. We shall use a canard as a separating solution cor-
responding to the critical regime of chemical reaction. We can find the canard solution and
corresponding value of α by following asymptotic expansions

α∗ = α(ε) = α0 + εα1 + ε2 . . . ,

θ = θ(η, ε) = φ0(η) + εφ1(η) + ε2 . . . ,

θc = θc(η, ε) = ψ0(η) + εψ1(η) + ε2 . . . .

From the differential system under consideration we have

εθ′(η, ε)η (1− η) exp
(

θ(η, ε)
1 + βθ(η, ε)

)

= η (1− η) exp
(

θ(η, ε)
1 + βθ(η, ε)

)
− α(ε) (θ(η, ε)− θc(η, ε))− δθ(η, ε),

γcθ
′
c(η, ε)η (1− η) exp

(
θ(η, ε)

1 + βθ(η, ε)

)
= α(ε) (θ(η, ε)− θc(η, ε)) .

Substituting the asymptotic expansions for α(ε), θ(η, ε), θc(η, ε) in last relationships and equat-
ing the coefficients of like powers of ε in the left and right members we obtain the equations for
functions φi = φi(η) and ψi = ψi(η) (i = 0, 1, 2, . . . ). The coefficients αi are found due to the
continuity condition for these functions at η = η∗. The equations

η(1− η) exp
(

φ0

1 + βφ0

)
− α0 (φ0 − ψ0)− δφ0 = 0,

γcψ
′
0η(1− η) exp

(
φ0

1 + βφ0

)
= α0 (φ0 − ψ0) , ψ0(η̄0) = 0,

η∗(1− η∗) exp
(

φ0(η∗)
1 + βφ0(η∗)

)
1

(1 + βφ0(η∗))2
− (α0 + δ) = 0,

(1− 2η∗) exp
(

φ0(η∗)
1 + βφ0(η∗)

)
+ α0ψ

′
0(η

∗) = 0

define the value α0 and the functions φ0 = φ0(η) and ψ0 = ψ0(η). For the calculations the value
α1 and the functions φ1 = φ1(η) and ψ1 = ψ1(η) we have

φ′0η(1− η) exp
(

φ0

1 + βφ0

)

=
[
η(1− η) exp

(
φ0

1 + βφ0

)
1

(1 + βφ0)2
− (α0 + δ)

]
φ1
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+α0ψ1 − α1 (φ0 − ψ0) ,

η(1− η) exp
(

φ0

1 + βφ0

)[
φ′0 + γcψ

′
1 +

φ1(γcψ
′
0 − 1)

(1 + βφ0)2

]
= −δφ1, ψ1(η̄0) = 0,

α1 =
1

φ0(η∗)− ψ0(η∗)

[
α0ψ1(η∗)− φ′0(η

∗)η∗(1− η∗) exp
(

φ0(η∗)
1 + βφ0(η∗)

)]
.

The effect of the external cooling may be observed: in the case δ 6= 0 the critical value of
the parameter α = α∗ decreases, see Figures 3.6, 3.10.

This approach was used in [12] in the case of the first order reaction.

2.2.2 First-order reaction

The case of the first-order reaction (Ψ(η) = (1− η)) is studied now. For simplicity we introduce
the dimensionless concentration η̄ = 1− η.

In the absence of external heat dissipation (δ = 0) the system

εθ̇ = η̄ exp (θ/ (1 + βθ))− α(θ − θc),

γcθ̇c = α(θ − θc),

η̇ = −η̄ exp (θ/ (1 + βθ)),

with initial conditions
η̄(0) = 1, θ(0) = θc(0) = 0,

possesses a first integral
εθ + γcθc + η̄ = 1,
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and we obtain dim y = 0 in (1.9).
The slow curve S is defined by the equation

η̄ exp (θ/ (1 + βθ))− α
(
θ − γ−1

c (1− η̄)
)

= 0.

With different relations between values of the parameters α, δ and γc we can observe the
following chemical regime types:

— the slow combustion regime;
— the classic thermal explosion;
— thermal explosion with delay [4, 12].
The last regime consists of three stages: fast initial, slow (delay) and explosive, see Fig.

3.15. This regime is characterized by a rather long induction period and a significant time for
reactant conversion before a thermal explosion.

It should be noted that there are two types of slow regimes: the slow regime with essential
initial heating (EIH, see Fig. 2.11) and the slow regime with nonessential initial heating (NIH,
see Fig. 2.12).

Thus, in this case there are two critical regimes which separate fast explosive, explosive with
delay and non-explosive regimes, see Fig. 2.13. The first critical regime takes place when, after
a short time, the trajectory reaches the jump point and then follows the unstable slow integral
manifold. This trajectory and the corresponding value of the control parameter can be found
by Mishchenko–Rozov asymptotics [26], and if we take α as a control parameter we get

α∗ = (1− β)e− ε2/3Ω0
3

√
2(1− γ−1

c )2e
[
1 + β

(
1 +

4γ−1
c

3(1− γ−1
c )

)]
+

+
4
9
ε ln

1
ε
e
(
1− γ−1

c

)
+ O

(
β + ε ln

1
ε

)
.

The second critical regime is modelled by a canard, see Fig. 2.15. The
asymptotic expansion of the canard value α∗∗ is [12]
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α∗∗ = exp
(

γ−1
c

1 + βγ−1
c

) [
γc − ε

(
2 + γ−1

c + β(4− 2γ−1
c )

)]
+ o(ε + β).

If we investigate the system in a more general case (δ 6= 0) we can construct a black swan
which consists of canards simulating the second type of critical regimes.

Let us take γc(Θ, ε) as control function. Then it and the black swan Θc = Θc(η̄, Θ, ε) have
asymptotic expansions of the form:

γc = Γ0(Θ) + εΓ1(Θ) + O(ε2),

Θc = P0(η̄, Θ) + εP1(η̄, Θ) + O(ε2),

where

P0(η̄, Θ) = (δΘ− η̄eΘ)/α + Θ,

P1(η̄, Θ) = −δΘη̄eΘ/(α + δ − δΘ),

Γ0(Θ) = α
α + δ − δΘ
(α + δ)eΘ

,

Γ1(Θ) = −α2δΘ
[
(α + δ − δΘ)(αδΘ− α− δ) + αδ(α + δ)

]

(α + δ)2(α + δ − δΘ)2
.

In the case when δ is a control function (it means that we control the combustion process
by regulating the external heat dissipation) we get the following asymptotic expansion for and
δ [33]
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δ = δ(Θ, ε) = Θ−1
[
α

(
Θ− ln αγ−1

c − 1
)
eΘ + αγ−1

c

αγ−1
c − eΘ

+

+ε(αγ−1
c − eΘ) + O(ε2)

]

corresponding to the black swan Θc = Θc(η̄, Θ, ε) of the system.
For the fixed point Θ = Θ∗ of the breakdown curve we can find the value δ∗ from the last

expression which corresponds to the canard of the system. This trajectory passes through the
point Θ∗ of the breakdown curve and simulates the critical regime. It should be noted that the
choice of the gluing point Θ∗ is equivalent to the choice the starting point Θ(0) of the trajectory.
For example, with Θ(0) = 0, γc = 1/6, ε = 0.01, α = 2.34 the critical regime corresponds to
δ∗ = 1.10797.
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Chapter 3

Modelling of critical phenomena for
ignition of metal particles

The paper is devoted to the investigation of critical phenomena for ignition of metal particles.
Dynamics of heating, ignition, and combustion of metal particles has been widely studied over the
past 50 years, and has been reviewed in [10, 47, 48], among others, and more recently in [49].
Ignition and combustion of metal particles are the issues important for various applications,
including aerospace and chemical technologies, ground transportation, and industrial safety
[2, 18, 23].

The use of metals as high–energy fuel additives is generally compromised by the formation
of an oxide film that covers the fuel surface. This film prevents direct interaction between the
metal and the gaseous oxidant. Hence, the kinetics laws of metal oxidation are different from the
kinetics laws of heterogeneous reactions and depend on the physical properties and the thickness
of the oxide film build-up on the metal surface [18, 48, 50]. Heat released on metal oxidation may
causes fast self–heating of the metal particles at high temperature. Thus, metal ignition, and
therefore the explosion, occurs as a result of thermal self–acceleration of the chemical reaction
[32]. In some cases, the heat released at oxidation of particles has time to be removed into the
surroundings, and the ignition does not take place. Then the particle temperature reaches a
maximum and decays to reach the initial gas temperature (subcritical regime). In other cases,
heat released in the particle causes self–acceleration of the oxidation reaction, which leads to a
rapid increase in particle temperature, thus causing ignition (supercritical regime) [8].

In this paper the existence of the critical regime, separating the domain of subcritical regimes
from the domain of supercritical ones, is shown. Using the special asymptotic formulae [26] the
conditions under which the critical regime takes place in the chemical system are obtained. That
approach was applied in [4, 11, 14, 20] to model thermal explosion of gaseous reactants.

3.1 Mathematical model

Taking into consideration a uniform temperature distribution in a particle, a constant particle
size and the constant physical properties of both gas and particle, the known dimensionless
model of the process has the following form [18]:

34



ε
dθ

dτ
= ϕ(η) exp

(
θ

1 + βθ

)
− θ

κ
,

(3.1)
dη

dτ
= ϕ(η) exp

(
θ

1 + θβ

)
,

with initial conditions
η(0) = 0, θ(0) = −θi.

Here θ is the dimensionless temperature of a metal particle and

θ =
(T − T0)E

RT 2
0

,

where T is the temperature of a metal particle, T0 is the gas temperature, E is the Arrhenius
activation energy, R is the universal gas constant; η is the dimensionless related growth of the
thickness of the oxide film and

η =
δ − δin

δ
,

where δ is the oxide film thickness, δin is the initial thickness of the film; τ is dimensionless
time; the parameters β and ε reflect the temperature sensitivity and the exothermicity of the
reaction; κ is a modified Semenov number related to convection heat transfer; ϕ(η) is the kinetic
function. This paper examines two forms of oxidation kinetics:

ϕ(η) = (η + 1)−n, n = 1, 2,

corresponding to the cases of parabolic and cubic laws, respectively.
The initial temperature of a metal particle is either lower than the gas temperature or equal

to it. In the fist case, corresponding to cold particles, we have θ(0) = −θi < 0, and in the second
one, when the metal particles and the gas are heated simultaneously during a very short time,
θ(0) = 0.

The chemically relevant phase space ∆ of the system (3.1) is defined by

∆ := {(θ, η) ∈ R2 : θ ≥ −θi, η ≥ 0}.

It should be noted that the system (3.1) is similar to the dimensionless model of the thermal
explosion of a gas [32, 47, 50]. But in the thermal explosion theory the kinetic function is usually
ϕ(η) = (η + 1)n, and η reflects the depth of a gas conversion.

In the case of very small particle size and significant initial thickness of the oxide film the
parameter ε is small [18] and, hence, the system (3.1) is singularly perturbed [27, 46]. Thus, it
is possible to apply the mathematical apparatus of singular perturbations for the investigation
of the critical conditions for ignition of a metal particle in this case.
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3.2 Case of parabolic law

In the case of a parabolic law of oxidation kinetics the system (3.1) has the form

ε
dθ

dτ
= (η + 1)−1 exp

(
θ

1 + βθ

)
− θ

κ
,

(3.2)
dη

dτ
= (η + 1)−1 exp

(
θ

1 + θβ

)
,

with initial conditions
η(0) = 0, θ(0) = −θi. (3.3)

If we put ε = 0 in the first equation of (3.2) we get the degenerate equation

F (η, θ, κ) = (η + 1)−1 exp
(

θ

1 + βθ

)
− θ

κ
= 0 (3.4)

which describes the slow curve

S =
{

(θ, η) : (η + 1)−1 exp
(

θ

1 + βθ

)
− θ

κ
= 0

}

of the system (3.2) (see, for example, [37]). The subset Ss (Su) of S with

∂

∂θ
F (η, θ, κ) < 0 (> 0) (3.5)

is called the attractive (repulsive) part of S. A point A on S in which ∂F/∂θ = 0 is called the
jump point [26, 37].

We take κ as the control parameter with fixed β, ε. For all κ the slow curve of the system
(3.2) consists of two branches, which are separated by the asymptote η = −1, see Figure 3.1.
Hence, the lower branch of S in (θ, η)–plane is outside ∆. The second one has two jump points
A1 and A2 with coordinates (η1, θ1) and (η2, θ2), respectively, where θ1, θ2 are the roots of the
equation

θ − (1 + βθ)2 = 0,

i.e.,

θ1 =
1− 2β −√1− 4β

2β2
, θ2 =

1− 2β +
√

1− 4β

2β2
, (3.6)

and

η1 =
κ

θ1
exp

(
θ1

1 + βθ1

)
− 1, η2 =

κ

θ2
exp

(
θ2

1 + βθ2

)
− 1. (3.7)
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Figure 3.1: The form of the slow curve of the system (3.2): (a) for κ < κ0, (b) for κ > κ0, where
κ0 = (1 + β)/e, e = exp(1).

Hence, according to (3.4)–(3.7), the upper branch of the slow curve S consists of two attrac-
tive parts Ss

1 and Ss
2 and the repulsive one Su, where

Ss
1 := {(θ, η) ∈ S : η > −1, 0 < θ < θ1},

Ss
2 := {(θ, η) ∈ S : η > −1, θ > θ2},

Su := {(θ, η) ∈ S : η > −1, θ1 < θ < θ2}.

Since the parameter β is small (for real chemical systems, see, for example, [18, 50]), from
(3.6) we have θ1 = 1 + 2β + O(β2), θ2 = β−2

(
1− 2β + O(β2)

)
as β → 0. Hence, the part

Ss
2 corresponds to a very high values of the metal temperature and this means in practice the

destruction of the reactant vessel. So, to analyze the behavior of the system (3.2), we will
concentrate our attention on Ss

1 and Su only.
In the case κ < κ0 = (1 + β)/e, where e = exp(1), some part of set Ss

1 of the slow curve
lies below the η–axis, see Figures 3.1(a) and 3.2. The trajectory of the system starting from the
initial point rapidly tends to Ss

1 and then follows the attractive set Ss
1 at the tempo of the slow

variable, see Figure 3.3. This behavior corresponds to the slow regime with low temperatures
(subcritical regime).

In the case κ > κ0 the branch of the slow curve with η > 0 is situated above the θ–axis
entirely, see Figures 3.1(b) and 3.4. The trajectory of the system in this case, starting from
the initial point, passes by the slow curve at the tempo of the fast variable. Theoretically the
trajectory of (3.2) reaches the attractive set Ss

2 of the slow curve and then follows it at the tempo
of the slow variable up to the point A2. After this moment the trajectory loses its connection
with the slow curve: a jump of the trajectory of the slow curve occurs. Then the trajectory
rapidly tends to the attractive set Ss

1. However, due to a very high temperature the explosion
causes long before the trajectory reaches Ss

2, see Figure 3.5. This behavior corresponds to the
ignition (supercritical regime).

In the case κ = κ0 we have η1 = 0, see Figure 3.6. In a neighborhood of κ0 it is possible to
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Figure 3.2: The slow curve of the system (3.2)
for β = 0.01, κ = 0.2 < κ0, θ < 5.

find the value κ = κ∗ corresponding to the critical regime. The trajectory of the system with
κ = κ∗ starting from the initial point rapidly tends to a very small vicinity of the point A1 and
then follows the repulsive part Su of the slow curve, up to a point J from which the solution
“jumps” towards the attractive component Ss

1 and then follows it, see Figure 3.7(a).
To find the value κ = κ∗, which corresponds to a trajectory modelling the critical regime in

the chemical system, we use the techniques proposed in [26]. The idea of this approach consists
of the following. If we reverse the time in the system (3.2) by τ = −t, the repulsive part Su of
slow curve becomes the attractive one for the system

ε
dθ

dt
= −(η + 1)−1 exp

(
θ

1 + βθ

)
+

θ

κ
= f(η, θ),

dη

dt
= −(η + 1)−1 exp

(
θ

1 + θβ

)
= g(η, θ)

(3.8)

with the new time t. A trajectory of the system (3.8) starting from any point in the basin of
attraction of the set Su, after a short time follows the attractive set Su at the tempo of the
slow variable up to the point A1, see Figure 3.8. This part of the trajectory is the part of slow
motions and the trajectory here has the asymptotic representation [26]

η(θ, ε) = h0(θ) + εh1(θ) + O(ε2).

When the trajectory reaches the point A1, it jumps off the slow curve and rapidly tends to
the final point. Note, that the final point of the system (3.8) corresponds to the initial point (3.3)
of the system (3.2). This part of the trajectory is the part of fast motions and the trajectory
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Figure 3.3: (a) The slow curve (the thin line) and the trajectory (the thick line) of the system
(3.2) for β = 0.01, ε = 0.01, κ = 0.2, θi = 0. (b) The η– and θ–components of the solution in
the case of the slow regime for β = 0.01, ε = 0.01, κ = 0.2, θi = 0.

here has the asymptotic representation [26]

η(θ, ε) = η1 + b0
0,0Γ

2/3 sign g(η1, θ1) ε2/3 +
1
3
b1
0,1Γ sign g(η1, θ1) ε ln

1
ε

+ O(ε), (3.9)

where

b0
0,0 = Ω0 = 2.338107, b1

0,1 =
Γ
′
ξ

Γ
,

Γ =

√
2

|fθθ(η1, θ1)fη(η1, θ1)| |g(η1, θ1)|,

Γ
′
ξ =

6fθθ(η1, θ1)gθ(η1, θ1)− 2fθθθ(η1, θ1)g(η1, θ1)
3f2

θθ(η1, θ1)
.

Recall, η1 and θ1 here are the coordinates of the jump point A1 and, using β ¿ 1, we have from
(3.6) and (3.7)

η1 = κe(1− β)− 1 + O(β2), θ1 = 1 + 2β + O(β2).

With this η1, θ1 and (3.3), (3.8), (3.9) we obtain the equation for κ:

0 = κe(1− β)− 1 + Ω0(2κe)1/3

(
1 +

5
2
β

)2/3

ε2/3 +
4(1 + 6β)

9
ε ln

1
ε

+ O(ε + β2). (3.10)

39



-2

-4

2

theta

4

-2 2
0

eta

3-1 10

A1b

Ss
1

Su

η

θ

Figure 3.4: The slow curve of the system (3.2)
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From the equation (3.10) it follows that the critical value of the parameter κ can be found
in the asymptotic representation

κ = κ∗ = κ0 + κ1ε
2/3 + κ2ε ln

1
ε

+ O(ε).

By substituting this series into (3.10) and equating the coefficients we get

κ∗ =
1
e

[
1 + β − Ω0

3
√

2(1 + 3β)ε2/3 − 4
9
(1 + 7β)ε ln

1
ε

]
+ O(ε + β2).

The critical regime corresponding to κ = κ∗ separates the region of slow regimes (κ < κ∗)
which are characterized by low temperatures and the region of the ignition (κ > κ∗). During
the critical regime the temperature attains a high value but without the ignition, at the tempo
of slow variable of the system, see Figure 3.7(b).

3.3 Case of cubic law

In the case of a cubic law of oxidation kinetics the system (3.1) has the form

ε
dθ

dτ
= (η + 1)−2 exp

(
θ

1 + βθ

)
− θ

κ
,

(3.11)
dη

dτ
= (η + 1)−2 exp

(
θ

1 + θβ

)
,

with initial conditions
η(0) = 0, θ(0) = −θi. (3.12)
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The η– and θ–components of the solution in the case of the ignition for β = 0.01, ε = 0.01,
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The degenerate equation

F (η, θ, κ) = (η + 1)−2 exp
(

θ

1 + βθ

)
− θ

κ
= 0 (3.13)

describes the slow curve

S =
{

(θ, η) : (η + 1)−2 exp
(

θ

1 + βθ

)
− θ

κ
= 0

}

of the system (3.11).
As in previous section we take κ as a control parameter with fixed β, ε. For all κ the slow

curve of the system (3.11) consists of two branches which are described by the equations

η = −1 +

√
κ

θ
exp

(
θ

1 + βθ

)

and

η = −1−
√

κ

θ
exp

(
θ

1 + βθ

)
.

From the last equation it follows that one branch of S (namely, the lower one in (θ, η)–plane)
is outside ∆, see Figure 3.9. The upper branch of S has two jump points A1 and A2 with
coordinates (η1, θ1) and (η2, θ2), respectively, where θ1 and θ2 are the roots of the equation

θ − (1 + βθ)2 = 0,
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Figure 3.9: The form of the slow curve of the system (3.11): (a) for κ < κ0, (b) for κ > κ0,
where κ0 = (1 + β)/e, e = exp(1).

i.e.,

θ1 =
1− 2β −√1− 4β

2β2
, θ2 =

1− 2β +
√

1− 4β

2β2
, (3.14)

and

η1 = −1 +

√
κ

θ1
exp

(
θ1

1 + βθ1

)
, η2 = −1 +

√
κ

θ2
exp

(
θ2

1 + βθ2

)
. (3.15)

Hence, according to (3.5), (3.13)–(3.15), the upper branch of the slow curve S consists of two
attractive parts Ss

1 and Ss
2 and the repulsive Su, where

Ss
1 := {(θ, η) ∈ S : η > −1, 0 < θ < θ1},

Ss
2 := {(θ, η) ∈ S : η > −1, θ > θ2},

Su := {(θ, η) ∈ S : η > −1, θ1 < θ < θ2}.
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Taking into account that β ¿ 1, from (3.14) we have θ1 = 1 + 2β + O(β2), θ2 =
β−2

(
1− 2β + O(β2)

)
as β → 0. By the foregoing, we confine our attention to the behavior

of the solution of (3.11) near Ss
1 and Su only.

Similar to the case of parabolic law of oxidation kinetics, the form of S depends on the
value of the parameter κ and, consequently, depending on its value the chemical reaction either
changes to a slow regime with decay of the reaction, or goes into a regime of self–acceleration
which leads to an ignition.

In the case κ < κ0 some part of set Ss
1 of the slow curve lies below the η–axis, see Figures

3.9(a) and 3.10. After the part of the fast motion from the initial point up to Ss
1, which

corresponds to the initial heating of the chemical system, the trajectory of the system follows
the attractive set Ss

1 at the tempo of the slow variable, see Figure 3.11. This behavior corresponds
to the slow regime with low temperatures (subcritical regime).

In the case κ > κ0 the branch of the slow curve with η > 0 lies above the θ–axis entirely,
see Figures 3.9(b) and 3.12. The trajectory of the system in this case passes beyond the slow
curve and then describes the fast regime. The trajectory of (3.11) reaches the attractive set Ss

2

and then follows it at the tempo of the slow variable up to the point A2. After this moment the
trajectory jumps off the slow curve and rapidly tends to the attractive set Ss

1, see Figure 3.13.
This behavior corresponds to the ignition characterizing a very high temperature, see Figure
3.13.

Figure 3.14 shows the slow curve in the case κ = κ0. In a neighborhood of κ0 it is possible
to find the value κ = κ∗ corresponding to the critical regime. In Figure 3.15(a) the trajectory
of the system with κ = κ∗, starting from the initial point, rapidly tends to a very small vicinity
of the point A1 and then follows the repulsive part Su of the slow curve, up to a point J from
which the solution “jumps” towards the attractive component Ss

1 and then follows it.
To find the value κ = κ∗ which corresponds to a trajectory modelling the critical regime

in the chemical system by Mishchenko–Rozov asymptotics we reverse the time in the system
(3.11) by τ = −t. As the result we obtain the system
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Figure 3.11: (a) The slow curve (the thin line) and the trajectory (the thick line) of the system
(3.11) for β = 0.01, ε = 0.01, κ = 0.27, θi = 0. (b) The η– and θ–components of the solution in
the case of the slow regime for β = 0.01, ε = 0.01, κ = 0.27, θi = 0.

ε
dθ

dt
= −(η + 1)−2 exp

(
θ

1 + βθ

)
+

θ

κ
= f(η, θ),

(3.16)
dη

dt
= −(η + 1)−2 exp

(
θ

1 + θβ

)
= g(η, θ).

The attractive set of the slow curve of the system (3.16) coincides with the repulsive Su of the
system (3.11), and the repulsive set of S of the system (3.16) coincides with Ss of the system
(3.11). Hence, a trajectory of the system (3.16) starting from any point from the basin of
attraction of the set Su, after a short time follows the attractive set Su at the tempo of the slow
variable up to the point A1. This part of the trajectory corresponds to the slow motions and
the trajectory here has the asymptotic representation

η(θ, ε) = h0(θ) + εh1(θ) + O(ε2).

When the trajectory reaches the point A1, it jumps off the slow curve and rapidly tends to
the final point with coordinates η = 0, θ = −θi. This part of the trajectory corresponds to the
part of fast motions and the trajectory here has the asymptotic representation (3.9) with the
functions f and g from the system (3.16), and η1 and θ1 given by (3.14), (3.15).

Using the fact that β ¿ 1, from (3.14) and (3.15) we have

η1 =
√

κe

(
1− β

2

)
− 1 + O(β2), θ1 = 1 + 2β + O(β2).
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Then from (3.9), (3.12), and (3.16) we obtain the equation

0 =
√

κe

(
1− β

2

)
− 1 + Ω0(κe)1/6

(
1 +

11
4

β

)2/3

ε2/3 +
4(1 + 6β)

9
ε ln

1
ε

+ O(ε + β2), (3.17)

where κ has the asymptotic representation

κ = κ∗ = κ0 + κ1ε
2/3 + κ2ε ln

1
ε

+ O(ε).

By substituting this series into (3.17) and equating the coefficients we get the critical value of
the parameter κ

κ∗ =
1
e

[
1 + β − 2Ω0(1 + 3β)ε2/3 − 8

9
(1 + 7β)ε ln

1
ε

]
+ O(ε + β2),

which corresponds to the critical regime in the chemical system in the case of cubic law of
oxidation kinetics.

As in the previous case the critical regime separates the region of slow regimes (κ < κ∗)
which are characterized by low temperatures and the region of the ignition (κ > κ∗). During
the critical regime the temperature attains a high value but without ignition, at the tempo of
slow variable of the system, see Figure 3.15(b).

46



theta

3.5E153E152.5E152E151.5E151E155E140

eta
6E14

4E14

2E14

0

η

θ

theta(t)

8E14

6E14

4E14

2E14

0
1.20.80.40

η, θ

τ

η(τ )

θ(τ )

HHj

HHHj

(a) (b)
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Chapter 4

Canards and black swan in a model
of a 3-D autocatalator

The mathematical model of a 3-D autocatalator is studied using the geometric theory of singular
perturbations, namely, the black swans and canards techniques.

Critical regimes are modeled by canards (one–dimensional stable–unstable slow integral man-
ifolds). The meaning of criticality here is as follows. The critical regime corresponds to a chem-
ical reaction which separates the domain of self–accelerating reactions from the domain of slow
reactions.

A two–dimensional stable–unstable slow integral manifold (black swan) consisting entirely of
canards, which simulate the critical phenomena for different initial data of the dynamical system,
is constructed. It is shown that this procedure leads to the phenomenon of auto-oscillations in
the chemical system.

The geometric approach combined with asymptotic and numerical methods permits us to
explain the strong parametric sensitivity and to obtain asymptotic representations of the critical
behavior of the chemical system.

To explain the situation which will be arise in the model of a 3-D autocatalator we give the
following examples.

Example 8.

Consider the van der Pol equation in the form of a plane system with an additional parameter
α:

ẋ = z − α, εż = −1/3z3 + z − x. (4.1)

The jump points (−2/3,−1) and (2/3, 1) divide the slow curve x = −1/3z3+z into stable (z < −1
and z > 1) and the unstable (−1 < z < 1) parts, and we can observe the canard phenomenon
near first jump point with α = −1 + ε/8 + ε2 . . . or near second one with α = 1− ε/8 + ε2 . . . .
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Example 9.

Consider now the 3-D modification of system (4.1):

ẋ = z − α, ẏ = −0.3y, εż = −1/3z3 + z − x. (4.2)

The system (4.2) has the black swan. This black swan is a cylindrical attractive surface, see
Figure 4.1. All trajectories on this surface are the canards, but only one of them is a cycle on
the plane y = 0. We can observe a similar situation in a 3-D autocatalator model.
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Figure 4.1: The trajectory of the system (4.2)
with ε = 0.1 and initial point x = 0.02, y =
0.1, z = −0.2.

4.1 3-D autocatalator

The application of black swans consisting entirely of canards to the modelling of critical phe-
nomena permits us to take into account small perturbations in the chemical systems. Moreover
we can use black swans for the modelling of critical phenomena in chemical problems without
fixed initial conditions.

As an illustration let us consider a model of the three–dimensional autocatalator [28, 29]:

dx

dτ
= µ(5/2 + y)− xz2 − x,

dy

dτ
= z − y, (4.3)

ε
dz

dτ
= xz2 + x− z,

where
x ≥ 0, y ≥ 0, z ≥ 0, 0 ≤ µ < 1. (4.4)

The system (4.3) simulates a sort of the Belousov–Zhabotinsky reaction. The variables x, y
and z represent dimensionless concentrations of three chemical reagents, ε is a small positive
parameter, µ is a bifurcation parameter. Note that this and similar models have been studied
in [7, 38] and others.
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The slow surface (see Figure 4.2) of the system (4.3) is described by the equation

F (x, y, z) = xz2 + x− z = 0.

The breakdown surface, which is described by

F = 0,
∂F

∂z
= 2xz − 1 = 0,

consists of two straight lines, but only one of them

x = 0.5, z = 1 (4.5)

has physical meaning. The breakdown surface divides the slow surface into three leaves Su
1

(z > 1), Su
2 (z < 1), Ss (|z| < 1, see Figure 4.2), which are zeroth order approximations for the

corresponding slow integral manifolds Su
1,ε, Su

2,ε and Ss
ε . Manifolds Su

1,ε and Su
2,ε are unstable

and Ss
ε is stable. Note, that the part of Ss

ε with 0 ≤ x < 0.5 and Su
1,ε are situated in the domain

of interest to us (4.4).
A detailed analysis of system under is presented in [36].
Note, the initial data for the system (4.3) are not fixed. With concrete initial data we

can glue the stable and unstable slow integral manifold at one point on the breakdown line
(4.5). The canard passes through this point and corresponds to the initial value problems for
the system under consideration. Thus, a canard is a result of gluing stable and unstable slow
integral manifolds at one point of the breakdown surface.
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Let µ = µ(y, ε) be considered as a control function. Then the gluing of the stable and
unstable parts of slow integral manifolds can be realized at all points of the breakdown line (4.5)
at the same time. This permits us to construct slow integral manifolds with changing stability
(black swan) consisting entirely of canards. Each simulates the critical regime corresponding to
the specified initial data and passes through a definite point on the breakdown line.

4.2 Black swan construction

Let us take µ = µ(y, ε) as incomplete feedback control function. Then it and the black swan
x = x(y, z, ε) have asymptotic expansions of the form:

µ = µ(y, ε) = µ0(y) + εµ1(y) + ε2µ2(y) + . . . ,

x = x(y, z, ε) = x0(y, z) + εx1(y, z) + ε2x2(y, z) + . . . .

Substituting these expansions into the equation

∂x(y, z, ε)
∂z

ε−1(x(y, z, ε)z2 + x(y, z, ε)− z) +
∂x(y, z, ε)

∂y
(z − y)

= µ(y, ε)(5/2 + y)− x(y, z, ε)z2 − x(y, z, ε),

which follows from (4.3), and using the slow surface equation

x0z
2 + x0 − z = 0, (4.6)

we obtain (
∂x0

∂z
+ ε

∂x1

∂z
+ ε2 ∂x2

∂z
+ . . .

)
(x1 + εx2 + . . . )(1 + z2)

+
(

∂x0

∂y
+ ε

∂x1

∂y
+ ε2 ∂x2

∂y
+ . . .

)
(z − y) =

=
(
µ0 + εµ1 + ε2µ2 + . . .

)
(5/2 + y)− (

x0 + εx1 + ε2x2 + . . .
)
z2−

−x0 − εx1 − ε2x2 − . . . . (4.7)

Setting ε = 0 in (4.7) and taking (4.6) into account, we get

∂x0

∂z
(1 + z2)x1 = µ0(5/2 + y)− z. (4.8)

Note, that the relationship
∂x0

∂z
= 0

holds on the breakdown line (4.5). By continuity of the function x1 = x1(z, c) we require the
following condition:

µ0 =
1

(5/2 + y)
.
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From this and (4.8) we have

x1(y, z) =
1 + z2

1 + z
. (4.9)

Equating coefficients in ε in (4.7), we obtain

∂x1

∂y
(z − y) +

∂x1

∂z
(1 + z2)x1 +

∂x0

∂z
(1 + z2)x2 = µ1(5/2 + y)− x1(1 + z2). (4.10)

To avoid a discontinuity in the function x2 = x2(y, z) on the breakdown line we require the
following condition:

µ1 =
3

(5/2 + y)
.

Applying (4.6), (4.9) and (4.10) yields

x2(y, z) =

[
3(1 + z)3 − 2z(2 + z)(1 + z2)2

]
(1 + z2)

(1 + z)3(1− z2)
.

Thus, we obtain the approximations to the black swan

x(y, z, ε) =
z

1 + z2
+ ε

1 + z2

1 + z
+ ε2

[
3(1 + z)3 − 2z(2 + z)(1 + z2)2

]
(1 + z2)

(1 + z)3(1− z2)
+ O(ε3),

and corresponding gluing function

µ(y, ε) =
α(ε)

(5/2 + y)
, α(ε) = 1 + 3ε + O(ε2). (4.11)

We can construct higher approximations to the functions x = x(y, z, ε) and µ = µ(y, ε) in a
similar way, if it is necessary.

For a given point y = y∗ on the breakdown line we can find the value µ∗ = µ(y∗, ε) from
expression (4.11) which corresponds to the canard of the system. This trajectory lies on the
black swan x = x(y, z, ε) and passes through the point y = y∗ of the breakdown line.

It should be noted that the choice of the gluing point y = y∗ is equivalent to the choice the
starting point of the trajectory.

Note that gluing the stable and unstable slow integral manifolds reduces the original system
(4.3) to the following form

dx

dτ
= α(ε)− xz2 − x, (4.12)

ε
dz

dτ
= xz2 + x− z, (4.13)

dy

dτ
= z − y. (4.14)

The system (4.12)–(4.14) has a black swan, which is a cylindrical surface, see Figure 4.4.
All trajectories on this surface are canards, but only one of them is a limit cycle. This cycle is
asymptotically orbitally stable.
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Figure 4.3: The slow surface and the canard of the system (4.12)–(4.14) with ε = 0.01 and initial
point x = 0.1, y = 1, z = 1.

Conclusion
The singularly perturbed systems of differential equations describing thermal explosion are

analyzed. Critical and transient regimes are modelled by means of geometric theory of singular
perturbations methods. The mathematical objects are introduced for the first order reactions
and for autocatalytic case. These objects make it possible to follow the continuous transition
of reaction from the slow regime to the explosive one. The critical regime is modelled by the
mathematical object called canard in the modern mathematical literature. Such trajectories pass
from the stable slow invariant manifold to the unstable one. Systems’ trajectories, passing some
part of its way along critical trajectories, belong to the transient regimes. Thus the transient
region is separated into the region of slow transient regimes and the region of the explosive
transient regimes. The asymptotic formulae for the calculation of the critical values of heat loss
parameter were obtained.

A realistic time scale is used such that rapid motions of the temperature appear against a
background of the slow changing of the related growth of the thickness of the oxide film. This
clearly demonstrated the possibility of using the singular perturbation theory to investigate
reactions of this sort.

For two form of oxidation kinetics (parabolic and cubic laws) the asymptotic formulae are
obtained, specifying the critical value of the parameter κ reflecting the convection heat transfer
in the metal ignition model. The approach to the modelling of critical phenomena is suggested.
The critical trajectory is identified with the trajectory passing along the unstable part of slow
curve. This approach was extended on the PDE combustion models [15, 19]. It should be noted
that such approach was used in [30] to describe the canard travelling waves.
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Figure 4.4: The black swan of the system (4.12)–(4.14).

We investigate a singularly perturbed model of a sort of Belousov–Zhabotinsky reaction. The
basic types of chemical reaction are defined by means of integral manifold theory. It was shown
that the critical regimes, separating the domains of self–accelerating reactions and domains of
slow processes, are modelled by canards. The asymptotic formulae for the calculation of the
critical values of bifurcation parameter of the system were obtained.

The procedure for constructing the two–dimensional slow integral manifold with changing
stability consisting entirely of canards, each of which simulates the critical regime corresponding
to specified initial data of the dynamic system, is described. The application of a black swan
permits us to take into account small perturbations in the chemical systems.

Acknowledgements The authors are grateful to Grigory Barenblatt, Michael Mortell and
Robert O’Malley for helpful discussions. This work was supported in part by the Russian
Foundation for Basic Research under (Grant 07-01-00169a).

55



Bibliography

[1] V. I. Arnold, V. S. Afraimovich, Yu. S. Il’yashenko and L. P. Shil’nikov. Theory of Bifur-
cations. V. Arnold, ed., in Dynamical Systems, 5. Encyclopedia of Mathematical Sciences,
Springer Verlag, New York, 1994.

[2] K. A. Avdeev, F. S. Frolov, S. M. Frolov and B. Basara 2006 Effect of Transient Heat
Transfer on Metal Particle Ignition (Turbulence, Heat and Mass Transfer vol 5) ed K
Hanjalice et al (New York: Begell Hous Publ.) pp 581–584.

[3] V. I. Babushok, V. M. Goldshtein, A. S. Romanov and V. S. Babkin, Thermal Explosion
in an Inert Porous Medium, Fizika Gorenia i Vzryva, 1992, vol. 28, 4, pp 3–10.

[4] V. I. Babushok, V. M. Goldshtein, and V. A. Sobolev 1990 Critical condition for the thermal
explosion with reactant consumption Combust. Sci. and Tech. 70 p 81.

[5] E. Benoit, J. L. Callot, F. Diener, M. Diener, Chasse au canard, Collect. Math., 1981–1982,
vol. 31–32 (1–3), pp 37–119.

[6] M. Brøns, K. Bar–Eli, Asymptotic Analysis of Canards in the EOE Equations and the Role
of the Inflaction Line, Proc. London Roy Soc., Ser. A, 1994, vol. 445, pp 305–322.

[7] M. Brøns, K. Bar–Eli 1991 Canard explosion and excitation in a model of the Belousov–
Zhabotinsky reaction Journal of Physical Chemistry 95 p 8706.

[8] El–Sayed S A 1996 Ignition characteristics of metal particles in thermal explosion theory
J. Loss Prev. Process Ind. 9 p 393.

[9] D. A. Frank-Kamenetsky Diffusion and heat transfer in chemical kinetics, Moscow: Nauka,
1967.

[10] I. Glassman 1996 Combustion (Orlando: Academic Press)

[11] V. M. Gol’dshtein and V. A. Sobolev 1992 Integral manifolds in chemical kinetics and
combustion Singularity Theory and Some Problems of Functional Analysis ed S. Gindikin
(AMS Translations 2 vol 153) pp 73–92.

[12] V. Gol’dshtein, A. Zinoviev, V. Sobolev, E. Shchepakina, Criterion for Thermal Explosion
with Reactant Consumption in a Dusty Gas, Proc. London Roy. Soc., Ser. A, 1996, vol.
452, pp 2103–2119.

56



[13] G. N. Gorelov, V. A. Sobolev, Duck-trajectories in a Thermal Explosion Problem, Appl.
Math. Lett., 1992, vol. 5, 6, pp 3–6.

[14] G. N. Gorelov, V. A. Sobolev, Mathematical Modeling of Critical Phenomena in Thermal
Explosion Theory, Combust. Flame, 1991, vol. 87, pp 203–210.

[15] G. N. Gorelov, E. A. Shchepakina and V. A. Sobolev, Canards and critical behavior in
autocatalytic combustion models J Eng Math (2006) 56, pp 143-160.

[16] B. F. Gray, Critical Behaviour in Chemical Reacting Systems: 2. An Exactly Soluble Model,
Combust. Flame, 1973, vol. 21, pp 317–325.

[17] D. Henry. Geometrical Theory of Semilinear Parabolic Equations. Lecture Notes in Math-
ematics, vol. 840, Springer Verlag, New York, 1981.

[18] B. I. Khaikin, V. N. Bloshenko and A. G. Merzhanov 1970 On ignition of metal particles
J. Combustion, Explosion and Shock Waves 6 p 412.

[19] E. V. Kitaeva and V. A. Sobolev, Numerical Determination of Bounded Solutions to Dis-
crete Singularly Perturbed Equations and Critical Combustion Regimes, Computational
Mathematics and Mathematical Physics 45, No. 1, January 2005, pp 52–82.

[20] A. Linan and D. K. Kassoy 1978 The influence of reacting consumption on the critical
conditions for homogeneous thermal explosion A. J. Mech. Appl. Math. Electron. 31 p 99.

[21] P. De Maesschalck, F. Dumortier, Time and entryexit relation near a planar turning point
C. R. Acad. Sci. Paris, Ser. I 339 (2004) pp 359-364.

[22] P. De Maesschalck, F. Dumortier, Canard solutions at non-generic turning points, Trans.
of AMS, 358, No 5 (2005) pp 2291-2334.

[23] A. G. Merzhanov 1975 Thermal theory of metal particle ignition AIAA Journal 13 p 209.

[24] A. G. Merzhanov, F. I. Dubovitsky, Quasi–stationary Theory of the Thermal Explosion
of a Self–accelerating Reaction, Zhurnal Fizichaskoi Khimii, 1960, vol. XXXIV, 10, pp
2235–2244.

[25] A. G. Merzhanov, F. I. Dubovitsky, The Modern State of the Theory of Thermal Explosion,
Uspekhi Khimii, 1966, vol. 35, 4, pp 656–683.

[26] E. F. Mishchenko, N. Kh. Rozov, Differential Equations with Small Parameters and Relax-
ation Oscillations. Plenum Press, New York, 1980.

[27] R. E. O’Malley 1991 Singular Perturbation Methods for Ordinary Differential Equations
(Appl. Math. Sci. vol 89) (New-York: Springer–Verlag).
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