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Abstract Cities promote strong bicycle networks to support and encourage bicycle com-
muting. However, the application of network science to bicycle facilities is not very well
studied. Previous work has found relationships between the amount of bicycle infrastructure
in a city and aggregate bicycle ridership, and between microscopic network structure and
individual tripmaking patterns. This study fills the missing link between these two bodies
of literature by developing a standard methodology for measuring bicycle facility network
quality at the macroscopic level and testing its association with bicycle commuting. Bicycle
infrastructure maps were collected for 74 United States cities and systematically analyzed
to evaluate their network structure. Linear regression models revealed that connectivity and
directness are important factors in predicting bicycle commuting after controlling for de-
mographic variables and the size of the city. These findings provide a framework for trans-
portation planners and policymakers to evaluate their local bicycle facility networks and set
regional priorities that support nonmotorized travel behavior, and for continued research on
the structure and quality of bicycle infrastructure and behavior.
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standing the process of network growth, evaluating transportation technology and policy,
and modeling travel behavior.

1 Introduction

Cities are increasingly promoting cycling as a valuable transportation alternative to driving,
arguing that mode shift away from the private auto provides region-wide congestion, envi-
ronmental, and health benefits (Federal Highway Administration, 2012). Between 1999 and
2011, total United States (US) federal and state government funding on bicycling and pedes-
trian infrastructure exceeded $7 Billion. The US Federal Highway Administration (FHWA)
completed the Nonmotorized Transportation Pilot Program in 2012, which allocated $25
Million to each of four pilot cities over five years to measure the impacts of new infras-
tructure on mode shift to bicycling and walking (Federal Highway Administration, 2012).
Many projects are explicitly targeted at closing “gaps” in bike routes to form a more cohe-
sive cycling network (Byers, 2002). This idea of a “network” of bicycle routes connecting
the region is an important indicator of the shift in transportation priorities from auto domi-
nance to accommodation of nonmotorized modes. While bicycles are permitted to use most
components of the road network in the US, bicycle-specific infrastructure provides safe,
comfortable routes that many bicyclists prefer over sharing travel lanes with motorized ve-
hicles. The network formed by bicycle-specific infrastructure in any given city, however, is
not as expansive or complete as the underlying road network, so cyclists often have to de-
tour to stay on dedicated facilities or else share the roadway with car and trucks in order to
complete their trip.

Numerous studies have identified relationships between rates of bicycling and provision
of infrastructure (Nelson and Allen, 1997; Dill and Carr, 2003; Parkin et al, 2007; Buehler
and Pucher, 2011). Qualitative descriptions of bicycle facility network characteristics and
planning priorities are prevalent in practice (American Association of State Highway and
Transportation Officials, 2012). However, the application of quantified network structure
indicators to bicycle infrastructure design and research is nascent. This paper aims to fill this
gap in the literature by developing a protocol for evaluating bicycle infrastructure network
structure and testing its predictive power on bicycle commuting mode share. Understanding
these relationships between bicycle commuting and bicycle network features will enable
transportation and planning agencies to target investment in infrastructure components for
optimum impact on existing riders and potential future bicyclists.

This paper analyzes bicycle facility networks from 74 mid- to large-sized cities in the
US, mapped in Figure 1 to identify, quantify, and evaluate the backbone network of dedi-
cated bicycling infrastructure. Five network structure factors are constructed from a series
of graph theory measures. Regression models are used to test the relationship between these
factors and bicycle commuters per 10,000 workers, controlling for city population, land
area, median income, household structure, college enrollment, and auto ownership. This
paper is organized as follows: Section 2 discusses literature on the relationships between in-
frastructure and bicycling. Section 3 explains the data collection process, network structure
measures, and factor analysis. Section 4 describes results from two linear regresson models
of bicycle commute share and the sensitivity of bicycle commuting to variables estimated in
the model. Finally, Section 5 outlines implications for practice and opportunities for further
study.
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Fig. 1: 74 US Cities Included in Sample

2 Literature Review

Planners and researchers have long sought evidence about the relationship (if any) between
certain types of infrastructure induce bicycling, and the needs of beginner bicyclists. The
evidence for bicycle facilities inducing mode shift is weak, but there is strong evidence
for dedicated facilities shifting individuals’ route choice calculus, attracting bicyclists from
unimproved routes (Pratt et al, 2012). Pucher et al (1999)’s review of bicycling literature
failed to find statistically rigorous studies that establish causality between infrastructure de-
velopment and induced cycling. The prevalence of extensive and highly connected cycling
infrastructure networks in Europe correlates with high rates of bicycling, but the authors
posited that the facility development might follow cyclists rather than incite cycling (Pucher
et al, 1999; Buehler and Pucher, 2012). A longitudinal study of infrastructure development
and rates of commuting by bicycle in the Minneapolis-St. Paul Metro Area reached almost
the same conclusion (Krizek et al, 2009): Most new facilities were installed in areas that
already had much higher than average levels of cycling, with one exception. The University
of Minnesota Transitway, a dedicated roadway exclusively for university-operated transit
vehicles and bicycles connecting the Minneapolis and St. Paul campuses, made longer cy-
cling commute trips viable, enabling people to switch to cycling for their work or school
commutes (Krizek et al, 2009).

2.1 Facilities and Individual Behavior

Bike lanes and trails are still a recommended strategy for increasing cycling because stud-
ies have found a significant correlation between bicycling behavior and dedicated facilities,
even if evidence for causality is limited. Wilkinson et al (1994), in their Federal Highway
Administration (FHWA) manual on roadway design treatments for bicyclists, recommend
providing bicycle facilities that both serve existing bicyclists and encourage new riders.
They argue that a supply-driven approach of facilities targeted at basic cyclists (Group B)
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and children (Group C) will encourage mode shift to cycling and use of the facilities. Ev-
idence about which network elements serve bicyclists best is mixed, though it is clear that
dedicated infrastructure adds value for all types of bicyclists. Tilahun et al (2007) found that
stated preference survey respondents in the Minneapolis-St. Paul Metro Area valued a bike
lane improvement as equivalent to saving about 16 minutes from a baseline 20-minute trip.
In Beijing, Zhao (2013) found that a 1% increase in exclusive bike lanes corresponded to
a 0.19% increase in the probability of choosing to bicycle. Despite expressed willingness
to detour in stated preference surveys, bicycle commuters are shown to be highly sensitive
to distance (Handy and Xing, 2011), so building a network that provides direct connections
with minimal detour is important. A network that requires substantial detour undermines its
own utility by increasing travel distance for a population known to be particularly sensitive
to distance. Wilkinson et al (1994) recommended a network of bike lanes, separated paths,
and bike boulevards, or quiet local streets parallel to major corridors with improvements to
calm auto traffic and encourage bicycling, to connect Group B/C cyclists to their destina-
tions (Wilkinson et al, 1994; American Association of State Highway and Transportation
Officials, 2012).

Some studies have found that advanced cyclists (Group A) value reduced travel time and
directness, suggesting that their needs are significantly different from B/C cyclists and are
sufficiently served with wide shoulders and consistent speed limit enforcement (Wilkinson
et al, 1994; Stinson and Bhat, 2005; American Association of State Highway and Trans-
portation Officials, 2012). However, other scholars have found evidence that even enthu-
siastic and confident bicyclists receive some benefit from bike lanes and trails. Dill (2009)
used GPS devices to study bicyclist route choice and discovered that a disproportionate share
of bicycle miles traveled occurred on dedicated facilities, suggesting that even experienced
cyclists will trade route efficiency for safety and comfort. Caulfield et al (2012)’s stated pref-
erence route choice model in Dublin found that off-street trails and green lanes increased the
chances of a route being chosen relative to a traditional bike lane, and this finding applied
even after stratifying their sample by bicyclist confidence level (ranging from “completely
confident” to “not at all confident”). These findings are not mutually exclusive. Some con-
fident cyclists may feel that streets without bicycle improvements adequately serve their
needs, but dedicated infrastructure provides a more comfortable route alternative when they
choose to use it. In any case, it is clear that cyclists of all levels prefer and use bike lanes
and trails over mixed traffic.

Of course, the value of dedicated bicycle facilities can be highly context dependent.
Several authors have noted that the presence of on-street parking reduces the utility of bike
lanes, for example (Tilahun et al, 2007; Sanders, 2014). Klobucar and Fricker (2007) used a
bicycle compatibility index based on traffic volumes and travel speeds to model the effects
of distributing bike lanes on streets with high or low compatibility scores. Additionally, low
traffic and low speed streets, particularly without street parking, can be just as useful or even
moreso than some types of dedicated infrastructure. The recently revised “Guide for the De-
velopment of Bicycle Facilities” published by American Association of State Highway and
Transportation Officials (2012) describes bicycle network planning as a process involving
comprehensive qualitative and quantitative assessment of existing conditions, needs, and
feasibility. No single facility type serves all roadway contexts and user needs. Whatever the
appropriate facility type, the Guide recommends that routes be direct with as few detours as
possible, and bikeway density should be planned for maximum use and comfort (e.g., within
one quarter mile of every resident). Complete streets policies are recommended to encour-
age consideration of bicyclists’ needs during any road resurfacing or maintenance project
(American Association of State Highway and Transportation Officials, 2012).
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2.2 Cross-Regional Studies

Cross-regional studies have found positive relationships between the size of a city’s bicycle
facility network and its bicycle commute share. Nelson and Allen (1997) found that each
additional mile of bikeway per 100,000 people was associated with a 0.069 to 0.075 percent
increase in commuters using bicycles across 18 US cities. Dill and Carr (2003), using an
expanded dataset of 50 cities, found each additional mile of facility per square mile of city
area to be associated with a one percentage point increase in bike commuting.

Rietveld and Daniel (2004) performed a similar type of study modeling bicycle share
of use in 103 cities in the Netherlands, though instead of measuring the quantity of bicycle
facilities, they used several measures of infrastructure quality developed by the Dutch Cy-
clists’ Union (Fietsersbond). They found the number of stops and hindrances per kilometer
on any given trip were both negatively associated with bicycle share. If the travel time via
bicycle for a trip was 10% faster than by car, then bicycle use for that trip increased 3.4%.
They concluded that bicyclists are sensitive to the speed and directness of their routes, so
city policy that makes bicycle trips easier and more efficient will increase rates of cycling.

Parkin et al (2007)’s study of bicycle commuting in English and Welsh electoral wards
found a positive, significant association between proportion of off-street bicycle routes and
ridership, but they noted that the elasticity was small: only about 0.049, suggesting that a
disproportionately large quantity of off-street routes would need to be built to see only a
modest increase in bicycling. They also assert a bicycling saturation point of 43%, though
this was considerably higher than the maximum observed in their study. Buehler and Pucher
(2011)’s findings from a study of 90 US cities corroborate this evidence: they found a 10%
increase in supply of bike lanes is associated with only a 3.1% increase in the number of
bike commuters per 10,000 residents. For off-street paths, the increase was only 2.5%.

The missing link in many studies is the quality of the network formed by the infrastruc-
ture: Can a cyclist complete her desired trip using the bicycle network without significant
detours or discontinuities that would require riding in unsafe or uncomfortable conditions?
Most of the cross-regional studies conducted to date have focused on quantity or density
of infrastructure, with no evaluation of how well connected the infrastructure is. Rietveld
and Daniel (2004)’s study addressed network quality indirectly by measuring barriers along
trips, but their variables did not directly measure connectivity.

Mekuria et al (2012)’s analysis of “low stress” networks clearly demonstrates the im-
portance of connectivity by evaluating the quality of routes holistically by their weakest link
rather than an average or index. From this perspective, a route that is almost entirely com-
prised of off-street trails but requires crossing major streets at a few hostile intersections
would be inaccessible for someone whose tolerance threshold is lower than those intersec-
tions would support. However, the focus is on microscopic street characteristics rather than
a macroscopic summary of bicycle facilities.

2.3 Graph Theory and Bicycling

While it is not expected that a bicyclist complete 100% of their trip exclusively on dedi-
cated infrastructure, lanes and trails form a backbone network for bicycling in a city. Thus
the utility of dedicated infrastructure is closely related to what level of connectivity it pro-
vides. Planning for isolated infrastructure segments without considering how these pieces
of infrastructure connect to the broader street network undermines the potential utility of
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this infrastructure. Discontinuities in the bicycle network may have three potential conse-
quences:

1. Forcing the cyclist into mixed traffic
2. Requiring lengthy detours to avoid mixed traffic
3. Discouraging cycling altogether

Graph theory offers systematic methods for measuring network quality for comparison
across cities and to see its effect on travel behavior. Garrison and Marble (1962) first intro-
duced graph theory principles to transportation geography. Kansky (1963) presents the alpha
index (α), beta index (β ), and gamma index (γ) in his dissertation as ratios that describe the
relationship between distinguishable elements of a graph.

Graph theory measures applied to transportation are now fairly common in transporta-
tion research (Xie and Levinson, 2007; Derrible and Kennedy, 2009; Rodrigue et al, 2009).
Simple measures, such as street density or cul-de-sac density, are frequently used to char-
acterize the built environment and model travel behavior. For example, Parthasarathi et al
(2013) found that increased street density was associated with longer perceived travel times
for drivers. While one might hypothesize the relationship to be a bit more complex for
nonmotorized road users, this application illuminates the possible mechanisms by which
network connectivity may influence travel behavior.

Several studies have used graph theory measures to explain individuals’ nonmotorized
travel behavior. Berrigan et al (2010) measured the link-node ratio and several graph theory
indices of the local street grid within short buffers around survey respondents’ home ad-
dresses. These measures factored into two main variables of network quality that predicted
propensity and duration of active transportation. Dill and Voros (2007) found significant
differences between the connected node ratios people who biked the previous summer and
people who did not. Network quality and connectivity have been evaluated at a microscopic
level by studying individual discontinuities in on-street bicycle facilities and long-term net-
work development at gaps and critical points (Krizek and Roland, 2005; Birk and Geller,
2006; Barnes and Krizek, 2005).

These studies significantly advanced our understanding of bicycle infrastructure quality,
while previously described research (Nelson and Allen, 1997; Dill and Carr, 2003; Rietveld
and Daniel, 2004; Parkin et al, 2007; Buehler and Pucher, 2011) set a precedent for modeling
a population’s use of bicycling as a function of infrastructure availability. This study fills the
missing link between these two bodies of research by (1) adapting existing graph theory
and transport geography measures to describe a city’s bicycle infrastructure network, (2)
measuring the quality of bicycle networks using a newly assembled collection of spatial
data from 74 US cities, and (3) modeling bicycle commuting as a function of these measures,
controlling for several common demographic correlates of cycling.

3 Methodology

3.1 Data Collection and Assembly

In this study, we collected spatial data and American Community Survey (ACS) household,
demographic, and journey to work data for 74 mid- and large-sized cities in the US. The
sampling frame consisted of US cities for which a spatial dataset of bicycle infrastructure
was publicly available, and the data was organized in a usable format (ESRI Shapefile or
Keyhole Markup Language).
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Cities were only included if it was possible to distinguish separate bicycle facilities
(lanes, side paths, paved trails) from mixed-traffic facilities (shared lane markings, signed
bike routes, bike boulevards) as only the separate facilities were included in the analysis. As
described in Section 2.1, the appropriate facility type for any given corridor depends heavily
on local context. Selecting only specific types of infrastructure for network analysis means
that the quality of bike networks in cities that make contextually appropriate use of other
types of infrastructure may be underestimated.

Several large metro areas provided data for all their member cities in one file. These
shapefiles were disaggregated to the city level and then considered for analysis. Adjacent
cities may share bicycle travel (e.g., a resident of City A commutes to City B for work),
so these cases would violate the assumptions of independence in regression modeling. To
reduce the impact of this phenomenon on the study, only cities with population greater than
100,000 were retained from disaggregated metro areas. This has two effects: sampling only
a portion of cities reduces the chances that adjacent cities will be included (though not as
well as a random sample), and using only larger cities increases the chance that any given
commuter starts and ends their journey in the same city.

Many of the bicycle infrastructure network files had geometry inconsistencies arising
from how they were created, such as dangling ends where two edges should meet at a single
vertex. To reduce the possible impacts of errors and subtle digitization differences across
cities, we cleaned the shapefiles using a model routine in ArcGIS to trim dangling ends
less than 5 meters, extend ends to fill gaps less than 5 meters, remove excess verticies, and
dissolve single network features that were represented with multiple segments.

The final sample included 74 US cities, covering 22 of the top 50 most populous. These
cities are shown in Figure 1. Where multiple cities from the same metro area are included,
the city names are organized by the agency providing data.

3.2 Commuting Behavior and Demographics

We collected commuting and demographic data for all cities in the sample from the 2005-
2009 American Community Survey (ACS) 5-year estimates. The US Census Bureau admin-
isters the ACS on a rolling basis and provides aggregated estimates over varying timeframes.
5-year estimates are more reliable than the other alternatives because they have a larger sam-
ple and longer timeframe. The commuting data was converted into a rate of bike commuters
per 10,000 commuters. Demographic control variables included percentage of households
with children under 18, share of residents who are enrolled in college, auto ownership rates,
median household income, total population, and number of workers. Auto ownership rates
were constructed from an aggregate number of vehicles owned in the city and the number
of households. College enrollment was included to control for possible outlier cases such as
Davis, California.

Table 1 summarizes the commuting, demographic, and spatial variables in this study and
their expected relationship with bicycle commuting. The very low rates of bicycle commut-
ing are apparent here: the highest commute share in the study is 15.5% (Davis), but all other
cities have commute shares below 7% (not shown). The sample included a diverse range of
incomes, household structures, and vehicle ownership rates.

The ACS data has several notable caveats. The survey asks respondents by which mode
they traveled to work the most in the past week, so the dependent variable only measures
bicycle commuting. Bike commuting may not be representative of bicycling for other trip
purposes. Bike commuters are more likely to be frequent, confident cyclists than someone
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Table 1: Descriptive Statistics for Demographic/City Variables

Variable Average Std. Deviation Min Max

Bicyclists per 10,000 Workers 116.0 210.6 5.1 1,547.5
Population 488,185 1,089,012 61,866 8,302,659
Land Area (km2) 218 243 17 1,214
Median Income ($USD) $57,645 $13,937 $34,113 $97,160
Pct. Households with Kids 35.9% 9.4% 15.9% 56.3%
Pct. College Students 9.1% 5.% 5.% 35.9%
Vehicles per Household 1.7 0.3 0.6 2.2
Data from ACS 2005-2009

who bikes to meet a friend for coffee once a week, so an observed relationship between
infrastructure and bike commuting may not be useful for identifying what other types of
cyclists need from infrastructure.

Bicyclists tend to be multimodal; they may bike some days, but drive or use transit on
other days when the weather is bad or when they have to travel for meetings or appoint-
ments during the workday (Heinen et al, 2010). Part-time bike commuters may be under-
represented because the ACS only allows for one single mode. The ACS year-round rolling
sampling strategy introduces an incredible range of weather variability within and between
cities. Finally, due to the sample size of the ACS and the relatively low numbers of bike com-
muters in each city, the standard error on these measures are very high; nonetheless, the ACS
remains the only nationwide survey of travel behavior that can be used at this geographic
resolution.

3.3 Network Measures

Graph edges represent segments of bicycle infrastructure (bike lanes, trails, sidepaths). Ver-
tices represent intersections and endpoints within the bicycle infrastructure network (e.g.,
where two trails cross). The dataset does not contain any connections between the bicycle
network and the remaining road network. For each city, we measured the number of edges
(e), number of vertices (v), and the total length of all the edges, or graph length (L).

We also measured an airline distance between the endpoints of each edge to calculate
how direct each segment is. An overall directness measure was estimated using the cumula-
tive difference between each edge’s travel length and airline distance between its endpoints.
The purpose of this measure is to gauge how much of a city’s bike network is comprised of
recreationally oriented paths that meander or circle back on themselves (e.g., paths winding
through parks or circling around a lake), versus paths that provide an efficient utilitarian
connection for commuting. Figure 2 shows four segments of infrastructure in Minneapolis’s
bicycle network to demonstrate direct versus indirect/recreational paths. The Hiawatha Trail
and Minnehaha Avenue Bike Lanes are perfectly straight. Their lengths are equal to the air-
line distance between their endpoints. The East and West River Parkway Trails have a lot of
curves to take advantage of the natural scenery along the river.

Many cities’ bicycle networks are fragmented into sub-networks or subgraphs. Each
distinct “island” of links within a city should be counted as a subgraph. However, some cities
leave small gaps in the data where a bike lane crosses an intersection, even though the lanes
on either side function as a single facility. These gaps were too large to resolve using the
model routine described in Section 3.1. We generated a 10-meter buffer around all links and
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Fig. 2: Visual Comparison of Directness On Minneapolis Infrastructure

treated any link that intersected another link’s buffer as part of the same subgraph. We then
measured the number of subgraphs (p), length of the largest subgraph, and average subgraph
length. The relative size of the largest and average subgraphs were calculated by dividing by
L. If the largest subgraph contains a high percentage of the bike network, this suggests one
main network with smaller fragments. If the percent of the bike network contained by the
average subgraph is relatively high, this suggests a more even distribution between two or
more smaller but substantial subgraphs. Whether these scenarios are useful for bicyclists or
a deterrent will depend on what types of road facilities connect the bike network fragments.

The α , γ , and β indices were calculated for each city based on Rodrigue et al (2009)’s
description of the formulas. The beta index (β ) is a ratio of number of edges (e) to number
of vertices (v), shown in Equation 1.

β =
e
v

(1)

A collection of disconnected, non-intersecting edges has β = 0.5 (see Equation 2.

v = 2e⇒ (2)
e
v
=

e
2e

=
1
2
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Fig. 3: Buffering process to identify subgraphs with small gaps

A bicycle network with a low β suggests an increased chance that any given route re-
quires leaving dedicated infrastructure to ride with mixed traffic. Adding links to a network,
and thereby increasing the value of β , increases the complexity and the probability that
any two given vertices have links between them. The gamma index (γ) is closely related: it
represents the number of observed edges (e) to the theoretical maximum number of edges,
estimated using Equation 3(Rodrigue et al, 2009).

γ =
e

3(v−2)
(3)

γ values range from 0 to 1, with 0 indicating a cluster of vertices with no edges, and 1
indicating a fully connected graph. Higher values indicate greater internal connectivity and
increased redundancy, though the excess redundancy associated with γ → 1 makes these
types of networks impractical (Rodrigue et al, 2009). In general, a more highly connected
bicycle network should provide more direct paths than a less connected network.

Cycles are connected chains of edges with the same starting and ending point, and the
number of cycles (u) is estimated using Equation 4, where p is the number of subgraphs.

u = e− v+ p (4)

The alpha index (α) is the ratio of u to the theoretical maximum number of cycles,
shown in Equation 5.

α =
u

2v−5
(5)

Higher values of u correspond to a higher level of complexity and development within
the network. Simple networks or tree-like networks have no cycles. Like γ , α values range
from 0 to 1 and values approaching 1 are highly unlikely due to excessive redundancies.
Unlike γ , this measure is independent from the number of nodes and therefore should be
less size-dependent (Rodrigue et al, 2009).

Table 2 provides descriptive statistics for all the network measures included in this study.
It should be noted that the 50-meter buffer used to define subgraphs affected the estimates
for number of cycles (u) and α index calculations because the number of subgraphs mea-
sured this way is artificially low relative to the number of vertices. The minimum values of
the α index and number of cycles (u) are both negative, which is theoretically impossible
according to the formulas, but feasible given how subgraphs were estimated in this study.
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Table 2: Descriptive Statistics for Bicycle Facility Network Variables

Variable Average SD Min Max

Length (km) 311.16 450.24 1.54 2204.22
Number of Edges 190.58 246.98 1.00 1034.00
Number of Vertices 202.34 239.18 2.00 1028.00
Number of Subgraphs 31.54 34.75 1.00 168.00

Network Density (km/km2 )∗ 1.74 2.67 0.03 18.67
Edge Density (#/km2 )∗ 1.49 3.19 0.00 24.50
Subgraph Density (#/km2 )∗ 0.22 0.26 0.00 1.45
Vertex Density (#/km2 )∗ 1.55 2.80 0.01 20.24

Proportion Intersections 0.26 0.17 0.00 0.64

Direct Length (km) 275.70 408.57 1.38 1987.12
Avg. Length Ratio 0.91 0.09 0.42 1.00
Minimum Length Ratio 0.28 0.35 0.00 1.00
Overall Length Ratio 0.86 0.11 0.42 1.00

Avg. Subgraph Length (km) 11.84 21.29 0.77 155.12
Avg. Subgraph Percent 0.15 0.24 0.01 1.00
Max Subgraph Length (km) 144.60 249.30 0.99 1621.75
Max Subgraph Percent 0.49 0.26 0.13 1.00

Number of Cycles 19.78 46.78 -63.00 188.00
α Index 0.03 0.05 -0.07 0.17
γ Index 0.28 0.06 0.17 0.43
β Index 0.81 0.20 0.50 1.28
∗ Density measures use city’s total land area as the denominator.

The numbers of edges and vertices show the wide range of cities included in this study.
Four cities in this sample have only a single link in their bicycle network (e = 1, v = 2),
while the largest city (New York) has over 1,000 edges. The bicycle networks represented
in this sample are fragmented into an average of 32 subgraphs per network, and 26% of
vertices are intersections (versus end points).

The average density of bike lanes and trails among these 74 cities is 1.74 kilometers
per square kilometer of land in the city, with a range from 0.03 #/km2 to 18.67 #/km2 . This
sample has considerably denser networks than Dill and Carr (2003)’s cross-regional study
of bicycle commuting (0.38 #/km2 ). Among the 21 cities included in both cities, these data
suggest that bicycle facility density has increased by as much as 210% (from 0.51 #/km2 to
1.09) in the decade between data collection periods, depending on variation in data sources,
accuracy, and measurement technique.

3.4 Factor Analysis

Many of the network variables were derived from the same set of spatial measurements,
so they have a high degree of correlation with each other. To avoid multicollinearity issues
in the regression model, principal component analysis with varimax rotation was used to
identify underlying qualities from the list of 21 measures. The resulting five factors with
eigenvalues greater than 1 characterize each network by its (1) size, (2) connectivity, (3)
density, (4) fragmentation, and (5) directness.

Table 3 shows how variables load onto these factors. The size factor is mostly composed
of variables measuring the number of network components (number of edges, vertices, sub-
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Table 3: Factor Loadings

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Size Connectivity Density Fragmentation Directness

Length (km) 0.965
Direct Length (km) 0.961
Number of Vertices 0.851
Edges 0.814
Number of Subgraphs 0.790
Max Subgraph Length (km) 0.793
α Index 0.895
γ Index 0.915
Percent Intersections 0.908
β Index 0.910
Number of Cycles 0.536 0.627
Avg. Length Ratio 0.928
Overall Length Ratio 0.937
Avg. Subgraph Pct. 0.720
Max Subgraph Pct. 0.881
Minimum Length Ratio 0.511
Avg. Subgraph Length (km) 0.608
Network Density (km/km2 ) 0.808
Vertices per km2 0.959
Edges per km2 0.921
Subgraphs per km2 0.734
Loadings smaller than 0.5 suppressed

graphs), as well as measures of their overall length. Connectivity contains the α , γ , and β

indices and percent of vertices that are intersections. The density factor characterizes both
length of facility per unit area as well as number of components (edge, vertex, and sub-
graph density). Fragmentation represents the percent of the network contained in the largest
and average subgraphs and the length of the average subgraph. Finally, the directness factor
captures all ratio measures between the length of the path and the length of a straight line
connecting the path’s endpoints.

Factors are normalized to have a mean of 0 and standard deviation of 1. Each city’s
factor scores are also relative to the sample used to construct the factors. For example, if
a city has a connectivity factor value of 0, that city can be considered average within the
sample. A city with a connectivity factor of −1 would be one standard deviation lower than
average, relative to all the cities included. Figure 4 demonstrates these differences for the
network size factor by mapping cities with factor scores closest to −1, 0 , and +1 on the
same scale.

4 Results

Table 4 shows the results of two linear regressions. In Model 1, the five network factors are
used to model bicycle commuters per 10,000 commuters. The adjusted R2 for this model
is 0.509, suggesting that network structure measures explain about 50% of the variation in
rates of bicycle commuting between cities in the sample. The connectivity and density fac-
tors are positive and significant. A one unit increase in the density factor (or one standard
deviation, given how factor scores are normalized) corresponds to about 150 additional bi-
cycle commuters per 10,000 commuters in the city, all else equal. Connectivity has a weaker
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(a) −1 Standard Deviation:
McKinney, TX (−1.00)

(b) Average:
Seattle, WA (0.02)

(c) +1 Standard Deviation:
Albuquerque, NM (0.97)

Fig. 4: Comparison of Network Size Factor Scores

Table 4: Regression Results

Model 1 Model 2

Variable Coefficient SE Coefficient SE

Factor 1: Size -2.184 17.272 -19.352 16.109
Factor 2: Connectivity 37.351∗∗ 17.272 22.426∗ 12.054
Factor 3: Density 149.956∗∗∗ 17.272 89.846∗∗∗ 15.245
Factor 4: Fragmentation 6.715 17.272 23.881∗ 12.720
Factor 5: Directness 10.955 17.272 31.701∗∗ 11.990
Area (km2) 0.113 0.073
Population (1,000) 0.006 0.018
Median Income ($1,000) -1.407 1.072
Pct. HH with Kids -2.975 2.111
Pct. College Students 22.398∗∗∗ 3.232
Vehicles per HH 1.920 69.564
Constant 116.045∗∗∗ 17.155 68.507 98.296

R2 0.543 0.833
Adj R2 0.509 0.804
Avg VIF 1.000 2.300
∗, ∗∗, or ∗∗∗ indicates significance at p < 0.1, p < 0.05, or p < 0.01

relationship, with a one unit change associated with an increase of 37 bicyclists. The stan-
dard errors for all coefficients in Model 1 are equal because all explanatory variables in this
model are normalized to have a mean of 0 and standard deviation of 1.

Model 2 controls for city size and demographic and economic characteristics. The ad-
justed R2 for this model is 0.804, which represents a considerable improvement over the
network only model. In this model, density and connectivity are still positive and signifi-
cant, along with fragmentation and directness. Among the control variables, percent college
students is the only significant one, with each additional percentage point increase in pop-
ulation enrolled in college corresponding to about 22 additional bicyclists per 10,000. The
Average VIF scores for both models are quite low, suggesting that factor analysis addresses
any possible multicollinearity issues between similarly constructed network measures. We
repeated the analysis using robust standard errors to account for heteroscedasticity arising
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Table 5: Elasticity of Bicycle Commuting to Network Factors

Change Variable: +1% +0.01 +0.25 +0.5 +1 Std. Dev.

Factor 1: Size 0.00% -0.17% -4.17% -8.34% -16.68%
Factor 2: Connectivity∗ 0.00% 0.19% 4.83% 9.66% 19.33%
Factor 3: Density∗∗∗ 0.00% 0.77% 19.36% 38.71% 77.42%
Factor 4: Fragmentation∗ 0.00% 0.21% 5.14% 10.29% 20.58%
Factor 5: Directness∗∗ 0.00% 0.21% 5.14% 10.29% 27.32%
Elasticities computed with all other variables evaluated at means.
Factors are normalized to µ = 0 and σ = 1.
∗, ∗∗, ∗∗∗ Variable was significant in Model 2 at p < .1, p < .05, or p < .01

Table 6: Elasticity of Bicycle Commuting to City Size and Demographics

Change in Variable: +1% +25% +50% +100% +1 Std. Dev.

Population (1,000) 0.03% 0.66% 1.32% 2.63% 5.87%
Area (km2) 0.21% 5.29% 10.58% 21.17% 23.67%
Median Income ($1,000) -0.70% -17.48% -34.96% -69.92% -16.90%
Pct. HH with Kids -0.92% -23.00% -46.01% -92.02% -24.11%
Pct. College Students∗∗∗ 1.76% 44.09% 88.17% 176.34% 96.73%
Vehicles per HH 0.03% 0.69% 1.38% 2.76% 0.53%
Elasticities computed with all other variables evaluated at means.
∗, ∗∗, ∗∗∗ Variable was significant in the regression model at the p < .1, p < .05, or p < .01 level.

from the diverse sample of city sizes and populations, but this did not change the significance
of any variables at the thresholds indicated.

4.1 Elasticity

Table 5 shows sensitivity of bicycle commuting to changes in network factor scores using
the regression results in Model 2. Since factor scores are relative to the cities within the
sample and normalized to have a mean of 0 and a standard deviation of 1, representing a 1%
increase from µ = 0 is meaningless. Elasticities are calculated based on adding 0.01, 0.25,
0.5, and 1.0 to the mean factor score. Bicycle commuting is most sensitive to changes in
network density. A change in the density factor score from 0 to 1 (or one standard deviation)
corresponds to a 77% increase in rates of bicycle commuting. Increasing a city’s connectivity
score or fragmentation score from 0 to 1 is associated with about a 20% increase in biking,
and the same change in directness corresponds to a 27% change in the dependent variable.

Table 6 shows the same sensitivity calculations for city size and demographic variables.
College enrollment is the only significant size or demographic variable in the model, and
bicycle commuting is more sensitive to changes in college enrollment than all other net-
work, size, and demographic variables alike. A one percent increase in college enrollment
corresponds to a 1.76% increase in bike commuting. Increasing college enrollment by one
standard deviation (5 percentage points) is associated with a 97% increase.

5 Discussion

The regression model results show that a city’s bicycle commuting rate is associated with
several network structure measures, even after controlling for the city’s size, population,
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median income, household structure, college enrollment, and vehicle ownership. The den-
sity factor had the strongest coefficient and elasticity: a one standard deviation increase in
network density corresponded to a larger increase in bicycle commuting than one standard
deviation increases in connectivity, fragmentation, and directness combined. Although the
network factor scores are relative to this particular sample, the results from this study still
demonstrate the relative importance of network characteristics for biking.

The measures that loaded onto the density factor are density of facilities (kilometers per
square kilometer), density of edges and vertices, and density of subgraphs. These findings
suggest that cities hoping to maximize the impacts of their bicycle infrastructure investments
should first consider densifying their bicycle network before expanding its breadth.

Fragmentation has the potential to affect bicyclists in a number of ways. A series of
careless, one-off projects could leave bicyclists without adequate routes across the city, but
strategically installing bike lanes or trails to augment a comfortable residential street net-
work could expand cyclists’ mobility opportunities. The fragmentation factor is composed
of the share of bike network contained in the largest subgraph and average subgraph, and
the length of the average subgraph (Table 3). The coefficient on the fragmentation factor is
positive and significant in Model 2 (Table 4). This suggests that having either an even distri-
bution of reasonably sized fragments (large share of bike network in average subgraph) or
one dominant section (large share of bike network in largest subgraph) facilitates bicycling,
but excessive fragmentation with small fragments should be avoided.

The γ and β indices were the strongest loadings on the connectivity factor. Additionally,
the strongest loading in the fragmentation factor was the percent of the network contained
in the largest subgraph. If an agency has the funds to build one new bike lane, they could
capitalize on the significance of the connectivity, fragmentation, and density factors simulta-
neously by making the new link intersect with parts of the existing network within the largest
subgraph or linking the largest subgraph to adjacent ones. The mere fact of adding facility
densifies the network, while targeting its placement to connect to existing links and expand
the largest subgraph improves the connectivity and fragmentation scores respectively.

The results also showed that college enrollment was a strong predictor for bicycle com-
muting, with an even stronger elasticity than the network measures. While this is not sur-
prising, it does highlight how bicycle commuting may be more useful or practical for certain
segments of the population than others. This has several possible policy implications. First, it
is clear that college towns will always have an edge for rates of bicycle commuting. Building
a new college or university may attract a new population of bicycling residents. More prac-
tically, agencies could consider whether infrastructure investments around a college would
have a smaller or larger marginal effect than investments in other parts of the city. If a col-
lege has weak rates of bicycle commuting, targeting network development between campus
and neighborhoods where students tend to live may have a bigger impact than an equivalent
investment in another part of the network.

5.1 Limitations and Areas for Future Study

As discussed throughout this study, data issues are always a concern when studying bicy-
cling. Bicycling has a small commute mode share and the characteristics of the mode make
its users more vulnerable to distance, climate, and weather. Typical sampling strategies for
the ACS do not capture the full range of bicycling that occurs in any given city. Additionally,
bicycle infrastructure data is sparse and lacks the industry-wide standard for creation, main-
tenance, storage, and distribution that we have for most road networks. Building a sample
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from cities that publish their bicycle network data biases the sample toward cities that value
bicycling.

Studying aggregate travel behavior does not necessarily imply individual effects or out-
comes. The graph theory measures employed here characterize the bicycle network’s struc-
ture, but they do not account for the built environment context surrounding the bicycle net-
work. At the individual level, the overall bike network structure might not matter much, as
long as the commute trip distance is appropriate for bicycling and the individual has a route
they feel comfortable with connecting their home and work. One way to address this in fu-
ture research is through measuring accessibility to jobs or other destinations that the network
provides. Between-city variation in policy, weather, topography, and other contexts also may
influence results. Additionally, aggregate studies are vulnerable to deceptively high adjusted
R2 values because aggregation smooths out individual variability. Therefore the strength of
our model may be overstated.

While insignificant in this model, some demographic factors such as gender and house-
holds with children are negatively associated with bicycling. Weak or negative relationships
between demographic groups and bicycling should not be used as an excuse to completely
divest from certain neighborhoods. Further study is needed to fully explain infrastructure
and other barriers to cycling, and to identify what other kinds of bicycle trips beyond com-
muting could be made accessible through strategically building out the bicycle network.

This study treated on-street and off-street dedicated infrastructure (bike lanes and paved
trails) interchangeably for purposes of measuring network structure because they both pro-
vide a designated space for bikes, versus newer or experimental treatments like shared lane
markings or bike boulevards. However, existing research shows that bicyclists value these
facility types differently. Tilahun et al (2007)’s stated preference survey findings suggest that
cyclists value the presence of a bike as equivalent to saving about 16 minutes of travel time,
while off-road improvements add less value than a quiet street without on-street parking (5
and 9 minutes respectively). Sanders (2014)’s results suggest that bicyclist comfort level in
a bike lane varies based buffers, barriers, and on-street parking. Klobucar and Fricker (2007)
demonstrated the use of Bicycle Compatibility Index (BCI) to model the effects of build-
ing new dedicated bike infrastructure on compatible and incompatible streets, which points
to the information we miss by not evaluating the streets on which the bike lanes are built.
Mixed traffic facilities such as shared lane markings, signed bike routes, and bike boulevards
were completely excluded because they vary so widely in quality and definition. This study
sheds light on the desperate need for standardized data collection and management practices
for bicycle infrastructure networks and nonmotorized travel behavior. Given more standard-
ized data, future study should consider hierarchies of infrastructure types within bicycle
networks and complementary street networks and what effects these have on bicycling.
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