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trast, this study introduces an individual route choice model where choosing a portfolio of
routes instead of a single route is the best strategy for a rational traveler who cares about
both journey time and lateness when facing stochastic network conditions. The proposed
. - model is compared with UE and SUE models and the difference in both behavioral founda-
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Route choice tion and model characteristics is highlighted. A numerical example is introduced to dem-
Travel behavior onstrate how such model can be used in traffic assignment problem. The model is then
Route portfolio tested with GPS data collected in metropolitan Minneapolis-St. Paul, Minnesota. Our data
suggest there is no single dominant route (defined here as a route with the shortest travel
time for a 15 day period) in 18% of cases when links travel times are correlated. This paper
demonstrates that choosing a portfolio of routes could be the rational choice of a traveler
who wants to optimize route decisions under variability.
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1. Introduction

Route choice is a daily decision travelers make under variable traffic conditions. Traffic patterns emerge from individual
decisions, and each day’s collective decisions update the travel experience of all travelers. In the long run, we expect that
each traveler will develop an explicit or implicit strategy to guide individual route decisions. Conventional User Equilibrium
(UE) models assume that travelers seek to minimize individual travel time with perfect knowledge of network conditions. In
equilibrium, “the journey times in all routes actually used are equal and less than those which would be experienced by a
single vehicle on any unused route” (Wardrop, 1952). Although this shortest-path (usually measured as shortest travel time
path) assumption and the resulting aggregate UE approach is simple, intuitive, and easy to implement (efficient solutions are
widely available), it has been criticized for ignoring the heterogeneity in individual preferences among travelers and limita-
tions in their spatial knowledge. Given the stochasticity in network conditions and potential penalties for being late or early,
travel time reliability has been widely identified as an important factor in route decisions (e.g. Bekhor et al., 2006; Brown-
stone and Small, 2005; Noland and Polak, 2002; Small et al., 2005 among others).

Wardrop’s UE principle requires travelers chose the shortest time path. Although several paths may have equal journey
time in equilibrium, only one can be chosen by an individual for a given trip. However empirical evidence finds individual
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travelers chose multiple routes between a given origin-destination pair through repeated choices (Jan et al., 2000). We dis-
cuss this in Section 2.1. While some travelers only had minor deviations, most travelers followed routes that deviated sig-
nificantly from the shortest time path.

Although many individual route choice models have been proposed to incorporate travel time variability as a decision
factor, they are typically still deterministic in the sense that the optimal strategy requires choosing one particular route that
maximizes utility.

The Stochastic User Equilibrium (SUE) model adds a random component to the expected travel time. Under SUE, “no user
believes he can improve his travel time by unilaterally changing routes” (Daganzo and Sheffi, 1977). The stochasticity is due
to either some traveler characteristics not observable by the modeler or other randomness on the network.

The SUE theory however does not explain why some travelers prefer multiple routes over a time period instead of choos-
ing one optimal route. Route choice models based on prospect theory further argue that travelers usually perceive uncer-
tainty in travel cost asymmetrically and human choices usually deviate from what is predicted by expected utility based
in empirical studies (Tversky et al., 2005; Kahneman and Tversky, 1979). People are found to underweight high probability
events when certainty is not guaranteed (Allais Paradox, Allais, 1979) and inflate the larger gain when facing alternatives
with small probabilities. Parthasarathi (2011) found that traffic network structure variables (such as intersection density,
street density, proportion of limited access roads, and route complexity) can also affect travel time perception. Prospect the-
ory has been applied to route choice by investigating the value function and appropriate reference point (Avineri and Prash-
ker, 2004; de Palma and Picard, 2006; Katsikopoulos et al., 2002). However, given an estimated value function, we would
expect a pure strategy of choosing the route that minimizes the relative utility when compared to the reference point.

Some researchers approached this multiplicity problem by arguing that travelers are boundedly rational (Lou et al., 2010;
Mahmassani and Chang, 1987) and may use one of multiple acceptable routes. Differences in travel cost between these
routes and the shortest route are tolerable or not noticeable by travelers. Under this theory, the route in the acceptable
set to be chosen will depend on some random events or personal experience. However, no theory is provided to determine
the probability of choosing each route. In the context of transit route choice, Spiess and Florian (1989) proposed that the
chance of taking a particular transit line among several attractive ones is proportionate to their service frequency. Its appli-
cability to vehicular route choice problem has yet to be explored.

Models such as SUE still treat link travel costs as a deterministic value. In contrast, Watling (2002) assumes network con-
ditions are stochastic and proposes more complicated equilibrium models. Facing such stochasticity, travelers could also
change route through a day-to-day learning process, or simply react to previous bad experience. One recent example of that
day-to-day dynamics could be the significant link flow oscillation observed after the 2007 1-35 Bridge collapse in Minneap-
olis, Minnesota (Zhu et al., 2010). However, as travelers accumulate more network knowledge through day-to-day experi-
ence, especially for commute trips, deterministic route choice models predict a single optimal route based on the
perceived travel time distribution. For example, Mirchandani and Soroush (1987) considered both stochastic link travel time
and individual travel time perception error. Although travelers with different risk-taking preferences, thus different utility
functions, would take different routes, the final choice for each individual is still deterministic.

To provide such an explanation to the phenomenon that travelers chose multiple routes between a given origin—destina-
tion pair through repeated choices, this study introduces an individual route choice model where choosing a portfolio of
routes instead of a single route may be the best strategy for a rational traveler trying to satisfy multiple criteria (trading-
off journey time and lateness) facing stochastic network conditions. The next section provides empirical evidence of people
choosing multiple routes between the same origin and destination, employing GPS data collected in metropolitan Minneap-
olis-St. Paul, Minnesota. A portfolio theory of route choice (RPT) is then proposed and tested with the field data. Findings
from this paper may inform future travel demand models.

2. Empirical evidence of route portfolios
2.1. GPS data

This study investigates commuters’ day-to-day route choices by analyzing a large set of GPS data collected during a 13-
week long study targeting behavioral reactions to the I-35W Bridge reopening on September 18th, 2008. Details about this
behavioral study and data collection process are provided by Zhu et al. (2010). Participants were randomly selected commut-
ers in the Minneapolis, St. Paul, Minnesota metropolitan area (Twin Cities). Either a logging Global Positioning System (GPS)
devices (QSTARZ BT-Q1000p GPS Travel Recorder powered by DC output from in-vehicle cigarette lighter) or a real-time
communicating GPS device (adapted from the system deployed in the Commute Atlanta study (Rates, 2007)) were installed
in the vehicle of study participants. The GPS device is non-intrusive and unlikely to affect the behavior of participants. No
instructions were given and participants were free to make travel choices. In all, 190 subjects participated in this study.
However, only 143 GPS records were recovered due to the failure of devices (the data from GPS loggers can only be checked
at the end of the study. Some of them failed because of power supply problems, such as being disconnected by subjects.).

The logging GPS devices accurately monitored the travel trajectories of each probe vehicle at a frequency of one point per
25 m up to 13 weeks, about 3 weeks before the reopening of the bridge and between 8 and 10 weeks after it. The real-time
communicating GPS device recorded the position of instrumented vehicles every second. The geographic location and time
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stamps of each point were documented and projected onto a GIS map for post-processing. The GPS data were then matched
to the 2009 Twin Cities Regional Planning network, which has been conflated to real road geometry.
An algorithm was developed and applied to ensure all points have been snapped to the nearest link which:

e is directly connected to the upstream link previously identified;
e is consistent with the travel direction of nearby GPS points; and
e is connected to the downstream link which is also consistent with travel direction of downstream GPS points.

This algorithm rules out the possibility of incorrectly snapping the GPS point to the link in the opposite direction and
changing directions mid-link. The high resolution of one point every 25 m (the real-time communicating GPS provided an
even higher resolution) reduces the possibility of holes and keeps discontinuity in identified routes to a minimum. In rare
cases of data losses due to the communication difficulties with satellites, the shortest time path was used to connect the
different segments of the same trip. This algorithm, combined with accurate GIS files, ensures that the right links will be
identified for each trip. It also helps to ensure that the speed estimated from vehicle trajectories will later be assigned to
the link through which travelers passed. A visual check was conducted for all trips of two random subjects during the entire
study period, and confirms the accuracy of the algorithm.

2.2. Diversity of commute trips

This study focuses on commute trips because (1) a large number of trips could be observed between the same origin and
destination; (2) travelers are likely to gain enough experience through daily commuting to develop a reasonable estimation
of the relevant part of the network; (3) people are more concerned about lateness and travel time reliability, for commute
trips than for discretionary trips. To keep the problem simple, we only consider home-to-work trips here, although the same
analysis could also be applied for work-to-home trips. Home-to-work trips are defined as any trips starting within a 600 m
radius from home and ending in a 600 m radius from the workplace during a weekday, without any stop longer than 5 min.
The threshold of 600 m represents approximately four city blocks, which is chosen by observing parking and workplaces for
a subset of subjects. To make all trips comparable in the following analysis, minor changes have been made to ensure trips
made by the same subjects always start from the same origin node and end at the same destination node. Very few changes
resulted, since parking locations at both home and work places were stable for most subjects.

The reopening of I-35W Mississippi River Bridge during the study period represents a major change of network condition,
which may affect people’s route choice behavior. To avoid this confounding factor, we only use data collected during the
three weeks before the bridge reopening. Since we only focus on the Twin Cities (7 County) area, subjects who live outside
of the region are excluded from the study. In total, 657 home-to-work trips made by 95 subjects have been identified. These
trips are then compared segment-by-segment using GIS and different home-to-work routes are identified for each subject.
Although the problems of route overlapping and trivial alternatives have been discussed by many researchers under various
contexts (e.g. (Bovy, 2009; Frejinger and Bierlaire, 2007)), no consensus has been reached for the threshold to define distinct
routes. Therefore, a series of threshold values have been tested. Fig. 1 summarizes the percentage of subjects with different
number of distinct home-to-work routes observed during three weeks.

Histogram of the Number of Home to Work Routes Taken by Subjects
during Three Weeks
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Fig. 1. The morning commute route diversity among 95 subject during 3 weeks. Percentage indicates share of distance which may differ without routes
being considered “different”. Data were collected by in-vehicle GPS devices during September, 2008 for a study focusing on route choice behavior before
and after the reopening of 1-35W Mississippi River Bridge in Minneapolis. Source: Authors.
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If routes with any different segments are treated as different routes, then more than three quarters of all subjects used
more than one route during 3 weeks. Some subjects traveled on more than eight different routes. As the threshold of min-
imum difference in length to define distinct routes increases, home-to-work route choices exhibit less diversity. However,
even if more than 30% difference in distance is required to define a different route, about 40% of all subjects followed more
than one route during the study period. Therefore, a significant fraction of subjects chose a portfolio of routes for their morn-
ing commute trips. Many reasons could help to explain the behavior of choosing multiple commute routes during a period of
time. The next section addresses this problem by investigating route decisions of a rational traveler under uncertain network
conditions.

3. Portfolio theory of route choice

In his seminal work Risk, Uncertainty, and Profit, Frank Knight (1921) established the distinction between risk and
uncertainty.

... Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been
properly separated. The term risk, as loosely used in everyday speech and in economic discussion, really covers two things
which, functionally at least, in their causal relations to the phenomena of economic organization, are categorically differ-
ent. ... The essential fact is that risk means in some cases a quantity susceptible of measurement, while at other times it is
something distinctly not of this character; and there are far-reaching and crucial differences in the bearings of the phe-
nomenon depending on which of the two is really present and operating. ... It will appear that a measurable uncertainty,
or risk proper, as we shall use the term, is so far different from an unmeasurable one that it is not in effect an uncertainty
at all. We ... accordingly restrict the term uncertainty to cases of the non-quantitive type.” (Knight, 1921).

This study investigates the route choice behavior of a rational user who seeks to maximize utility under network variabil-
ity. Many studies have dealt with risk and uncertainty in route choice, either due to perception errors or stochasticity in net-
work conditions (in most cases travel time). Some researchers followed the expected utility approach which was originally
proposed by Bernoulli (1954) (originally in Latin and translated by Dr. Louis Sommer) and later popularized by Von Neu-
mann et al. (1947). For example, Pells (1987) assumes that travelers’ utility is a linear combination of the generalized travel
cost and a slack time that travelers allocate to avoid arriving late (dubbed a “safety margin” by Knight (1974)). Polak (1987)
further defined a safety margin as the difference between the mean arrival time and the work start time. The problem with
risk and uncertainty was implicitly addressed since travelers have to reserve a larger safety margin with lower travel time
reliability.

In contrast, other researchers insist that travel time reliability has intrinsic value (you still prefer reliability even when
you are flexible with arrival time) and should be modeled explicitly. Research work in this direction follows the two-param-
eter approach (mean-variance in most cases) which was originated by Markowitz (1952a,b) and Hester and Tobin (1967) in
portfolio studies and then introduced to transportation by Jackson and Jucker (1982). Given an a priori estimate of network
conditions (mean travel time and the variance), two-parameter models usually define the objective for a rational traveler as:

Min U = oE(t) + TV(t) 4 6C (1)

where E(t) is the expected travel time, the V(t) is the variance of travel time, and C summarizes other generalized costs asso-
ciated with each route. The relative importance of travel time reliability is captured by the parameter 7. Given an individual
whose value of time (measured as o/5), value of reliability (measured as 7/5), and perception (or prediction for a specific day)
of network conditions are fixed, a deterministic choice would be generated in previous studies.

Although these studies reveal that travelers have strong preference for travel time reliability, they provide limited infor-
mation about why travelers would choose multiple routes over time under the same condition. In this section, a model
applying RPT will be developed and we will show that under certain conditions, choosing a set of routes over one unique
route (which UE or SUE model would predict) becomes the rational choice. We will start with a simple model in which trav-
elers have a strong preference on that their travel time variance should be smaller than a threshold. This model would later
be extended to incorporate a more general structure similar to the two-parameter approach in Jackson and Jucker (1982).
Sources of travel time uncertainty will be discussed and a numerical example will be provided on a stylized network to dem-
onstrate how RPT can be applied to solve the route choice problem. Since the Stochastic User Equilibrium (SUE) models also
consider uncertainty in route choice, a comparison will be provided between the proposed portfolio model and the SUE mod-
el. As will be shown in this section, these two models differ in both behavioral foundation and predicted route choice
patterns.

3.1. Portfolio route choice model

Previous studies show that travelers trade-off between travel time and travel time reliability because there is a disutility
associated with either arriving too early or arriving too late and because of variability of network conditions. Therefore, we
first assume that the objective of travelers is to minimize travel time while keeping travel time variability under a certain
threshold. Consider a traveler m who faces N alternative routes whose travel time t' = {t,t,,...,ty} are believed to have ex-
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pected values E(t) = {E(t;),E(t),...,E(ty)} and a covariance matrix X = (g;;). It has to be indicated that route travel time ¢, is
stochastic, which differs from many previous models such as SUE which assumes deterministic network condition. Here the
subscript m is omitted to keep the expression succinct. A rational traveler is to select daily routes according to p’ = {p1,p>,
...,pn} in order to

Min U =E(p't) (2)
st.: Var(p't) < v, (3)
Sp=1 4)
pi€l0,1], VieN (5)

where p; is the probability of choosing route i on a given day and ¢, is the maximum travel time variance the traveler can
tolerate. Given a network condition t and a personal preference v, the optimal strategy p can be derived by solving the prob-
lem. If p has more than one non-zero member, then the optimal strategy is to choose a route portfolio according to p instead
of sticking to a single route.

To illustrate the idea, consider the simplest case where the rational traveler faces only two alternative routes: 1 and 2.
Fig. 2 illustrates a possible distribution of travel time on routes 1 and 2 where the traveler has to trade-off between travel
time and travel time reliability.

Depending on the travel time distributions and the tolerance for travel time reliability (or variability), a rational traveler
could have a different strategy.

For convenience, assume t; and t, are independent. Then

Var(p't) = p'Var(t)p = piVar(ty) + p3Var(tz) = piVar(t:) + (1 - py)*Var(tz) (6)

Here p, =1 — p; because of Eq. (4). Therefore, the travel time variance by following strategy p is a quadratic function of p;.
Without losing generality, assume Var(t;) > Var(ty). Then by evaluating Eq. (6) on the range [0,1],
Var(t,)Var(t;)

Var(v't) € \Garie,y + var(n)

,Var(ty) (7)

and as shown in Fig. 3, the minimum is achieved when

B Var(ty)
P\ ar(e) + Var(ts) ®

Depending on the value of v, there are 4 situations.

f@)

04} : -
03l J
02l : ]
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Fig. 2. A possible distribution of travel times on route 1 and route 2. Route 1 has a smaller expected travel time, but larger travel time variability.
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Fig. 3. Optimal strategy under different travel time reliability criteria. (1) Any p; is feasible and optimal is achieved at p; = 1. (2) There is no feasible p; that
satisfy Var(p't) < v (3) p1 is feasible in [0,p ] and optimal is achieved at p; = p.. (4) p; is feasible in [p.1,pc2] and optimal is achieved at p; = pe.

1. If v. > Var(ty), all possible strategies p are feasible and the best strategy is to always select the route with smaller
expected travel time because constraint (3) is always satisfied.

2. If v, < % there is no solution to the problem because no strategy p can satisfy constraint (3), in which case the
traveler needs to adapt v, or not travel.

3. If v, € [Var(ty), Var(t,)], a feasible strategy p must satisfy p; € [0,p.], while p. is the strategy when Var(p't) equals v.. There-
fore, if E(t;) < E(t;), the best strategy should be to always select route 1. However, when E(t;) > E(t;), the optimal is
achieved by selecting route 1 p. of the time and route 2 1 — p. of the time. A route portfolio serves better the objective
than a strategy of always choosing a single route. When E(t;) = E(t,), the traveler is indifferent.

4. If v € [l Var(t,)), the feasible strategy is depicted by [p.;, p.,] and the best strategy is to always select a route
portfolio. The minimum expected travel time is achieved on either p.; or p., depending on which route has smaller mean

travel time.

Therefore, under some circumstances (such as that of cases 3 and 4), the proposed model predicts that choosing a route
portfolio over time represents a better strategy compared to that of always choosing a single route. The independence of
travel time on alternatives is not a required condition, but only helps to simplify the presentation. Actually, when the deci-
sion maker holds a belief of travel time correlation (captured by X), the only difference is that Eq. (6) becomes

Var(p't) = p'Zp = piVar(ty) + p3Var(t2) + 2p,p,Cov(t1, ) 9)

The conclusion may differ depending on the new quadratic curve depicted by (9). Under certain conditions, a route portfolio
could become a dominant strategy.

The results could be further extended to the case of route choice when facing N alternatives. Because the covariance ma-
trix X is positive semi-definite, the feasible set defined by Eq. (3) is convex. The objective function is a linear combination of
expected travel time of all alternatives, so the optimal solution will always fall on the boundary of the feasible set. As long as
the optimal solution is achieved at a point other than such corner points that one of the p; = 1 and other members of p equal
zero, a route portfolio becomes a dominant strategy. Moreover, since the feasible set defined by Eq. (3) is convex, the objec-
tive function Eq. (2) could be a non-linear function as long as it is also a convex function. By following the same reasoning as
presented in this section, situations under which a route portfolio dominates a single-route strategy can be derived. The
math is likely to be more complex.

As a further extension, other criteria regarding travel time reliability are also applicable. For example, travelers might pre-
fer that the trip duration stay less than 5 min longer than the average 95% of the time. Given the travel time co-variance
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matrix of alternative routes, this constraint can be easily translated into forms similar to Eq. (3) (Pr([t — E(t)] < 5) = 0.95)

<~ Var(t) < (1.5%)2) if we assume t is normal. This too is likely to result in a route portfolio being preferred in circumstances
similar to cases 3 and 4.

3.2. Portfolio theory under two-parameter models

The behavior of choosing a portfolio of routes is still rational for a traveler who prefers travel time certainty when a more
general two-parameter model is used. Following Eq. (1), we assume that the objective of a rational traveler is:

Min U:%E(t)+§V(r)+c (10)

where % represents the value of time and £ presents the value of reliability. To simplify the presentation and focus on the
portfolio issue, we ignore the toll C and assume § = 1. The preference for travel time certainty is now captured by the value
of reliability instead of a threshold on overall travel time variance. Following the reasoning presented in the previous sub-
section, the problem becomes:

Min U = aE(p't) + tVar(p't) (11)
Zpi =1 (12)
pi€l0,1], VieN (13)

On the same stylized network with only one OD and two independent routes, the utility becomes:

U=a((pitr + (1= py)tz) +T(p3Var(ty) + (1 - p,)*Var(ty) (14)

The first derivative of U over p; becomes:

% = a(t; — ty) + T(2p; (Var(ty) + Var(ty)) — 2Var(t,)) (15)
1

The first-order condition J7 = 0 gives that:

_Var(ty) - (6 - t)
1™ Var(ty) + Var(ty)

(16)

If p; falls in (0, 1), then it implies that a traveler with a specific structure of preference (described by the value of time and
value of reliability) facing the choice between two routes (t;, Var(t;)) and (t,,Var(t;)) would include both routes in a route
portfolio and choose the first route p; percent of time.

In contrast, if such p; cannot be found given a preference structure and a choice set, it means 2 "” is always positive or neg-
ative. If it is always positive, then the disutility function is always increasing within the range of possible p and a rational
traveler should always choose Route 1 (p; = 1) to minimize the disutility. Similarly, if gg is always negative, then a rational
traveler should always choose Route 2 to minimize the disutility. Therefore, under this more general two-parameter model, a
rational traveler may prefer a portfolio of routes over a unique route.

The value of time (o) and value of reliability (7) affect the route choice portfolio. When a traveler has a very strong pref-

erence for travel time reliability (large 7), & becomes very small and the second term in the numerator of Eq. (16) is negli-

' 2T
gible. The traveler would always prefer a portfolio of routes and choose the first route with a probability of #ﬁfgr@

contrast, if o is much larger than 1, the traveler values travel time much more than travel time reliability. In this case, Eq.
(16) predicts that the travel would always choose Route 1 if t; < t; and Route 2 if t; > t,, which is consistent with UE assump-
tion. Following Jackson and Jucker (1982), many researchers have investigated individual preference for travel time reliabil-

ity both empirically and theoretically. In many empirical studies, the value of reliability is defined as (’;’U//‘ffc' (as a comparison,

Jackson and Jucker (1982) used ¢% instead of o) and a new term, Reliability Ratio, defined as the value of reliability over the
value of time, measures the relative preference of travel time reliability over travel time. For example, Small et al. (2005)
reported a median value of time of $21.46/h and a median value of reliability of $19.56/h using revealed preference data col-
lected in Los Angeles area. Smaller values ($11.92/h for VOT and $5.40) were found based on stated preference data collected
in the same study. Carrion and Levinson (2012) reviewed 12 such studies and found the reliability ratio varies from 0.1 in
Hollander (2006) to 1.47 in Yan (2002), with an average of 0.83 from all 12 studies. Therefore, empirical evidence shows that
£ is nether going to be too large nor too small, and choosing a portfolio of routes becomes a rational choice under RPT when
Eq. (16) can generate a probability between 0 and 1.

In
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3.3. Comparison with UE and SUE Models

Although the proposed RPT may generate similar aggregate travel demand, it differs from Conventional User Equilibrium
(UE) or Stochastic User Equilibrium (SUE) models through several fundamental behavior assumptions.

UE models would always have a traveler choose a route that minimizes disutility. In equilibrium, several routes may pro-
vide the same level of utility and a traveler becomes indifferent between these routes. A traveler may randomly pick any
route among them. However, this randomness is not caused by a rational decision as under RPT and the probability of choos-
ing one route for a specific traveler cannot be predicted. In contrast, the behavior of choosing route randomly according to a
probability predicted by the route portfolio theory is a rational decision in reaction to uncertainty in network conditions. In
reality, given the same travel demand, travel time could still fluctuate significantly for reasons such as signal control, freeway
bottleneck activation when demand is close to capacity, etc. When the travel time fluctuation becomes small, the reliability
constraint imposed by (3) is no longer binding. Similarly, if a traveler does not value travel time reliability (negligible Z in Eq.
(10)), the proposed route portfolio theory collapses to UE models.

The SUE model assumes travelers cannot perceive route travel time accurately, either because of stochasticity in network
conditions, or limited human capability in perceiving route travel time. Such imperfections are summarized by an error term
¢ in route travel time. For our one OD pair, two routes case, the perceived travel time on two alternative routes becomes
Ti=t1+¢& and T, = t; + &. SUE models assume the individual error term ¢ = (&q,¢;) follows uncertain distribution among
the population. For example, Multi Variate Normal distribution. Following the standard Probit SUE model, the probability
of choosing alternative 1 becomes:

B t,—t
b= ¢< Var (&) + Var(£2)> {17

Although both portfolio theory and SUE models may generate similar route choice probabilities given a set of parameters,
they are fundamentally different in their behavioral foundation. For SUE models, the randomness in route choice comes from
the imperfection in travel time perception (either because of network uncertainty or because perception capability) instead
of an intrinsic desire for travel time certainty. Consequently, when travel time variance for one route goes to infinity, trav-
elers become indifferent between routes, which contradicts empirical observations. In contrast, a large travel time variance
for one route would generate a strong preference for routes with better travel time certainty under RPT. In the two-route
example, lim Var(t;) - co would generate p; =1 no matter how small t; is, which is more reasonable behavioral reaction.
More advanced SUE models may also consider travel time variance as disutility. However, this would create correlation be-
tween explanatory variables and the random error term, which is troublesome for model calibration.

Another key difference in behavioral assumptions between the models is that in SUE models, only relative value matters.
Therefore, the route travel time variance is usually normalized. However, in RPT, the absolute value is also important in the
route decision. One constraint in implementing RPT as a model would limit the overall travel time variance, which may re-
late to physical constraints of work schedules.

Moreover, the interpretation of route choice probabilities from the two models are different. RPT allows individual trav-
elers different routes on different days (all else equal), while SUE gives each traveler the same route probabilistically. This
difference is important for the following reasons:

1. modeling traveler learning behavior: in RPT, travelers explicitly learn about some alternatives as they are actually expe-
rienced; in SUE, travelers cannot know about the routes that are not traveled on, and some unreasonable assumptions are
required about travelers possessing perfect information about alternatives never chosen,

. modeling the behavior of individuals, which is important for air quality, pricing, and many other applications,

3. understanding the underlying logic of traveler behavior.

N

Future research is required to estimate individual preferences. The objective is not necessarily to have a better aggregate
traffic assignment, it is to have a better disaggregate route choice. This will begin to matter as HOT lanes and other differ-
entiated pricing schemes on roads are deployed, where ignoring preference for travel time reliability would result in mis-
estimation of benefits.

3.4. Numerical example

This subsection provides more insights on characteristics of RPT through a numerical example. Travelers face travel time
uncertainty when making day-to-day route choice decisions. SUE models assume that such uncertainty is due to imperfec-
tion in travel time estimation. Such imperfection is usually summarized by an error term (¢&;) in route travel time. This term
usually has a mean of 0 and a variance that is independent to route travel time. The scale of such error term is not going to be
affected by individual route decision either in most models. In reality, travel time uncertainty comes from many sources,
both internal and external of the route choice process.

For example, if x; = 1 represents the fact that the ith traveler chooses Route 1 and Pr(x} = 1) = p!, then x| is a Bernoulli
variable. If everyone has the same probability of choosing Route 1, the aggregate flow X; = >°I ,x} follows a binomial dis-
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Fig. 4. Route traffic flow from RPT and SUE traffic assignment models.

tribution and Var(X;) = np1(1 — pq). If Vickrey’s model (Vickrey, 1963) (in which travel time is a linear function of travel de-
mand) is used as the link performance function, the stochasticity in route choice decision would generate a variance of
T9pVar(X;), where TY is the free flow travel time on Route 1 and f is a parameter. If a link performance function of higher
order (like BPR function) is used, the variance will be different but will not disappear. Heterogeneity among travelers (which
help to generate different route choice probability p;) will make the variance of route travel time more complicated. This
variance in route travel time is internal to the travel choice process, which is ignored by the SUE model. Sources of travel
time uncertainty could also be external to the route choice processing. Examples include signal control, freeway bottleneck
activation when demand is close to capacity, stochasticity in background travel demand, among others. Most existing mod-
els focus on travel time prediction, and future research is required to develop an accurate travel time variance prediction
model. To avoid unnecessary complexity in demonstrating RPT, this research adopts a Monte Carlo simulation approach
to generate travel time variance in both the simple numerical example and the field study.

To demonstrate how to apply the RPT in the traffic assignment problem, we develop an iterative process on the stylized
network of one OD pair and two links previously used in this section. We assume Route 1 has a free flow travel time of
10 min and a capacity of 40 veh/h; Route 2 has free flow travel time of 15 min and a capacity of 60 veh/h. Totally 100 trav-
elers are going to make route decisions. For demonstration purpose, we assume o = 1 and 7 = 0.83 for all travelers, although
careful calibration is required before any application in real world. The standard BPR function is used to calculate route travel
time. To simulate travel time uncertainty caused by various sources, we assume that the demand on any route could vary in
the range [X — 5,X + 5] under a uniform distribution, where X is the travel demand generated from the last iteration. Travel
time associated with each possible travel demand value could be calculated and the overall travel time variance can be eval-
uated. With BPR function, the variance in travel time is small when demand is also small and increases rapidly when travel
demand approaches or exceeds capacity. This process is created for demonstration purposes and a more accurate travel time
variance model based on field data will be developed for future study. The assignment process is summarized below:

1. Step 1: Travel time and travel time variance are estimated for each route given route travel demand X;.

2. Step 2: Each traveler would select an individual route choice strategy according to the two-parameter model of RPT
(although reliability threshold can also be used, the two-parameter model is simpler in numerical evaluation). Individual
alternatives include choosing any route between the two, or picking a route portfolio and choosing routes according to a
probability.

3. Step 3: The total number of users of each route is aggregated from individual decision.

4. Step 4: Check if any traveler still has motivation to change strategy compared to last iteration. If yes, goes back to Step 1;
if not, stop.

In order to compare the results with SUE, we conduct the SUE assignment on the same network using a Probit SUE model
(route choice probability is determined by Eq. (17)). The results are summarized in Fig. 4. Because we assume travelers are
homogeneous in both travel time (and its variance) perception and preference, they will follow the same strategies in this
numerical example. Fig. 4 shows that travelers actually followed mixed strategy over a portfolio of two routes (because all
100 travelers would use one route if this route dominates the other under RPT with homogenous travelers). Neither route
dominates the other in both travel time and travel time variance through all iterations. The probability of randomly choosing
one route for each iteration can be calculated by dividing the number of route users in that iteration by the total OD demand.
After about 20 iterations, the traffic assignment based on RPT converges to a flow pattern that differs from what is predicted
by the Probit SUE model. The Probit Model also converges faster under current settings, although a different set of param-
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Fig. 5. Normal probability plot of home-to-work travel time observations for one subject during 13 weeks.

eters might generate different results. More importantly, RPT allows heterogenous travel time perception and preference for
travel time reliability. Future empirical studies will extend this research.

4. Field study

The RPT we propose shows when the strategy of randomly choosing a route among alternatives is superior to the strategy
of always using one route, given travelers’ belief of network conditions. The posterior outcome of perceived average travel
time could differ from the perceived expected travel time based on prior information. In the long term, however, especially
for commute trips where enough experience has been gained to develop consistent perceptions of network conditions, we
anticipate convergence between prior and posterior estimates. To check the theoretical reasoning, this section tests the pro-
posed model against field data.

4.1. Route travel time and variance

This study uses the same GPS data presented in Section 2.1. In order to evaluate whether a rational decision maker guided
by our theoretical model is likely to choose a portfolio of routes due to concerns of travel time reliability, travel time distri-
butions of different routes are required. Ideally, we can obtain this information by observing day-to-day route choices during
a period sufficiently long that we can collect enough samples for each route to empirically establish its travel time distribu-
tion. However, this is infeasible due to limited resources for most studies, especially for those subjects with very diverse
route choices. Moreover, relying exclusively on direct observations also limits our ability to extend our analysis to the gen-
eral population and to inform travel demand modeling efforts. Instead, route travel time distributions are generated based
on average link traffic speed using a Monte Carlo simulation strategy.

Given the mean and variance of link speed observed from a large set of GPS data, we can simulate route travel time by
generating random link speed and then summing up link travel time for all links along a specific route. Although route travel
time has been widely assumed to follow a normal distribution in previous research (e.g. (Liu et al., 2004; Ryuichi and
Mohamed, 1997)), this assumption is empirically tested here using GPS observations. Fig. 5 provides the normal probability
plot of home-to-work travel time observations for one subject over 13 weeks. The y-axis represents route travel time in sec-
onds, while the x-axis represents the Z-score of corresponding points ordered from small to large. The normality of data is
established if a straight line can be fit to the points. Three points in red are clearly outliers according to the plot. According to
the original data, the unusually long travel time in these three cases are due to stops near the destination. These stops could
be due to activities such as searching for parking, visiting a coffee shop, or making a phone call along the route. However, GPS
data alone cannot detect the causes and future research is required to define those trips.

Although the normal probability plot provides an intuitive illustration of how well a normal distribution fits the data, a
more robust statistical test is required. We apply the Shapiro-Wilk test to all subjects and choose 0.05 as the critical value to
reject normal assumption. In total, the assumption that route travel time follows a normal distribution has been rejected for
22 out of 95 subjects (23%). Future research efforts for better detecting side trips can help to exclude outliers in current com-
mute time data set and the normal assumption could be more convincingly supported. Given that the majority of evidence
does not reject the normal assumption, we assume route travel time follows a normal distribution in the following sections.

In order to simulate route travel time from random draws of link speed, assumptions about speed interdependency
among different links on the network have to be made. Some studies conveniently assumed link travel time are independent
and identically distributed (IID), which implies no correlation across links. However, there is clearly speed correlation across



242 D. Levinson, S. Zhu/ Transportation Research Part C 35 (2013) 232-243

links, presumably due in part to exogenous factors like weather, holidays, etc. affecting overall demand and in part to con-
gestion (recurring and non-recurring) causing link interactions. Although many previous studies investigate the short-term
spatiotemporal pattern of traffic flow (e.g. Kalman filtering approach by Whittaker et al. (1997)), there is no consensus on
how to extend these models to a real network where the number of variables to be estimated become prohibitive (Kamari-
anakis and Prastacos, 2005). The reality is somewhere between the IID and perfection correlation. This study would use both
assumptions and leave the development of more accurate route travel time prediction models to future research.

4.2. Mixed strategy in route choice

Many reasons explain the choice of multiple commute routes during a period of time. This study adds one more expla-
nation by assuming that some travelers seek to minimize travel time while maintaining an appropriate level of travel time
reliability. In this study, 60 subjects used more than 1 morning commute route during the study period. We then compare
the predicted travel time of the two most frequently used alternatives suggested by GPS data.

Under the IID assumption, random numbers are drawn separately for each link from a standard-normal distribution and
a normal distributed link travel time is calculated using the mean link travel time and the variance previously derived from
GPS data. A minimal speed of 12.8 km h™! is assumed to truncate the extremely long travel time. Path travel time can then be
obtained by summing link travel time along the path. In all, 15 random draws are conducted to simulate random commute
times for 15 days and the mean and variance of the travel time for each path can be calculated and compared. Similarly, the
same process is followed to derive path travel time and variance in the case of perfect correlation, except the same random
number is used for all links in each day so that link travel time are perfectly correlated across the network.

Under the IID assumption, there is no single dominant route (travel time always shorter during 15 days) in 38% of cases. It
drops to 18% under perfect correlation conditions. If we define a dominant route as the those which possess both shorter
travel time and smaller travel time variance, 16 out of 60 subjects do not have a dominant route under IID conditions (12
under the perfect correlation condition). Thus, it is possible for these people to choose a portfolio of routes in order to
trade-off between travel time and travel time reliability, as illustrated by our theoretical model. However, better designed
experiments controlling for more confounding factors are required to establish a causal relationship between the process
of seeking travel time reliability and the choice of a route portfolio.

5. Conclusions

Many travelers use multiple routes to connect the same origin and destination on different days. This paper demonstrates
that choosing a portfolio of routes could be the rational choice of a traveler with multiple criteria (e.g. minimizing journey
time subject to avoiding frequent lateness) who wants to optimize route decisions under variability. This result can be ex-
tended to the choice among N alternatives and by following a more sophisticated objective function.

An implementation of RPT with a two-parameter model would collapse to the UE model when the value of reliability is
small. In contrast, travelers would always choose a portfolio of routes and adopt a mixed strategy within the route portfolio if
the value of reliability is significantly larger than the value of time. Empirical studies from the literature suggest the value of
reliability is comparable to the value of time and choosing a portfolio of routes is more preferable when conditions specified
in this paper are satisfied.

Although both RPT and SUE can generate stochasticity in route decisions, they differ in nature. Stochasticity in SUE mod-
els is due to randomness in choices when travelers cannot tell which route is better. However, adopting a mixed strategy
over a portfolio of routes is a rational choice under RPT. When travel time variance of one route goes to infinity, travelers
cannot distinguish it from other routes according to SUE models and will choose them indifferently. However, RPT predicts
travelers would never choose such as a route, which is more plausible in behavioral theory. Both models also differ in the
way stochasticity in route choice is interpreted.

RPT can be applied to the traffic assignment problem. A simple numerical example is presented to predict traffic flow pat-
terns based on individual preferences for travel time and travel time reliability. The modeling structure can also consider
impact of individual travel experience and heterogeneity in preference. More data and calibration efforts are needed before
any field application.

This paper further tested the proposed model against field data, and concludes the RPT is consistent with observations
that many travelers chose a set of routes where no route dominates other routes in both travel time and travel time variance.
This implies a trade-off between them is possible. However, many other factors may influence route choice decisions and
make travelers choose different routes over time between the same origin—-destination pair. For example, they may have
to reroute to drop-off a child or spouse on certain days but not the other days. Some routes may be a better choice only cer-
tain days of the week. Travelers may also prefer different routes due to different weather conditions. This study provides an
additional explanation for the stochasticity in individual route choice decisions. However, more data and research efforts are
needed to evaluate these possibilities.
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