
81

make better travel-related decisions. ATMS in general takes advantage
of the information by operating traffic control devices such as traffic
lights, ramp meters, and incident management. ATMS sometimes
also refers to advanced transportation management systems or auto-
mated transportation management systems. In those cases, it usually
encompasses both ATIS and ATMS in the narrower sense.

The objective of this research is to investigate the factors influ-
encing route choice (including ATIS) to assess the value of traveler
information for motorists, and to understand public acceptance of
ATIS. The large body of literature that has examined similar issues
is reviewed in the following section. Although these studies tried to
estimate the benefits of traveler information, they all did so at a the-
oretical level or in a simulation context and generally attempted to
measure time saved. This research extends the previous research in
two important and practical directions. First, the data for this study
were collected in a comprehensive field experiment. In the experiment,
a large number of travelers, with or without pretrip information,
drove both freeway and arterial routes in a large real-world network,
assessed the information, evaluated the importance of information
accuracy, and revealed their route preferences for various trip pur-
poses. Second, the focus of this study was to derive the value of trav-
eler information under different circumstances or users’ willingness
to pay for information services. By the very nature of the design, the
value of information was not considered directly in terms of observed
or computed time savings but rather in perceived reduction of time
cost and uncertainty.

Users should be willing to pay for traveler information because
such services can reduce travel costs, uncertainty, and anxiety. The
benefits of ATIS to users therefore are in terms of not only time and
monetary savings, but also emotional and psychological well-being.
There are several reasons why it is important to understand users’
willingness to pay for traveler information. First of all, the true ben-
efits of ATIS cannot be appropriately evaluated without a thorough
understanding about willingness to pay and consumers’ surplus. Sec-
ond, market share is an important factor determining the effects of
ATIS on the system performance, which is the result of the direct
interplay of willingness to pay and the cost of acquiring traveler infor-
mation. Finally, knowing how much users want to pay for traveler
information is necessary for the design of sustainable for-profit
private or public–private partnership ATIS services.

This research will also help in understanding the route selection
process with and without traveler information for different trip pur-
poses. Regression analysis and discrete choice models were the pri-
mary methodological tools. The information gained from this study
will enable transportation engineers to design future information sys-
tems in ways that reduce driver frustration. Reduced driver frustration
also is likely to lead to fewer aggressive driving incidents.

Determinants of Route Choice and 
Value of Traveler Information
A Field Experiment

Lei Zhang and David Levinson

Drivers receive value from traveler information in several ways, includ-
ing the ability to save time, but perhaps more important is the value of
certainty as it affects other personal, social, safety, or psychological fac-
tors. This information can be economically valued. The benefit of
reduction in driver uncertainty when information is provided at the
beginning of the trip is the main variable measured in this research.
User preferences for routes were assessed as a function of the presence
and accuracy of information while controlling for other trip and route
attributes. Data were collected in a field experiment in which 113 drivers,
given real-time travel time information with varying degrees of accu-
racy, drove four alternative routes between a preselected origin–
destination pair in the Twin Cities, Minnesota, metropolitan area.
Ordinary regression, multinomial, and rank-ordered logit models pro-
duced estimates of the value of information with some variation. Results
showed that travelers were willing to pay up to $1 per trip for pretrip
travel-time information. The value of information is higher for com-
mute and event trips and when congestion on the usual route is heavier.
The accuracy of the traveler information was also a crucial factor. Trav-
elers will not pay for information unless they perceive it to be accurate.
Most travelers (70%) prefer that such information be provided free by
the public sector, whereas some (19%) believe that it is better for the pri-
vate sector to provide such service at a charge.

Traffic delays are inevitable given that traffic levels are increasing
at a rate faster than new roadways are being built. Advanced travelers
information systems (ATIS) and advanced traffic management sys-
tems (ATMS) have been proposed and implemented in several met-
ropolitan areas to help mitigate congestion. The two types of systems
are often integrated because the successful operation of both requires
a sensor network that collects real-time traffic data and an online data
analysis package that identifies the current or predicts the future states
of the system. However, they differ in how the system state infor-
mation is used. ATIS communicates the information, such as travel
time between an origin–destination (O-D) pair on alternative routes,
to individual users through various means in an attempt to help them
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LITERATURE REVIEW

Travelers rely on their spatial knowledge about the physical and
built environment to make travel-related decisions, such as job and
residential location, vehicle ownership, activity schedule, activity
location, travel model, and routes. The decision-making process is
also typically subject to a number of determinants and constraints
imposed by the physical, built, economic, and societal environment,
as well as the imperfection of travelers’ perception and cognition
capabilities (1, 2). Information plays a key role in travelers’ per-
ception, cognition, and decision-making processes. Travelers learn
about the environment through various information sources, includ-
ing personal experience, interpersonal communication, maps, and
mass media. ATIS has the potential to improve travelers’ decision-
making process by providing relevant real-time information about
the state of the transportation system.

At the individual level, users can benefit from ATIS in terms of
travel-time savings and travel certainty (3). Because a number of pre-
vious studies have explored theoretical and estimation issues with
regard to the value of travel-time (4–9) and the value of travel-time
variation (10, 11), the two components of the value of traveler infor-
mation may be estimated separately. Many researchers have attempted
to estimate the travel-time savings with ATIS technologies (3, 12–19).
Although their findings suggest ATIS could reduce travel time for
equipped vehicles and overall, under nonrecurrent and recurrent
congestion conditions, and with various level of market penetration,
several studies concluded that ATIS by itself should not be consid-
ered to be a solution to peak-period congestion problem or as an
effective alternative to traditional capacity expansion (3, 20). The
value of reduced travel uncertainty under ATIS, however, has not been
rigorously examined and incorporated into ATIS studies. Alterna-
tively, the two components of the value of traveler information may
be estimated together by a willingness-to-pay measure. This approach
has been explored in several studies on the basis of stated preference
surveys in which travelers were asked directly how much they were
willing to pay for specific ATIS services (21, 22). Choice models
also have been previously developed to estimate users’ willingness to
pay for traveler information (23).

At the agency level, the decision to adopt ATIS usually involves
estimation of user benefits, social benefits, and implementation costs,
as well as several other important policy issues. When the majority
of the drivers are risk-averse, in that they may travel more with
improved travel-time reliability but slightly increased average journey
time, the implementation of ATIS could, in some cases, hurt the
uninformed drivers (3). There might be a horizontal equity issue in
this regard. There have also been discussions on the nature of ATIS.
Hall argued that ATIS should be viewed first as a service to the public
and second as a means for steering traffic toward user optima that
uses feasible alternate routes (24). Al-Deek et al. found that traffic
diversion with ATIS may reduce overall safety because more drivers
use less safe arterial streets (25). Khattak et al. provided a discussion
of various design and evaluation issues related to ATIS (26).

The provision of traveler information by ATIS can induce a num-
ber of possible short-run responses from the users. Travelers, knowing
the level of congestion on alternative routes, may decide not to travel
at all, change destinations, change departure times, change modes,
and change routes. So far, no evidence suggests that ATIS could sig-
nificantly affect long-term behavior such as job and residential loca-
tions. Most previous studies examined the impacts of ATIS on route
choice and traffic equilibrium (3, 13, 23, 27–48). One study explored
the effects of ATIS on destination and route choices for shopping
trips (49).
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This is not surprising, because it is conceivable that the most sig-
nificant impacts of ATIS would be on route choices. These studies
differ in assumptions about users’ responses to information (route-
switching behavior, fixed and variable O-D demand), traffic assign-
ment criteria for informed and uninformed drivers (e.g., user optimal,
stochastic user equilibrium, social optimal), quality of the informa-
tion (perfect and imperfect), types of congestion (recurring and non-
recurring), market penetration of equipped vehicles (endogenous
and exogenous), and properties of the traffic models (e.g., static,
dynamic, and queuing models). Most studies make unverified assump-
tions about driver behavior; few studies discuss the importance of
laboratory and field experiments (50). In general, previous findings
suggest that the success of ATIS depends on users’ responses, accu-
racy of information, customization of information, percentage of
informed drivers, availability of alternative routes, level and types
of congestion, and the magnitude of induced demand.

Various types of ATIS services have been proposed and explored
in previous studies. Traveler information can be provided before a
trip (pretrip or origin-based) is made or en route (51). Different types
of information can be provided ranging from accident alert, travel-
time estimates on alternative routes, and route-guidance informa-
tion, to more comprehensive organized information about a tour or
an activity plan. Currently, most passenger ATIS services are provided
through one-way communication such as radio, television, Internet,
and variable message signs (VMS). In-vehicle route guidance systems
allow users to identify the desirable destination and route. More
advanced location-based services allow users to specify a set of activ-
ities and time budget (52). Commercial ATIS services are provided
through two-way communication enabling information exchange
between vehicle operators and dispatchers (53). ATIS can be provided
by for-profit private companies (42), by the pubic sector, through
a public–private partnership (54), or through a club-type organiza-
tion (55). A number of state departments of transportation in the
United States provide real-time traffic information through radio,
television, Internet, and 511 services. Other noteworthy ATIS proj-
ects include the CALTRANS Smart Traveler in Los Angeles, Cal-
ifornia, (56), TravTek in Orlando, Florida, (57 ), ADVANCE in
Chicago, Illinois, (58), and FASTTRAC in Michigan (59). In Europe,
STORM has been implemented in Stuttgart, Germany (17 ).

EXPERIMENT DESIGN AND DATA

The experiment for this project was designed using both stated pref-
erence survey techniques and field experiment, called field experience
stated preference.

Five routes between the University of Minnesota East Bank Cam-
pus and downtown Saint Paul in the Twin Cities metropolitan area
were selected for a field route choice experiment conducted in spring
2004 (Figure 1). The routes are roughly parallel and provide reason-
able ways to go between the origin and the destination. One of the
routes is a freeway (I-94), and four other routes are signalized arterial
streets. One of the selected arterial streets (Summit Avenue) is notably
more scenic than other routes. One of the selected arterial streets
(Grand Avenue) has notably more commercial development (grocery
and specialty shops) than other routes. The five routes selected con-
stitute an important corridor in the Twin Cities connecting downtown
Minneapolis and downtown Saint Paul. The level of congestion
during peak periods on this corridor is moderate or heavy at times.

Subjects were selected randomly from the University of Minnesota
staff list (excluding faculty and students affiliated with the Department
of Civil Engineering or the Human Factors Laboratory). Each subject



was given a pretest to gather various socioeconomic, demographic,
vehicle, and preference data. Subjects also filled out a standard 
1-day travel diary so that their daily activity travel patterns could be
known. A summary of the sociodemographic features of the final
sample is provided in Table 1. There is sufficient variation in age,
gender, education, income, household structure, and travel patterns
among the selected subjects. The sample is representative of the
general driving population, except that the level of education of the
subjects is a bit high. A larger sample size should improve the accu-
racy of the findings, even though this sample with 113 subjects is
sufficiently large to develop statistically significant models. Their
vehicles were then temporarily equipped with a recording global
positioning system (GPS) unit, which collected vehicle location data
at 1-s intervals and allowed the researchers to track the route actually
taken by each subject. To encourage their participation, each subject
received a small cash reward ($50). The recruitment of subjects for
field experiments or survey studies could be an issue. Interested read-
ers are referred to Bhat et al. (50), who discussed driver recruitability
for ATIS-related experiments based on telephone surveys.

During the field experiment, each subject was advised to take one
of the five selected routes from the origin to the destination. After
completing the outbound journey, each subject returned to the origin
point using a second route. Then each subject took a second round
trip using two new routes between the origin and destination points.
At the end of the experiment, each subject took four of the five selected
routes. Approximately half of the subjects were provided with infor-
mation about the expected travel time before their trips. The travel-
time information for each route was obtained from probe vehicles
before the experiment and did not reflect real-time traffic conditions
during the field experiment. Therefore, this information may or may
not be accurate because of the variation of the level of congestion at
times when the subjects actually made their trips.

The GPS data were logged into a data capture device, which allows
the researchers (a) to confirm that the subjects traveled the correct
route; (b) to obtain actual route or trip attributes such as total travel
time, distance, number of stops, stopped waiting time, and speed;
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and (c) to assess the true accuracy of the travel-time information pro-
vided to the subjects. At the destination, the subjects were asked a
number of questions rating trip quality in an absolute sense and in
comparison with other trips they made as part of the experiment.
Each subject rated (on a 7-point scale) and ranked the four routes
traveled for several different trip purposes including commute, event,
shopping, recreational, social or visit, and Sunday drive. They also
reported their perceived travel time, distance, number of stops, and
speed for the routes they traveled after each route trip. These data
were collected to help develop models of drivers’ route perception
process. Finally, they rated the efficiency, easiness, pleasure, and
familiarity of the traveled routes on a 7-point scale. This information
can be used to develop models of drivers’ route cognition process.
When combined with observed and perceived route attributes and
subjects’ final decision, it can help develop behavioral theories and
behavioral models of route choice.

Subjects who were given information were also asked about the
usefulness and their perceived accuracy of the pretrip travel-time
information. They also revealed how often they would use such infor-
mation if it were provided as a regular service, how much they would
be willing to pay for the service, and who they think should provide the
service. Finally they rated the importance of travel-time information
for various trip purposes mentioned previously.

METHODOLOGY

Two sets of statistical models were derived. The first set of models
described how drivers’ route preferences vary with the presence and
accuracy of information, while controlling for observed or perceived
route attributes such as travel time, number of stops, stopped delay,
specific route, car (e.g., make, model, age of car), and demographics
(e.g., age, gender, household size). The second set of models correlated
drivers’ propensity to the usage of traveler information with the qual-
ity of information and drivers’ attitudes, socioeconomic, demographic,
travel behavioral, and other factors.

Origin:
University of Minnesota

Destination:
Saint Paul Cathedral

FIGURE 1 Selected routes for field experiments.



Route Choice and Traveler Information

Choice behavior in the transportation literature is often depicted as
a two-stage process. First, a choice set generation process determines
the feasible alternatives known and considered by the decision maker
for a choice situation. Then a choice criterion is assumed that
eliminates inferior alternatives until the best alternative is identified.
Dominance, satisfaction, lexicographic rules, elimination by aspects,
heuristic production rules (if . . . , then . . .), and utility maximization
are the most common decision protocols (60–63). The analysis of
route choice behavior in this report assumed that travelers were util-
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ity maximizers. Future research may develop route choice models
based on the same data set and other decision criteria and make
comparisons.

Random utility theory (64) states that utility has two parts: an
observable deterministic component and an unobservable random
component. The probability of choosing an alternative is equal to
the probability that the utility of that alternative is greater than or
equal to the utilities of all other considered alternatives. The deter-
ministic or systematic utility of a route being considered by a traveler
is as follows

where

T = travel time,
V = variation in travel time from expectations,
I = precommute information about travel time (with or without),

A = accuracy of information (rated on a 7-point scale by subjects
and measure by GPS),

P = trip purpose,
R = number of stops,
N = number of turns,
D = total delay,
K = density of surrounding traffic,
E = environmental factors (e.g., weather),
B = road type (e.g., residential, signalized arterial, freeway),
Q = aesthetic quality of the roadside environment (high or low),
C = level of commercial development along the route (high or low),
S = safety of the road (e.g., accidents),
H = hour of day (e.g., personal safety concerns),
F = familiarity with route (rated on a 7-point scale), and
X = socioeconomic and demographic factors describing individual

driver.

The method most widely used to operationalize random utility
theory is discrete choice modeling. McFadden applied the logit
model to prediction of individual mode choice (65). Discrete choice
models have been continuously improved to address many econo-
metric issues. Binary, multinomial, and rank-ordered logit models
were specified in this study to deal with different response variables.

Each subject ranked the four routes traveled for different trip pur-
poses. The rank-ordered logit model takes the rank of routes as the
dependent variable. It is sometimes referred to as the Placket-Luce
or exploded logit model. Rank-ordered choice models are of partic-
ular interest in survey research because of their cost-effectiveness.
They fully use the ranks of all alternatives, rather than just the most
preferred one as in multinomial logit models, so that more informa-
tion is collected per observation (66). The probability (P) that a sub-
ject ranks all four alternatives in a choice set in a specific order w is

where wi is the ith alternative in the ranking. If choice i is the most
preferred and has been ranked first, the choice that is ranked second
would then be the most preferred among the remaining alternatives.
The probability density and log-likelihood functions of a rank ordered
logit model are similar to those of a traditional multinomial logit
model. One concern with ranked responses is that the subjects may
care only about the most preferred alternative and thus the rank infor-
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TABLE 1 Descriptive Statistics
of Research Subjects

Variable No.

Gender
Women 58
Men 55

Household income, $
<50,000 36
50,000–100,000 58
>100,000 19

Age, years
<35 37
35–55 58
>55 18

Education
<2 years of college 27
2–4 years of college 41
Postgraduate 45

Household size, people
1 23
2 48
3 20
≥4 22

Household number of autos
1 28
2 65
3 12
≥4 8

Commute time, mi
10 3
20 29
30 42
40 23
>40 16

Commute distance, mi
5 14
10 39
15 29
20 14
>20 17

Trips per day
2 13
5 37
10 55
>10 8

Years in city
5 16
10 16
20 23
30 16
>30 42



mation for the remaining alternatives may not be reliable. For con-
firmation purposes, therefore, multinomial logit models in which the
information about the relative desirableness of the three unselected
alternatives is not used were also estimated.

Discrete choice models consider utility as an ordinal measure.
The notion of cardinal utility is sometimes useful, because the sub-
jects also rated the routes on a 7-point scale in addition to ranking
the routes. The rated score can be considered as a cardinal utility
measure. In that case, an ordinary regression model can be specified
based on Equation 1 directly for each route and for each trip purpose.
This not only provides a means to confirm results obtained from
the discrete choice models but also allows the researcher to exam-
ine the variation of the value of information by route attributes. How-
ever, the scores rated by the subjects tend to display different means
and variations. To avoid issues related to nonzero mean and het-
eroscedasticity, the scores are standardized for each individual
subject, and the standardized score is used as the dependent variable
in the regression models.

To operationalize the proposed theory of route choice, the percep-
tion and cognition processes for learning routes in a network, and
route attributes must be explicitly modeled. Figure 2 shows how a
traveler makes a route choice decision given actual attributes of one
or more routes. Various protocols of choice act mentioned earlier
in this section relate the objective reality—that is, observed route
attributes—to the final choice in different ways. However, in general
they ignore the perception and cognition processes.

The statistical models described previously can identify the impor-
tance of various factors on route preference. The elasticity between
information and travel cost derived from the models should provide
a way of measuring the value of traveler information differentiated
by trip purposes and by various route attributes.

Information Usage and Public Acceptance 
of Traveler Information Systems

The success of ATIS depends on the public acceptance of and demand
for the technology. ATIS service providers, private or public, want
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to know the characteristics of drivers who are likely to frequently use
traveler information. To address those issues, a number of questions
regarding the usage of, attitude toward, and willingness to pay for
traveler information services are included in the after-experiment
survey. A summary of the subjects’ answers to these questions is
provided in the results section. A binary choice model is also specified
to examine the factors affecting the usage of traveler information
(1 = will use traveler information; 0 = will not use traveler informa-
tion). The utility of driving with or without traveler information is
as follows:

where

A = accuracy of information,
G = attitude toward traveler information (perceived usefulness),
F = familiarity with alternative routes,
L = level of congestion,
Z = perceived information acquisition and processing cost, and

M = travel patterns (e.g., commute time, distance, trip frequency).

Perceived information acquisition and processing cost should have
a negative effect on the usage of traveler information. In the experi-
ment, information is provided to the subjects for free. Therefore, Z in
this case is simply the perceived information processing cost, which
is unobservable and becomes a part of the random component in the
model. But its average effects on information usage should contribute
to the constant term in the binary choice model.

An ordinary regression model can also be specified and estimated
with the frequency of using information (Y) as the dependent vari-
able (rated on a 6-point scale, where 1 = less than once per week and
6 = several times per day).

Results of regression Model 4 should agree with the results of the
binary logit model on the basis of utility Function 3 if subjects
provided consistent answers in the survey.

Y f A G F L Z= ( ), , , , , , ( )M X 4

U f A G F L Z= ( ), , , , , , ( )M X 3

Travel Time No. Stops Distance Speed Road Char. Traveler Char. 

Observed route attributes and traveler characteristics 

Travel Time No. Stops Distance Speed Esthetics

Efficiency Effort Pleasure Safety Reliability 

Observed Route Choice

Perception Rules

Cognition Rules 

Decision Rules 

Familiarity

Abstract Spatial Knowledge 

Perceived route attributes

FIGURE 2 Route perception and cognition.



RESULTS

Importance of Various Route Attributes 
for Trips with Different Purposes

All coefficients in the rank-ordered, multinomial, and ordinary regres-
sion models of route choice have expected signs. For all trip pur-
poses, drivers are more likely to choose a route that has (observed
and perceived) lower travel time, higher speed, fewer number of stops,
and better esthetics (Tables 2 and 3). Drivers also prefer routes that
are efficient, easy to drive, pleasant, and familiar (Tables 2, 3, and 4).
The only exception is that the variable actual distance has positive
signs in Tables 2 and 3. The fact that all five routes selected for the
field experiment have very similar total distances may cause the unex-
pected signs. However, variable perceived distance in general has
expected negative signs in Tables 2 and 3. Clearly, the perceived
distance is different from the actual distance traveled. Subjects appear
to have perception biases and have systematically misperceived
the distances of some routes. The relationship between actual and
perceived route attributes is the topic of an ongoing study.

It is also evident from the results that the importance of route
attributes (actual and perceived) varies with trip purposes. Efficiency-
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related attributes such as travel time, distance, and number of stops
are considered more important for commute, event, and visit trips and
less important or even insignificant for shopping and recreational
trips. Enhanced roadside esthetics make a route more attractive for
all types of trips and have the most significant effect on recreational
trips. Level of commercial development is positively related to the
attractiveness of route for shopping trips, whereas its impacts on other
types of trips are not significant. There is also evidence of habitual
route choice behavior, especially for trips with time pressure. When
making commute, event, and visit trips, drivers tend to choose a route
they are more familiar with than unfamiliar routes. One explanation
is that under time pressure, drivers prefer a more reliable route, and
they perceive routes they are familiar with and have used before to be
more reliable. Another explanation is the anchoring effects of first-
noticed routes as discussed by Golledge (67). Once a driver becomes
familiar with a route, he or she has little incentive to switch to a new
route with comparable or even slightly better performance because
of perceived information acquisition and processing cost, percep-
tion threshold, and risk averseness. Several previous studies suggest
that travel time is only one of many factors affecting route choice
(65, 68–71) and that the relative importance of those factors varies by
trip purposes (72, 73), type of driver (74), trip distance, and duration

TABLE 2 Results: Rank-Order Logit Models

Purpose Commute Trip Event Shopping Recreation Visit

Route Rank = f (observed route attributes, dummy variable, information)

Esthetics 0.69a 0.81a −0.04 2.46a 1.30a

Commercial 0.22 0.72a 1.31a 1.29a 0.78a

Time −0.14a −0.07b 0.05 0.05 −0.07b

Distance 0.41a 0.15 −0.15 0.12 0.38a

No. stops −0.08c −0.07 −0.03 −0.06 −0.10b

Information 0.81b 0.33 0.42 0.28 −0.00

Likelihood ratio chi2 110 68 38 180 104

Value of information (min.) 6 — — — —

Route Rank = f (perceived route attributes, dummy variable, information)

Esthetics 0.80a 0.77a 0.14 2.60a 1.56a

Commercial 0.02 0.48b 1.52a 1.53a 0.93a

Time −0.17a −0.07a 0.00 −0.00 −0.11a

Distance −0.05 0.05 0.00 0.12b 0.02

No. stops −0.17a −0.12a −0.04 −0.06 −0.10b

Information 0.85b 0.63c 0.37 0.36 0.12

Likelihood ratio chi2 190 84 47 194 138

Value of information (min.) 5 9 — — —

Route Rank = f (cognitive knowledge, dummy variable, information)

Esthetics 0.07 0.34 −0.24 1.6a 1.00a

Commercial −0.42 0.19 1.26a 0.77a 0.61b

Efficiency 0.58a 0.27a 0.02 −0.16c 0.37a

Easiness 0.36a 0.19c 0.14 0.15 0.11

Pleasure 0.30a 0.22a 0.14b 0.49a 0.23a

Unfamiliarity −0.42a −0.22a 0.04 −0.02 −0.14b

Information 0.37 0.19 0.17 −0.03 −0.21

Likelihood ratio chi2 247 124 59 238 156

aStatistically significant at level .01.
bStatistically significant at level .05.
cStatistically significant at level .1.



Zhang and Levinson 87

TABLE 3 Results: Multinomial Logit Models

Purpose Commute Trip Event Shopping Recreation Visit

Route Choice = f (observed route attributes, dummy variable, accurate information)

Esthetics 1.08a 1.68a −0.56 3.60a 2.13a

Commercial −1.45 0.78 1.65a 0.53 0.13

Time −0.32a −0.27a 0.07 −0.01 −0.25a

Distance 0.80a 0.61a −0.13 0.43b 0.88a

No. stops −0.01 0.01 −0.04 −0.11c −0.07

Unfamiliarity −0.26a −0.13b −0.08 −0.02 −0.14b

Information 0.26c 0.24c 0.13 0.19 0.11

Constant 0.01 −0.55 −0.76 −4.4a −2.29a

Pseudo-R2 .31 .19 .08 .37 .24

Value of information (min) 1 1 — — —

Route Choice = f (perceived route attributes, dummy variable, accurate information)

Esthetics 1.63a 1.9a −0.45 3.9a 2.6a

Commercial −1.37 1.0b 1.76a 1.0b 0.51

Time −0.10a −0.04c −0.02 −0.04 −0.10a

Distance −0.06c −0.01 −0.04b 0.01 −0.05

Speed 0.08a 0.07a −0.02c 0.02 0.05a

No. stops −0.13c −0.18a −0.05 −0.04 −0.13c

Information 0.42a 0.43a 0.10 0.21 0.25

Constant −2.07b −3.0a 0.42 −2.6b −1.5

Pseudo-R2 .34 .21 .10 .36 .24

Value of information (min) 4 11 — — —

Route Choice = f (cognitive knowledge, dummy variable, information)

Esthetics −0.05 0.56 −0.72c 2.8a 1.48a

Commercial −2.7b −0.27 1.55a 0.21 −0.35

Efficiency 0.88a 0.46a 0.09 0.02 0.50a

Easiness 0.06 0.11 0.00 0.20 0.34b

Pleasure 0.16 0.15 0.15 0.31b −0.01

Unfamiliarity −0.28a −0.19a −0.02 −0.03 −0.17b

Information 0.13 0.13 0.08 −0.01 −0.01

Pseudo-R2 .30 .15 .09 .36 .20

aStatistically significant at level .01.
bStatistically significant at level .05.
cStatistically significant at level .1.

TABLE 4 Results: Ordinary Linear Regression Standardized Route Score � f
(Cognitive Knowledge, Dummy Variable, Information)

Purpose Work Home Shopping Recreation Event Visit

Esthetics 0.31a 0.37b −0.27b 0.61a −0.38 0.06

Commercial 0.05 0.04 0.49a 0.46a 0.71b 0.33

Efficient 0.10a 0.08a 0.03 0.00 0.18b 0.18a

Easiness 0.10a 0.10a 0.04 0.01 0.01 0.06

Pleasure 0.18a 0.18a 0.15a 0.23a 0.31a 0.41a

Unfamiliarity −0.08a −0.06a −0.01 −0.02 −0.13a −0.15a

Information 0.10c 0.10 0.02 0.04 0.07 0.24

Constant −1.64a −1.71a −1.06a −1.32a 2.33a 1.81a

R2 .43 .41 .16 .46 .13 .24

aStatistically significant at level .01.
bStatistically significant at level .05.
cStatistically significant at level .1.



(75). Findings in this and previous research clearly show that route
choice is a complex spatial behavior sensitive to a number of attri-
butes of the environment and the decision maker. It is therefore a
challenging task to develop a universal route choice theory that
encompasses the aforementioned empirical evidence and still pro-
duces operational models. Traditional route assignment models con-
sidering only travel time, however, may have oversimplified the
problem. The findings from the choice model in this research may
help develop generalized cost that considers both travel time and
other important route choice factors. Table 5 summarizes the distri-
bution of routes selected by the subjects for various trip purposes,
as well as the actual average travel times and distances of these
routes. These user preferences again show that time and distance are
not the only factors in route choice behavior.

The presence of pretrip information for a route makes a route more
attractive, as demonstrated by positive signs of the variable infor-
mation in all models. A brief discussion of this variable is worth-
while. Information is a dummy variable; that is, 1 if a subject rated the
accuracy of the information greater than 5 on a 7-point scale, and 0
otherwise. Another variable, information presence, has also been
examined, which is 1 as long as traveler information is provided before
a trip and 0 otherwise. However, information presence is not statis-
tically significant in all models, fails to pass specification F test, and
therefore was dropped from the final models. Information (or more
precisely “accurate information”) is statistically significant for com-
mute and event trips in Tables 2 and 3, which is intuitive. It is not sig-
nificant for trips with other purposes. These results also confirm
findings from some previous studies that the quality and accuracy of
traveler information is crucial to the success of ATIS.

In the after-experiment survey, subjects also directly rated their
perceived importance of traveler information for trips with various
purposes. The findings are summarized in Table 6, and consistent with
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the results from statistical models. It should be noted that eight sub-
jects believed information to be the least important for commute trips.
Four of these subjects walked, biked, or carpooled (as passengers)
to work.

Finally, by comparing overall model explanatory power among
Table 2 (likelihood ratio), cognitive route knowledge (Table 2) in all
cases explains route choice behavior significantly better than per-
ceived route attributes (Table 2), which explain route choice signif-
icantly better than observed route attributes (Table 2). This suggests
that there may be a structure in the route perception and cognition
process, as illustrated in Figure 2. Most choice models applied to study
human spatial behavior tend to relate observed attributes directly to
the final choice, ignoring the perception and cognition process. These
findings suggest that it should be worthwhile to model route percep-
tion and cognition processes explicitly, which calls for corresponding
development in spatial choice theory, a promising future research
direction.

Value of Information by Trip Purposes, Routes,
and Level of Congestion

The elasticity between the presence of accurate information and travel
time in the route choice models is a measure of the value of infor-
mation in terms of equivalent time savings. The value of informa-
tion clearly depends on a number of factors. Results suggest that the
provision of information is especially valuable for commute and
event trips. On the basis of the rank-ordered logit models (Table 2),
the value of pretrip information for commute trips is approximately
equivalent to a 5-min time savings. Information is more valuable for
event trips (9 min) on a per-trip basis. It is possible that pretrip travel-
time information can more significantly reduce schedule delay or

TABLE 5 Routes Selected by Subjects for Different Trip Purposes

Time Distance
Route (min) (mi) Commute Event Shopping Recreation Visit Sunday

I-94 13.35a 7.17 76 62 21 16 57 2

Summit 19.62 7.61 29 38 17 81 48 97

Union 20.48 7.13a 3 0 30 0 1 0

Grand 23.81 8.04 1 9 35 8 5 7

MS 24.55 7.89 4 4 10 8 2 7

aIndicates the fastest or shortest route based on GPS measurements. 

TABLE 6 Importance of Information and Trip Purpose

Rank Commute Event Shopping Recreation Visit Sunday

First 31 10 2 2 3 5

Second 4 25 10 6 5 1

Third 1 6 18 13 12 3

Fourth 3 8 5 19 11 4

Fifth 3 1 14 9 16 5

Last 8 1 1 0 3 32

Average 2.3 2.4 3.4 3.6 3.8 5.0

Effective sample size: 50



travel-time delay cost for event trips than for other trips because event
trips are typically characterized by time pressure and uncertainty
(e.g., unfamiliarity with the routes to event destinations, parking
waiting time). On a separate note, value of time itself may vary with
trip purposes. For instance, saving 5 min for commute trips is differ-
ent from saving 5 min for recreational trips. Because the variation
of value of time has not been adequately studied in previous research,
value of time is assumed to be $10/h for all trips. Multinomial
logit models (Table 3) provide similar value-of-information results
with higher variation (1 actual min and 4 perceived min for com-
mute trips, 1 actual min and 11 perceived min for event trips). If the
time savings are converted into dollars, the monetary value of infor-
mation ranges form $0.15 to $1 per trip. Travelers do not appear
to be willing to pay for travel-time information for shopping and
recreational trips.

It has also been hypothesized that the perceived value of informa-
tion would be higher when the level of congestion on a route is higher.
At least, the actual benefit of traveler information is higher in a mod-
erately congested commute corridor than in an uncongested corri-
dor (3). Kanafani and Al-Deek argued that the benefits of ATIS are
negatively related to the speed of arterial streets (12). By using the
standardized route score as the dependent variable, the value of
information for the five selected routes could be differentiated. (This
is not possible in logit models with choice or rank as the dependent
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variable.) Results from these regression models allowed the value
of information to be plotted against various route attributes. The
ratio of the average travel speed of all subjects to the design speed,
defined as the 95th percentile speed, is used in Figure 3 as an indi-
cator of congestion. There is some evidence that information is more
valuable on routes with higher congestion, but there are exceptions
(event trips in Figure 3a). Imagine that a traveler is planning a
trip. What is valuable to him or her is the travel-time information
on both the planned route and alternative route. By the design of the
field experiment, results in Figure 3a reflect only the value of travel-
time information for the planned route. Future studies should design
more sophisticated experiments with real driving tasks (e.g., actual
home-to-work trips) and various information provision strategies.
In terms of the monetary value of information, the regression models
generate results similar to logit choice models. There is variation for
different trip purposes, but travelers would pay no more than $1 for
pretrip travel-time information.

When completing the after-experiment survey, subjects were
asked directly how much they would be willing to pay for the pre-
trip travel-time information they had received. Sixty-five percent of
subjects said that they would not pay for such service; 29% were
willing to pay $1 to $5, and 6% were willing to pay $6 to $10. The
average willingness-to-pay is approximately $1.40 per trip, with a
large standard deviation of $2.70.

(b)
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FIGURE 3 Value of traveler information by route, trip purpose, and level of congestion: (a) model:
standardized route score � f (observed road attributes, information) and (b) model: standardized
route score � f (perceived road attributes, information).



Wolinetz et al. investigated travelers’ willingness to pay for infor-
mation in the 1998 San Francisco (California) Bay Area survey (21).
In their study, survey participants were asked to report their willing-
ness to pay for travel-time information on usual and alternative routes
and alternative route planner. They found that, on average, travelers
were willing to pay $0.74 on a per-call basis and $3.84 per month for
such information. By surveying TravInfo callers, Khattak et al. found
that travelers’ willingness to pay is positively related to customiza-
tion of information, trip characteristics, and personal attributes (22).
Although the results of the current study suggest that trip purpose is
a very important factor, personal attributes, such as age, gender, and
income, were not significant in the regression model.

Several previous studies discussed the importance of providing
customized information to travelers according to their O-D pairs,
travel patterns, familiarity with the corridor, and individual char-
acteristics (12, 31). It should be noted that the pretrip travel-time
information provided in the field experiment is customized to the
O-D pair, because there is only one O-D pair in the experiment. The
value of this type of information should be higher than more gen-
eral traveler information, such as expected delay time on a specific
route segment displayed on a variable message sign. Adler and
Blue presented an interesting method for providing travelers with
more personalized planning assistance using artificial intelligence
techniques (76).

Determinants of Information Usage 
and Public Acceptance of ATIS

Table 7 summarizes estimation results of information usage models
developed earlier. The following factors positively affect the usage of
traveler information: information accuracy, positive attitude toward
information services, commute time, household vehicle ownership,
and ownership of PCs and personal digital assistants. The elderly
population (>55 years) tends to use traveler information less often
than others.

The market for for-profit private traveler information service is
not negligible according to the results of this study. Approximately
35% of subjects in the experiment expressed their willingness to pay
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for such service. ATIS should be provided by the private sector at a
charge to users, probably with the belief that the private sector
would be able to provide more reliable and better service, according
to 19% of subjects. However, the majority of the sample (70%) con-
sidered the public sector to be the most appropriate provider of free
traveler information. Wolinetz et al. (21) found that 48.5% survey
participants were willing to pay for traveler information. It is not
surprising that a larger percentage was found in their study because
respondents were notified that they would receive information for
both their usual routes and alternative routes.

The importance of the accuracy of information has already been
discussed. When the traveler information is perceived to be inaccurate,
there may not be any demand for such information services at all.
Bad information, even occasional, could hurt the credibility of the
service and create uncertainty in the quality of information itself.

CONCLUSIONS

The success of ATIS depends on travelers’ responses to the informa-
tion, which are contingent on a number of properties of the informa-
tion itself: quality, accuracy, usefulness, timeliness, user customization,
cost, and the manner in which information is provided. Findings in
the study suggest that travelers are willing to pay for traveler infor-
mation, although the perceived value of information varies by trip
purposes and route attributes. In most cases, drivers are willing to
pay no more than $1/trip for pretrip travel-time information. This
conclusion is drawn from the field experience stated preference sur-
veys, regression models, and discrete choice models developed in
this research.

However, the task of understanding drivers’ responses to infor-
mation is challenging. Most studies using traditional route equilib-
rium assignment models tend to make assumptions about the role of
information in reducing or eliminating perception errors. Given the
various types of traveler information, various means of providing
information, and the various tastes of drivers, theoretical studies
based on static and even dynamic assignment models may have lim-
ited value in guiding the design and evaluation of ATIS. Survey
techniques have been used to explore likely user responses and will-
ingness to pay for ATIS. Field experiments, in which the behavior
of travelers driving in real networks and performing real travel tasks
with and without information services is monitored, appear to be a
promising future research direction. The experiment of this study
provides several lessons for the design of similar and more compre-
hensive ATIS-related experiments. First, technologies such as GPS
vehicle positioning systems are valuable and provide accurate mea-
sures of routes traveled by the subjects. Second, combining GPS
data with pre- and post-experiment surveys appears to be a promis-
ing experimental design methodology. In the survey, subjects can
report their perceived route attributes, perceived accuracy of infor-
mation, and other important information. However, the survey must
be carefully designed because subjects may confuse the experiment
context with their daily routines. For instance, in this experiment,
some subjects rated the importance of information for commute
trips on the basis of their routine daily commute trips, whereas some
others might have given scores based on the four trips they drove
during the experiment. Pretests for both the field experiment and
survey questionnaire are necessary. Techniques for combing data
from stated and revealed preference surveys have been developed
and applied for value-of-time studies (77 ). They could also be used
to design future experiments valuing ATIS.

TABLE 7 Information Usage

Dependent Variable

Frequency of Using Information 
Info. Scale 1–6 Usage (1: often:
(most often) 0: not often)

Independent Variable Ordinary Regression Binary Logit

Accuracy of information 0.27 3.42a

(1–7 scale)

Positive attitude (1–7 scale) 0.58b 3.32b

Commute time (min) 0.03c 0.38a

No. of household vehicles −0.16 8.00a

Age (0 if >55, 1 otherwise) −1.35a −12.70b

No. of PCs and PDAs 0.81a 2.72

Constant −2.92a −61b

R2 or pseudo-R2 .39 .77

Sample size 43d 43

aStatistically significant at .1.
bStatistically significant at .05.
cStatistically significant at .01.
dOnly subjects provided with pretrip information are included.



Another research need is the development of behavioral theories
explaining how information provided by ATIS affects travelers’
spatial perception, cognition, and decision-making process in a com-
plex, dynamic, and uncertain transportation network. The theory
should be able to generate testable hypotheses for empirical studies
using survey techniques or field experiments.

The net social benefits of ATIS come from several sources: user
benefits, which are the differences between willingness to pay and
the cost of providing the information; benefits for users not using
traveler information; and other social benefits resulting from reduced
levels of congestion (pollution emissions and fuel consumption). A
rigorous economic appraisal of ATIS should be sought for opera-
tional traveler information systems. Understanding willingness to
pay is only the first step.

Finally, it is also evident from the analysis that a number of factors
affect route choice behavior, and travel time is just one of them.
However, in discrete route choice and equilibrium route assignment
models, the main independent variable that differentiates a driver’s
choice of route is typically travel time. This is primarily because
other information about the quality of the trip or the valuation of the
components of travel time (e.g., delay, stopped time, aesthetics) has
been unavailable. The research trend in travel demand forecasting
of moving toward disaggregate- and even individual-level models
calls for better understanding of route choice at the microscopic
level. Future studies should seek to incorporate more route attri-
butes in route choice models and develop spatial behavioral theories
that can be applied to study route choice.
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