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Abstract

We consider the vorticity-stream formulation of axisymmetric incompressible flows

and its equivalence with the primitive formulation. It is shown that, to characterize

the regularity of a divergence free axisymmetric vector field in terms of the swirling

components, an extra set of pole condition is necessary to give a full description of the

regularity. In addition, smooth solutions up to the axis of rotation gives rise to smooth

solutions of primitive formulation in the case of Navier-Stokes equations, but not the

Euler equations. We also establish proper weak formulations and show its equivalence

to Leray’s solutions.

1 Introduction

Axisymmetric flow is an important subject in fluid dynamics and has become standard

textbook material as a starting point of theoretical study for complicated flow patterns. By

means of Stoke’s stream function φ [1], an axisymmetric divergence free vector field can be

efficiently represented by two scalar components:

u =
∂rφ

r
ex −

∂xφ

r
er + ueθ (1.1)

Taking the swirling component of the Navier-Stokes equation

∂tu+ (∇× u)× u+∇p = −ν∇×∇× u

∇ · u = 0
(1.2)

and the swirling component of the curl of (1.2), one can eliminate the pressure term to get

two scalar convection diffusion equations:

∂tu+ ux∂xu+ ur∂ru+ ur

r
u = νL u,

∂tω + ux∂xω + ur∂rω − ur

r
ω = 1

r
∂x(u

2) + νL ω
(1.3)

The system is closed by the vorticity-stream function relation ω = −L ψ, ux = ∂(rψ)
r

, and

ur = −∂xψ. Here ψ = φ
r

and L u = ∂2
ru+ ∂ru

r
+ ∂2

xu− u
r2

.

This representation (1.3) has several advantages over the primitive formulation (1.2). It

needs only two dependent variables ψ and u defined on (x, r) ∈ (R × R+), and it is free
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from Lagrangian multipliers and is automatically divergence free. These advantages are

particularly favorable in numerical computations.

A natural question is whether (1.3) is actually equivalent to the primitive formulation

(1.2), and in which solution classes are they equivalent? In this paper, we have systematically

investigated this issue for both classical and weak solutions. We start in section 2 with the

characterization of smoothness of axisymmetric divergence free vector fields. It is shown

that, an additional pole condition of the form

∂jru(x, 0+) = 0, ∂jrψ(x, 0+) = 0 for j even (1.4)

is essential to characterize the smoothness of the vector field (1.1) in classical spaces (see

Lemma 2 for details). The construction of Sobolev spaces and the counter part of (1.4) are

established in 2.2. We then apply this pole condition to derive regularity and equivalence

results in various solution spaces in section 3. Firstly, we show in section 3.1 that there

exists Ck(R × R+) solutions of the Euler equation with a genuine singularity on the axis

of rotation. In addition, this pole singularity will persist in time. In contrast, we show in

section 3.2 that if the solution to (1.3) is in Ck(R × R+), then the pole condition (1.4) is

automatically satisfied. Next, we consider weak formulation of (1.3) and study its relation

with the Leray’s weak solution in section 3.3. We end this paper by showing that, when

appropriately formulated, the weak solutions to (1.3) are exactly the axisymmetric weak

solutions obtained via Leray’s construction [11].

2 Function Spaces for Axisymmetric Solenoidal Vector

Fields

2.1 Classical Spaces and the Pole Condition

In this section, we establish basic regularity results for axisymmetric vector fields. We will

show that the swirling component of a smooth axisymmetric vector field has vanishing even

order derivatives in the radial direction at the axis of rotation. This is done in Lemma 2 by

a symmetry argument.

Throughout this paper, we will be using the cylindrical coordinate system

x = x, y = r cos θ, z = r sin θ. (2.1)
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where the x-axis is the axis of rotation. A vector field u is said to be axisymmetric if

∂θux = ∂θur = ∂θuθ = 0. Here and throughout this paper, the subscripts of u are used to

denote components rather than partial derivatives.

The three basic differential operators in cylindrical coordinate system are given by

∇u = (∂xu)ex + (∂ru)er + (
1

r
∂θu)eθ (2.2)

∇ · u =
1

r
(∂x(rux) + ∂r(rur) + ∂θuθ) (2.3)

∇× u =
1

r

∣∣∣∣∣∣
ex er reθ
∂x ∂r ∂θ
ux ur ruθ

∣∣∣∣∣∣ (2.4)

Here ex, er and eθ are the unit vectors in the x, r and θ directions respectively.

Lemma 1 Let u = uxex + urer + uθeθ ∈ Ck(R3, R3), k ≥ 0, then for any fixed θ ∈ [0, π),

ux(·, ·, θ), ur(·, ·, θ), uθ(·, ·, θ) ∈ Ck(R×R+). Moreover,

∂jrux(x, 0
+, θ) = (−1)j∂jrux(x, 0

+, θ + π), 0 ≤ j ≤ k, (2.5)

∂jrur(x, 0
+, θ) = (−1)j+1∂jrur(x, 0

+, θ + π), 0 ≤ j ≤ k, (2.6)

∂jruθ(x, 0
+, θ) = (−1)j+1∂jruθ(x, 0

+, θ + π), 0 ≤ j ≤ k. (2.7)

Proof: Let u = ux(x, r, θ)ex + ur(x, r, θ)er + uθ(x, r, θ)eθ. Note that ex is smooth vector

field while er and eθ are discontinuous at the axis of rotation. More specifically, on the cross

section z = 0, y > 0, we have

ex(x, y, z = 0) = ex(x, r = |y|, θ = 0), ex(x,−y, z = 0) = ex(x, r = |y|, θ = π) (2.8)

ey(x, y, z = 0) = er(x, r = |y|, θ = 0), ey(x,−y, z = 0) = −ex(x, r = |y|, θ = π) (2.9)

ez(x, y, z = 0) = eθ(x, r = |y|, θ = 0), ez(x,−y, z = 0) = −eθ(x, r = |y|, θ = π) (2.10)

Consequently

ux(x, y, z = 0) = ux(x, r = |y|, θ = 0), ux(x,−y, z = 0) = ux(x, r = |y|, θ = π) (2.11)

uy(x, y, z = 0) = ur(x, r = |y|, θ = 0), uy(x,−y, z = 0) = −ux(x, r = |y|, θ = π) (2.12)
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uz(x, y, z = 0) = uθ(x, r = |y|, θ = 0), uz(x,−y, z = 0) = −uθ(x, r = |y|, θ = π) (2.13)

Taking the limit y → 0+, it follows that (2.5-2.7) holds with θ = 0. The above argument

can be easily modified to prove for any other θ ∈ [0, 2π). �

If u is axisymmetric, we immediately have the following direct consequence

Corollary 1 Let u ∈ Ck(R3, R3) be an axisymmetric vector field, u = ux(x, r)ex+ur(x, r)er+

uθ(x, r)eθ. Then ux, ur, uθ ∈ Ck(R×R+) and

∂2`+1
r ux(x, 0

+) = 0, 1 ≤ 2`+ 1 ≤ k, (2.14)

∂2m
r ur(x, 0

+) = ∂2m
r uθ(x, 0

+) = 0, 0 ≤ 2m ≤ k, (2.15)

Denote by Cks the axisymmetric divergence free subspace of Ck vector fields:

Definition 1 :

Cks (R3, R3) = {u ∈ Ck(R3, R3), ∂θux = ∂θur = ∂θuθ = 0, ∇ · u = 0} (2.16)

We have the following representation and regularity result for Cks :

Lemma 2 (a) For any u ∈ Cks (R3, R3), k ≥ 0, there exists a unique (u, ψ) such that

u = ueθ +∇× (ψeθ) =
∂r(rψ)

r
ex − ∂xψer + ueθ, r > 0, (2.17)

with

u(x, r) ∈ Ck(R×R+), ∂2`
r u(x, 0+) = 0 for 0 ≤ 2` ≤ k, (2.18)

and

ψ(x, r) ∈ Ck+1(R×R+), ∂2m
r ψ(x, 0+) = 0 for 0 ≤ 2m ≤ k + 1. (2.19)

(b) If (u, ψ) satisfies (2.18), (2.19) and u is given by (2.17) for r > 0, then u ∈ Cks (R3, R3)

with a removable singularity at r = 0.

Proof:

Part (a): Since u is axisymmetric, we can write u = ux(x, r)ex + ur(x, r)er + uθ(x, r)eθ

for r > 0. Rename uθ by u, (2.18) follows from Corollary 1.
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Next we derive the representation (2.17). Since u is divergence free, (2.3) gives

∂x(rux) + ∂r(rur) = 0,

we know from standard argument that there exists a potential φ(x, r), known as Stokes’

stream function, such that

∂xφ = −rur, ∂rφ = rux (2.20)

On the cross section z = 0, y > 0, we have

ux(x, r) = ux(x, y = r, z = 0), ur(x, r) = uy(x, y = r, z = 0), uθ(x, r) = uz(x, y = r, z = 0)

(2.21)

From (2.20) and (2.21), it is clear that φ(x, r) ∈ C1(R × R+) ∩ Ck+1(R × R+). Since

∂xφ(x, 0+) = 0, we may, without loss of generality, assume that φ(x, 0+) = 0. This also

determines φ uniquely. Next we define

ψ(x, r) =
φ(x, r)

r
, r > 0. (2.22)

It is easy to see that ψ(x, r) ∈ Ck+1(R × R+), ψ(x, 0+) = ∂rφ(x, 0+) = 0 and (2.17) follows

for r > 0.

Moreover, limr→0+ ∂jrψ(x, r) = limr→0+ ∂jr
φ(x,r)
r

. It follows from straight forward calcula-

tion with l’Hospital’s rule and (2.20) that

∂jrψ(x, 0+) =
j

j + 1
∂j−1
r ux(x, 0

+), (2.23)

therefore ψ(x, r) ∈ Ck+1(R×R+). In addition, (2.19) follows from (2.14) and (2.23).

Part (b): Conversely, we now show the regularity of u = ueθ +∇× (ψeθ) when (u, ψ)

satisfies (2.18) and (2.19). Since u is axisymmetric, it suffices to check the continuity of the

derivatives of u on a cross section, say θ = 0, or z = 0, y ≥ 0.

It is clear from (2.17) and (2.21) that ux(x, y, 0), uy(x, y, 0) and uz(x, y, 0) have continuous

x derivatives up to order k on y ≥ 0. It remains to estimate the y-, z- and mixed derivatives.

From

∂y = cos θ∂r −
sin θ

r
∂θ (2.24)

∂z = sin θ∂r +
cos θ

r
∂θ (2.25)

we can derive the following
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Proposition 1 (i)

∂jyF (x, r, θ) = cosjθ ∂jrF (x, r, θ) + sin θ G(x, r, θ) (2.26)

where G consists of the derivatives of F .

(ii)

∂2m
z (f(x, r) cos θ) = y

m∑
`=0

a`,mz
2`

(
1

r
∂r

)`+m(
f

r

)
(2.27)

∂2m+1
z (f(x, r) cos θ) = y

m∑
`=0

b`,mz
2`+1

(
1

r
∂r

)`+m+1(
f

r

)
(2.28)

∂2m
z (g(x, r) sin θ) =

m∑
`=0

c`,mz
2`+1

(
1

r
∂r

)`+m (g
r

)
(2.29)

∂2m−1
z (g(x, r) sin θ) =

m∑
`=0

d`,mz
2`

(
1

r
∂r

)`+m−1 (g
r

)
(2.30)

for some constants a`,m, b`,m, c`,m and d`,m.

Proof: Part (i) follows straightforwardly from (2.24) and the following identity

(cos θ∂r−
sin θ

r
∂θ)(F1+sin θG1) = (cos θ∂rF1)+sin θ(cos θ∂rG1−

1

r
∂θF1−

sin θ

r
∂θG1). (2.31)

For part (ii), equations (2.27-2.30) result from substituting cos θ = y
r
, sin θ = z

r
followed

by straight forward calculations. We omit the details. �

Now we proceed to show that all the mixed derivatives of orders up to k are also continu-

ous on y ≥ 0. For simplicity of presentation, we consider mixed derivatives performed in the

following order ∂jy∂
q
z∂

i
x. We start with ∂jy∂

q
z∂

i
xux and analyze for q even and odd separately.

When q = 2m+ 1, we derive from (2.25) and (2.29) that

∂jy∂
2m+1
z ∂ixux(x, y, 0)

= ∂jy∂
2m
z (sin θ ∂r∂

i
xux(x, r))|θ=0,r=y

= ∂jy

(∑m
`=0 c`,mz

2`+1(1
r
∂r)

`+m(∂r∂i
xux(x,r)
r

)
)
|z=0,r=y

= 0

(2.32)
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Next, when q = 2m, it follows from (2.25), (2.26), (2.30), (2.20) and (2.22) that

∂jy∂
2m
z ∂ixux(x, y, 0)

= ∂jy∂
2m−1
z (sin θ ∂r∂

i
xux(x, r))|θ=0,r=y

= (∂jr∂
2m−1
z (sin θ ∂r∂

i
xux) + sin θ G) |θ=0,r=y

= ∂jr
∑m

`=0 d`,m(r sin θ)2`
(

1
r
∂r
)`+m−1

(∂r∂i
xux(x,r)
r

)|θ=0,r=y

= d0,m∂
j
r

(
1
r
∂r
)m

∂ixux(x, r)|r=y

= d0,m∂
j
r

(
1
r
∂r
)m+1

(r∂ixψ(x, r)) |r=y.

(2.33)

From Lemma 2 and Taylor’s Theorem, we have

ψ(x, r) = a1(x)r + a3(x)r3 + · · ·+ a2m−1(x)r2m−1 +R2m+1(ψ),

where

a`(x) =
1

`!
∂`rψ(x, 0+),

and

R2m+1(ψ) =

∫ r

0

∂2m+1
s ψ(x, s)

(r − s)2m

(2m)!
ds.

From direct calculation, we have

(
1

r
∂r)

m+1
(
r∂ixψ(x, r)

)
= (

1

r
∂r)

m+1
(
r∂ixR2m+1(ψ)

)
.

In addition, for j ≥ 1, we can write

R2m+1(ψ) = a2m+1(x)r2m+1 + · · ·+ a2m+2n+1(x)r2m+2n+1 +R2m+j+1(ψ)

where n is the largest integer such that 2n < j. The remainder term R2m+j+1 satisfies

∂`rR2m+j+1(ψ)(x, 0+) = 0, 0 ≤ ` ≤ 2m+j, ∂2m+j+1
r R2m+j+1(ψ)(x, 0+) = ∂2m+j+1

r ψ(x, 0+).

(2.34)

Thus, for j ≥ 0, we have

∂jr

(
1

r
∂r

)m+1

(r∂ixψ(x, r)) = ∂jr

(
1

r
∂r

)m+1

(r∂ixR2m+j+1(ψ)) =

m+j+1∑
`=0

C`,m
∂`r∂

i
xR2m+j+1(ψ)

r2m+1−`+j

(2.35)
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for some constants C`,m.

From (2.34), (2.35) and l’Hospital’s rule we conclude that

∂jr

(
1

r
∂r

)m+1

(r∂ixψ)(x, 0+) =

(
m+1∑
`=0

j∑
p=0

C`,m
(2m+ 1− `+ j − p)!

)
∂2m+1+j
r ∂ixψ(x, 0+). (2.36)

Since ψ ∈ Ck+1(R × R+), it follows from (2.33), (2.36) and (2.32) that ∂jy∂
q
z∂

i
xux(x, y, 0) is

continuous and bounded up to y = 0+ for j + q + i ≤ k.

Next we consider the mixed derivatives of uy and uz. It suffices to calculate ∂jy∂
q
z∂

i
x(f(x, r) cos θ+

g(x, r) sin θ)|θ=0,r=y where f and g are either ±∂xψ or ±u.

When q = 2m, it follows from (2.27) and (2.29) that

∂jy∂
2m
z ∂ix(f(x, r) cos θ + g(x, r) sin θ)|θ=0,r=y

= ∂jy∂
2m
z (∂ixf(x, r) cos θ + ∂ixg(x, r) sin θ)|θ=0,r=y

= a0,m∂
j
r

(
r(1

r
∂r)

m(∂
i
xf
r

)
)
|r=y

From (2.18-2.19), both −∂xψ(x, r) and u(x, r) have local expansions of the form

b1(x)r + b3(x)r3 + · · ·+ b2m−1(x)r2m−1 +R2m+1.

Following the same argument above, we can show that both ∂jy∂
2m
z ∂ixuy and ∂jy∂

2m
z ∂ixuz are

continuous and bounded up to y = 0+ for j + 2m+ i ≤ k. The calculations for ∂jy∂
2m+1
z ∂ixuy

and ∂jy∂
2m+1
z ∂ixuz are similar. This completes the proof of Part (b). �

In view of Lemma 2, we now introduce the following function spaces:

Definition 2

Ck
s

(
R×R+

)
= {f(x, r) ∈ Ck

(
R×R+

)
, ∂2j

r f(x, 0+) = 0, 0 ≤ 2j ≤ k}

We can recast Lemma 2 as

Lemma 2’ For k ≥ 0,

Cks (R3, R3) = {ueθ +∇× (ψeθ) |u ∈ Ck
s (R×R+), ψ ∈ Ck+1

s (R×R+)} (2.37)

In the following sections, we will construct natural Sobolev spaces for axisymmetric

divergence free vector fields, derive the counter part of Lemma 2 in these Sobolev spaces,
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and establish various regularity and equivalence results. These results rely heavily on the

expression and pole condition in Lemma 2. We list below a few related Lemmas which will

be used in later sections.

Lemma 3 Let u ∈ Cks (R3, R3), k ≥ 0, be represented by u = ueθ + ∇ × (ψeθ) with u ∈
Ck
s

(
R×R+

)
and ψ ∈ Ck+1

s

(
R×R+

)
. Then (∇×)`u ∈ Ck−`s (R3, R3) and

(∇×)2mu = (−1)m ((L mu)eθ +∇× ((L mψ)eθ)) , if 2m ≤ k,

(∇×)2m+1u = (−1)m+1(L m+1ψ)eθ + (−1)m∇× ((L mu)eθ), if 2m+ 1 ≤ k,

where

L := ∇2 − 1

r2
= (∂2

r +
1

r
∂r + ∂2

x)−
1

r2
.

Moreover

L mu ∈ Ck−2m
s (R×R+), if 2m ≤ k,

L m+1ψ ∈ Ck−1−2m
s (R×R+), if 2m+ 1 ≤ k.

Proof: For any φ ∈ Ci
s

(
R×R+

)
, we have φ eθ ∈ Cis from Lemma 2 (b). With a straight

forward calculation using (2.4), it is easy to verify that for i ≥ 2,

∇×∇× (φ eθ) = −(L φ)eθ. (2.38)

On the other hand, it is clear that

∇×∇× (φ eθ) ∈ Ci−2
s ,

and therefore from Lemma 2 (a),

L φ ∈ Ci−2
s

(
R×R+

)
. (2.39)

The Lemma then follows from (2.38) and (2.39). �

Lemma 4 If v ∈ Ck(R×R+) and v(x, 0+) = 0, then

lim
r→0+

j∂j−1
r

(
v(x, r)

r

)
= ∂jrv(x, 0+), 1 ≤ j ≤ k. (2.40)
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Proof:

Since v ∈ Ck(R×R+), we have

v(x, r) = a1(x)r + a2(x)r2 + · · ·+ ak−1(x)rk−1 +Rk(v) (2.41)

from Taylor’s Theorem. Here

a`(x) =
1

`!
∂`rv(x, 0+),

Rk(v) =

∫ r

0

∂kr v(x, s)
(r − s)k−1

(k − 1)!
ds

and

∂`rRk(v)(x, 0+) = 0, 0 ≤ ` ≤ k − 1, ∂krRk(v)(x, 0+) = ∂kr v(x, 0+). (2.42)

From (2.41), it follows that

∂k−1
r (

v(x, r)

r
) = ∂k−1

r (
Rk(v)

r
) =

k−1∑
`=0

C`
k−1(−1)``!

∂k−`−1
r Rk(v)

r`+1
(2.43)

The assertion (2.40) is obvious for j < k. For j = k, from (2.42), (2.43) and l’Hospital’s

rule, we can easily derive

lim
r→0+

∂k−1
r (

v(x, r)

r
) =

(
k−1∑
`=0

C`
k−1(−1)`

1

`+ 1

)
∂kr v(x, 0+) =

1

k
∂kr v(x, 0+).

This completes the proof of Lemma 4. �

Lemma 5 If v ∈ C2m(R×R+) ∩ C2m−2
s (R×R+) then

∂2m−2
r L v(·, 0+) = 0 if and only if ∂2m

r v(·, 0+) = 0 (2.44)

Proof: Since

(∇2 − 1

r2
)v = (∂2

xv + ∂2
rv + ∂r(

v

r
)),

one has

∂2m−2
r L v = (∂2

x∂
2m−2
r v + ∂2m

r v + ∂2m−1
r (

v

r
)),

it follows from Lemma 4 that

∂2m−2
r L v(x, 0+) =

2m+ 1

2m
∂2m
r v(x, 0+)

and the assertion follows. �

11



2.2 Sobolev Spaces

In this section, we will construct a family of Sobolev spaces Hk
s (R×R+) and show a counter

part for (2.37) in these Sobolev spaces: A weak solenoidal axisymmetric vector field admits

the representation (2.17) with u(x, r) and ψ(x, r) in Hk
s . Moreover, both u and ψ, together

with certain even order derivatives have vanishing traces on r = 0+.

We start with the following identity for general solenoidal vector fields:

Lemma 6 If u ∈ Ck(R3, R3) ∩Hk(R3, R3) and ∇ · u = 0, k ≥ 0, then

‖u‖2Hk(R3,R3) =
k∑
`=0

‖(∇×)`u‖2L2(R3,R3) (2.45)

Proof: We prove (2.45) for ` even and odd separately.

Since ∇ · u = 0, it follows that ∇×∇× u = −∇2u. Thus if ` is even, we can write

‖(∇×)2mu‖L2(R3,R3) = ‖(∇2)mu‖L2(R3,R3) (2.46)

When m = 1 and u ∈ Ck(R3), we can integrate by parts to get∫
R3

|∇2u|2 =

∫
R3

(
3∑

i1=1

∂2
i1
u)2 =

∫
R3

3∑
i1,i2=1

∂2
i1
u∂2

i2
u =

∫
R3

3∑
i1,i2=1

(∂i1∂i2u)2

Similarly, when m = 2,∫
R3

|(∇2)2u|2 =

∫
R3

(
(

3∑
i=1

∂2
i )

2u

)2

=

∫
R3

3∑
i1,i2,i3,i4=1

(∂2
i1
∂2
i2
u)(∂2

i3
∂2
i4
u)

=
3∑

i1,i2,i3,i4=1

∫
R3

(∂i1∂i2∂i3∂i4u)2.

It is therefore easy to see that∫
R3

|(∇2)mu|2 =
3∑

i1,··· ,i2m=1

∫
R3

(∂i1 · · · ∂i2mu)2

and consequently for u ∈ Ck(R3, R3), 2m ≤ k,

‖(∇2)mu‖2L2(R3,R3) =
3∑

i1,··· ,i2m=1

‖(∂i1 · · · ∂i2m)u‖2L2(R3,R3). (2.47)

12



On the other hand, if ` is odd, we first write

(∇×)2m+1u = ∇× (−(∇2))mu = (−1)m∇× (∇2)mu

then apply the identity

‖∇v‖2L2(R3,R3×3) = ‖∇ × v‖2L2(R3,R3) + ‖∇ · v‖2L2(R3)

to get

‖(∇×)2m+1u‖L2(R3,R3) = ‖∇ × (∇2)mu‖L2(R3,R3) = ‖(∇2)m∇u‖L2(R3,R3) (2.48)

and from (2.47),

‖(∇2)m∇u‖2L2(R3,R3) =
3∑

i,j=1

‖(∇2)m∂iuj‖2L2(R3) =
3∑

i,j=1

3∑
i1,··· ,i2m=1

∫
R3

(∂i1 · · · ∂i2m∂iuj)
2

=
3∑

i1,··· ,i2m+1=1

‖(∂i1 · · · ∂i2m+1)u‖2L2(R3,R3).

(2.49)

It follows from (2.46), (2.47), (2.48) and (2.49) that

‖u‖2Hk(R3,R3) =
k∑
`=0

3∑
i1,··· ,i`=1

‖∂i1 · · · ∂i`u‖2L2(R3,R3) =
k∑
`=0

‖(∇×)`u‖2L2(R3,R3)

This completes the proof of Lemma 6. �

In Lemma 7 below, we will derive an equivalent representation of the Sobolev norms

for axisymmetric solenoidal vector fields. We first introduce the following weighted Sobolev

space for axisymmetric solenoidal vector fields. Let a, b ∈ C0
(
R×R+

)
, we define the

weighted L2 inner product and norm

〈a, b〉 =

∫ ∞
−∞

∫ ∞
0

a(x, r)b(x, r) rdxdr, ‖a‖20 = 〈a, a〉, (2.50)

and for a, b ∈ C1
s

(
R×R+

)
, we define the weighted H1 inner product and norm

[a, b] = 〈∂xa, ∂xb〉+ 〈∂ra, ∂rb〉+ 〈a
r
,
b

r
〉 , |a|21 = [a, a] (2.51)

and we define

‖a‖21 = ‖a‖20 + |a|21. (2.52)
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When a ∈ C1
s

(
R×R+

)
and b ∈ C1

s

(
R×R+

)
∩ C2 (R×R+), we also have the following

identity from integration by parts:

〈a,L b〉 = −[a, b].

If u = ueθ +∇× (ψeθ), with u ∈ C0
(
R×R+

)
and ψ ∈ C1

s

(
R×R+

)
, it is easy to see

that

‖u‖2L2(R3,R3) = ‖u‖20 + |ψ|21 (2.53)

Higher order Sobolev norms can be defined similarly in terms of u and ψ:

Definition 3 For a ∈ Ck
s (R×R+) and u = ueθ +∇× (ψeθ) ∈ Cks (R3, R3), we define

‖a‖2H2m
s (R×R+) :=

m−1∑
`=0

‖L `a‖21 + ‖L ma‖20, 2m ≤ k

‖a‖2
H2m+1

s (R×R+)
:=

m∑
`=0

‖L `a‖21, 2m+ 1 ≤ k

‖u‖2H2m
s (R×R+,R3) := |ψ|21 +

m−1∑
`=0

‖L `u‖21 +
m∑
`=1

‖L `ψ‖21 + ‖L mu‖20, 2m ≤ k

‖u‖2H2m+1
s (R×R+,R3)

:= |ψ|21 +
m∑
`=0

‖L `u‖21 +
m∑
`=1

‖L `ψ‖21 + ‖L m+1ψ‖20, 2m+ 1 ≤ k

When k = 0, we denote ‖a‖L2
s(R×R+) = ‖a‖H0

s (R×R+) and ‖u‖L2
s(R×R+,R3) = ‖u‖H0

s(R×R+,R3)

by convention.

In view of Lemma 2, Lemma 3, Lemma 6 and (2.53), we have proved the following

Lemma 7 If u ∈ Cks (R3, R3), k ≥ 0, then

‖u‖Hk(R3,R3) = ‖u‖Hk
s (R×R+,R3)

We can now define the Sobolev spaces for axisymmetric solenoidal vector fields following

standard procedure. Denote by C0 the space of compactly supported functions, we define

Definition 4

L2
s(R×R+) := Completion of C0

s (R×R+) ∩ C0(R×R+) with respect to ‖ · ‖0

Ĥ1
s (R×R+) := Completion of C1

s (R×R+) ∩ C0(R×R+) with respect to | · |1

Hk
s (R×R+) := Completion of Ck

s (R×R+) ∩ C0(R×R+) with respect to ‖ · ‖Hk
s (R×R+)

Hk
s(R×R+, R3) := Completion of Cks (R3, R3) ∩ C0(R

3, R3) with respect to ‖ · ‖Hk
s (R×R+,R3)

14



With the spaces introduced above, it is easy to see that a necessary and sufficient condi-

tion for a ∈ Hk
s (R×R+), k ≥ 1, is

L `a ∈ H1
s

(
R×R+

)
, for all 0 ≤ 2` ≤ k−1; L ma ∈ L2

s

(
R×R+

)
, for all 2 ≤ 2m ≤ k.

As a consequence, we have the following characterization for the divergence free Sobolev

spaces Hk
s(R×R+, R3):

Lemma 8 The following statements are equivalent:

1. u ∈ Hk
s(R×R+, R3)

2. u ∈ Hk(R3, R3), ∇ · u = 0 and u is axisymmetric.

3. u = ueθ + ∇ × (ψeθ) with u ∈ Hk
s (R × R+), ψ ∈ Ĥ1

s (R × R+) and, if k ≥ 1,

L ψ ∈ Hk−1
s (R×R+).

When the above statements hold, we have

‖u‖Hk(R3,R3) = ‖u‖Hk
s (R×R+,R3). (2.54)

Lemma 8 follows from Lemma 3, Lemma 7 and standard density argument. We omit the

details.

Finally, the counterpart of (2.18) and (2.19) for u ∈ Hk
s(R×R+, R3) is given the following

trace Lemma and Corollary:

Lemma 9 If v ∈ Ĥ1
s (R×R+), then the trace of v on r = 0 vanishes.

Proof: For any v ∈ C1
(
R×R+

)
∩ C0

(
R×R+

)
, we have∫

R

|v(x, 0)|2 dx = −2

∫ ∫
R×R+

v∂rv dx dr ≤
∫ ∫

R×R+

(
v2

r2
+ (∂rv)2

)
r dx dr ≤ ‖v‖21

Since v(x, 0) = 0 for v ∈ C1
s

(
R×R+

)
, the Lemma follows from standard density argument.

� Using the same density argument, we have the following

Corollary 2 (i) If v ∈ Hk
s (R×R+), then L `∂nxv, 2` + n ≤ k − 1, have zero trace on

r = 0.
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(ii) If v ∈ Hk
s (R×R+), then the trace of ∂2`

r v on r = 0 vanish for all 0 ≤ 2` ≤ k − 1.

Example 1:

Take u = ueθ with u = r2e−r. Note that u = O(r2) near the axis. Similar functions

can be found in literature as initial data in numerical search for finite time singularities.

Although u ∈ C∞(R × R+) and u may appear to be a smooth vector field, it is easy to

verify that L u(x, 0+) 6= 0. Thus from Lemma 2, Lemma 8 and Lemma 9, u is neither in

C2(R3, R3) nor in H3(R3, R3).

3 Axisymmetric Navier-Stokes Equations and Equiva-

lence Results

The axisymmetric Navier-Stokes equation (1.3) can be formally derived from (1.2). From

Lemma 2, a smooth solution of (1.2) gives rise to a smooth solution of (1.3). However, it is

not clear whether smooth solutions of (1.3) also give rise to smooth solutions of (1.2). For

example, take ν = 0 in (1.3) and consider the Euler equation:

∂tu+ ux∂xu+ ur∂ru+ ur

r
u = 0,

∂tω + ux∂xω + ur∂rω − ur

r
ω = 1

r
∂x(u

2),

ω = −L ψ,

(3.1)

It is easy to see that

u = ueθ, u(t, x, r) = f(r), ω = ψ ≡ 0 (3.2)

gives rise to an exact stationary solution to (3.1) for any function f(r) ∈ Ck(R × R+),

including the one given in Example 1. In other words, it is possible to have a solution in the

class
ψ(t;x, r) ∈ C1

(
0, T ;Ck+1(R×R+)

)
u(t;x, r) ∈ C1

(
0, T ;Ck(R×R+)

)
ω(t;x, r) ∈ C1

(
0, T ;Ck−1(R×R+)

) (3.3)

with a genuine singularity on r = 0 as described in Example 1. This singularity is invisible

to the Ck(R × R+) norm. In addition, it may well persist in time. In section 3.1, we will

show that the persistence of the pole singularity is indeed generic for Euler equation.
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3.1 Propagation and Persistence of Pole Singularity

In Euler (3.1), both u and ω transport with the velocity (ux, ur) = (∂rψ + ψ
r
,−∂xψ). The

equation for ψ is elliptic and one needs to impose one boundary condition for ψ. This is

naturally given by

ψ(x, 0) = 0 (3.4)

in view of Lemma 2. Consequently, the r component of the velocity field ur = −∂xψ vanishes

on the boundary r = 0 and turns it into a characteristic boundary. As a result, the value of

both u and ω on r = 0+ are completely determined by the value of initial data on r = 0+

and the dynamics. Neither u nor ω should be imposed on r = 0. In the following Theorem,

we will show that the pole singularity will propagate and remain on the boundary r = 0.

Moreover, we will show that the order of singularity will persist in time as illustrated in the

special example mentioned above.

Theorem 1 Let (ψ, u, ω) be a solution to the axisymmetric Euler equation (3.1) in the class ψ(t, x, r)
u(t, x, r)
ω(t, x, r)

 ∈ C0

[0, T ),

 Ck+1(R×R+)

Ck(R×R+)

Ck−1(R×R+)

 (3.5)

with k ≥ 2 and

u = ∇× (ψeθ) + ueθ

Then for 0 < t < T , 0 ≤ j ≤ k,

u(t, ·) ∈ Cjs(R3, R3) if and only if u(0, ·) ∈ Cjs(R3, R3) (3.6)

Proof:

From 3 and (3.5), it suffices to show that, for 0 < t ≤ T , 0 ≤ j ≤ k,{
∂2`
r u(t, ·, 0+) = 0, for all 2` ≤ j
∂2n
r ψ(t, ·, 0+) = 0, for all 2n ≤ j + 1

if and only if

{
∂2`
r u(0, ·, 0+) = 0, for all 2` ≤ j
∂2n
r ψ(0, ·, 0+) = 0, for all 2n ≤ j + 1

(3.7)

We will prove (3.7) by induction on j using Lemma 10 below. We first prove the case

j = 0 in part (i). The induction from j = 2m to j = 2m + 1 and from j = 2m + 1 to

j = 2m+ 2 are given in part (ii) and (iii) respectively.
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Lemma 10 (i) If (3.5) holds and

ψ ∈ C0
(
[0, T ), C1

s (R×R+)
)
, (3.8)

then for 0 < t ≤ T ,

u(t, ·, ·) ∈ C0
s (R×R+) if and only if u(0, ·, ·) ∈ C0

s (R×R+)

(ii) If 2m+ 1 ≤ k, (3.5) holds and

ψ ∈ C0
(
[0, T ), C2m

s (R×R+)
)
, u ∈ C0

(
[0, T ), C2m

s (R×R+)
)
, (3.9)

then for 0 < t ≤ T ,

ψ(t, ·, ·) ∈ C2m+2
s (R×R+) if and only if ψ(0, ·, ·) ∈ C2m+2

s (R×R+)

(iii) If 2m+ 2 ≤ k, (3.5) holds and

ψ ∈ C0
(
[0, T ), C2m+2

s (R×R+)
)
, u ∈ C0

(
[0, T ), C2m

s (R×R+)
)
, (3.10)

then for 0 < t ≤ T ,

u(t, ·, ·) ∈ C2m+2
s (R×R+) if and only if u(0, ·, ·) ∈ C2m+2

s (R×R+)

Proof:

Part (i): From the boundary condition 3.4 we know that ur(t, x, 0
+) = 0. From Lemma

4, we know that limr→0+
ur

r
= −∂xrψ(t, x, 0+) and ux(t, x, 0

+) = 2(∂rψ|r=0+). Therefore the

first equation of (3.1) on r = 0+ reads

∂tu+ 2(∂rψ|r=0+)∂xu− (∂rxψ|r=0+)u = 0

This is a first order linear hyperbolic equation with continuous coefficients in (t, x) ∈ (0, T )×
R for u(t, x, 0+). Hence, for 0 < t ≤ T ,

u(t, ·, 0+) = 0 if and only if u(0, ·, 0+) = 0

Part (ii): From Lemma 5 we see that

ω ∈ C0
(
[0, T ), C2m−2

s (R×R+)
)
, (3.11)
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Let v(t, x) = ∂2m
r ω(t, x, 0+), we can derive a linear hyperbolic equation for v(t, x) by applying

∂2m
r to the second equation of (3.1):

∂2m
r (ux∂xω)|r=0+

=
∑2m

`=0C
`
2m∂

`
r

(
∂rψ + ψ

r

)
|r=0+∂x∂

2m−`
r ω|r=0+

=
∑2m

`=0

(
1 + 1

`+1

)
C`

2m∂
`+1
r ψ|r=0+∂x∂

2m−`
r ω|r=0+

(3.12)

∂2m
r (ur∂rω)|r=0+ = −

2m∑
`=0

C`
2m∂

`
r(∂xψ)|r=0+∂r∂

2m−`
r ω|r=0+ (3.13)

∂2m
r ((∂x

ψ

r
)ω)|r=0+ =

2m∑
`=0

C`
2m∂

`
r

(
∂x
ψ

r

)
|r=0+∂2m−`

r ω|r=0+ =
2m∑
`=0

1

`+ 1
C`

2m∂x∂
`+1
r ψ|r=0+∂2m−`

r ω|r=0+

(3.14)

∂2m
r (

u

r
∂xu)|r=0+ =

2m∑
`=0

C`
2m∂

`
r

(u
r

)
|r=0+∂x(∂

2m−`
r u)|r=0+ =

2m∑
`=0

1

`+ 1
C`

2m∂
`+1
r u|r=0+∂x∂

2m−`
r u|r=0+

(3.15)

In (3.12-3.15), we have used Lemma 4 to get

∂`r

(
ψ

r

)
|r=0+ =

1

`+ 1
∂`+1
r ψ|r=0+ . (3.16)

Next, from (3.9)

∂2`
r ψ|r=0+ = 0, ∂2`

r u|r=0+ = 0, for ` ≤ m (3.17)

and from (3.11)

∂2`
r ω|r=0+ = 0, for ` ≤ m− 1 (3.18)

It follows that all the terms on the right hand side of (3.12-3.15) vanish except ` = 0 in

(3.12, 3.14) and ` = 1 in (3.13). In summary, we have

∂2m
r (ux∂xω)|r=0+ = 2(∂rψ|r=0+)∂xv (3.19)

∂2m
r (ur∂rω)|r=0+ = −2j(∂rxψ|r=0+)v (3.20)

∂2m
r ((∂x

ψ

r
)ω)|r=0+ = (∂rxψ|r=0+)v (3.21)

∂2m
r (

u

r
∂xu)|r=0+ = 0 (3.22)
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Thus we end up with a first order hyperbolic equation with smooth coefficients for v:

∂tv + 2(∂rψ|r=0+)∂xv − (2m− 1)(∂xrψ|r=0+)v = 0.

It follows that for 0 < t ≤ T ,

∂2m
r ω(t, ·, 0+) = 0 if and only if ∂2m

r ω(0, ·, 0+) = 0, (3.23)

that is, in view of Lemma 5 and (3.9),

∂2m+2
r ψ(t, ·, 0+) = 0 if and only if ∂2m+2

r ψ(0, ·, 0+) = 0

for 0 < t ≤ T .

Part (iii): Let z(t, x) = ∂2m+2
r u(t, x, 0+). Following a similar calculation as in part (ii), we

have

∂2m+2
r (ux∂xu)|r=0+ =

2m+2∑
`=0

C`
2m+2∂

`
rux|r=0+∂x(∂

2m+2−`
r u)|r=0+ = 2(∂rψ|r=0+)∂xv (3.24)

∂2m+2
r (ur∂ru)|r=0+ =

2m+2∑
`=0

C`
2m+2∂

`
rur|r=0+∂x(∂

2m+2−`
r u)|r=0+ = −(2m+ 2)(∂xrψ|r=0+)v

(3.25)

and

∂2m+2
r (

∂xψ

r
u)|r=0+ =

2m+2∑
`=0

C`
2m+2∂

`
r

(
∂xψ

r

)
|r=0+∂2m+2−`

r u = (∂rxψ|r=0+)v (3.26)

We therefore obtain a first order linear hyperbolic equation with smooth coefficients for z:

∂tz + 2(∂rψ|r=0+)∂xz − (2m+ 3)(∂xrψ|r=0+)z = 0.

Therefor, we have proved that for 0 < t ≤ T ,

∂2m+2
r u(t, ·, 0+) = 0 if and only if ∂2m+2

r u(0, ·, 0+) = 0

This completes the proof of part (iii) and hence the proof of Theorem 1. �
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3.2 Classical Solutions of Axisymmetric Navier-Stokes Equations

Theorem 1 reveals the subtlety of the pole singularity. In the case of Navier-Stokes equation,

∂tu+ ux∂xu+ ur∂ru+ ur

r
u = νL u,

∂tω + ux∂xω + ur∂rω − ur

r
ω = 1

r
∂x(u

2) + νL ω

ω = −L ψ,

(3.27)

with ν > 0, we have an elliptic-parabolic system on a semi-bounded region {r > 0}. We

expect certain regularizing effect to take place. In the case the swirling velocity u is zero,

there exists a unique global smooth solution [10, 20]. (Result in primitive variable, translate

to vorticity formulation is smooth enough) However, with the swirl velocity, whether or not

initially smooth data develops singularity in finite time is is still a major open problem.A

fundamental regularity result concerning the solution of the Navier-Stokes equation is given

in the pioneering work of Caffarelli, Kohn and Nirenberg [3]: The one dimensional Hausdorff

measure of the singular set is zero. As a consequence, the only possible singularity for

axisymmetric Navier-Stokes flows would be on the axis of rotation. Further results on partial

regularity for axisymmetric flow can be found in [2, 17, 4, 9, 5]. A recent breakthrough

concerning the subtle behavior of the axisymmetric NSE can be found in [8].

Contrast to the case of Euler equation, the equivalence Theorem that we present below

rules out the possibility of persistence of the pole singularity for solutions which are smooth

up to the boundary r = 0. From standard PDE theory, we need to assign boundary values

for (ψ, u, ω). The zeroth order part of the pole condition (2.18, 2.19) would suffice:

ψ(x, 0) = u(x, 0) = ω(x, 0) = 0. (3.28)

It is therefore a natural question to ask if a smooth solution of (3.27, 3.28) in the class

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1(R×R+)

)
u(t;x, r) ∈ C1

(
0, T ;Ck(R×R+)

)
ω(t;x, r) ∈ C1

(
0, T ;Ck−1(R×R+)

) (3.29)

will give rise to a smooth solution of (3.27) in the class

ψ(t;x, r) ∈ C1
(
0, T ;Ck+1

s (R×R+)
)

u(t;x, r) ∈ C1
(
0, T ;Ck

s (R×R+)
)

ω(t;x, r) ∈ C1
(
0, T ;Ck−1

s (R×R+)
) (3.30)
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In other words, is the pole condition (2.18,2.19) automatically satisfied if only the zeroth

order part (3.28) is imposed?

The answer to this question is affirmative. We will show in Lemma 2 that (3.30) and

(3.29) are indeed equivalent for solutions of (3.27, 3.28). The proof is based on local Taylor

expansion. We decompose the proof into several Lemmas.

Lemma 11 If 2m ≤ k − 2 and

ψ ∈ Ck+1(R×R+) ∩ C2m
s (R×R+)

u ∈ Ck(R×R+) ∩ C2m
s (R×R+)

ω ∈ Ck−1(R×R+) ∩ C2m
s (R×R+)

, (3.31)

then all the nonlinear terms in (3.27)

ux∂xω, ur∂rω,
ur
r
ω,

1

r
∂x(u

2) (3.32)

and

ux∂xu, ur∂ru,
ur
r
u, (3.33)

are in C2m
s (R×R+).

Proof: The calculations here are analogues of the proof of Theorem 1. (3.9) holds true

under the first two conditions in (3.31). hence, ∂2m
r of four terms in (3.32) at r = 0+ is

given by (3.19-3.22) with v(t, x) = ∂2m
r ω(t, x, 0+). The third condition in (3.31) implies that

v = 0. Hence, one has

∂2m
r (ux∂xω)|r=0+ = ∂2m

r (ur∂rω)|r=0+ = ∂2m
r (

ur
r
ω)|r=0+ = ∂2m

r (
1

r
∂x(u

2))|r=0+ = 0

Obviously, for j < m, one also has

∂2j
r (ux∂xω)|r=0+ = ∂2j

r (ur∂rω)|r=0+ = ∂2j
r (
ur
r
ω)|r=0+ = ∂2j

r (
1

r
∂x(u

2))|r=0+ = 0

using exactly same argument. This implies that

ux∂xω, ur∂rω,
ur
r
ω,

1

r
∂x(u

2) ∈ C2m
s (R×R+). (3.34)

Next, (3.10) holds true under the three conditions in (3.31). Hence, ∂2m
r of three terms in

(3.33) at r = 0+ is given by (3.24-3.26) with v(t, x) = ∂2m
r u(t, x, 0+). The second condition
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in (3.31) implies that v = 0. Here we used ∂2m
r instead of ∂2m+2

r in (3.24-3.26). Hence, one

has

∂2m
r (ux∂xu)|r=0+ = ∂2m

r (ur∂ru)|r=0+ = ∂2m
r (

ur
r
u)|r=0+ = 0

Again, for j < m, one also has

∂2j
r (ux∂xu)|r=0+ = ∂2j

r (ur∂ru)|r=0+ = ∂2j
r (
ur
r
u)|r=0+ = 0

This implies that

ux∂xu, ur∂ru,
ur
r
u ∈ C2m

s (R×R+). (3.35)

This completes the proof of Lemma (11).

Theorem 2 If (ψ, u, ω) is a solution to (3.27, 3.28) in the class (3.29) with k ≥ 3. Then

ψ ∈ Ck+1
s (R×R+)

u ∈ Ck
s (R×R+)

ω ∈ Ck−1
s (R×R+)

(3.36)

for 0 < t < T .

Proof: Let j∗ be the largest integer such that 2j∗ ≤ k−1. We first show that on 0 < t < T ,

∂2`
r ψ(t, x, 0+) = 0
∂2`
r u(t, x, 0+) = 0

∂2`
r ω(t, x, 0+) = 0.

(3.37)

for 0 ≤ ` ≤ j∗.

This is done by induction on `. When ` = 0, (3.37) is given by the boundary condition

(3.28). Suppose that (3.37) is verified for ` = j with j + 1 ≤ j∗. We apply ∂2j−2
r |(x,0+) on

both sides of (3.27) and conclude that, in view of Lemma 11,

ν∂2j
r (∇2 − 1

r2
)u(x, 0+) = 0,

ν∂2j
r (∇2 − 1

r2
)ω(x, 0+) = 0,

∂2j
r (∇2 − 1

r2
)ψ(x, 0+) = 0.

Apply Lemma 5 to ∂2j
r ψ, ∂2j

r u, ∂2j
r ω, one has ∂2j+2

r ψ(x, 0+) = ∂2j+2
r u(x, 0+) = ∂2j+2

r ω(x, 0+) =

0 thus (3.37) is verified for ` = j + 1.

We can continue the induction until (3.37) is verified for ` = j∗ to get

ψ ∈ Ck+1(R×R+) ∩ C2j∗
s (R×R+)

u ∈ Ck(R×R+) ∩ C2j∗
s (R×R+)

ω ∈ Ck−1(R×R+) ∩ C2j∗
s (R×R+)

(3.38)

23



To complete the proof, we proceed with k odd and even separately.

If k is odd, say k = 2m+ 1, then j∗ = m and (3.38) can be written as

ψ ∈ C2m+2(R×R+) ∩ C2m
s (R×R+), u ∈ C2m+1

s (R×R+), ω ∈ C2m
s (R×R+). (3.39)

Apply Lemma 5 to ∂2m
r ψ, one has that ∂2m+2

r ψ(x, 0) = 0, therefore ψ ∈ C2m+2
s (R×R+).

Similarly, if k = 2n, then j∗ = n− 1 and we have from (3.38)

ψ ∈ C2n+1(R×R+)∩C2n−2
s (R×R+), u ∈ C2n(R×R+)∩C2n−2

s (R×R+), ω ∈ C2n−1
s (R×R+).

Since 2n−2 = k−2, the assumption in Lemma 11 is satisfied. Therefore we can continue

the induction for u to get ∂2n
r u(x, 0+) = 0, thus u ∈ C2n

s (R×R+).

Finally, apply Lemma 5 to ∂2n−2
r ψ, we conclude that ∂2n

r ψ(x, 0+) = 0 and ψ ∈ C2n+1(R×
R+) ∩ C2n

s (R×R+) = C2n+1
s (R×R+). This completes the proof of Lemma 2. �

The equivalence of (1.2) and (3.27) in terms of regularity of classical solutions is given

by

Theorem 3 (I) Suppose (u, p) is an axisymmetric solution to NSE (1.2) with u ∈ C1
(
0, T ; Cks

)
,

p ∈ C0
(
0, T ;Ck−1(R3)

)
and k ≥ 3. Then there is a solution (ψ, u, ω) to (3.27) in the

class
ψ(t, x, r) ∈ C1

(
0, T ;Ck+1

s (R×R+)
)

u(t, x, r) ∈ C1
(
0, T ;Ck

s (R×R+)
)

ω(t, x, r) ∈ C1
(
0, T ;Ck−1

s (R×R+)
)

and u = ueθ +∇× (ψeθ).

(II) Let (ψ, u, ω) be a solution to (3.27,3.28) in the class

ψ(t, x, r) ∈ C1
(
0, T ;Ck+1(R×R+)

)
u(t, x, r) ∈ C1

(
0, T ;Ck(R×R+)

)
ω(t, x, r) ∈ C1

(
0, T ;Ck−1(R×R+)

)
with k ≥ 3. Then

u = ueθ +∇× (ψeθ) ∈ C1(0, T ; Cks )

and there is an axisymmetric scalar function p ∈ C0(0, T ;Ck−1(R3)) such that (u, p)

is a solution to NSE (1.2).
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Proof:

Part (I): Since u ∈ C1
(
0, T ; Cks

)
is a solution to (1.2) with k ≥ 3, it follows that

ω = ∇× u = ωeθ +∇× (ueθ) ∈ C1
(
0, T ; Ck−1

s

)
is also an axisymmetric solution to the Navier-Stokes equation in vorticity form:

∂tω +∇× (ω × u) = −ν∇×∇× ω (3.40)

Next, we express each term of (3.40) in the cylindrical coordinate as

∂tω = ∂tωeθ +∇× (∂tueθ), (3.41)

−∇×∇× ω =

(
(∇2 − 1

r2
)ω

)
eθ +∇×

(
(∇2 − 1

r2
)ueθ

)
, (3.42)

and

∇× (ω × u) =
(
J(
ω

r
, rψ)− J(

u

r
, ru)

)
eθ +∇×

(
1

r2
J (ru, rψ) eθ

)
. (3.43)

From (3.41-3.43), we can rewrite (3.40) as

aeθ +∇× (beθ) = 0, (3.44)

where

a = ∂tω + J
(ω
r
, rψ
)
− J

(u
r
, ru
)
− ν(∇2 − 1

r2
)ω,

and

b = ∂tu+
1

r2
J (ru, rψ)− ν(∇2 − 1

r2
)u.

From (3.44), it follows that a(x, r) = 0 and rb(x, r) is a constant. Since b(x, 0+) = 0 from

Lemma 11 and Lemma 2, we conclude that b(x, r) ≡ 0 as well. Expanding the Jacobians in

above two equations we get exactly (3.27). This completes the proof of part (I).

Part (II): From Theorem 2, we know that (ψ, u, ω) satisfies (3.36). Therefore Lemma 2

applies and we have

u = ueθ +∇× (ψeθ) ∈ C1(0, T ; Cks )

Next we define ω = ∇ × u. From (3.41-3.43), we see that ω satisfies the Navier-Stokes

equation in vorticity formulation (3.40). That is

∇× (∂tu+ ω × u+ ν∇× ω) = 0.
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Thus there exists a function p : (0, T )→ Ck−1(R3) such that

∂tu+ ω × u+ ν∇× ω = −∇p (3.45)

In other words, (u, p) satisfies the NSE (1.2). Since u ∈ C1(0, T ; Cks ), it follows from (3.45)

that ∇p ∈ C0(0, T ; Ck−2
s ). In addition, we can further assign p(t) on a reference point (x0, r0)

so that p ∈ C0(0, T ;Ck−1(R3)).

By construction, the left hand side of (3.45) is axisymmetric and therefore so is ∇p. In

particular

∂θ(∇p · eθ) = ∂θ

(
1

r
∂θp

)
= 0.

Therefore

p = a(x, r)θ + b(x, r)

Since p is continuous and single-valued, we conclude that a = 0. In other words, p is

axisymmetric. This completes the proof of theorem. �

3.3 Weak Formulation and Leray Solution

The Navier-Stokes equation in vorticity formulation for axisymmetric flows (3.27) can be

recast as following in terms of Jacobians [14]

ut + 1
r2
J (ru, rψ) = νL u ,

ωt + J
(
ω
r
, rψ
)
− J

(
u
r
, ru
)

= νL ω ,

ω = −L ψ ,

(3.46)

The expression of the nonlinear terms in (3.46) in terms of Jacobians are equivalent to the

usual expression (1.3) for strong solutions. Accompanied with the Jacobians is a set of

permutation identities which leads naturally to an energy and helicity preserving numerical

scheme and played a key role in the convergence proof of the scheme [14, 15].

We propose the following formulation for weak solution:

Find u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1
s ), ψ ∈ L∞(0, T ;H1

s ) and ω ∈ L2(0, T ;L2) such that

〈∂tu, v〉+ 〈 v
r2
, J(ru, rψ)〉+ ν[u, v] = 0

[∂tψ, φ] + 〈 ω
r2
, J(rψ, rφ)〉 − 〈 u

r2
, J(ru, rφ)〉+ ν〈ω,L φ〉 = 0

〈ω, ξ〉 = [ψ, ξ]

(3.47)
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for all v ∈ H1
s (R×R+), φ ∈ H1

s ∩H2(R×R+), and ξ ∈ H1
s (R×R+).

Note that the viscous term in (3.47) is not treated the same way in standard variational

formulation. In addition, only u = 0 and ψ = 0 are imposed on the boundary r = 0. One can

regard (3.47) as a variational formulation of the fourth order PDE for ψ where the boundary

condition ω = 0 is imposed implicitly. Although we have shown equivalence of NSE in

vorticity-stream formulation and primitive formulation for the classic solutions which are

smooth up to the boundary r = 0. It is still not clear a priori how (3.47) is related to the

weak solutions of (1.2) as constructed in Leray’s seminal work [11]. To answer this question,

we will show in Theorem 4 that (3.47) can be recast in standard 3D notations as:

Find u ∈ L∞ (0, T ;L2(R×R+, R3)) ∩ L2 (0, T ;H1
s(R×R+, R3)) such that

〈v, ∂tu+ ω × u〉+ ν〈∇ × v,∇× u〉 = 0 for all v ∈ H1
s(R×R+, R3). (3.48)

Now we recall Leray’s definition of weak solution:

Find u ∈ L∞ (0, T ;L2(R3, R3)) ∩ L2 (0, T ;H1(R3, R3))

〈v, ∂tu+ ω × u〉+ ν〈∇ × v,∇× u〉 = 0 for all v ∈ C1
0(R3, R3),∇ · v = 0. (3.49)

Upon comparing (3.48) and (3.49), we see that the key point in establishing the equiva-

lence result lies in a proper decomposition of a general divergence free test function into two

parts, one is axisymmetric and the other has mean zero components. This is given by the

following Lemma:

Lemma 12 Let v ∈ C1(R3, R3), ∇ · v = 0, then there exists a vsym ∈ C1
s (R

3, R3) and

vx(x, r, θ) = vsymx (x, r), vr(x, r, θ) = vsymr (x, r), vθ(x, r, θ) = vsymθ (x, r), (3.50)

where

f(x, r) =
1

2π

∫ 2π

0

f(x, r, θ)dθ

Proof:

Since v ∈ C1(R3, R3), ∇ · v = 0, there exists φ = φxex + φrer + φθeθ ∈ C2(R3, R3), such

that ∇× φ = v. We then define

vsym = ∇× (φθeθ) + vsymθ eθ, vsymθ = ∂xφr − ∂rφx.
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It follows that vsym is divergence free and satisfies (3.50). In addition, φx(·, ·, θ), φr(·, ·, θ), φθ(·, ·, θ) ∈
C2(R × R+) for any fixed θ in view of Corollary 1. We therefore conclude from Bounded

Convergence Theorem that

lim
r→0+

1

2π

∫ 2π

0

∂ix∂
j
r

 φx(x, r, θ)
φr(x, r, θ)
φθ(x, r, θ)

 =
1

2π

∫ 2π

0

lim
r→0+

∂ix∂
j
r

 φx(x, r, θ)
φr(x, r, θ)
φθ(x, r, θ)

 , 0 ≤ i+ j ≤ 2

(3.51)

In other words, φx, φr, φθ ∈ C2(R×R+). Moreover, (2.14, 2.15) imply that φθ ∈ C2
s (R×R+),

vsymθ ∈ C1
s (R×R+) therefore vsym ∈ C1

s . �

We are now ready to show the following equivalence result.

Theorem 4 Let u = ueθ +∇× (ψeθ) and ω = L ψ. The following three statements are all

equivalent.

(i) (ψ, u, ω) is a weak solution (3.47).

(ii) u is a axisymmetric weak solution defined by (3.48).

(iii) u is a Leray weak solution as defined in (3.49).

Proof:

We first show that (i) and (ii) are equivalent. Let u be an axisymmetric weak solution

(3.48) and let the test function be given by v = veθ +∇× (φeθ). Simple calculation gives

〈∂tu,v〉 = 〈∂tu, v〉+ [∂tψ, φ] (3.52)

〈∇ × u,∇× v〉 = 〈ω,L φ〉+ [u, v] (3.53)

〈ω × u,v〉 =

∫
R3

ωeθ × (∇× (ψeθ)) · (∇× (φeθ))−
∫
R3

ueθ × (∇× (ueθ)) · (∇× (φeθ))

+

∫
R3

veθ × (∇× (ueθ)) · (∇× (ψeθ))

In cylinder coordinates, we can write∫
R3

aeθ × (∇× (beθ)) · (∇× (ceθ)) =

∫
R×R+

a

r
(∂x(rb)∂r(rc)− ∂r(rb)∂x(rc)) drdx

= 〈 a
r2
, J(rb, rc)〉
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Hence

〈ω × u,v〉 = 〈 ω
r2
, J(rψ, rφ)〉 − 〈 u

r2
, J(ru, rφ)〉+ 〈 v

r2
, J(ru, rψ)〉 (3.54)

Since v and φ are independent, it follows from (3.52), (3.53), (3.54) and (3.48) that

〈∂tu, v〉+ 〈 v
r2
, J(ru, rψ)〉+ ν[u, v] = 0 (3.55)

[∂tψ, φ] + 〈 ω
r2
, J(rψ, rφ)〉 − 〈 u

r2
, J(ru, rφ)〉+ ν〈ω,L φ〉 = 0 (3.56)

Together weak formulation of relation ω = L ψ:

[ψ, ξ] = 〈ω, ξ〉 for all ξ ∈ H1
s (R×R+). (3.57)

Hence (ψ, u, ω) is a weak solution to (3.47). The converse is also true by reversing the

calculations above. This proves the equivalence between (i) and (ii).

Since C1
s (R

3, R3) ∩ Cc(R3, R3) is a subspace of {v ∈ C1
0(R3, R3),∇ · v = 0}, and is dense

in H1
s(R×R+, R3), (iii) implies (ii).

It remains to show that (ii) implies (iii). Let u be an axisymmetric weak solution of

(3.48). From Lemma 12, for any test function v ∈ C1
0(R3, R3) with ∇ · v = 0, we can

construct vsym ∈ C1
s (R

3, R3) ∩ C0(R
3, R3) such that∫ 2π

0

(v − vsym)(x, r, θ)dθ = 0, for all (x, r) ∈ (R×R+) (3.58)

For any w ∈ L2
s(R

3, R3), one has∫ 2π

0

(v − vsym) ·w(x, r, θ)dθ = 0, for all (x, r) ∈ (R×R+) (3.59)

and ∫ 2π

0

∇× (v − vsym) ·w(x, r, θ)dθ = 0, for all (x, r) ∈ (R×R+) (3.60)

Hence

〈v, ∂tu+ ω × u〉+ ν〈∇ × v,∇× u〉 = 〈vsym, ∂tu+ ω × u〉+ ν〈∇ × vsym,∇× u〉 (3.61)

But now vsym ∈ C1
s (R

3, R3) ∩ C0(R
3, R3) ⊂ H1

s(R × R+, R3) is a test function for the

axisymmetric weak solution (3.48), so the right hand side of (3.61) is zero. Therefore u is a

Leray solution. This completes the proof of this Theorem. �
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Corollary 3 (i) For any initial data u0 ∈ L2(R×R+), ψ0 ∈ Ĥ1
s (R×R+), there is a global

weak solution (ψ, u, ω) to (3.47), and u = ueθ +∇× (ψeθ) is an axisymmetric Leray

solution of the Navier-Stokes equation (1.2).

(ii) If in addition,

u0 ∈ Hk
s (R×R+), ψ0 ∈ Ĥ1

s (R×R+), L ψ0 ∈ Hk−1
s (R×R+), (3.62)

with k ≥ 1, then there exists a T0 > 0, such that the solution satisfies

u ∈ C0
(
0, T0;H

k
s (R×R+)

)
∩ L2

(
0, T0;H

k+1
s (R×R+)

)
ω ∈ C0

(
0, T0;H

k−1
s (R×R+)

)
∩ L2

(
0, T0;H

k
s (R×R+)

) (3.63)

and it corresponds to the unique strong solution of Navier-Stokes equation (1.2).

(iii) If k ≥ 3 in (3.62), then the solution is classical:

u ∈ C0
(
0, T0;C

k−2
s (R×R+)

)
∩ C1

(
0, T0;C

k−3(R×R+)
)

ψ ∈ C0
(
0, T0;C

k−1
s (R×R+)

)
∩ C1

(
0, T0;C

k−2(R×R+)
) (3.64)

Proof: From an initial data u0 ∈ L2(R × R+), ψ0 ∈ Ĥ1
s (R × R+), one can construct an

axisymmetric vector field u0 = u0eθ + ∇ × (ψ0eθ) ∈ L2
s(R

3, R3), and then a global weak

solution of (3.49) using Leray’s method with initial data u0. The weak solution is constructed

from a family of approximate solutions obtained via (radially symmetric) mollifiers. See

[11, 16] for details. Since the symmetry with respect to the axis of rotation is preserved

under the action of convolution with the mollifiers, the resulting limit is also axisymmetric.

From Theorem 4, it corresponds to a global weak solution (ψ, u, ω) of (3.47). This shows

part (i)

If in addition, u0 ∈ Hk
s (R×R+),L ψ0 ∈ Hk−1

s (R×R+), k ≥ 1 then u0 ∈ Hk
s(R×R+, R3).

Hence by classical theory of Navier-Stokes equation [18], there exists a T0 > 0 depending

only on ν and ‖u0‖Hk(R3,R3), and a unique solution (u, p) in (0, T0) to (1.2) with regularity

u ∈ H1
(
0, T0;H

k−1(R3, R3)
)
∩ L2

(
0, T0;H

k+1(R3, R3)
)
, (3.65)

∇p ∈ L2
(
0, T0;H

k−1(R3, R3)
)
. (3.66)

From [6, p. 288], (3.65) implies

u ∈ C0
(
0, T0;H

k(R3, R3)
)

(3.67)
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Consequently, any global weak solution of (3.47) coincides with the strong solution (3.65)

in (o, T0), therefore the strong solution is also axisymmetric. It follows from Lemma 8 that

u ∈ L∞
(
0, T0;H

k
s (R×R+)

)
∩ L2

(
0, T0;H

k+1
s (R×R+)

)
, ω ∈ L∞

(
0, T0;H

k−1
s (R×R+)

)
∩

L2
(
0, T0;H

k
s (R×R+)

)
. This shows part (ii).

Since H2(R3, R3) ⊂ C0(R3, R3), it follows from (3.67) that, when k ≥ 3,

u ∈ C0
(
0, T0;C

k−1
s (R3, R3)

)
. (3.68)

Since ∂tu is the Leray projection of ν∇2u− (∇× u)× u, it follows that

∂tu ∈ C0
(
0, T0;C

k−3
s (R3, R3)

)
. (3.69)

This gives (3.64) and proves (iii). �

From well known regularity results of 3D Euler equation, the counter part of Corollary 3

for the Euler equation can be obtained using a similar argument. We state it without proof.

Corollary 4 For any initial data u0 ∈ Hk
s (R×R+), ψ0 ∈ Ĥ1

s (R×R+),L ψ0 ∈ Hk−1
s (R×R+),

k ≥ 3, there exists a unique local-in-time classical solution (ψ, u, ω) to the Euler equation

(3.1) with

u ∈ C0
(
0, T0;C

k−2
s (R×R+) ∩Hk

s (R×R+)
)
∩ C1

(
0, T0;C

k−3(R×R+) ∩Hk−1
s (R×R+)

)
ψ ∈ C0

(
0, T0;C

k−1
s (R×R+) ∩Hk+1

s (R×R+)
)
∩ C1

(
0, T0;C

k−2(R×R+) ∩Hk
s (R×R+)

)
(3.70)

As remarked earlier, the weak formulation (3.47) is not standard and it only imposes the

boundary condition ω = 0 in an implicitly way. In fact, if the solution is regular enough,

then one recovers this boundary condition and the usual weak formulation follows. This

becomes more clear as we recast part (ii) of Corollary 3 as follows

Corollary 5 Let (ψ, u, ω) be a weak solution of (3.47) and u = ∇× (ψeθ) + ueθ). If

u ∈ L∞loc
(
(0, T );H1

s(R×R+, R3)
)

then

u ∈ L2
loc

(
(0, T );H2

s(R×R+, R3)
)
.

In particular, the trace of ω = L ψ on r = 0+ vanishes almost everywhere on (0, T ).
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Remark 1 The standard variational formulation for (1.3) is as follows:

Find u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1
s ), ψ ∈ L∞(0, T ;H1

s ) and ω ∈ L2(0, T ;H1
s ) such that

〈∂tu, v〉+ 〈 v
r2
, J(ru, rψ)〉+ ν[u, v] = 0

[∂tψ, φ] + 〈 ω
r2
, J(rψ, rφ)〉 − 〈 u

r2
, J(ru, rφ)〉 − ν[ω, φ] = 0

〈ω, ξ〉 = [ψ, ξ]

(3.71)

for all v ∈ H1
s (R×R+), φ ∈ H1

s (R×R+), and ξ ∈ H1
s (R×R+).

The main difference between (3.47) and (3.71) is the viscous term of the vorticity equa-

tion. The formulation (3.71) is natural for standard C0 finite element setting. The regularity

requirement for (3.71) lies between weak solution (3.47) and the strong solution (3.65). The

well-posedness of (3.71), including uniqueness and local existence of solution for initial data

u0 ∈ L2
s(R×R+), ω0 ∈ L2

s(R×R+) is still unclear.
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