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Abstract- Sparse signals representation, analysis, and sensing, has received a lot of attention in 

recent years from the signal processing, optimization, and learning communities. On one hand, the 

learning of overcomplete dictionaries that facilitate a sparse representation of the image as a liner 

combination of a few atoms from such dictionary, leads to state-of-the-art results in image and 

video restoration and image classification.  On the other hand, the framework of compressed 

sensing (CS) has shown that sparse signals can be recovered from far less samples than those 

required by the classical Shannon-Nyquist Theorem. The goal of this paper is to present a 

framework that unifies the learning of overcomplete dictionaries for sparse image representation 

with the concepts of signal recovery from very few samples put forward by the CS theory. The 

samples used in CS correspond to linear projections defined by a sampling projection matrix. It has 

been shown that, for example, a non-adaptive random sampling matrix satisfies the fundamental 

theoretical requirements of CS, enjoying the additional benefit of universality. On the other hand, a 

projection sensing matrix that is optimally designed for a certain signal class can further improve 

the reconstruction accuracy or further reduce the necessary number of samples. In this work we 

introduce a framework for the joint design and optimization, from a set of training images, of the 

overcomplete non-parametric dictionary and the sensing matrix. We show that this joint 

optimization outperforms both the use of random sensing matrices and those matrices that are 

optimized independently of the learning of the dictionary. The presentation of the framework and 

its efficient numerical optimization is complemented with numerous examples on classical image 

datasets. 
 

Index Terms— Compressed Sensing, Image Patches, Overcomplete Dictionary, Sensing 

Projection Matrix, Sparse Representation, Learning.  
 

I. INTRODUCTION 

MAGE compression algorithms have been successfully employed in the past to transform a high 

resolution image into a relatively small set of (quantized) coefficients that efficiently represent the image 

on an appropriate, often orthonormal, basis such as DCT or wavelets. This representation is designed to 

I
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preserve the essential content of the image while at the same time reducing costs in storage, processing, 

and transmission. Since natural images can be compressed on an appropriate basis, sampling the scene 

into millions of pixels to obtain high resolution images that are then to be compressed before processing, 

seems often to be wasteful [1]-[11]. The main reason why signals in general and images in particular have 

been traditionally sensed using a large number of samples is the Shannon-Nyquist Theorem: the sampling 

rate must be at least twice the bandwidth of the signal. Images are not naturally band limited, however, 

acquisition systems use anti-aliasing low pass filters before sampling, hence, Shannon-Nyquist Theorem 

plays an implicit role in images and signals in general.   

Compressive sensing (CS) is an emerging framework stating that sparse signals, i.e., signals that have a 

concise (sparse) representation on an appropriate basis, can be exactly recovered from a number of linear 

projections of dimension considerably lower than the number of samples required by the Shannon-

Nyquist Theorem (in the order of 2-3 times the sparsity of the signal, regardless of the actual signal 

bandwidth) [1]-[5],[7]. In addition, signals that are well approximated by sparse representations (i.e., 

compressible), such as natural images [12]-[18], can be also sensed by linear measurements at a much 

lower rate than double their actual bandwidth, as required by the Shannon-Nyquist Theorem, with 

minimum loss of information [1]-[3]. This means that instead of sensing an image using millions of pixels 

to obtain high resolution, the image can be sensed directly in compressed form, by sampling a relatively 

small number of projections that depends on the actual sparsity (and not bandwidth) of the image [1]-

[11].1  

Compressive sensing relies on two fundamental principles, e.g., see the recent review [4]: 

• Sparsity: Let 𝐱 ∈ ℝே be an N-pixels image and 𝚿 = [𝛙ଵ … 𝛙ே] an orthonormal basis (dictionary),2 
                                                           

1 There might be many reasons for still sampling following the traditional Shannon-Nyquist requirements, even 

for very sparse signals, e.g., the simplicity of the reconstruction of band limited signals from their samples as well as 

the existence of very efficient sampling and reconstruction hardware and software. We consider CS and the concepts 

of it exploited in this paper as an alternative and addition to the classical Shannon-Nyquist framework, viable and 

very useful for many signal and image processing scenarios, but not at all as a replacement for it. 
2 While following the basic theory of CS, we consider for the moment an orthonormal basis, the concept of 

sparsity is much more general, and best applied in image processing when including overcomplete dictionaries, as 

exploited in this paper. 
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with elements also in ℝே, such that 

 𝐱 = ∑ 𝜃௜𝛙௜ = 𝚿𝛉ே௜ୀଵ , (1)

where 𝛉 = [𝜃ଵ … 𝜃ே]T is the vector of coefficients that represents x on the basis 𝚿. A signal or 

image is said to be sparse if most of the coefficients of 𝛉 are zero or they can be discarded without 

much loss of “information.” Let 𝐱ௌ be the image where only the S largest coefficients of 𝛉 are kept and 

the rest are set to zero (obtaining 𝛉ௌ), i.e., 𝐱ௌ = 𝚿𝛉ௌ. If the coefficients, sorted in decreasing order of 

magnitude, decrease quickly, then x is very well approximated by 𝐱ௌ, when properly selecting both S 

and the basis/dictionary 𝚿. Such signal is said to be (approximately) S-sparse. Natural images are 

known to be sparse, with S significantly lower than the actual image dimension, when represented on an 

appropriated basis such as wavelets, sinusoids, or a learned (overcomplete) dictionary. Sparse 

representations form the basis of many successful image processing and analysis algorithms, from 

JPEG and JPEG2000 compression [19]-[21], to image enhancement and classification, e.g., [12], [22]-

[25].  

• Incoherent Sampling: Let 𝚽 = [𝛟ଵ … 𝛟௠]T be an m×N sampling matrix, with 𝑚 ≪ 𝑁, such that 𝐲 = 𝚽𝐱 is an m×1 vector of linear measurements (meaning we no longer observe the image x but an 

undercomplete linear projection of it). Compressive Sensing theory requires that 𝚽, the sensing matrix, 

and 𝚿, the sparse representation matrix, be as incoherent (orthogonal) as possible. A measure of 

coherence between 𝚽 and 𝚿 is given by 

 𝜇(𝚽, 𝚿) ∶= √𝑁 ∙ 𝑚𝑎𝑥ଵஸ௜ஸ௠,ଵஸ௝ஸே ห〈𝛟௜, 𝛙௝〉ห. (2)𝜇(𝚽, 𝚿) ∈ ൣ1, √𝑁൧ measures the maximal correlation between both matrix elements (see also [26], [27] 

for the related definition of mutual coherence of a dictionary, which plays an important role in the 

success of basis pursuit and the greedy sparsifying orthogonal matching pursuit algorithm as well [26]-

[31]; see below).  

CS deals with the case of low coherence between the sensing and sparsifying matrices. Intuitively, one 

can see that 𝚽 and 𝚿 must be uncorrelated (incoherent), such that the samples add new information that 

is not already represented by the known basis 𝚿. It turns out that random matrices, e.g., Gaussians or ±1 

random matrices, are largely incoherent with any fixed sparsifying basis 𝚿 with overwhelming 

probability. This has lead CS, at least at the theoretical level as well as early applications in image 
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processing [10], to strongly rely on random sensing matrices, since they provide universally incoherent 

sensing-sparsifying pairs and are well conditioned for reconstruction. 

Compressed sensing combines both concepts of sparsity and incoherence between the sensing and 

sparsifying matrix by reconstructing the sparsest possible signal that agrees with the undercomplete 

(𝑚 ≪ 𝑁) set of measurements. Let 𝐲 be the vector of m linear measurements of the sparse signal 𝐱 using 

the sampling/sensing matrix 𝚽. The retrieval of 𝐱 from 𝐲 can be done by ℓ଴-“norm” minimization (note 

how both the sensing and the sparsifying matrix appear in the formulation), 

 𝛉෡ ∶= 𝑚𝑖𝑛𝛉‖𝛉‖ℓబ  subject to 𝐲 = 𝚽𝚿𝛉, 𝐱 = 𝚿𝛉෡,   (3)

where the ℓ଴-“norm” simply counts the number of non-zeros in 𝛉.3 Compressive Sensing theory ensures 

(in one of the many recent fundamental results), that if the number of measurements m satisfies 

 𝑚 ≥ 𝐶 ∙ 𝜇ଶ(𝚽, 𝚿) ∙ 𝑆 ∙ log𝑁, (4) 

for some positive constant 𝐶, then, with overwhelming probability, the reconstruction is exact (even 

actually using ℓଵ for sparse promotion instead of ℓ଴, making the problem (3) convex).  

As mentioned above, related to 𝜇(𝚽, 𝚿) is the notion of mutual coherence 𝜇(𝚿) of the sparsifying 

dictionary (or the equivalent dictionary 𝐃 ≔ 𝚽𝚿), which is the largest absolute normalized inner product 

between the atoms of the dictionary (see Equation (7) in the next section for the exact definition). If the 

following inequality holds [26], [27], [30], 

 ‖𝛉‖ℓబ < ଵଶ ቀ1 + ଵఓ(𝚿)ቁ. (5)

then, 𝛉 is necessarily the sparsest solution (𝑚𝑖𝑛𝛉‖𝛉‖ℓబ)  such that 𝐱 = 𝚿𝛉 (or 𝐲 = 𝚽𝚿𝛉 when 

considering sensing and the equivalent dictionary 𝐃), and Orthogonal Matching Pursuit (OMP), a fast 

greedy algorithm used to solve sparse representation problems, is guaranteed to succeed in finding the 

correct 𝛉 (same for the basis pursuit, which again replaces the ℓ଴ by ℓଵ4), see e.g., [26], [27], [29]-[32]. 

Note of course that this property on the dictionary, and in contrast with (5), does not explicitly consider 

the number of samples m. 

Since, in general, signals of interest are not exactly sparse, but nearly sparse, and also contain noise added 

by the measurement system, it is imperative for CS to be robust under such non-idealities [4]. A key 

                                                           
3 This is not an actual norm, but it is often referred to as such. 
4 The use of the ℓଵ norm brings interesting connections with robust statistics and regression. 
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notion in CS theory that comes to the rescue in this scenario is the Restricted Isometry Property (RIP) [1]-

[4] (and references therein, see also [34] for some results for overcomplete dictionaries). The S-restricted 

isometry constant is the smallest 0 < 𝛿ௌ < 1 such that  ∀ T ≤ S:  (1 − 𝛿ௌ)‖𝛉T‖ℓమଶ ≤ ‖𝐃T𝛉T‖ℓమଶ ≤ (1 + 𝛿ௌ)‖𝛉T‖ℓమଶ , 

where 𝐃T is a subset of T columns extracted from the equivalent dictionary 𝐃 ≔ 𝚽𝚿, and 𝛉T are the 

(sparse) coefficients corresponding to the T selected columns. In words, for proper values of 𝛿ௌ, the RIP 

ensures that any subset, with cardinality less than S, of columns of the equivalent dictionary 𝚽𝚿 are 

nearly orthogonal (the columns cannot be exactly orthogonal since we have more columns that rows), i.e., 

incoherence between 𝚽 and 𝚿 is ensured. If the RIP holds (see the above mentioned references for the 

exact needed values of the isometry constant), greedy algorithms such as regularized OMP, [35], and ℓଵ convex optimization are guaranteed to succeed (the results for OMP are weaker). This holds as well, 

again with the possibility to optimize with the  ℓଵ norm instead of ℓ଴, in the presence of noise and for 

signals with non-exact sparsity [1]-[8]. Hence, Equation (3) becomes in practice, 

 𝑚𝑖𝑛𝛉෡‖𝛉‖ℓబ  subject to ฮ𝐲 − 𝚽𝚿𝛉෡ฮℓమ ≤ 𝜖, (6)

where 𝜖 > 0 takes into account the possibility of noise in the linear measurements and of non-exact 

sparsity.  

While the sampling projection matrix 𝚽 should, in theory, be independent of the signal, the sparsifying 

basis Ψ should adapt as much as possible to the image at hand, e.g., to make the representation as sparse 

as possible. A key result in image processing is that images can be coded and sparsely represented more 

efficiently using (often learned) overcomplete dictionaries rather than fixed bases, e.g.,  [18], [33], [36]. 

Let 𝐱௣ ∈ ℝ௡, 𝑛 ≪ 𝑁, be a patch, i.e., a square portion of the image 𝐱 of size 𝐵 × 𝐵 = 𝑛 pixels. An 

overcomplete dictionary is an 𝑛 × 𝐾 matrix Ψ = [𝛙ଵ … 𝛙௄], 𝑛 < 𝐾, such that 𝐱௣ = 𝚿𝛉௣, and for the 

K-dimensional vector of coefficients 𝛉௣, we have ฮ𝛉௣ฮℓబ ≪ 𝑛. Such dictionaries are learned from 

patches extracted from large datasets of images, and thereby are optimized for the data (they can also be 

optimized to a particular image class, e.g., [16], [22]). From the learned non-parametric overcomplete 

dictionaries, state-of-the-art results in image denoising, inpainting, and demosaicing, have been obtained 

in the past [12]. This learning framework is also exploited in this work.  

Overcomplete learned dictionaries are not orthonormal bases and hence, the full extent of the CS theory 
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does not entirely apply here (see for example [7], [34] for some results). Recently, Elad [37] (see also 

[38], [39]), showed experimentally that a well-designed sampling matrix can significantly improve the 

performance of CS when compared to random matrices, in terms of improving the incoherence for a 

given dictionary and the reconstruction accuracy from the corresponding linear samples. This means that 

for a specific pre-defined or pre-learned overcomplete dictionary, a sampling projection matrix 

specifically designed for the dictionary can indeed improve CS over a generic random sampling matrix. 

Note that the sampling is not adaptive, is just optimized for the signal class. Theoretical studies, with 

practical implications, regarding the construction of deterministic sampling matrices and their RIP, are 

starting to appear, e.g., see [40], [41] and references therein. 

In this paper, we introduce a framework for simultaneously learning the overcomplete non-parametric 

dictionary 𝚿 and the sensing matrix 𝚽. That is, in contrast with Elad’s work and those briefly discussed 

in the next section, we do not consider a pre-learned or pre-defined dictionary; we learn it together with 

the sensing matrix. In contrast with the more standard CS framework, we do not assume the sparsifying 

basis (or dictionary) is given and consider universal sampling strategies, but simultaneously optimize for 

both these critical components exploiting image datasets. Contrasting also with earlier work on the 

learning of overcomplete non-parametric dictionaries, we consider linear projections of the image as the 

available measurements for reconstruction, and not the image itself (or a noisy version of it). We 

experimentally show that the proposed framework of simultaneous optimization of the sensing matrix and 

sparsifying dictionary leads to improvements in the image reconstruction results. We also show that the 

learned sensing matrices have larger incoherence, as requested by the RIP, for a given dictionary, than 

random matrices and the ones obtained with the algorithm proposed by Elad, on top of leading to lower 

image reconstruction errors. Computational improvements, when compared with [37], are obtained as 

well with our proposed framework when considering a given dictionary, and these form the basis of our 

proposed simultaneous optimization framework.  

The remainder of this paper is organized as follows. In Section II, we review Elad’s approach [37] (as 

well as briefly [38] and other recent related works), and introduce our proposed new algorithm to learn 

deterministic sensing matrices when the sparsifying dictionary is given. We show that the algorithm is 

significantly faster than the one in [37] and leads to improved performance in terms of sensing-dictionary 
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incoherence and accuracy of the reconstructed images. In Section III, we review the KSVD algorithm for 

learning overcomplete non-parametric dictionaries from image datasets, [12], [18], [42], and introduce the 

novel coupled-KSVD as a necessary modification to include the simultaneous learning of both the 

dictionary and the corresponding sampling projection matrix. In Section IV, we present detailed 

experimental results indicating the superiority of our new framework to construct deterministic sensing 

matrices, and the results of simultaneously learning generic sensing matrices and overcomplete 

dictionaries using datasets of image patches. Finally, concluding remarks and directions for future 

research are presented in Section V. 

While the framework here introduced is applicable to signals in general, from now on, we consider only 

natural images, and the sparsifying basis will always be overcomplete dictionaries learned from the 

images. 

II. OPTIMIZED PROJECTIONS FOR COMPRESSIVE SAMPLING 

In this section we show how to optimize the sensing matrix given a sparsifying dictionary. We start by 

reviewing prior related work, followed by the presentation of our proposed algorithm and the first results 

showing the computational and reconstruction advantages of this new approach. 

A. Previous Related Work 

To the best of our knowledge, only very few recent publications, e.g., [37]-[41], explicitly address the 

idea that non-random matrices are important and could be more effective than random projection matrices 

for sensing sparse signals. In particular, [39] shows that chirp-based sampling matrices can be used 

instead of random sampling matrices, retaining the same reconstruction accuracy, but with the advantage 

that the retrieval of the original signal becomes computationally much cheaper than using, for example, 

orthogonal matching pursuit (OMP). On the other hand, [37], [38] address a different idea: random 

sampling matrices are not necessarily optimal, in the reconstruction error sense, to sample specific classes 

of sparse signals, and in particular, natural images.  

Considering well-known characteristics and models for the second order statistics of natural images, see 

e.g., [43]-[46], Weiss et al., [38], first showed that the Signal to Noise Ratio (SNR) of images projected 

using (almost any) random sampling matrices goes to zero as the number of pixels increase, while it 
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remains constant for their proposed deterministic sampling matrices. They then introduced the concept of 

Uncertain Component Analysis (UCA), that leads to maximize the posterior probability of the data 𝐱, for 

a given projection matrix 𝚽 and training projection data 𝐲. Let 𝐱ଵ, … , 𝐱௉ be a set of P training patches and 𝐲ଵ, … , 𝐲௉ their respective projections, 𝐲௜ = 𝚽𝐱௜, 1≤i≤P. Then, the optimal projection matrix, maximizing 

the probability of retrieving the original patches, is given by 𝚽෡ ∶= argmax𝚽,‖𝚽‖ୀଵ ∏ P(𝐱௜|𝐲௜; 𝚽)௜ . The 

prior probability is assumed to be i.i.d. Gaussian, P(𝐲௜|𝐱; 𝚽) = ଵ√ଶ஠஢మ 𝑒ିฮ𝐲೔ష𝚽𝐱ฮℓమమమಚమ . Experimentally, the 

authors found that UCA works only slightly better than random projection on synthetic signals of fixed 

sparsity, although it works significantly better than random projections on patches of natural images. 

Elad [37] introduced a new algorithm that does not make any assumptions on the statistics of the data set, 

but attempts to improve directly the incoherence between the 𝑚 × 𝑛 sampling matrix 𝚽 (m samples of the 

n dimensional signal),5 and the 𝑛 × 𝐾  sparsifying dictionary 𝚿, as required by the CS theory, assuming a 

given overcomplete dictionary 𝚿 has been already provided (note that [38] is not explicitly based on a 

dictionary, which in our proposed work below we directly learn from the data). Experimentally, Elad 

showed, using synthetic random signals of fixed and exact sparsity, that a well-designed projection matrix 

that depends on the sparsifying basis 𝚿, can reduce the mutual coherence of the equivalent dictionary 𝐃 = 𝚽𝚿, and hence, reduce the reconstruction error from the projections.  

Our work follows in part Elad’s idea, since we do not assume any prior knowledge or statistics on the data 

set, while in contrast with [37], we do not assume a given sparsifying dictionary. In fact, both the 

overcomplete dictionary, 𝚿, and projection matrix, 𝚽, are learned from the dataset (see next section for 

the general case of simultaneous learning). Both [37] and [38] provide a way of computing 𝚽 from data 

or a dictionary, although do not provide any hint on how 𝚽 might help the actual learning of the 

sparsifying basis 𝚿, and vice versa.  

Our work starts with presenting an alternative to the framework in [37] for learning the projecting matrix 

from the previously learned dictionary. This alternative, as we show here, is computationally more 

efficient and produces significantly better results. We therefore start by briefly describing the algorithm in 

[37]. Motivated by the incoherence required by CS, as well as the fundamental conditions for optimal 

                                                           
5 We use n for the signal dimension since we will work with patches. 
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performance of orthogonal matching pursuit and basis pursuit (see previous section), Elad proposed to 

reduce the mutual coherence, 𝜇(𝐃), of the equivalent dictionary 𝐃 ≔ 𝚽𝚿, 𝐃 = [𝐝ଵ … 𝐝௄], defined 

as [37] 

 𝜇(𝐃) ∶= 𝑚𝑎𝑥௜ஷ௝,ଵஸ௜,௝ஸ௄ ቊ 𝐝೔T𝐝ೕ‖𝐝೔‖ℓమฮ𝐝ೕฮℓమቋ. (7)

Hence, if the projection matrix 𝚽 is designed such that 𝜇(𝚽𝚿) is minimal (recall that 𝚿 is fix for the moment), a larger number of signals would satisfy (5) and be successfully recovered 

from their linear projections.  

Instead of minimizing (7), Elad proposes to work with 

 𝜇௧(𝐃) = ∑ ൫ห௚೔ೕหவ௧൯∙ห௚೔ೕห೔ಯೕ,భರ೔,ೕರ಼∑ ൫ห௚೔ೕหவ௧൯೔ಯೕ,భರ೔,ೕರ಼ , (8)

where  𝑔௜௝ = 𝐝ሚ𝒊𝐓𝐝ሚ𝒋, 𝐝ሚ𝒊 = 𝐝𝒊 ‖𝐝𝒊‖ℓమ⁄ , and t is a scalar that establishes the minimum value of μt(D). From 

Equation (8), then is obvious that μt ≥ t. Hence, t is the target value Elad proposes to minimize.  

An alternative way of looking at the mutual coherence of the equivalent dictionary D is to consider the 

Gramm matrix, 𝐆 ∶= 𝐃෩ 𝐓𝐃෩ , where 𝐃෩ = [𝐝ሚ𝟏 … 𝐝ሚ𝑲] is the equivalent dictionary D with all its columns 

normalized. Elad’s idea is to minimize the largest absolute values of the off-diagonals in the 

corresponding Gramm matrix, while keeping the rank of the equivalent dictionary equal to m<<n. This in 

turn minimizes μt. Instead of targeting μt(D), we address the problem of making any subset of columns in 𝐃 as orthogonal as possible, or equivalently, 𝐆 should be as close as possible to the identity matrix. We 

then directly target what we have learned from the RIP, which guarantees robustness of CS to noise and 

non-exact sparsity. As we show below, our proposed approach outperforms the one introduced in [37], 

especially for real not-exactly sparse signals (images). Computationally, the proposed algorithm is 

significantly more efficient than the one in [37].  Moreover, after introducing the proposed algorithm to 

achieve this close to the identity Gramm matrix, we also introduce the novel idea of simultaneously 

designing 𝚽 and 𝚿, which, to the best of our knowledge, has not been addressed before.   

B. Learning the Sensing Projection Matrix  

As mentioned above, and considering for the moment that the dictionary 𝚿 is known, we want to find the 

sensing matrix 𝚽 such that the corresponding Gramm matrix is as close to the identity as possible, i.e., 𝚿௄௡𝐓 𝚽௡௠𝐓 𝚽௠௡𝚿௡௄ ≈ 𝐈௄. 
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Let us multiply both sides of the previous expression by 𝚿 on the left and 𝚿T on the right, obtaining 𝚿𝚿T𝚽T𝚽𝚿𝚿T ≈ 𝚿𝚿T. 

Let  𝐕𝚲𝐕T be the (known) eigen-decomposition of 𝚿𝚿T, then 𝐕𝚲𝐕T𝚽T𝚽𝐕𝚲𝐕T ≈ 𝐕𝚲𝐕T, which is 

equivalent to 𝚲𝐕T𝚽T𝚽𝐕𝚲 ≈ 𝚲. Let us denote 𝚪௠௡ ≔ 𝚽௠௡𝐕௡௡, hence, 𝚲𝚪T𝚪𝚲 ≈ 𝚲. We want to 

compute 𝚽(𝚪) in order to minimize 

 ฮ𝚲 − 𝚲𝚪T𝚪𝚲ฮFଶ. (9)

Note that if 𝚿 is an orthonormal basis and 𝑚 = 𝑛 (non standard in CS), then the previous equation would 

have an exact solution that produces zero error, i.e., 𝚪 = 𝚲ି𝟏𝟐. However, since the dictionary is 

overcomplete, a critical aspect for achieving high sparsity and state-of-the-art image reconstruction [12], 

[18], [42], and in particular 𝑚 ≪ 𝑛 (and then 𝑚 ≪ 𝑟𝑎𝑛𝑘(𝚲)), we have to find an approximated solution 

for minimizing the error in Equation (9). We will achieve this starting from a random sensing matrix 𝚽 

(and its corresponding 𝚪), and progressively improving it in order to reduce this error.6 This is detailed 

next. 

Let λଵ, … , λ௡ be the eigenvalues of the known diagonal matrix 𝚲, ordered in decreasing order of 

magnitude, and 𝚪௠௡ = [𝛕ଵ … 𝛕௠]T. Then, Equation (9) becomes ฮ𝚲 − ∑ 𝛎௜𝛎௜T௠௜ୀ଴ ฮFଶ, where 𝛎௜ =[λଵ𝜏௜,ଵ … λ௡𝜏௜,௡]T, or equivalently, 

 ብ𝚲 − ∑ 𝛎௜𝛎௜T௠௜ୀ଴,௜ஷ௝ − 𝛎௝𝛎௝TብF
ଶ
. 

(10) 

 

Let us define 𝐄 ≔ 𝚲 − ∑ 𝛎௜𝛎௜T௠௜ୀ଴ , 𝐄௝ ≔ 𝚲 − ∑ 𝛎௜𝛎௜T௠௜ୀ଴,௜ஷ௝ , and let 𝐄௝ = 𝐔௝𝚫௝𝐔௝T be the eigen-

decomposition of 𝐄௝. Then, Equation (10) becomes ฮ𝐄௝−𝛎௝𝛎௝TฮFଶ = ฮ∑ 𝜉௞,௝𝐮௞,௝𝐮௞,௝T௡௞ୀଵ − 𝛎௝𝛎௝TฮFଶ. If we 

                                                           
6 Alternatively, we can obtain a closed solution to (9) of the form Γ ≔ [Γଵ, Γଶ], where Γଵ is a diagonal matrix 

obtained from the top m eigenvectors of Λ (elevated to the -1/2 power). While this provides a slightly faster 

algorithm than the m-steps here proposed, it produces virtually the same reconstruction results. Our proposed 

approach follows the algorithmic concepts of the KSVD and couple-KSVD described in the next section for 

dictionary learning, and shows how to progressively improve the classical random matrix of CS, also providing one 

possible solution to addressing the possible ambiguity provided by this closed form alternative Γ. (We thank Donald 

Goldfarb and Shiqian Ma for pointing out this closed solution and additional comments on the minimization of (9).) 
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set 𝛎௝ = ඥ𝜉ଵ,௝𝐮ଵ,௝,  𝜉ଵ,௝ being the largest eigenvalue of 𝐄௝ and 𝐮ଵ,௝ its corresponding eigenvector, then the 

largest error component in E is eliminated. Replacing 𝛎௝ back in terms of 𝛕௝ (the rows of the matrix we 

are optimizing for, 𝚪 = 𝚽𝐕), 

 [λଵ𝜏௝,ଵ … λ௡𝜏௝,௡]T = ඥ𝜉ଵ,௝𝐮ଵ,௝. (11)

Since the matrix 𝚲 is in general not full-rank, then for some 𝑟 ≥ 0, λ௡ି௥ାଵ, … , λ௡ will be zero, and we can 

only update the 𝜏௝,ଵ, … , 𝜏௝,௡ି௥ components of 𝛕௝. This derivation forms the basis of our algorithm for 

optimizing (9), see below for the exact steps. 

Once we obtain 𝚪෠ , then 𝚽෡  can be easily computed following the relationship 𝚪෠ = 𝚽෡ 𝐕, as 𝚽෡ = 𝚪෠𝐕T. 

Also, since we can only reduce 𝑚 ≪ 𝑛 components of the error matrix 𝐄, and the error has a rank lower 

but close to n (recall that 𝚿 is almost an orthonormal basis for ℝ௡), then there is no actual hope to 

completely eliminate the error in (9). The proposed technique aims at reducing the largest m components 

of this error matrix 𝐄.  

In summary, the following are the steps of the proposed algorithm for optimizing the sensing matrix given 

the dictionary (using the notation defined above): 

1. Initialize 𝚽෡ , for example, to a random matrix. 
2. Find the eigen-decomposition 𝚿𝚿T = 𝐕𝚲𝐕𝐓 and r, the number of non-zero eigenvalues of 𝚿𝚿T. 
3. Initialize 𝚪෠ ≔ 𝚽෡ 𝐕. 
4. For j=1 to m  

Compute 𝐄௝. 
Find the largest eigenvalue and corresponding eigenvector of 𝐄௝, 𝜉ଵ,௝ and 𝐮ଵ,௝. 
Use (11) to update the first r components of 𝛕ො௝  (thereby updating 𝚪෠). 

5. Compute the optimal 𝚽෡ = 𝚪෠𝐕T. 
 

C. Some Preliminary Experimental Results 
 
As we will show in the experimental results, Section IV, this parameter-free algorithm is not only 

considerably faster than the one introduced in [37], but also significantly improves the reconstruction 

results and provides a fundamental building block for the simultaneous optimization of the dictionary and 

sensing matrix. Before these more detailed experimental results, let us now present some illustrative 

results showing the advantages of the proposed methodology over the algorithm proposed by [37]. For 

this, we will also consider below the (average) mutual coherence,  
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 𝜇௚(𝐃) ∶= ∑ ௚೔ೕమ೔ಯೕ௄(௄ିଵ). (12)

This is simply the mean square error that accounts for the off-diagonal elements in the Gramm matrix, 

while (8) only accounts for the maximum off-diagonal value. 

Figure 1 compares, for three different sensing matrices 𝚽, the distribution of the absolute value of the off-

diagonal elements of the Gramm matrix obtained using a dictionary 𝚿 learned from 440 natural images 

(see Section IV for more details on this dictionary). The three sensing matrices are a Gaussian random 

sampling matrix (as commonly used in CS), the sensing matrix obtained using Elad’s algorithm (with 

parameters optimized to reduce 𝜇௧(𝐃);  𝛾 = 0.6, 𝑡 = 20% ), and our new proposed algorithm. 

 

Figure 1: Distribution of the off-diagonal elements of the Gramm matrix obtained using a random sampling 
matrix, Elad’s algorithm, and the new proposed algorithm. 
 
Both our technique and the one proposed in [37] try to reduce the largest off-diagonal elements in the 

Gramm matrix, however, Elad’s algorithm always presents a consistent artifact (see also [37]), where 

some off-diagonal elements in the Gramm matrix actually increase their value (notice the peak between 

0.2 and 0.4 in Figure 1), which does not affect 𝜇௧ but it does affect negatively the RIP (see previous 

Section). Our proposed algorithm increases the frequency of the off-diagonal elements with low absolute 

value (between 0 and 0.2, Figure 1), and reduces the frequency of large absolute values in the Gramm 

matrix, better enforcing thus the RIP, since it tries to make the columns of 𝐃 as close to orthogonal as 

possible.  

This better behavior of the Gramm matrix (recall the RIP) is reflected in increased accuracy in the image 

reconstruction as well. Table 1 compares Elad’s and our new proposed algorithm to design projection 

matrices, using patches/signals corresponding to synthetic data of fixed sparsity (as in [37]), patches 
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coming from real images pre-projected to have a fixed sparsity, and patches coming from real images 

without restricting their sparsity (compressible patches in contrast to sparse ones). The algorithm in [37] 

enforces a measure of incoherence, but not directly the RIP and its intuition, and does not actually 

outperform random sampling, in the mean square error (MSE) sense, when the patches do not have an 

exact fixed sparsity (see Table 1). The first row in Table 1 corresponds to 10000 synthetic signals 

obtained by combining at random S=4 columns of a randomly generated 64×256 dictionary. The second 

row corresponds to 6600 patches projected to have a fixed sparsity, S=6, obtained using OMP to 

reconstruct the real image patches; the dictionary 𝚿 of size 64×256 was trained using these patches and 

the KSVD algorithm (see next section). The last row corresponds to 6600 patches selected at random 

from 440 real images and a 64×256 dictionary 𝚿 trained with them using KSVD. The table reports 

average and variance results. 

Table 1: Comparison of Elad’s vs the new proposed algorithm. 

 

From this table we note that 𝜇௧(𝐃), computed using (8), is similar in Elad’s and our algorithm, but 𝜇௚(𝐃) 

is lower for the proposed algorithm. The reason is that (8) only takes into account the maximum off-

diagonal value in the Gramm matrix, ignoring the value of the remaining terms, and hence the artifact 

introduced by Elad’s algorithm (Figure 1). Finally, note the significant MSE improvements obtained with 

our proposed algorithm. 

For illustration purposes, Table 1 also shows the running time of Elad’s algorithm versus the proposed 

new algorithm, on a laptop with a single 1.6 Ghz processor and 1.5 Gb of RAM. Even though the time 

will change from one implementation and computer to another, this illustrates the significant 

computational advantage of our proposed technique, Elad’s algorithm takes about 600 times longer. 

S m Patches Projection 
i

time(s) μt σμ μg σμ MSE σMSE

Random - 0.482 0.005 0.078 0.002 2.957 0.071
Synthetic Elad'algorithm 794.53 0.434 0.009 0.069 0.002 1.694 0.071

New Algorithm 0.23 0.421 2.87E-04 0.059 1.37E-05 1.549 0.024
Random - 0.582 0.0139 0.115 0.0062 0.152 0.029
Elad'algorithm 341.55 0.515 0.0146 0.095 0.0052 0.076 0.006
New Algorithm 0.22 0.456 6.91E-04 0.063 5.09E-05 0.022 0.001
Random - 0.535 0.010 0.097 0.004 0.331 0.028

Real images Elad'algorithm 426.85 0.487 0.013 0.085 0.004 0.357 0.022
New Algorithm 0.80 0.442 4.22E-04 0.064 4.69E-05 0.115 0.002

4 16

Image, fixed
sparsity

6 15

6 15
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Since Elad’s algorithm is not robust in the presence of non-idealities such as non-exact sparsity, and its 

running time becomes prohibitive for practical applications, from now on when we refer to the non-

random sampling matrix 𝚽(𝚿) computed from a dictionary 𝚿, we refer to the new algorithm proposed 

here. 

III. SIMULTANEOUSLY LEARNING THE DICTIONARY AND THE PROJECTION MATRIX 

It is now time to turn to the simultaneous learning of the sparsifying dictionary and the sensing matrix. 

This will be based on combining the just introduced approach for learning the sensing matrix with the 

KSVD algorithm for dictionary learning. We start then by briefly introducing this KSVD technique. 

A. The KSVD algorithm 

Recently, Aharon et al., [18], [42] introduced a novel algorithm for learning overcomplete dictionaries to 

sparsely represent images. Let 𝐗 = [𝐱ଵ … 𝐱௣]  be an n×P matrix of P training square patches of length 

n pixels each, used to train an overcomplete dictionary 𝚿 of size n×K, with P >> K and 𝐾 > 𝑛. The 

objective of the KSVD algorithm is to solve, for a given sparsity level S, 

 𝑚𝑖𝑛𝚿,𝚯‖𝐗 − 𝚿𝚯‖ிଶ 𝑠. 𝑡. ∀𝑖, ‖𝛉௜‖ℓబ ≤ 𝑆, (13)

where 𝚯 = [𝛉ଵ … 𝛉௣], and 𝛉௜ is the sparse vector of coefficients representing the ith patch in terms of 

the columns of the dictionary 𝚿 = [𝛙ଵ … 𝛙௄]. Starting from an arbitrary 𝚿, the KSVD algorithm 

progressively improves it in order to optimize the above expression, as described next. 

Let 𝚯 = [𝛅ଵ … 𝛅௄]T, where 𝛅௜T are the rows of 𝚯. Then, as in the previous section, the error term in 

(13) can be decomposed as    ฮ𝐗 − ∑ 𝛙௜𝛅௜T௜ ฮிଶ = ฮ𝐗 − ∑ 𝛙௜𝛅௜T௜ஷ௝ − 𝛙௝𝛅௝Tฮிଶ . Let us define 𝐄 ≔ 𝐗 − 𝚿𝚯 

and 𝐄௝ ≔ 𝐗 − ∑ 𝛙௜𝛅௜T௜ஷ௝ . Then, (13) can be rewritten as 

 𝑚𝑖𝑛𝚿,𝚯ฮ𝐄௝ − 𝛙௝𝛅௝Tฮிଶ 𝑠. 𝑡. ∀𝑖, ‖𝛉௜‖ℓబ ≤ 𝑆. (14)

At this point it is very tempting to obtain the SVD decomposition of 𝐄௝ and eliminate the largest 

component of the error matrix 𝐄 (see previous section). However, (14) requires also satisfying the sparsity 

constrain. Hence, let us define the set of all indices corresponding to the training patches that use the atom 𝛙௝ for a given (temporary) dictionary 𝛙 (this is determined simply using OMP or any other sparse 

representation technique, see below), i.e., 
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 𝜔௝: = ൛𝑝ห1 ≤ 𝑝 ≤ 𝑃, 𝛅௝் (𝑝) ≠ 0ൟ, 1 ≤ 𝑗 ≤ 𝐾. (15)

In matrix form, let now 𝛀௝ be a 𝑃 × ห𝜔௝ห matrix with ones on the ൫𝜔௝(𝑖), 𝑖൯ entries and zero elsewhere. 

Then, (14) can be rewritten as, 

 𝑚𝑖𝑛𝚿,𝚯ฮ𝐄௝𝛀௝ − 𝛙௝𝛅௝T𝛀௝ฮிଶ , (16)

where the sparsity set cannot be altered for now. Let 𝐄௝R ≔ 𝐄௝𝛀௝, 𝛅௝,ோT : = 𝛅௝T𝛀௝, thereby, 𝐄௝R are just the 

columns of the error 𝐄௝ corresponding to atom 𝛙௝ and 𝛅௝,ோT  the rows of 𝚯, where the zeros have been 

removed. Let 𝐔𝚲𝐕T be the singular value decomposition (SVD) of 𝐄௝R. Then, (16) becomes 

 𝑚𝑖𝑛𝚿,𝚯ฮ𝐔𝚲𝐕T − 𝛙௝𝛅௝,ோT ฮிଶ . (17)

We now can eliminate the highest component of the error by defining 

 𝛙௝ ≔ 𝐮ଵ, 𝛅௝,R ≔ 𝜎ଵ𝐯ଵ, (18)

where 𝜎ଵ is the largest singular value of 𝐄௝R and 𝐮ଵ, 𝐯ଵ  are the corresponding left and right singular 

vectors. This then improves the dictionary atom 𝛙௝ based on the patches that have used it when 

considering the temporary dictionary 𝚿. This continues in the same fashion for all the other columns.  

In summary, the KSVD algorithm consists of the following key steps: 

1. Initialize 𝚿෡   
2. Repeat until convergence: 

• For 𝚿෡  fixed, solve (13) using OMP to obtain 𝚯෡ ,7  i.e. 𝚯෡ = OMP൫𝚿෡ , 𝐗൯. 
• For j = 1 to K 
   Compute 𝜔௝  and from there, 𝐄௝R, 𝛅௝,ோT . 

Obtain the largest singular value of 𝐄௝R and the corresponding singular vectors. 
Update 𝚿෡  and 𝚯෡  using (18).8 
 

Experimentally, we found that initializing 𝚿 with an overcomplete dictionary using the Discrete Cosine 

Transform (DCT) [18] produces better results than with a zero mean, normalized random matrix. The 

results reported in Section IV use this initialization method.  

                                                           
7 The original KSVD uses OMP for the sparse coding step, other sparsifying techniques could be used as well. 
8 As in a Gauss-Seidel type of approach, both the atom and the corresponding coefficients are updated at this step. 
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B. Coupled-KSVD 

Let us consider now the problem of simultaneously training a dictionary 𝚿 and the projection matrix 𝚽, 

with the images available from a dataset. We define the following optimization problem: 

 𝑚𝑖𝑛𝚿,஍,𝚯 {𝛼‖𝐗 − 𝚿𝚯‖ிଶ + ‖𝐘 − 𝚽𝚿𝚯‖ிଶ } 𝑠. 𝑡. ∀𝑖, ‖𝛉௜‖ℓబ ≤ 𝑆, (19)

where  0 ≤ 𝛼 ≤ 1 is a scalar that controls the weight of the error term ‖𝐗 − 𝚿𝚯‖ிଶ  and 𝐘 are the linear 

samples given by 

 𝐘 = 𝚽𝐗 + 𝛈, (20)

considering  𝛈 an  additive noise added by the sensing system. Since 𝐘=[𝐲ଵ … 𝐲௉] is an m×P matrix 

with 𝑚 ≪ 𝑛, 𝛼 is used in (19) to compensate for the larger value of the reconstruction error given by the 

term ‖𝐗 − 𝚿𝚯‖ிଶ , and to give more importance to the projection error term, ‖𝐘 − 𝚽𝚿𝚯‖ிଶ , which is what 

is actually available at the reconstruction stage.9 Notice that (19) can be rewritten as 

 𝑚𝑖𝑛𝚿,஍,𝚯  ቛቀ𝛼𝐗𝐘 ቁ − ቀ𝛼𝐈𝚽ቁ 𝚿𝚯ቛிଶ 𝑠. 𝑡. ∀𝑖, ‖𝛉௜‖ℓబ ≤ 𝑆,  (21)

A possible way to solve (19),(21) consists in extending the KSVD algorithm to the coupled 𝐗 and 𝐘 

signals, together with the technique to adapt 𝚽 to 𝚿 introduced in the previous section. As in the KSVD 

algorithm, we start with an arbitrary dictionary, learn the sensing matrix most appropriate to it following 

the approach described in the previous section, and then simultaneously improve both of them. Let us 

define 

 𝐙 ≔ ቀ𝛼𝐗𝐘 ቁ , 𝐖 ≔ ቀ𝛼𝐈𝚽ቁ. (22)

Then, (19),(21) can be rewritten as, 

 𝑚𝑖𝑛𝚿,஍,𝚯 ฮ𝐙 − 𝐃ୣ୯𝚯ฮிଶ 𝑠. 𝑡. ∀𝑖, ‖𝛉௜‖ℓబ ≤ 𝑆, (23)

where 𝐃ୣ୯: = 𝐖𝚿 = ൣ𝐝ଵୣ୯ … 𝐝௄ୣ୯൧. As in KSVD, we can write 

 ฮ𝐙 − ∑ 𝐝௜ୣ ୯𝛅௜T௜ ฮிଶ = ቛ𝐙 − ∑ 𝐝௜ୣ ୯𝛅௜T௜ஷ௝ − 𝐝௝ୣ ୯𝛅௝Tቛிଶ . (24) 

                                                           
9 While at the sparsifying dictionary and sensing matrix training step, we have available both the images, X, and 

their projections, Y; at the actual reconstruction step we have only the sensed data, Y, and the goal is to reconstruct 

from it the sparsest possible X, with the learned (𝚿, 𝚽) (this is the standard CS/sparse-reconstruction scenario, but 

with our optimized pair (𝚿, 𝚽)). 
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where 𝛅௜T are the rows of 𝚯 as defined previously for the standard KSVD algorithm. Let us now define 𝐄 ≔ 𝐙 − 𝐃ୣ୯𝚯, 𝐄௝ ≔ 𝐙 − ∑ 𝐝௜ୣ ୯𝛅௜T௜ஷ௝ . Considering also 𝐄௝R, 𝛅௝,ோT , and 𝛀௝, as defined in the KSVD 

algorithm, then Equation (23) can be rewritten as 

 𝑚𝑖𝑛𝚿,஍,𝚯 ቛ𝐄௝R − 𝐝௝ୣ ୯𝛅௝,ோT ቛிଶ . (25)

Similarly, let 𝐔𝚲𝐕T be the singular value decomposition (SVD) of 𝐄௝R, then (25) becomes 

 𝑚𝑖𝑛𝚿,஍,𝚯 ቛ𝐔𝚲𝐕T − 𝐝௝ୣ ୯𝛅௝,ோT ቛிଶ , (26)

and the highest component of the (coupled) error can be eliminated defining 

 𝐝௝ୣ ୯𝛅௝,ோT ≔ 𝜎ଵ𝐮ଵ𝐯ଵT, (27)

where 𝜎ଵ is the largest singular value of 𝐄௝R and 𝐮ଵ, 𝐯ଵ are the corresponding left and right singular 

vectors. Now, since 𝐝௝ୣ ୯ = ቀ𝛼𝐈𝚽ቁ 𝛙௝, Equation (27) is satisfied if 

  ቀ𝛼𝐈𝚽ቁ 𝛙෡ ௝ = 𝐮ଵ, 𝛅௝,ோ = 𝜎ଵ𝐯ଵ, (28)

where we have 𝑚 + 𝑛 equations and 𝑛 unknowns (the length of the 𝛙௝ atom of dictionary 𝚿). Note here 

the importance of coupling the original images 𝐗 and their corresponding sensed data 𝐘, if we would have 

not include 𝐗, (28) would have 𝑚 equations and 𝑛 unknowns, hence, infinitely many solutions for 𝛙௝ 

would satisfy (28). In other words, by introducing the regularizing condition that ‖𝐗 − 𝚿𝚯‖ிଶ  must also 

be minimized, we obtain a unique solution to (28) that best fits the training data 𝐗 and its projection 𝐘. 

From (28), 𝛙෡ ௝ can be computed using the pseudo-inverse as 

 𝛙෡ ௝ = ൫𝛼ଶ𝐈 + 𝚽T𝚽൯ିଵ(𝛼𝐈 𝚽T)𝐮ଵ. (29)

Since 𝛙෡ ௝ computed using (29) does not necessarily have unit ℓଶ-norm, and the columns 𝛙෡ ௝ of the learned 

dictionary 𝚿෡  should have unit ℓଶ-norm [42], we redefine 𝛙෡ ௝ and 𝛅௝,R as, 

 𝛙෡ ௝ ← 𝛙෡ ௝ ฮ𝛙෡ ௝ฮℓమൗ , 𝛅௝,R ← ฮ𝛙෡ ௝ฮℓమ𝛅௝,R ,  (30)

in order to keep the product 𝐝௝ୣ ୯𝛅௝,ோT  on (27) unchanged.  

We have now updated the dictionary 𝚿 and the corresponding sparse coefficients 𝚯 (repeating, as in the 

KSVD, the above procedure for all the atoms), considering 𝚽 fix. The feedback of the sensing matrix into 
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the update of the dictionary is provided using 𝚽(𝚿) as defined in Section II, i.e., learning the projection 

matrix from the just updated dictionary 𝚿. In turn, 𝚿 will be affected by 𝚽, as indicated on (28), in the 

next iteration. Additionally, OMP also uses the coupled signal 𝐙 to estimate 𝚯. Thereby, the whole 

learning procedure is simultaneous and exploits all the available data.   

In summary, the proposed coupled-KSVD algorithm is, 

1. Initialize 𝚿෡ . 
2. Repeat until convergence: 

• For 𝚿෡  fixed, compute 𝚽෡ ൫𝚿෡ ൯ using the algorithm given on Section II. 
• For 𝚿෡ , 𝚽෡  fixed, solve (21) using OMP to obtain 𝚯෡ , i.e., 𝚯෡ = OMP൫𝐃ୣ୯, 𝐙൯. 
• For j = 1 to K 

Compute 𝜔௝  and from there 𝐄௝R, 𝛅௝,ோT  using (22)-(24). 
Obtain the largest singular value of 𝐄௝R and the corresponding singular vectors. 
Update 𝚿෡  and 𝚯෡  using (28), (29) and (30). 
 

In the next section we evaluate the performance of the improved algorithm to compute the sensing 

projection matrix 𝚽(𝚿) from a given sparsifying dictionary 𝚿, and of the coupled-KSVD just 

introduced, and show their advantage over previously reported techniques.  

IV. EXPERIMENTAL RESULTS 

In this section, we compare different methods to compute the dictionary, 𝚿, and sampling matrix, 𝚽, 

oriented to retrieve the original image patches from their linear measurements.10 The methods considered 

are the classical training of a dictionary using KSVD, coupled with random sampling matrices as 

commonly used in CS; the proposed improved algorithm to learn 𝚽 from the already KSVD learned 

dictionary 𝚿 (Section II); and the new coupled-KSVD algorithm where we simultaneously learn both 𝚿 

and 𝚽 from the data available (Section III). In particular, we compare the retrieval error of testing patches 𝐗 extracted from real images, and reconstructed using OMP11 with the equivalent dictionary 𝐃 = 𝚽𝚿 

                                                           
10 Recall that in the real CS-type scenario, once we have already learned the dictionary and sensing matrix, we 

have to recover the signal only from its linear projections. 
11 To be consistent with the KSVD-based dictionary/sensing training, we use OMP at the reconstruction step as 

well. As previously mentioned, we can replace this by other sparsifying techniques. 
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from their noisy linear samples, 𝐘 = 𝚽𝐗 + 𝜼, for the following (𝚽, 𝚿) strategies:  

• A dictionary 𝚿, learned from the real image data using the standard KSVD, and a Gaussian random 

sampling matrix 𝚽. This represents the standard CS scenario. 

• A dictionary 𝚿, learned from the real image data using the standard KSVD, and then combined 

with the optimized sensing matrix 𝚽(𝚿) computed from the dictionary, as indicated on Section II. 

• A dictionary 𝚿, learned from the data using the coupled-KSVD with a fix Gaussian random 

sampling matrix 𝚽.12 

• A dictionary 𝚿 and sampling matrix 𝚽(𝚿), both learned from the data using the full coupled-

KSVD. 

The first two strategies are uncoupled, since the dictionary 𝚿 is learned using the classical KSVD, 

independently of 𝚽. The third strategy is semi-coupled, since the sampling projection matrix 𝚽 affects 

the learning process of 𝚿 through the samples 𝐘 (Section III), but not vice versa. The fourth strategy is 

completely coupled, since both 𝚽 and 𝚿 affect each other during the learning process: 𝚽 affects the 

learning of 𝚿 through the samples 𝐘, and in turn, 𝚿 affects the sampling matrix, since 𝚽 depends on 𝚿𝚿T (Section II). In the following we refer to each strategy as uncoupled random (UR), uncoupled 

learning (UL), coupled random (CR), and coupled learning (CL), respectively.  

The training data consists of 6600 8 × 8 patches obtained by extracting at random 15 patches from each 

one of the 440 images in the training set (250 images from the Berkeley segmentation data set [47] and 

190 images from the Labelme data set [48]). The testing data consists of 120000 patches corresponding to 

all the non-overlapping patches of size 8 × 8 extracted from the remaining 50 images in the Berkeley 

dataset that are not in the training set.  

The different strategies (UR, UL, CR, and CL), are evaluated in terms of the MSE of retrieval, defined as MSE ∶= ‖𝐗 − 𝚿𝚯‖ிଶ , where 𝚿 is the dictionary learned from the training patches, 𝐗 is the matrix of 

testing patches, and 𝚯 is obtained using OMP to solve 

 𝑚𝑖𝑛𝚯෡ ฮ𝐘 − 𝚽𝚿𝚯෡ฮிଶ 𝑠. 𝑡. ∀𝑖, ‖𝛉௜‖ℓబ ≤ 𝑆,  (31)

                                                           
12 This means that we incorporate the sensing in the learning of the dictionary, but do not update the sensing 

matrix and keep it constant during the iterations of the coupled-KSVD algorithm. 
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i.e., 𝚯෡ = OMP(𝐃, 𝐘), where, 𝚽 is a random sampling matrix for the UR and CR strategies and a learned 

sampling matrix for the UL and CL strategies, and 𝐘 is a noisy version of the projected patches, as 

defined in (20). The noise added to the samples ranges from 0 to 25% in amplitude, for each patch, with 

increments of 5%. The parameter α in the coupled-KSVD was varied in the set ቄଵଶ , ଵସ , ଵ଼ , ଵଵ଺ , ଵଷଶ , ଵ଺ସ , ଵଵଶ଼ቅ.  

We use typical values for the other algorithm parameters: sparsity S = 4, 5, and 6; sampling dimension m 

= 2S, 2.5S, and 3S; patch dimension n =64 (8 × 8); and overcompleteness of K = 4n. These values are 

commonly used in learning overcomplete dictionaries and Compressive Sensing (see, for instance [1]-[8], 

[12], [18], [42]). We include here representative results from this large set of possible parameter 

combinations, see the supplementary material for numerous additional graphs and tables. 

Figure 2 compares the average MSE of retrieval for the testing patches using S=6, m=12, n=64, and 

K=256; at different values of α and noise level, for the four training strategies. We clearly observe the 

significant advantage of learning the sensing matrix (coupled or uncoupled from the dictionary) over the 

more standard use of random projections. 

 
Figure 2: Retrieval MSE using the four training strategies at different noise levels and values of α, for S=6, m 
=12, n = 64, and K=256.  
 
Figure 3a shows the retrieval MSE of CL relative to CR. Note that the MSE using coupled learning (CL) 

is almost 50% (a reduction of ~3 Db) of the MSE using semi-coupled learning, with a random projection 

matrix (as common in standard CS). The difference between CR and CL reduces as the noise level 

increases. Nevertheless, for noise levels below 20%, the MSE of CL is at least 30% lower than CR for α 

> ¼. Figure 3b shows the retrieval MSE of CL relative to UL. Here, the advantage of CL over UL is 

lower than in the previous case (Figure 3a), which indicates that a well-designed projection matrix as 

introduced in Section II, learned from the dictionary 𝚿, can do better than simply coupling the data using 
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a random sampling matrix (see also Figure 2).  However, CL can still reduce the MSE with respect to UL 

as much as 20% (a reduction of ~1Db), which justifies its use. 

From Figure 2 and Figure 3  it is also clear that the retrieval MSE and CL/CR and CL/UL ratios have a 

minimum at about 𝛼 = ଵଷଶ. We comment more on this at the end of this section.  

  
                                               (a)                                                                                                        (b) 
Figure 3: For S=6, m =12, n = 64, and K=256, different noise levels and values of α, a) Ratio between the 
retrieval MSE for CL and the retrieval MSE for CR, b) Ratio between the retrieval MSE for CL and the retrieval 
MSE for UL. 
 
Figure 4 and Figure 5 show the retrieval MSE and the CL/CR, CL/UL ratios for K= 64, i.e., for a 

dictionary that is also a basis for the vector space of image patches. This is an interesting experiment, 

since the dictionary now is not overcomplete, being more in agreement with the majority of the 

theoretical results from the CS framework. These figures show that the proposed framework is also valid 

within this scenario, and as can be appreciated in these figures, the CL/CR and CL/UL ratios are even 

better than for the overcomplete case (Figure 2 and Figure 3), indicating that the proposed coupled 

learning of both 𝚿 and 𝚽 can be even more influential with non-overcomplete dictionaries. 

Due to space limitations, we cannot show here the results of all our experiments with all possible 

parameter variations (again, see supplementary material). However, a set of representative results is 

shown in Table 2, which indicates the best values of α  that produced the minimum retrieval MSE and at 

the same time the best CL/CR and CL/UL ratios, for a representative noise level of 5%.  In general, for 

overcomplete dictionaries with K = 4n, we found that the best values for α are ଵଷଶ , ଵଵ଺ , and ଵ଼ for m = 2S, 

2.5S, and 3S, respectively, which indicates that as the number of samples is reduced, 𝐘 must have greater 

importance than 𝐗 in the optimization. However, as detailed before, 𝐗 has an important role in the 

coupling algorithm, to limit the number of possible solutions of the under-determined inversion problem 

with m << n, and given that in practice m ≥ 2S, then we must have α > 0. 
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Figure 4: MSE of retrieval from projections using the four training strategies at different noise levels and values 
of α, for S=6, m =12, n = 64, and K=64.  

 
                                           (a)                                                                                                     (b) 
Figure 5: For S=6, m =12, n = 64, and K=64, different noise levels and values of α, a) Ratio between the MSE of 
retrieval from projections for CL and MSE of retrieval for CR, b) Ratio between the MSE of retrieval from 
projection for CL and the MSE of retrieval for UL.   
 

Table 2: Sample results for the best values of α for a noise level of 5%.   

 

 

For illustration purposes, Figure 6 shows one testing image consisting of non-overlapping 8 × 8 patches 

reconstructed from their noisy projections (5% level of noise) 𝐘 as 𝐗෡ = 𝚿𝚯, where 𝚯 = OMP(𝐃, 𝐘), and 𝚿, 𝚽 are obtained using either UR, UL, CR, or CL training strategies. The worst reconstruction case 

(Figure 6a) is obtained when 𝚿 is learned using classical KSVD and 𝚽 is simply a random sampling 

matrix (UR, standard CS scenario), followed by coupled-KSVD using a random sampling matrix (CR, 

0.125

0.250

0.500

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

UR

UL

CR

CL

1/4 1/8 1/16 1/32 1/64 1/128

noise (%)
M

SE

α: 1/2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
noise (%)

CL
/C

R

1/4 1/8 1/16 1/32 1/64 1/128α: 1/2

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
noise (%)

CL
/U

L

1/4 1/8 1/16 1/32 1/64 1/128α: 1/2

UR UL CR CL mean std mean std
8 1/32 0.5306 0.2154 0.3872 0.1890 0.4823 0.0880 0.8805 0.0317

10 1/16 0.4980 0.1981 0.3113 0.1820 0.5746 0.0633 0.9215 0.0285
12 1/8 0.4754 0.1838 0.2605 0.1731 0.6578 0.0451 0.9402 0.0266
10 1/32 0.5029 0.1926 0.2827 0.1646 0.5720 0.0622 0.8497 0.0308
12 1/16 0.4781 0.1782 0.2708 0.1614 0.5888 0.0626 0.9193 0.0235
15 1/8 0.3951 0.1626 0.2303 0.1456 0.6267 0.0381 0.9092 0.0292
12 1/32 0.5094 0.1848 0.2659 0.1465 0.5436 0.0569 0.8090 0.0354
15 1/16 0.4203 0.1633 0.2254 0.1375 0.6016 0.0452 0.8399 0.0273
18 1/8 0.3974 0.1477 0.2033 0.1287 0.6294 0.0261 0.8570 0.0266
12 1/8 0.5801 0.2275 0.2865 0.1409 0.4814 0.0661 0.7107 0.0569
15 1/4 0.4601 0.1929 0.2241 0.1241 0.5483 0.0499 0.7357 0.0521
18 1/2 0.3994 0.1838 0.2210 0.1243 0.5568 0.0400 0.8026 0.0314

CL/CR CL/UL
K

256

64

4

5

6

MSE
S m α

6



IEEE TRANSACTIONS ON IMAGE PROCESSING 
 

23

Figure 6c). Using a well-designed sampling matrix 𝚽(𝚿) (UL, Section II) produces a good looking 

reconstruction of patches from their noisy projections (Figure 6b). Finally, using the coupled-KSVD (CL, 

Section III), an even better reconstruction from the noisy projections is obtained (Figure 6d). The better 

quality of Figure 6d over Figure 6b can be appreciated by the reduction of the artifacts, especially around 

the sharp edges on the top of the castle. Additional examples for the UR (standard CS framework) and the 

proposed CL technique are provided in Figure 7 (additional details on these figures, including the CR and 

UL cases, are included with the supplementary material). 

 
                      (a)                                              (b)                     (c)      (d) 
Figure 6: One test image reconstructed from projected patches, without overlapping, with a noise level of 5%, 
using a) Uncoupled Random, b) Uncoupled Learning, c) Coupled Random, and d) Coupled Learning strategies 
to learn the dictionary and the projection matrix from the training patches. The retrieval MSE for these images is 
a) 1.1528, b) 0.4548, c) 0.6721, and d) 0.3769. 

 
We have just presented the improved performance in terms of  MSE and quality of the reconstructed 

patches, when using a well designed sampling matrix instead of random projection matrices, and also 

when exploiting coupled over uncoupled learning. Let us now compare the dictionaries learned from 

classic KSVD vs. coupled-KSVD with a random matrix and with a learned sampling matrix. We also 

want to compare the random projection matrices vs. the sampling matrices computed using the proposed 

uncoupled and coupled learning techniques. Let us start by comparing the equivalent dictionaries 𝐃 = 𝚽𝚿 for the four strategies considered here, in terms of the closeness of the Gramm matrix 𝐆 = 𝐃෩ T𝐃෩  

(see Section II) to the identity (as inspired by the RIP).  
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                               (a)                                                          (b)           (c) 

 
                                          (d)                                         (e)           (f) 
Figure 7: Additional examples of image recovery. Note the sharp improvement with our proposed CL framework 
(bottom row) when compared to the more classical UR scenario from CS (top row). The retrieval MSE for these 
images is a) 1.0539, b) 2.3455, c) 0.8207, d) 0.2389, e) 0.6707, and f) 0.2204. While here we sample at twice the 
sparsity rate, even sampling at four times the sparsity, the UR results are far from the CL ones at just twice the 
sparsity, both in visual quality and MSE (e.g., the MSE for the image in b) becomes 1.1707, while better than the 
2.3455, still more than double the 0.6707 MSE obtained with the proposed approach at half the sampling rate). 
 

 
Figure 8: Distribution of the off-diagonal elements of the Gramm matrix obtained using UR, UL, CR and CL 
strategies. 

 
Figure 8 shows the distribution of the off-diagonal elements of the Gramm matrix for each one of the 

strategies. The Gramm matrix of CR is closer to the identity than the Gramm matrix of UR, and the 

Gramm matrix of both UL and CL are closer to the identity than UR and UL respectively, but they are 

almost undistinguishable among themselves in terms of the distribution of the off-diagonal elements. 
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These results are in agreement with the improved performance observed for the UL and CL methods over 

the other two possible strategies that use random sampling matrices.  

 
                                               (a)                                        (b)                                          (c) 

 
                                         (d)                                                        (e)                                                         (f) 
Figure 9: Visual representation of the learned dictionaries (above) and projection matrices (below) for the 
different learning strategies. 
 
Figure 9 a), b) and c) show the K=256 atoms of the dictionaries learned with KSVD (used for both UR 

and UL), coupled-KSVD with a random sampling matrix (CR), and coupled KSVD with a learned 

sampling matrix (CL), respectively, represented conveniently here as 𝐾 = 16 × 16 images of size 8 × 8. 

We clearly see that the learned dictionaries are different. In order to compare the sampling matrices 𝚽 for 

the different learning strategies considered here, we use the same approach proposed by [38], i.e., good 

sampling matrices should produce signals that are as spread as possible in ℝ௠. Figure 9 d), e) and f) show 

scatter plots of the first row of 𝐘 = 𝚽𝐗 vs. rows two to five (for random, uncoupled following Section II, 

and coupled following Section III, respectively). It can be noticed here that UL produces samples Y with 

a larger spread in ℝ௠ than UR, and in turn CL produces samples that are more spread in ℝ௠ than UL 

(notice on Figure 9 d), e) and f) the change of scale on some scatter plots). This behavior also occurs for 

all the possible scatter plots among rows in Y, but for limitations of space, we only present here the first 

four. 

From Figure 9 one observes that besides making the Gramm matrix closer to the identity, the learned 

dictionaries should also be able of learning new patterns present only in the projected signals (and not in 
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the signal itself), and coupled-KSVD helps to introduce those new patterns. In addition, a well-designed 

sampling matrix can improve the spread of the projected signals, when compared to a random sampling 

matrix, which in turn improves the retrieval of the original signal from projections, thanks to the larger 

separability of those signals in ℝ௠. More formally, 𝚽 should maximize the mutual information I(𝐗, 𝐘), 

between the signal X and its noisy projection Y, which is equivalent to maximize the entropy of the 

output, H(𝐘), in order to minimize the retrieval error of X from its noisy projections Y  [38], [49].  

V. CONCLUDING REMARKS 

A computational framework for learning an optimal sensing matrix for a given sparsifying dictionary was 

introduced in this paper. This was complemented by a novel approach to simultaneously learn the sensing 

matrix and sparsifying dictionary from an image database. We showed that such learning leads to 

significantly improved reconstruction results when compared with more classical compressed sensing 

scenarios where random sensing matrices are used. The same framework can be used to learn the 

sparsifying dictionary while keeping the sensing matrix fix (see also [50]). 

As mentioned in the introduction, the theoretical results for CS support the use of ℓଵoptimization, while 

KSVD-type of algorithms have traditionally been based on OMP (for which the results are weaker). It is 

thereby important to further improve the results here presented using ℓଵ-based optimization approaches. 

The framework here developed is based on image patches, as commonly exploited in image processing. 

While in principle we could work with entire images, this is computationally unfeasible. For tiny 32 ×32 images, following [51], we obtain results consistent with the work reported above for the patches, see 

Figure 10. Of course, images are much larger than this, and algorithms of the type of KSVD as here 

developed, or basically any dictionary learning approach, are virtually impossible. On the other hand, 

following once again the state of the art results for image enhancement via KSVD, we should work with 

overlapping patches (e.g., 8 × 8  or multiscale up to 20 × 20, see [52]). Ideally, we would like then to 

have the dictionary acting on all the overlapping 𝑛 × 𝑛 patches, with a unique sensing matrix globally 

acting on the 𝑁 × 𝑁, 𝑛 ≪ 𝑁, image. This will also permit to naturally include the multiscale framework 

developed in [52]. Results in this direction, as well as in the adaptation of the sensing to the task 

following [22], will be reported elsewhere. 
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Figure 10: Sample MSE results for tiny images (left CL/CR, right CL/UL), which are consistent with those 
reported before for patches (𝑺 = 𝟏𝟐𝟓, 𝒎 = 𝟐𝟓𝟎, 𝜶 = 𝟏/𝟑𝟐). 
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