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to Travel Demand Modeling

Exploratory Analysis
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An agent-based travel demand model is developed in which travel
demand emerges from the interactions of three types of agentsin the
transportation system: node, arc, and traveler. Simplelocal rulesof agent
behaviorsareshown tobecapable of efficiently solving complicated trans-
portation problems such as trip distribution and traffic assignment.
A unique feature of the agent-based model isthat it explicitly models
the goal, knowledge, sear ching behavior, and lear ning ability of related
agents. The proposed model distributestripsfrom originsto destinations
in adisaggregatemanner and doesnot requirepath enumeration or any
standard shortest-path algorithm to assign trafficto thelinks. A sample
10-by-10 grid network isused to facilitate the presentation. The model
isalsoapplied tothe Chicago, lllinois, sketch transportation network with
nearly 1,000 trip generators and sinks, and possible calibration proce-
duresarediscussed. Agent-based modeling techniquesprovideaflexible
travel forecasting framework that facilitatesthe prediction of important
macr oscopictravel patternsfrom microscopic agent behavior sand hence
encour agesstudieson individual travel behaviors. Futureresear ch direc-
tions areidentified, asisthe relationship between the agent-based and
activity-based approachesfor travel forecasting.

Contemporary models of urban passenger travel demand date from
the 1950s (1, 2). Aggregate demand model sthat rel ate the consump-
tion of goods to the attributes of the goods, the competing goods,
and consumer characteristics were found inappropriate for travel
demand modeling because of both their inability to test some im-
portant transportation-related policies and the complexity of the
transportation systemitself. Therefore, adisaggregate or behavioral
approach has attracted most of the research interest in the past sev-
eral decades. Disaggregate travel demand models directly assume
the behaviors of real-world decision-making units such as an indi-
vidual or household. Discrete choice analysis based on random util-
ity theory has been widely adopted, and individuals are assumed to
always select the alternative that maximizes their utilities (3).
Urban travel demand results from amultidimensional hierarchical
choice process. A list of such choicesincludes residential and busi-
ness location, automobile ownership, and when to make atrip, with
whom, from where to where, by which mode, and by which route.
Some studies suggest that travelers, by developing heuristics, may
only beabletofind afeasible, not necessarily global, optimal solution
to the choice problem subject to a set of constraints (4—6). However,

Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE,
Minneapolis, MN 55455.

Transportation Research Record: Journal of the Transportation Research Board,
No. 1898, TRB, National Research Council, Washington, D.C., 2004, pp. 28-36.

28

it is difficult to consider all these choices in one single model,
although an integrated model isthefinal goal. Also, evenwithtoday’s
computing power, an integrated model will inevitably require some
strict assumptionsthat will reduceits application valueto local spe-
cific problems. The classical way to forecast the results of such a
complex choice processisto divide it into simpler subprocessesin
alogical and tractable way. Modéels for these subprocesses are then
developed individually, and the hope is that they can eventually be
assembled to provide useful predictionsfor decision makers. The past
half-century haswitnessed several different methods of disentangling
the complex travel decision-making process. Two major approaches
have emerged over time: trip- and activity-based approaches.

Thetraditional four-step travel forecasting modelsare often referred
to astrip-based approachesin that they treat individud tripsastheele-
mentary subjects. In so doing, the four-step model tendstoignorethe
diversity among different individual sand considers aggregate travel
choicesin four steps—trip generation, trip distribution, mode split,
and route assignment. Other choices are either treated as exogenous
(e.g., land use and automobile ownership) or extremely simplified
(e.g., trip scheduling). An up-to-date summary of the achievements
inthisfield can befound in the book by Ortuzar and Willumsen (7).
There is some disagreement about how to assemble these four sub-
processesin travel forecasting. Some researchers are of the opinion
that the four steps should be solved in a coherent network equilib-
rium instead of sequentially. Boyce (8) provides athorough review
of the origin and the recent development of that issue.

An important nature of travel demand ignored by trip-based ap-
proachesisthat travel isaderived demand—travel isdesired to par-
ticipatein other activities, not for its own consumption value. Inview
of thisand other inadequacies of the four-step model, activity analysis
has been applied to travel demand analysis since the 1970s. Activity-
based approaches describe which activities people pursue, where,
when, and for how long given fixed land use, transportation supply,
and individual characteristics. A trip is generated to connect two
spatially separated sequential activities. In activity-based approaches,
every individual isadecision maker who confronts ahuge choice set
of various activity patterns in the time-space domain. Each combi-
nation of activitiesand their locations, starting points, and durations
formsaunique activity pattern. Individuals select (or at least intend
to select) the patternsthat maximizetheir utilities by somehow solv-
ing alarge-scal e combinatorial optimization problem conditional on
others' decisions. Different from thetrip-based models, activity-based
approachesdeemindividuals' decision making as subprocesses of the
emergence of travel demand. These subprocessesaretypically assem-
bled by microscopic travel simulation to form aggregatetravel fore-
casting. At the current stage of activity-based approaches, route choice
and sometimes mode choice are still modeled by external modules
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such asdynamic traffic assignment algorithms. Several publications
mark the milestones in the advance of activity-based approaches
(9-12). More-recent research progress is reported by Ettema and
Timmermans (13) and McNally and Recker (14), among others.

After a half-century of continuous development, travel demand
models now play an important role in urban planning and trans-
portation-and use policy evaluation. However, there is still much
room for improvement, notably that understanding the nature and
dynamics of individual travel behaviors and their interactionsis not
adequate; the trend of disaggregate modeling requires faster solu-
tion algorithms as more and more complicated travel behaviors are
modeled. Of course, these problems cannot be solved in a single
study. Improving the existing travel demand modelsis not the pur-
pose here. Rather, a new agent-based travel forecasting paradigm
and apil ot agent-based travel demand model are proposed that may
open anew door to solution of the problem.

Agent-based modeling methodology has a long lineage, begin-
ning with von Neumann’s (15) work on self-reproducing automata.
M odern agent-based models employ methods from many fields, in-
cluding artificial intelligence, cellular automata, genetics, cybernet-
ics, cognitive science, and socia science. The agent-based structure,
flexibility, and computational advantages have made them power-
ful tools in modeling complex systems. In general an agent-based
model consists of three elements: agents, an environment, and rules.
Agentsarelike people, who have characteristics, goals, and rules of
behavior. They are the basic unit of activity in the model. The envi-
ronment provides a spacein which agentslive. Behavioral rules de-
fine how agents act in the environment and interact with each other.
The characteristics of the environment itself al so changein response
to agent activities. Agent-based modeling techniques have found
many applicationsin transportation. A recent special issue of Trans-
portation Research (16) isdedicated to thistopic. Microscopic traf-
fic simulation can be viewed as an exampl e of agent-based models.
Vehiclesare agentsin the simulator, and astatic road network isthe
environment. Vehiclesare“born” at the entrances of the network and
“die” at the exits. Rules, such as free-flow driving, car-following,
and lane-changing, define how avehicle behavesand interactswith
other vehicles and the road network.

To apply the agent-based modeling method to a transportation
demand system, one needs to define first the agentsinvolved in the
system and then the characteristics of each type of agent. Rules of
agent behaviors need to be properly constructed in order to makethe
resulting model useful in travel forecasting. Given an initial condi-
tion, all the agentswill behave on the basis of their “personal” char-
acteristics, learning, andinteracting rules. The transportation system
will then evolve to a pattern, perhaps an equilibrium, from which
useful macrolevel information can be extracted. In this sense, travel
demand would be the result of an evolutionary process.

An agent-based travel demand model isdeveloped in the next sec-
tion, followed by the application of the proposed model on both a
hypothetical grid network and a realistic metropolitan area. With
these two examples, computational properties and possible calibra-
tion procedures of the model are explored. Potential extensionsof the
model and future research directions are discussed.

MODEL

An agent-based travel demand model isformulated for amonomodal
transportation network. Several agentsin thetransportation systemare
identified, aswell astheir characteristicsand interacting rules, which
enable the model to perform trip distribution and route assignment.
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Agents and Their Characteristics

A transportation network in the model isfully represented by nodes
and arcs asin adirected graph. The model considers three types of
agents: traveler, node, and arc.

Traveler Agents

Thereare acertain number of travel er agentsin the system. The goal
of each traveler agent isto find an activity and to reach the activity
with thelowest travel costs. Hencethefirst property atraveler agent
has is status, which is a binary variable: an activity found (1) or
not (0). Inthe process of searching for an activity, each traveler vis-
its a set of nodes at which opportunities (potential activities) are
located. At each step, each traveler moves from its current node to
another through the connecting arc and decides to either accept or
reject the opportunities at the new node on the basis of somerules,
explained in the next section. Travelers learn arc costs along their
search path when traveling on the network. Therefore, by adding
arc costs, travelers know the total cost of a path from any node in
their search path to each of the subsequent nodes, which is then
added to the exchangeabl e knowledge base.

Node Agents

Nodes contain “demographic”’ and “ social-economic” information of
thesystemintermsof a number of travelersand b, number of oppor-
tunitiesat nodei. If adirected arc originates from Node 1 and isdes-
tined for Node 2, then Node 1 is called asupply node of Node 2 and,
aternatively, Node 2 is a demand node of Node 1. Each node has a
vector of Ssupply nodes S(s,, . . ., S and a vector of D demand
nodes D(d, . . . , dp) based on the transportation network structure.
A nodeis also asupply node and a demand node by itself.

Node agents have two primary goals. First, whenever information
exchangeis possible, each node wantsto either learn from travelers
the shortest paths from other nodes to itself or distribute that infor-
mation back to travelers, depending on whose knowledge is supe-
rior. For that purpose, nodes must store shortest-path knowledge and
be able to exchange information with other agents. The second ob-
jective of node agent i is to provide turning guidance to travelers
through an (S x D) matrix P;:
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Node subscript i isomitted from the P matrix for simplicity, which
should not create any confusion. Each element in P, ps 4, iSthe prob-
ability that atraveler coming from supply node s will move to de-
mand node d, which can be affected by many factors including the
traveler’ s personal characteristics (Q;), the number of opportunities
at thecurrent nodei (b;), the number of opportunitiesat each demand
node of i (by), the quality of the opportunities (Q), and the ease of
reaching the opportunities (A):

P: f(QtrhlbdiQrA) (l)

In the current model, asimple functional form of f(-) is specified,
and ps 4 is computed on the basis of the following equations:
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Equation 2 ensures that if atraveler comesto nodei from a supply
nodes, it will not go back to sin the next movement, which prevents
adirect cyclic movement. Equation 3 states that the possibility that
atraveler coming from supply node s will move to demand node d
at the next step is proportional to the number of opportunities at
node d (by). Equation 4 gives the probability that a traveler will
accept an opportunity at node i; that is, the traveler agent stops its
search process and no longer moves in the network. 3 is aweight-
ing coefficient to be calibrated using trip length distribution data. A
smaller 3 implies that on average a traveler agent needs to travel
longer in order to find an activity because it isless likely to accept
an opportunity at the current node. Theoretically, 3 can be any pos-
itive value. If Bb; + Yby = 0O (i.e., there are no opportunities at any
demand nodes), travelers will randomly select a demand node for
the next movement. According to this specification of the turning
guidance matrix, atraveler’s search behavior is completely myopic
in that the next movement is only based on the opportunities at the
current node and its adjacent demand nodes.

Equations 2 to 4 with iterative execution actually provide a dis-
aggregate algorithm for trip distribution that isin principle similar
to the intervening-opportunities models (17—19) since trip making
is not explicitly related to distance but to the relative accessibility
of opportunitiesthat satisfy the objective of thetrip. Travelers con-
sider available opportunities at increased distances from their ori-
gins. The agent-based trip distribution algorithm ismoreflexiblethan
the intervening-opportunities model in two ways:

1. Travelersconsider only opportunitiesthey have been exposed
to along their search paths, whereasin theintervening-opportunities
model, it is assumed that travelers have information on all opportu-
nities in the region and are able to rank all destinations in order of
increasing distance from their origins.

2. In the intervening-opportunities model, the probability that a
traveler will be satisfied by any opportunity isconstant regardl ess of
circumstances. The agent-based structure allows the probability to
be dependent on the dynamic distribution of opportunities around
thetraveler.

Arc Agents

Arc i—, connects origin node i, to destination node i, without any
intermediate nodes. Its characteristicsinclude capacity (C), length (1),
free-flow speed (), flow (q), and other costs (O), for example, tolls.
Arc cost (c) isafunction of those five factors:

¢ =g(C1,v,q,0) )

o(+) can take the form of an appropriate arc performance function.
The current model assumesinfinite arc capacities. Therefore, thearc
cost becomes a constant, and congestion effects are not considered.
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Route Cognition

Thethreetypesof agents, asjust defined, enable oneto examine some
travel decision-making processes under an agent-based framework.
Traveler agents' goal and behavior in many aspects are associated
with real-world behavior of individuals. However, one limitation is
that each traveler agent, as just defined, only pursues one particular
activity. In redlity, travelers may have multidestination tours with
severa activity types. The goal of the traveler agent must be ex-
panded to accommodate activity chains. The arc agents are almost
identical to physical road segments connecting intersections in the
real world.

The node agent presented in the model needsto be elaborated abit
more. On the one hand, a hode agent corresponds to areal network
node at which arcs intersect and activity opportunities are located.
On the other hand, a real-world intersection obviously does not
know anything about the shortest paths within the network. The node
knowledge should be interpreted as pooled, collective knowledge
from some travelers who are familiar with the local area surround-
ing the node. For instance, an individual residing near anode knows
the shortest paths from other nodes in the network to that node bet-
ter than other individuals do who are unfamiliar with the area. Sev-
eral studies on route cognition have shown that real-world travelers
areonly familiar with routesin the direct environment of their homes
and activity centersthat are frequently visited (avery limited part of
the whole network), but, in general, they have limited knowledge
about theroutesin the remaining part of the network (20, 21). There-
fore, when knowledge exchange occurs between traveler agents and
node agentsinthemode, it actually representsinformation exchange
between different real-world travelers. How travelers learn about
alternative routesin the network is avery important question.

Interaction Rules

Some interaction rules were pointed out when the agent characteris-
ticswereintroduced. For instance, travelersacquirearc costsfromarc
agents and obtain turning guidance from node agents. Nodes com-
municate with each other so that each node knows the availability of
opportunities at its demand nodes. Arcs update their flows based on
travelers' search paths. Theserulesare simplesincethey only involve
communication and no learning activities.

It is also necessary to define some learning rules for the model
to be useful. Specifically, for the model to be able to realistically
approximate trip distribution in the real world, a traveler agent
should examine opportunities farther and farther away from its ori-
gin instead of making circular movements around the origin as the
search process proceeds. Also, real-world individual stend to choose
the shortest paths for their trips, which require the traveler agentsto
have the ability to learn shortest paths between origin—destination
pairs. An interaction rule defining learning activities between trav-
eler and node agentsin the model can meet both requirements. This
learning rule applies whenever a traveler moves to anodei. It is
assumed that atraveler has already visited a set of n nodes. Both the
traveler and the node want to learn the shortest paths to travel from
these n nodesto the current nodei according to agent characteristics.
The mechanism of this learning rule is not complex: for each node
i’ of the n nodes visited by the traveler, both the traveler and nodei
know apath to travel fromi' toi, respectively. So they compare the
lengths (or the generalized costs) of the two paths, and the agent who
knows the longer path will learn the shorter one from the other.
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The following exampleillustrates the traveler-node learning rule
graphically. Inthe example, all arc costsare assumed to be 1 for sm-
plicity. A traveler originating from Node 1 just moved to node i
(Figure 1a). Therefore, the traveler-node learning rule is applied
between these two agents. Inthis casethetravel er hasalready visited
threenodes(n=3,i' 0 {1, 3, 4}) beforearriving ati. Thetraveler's
knowledge is represented in the diagram by the solid line, and the
node' sknowledge is depicted by three types of discontinuous lines.
The traveler and the node first compare the paths from Node 4 to i
because Node 4 isthe one most recently visited by thetraveler. Since
they know two equally short paths (1yose = Lyaee), thereisno learn-
ing activity between them (Figure 1b shows their respective knowl-
edge after this comparison). Then they compare the two paths from
Node 3toi and find that the node knows a better path (Lot < 2yaveer)-
Thereby the traveler learns from the node (see Figure 1c after this

QO Node

Arc

Traveler's Knowledge: Search Path
******* Node's Knowledge: Path from 4 to i
———— Node's Knowledge: Path from 3 to i
— - — Node's Knowledge: Path from 1 to i

(b)

(d)

FIGURE 1 Traveler-node learning rule between traveler and node J.
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round of learning). Finaly, they compare paths between the trav-
eler'sorigin Node 1 and nodei. Thistime, the node learns from the
traveler because the traveler knows a shorter path (3.0ge > 2iaveer; S€€
bottom diagram in Figure 1d).

The result of this traveler-node learning rule and Equation 2 is
that, once atraveler agent finds an activity, the path it used will also
be the shortest path from its origin to the destination, based, on the
traveler’ s best knowledge. Node agents al so possess the knowledge
of shortest pathsidentified by the model. If there are enough travel-
ersin thetransportation system, the shortest path found by the model
approximates the real shortest paths, as will be seen in two exam-
ples presented later. In this sense, the learning rule in this model
could be viewed as an asymptotic shortest-path algorithm based on
distributed learning.

Transportation plannersarefamiliar with the application of discrete
choice analysisin travel forecasting (3). Individuals' route selection
behavior ismodeled as the outcome of a cross-sectional choice pro-
cessthat containstwo steps: choice-set generation, in which several
alternativeroutesareidentified, and choice-making, inwhich a“ best”
route is selected on the basis of utility trade-offs. The learning rule
just described isan example of another paradigm for modeling rout-
ing decisions and can be interpreted as follows. A traveler agent is
able to identify at least one route toward the activity destination
(e.g., thetraveler's own search path); however, without any learn-
ing activitieswith the nodes (holders of localized network informa-
tion) along the traveler’ sown search path, the selected route will be
by no means satisfactory. Thetraveler agent also recognizesthat fact
and wants improvements. However, in contrast to discrete choice
analysis, it is not assumed that travelers are capable of identifying
severa aternative routes. Rather, it is assumed that travelers adjust
their current route on the basis of localized network information.

Such localized network information can come from other travel-
ersor fromtravelers’ own experience. When atraveler agent arrives
at a node in the model and learns a better shortcut from the node
agent, in the real world this situation can be interpreted as one in
which someone tells someone el se abetter route. If alternatively the
node agent learnsfrom thetraveler agent, thetraveler agent actually
shares its own experience to improve the collective understanding
of the network. This phenomenon can also frequently be observed
in the real world. For instance, agood route from atraveler’s home
to the shopping center that isfrequently visited by thetraveler isvery
likely to become a part of the path selected by the same traveler for
atrip from home to another destination near the shopping center.

The improvement or adaptation paradigm, in which travelers are
assumed to adjust their decision until a certain aspiration level is
achieved, was adopted in previous model s of travel decision making,
such as AMOS (22, 23) and SMASH (24). Bowman and Ben-Akiva
(25) generalize the decision-making processes in those models as
repetitive execution of choice-set generation and choice making.
However, theintensive learning and adaptive behavior may be better
modeled under an agent-based framework.

Emergence of Travel Demand Through
Evolutionary Process

On the basis of the specified agent characteristics and interaction
rules, a transportation system is ready to evolve given a transporta-
tion network, aninitia distribution of travelers, and activity opportu-
nitiesin the network, which can be the outputs of any trip generation
process. The evolutionary process is illustrated by the flowchart in
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Figure 2. The probabilities specified in Equations 2 to 4 can be real-
ized through Monte Carlo simulation. The convergence of the evolu-
tion process can be directly measured by the number of residua
travelers, that is, travelers who have not yet found an activity or the
number of residual opportunities, whichever reaches zero first (the
model does not require an equal number of travelers and opportuni-
ties). When all travelers are settled with activities, the transportation
system reaches a stable pattern since there will be no more move-
ments or interactions. All agents and their knowledge will remain
constant thereafter. Therefore, thisstable patternisconsidered theend
point of the evolution or, for simplicity, an equilibrium.

If each traveler corresponds to one or more trips, the trip distribu-
tion and assignment problems are solved simultaneously in the sys-
tem equilibrium. The route each traveler takes is the shortest path
from the origin to the destination based on the traveler’ s best knowl-
edge of the network travel costs. That knowledge is accumulated
through interactive, iterative learning with multiple node agentsin
the network. Theresult of route assignment in the agent-based travel
demand model isin asense similar to an al-or-nothing assignment
since arc capacity constraints are not considered in the current
model, although thetwo algorithms are based on completely different
assumptions about travel behavior. Theonly coefficient that needsto
becalibrated inthe mode isB in Equation 1, which can beinterpreted
asatraveler' swillingnessto travel further.

APPLICATION EXAMPLES
AND CALIBRATION PROCEDURES

Computational Properties

Before the discussion proceeds to numerical examples, the compu-
tational properties of the model are summarized analytically. For a
transportation network with | nodesand T travelers, thereare at most
I*(1 — 1) + T paths in the model since each node can at most keep
information on | — 1 paths from all other nodes to itself, and each
traveler has one search path. All knowledge must be stored in the
model, and hence the theoretical maximum memory consumptionis
proportional to the number of travelers and the square of network
size. In practice, the actua memory requirement is much less
because if no traveler travels between anode pair, the shortest path
between the two nodesis not necessary and will not be stored by any

Specify number of travelers
and travel opportunities at

Initialization
each node; all traveler

All traveler goals YES status = 0; —
achieved? all node knowledge = none
End

Get number of travel
Update node i
YES

opportunities at demand
nodes and update turning
Update traveler wi
YES
m Update arc i-j

If(status = 1), exit; else:
determine next node;
If(stay), status = 1;

else: move to the next node;
update searching path;
apply traveler-node

learning rule

guidance matrix P
YES

Collect statistics

Update arc flow and cost

FIGURE 2 Flowchart of evolutionary algorithm.
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node. In alarge network, many node pairswill not bevisited by trav-
elers. As the system starts evolving, the number of paths further
decreases since atraveler’s search path is no longer useful and can
be deleted once an activity isfound.

An examination of the evolutionary process (Figure 2) would
reveal agood property of the model—the computational timeisonly
proportional to the number of travelersandis not sensitiveto thesize
of the transportation network. The running time of the model will
still increase as the network size increases since on average travel-
erswill search more nodes to find activities. The travel-node learn-
ing processwill take moretime, but it will not increase exponentially
because in the agent-based model, information exchange and agent
learning activities substitute for standard shortest-path algorithms,
and thus path enumeration is not required. Another aspect related to
running time is the ease of the calibration procedure, which will be
discussed next along with two examples.

Numerical Examples
Example 1: 10 x 10 Grid Network

Thefirst example usesasimple 10 x 10 grid network with 300,000
travelers and an equal number of opportunities to demonstrate the
model. The travelers and opportunities are uniformly distributed
among all nodes. The arc cost is 1 unit for all arcs (see Figure 3).
The structure of the agent-based travel demand model can be im-
plemented with any object-oriented programming language (Java
was used in this study). Five different B's are tested ranging from
0.05 to 2. For each (3, the resulting travel length distributions and
the convergence properties at the five equilibriaare summarized in
Figures4 and 5, respectively.

The model can approximate a variety of trip length distributions
with negative exponential (large 8) and normal distribution (small 3)
at the two extremes. In this small network with a moderate number
of travelers, the evolutionary process quickly reaches the equilib-
rium. As travelers travel farther away from origins to find activity
opportunities, it takes longer for the system to achieve the equilib-
rium. In all five scenarios, at equilibrium the shortest paths identi-
fied by the models are the real shortest paths between node pairs,
which is not surprising in a small network. As the ratio of number
of travelersto the size of the network decreases, some shortest paths
learned by the travelers in the model may be longer than the real
shortest paths, aswill be seen in the next example. The selection of
the initial random seed for Monte Carlo simulation has almost no
impact on the resulting trip length distribution and shortest paths at
the equilibrium, probably because the large number of random deci-
sions and learning activities in the model tends to average out the
initial variability due to different random seeds.

Example 2: Chicago, lllinois, Sketch Network
and Model Calibration

In the second exampl e, the agent-based travel demand model isapplied
to the Chicago sketch network, consisting of 933 nodesand 2,9501inks,
afairly realistic yet aggregated representation of the Chicago region
developed by the Chicago Area Transportation Study (CATS) (1).
Therearemorethan 1.26 million travelersin thistest network accord-
ing to the trip generation data, with each traveler representing one
trip. The only coefficient  in the model is calibrated against CATS
1990 Household Travel Survey (HTS) data. Theestimated travel time
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Node 2
3000 travelers
3000 opportunities

FIGURE 3 Uniform distribution of travelers and opportunities for 10 x 10 grid
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FIGURE 6 Chicago sketch network: trip length distribution with various B's.

distribution with various 3’ sand the observed distribution are plotted
in Figure 6. The spikes on the observed travel timedistribution reveal
survey participants’ tendenciesto round their actual travel timesto
30, 45, and 60 min. The mean square error (M SE) between the esti-
mated and the observed distribution is plotted against 3 in Figure 7.
Itisclear in this graph that the M SE distribution is a unimodal one,
and therefore simple one-dimensional search methods can be adopted
to calibrate the model coefficient. The following is an applicable
calibration procedure based on golden section search:

Step O—Initialization: Lower-bound B~ = 0.1 and upper-bound
B*=1. (Theoretically, 3 can be any positive value, but for all prac-
tical purposes, [0.1, 1] should be a safe starting interval for the
golden section search.) Determine stopping tolerance e > 0. Itera-
tion counter t = 0. Compute 3t =B+ -0.618 (B* - B) and B> =B+
0.618 (B* — B"). Evaluate the MSEs at all four points.

Step 1—Stopping: If (B* — ) < e, stop, and the optimal B* =0.5
(B* + ). Otherwise, proceed to Step 2.

Step 2—Iteration: If MSE (BY) < MSE (B?), narrow the search to
the left part of the interval by updating B* = 32, B2=p% Bt =B -
0.618 (B* — B), and evaluate the new MSE (BY). If MSE (BY) >
MSE (B?), narrow the search to the right part of the interval by

updating B~ = B, B* =2 B2 =p + 0.618 (B* — ), and evauate
the new M SE (?).
t=t+1 ReturntoStep 1. Y

Other one-dimensional search methods can be used aswell, but the
golden section search in genera provides an efficient procedure. A
more detailed discussion of unimodal function optimization may be
found elsewhere (26). The foregoing calibration procedure was
applied to the Chicago sketch network with e = 0.05 and the optimal
B* was found to be 0.42 after five golden section search iterations
(i.e., six executions of the model with different ' ssincethefirst iter-
ation requires the evaluation of model MSEs twice), which took
about 70 CPU minuteson aPentium 1V, 1.7-GHz personal computer.
At theequilibriumwith *, travelers discovered 99.1% of all origin—
destination paths, of which more than 98% are real shortest paths.

However, the B* estimated on one network is not directly trans-
ferableto other networks. For instance, the coefficient estimated for
a sketch network that only includes major highways should not be
used without further calibration for afull network with al types of
roads. One needsto be consistent in coding the network when apply-
ing the proposed model. Of course, it is suspected that the coefficient
alsovariesfromcity to city. Fromacomputationa point of view, the

Iterationt =0
11 4 — —
t=1
g 9 | t=2
=) — —
hit t=3
%7' —- ~
= t=4
g 4| —
w =
7 t5|<0.05
E 1
3 - i
1
i
' R S

0.02 005 01 015 02 025 03 035 042 045 05 055 06 1 2

beta

—>*— Intervals in the gold section search

FIGURE 7 Unimodal MSE function and model calibration using golden section search.
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model transferability isnot abigissue becauseit doesnot take much
time to calibrate 3 for a specific network, but the estimated 3's for
different urban areas are not comparable. The [3-coefficient is sensi-
tive to the detail of the network used for calibration because in the
proposed model, travelers base their next movements only on the
relative distribution of activity opportunities at surrounding nodes.
To improve the transferability of the model, one needsto relate the
probability that atraveler agent will accept an activity opportunity
with the actual distance (or duration) of travel.

The agent-based model after the calibration procedure distributes
tripsfrom originsto destinationsin adisaggregate manner with atrip
length distribution reasonably close to the observed one and assigns
most traffic to the shortest routes. The model provides output statis-
ticsincluding arc flows, the origin and destination of each individual
trip, the path of each individual trip, and turning proportions at all
intersections.

POSSIBLE EXTENSIONS OF MODEL
AND FUTURE RESEARCH DIRECTIONS

Though the proposed agent-based travel demand model is a novel
and interesting way of forecasting travel demand, it has not achieved
the scope of existing travel forecasting methods. Several extensions
can beincorporated to improve the current model.

More Agent Characteristics and Knowledge

With only three types of agents and minimum agent characteristics,
the proposed agent-based travel demand model isableto accomplish
two critical stepsin thetravel forecasting process—trip distribution
and traffic assignment—within a short amount of time. It would be
worthwhile to extend the basic model so that mode split can aso be
incorporated and more-realistic traffic assignment algorithms can
be approximated. One way to enable modal split in the agent-based
model is to expand the node knowledge to path costs of all modes
and embed a mode choice rule into travelers' characteristics. Con-
gestion effects should be taken into account in future versions of the
model, which requires an expansion of arc characteristics. However,
with limited arc capacities, the shortest paths become dependent on
travelers' choices. How traveler agents learn shortest paths in this
new dynamic situation must be carefully model ed, probably through
repetitive information exchange and learning from day to day.

More Types of Agents

Besidestravelers, nodes, and arcs, other agentsin the transportation
system have significant impacts on travel demand. For instance, it
isnecessary to define agentsthat represent transit links and railways
if these modes are to be incorporated in the model. Another exten-
sion of the current agent-based model would be the introduction of
land use agents. Theinteraction between transportation and land use
has been long recognized and studied. A metropolitan area can be
divided into many land use cells, and each cell can be modeled asa
special type of agent that has its own characteristics and behavioral
rules. In an agent-based model, interaction rules between land use
cells and transportation agents such as nodes and arcs, if appropri-
ately defined, may be able to reasonably replicate the feedback
between transportation and land use. The problem then becomes
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the calibration of these rules. Also, under the agent-based modeling
framework, simple rules may well explain complicated real-world
phenomena such asthe transportation- and use feedback loop. Alter-
natively, urban land use can be modeled as the environment in the
agent-based model. These possihilities should be examined in future
studies. Transportation management policies, such aspricing schemes
and financing strategies, have already been model ed by proper agents
and their characteristicsin several previous studies (27, 28).

More-Realistic Rules of Agent Behaviors

In constructing an agent-based model there are two major steps:
(a) identify agents and their characteristics and (b) specify their
behavioral rules. Different modelers may come up with different
sets of agents for the same system. Some may be more useful in
terms of facilitating the second step, rule specification, whichisusu-
ally thechallenging part. The model developed in thisstudy employs
only local rules according to which agents interact only with other
adjacent agents. Local rules have been successfully used in many
cellular automata applications, such as the cell transmission model
for freeway traffic (29, 30). In general, drivers make car-flowing and
lane-changing decisions on the basis of thetraffic conditionsaround
themselves, and therefore local rules may be arealistic specification
of their interactions. However, in the case of travel decision mak-
ing, it is known that travelers sometimes rely on maps, media, and
even route guidance systems when making decisions. This aspect
implies that information sharing is beyond the local level.
Although occasionally global knowledge sharing, information
flow, and learning activities can be reasonably approximated with
local rules, that is not always the case. Do travelers find their activi-
ties and choose routes using the same methodol ogy in the proposed
agent-based travel demand model? Will asmall deviation from real
behavior significantly affect the resulting equilibrium of the evolu-
tionary process? These questions are yet to be answered. In the two
examples given in the previous section, travelers have no difficulty
in finding the shortest path for their trips because there are so many
travelersin the system and the intensive local learning activitiessolve
the shortest pathsfor travelers. Had there been only onetravel er agent
in the model, it would definitely fail to find the shortest paths since
no learning activities would happen. But because asingle traveler in
the real world can identify the shortest route for atrip (or at least a
route not much longer than the shortest one) without interacting with
other individua travelers, global knowledge sharing may need to be
incorporated somehow into the agent-based travel demand model.
The progress madein travel behavior studies can bereadily incor-
porated into the agent-based model with an update of agent behav-
ioral rules. The only problem with more-redlistic behavioral rulesis
their possible requirements for more computational resources. Find-
ing and applying realistic behavioral rules of agentswhile at the same
time keeping the model computationally feasible is the real chal-
lenge. This challenge should be kept in mind in future development
of similar models. Because the human brain has alimit on complex
compuitation, this problem may not be as serious as it seems.

CONCLUSIONS

An agent-based travel demand model is developed. Travel demand
emerges from the interactions of three types of agentsin the trans-
portation system: node, arc, and traveler. Simplelocal rules of agent
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behaviors are shown to be capable of efficiently solving complex
transportation problems such as trip distribution and route assign-
ment. Themodel also providesan asymptotic shortest-path algorithm
based on distributed agent | earning activities. Possible extensionsto
the basic model are also discussed. The generic and flexible struc-
ture of the agent-based modeling method makesit easier to develop
new models and to expand existing models. By giving agentsintel-
ligence and allowing them to learn, modelers can accomplish more
with less modeling effort. The method also takes full advantage of
the fast-growing computational power now available.

Compared with trip-based approaches, activity-based approaches
represent anew paradigm for travel demand analysis. The proposed
agent-based technique, however, does not imply another paradigm
shift. Rather, it isapowerful modeling tool to disentangle complex
systems. In general, agent-based models emphasize, at the micro-
scopic level, searching and learning behavior, agents’ perception of
the environment, information flow, interagent interactions, and
heuristics and, at the macroscopic level, self-organization, hierar-
chy, and other evolutionary properties. It is difficult and unneces-
sary to draw aline between agent-based travel demand modelsand
activity-based approaches. The modeling needs for interpersonal
linkages, person—environment interactions, and longitudinal aspects
of travel behavior discovered in recent practice of activity-based
travel analysis actually provide a stage for agent-based modeling
techniques. Some recent activity-based microsimulation studiesin
which learning behavior (31) and activity interactions (32) are
explicitly modeled have demonstrated the increasing popularity of
agent-based methods.

Thisstudy pushesthe application of agent-based methodsfor travel
analysis beyond the scope of origin—destination demand estimation
and into the realm of traffic assignment. It is possible that even the
traditional equilibrium assignment process could be replaced with
an agent-based model. A completely agent-based travel forecasting
system isworth pursuing in the future. Though the proposed model
isrudimentary inits current form, the authorshopethat it can attract
more research interest in applying agent-based modeling techniques
to travel forecasting.
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