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ABSTRACT1
Non-motorized transportation, particularly including walking and bicycling, are increasingly be-2
coming important modes in modern cities, for reasons including individual and societal wellness,3
avoiding negative environmental impacts of other modes, and resource availability. Institutions4
governing development and management of urban areas are increasingly keen to include walking5
and bicycling in urban planning and engineering; however, proper placement of improvements and6
treatments depends on the availability of good usage data. This study attempts to predict pedes-7
trian activity at 1123 intersections in the Midwestern, US city of Minneapolis, Minnesota, using8
scalable and transferable predictive variables such as economic accessibility by sector, between-9
ness network centrality, and automobile traffic levels. Accessibility to jobs by walking and transit,10
automobile traffic, and accessibility to certain economic job categories (Education, Finance) were11
found to be significant predictors of increased pedestrian traffic, while accessibility to other eco-12
nomic job categories (Management, Utilities) were found to be significant predictors of decreased13
pedestrian traffic. Betweenness centrality was not found to be a significant predictor of pedestrian14
traffic, however the specific calculation methodology can be further tailored to reflect real-world15
pedestrian use-cases in urban areas. Accessibility-based analysis may provide city planners and16
engineers with an additional tool to predict pedestrian and bicycle traffic where counts may be17
difficult to obtain, or otherwise unavailable.18
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INTRODUCTION1
Walking and bicycling are increasingly becoming important transportation modes in modern cities,2
and for a multitude of reasons, including individual and societal wellness, environmental external-3
ities associated with motorized modes, and resource availability. Planning for biking and walking,4
and creating societal programs to increase their levels, has been cited as a targeted health need in5
urban planning going forward (Lumsdon and Mitchell (1), Raford and Ragland (2), Brownstone6
(3)). Resource limitations, particularly in high-population and developing third-world countries,7
impose constraints on the maximum level of personal motorized travel allowed, and as a result8
there is a greater need for viable alternatives. In addressing the viability and availability of al-9
ternative modes, high-resolution spatial data on non-motorized transportation behavior patterns is10
needed.11

Rates of walking and bicycling to work in the United States hover around 2.8% and 0.6%,12
respectively, with public transit use barely higher at 5% nationally Bureau (6). Proper placement13
of pedestrian treatments and improvements has implications to both safety (Schneider et al. (7))14
and accessibility and mode choice (Iacono et al. (8)), but proper information regarding estimated15
non-motorized traffic levels is needed to locate areas in need of improvement. In determining16
salient locations for non-motorized improvements, it is important to have accurate records of both17
existent and potential travel demand (e.g. current levels of walking in a neighborhood, as well18
as good models of increased demand due to potential treatments); however good quality, high-19
granularity datasets for non-motorized travel can be difficult to obtain, especially standardized for20
national spatial inventories (McDaniel et al. (9)). For this reason, practitioners and researchers must21
frequently rely on estimation models for non-motorized traffic, and various methods can suffer22
from issues of data quality, granularity, and the presence of location-specific variables (Lowry23
(10)).24

Many of the issues with the collection of standardized non-motorized transportation data25
have to do with the factors that influence pedestrian and bicycle behavior. A model of active26
transport risk assessment is uninformative if the pedestrian and vehicular flows do not accurately27
represent corresponding levels in situ, and many cities do not have dense data sets of active trans-28
port flow levels, instead favoring counts of vehicle traffic. As such, active transport flow levels29
must be extrapolated from sparse data sets using comprehensive methodologies. Land use data are30
well-documented by the U.S. Census Bureau to the Census Block level of resolution, and general31
socioeconomic characteristics are maintained as well, and can have significant influence (Schnei-32
der et al. (11)). However, more specific socioeconomic characteristics are salient in non-motorized33
travel beyond just adjusted income levels, as well as weather variables (Miranda-Moreno et al.34
(12)) and latent, subjective variables such as visibility and perceptions of lighting, which can be35
more difficult to obtain at high spatial resolution (Kamargianni (13)), and can complicate inter-city36
comparisons. For these reasons, as well as the overall lack in non-motorized travel counts for many37
communities, methods of estimating pedestrian and bicycle behavior that do not rely heavily on38
high-resolution count data area applied in this study.39

Aggregate travel behavior studies typically involve analysis at the level of Transit Analysis40
Zones (TAZs), which are too coarse to allow robust analysis of non-motorized travel (Schnei-41
der et al. (11)), (Iacono et al. (8)); Regional Travel Surveys consider many trip purposes, but are42
similarly coarse, and typically have too small of sample sizes to allow for robust city-to-city com-43
parison. Census block-level information regarding economic accessibility (access to jobs) via both44
strictly walking, and via the net accessibility benefit of public transportation, will first be used to45
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explain observed pedestrian traffic at a subset of intersections in the city of Minneapolis, Min-1
nesota. Road network betweenness centrality will also be used as an explanatory variable, as a2
proxy of the underlying network structure. A framework for comprehensive pedestrian risk assess-3
ment modeling, using pedestrian volume, vehicle volume, and an environmental factor (crosswalk4
length) on a university campus is provided by Schneider et al. (7). The motivation for construct-5
ing models of pedestrian and vehicular traffic is in supplementing the sparse data currently avail-6
able, and deriving a reusable framework to provide a more complete picture of pedestrian activity7
throughout the city at the level of individual intersections, based on non-location-specific available8
data.9

METHODOLOGY10
Data11
This section briefly describes the data sources used in the pedestrian estimation models, and the12
data preparation process.13

• Data Sources14

1. U.S. Census TIGER 2010 datasets: blocks, core-based statistical area (CBSA) for15
Minneapolis-St. Paul16

2. U.S. Census Longitudinal Employer-Household Dynamics (LEHD) 2011 Origin-Destination17
Employment Statistics (LODES)18

3. OpenStreetMap (OSM) North America extract, retrieved April 201419

4. Turning movement counts (TMC) 2000-2013, City of Minneapolis20

5. Average Annual Daily Traffic (AADT) measurements 2000-2013, City of Minneapo-21
lis22

6. GTFS data from Metro Transit23

• Data Preparation24

1. Construct pedestrian travel network graph for Minneapolis25

2. Geocode pedestrian Turning Movement Count (TMC) and Average Annual Daily26
Traffic (AADT) data to spatial locations27

• Accessibility & Centrality Calculation28

1. For each Census block in Minneapolis, calculate travel time to all other blocks within29
a 5km radius for a single departure time30

2. Calculate cumulative opportunity accessibility to jobs for each census block, using31
thresholds of 5, 10, . . . , 3032

3. Calculate net transit accessibility benefit using a threshold of 30 minutes33

4. Calculate betweenness centrality for the Minneapolis OSM road network34

• Model estimation35
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FIGURE 1 : Locations of intersections in
Minneapolis with raw pedestrian count data.

FIGURE 2 : Locations of sampled inter-
sections in Minneapolis, used in estimated
pedestrian activity analysis.

1. Construct linear regression of pedestrian behavior on walking accessibility, net transit1
accessibility, network centrality, and accessibility to job opportunities by sector2

2. Assess and validate model on sample of other intersections in Minneapolis3

Intersection locations were determined from OSM road centerline data for the Minneapolis-4
St. Paul CBSA (Core-Based Statistical Area). The subset of intersections for which count data5
were available is displayed in Figure 1; these intersections were used to construct the predictive6
models. Accessibility calculations were performed using OpenTripPlanner (OTP) open-source7
routing software; GIS work performed in QGIS and PostGIS; network centrality measures com-8
puted in ArcMap GIS with the Urban Network Analysis Tools toolbox; statistical work done in9
SQL, Python, and R. Figure 2 displays the locations of intersections in Minneapolis used to esti-10
mate pedestrian activity and validate the model.11

Accessibility12
The first type of explanatory variable used in the model of Minneapolis pedestrian count data13
is cumulative opportunity accessibility. Using OTP, walking travel times along the network are14
calculated from each Census block centroid in Minneapolis, to each other block centroid within15
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the travel-time thresholds of 5, 10, . . . , 30 minutes. Job opportunities are summed from each block1
centroid reachable within a given time threshold, yielding an X-minute accessibility measure. Job2
opportunities are broken down by economic sector, as defined by the North American Industry3
Classification System. There are two accessibility calculations used in this study:4

1. Accessibility to jobs from Census block centroids by walking5

2. Accessibility to jobs from Census block centroids by transit & walking6

Pedestrian counts are often taken at intersections in either gross counts, or divided by turn-7
ing movement type. This study uses Turning Movement Count (TMC) data from approximately8
750 intersections in Minneapolis; intersection counts were calculated by adding the various TMC9
types for each intersection in the analysis group, to yield a gross figure of pedestrian activity within10
an intersection. Two-hour counts for pedestrian activity were used for morning peak (7-9AM),11
midday (11am-1pm), and evening peak (4-6PM). Accessibility calculations were performed using12
the following formulation of a gravity-based model:13

Ai = ∑
j

O j f
(
Ci j

)
(1)

Ai = accessibility for location i (2)
O j = number of opportunities at location j (3)
Ci j = time cost of travel from i to j (4)

f
(
Ci j

)
= weighting function (5)

(6)

The choice of weighting function has a large impact on the resulting Accessibility calcula-14
tions; however, one of the simplest interpretations of cumulative opportunities is an integer count,15
using the following weighting function:16

f
(
Ci j

)
=

{
1 if Ci j ≤ t
0 if Ci j > t

(7)

t = travel time threshold

This intuitively makes sense when applied to opportunities such as jobs, number of restau-17
rants, transit route departures, and other discrete integer variables in the surrounding environment.18
We predict that origins exhibiting higher accessibility values would see greater pedestrian activ-19
ity throughout the day. Accessibility for both walking, and walking + transit modes, are used in20
the estimation models; subtracting walking accessibility from the multimodal walking + transit21
accessibility yields the net transit benefit, and including walking and net transit separately in the22
regression models allows for explicit evaluation of how important transit benefits are to influencing23
pedestrian activity. Multiple regression in R statistical package was then performed to determine24
the explanatory power of the accessibility measures in predicting pedestrian and vehicular traffic25
in the AM, midday, PM peaks, as well as for a 6-hour summed count. These additional tables26
are omitted here. It was expected that origins exhibiting higher walking-accessibility values, and27
higher centrality values, would see greater pedestrian activity throughout the day.28
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Centrality1
In an attempt to reflect pedestrian activity on the underlying topology of the transportation net-2
work, a centrality measure was computed in ArcGIS with the Urban Network Analysis Toolbox,3
and added to the regression models. Various types of network measures of centrality have been4
proposed in their applicability to estimation of non-motorized activity levels (McDaniel et al. (9),5
Anciães (14), Do et al. (15)), and safety and collision rates (Zhang et al. (16), Dai et al. (17)). One6
of the most common measures of centrality is "betweenness” centrality, or how "between” other7
nodes or links a given node or link is. When considering route choice and estimating modal traffic8
flows, link betweenness centrality is often considered, and consists of the proportion of shortest9
paths between all node pairs that pass through a link or node (McCahil and Garrick (18)). Re-10
latedly, stress centrality consists of counting the number of times each link in a given network is11
utilized among the set of shortest paths between all node pairs, and is given by:12

Cs(k) = ∑
i, j∈V

σi j(k) (8)

where σi j is either 1 if link k is used in shortest path σi j, and 0 otherwise. This form of13
stress centrality has been used to spatially assess transportation systems (Derrible (19)). In order14
to adapt stress centrality to the specific characteristics of non-motorized travel, (McDaniel et al.15
(9)) added the following modifications to the link betweenness schematics for the bicycle mode:16

1. Restrict shortest paths to preferred bicycle routes17

2. Restrict origin-destination (O/D) pairs to only locations reachable by bicycle18

3. Modify O/D frequency with trip multipliers19

However, for the walking mode, it is not reasonable to include the entire set of road net-20
work intersections as possible destinations for a given intersection-origin, due to the lower speed21
of the walking mode - an assumed 5 km/h. Thus, for the centrality calculations for the walking22
mode, an on-network radius of 5 kilometers, to represent an hour of walking at average speed, was23
implemented to increase the saliency and relevance of centrality to actual walking behavior. Ad-24
ditionally, similar modifications to the above for bicycle modes may be implemented for walking,25
in particular modifying O/D frequency to reflect that a certain subset of nodal origins and destina-26
tions exhibit much higher activity levels than others; for simplicity, such modifications were not27
attempted in this study.28

To reflect typical work trips, McDaniel et al. (9) chose O/D pairs such that origins were29
strictly residential parcels, and non-residential parcels were destinations in the morning, and the or-30
der was reversed in the evening. However, the authors speculated that allowing for non-residential31
destinations in the evening to reflect more complex after-work tours could increase model explana-32
tory power (McDaniel et al. (9)). Additionally, O/D pairs were limited by a network distance33
threshold of 5 miles, per the National Household Travel Survey (Federal Highway Administration34
(21)). O/D multipliers specified relative magnitude of trip generation, since parcels are heteroge-35
neous in their trip generation capacity; these included density of dwelling units within residential36
parcels, and square footage density for all other parcels.37

These modifications constitute potentially salient areas for further investigation in our38
model of pedestrian traffic. O/D pairs can be tailored to favor walking trips from residential parcels39
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TABLE 1 : Dataset Summary Statistics

Description Value
Intersections with evening ped counts 741
Intersections included in estimation modeling 1123
Intersection-µ total ped activity per day 633.66, σ = 2023.20
Intersection-µ morning ped activity per day 194.70, σ = 570.34
Intersection-µ midday ped activity per day 270.74, σ = 994.79
Intersection-µ evening ped activity per day 264.52, σ = 733.49
Note: Summary statistics for datasets used in pedestrian activity analysis: pedestrian
turning movements between 2000 and 2013 for the City of Minneapolis.

to commercial destinations, as well as limited to reasonable walking distances attained within a 30-1
minute threshold (2.5 km). Rote stress centrality is first used to evaluate preliminary explanatory2
power, and feasibility of applying centrality metrics to this model.3

Pedestrian Activity Estimation4
Multiple regression over the explanatory variables was performed in R for the walking mode. Dif-5
ferent time-thresholds of accessibility were compared for explanatory power of pedestrian activity,6
of which the strongest threshold was chosen for a final parsimonious model to estimate pedestrian7
traffic throughout the sampled intersections. Iterative stepwise regression was performed using8
the economic sector accessibility variables, in an attempt to account for the possible differential9
walking trip generation levels of different job sectors. The parsimonious model is then applied10
to a broader sample of intersections within Minneapolis, and the estimated pedestrian levels are11
compared to actual counts for validation, and specific spatial areas of underestimation and overes-12
timation are discussed.13

RESULTS14
Full tabulation of all bivariate regression models, to determine which time thresholds and peak-15
hour periods to use for greatest explanatory power in modeling pedestrian traffic levels, are omitted16
for brevity. It was found that the 15-minute threshold of total accessibility, combined with the PM-17
peak period pedestrian counts and other variables, yielded the best explanatory power for walking18
accessibility. A parsimonious model for walking activity, in terms of the strongest explanatory19
variables, is reported in Table 2. Net transit accessibility benefit was included as an explanatory20
variable in the pedestrian activity estimation model, to account for the effect of transit in urban21
cores of increasing pedestrian activity by attracting additional users beyond pure foot traffic. Ta-22
ble 1 lists summary statistics for the datasets used in the following analysis: automobile-pedestrian23
crashes between 2000 and 2013, and pedestrian turning movement counts between 2000 and 201324
for Minneapolis.25

First, the pedestrian counts were modeled in terms of only walking accessibility, for dif-26
ferent thresholds and times of day. From this, the strongest explanatory power was determined27
for PM peak period counts, at a 15-minute accessibility threshold. Pedestrian counts were then28
modeled in terms of transit & walking accessibility (bimodal accessibility), for different times of29
day. A 30-minute transit threshold was used, in accordance with the reported data available in30
the Access Across America: Transit 2014 report (Owen and Levinson (22)). Net transit acces-31
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TABLE 2 : Parsimonious Model Regression Results: With & Without AADT

Dependent variable:

Average PM pedestrians

(1) (2)

Walking accessibility (15-minute) 0.410∗∗ 0.649∗∗∗

(0.173) (0.112)
Net transit accessibility (30-minute) 0.320∗∗∗ 0.129∗∗

(0.093) (0.053)
Betweenness 0.029 0.487∗∗∗

(0.371) (0.186)
AADT 1.312∗

(0.679)
Management jobs 5min −0.114∗∗∗ −0.109∗∗∗

(0.033) (0.017)
Education jobs 5min 0.922∗∗∗ 0.700∗∗∗

(0.086) (0.058)
Finance jobs 10min 0.071∗∗∗ 0.054∗∗∗

(0.009) (0.006)
Utilities jobs 15min −0.968∗∗∗ −0.729∗∗∗

(0.104) (0.071)
Constant −15.208 −1.698

(9.874) (4.795)

Observations 486 1,016
R2 0.287 0.226
Adjusted R2 0.275 0.221
Residual Std. Error 83.830 (df = 477) 72.773 (df = 1008)
F Statistic 23.970∗∗∗ (df = 8; 477) 42.139∗∗∗ (df = 7; 1008)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; (standard error)
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sibility, a measure which looks at the contribution to accessibility from transit service, was also1
investigated as a potential explanatory variable for walking activity. A threshold of 30-minutes was2
again used. Betweenness stress centrality was included to relate walking activity to the underlying3
network structure. Accessibility and betweenness centrality are mapped in Figure 3 and Figure 4,4
respectively.5

Regression results for the two parsimonious models for walking activity, with and with-6
out AADT included, are in Table 2. Accessibility by walking, net transit benefit to accessibility,7
AADT, and accessibility to Finance and Education jobs were all found to be significant predictors8
of increased pedestrian activity. Accessibility to Management and Utilities jobs were found to be9
significant predictors of decreased pedestrian activity, relative to other variables. Betweenness cen-10
trality was not found to be a significant predictor of pedestrian traffic, but showed weakly positive11
correlation. A series of maps shows additional views of the data used in the modeling process;12
Figure 3 shows accessibility to jobs within 30 minutes by walking in Minneapolis, and Figure 413
shows the betweenness centrality of all intersections in Minneapolis calculated with a 5km radius.14
Accessibility by walking, given the walking mode’s uniform nature, shows where economic activ-15
ity is most concentrated in the region. Centrality gives a sense of the most important nodes in the16
street network of Minneapolis - that is, the nodes that would affect the highest number of shortest17
paths, were they to be rendered impassible. Both of these calculations showed positive correlations18
with pedestrian activity, as shown in Table 2. Figure 5 shows the raw levels of daily pedestrian19
activity, aggregated from manual pedestrian counts between 2000 and 2013, while Figure 6 shows20
the estimated levels of evening peak pedestrian activity in Minneapolis, calculated using the model21
definitions outlined in Table 2. To validate the estimated model, the difference between actual22
and estimated pedestrian activity is mapped in Figure 7. Additionally, spatial distributions of jobs23
in categories of Utilities, Finance, Management, and Education are shown in Figure 8, Figure 9,24
Figure 10, and Figure 11, respectively.25
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FIGURE 3 : Accessibility to jobs within 30 min-
utes by walking in Minneapolis.

FIGURE 4 : Betweenness centrality of all inter-
sections in Minneapolis; radius of 5km.
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FIGURE 5 : Raw levels of daily pedestrian ac-
tivity in Minneapolis, 2000-2013.

FIGURE 6 : Estimated levels of evening peak
pedestrian activity in Minneapolis.
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FIGURE 7 : Actual minus estimated pedestrian activity, PM peak period. Reds are areas of
underestimation; blues are areas of overestimation.
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FIGURE 8 : Spatial distribution of utility jobs in
Minneapolis, based on LEHD data.

FIGURE 9 : Spatial distribution of finance jobs
in Minneapolis, based on LEHD data.
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FIGURE 10 : Spatial distribution of manage-
ment jobs in Minneapolis, based on LEHD data.

FIGURE 11 : Spatial distribution of education
jobs in Minneapolis, based on LEHD data.
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DISCUSSION & CONCLUSION1
For the bivariate models of pedestrian activity in terms of census block centroid accessibility to2
jobs via walking, the evening peak period provided the best explanatory power. For all three3
time periods, as well as the 6-hour total count, R2 values peaked near 15-minute thresholds, and4
dropped off in either direction. The correlation between walking accessibility and walking activity5
is positive. Walking is commonly thought of as a 15-minute-mode, in that the majority of people6
walking in urban areas will be on trips of duration 15 minutes or less. Further, in dense urban7
areas, distance matters - a high-threshold measurement of walking accessibility will tend to blur8
the results and differences between origin points, thus potentially failing to reflect local variabilities9
in walking patterns. Additionally, accessibility data at the 5-minute threshold level was found to10
be a consistently less significant predictor of pedestrian activity than higher thresholds.11

It was found that pedestrian counts in the evenings exhibited the strongest correlations with12
the accessibility variables tested, and midday counts exhibited the weakest correlation strengths.13
It is possible that midday pedestrian traffic is more dispersed in both nature of trip-making and14
timing, due to variable work schedules. Both the morning and evening periods exhibited stronger15
correlations with job-based accessibility metrics, in accordance with traditional work commute16
timings. The subtle difference between the two periods could be explained in part through analysis17
of individual trip diaries - specifically the distributions of departure and arrival times for morning18
and evening trips.19

As was hypothesized, both the accessibility measures and betweenness centrality exhibited20
positive influences on pedestrian activity levels, with all the significant variables with strongest21
R2 metrics having positive signs. This gives a reasonable framework through which to estimate22
modal traffic levels at every intersection in Minneapolis and, by extension of the broader frame-23
work, in other cities as well. However, betweenness centrality did not exhibit as strong a positive24
correlation as was predicted. this may have resulted from the specific methodology used - that is,25
a centrality calculation that takes into account heterogeneous trip generation within an urban area26
due to varying land use patterns may lead to higher predictive power of centrality measures toward27
actual pedestrian behavior patterns. Pedestrian behavior in urban areas does not exhibit uniform28
all-to-all trip generation distribution; rather, there are major sources and attractors, which would29
shift the distribution of route choices, and thus link and intersection centrality, to favor routes be-30
tween those origin-destination pairs. Applying techniques analogous to those in McDaniel et al.31
(9) to the walking model may yield more accurate pedestrian behavior estimation based on the32
centrality metric.33

Accessibility to Education and Finance jobs was found to be significantly predictive of in-34
creased pedestrian activity, while accessibility to Management and Utilities jobs was found to be35
significantly predictive of decreased pedestrian activity, relative to other categories; these spatial36
maps are visible in Figure 8, Figure 9, Figure 10, and Figure 11. Utility jobs tend to be con-37
centrated in areas not immediately in the downtown core, as well as management jobs to a lesser38
degree; finance jobs are heavily concentrated in the downtown core area, and education jobs are39
concentrated on walkable campuses. Further, it is plausible that certain categories of jobs attract40
greater or lesser levels of walking among their workers, dependent on such factors as dress require-41
ments, vehicle needs (e.g. construction and contract workers), and typical density of jobs within42
each category. Additional cross-comparison analysis among economic job categories is needed43
to investigate these effects, but initial analysis indicates these spatial distributions correlate to the44
regression coefficients in Table 2.45
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A significant and pervasive challenge with analysis dependent on pedestrian, bicycle, and1
vehicular count data is the issue of data quality and format. Methodologies and data standards can2
vary from city to city and jurisdiction to jurisdiction; this study used a combination of national3
(Census, LEHD) datasets and local (Minneapolis traffic) data. Some cities, such as Boston, do4
not have robust pedestrian and bicycle counting programs throughout the city; others, such as5
Philadelphia, may have varying data release and non-disclosure agreements between MPOs, cities,6
and police departments; still other cities may have inconsistent data tracking and release practices,7
such as Washington, D.C. Such hurdles can make the collection and processing of pedestrian and8
bicycle spatial use data on a national scale exceedingly difficult. Better standards of practice in9
data collection, management, and distribution are needed.10

However, with pedestrian activity estimation based on sampling existing counts, accessibil-11
ity analysis, and betweenness centrality of the underlying network, it becomes possible to predict12
the landscape of pedestrian activity within the urban area. Such techniques may prove important13
in informing urban planning processes and decisions, pedestrian safety programs, and highlight-14
ing areas of the city that experience higher pedestrian activity as salient areas for fine-grained15
attention to built environment details. An important extension of the identification of intersections16
with higher potential pedestrian traffic is the visualization of such areas - e.g. downtown. We can17
reasonably expect certain levels of pedestrian traffic, even where counts may not exist.18

There are a few caveats to mention regarding the ability of simply accessibility and central-19
ity to accurately predict pedestrian behavior. Figure 7 highlights sections of the urban area where20
the model differed significantly from the actual pedestrian counts. For 741 intersections, the num-21
ber of daily pedestrians was overpredicted, and for 275 intersections the model underpredicted22
pedestrian activity. The distribution of differences has a mean µ = −8.10 and standard devia-23
tion σ = 72.50; 91.11% of the sampled intersections had actual − estimated differences within 124
standard deviation from the mean. The cases of underestimation and overestimation are geograph-25
ically interesting to note; the two major areas of underestimation are the inner downtown core, and26
the East Bank Campus of the University of Minnesota, just east of the Mississippi River, while27
the major area of overestimation is located west of Hennepin Ave in downtown, near Dunwoody28
Boulevard and Olson Memorial Highway. The downtown core and the campus of the University29
are characterized by significant pedestrian activity and are considered walkable areas, whereas the30
areas just west of downtown are not as walkable; in fact, Dunwoody Boulevard, Olson Memorial31
Highway, and other roads in the area are multi-lane automobile thoroughfares. While the road net-32
work structure and proximity to downtown would predict significant pedestrian activity, physical33
barriers exist within the built environment. These cases highlight the limitations of centrality and34
accessibility in capturing elements of the built environment relevant to pedestrian activity where35
local and hyper-local factors may play significant roles.36

Future Directions37
Phase II of this investigation will extend the above analysis framework to bicycling activity estima-38
tion, as well as extending both pedestrian and bicycle activity estimation out to other metropolitan39
areas as good data become available. Bicycle activity will be investigated in similar fashion - ac-40
tivity levels at intersections will be modeled with a time-threshold value of bicycle accessibility41
to jobs, betweenness centrality, net transit accessibility benefit, and accessibility to jobs split by42
sector. However, we hypothesize that adapting the betweenness measure to use spatial work trip43
distributions given by LEHD data will more closely reflect actual pedestrian use-cases than all-44
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to-all O/D pair analysis. Bicycle accessibility will be calculated with OpenTripPlanner, and the1
modeling and analysis process will be exactly analogous to that for the walking accessibility data2
presented in this report.3
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