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ABSTRACT1
Pedestrian and bicyclist collision risk assessment offers a powerful and informative tool in urban2
planning applications, and can greatly serve to inform proper placement of improvements and treat-3
ment projects. However, sufficiently detailed data regarding pedestrian and bicycle activity are not4
readily available for many urban areas, and thus the activity levels and collision risk levels must5
be estimated. This study builds upon other current work by Murphy et al. (1) regarding pedestrian6
and bicycle activity estimation based on centrality and accessibility metrics, and extends the anal-7
ysis techniques to estimation of pedestrian collision risk. The Safety In Numbers phenomenon,8
which refers to the observable effect that pedestrians become safer when there are more pedestri-9
ans present in a given area, i.e. that the individual per-pedestrian risk of a collision decreases with10
additional pedestrians, is a readily observed phenomenon that has been studied previously. The ef-11
fect is investigated and observed in acquired traffic data, as well as estimated data, in Minneapolis,12
Minnesota.13
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INTRODUCTION1
Pedestrian collision risk assessment, and its extension to collision risk assessment for bicyclists,2
offers a powerfully informative tool in urban planning regimes. Sufficiently detailed, local risk3
assessment estimates for active travel flows may markedly increase pedestrian and bicyclist safety4
in urban environments, when used to inform the placement and implementation of safety improve-5
ments and traffic calming measures. However, a rigorous process for constructing granular risk6
assessment data sets has not yet been adopted and standardized, for multiple reasons. A model7
of active transport risk assessment is uninformative if the pedestrian and vehicular flows do not8
accurately represent corresponding levels in situ, and many cities do not have complete data sets9
of active transport flow levels, instead favoring counts of vehicle traffic. As such, active transport10
flow levels must be extrapolated from sparse data sets, a technique commonly used in planning11
applications in Europe and Asia, but not yet in the United States (Raford and Ragland (2)).12

Additionally, safety levels associated with these modes continue to be a problem, with 1.2413
million vulnerable road users (VRUs) being killed in on-road accidents in 2010, and another 20-5014
million injured globally. Further, a full 22% of traffic deaths worldwide are pedestrians, which15
is quite a high figure considering the transportation mode of walking harbors little danger unto16
itself (World Health Organization (3)). Non-motorized transportation as a set of modes tends to be17
some degree of unsafe in most average developed urban areas, except where specific programs and18
treatments have been employed to address the safety concerns, such as in Copenhagen, Denmark19
(Jensen (4)).20

This investigation aims to evaluate whether the Safety In Numbers phenomenon is observ-21
able in both originally collected data and an extrapolation model in the Midwestern, U.S. city of22
Minneapolis, Minnesota. Safety in Numbers (SIN hereafter) refers to the phenomenon that pedes-23
trians as road users become safer when there are more pedestrians present in a given locale or24
area, e.g. that the per-pedestrian risk of injurious interaction with motorized vehicles decreases as25
a function of the increasing flow of pedestrian traffic. SIN is well-supported by pedestrian crash26
data across a number of studies in various urban environments and reviews (Jacobsen (5), Leden27
(6), Bhatia and Wier (7)). The concept has seen relatively widespread adoption in urban planning28
schools of thought, though its temporal causality is not clear-cut (Bhatia and Wier (7)), and it is29
commonly discussed only in the context of pedestrian risk depending on pedestrian flow levels.30
The USDOT Strategic Plan for Fiscal Years 2012-2016 aims to reduce non-vehicle-occupant fa-31
talities to 0.15 per 100 million vehicle-miles-traveled (VMT) by 2016. However, such a goal does32
not account for risk dependence on pedestrian flow levels, and thus the federal guidelines ignore33
the SIN effect.34

By necessity, data informing placement of improvements and projects for walking and bi-35
cycling safety must be sufficiently granular; travel behavior studies are typically performed at the36
Transit Analysis Zone (TAZ) level, which is insufficiently fine-grained to allow for analysis of the37
shorter-distance travel modes of bicycling and walking (Schneider et al. (8), Schneider et al. (9))38
provide a salient starting point for the comprehensive pedestrian risk assessment model, as a gran-39
ular focus on a specific university campus included factors of pedestrian volume, vehicle volume,40
and an environmental factor (crosswalk length). Wier et al. (10) provide precedent for area-level41
modeling of pedestrian risk incorporating zoning and land use characteristics. These levels of42
detail correlate well with the realities of implementation of pedestrian safety investments, which43
occur not on the city-wide level, but within specific intersections and road segments. Pedestrian44
traffic, car traffic, and crash data from the city of Minneapolis will be analyzed to test for the SIN45
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effect, as well as extrapolated data on pedestrian traffic levels at intersections where pedestrian1
counts may not have been available. The estimated data, models, portions of the methodology, and2
Figure 1 and Figure 2 are reproduced here for clarity from Murphy et al. (1).3

METHODOLOGY4
To predict pedestrian traffic levels, a model was built using census-block level information regard-5
ing economic accessibility (access to jobs) by economic sector via both strictly walking and via6
the net accessibility benefit of public transit, betweenness centrality, and Average Annual Daily7
Traffic (AADT) (Murphy et al. (1)). Then, the existence of the SIN effect was examined within8
both the collected city data, and the modeled data, for pedestrian activity levels and crash counts.9

Data10
This section briefly describes the data sources used in the pedestrian activity estimation models,11
and the data preparation process.12

• Data Sources13

1. U.S. Census TIGER 2010 datasets: blocks, core-based statistical area (CBSA) for14
Minneapolis-St. Paul15

2. U.S. Census Longitudinal Employer-Household Dynamics (LEHD) 2011 Origin-Destination16
Employment Statistics (LODES)17

3. OpenStreetMap (OSM) North America extract, retrieved April 201418

4. Turning movement counts (TMC) 2000-2013, City of Minneapolis19

5. Average Annual Daily Traffic (AADT) measurements 2000-2013, City of Minneapo-20
lis21

6. Traffic crash records 2000-2013, City of Minneapolis22

7. GTFS data from Metro Transit23

• Data Preparation24

1. Construct pedestrian travel network graph for Minneapolis25

2. Geocode pedestrian Turning Movement Count (TMC) and Average Annual Daily26
Traffic (AADT) data to spatial locations27

• Accessibility & Centrality Calculation28

1. For each Census block in Minneapolis, calculate travel time to all other blocks within29
a 5km radius for a single departure time30

2. Calculate cumulative opportunity accessibility to jobs for each census block, using31
thresholds of 5, 10, . . . , 3032

3. Calculate net transit accessibility benefit using a threshold of 30 minutes33

4. Calculate betweenness centrality for the Minneapolis OSM road network34

• Model estimation35
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1. Construct linear regression of pedestrian behavior on walking accessibility, net transit1
accessibility, network centrality, and accessibility to job opportunities by sector2

2. Assess and validate model on sample of other intersections in Minneapolis3

• Safety analysis4

1. Calculate pedestrian collision risk burden from collected data5

2. Calculate pedestrian collision risk burden from extrapolated data6

3. Evaluate whether SIN effect present7

Intersection locations were determined from OSM road centerline data for the Minneapolis-8
St. Paul CBSA (Core-Based Statistical Area). The subset of intersections for which count data9
were available is displayed in Figure 1; these intersections were used to construct the predictive10
models. Accessibility calculations were performed using OpenTripPlanner (OTP) open-source11
routing software; GIS work performed in QGIS and PostGIS; network centrality measures com-12
puted in ArcMap GIS with the Urban Network Analysis Tools toolbox; statistical work done in13
SQL, Python, and R. Figure 2 displays the locations of intersections in Minneapolis used to esti-14
mate pedestrian activity and collision risk burden.15

Accessibility16
The first type of explanatory variable used in the model of Minneapolis pedestrian count data17
is cumulative opportunity accessibility. Using OTP, walking travel times along the network are18
calculated from each Census block centroid in Minneapolis, to each other block centroid within19
the travel-time thresholds of 5, 10, . . . , 30 minutes. Job opportunities are summed from each block20
centroid reachable within a given time threshold, yielding an X-minute accessibility measure. Job21
opportunities are broken down by economic sector, as defined by the North American Industry22
Classification System. There are two accessibility calculations used in this study:23

1. Accessibility to jobs from Census block centroids by walking24

2. Accessibility to jobs from Census block centroids by transit & walking25

Pedestrian counts are often taken at intersections in either gross counts, or divided by turn-26
ing movement type. This study uses Turning Movement Count (TMC) data from approximately27
750 intersections in Minneapolis; intersection counts were calculated by adding the various TMC28
types for each intersection in the analysis group, to yield a gross figure of pedestrian activity within29
an intersection. Two-hour counts for pedestrian activity were used for morning peak (7-9AM),30
midday (11am-1pm), and evening peak (4-6PM). Accessibility calculations were performed using31
the following formulation of a gravity-based model:32

Ai = ∑
j

O j f
(
Ci j

)
(1)
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FIGURE 1 Locations of intersections in
Minneapolis with raw pedestrian count
data.

FIGURE 2 Locations of sampled inter-
sections in Minneapolis, used in estimated
pedestrian activity analysis.
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Ai = accessibility for location i (2)
O j = number of opportunities at location j (3)
Ci j = time cost of travel from i to j (4)

f
(
Ci j

)
= weighting function (5)

(6)

The choice of weighting function has a large impact on the resulting Accessibility calcula-1
tions; however, one of the simplest interpretations of cumulative opportunities is an integer count,2
using the following weighting function:3

f
(
Ci j

)
=

{
1 if Ci j ≤ t
0 if Ci j > t

(7)

t = travel time threshold

Accessibility using this type of weighting function yields an intuitive metric - discrete4
counts of the numbers of opportunities (jobs, restaurants, other destinations) reachable within a5
certain time frame. We predicted that locations with higher accessibility values would see greater6
pedestrian activity, and thus a decreased pedestrian risk burden of collisions, throughout the day.7
Accessibility for both walking, and walking + transit modes, are used in the activity estimation8
model; net transit benefit is calculated by subtracting the walking accessibility at each Census9
block from the walking + transit accessibility value, and including both variables separately in the10
model allows for targeted analysis of how significant transit access is to pedestrian activity and11
safety.12

Centrality13
The underlying network topology, including features such as block size and degrees of connectiv-14
ity, can influence the walkability of a place. Betweenness centrality was computed in ArcGIS with15
the Urban Network Analysis Toolbox, to include the influences of network topology in estimating16
pedestrian activity and safety levels. Various types of network measures of centrality have been17
proposed in their applicability to estimation of non-motorized activity levels (McDaniel et al. (11),18
Anciães (12), Do et al. (13)), and safety and collision rates (Zhang et al. (14), Dai et al. (15)). One19
of the most common measures of centrality is "betweenness” centrality, or how "between” other20
nodes or links a given node or link is. When considering route choice and estimating modal traffic21
flows, link betweenness centrality is often considered, and consists of the proportion of shortest22
paths between all node pairs that pass through a link or node (McCahil and Garrick (16)). Specifi-23
cally, the metric of stress centrality was used, which consists of counting the number of times each24
link in a given network is utilized when enumerating the set of shortest baths between all node25
pairs; this metric is given by:26

Cs(k) = ∑
i, j∈V

σi j(k) (8)

where σi j is either 1 if link k is used in shortest path σi j, and 0 otherwise. This form of stress27
centrality has been used to spatially assess transportation systems (Derrible (17)). Here, simple28
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TABLE 1 Dataset Summary Statistics
Description Value
Intersections with evening ped counts 741
Crashes at intersections with evening ped counts 1064 (1052 injuries, 12 deaths)
Crashes at intersections with evening ped counts per year 76
Intersections included in estimation modeling 1123
Crashes at all intersections in estimation modeling 2513 (2478 injuries, 35 deaths)
Crashes at all intersections in estimation modeling per year 179.5
Intersection-µ crashes per year with evening ped counts (incl. zero-
crash ints.)

0.1518

Intersection-µ crashes per year with evening ped counts (w/o zero-crash
ints.)

0.2647

Intersection-µ crashes per year in estimation modeling 0.1597
Intersection-µ total ped activity per day 633.66, σ = 2023.20
Intersection-µ morning ped activity per day 194.70, σ = 570.34
Intersection-µ midday ped activity per day 270.74, σ = 994.79
Intersection-µ evening ped activity per day 264.52, σ = 733.49
Note: Summary statistics for datasets used in pedestrian
activity analysis: pedestrian turning movements between
2000 and 2013, and aggregate crash reports 2000-2013,
for the City of Minneapolis.

stress centrality was calculated with a 5km limiting radius on shortest path length, corresponding1
to an hour of walking at a typical human pace, as it is not reasonable to include the entire set of2
road network intersections as possible destinations for a given intersection-origin when walking.3
Each O/D pair was weighted equally in the centrality calculation.4

Pedestrian Safety Estimation5
Pedestrian risk-burden for collisions with automobiles was first calculated for the raw data, and6
then for the estimated data based upon the modeled pedestrian activity. The pedestrian activity7
model was derived via multiple regression in R using iterative stepwise regression to determine the8
most highly predictive explanatory variables; pedestrian activity was then estimated by applying9
the derived model to a subset of intersections, many of which did not have pedestrian count data.10
Pedestrian collision risk-burden is defined as the number of crashes occurring at an intersection11
during the 14-year measurement period, per pedestrian walking through that intersection on a given12
day. If the per-pedestrian rates of crashes are lower at intersections with more pedestrian activity,13
then a ”safety in numbers” effect is observed. In both safety models, the number of car-pedestrian14
crashes at intersections is not altered, and is taken from aggregated crash report data.15

RESULTS16
A parsimonious model for walking activity, in terms of the strongest explanatory variables, is17
reported in Table 2. Table 1 lists summary statistics for the datasets used in the safety analy-18
sis: automobile-pedestrian crashes between 2000 and 2013; pedestrian turning movement counts19
(TMC) between 2000 and 2013; and automobile AADT figures between 2000 and 2013.20

Regression results for the two parsimonious models for walking activity, with and with-21
out AADT included, are in Table 2. Accessibility by walking, net transit benefit to accessibility,22



Murphy, Levinson, and Owen 8

TABLE 2 Parsimonious Model Regression Results: With & Without AADT

Dependent variable:

Average PM pedestrians

(1) (2)

Walking accessibility (15-minute) 0.410∗∗ 0.649∗∗∗

(0.173) (0.112)
Net transit accessibility (30-minute) 0.320∗∗∗ 0.129∗∗

(0.093) (0.053)
Betweenness 0.029 0.487∗∗∗

(0.371) (0.186)
AADT 1.312∗

(0.679)
Management jobs 5min −0.114∗∗∗ −0.109∗∗∗

(0.033) (0.017)
Education jobs 5min 0.922∗∗∗ 0.700∗∗∗

(0.086) (0.058)
Finance jobs 10min 0.071∗∗∗ 0.054∗∗∗

(0.009) (0.006)
Utilities jobs 15min −0.968∗∗∗ −0.729∗∗∗

(0.104) (0.071)
Constant −15.208 −1.698

(9.874) (4.795)

Observations 486 1,016
R2 0.287 0.226
Adjusted R2 0.275 0.221
Residual Std. Error 83.830 (df = 477) 72.773 (df = 1008)
F Statistic 23.970∗∗∗ (df = 8; 477) 42.139∗∗∗ (df = 7; 1008)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; (standard error)
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AADT, and accessibility to Finance and Education jobs were all found to be significant predictors23
of increased pedestrian activity. Accessibility to Management and Utilities jobs were found to be24
significant predictors of decreased pedestrian activity, relative to other variables. Betweenness cen-1
trality was not found to be a significant predictor of pedestrian traffic, but showed weakly positive2
correlation.3

Safety analysis was also performed on the raw data, to attempt to verify the existence of4
the Safety in Numbers effect. Figure 3 and Figure 4 display the unweighted and weighted levels5
of pedestrian-auto crashes in Minneapolis between 2000 and 2013, respectively. The pedestrian-6
weighted data displayed in Figure 4 are plotted in Figure 7, which shows the relationship between7
per-pedestrian crash risk and the average daily pedestrian use level of an intersection. Such an8
effect, wherein intersections characterized by greater daily levels of pedestrian activity show lower9
per-pedestrian crash rates than less-active intersections, appears to be present in the raw data. Fig-10
ure 8 shows the same relationship, but for estimated pedestrian count data based on the explanatory11
variables enumerated in Table 2. Exponential models are fitted to both the raw and estimated data,12
and both datasets appear to show significant trends towards exhibiting the "safety in numbers"13
effect.14
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FIGURE 3 Raw levels of pedestrian-auto
crashes in Minneapolis, 2000-2013.

FIGURE 4 Pedestrian-weighted levels of
ped-auto crashes in Minneapolis, 2000-2013.
Pedestrian risk is defined as the number of
crashes in 2000-2013, per pedestrian in daily
PM peak period.
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FIGURE 5 Estimated levels of evening peak
pedestrian activity in Minneapolis.

FIGURE 6 Estimated weighted pedestrian
risk of crash. Pedestrian risk is defined as the
number of crashes in 2000-2013, per pedes-
trian in daily PM peak period.
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FIGURE 7 Pedestrian risk burden vs. pedestrian traffic levels, raw data; exponential fit,
b = −0.0516, RSE = 0.1018, p << 0.05. Pedestrian risk is defined as the number of crashes
in 2000-2013, per pedestrian in daily PM peak period.
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FIGURE 8 Pedestrian risk burden vs. pedestrian traffic levels, estimated data; exponential
fit, b=−0.0248, RSE = 0.0664, p<< 0.05. Pedestrian risk is defined as the number of crashes
in 2000-2013, per pedestrian in daily PM peak period.
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DISCUSSION & CONCLUSION1
The "safety in numbers” effect was indeed observed in both the raw Minneapolis pedestrian and2
crash data, as well as the modeled data at the broader sample of intersections (visible in Figure 33
and Figure 4). Intersections characterized by higher per-day pedestrian traffic exhibited lower per-4
pedestrian crash rates, a phenomenon that has been observed and described previously (see Jacob-5
sen (5), Leden (6), Bhatia and Wier (7)). The precise reasons behind this effect are not definitively6
known; however, the aforementioned studies have hypothesized psychological effects on drivers, in7
that when driving in environments characterized by greater average levels of pedestrians, drivers8
may tend to act with more caution. Additionally, spatial geometric probability of crashes for a9
given pedestrian necessarily varies with additional pedestrians present within an intersection, due10
to physical constraints of the built environment.11

An ongoing challenge with activity estimation and safety analysis dependent on count and12
crash data is the issue of data quality and availability. Data practices vary from city to city and13
state to state, with implications to investigations intending to collate and aggregate safety data for14
cross-jurisdiction comparison. Additionally, a large amount of city data collection pertaining to15
street utilization is still performed manually, and such processes are error-prone and inconsistent16
between jurisdictions. This study used a combination of national (Census, LEHD) datasets and17
local (Minneapolis traffic) data. Some cities, such as Boston, do not have robust pedestrian and18
bicycle counting programs throughout the city; others, such as Philadelphia, may have varying19
data release and non-disclosure agreements between MPOs, cities, and police departments; still20
other cities may have inconsistent data tracking and release practices, such as Washington, D.C.21
The collection and processing of pedestrian and bicycle spatial safety data on an aggregate scale22
becomes exceedingly difficult. Better standards of practice in data collection, management, and23
distribution are needed.24

Visualizing unsafe intersections, or groups of intersections, within an urban area is an im-25
portant angle of analysis to undertake with the types of datasets used in this investigation. Prob-26
lematic areas within the city environment become readily apparent; when multiple intersections27
with relatively high pedestrian injury risk-burden lie in the same corridor, such as Lake Street in28
Minneapolis, a discussion of pedestrian safety and the surrounding built environment should oc-29
cur. Some of these problematic areas are visible in Figure 4 with the raw original data, as well30
as in Figure 6 for the estimated model data. The entire Lake Street corridor stands out as an area31
with elevated pedestrian risk burdens given the number of pedestrians walking there, compared to32
downtown. Further, if the sample data were to only contain a few intersections within that corridor,33
the predictive models would enable planners and engineers to construct a more complete picture34
of pedestrian safety and activity throughout the entire corridor. Through the pedestrian risk-burden35
analysis, it is also possible to see intersections with a disproportionately high rate of crashes for its36
level of pedestrian activity, which serves as salient information for urban planners and engineers37
wishing to alter the built environment to increase pedestrian and bicyclist safety factors.38

Future Directions39
As mentioned in Murphy et al. (1), the analysis framework outlined in this report constitutes Phase40
I of the overall investigation. Phase II will extend the framework to the bicycling mode, and look41
at estimating the collision risk variability for bicycling throughout an urban area. Activity levels at42
the granularity level of intersections will be estimated for bicycles in much the same fashion as for43
walking, using explanatory variables of a time-threshold value of bicycle accessibility to jobs by44
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sector, betweenness centrality, and net transit accessibility benefit. However, we hypothesize that1
adapting the betweenness measure to use spatial work trip distributions given by LEHD data will2
more closely reflect actual pedestrian use-cases than all-to-all O/D pair analysis. OpenTripPlan-3
ner software will again be utilized for accessibility calculations, and the modeling and analysis4
framework for safety levels will be analogous to the above.5
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