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Abstract. In this note we prove an extension of a remarkable result due to
B. Peleg. Peleg’s result concerning with the simultaneous validity of a set of
inequalities for families of functions defined on a finite product of standard
simplices in finite dimensional spaces. The main result we prove here provides
an extension of that result to the case of functions defined on a rather general
product of simplices. Some topological requirements lead us to deal with this
problem from a functional point of view.

1. INTRODUCTION
In Peleg (1967, lemma 2.4) a remarkable result is presented which is the

main tool for proving several existence theorems concerning different solution
concepts in cooperative game theory (Davis, Maschler (1965), Peleg (1967). In
Cesco, Marchi (1990) Peleg’s result is used to prove existence for a certain type
of kernel and bargaining set in the framework of pure exchange economies.
Peleg’s lemma concerns with the simultaneous validity of some inequalities

for families of functions defined on a finite product of standard simplices in finite
dimensional spaces. The main theorem in this paper provides an extension
of that result to the case of functions defined on a rather general product of
simplices. Some topological requirements leads us to deal with this problem
from a functional point of view. We point out that we get a result which
holds almost everywhere. In order to get a proof, we first prove an auxiliary
result extending corollary 2.5 of Peleg (1967). That result has also been used
extensively in game theory and has interest by itself. In fact, both Peleg’s
results, in the framework he worked, turn out to be equivalent.
This note is organized as follows. Definitions and notation are set forth

in section 2. This section also includes an auxiliary result that we use later.
The extension of Peleg’s corollary is proved in section 3 and the main result is
presented in the next one. We close with some final remarks.

2. PRELIMINARIES.
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Let N = {1, . . . , n} and

∆n−1 = {x = (x1, . . . , xn) ∈ Rn :
X
i∈N

xi = 1, xi ≥ 0, for all i ∈ N}

Here R denotes the set of real numbers and Rn the n-fold cartesian product of
R.
Let T = [0, 1] ⊆ R and let L∞(T) be the space of all equivalence classes

of measurable real functions defined on T endowed with the usual essential
supremun norm k.k∞. Here µ denotes the Lebesgue measure on T.
Let

X (T) = {f ∈ L∞(T) : kfk∞ ≤ 1}
Banach-Alaoglu’s theorem asserts that X (T) is a weak∗-compact subset of L∞(T)
whenever L∞(T) is viewed as the dual space of L1(T). X (T) is also a locally
convex metrizable space when it is endowed with the weak∗-topology. We refer
the reader to Rudin [13, Ch.3] for an account of those results.
Now let

Y(T) = {f = (f1, . . . , fn) : fi : T → R is µ-measurable for all i ∈ N and
(f1(t), . . . , fn(t)) ∈ ∆n−1 a.e.(µ) in T}
That set defines univocally, in a natural way, a subset S(T) of Q

i∈N
X (T),

namely, that of all n-vectors of µ-equivalence classes derived from the vectors
of functions in Y(T).
By endowing

Q
i∈N

X (T) with the product topology, which we are going to
denote weak∗-topology too, it turns to be that S(T) is a weak∗-compact subset
of

Q
i∈N

X (T). Moreover, S(T) is a weak∗-compact locally convex metrizable
space.

Let

C : T→ 2S(T)

be a mapping, namely, a set valued mapping from T into S(T).
We say that C is measurable if

C = {(t, f) ∈ TxS(T) : f ∈ C(T)}
belongs to the product σ-field L(T) ⊗ B(S(T)). Here L(T) denotes the σ-field
of all Lebesgue measurable subsets of T and B(S(T)) the σ-field of all Borel
subsets of S(T).
We close this section by stateing the following result (Castaing-Valadier [2,

Theorem III.30]).
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Theorem 1: Let (T,L, ν) be a measure space with ν ≥ 0 σ-finite, L complete
and (S, d) a complete separable metric space. Let C : T → 2Sa mapping that

maps T into closed non empty subset of S. Then, the following two properties
are equivalent:

i) C is measurable
ii) The real function

dist(C(.), f) = inf{d(g, f) : f ∈ C(t)}

defined on T, is measurable for all f ∈S.

3.A GENERALIZATION OF PELEG’S COROLLARY.

In this section we prove an auxiliary result, which, as we mentioned in the
introduction, has great interest in its own.
Before stateing it we set the following convention. Given an element f̃∞ ∈

L(T), which is an equivalence class, we said that a subset F of T is a support for
f̃ if there exists a function f belonging to the class f̃ such that f(t) > 0 if and
only if t ∈ F. It follows clearly, from that definition that, if F0 and F" are two
supports for a given class f̃ , then µ(F0∆F")=0. Here ∆ indicates symmetric
difference.
In what follows we assume that a particular support F has been chosen for

each f̃ ∈ L∞(T). In the case of having f̃ = (f̃1, . . . , f̃n) in S(T),Fi will denote
the chosen support for the class f̃i.
Theorem 2: Let

Ci : T→ 2S(T) i ∈ N

be a family of non empty valued measurable mappings such that
i)Ci(t) is weak*-closed for all t ∈ T, and for all i ∈ N.
ii)
S
j∈N C

j(t) = S(T) ae(µ).
iii)Ci(t) ⊇ {f̃ ∈ S(T) : t 6∈ Fi} ∀i ∈ N, ae(µ).
Then, there exists f̃ ∈ S(T) such that

f̃ ∈ Ci(t) ∀i ∈ N, ae(µ)

Proof: We define the functions

ci : TxS(T)→ R for all i ∈ N

by
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ci(t, f̃) = dist(Ci(t), f̃)

= inf{d∗(g̃, f̃) : g̃ ∈ Ci(t)}
where d∗ denotes a weak∗-compatible metric in S(T).
It is clear that the functions

ci(t, .) : S(T)→ R

are weak∗-continuous for all i ∈ N, t ∈ T.
On the other hand, we have that the real functions

ci(̃f , .) : T→ R

are measurable for all i ∈ N, f̃ ∈ S. This is so because of Theorem 1, that
guarantees that the functions d∗(Ci(.), f̃) are measurable.
Now, for each f̃ ∈ S(T), let the real functions

Hi(̃f) : S(T)→ R i ∈ N
be defined by

Hi(̃f)(t) =
fi(t) + c

i+1(t, f̃)

1 +
P
j∈N cj(t, f̃)

∀t ∈ T

where f = (f1, . . . , fn) is an element of f̃. Here we are adopting the convention
that n+ 1 = 1. Clearly,

0 ≤ Hi(̃f)(t) ≤ 1 ae(µ)

Besides, since fi and cj(., f̃), j ∈ N are measurable functions, Hi(̃f) is measur-
able too. Finally, we note that

X
j∈N Hj (̃f)(t) = 1 ae(µ)

From those considerations we conclude that the mapping

H : S(T)→ S(T)
defined by
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H(̃f) = (H1(̃f), . . . ,Hn(̃f))

is well defined.
Now, we are going to prove thatH is a weak∗-continuous mapping. For that,

is enough to prove that each component Hi is a weak∗-continuous real function.

Let {f̃r}r≥1 be a weak∗-convergent sequence in S(T). That means that there
exists f̃ ∈ S such that, for each g ∈ L1(T),

lim
r

Z
T
fri (t)g(t)dt =

Z
T
fi(t)g(t)dt

Here fri ∈ f̃ri . We have to show that

lim
r

Z
T
Hi(̃f

r)(t).g(t)dt =

Z
T
Hi(̃f)(t).g(t)dt

for all g ∈ L1(T). But

Z
T
Hi(̃f

r)(t).g(t)dt =

Z
T

fγi (t)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt

+

Z
T

ci+1(t, f̃γ)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt

We first note that

ci+1(t, f̃γ)

1 +
P

j∈N cj(t, f̃γ)
.g(t) ≤ g(t)

for all γ ≥ 1, t ∈ T. Besides, because of the weak∗-continuity of the function
cj(., t), j ∈ N, t ∈ T,

lim
i

ci+1(t, f̃γ)

1 +
P

j∈N cj(t, f̃γ)
.g(t) =

ci+1(t, f̃)

1 +
P

j∈N cj(t, f̃)
.g(t) for all t ∈ T

Hence, an application of Lebesgue’s dominated convergence theorem yields that

lim
i

Z
T

ci+1(t, f̃γ)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt =

Z
T

ci+1(t, f̃)

1 +
P
j∈N cj(t, f̃)

.g(t) (1)

On the other hand, the inequality

(1 +
X
j∈N

cj (̃fr)(t)).g(t) ≤ k.g(t)
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is always true for a suitably chosen constant k, for all g ∈ L1(T), t ∈ T. This is
so because the functions cj , j ∈ N are bounded since the distance d∗ is bounded
on S. This allows us to apply Lebesgue’s theorem, as we did in the previous
paragraph, to get that

lim
i

Z
T
(1 +

X
j∈N c

j (̃fr)(t)).g(t)dt =

Z
T
(1 +

X
j∈N c

j (̃f)(t)).g(t)dt

for all g ∈ L1(T), namely, that the functions 1+
P

j∈N c
j (̃fr)(t), γ ≥ 1 converge

to 1 +
P

j∈N c
j(f)(t) in the weak∗ sense.

Now

¯̄̄̄
¯
Z
T

fγi (t)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt−
Z
T

fi(t)

1 +
P

j∈N cj(t, f̃)
.g(t)dt

+

Z
T

fi(t)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt−
Z
T

fi(t)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt

¯̄̄̄
¯

≤
Z
T

¯̄̄̄
¯ fγi (t)− fi(t))
1 +

P
j∈N cj(t, f̃γ)

.g(t)

¯̄̄̄
¯ dt+

Z
T
|fi(t)|

¯̄̄̄
¯ 1

1 +
P

j∈N cj(t, f̃γ)
− 1

1 +
P

j∈N cj(t, f̃γ)

¯̄̄̄
¯ . |g(t)| dt

≤
Z
T

¯̄̄̄
¯ fγi (t)− fi(t))
1 +

P
j∈N cj(t, f̃γ)

¯̄̄̄
¯ . |g(t)| dt

+ kfik∞ .
Z
T

¯̄̄̄
¯ 1

1 +
P

j∈N cj(t, f̃γ)
− 1

1 +
P

j∈N cj(t, f̃γ)

¯̄̄̄
¯ . |g(t)| dt

Since

¯̄̄̄
1

1+
P

j∈N cj(t,̃fγ)

¯̄̄̄
. |g(t)| ≤ |g(t)| for all γ ≥ 1, and taking into account the

fact that lim
γ
(fγi (t)− fi(t)) = 0, we can apply Lebesgue’s theorem once more

to get that the first term in the last member in the above chain of inequalities
can be made arbitrarily small provided γ is large enough.
Finally, since the function g(t)

1+
P

j∈N cj(t,̃f)
also belongs to L1(T) provided g

belongs to L1(T), and due to the fact that the sequence {fri }r≥1 converges to fi
in the weak∗ sense, the second term in the aforementioned chain of inequalities
can also be made arbitraily small if γ is large enough. This proves that

lim
i

Z
T

fγi (t)

1 +
P
j∈N cj(t, f̃γ)

.g(t)dt =

Z
T

fi(t)

1 +
P
j∈N cj(t, f̃)

.g(t)dt (2)

Combining (1) and (2) we obtain that the sequence {Hi(̃fr)}r≥1 converges to
Hi(̃f) in the weak ∗sense.
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Now we are able to apply Theorem 1 to the mapping H1 which yields a class
f̃ ∈ S(T) such that H(̃f)=f̃. This equality implies that

fi(t) =
fi(t) + c

i+1(t, f̃γ)

1 +
P
j∈N cj(t, f̃γ)

ae(µ) (3)

for all i ∈ N. Namely, that there exists Ai ⊆ T, µ(Ai) = 0 such that the equality
(3) holds for all t ∈ T−Ai. Let us denote by A =

S
j∈N Aj . Clearly, µ(A) = 0.

Now, let B = {t ∈ T : Pj∈N fj(t) 6= 1}. The definition of S(T) yields that
µ(B) = 0 too.
Let C = {t ∈ T : S∈N Cj(t) 6= S(T)}. The measure of C is zero too.
For each j ∈ N , let Dj = {t ∈ T : Ci(t) ⊇ {f̃ ∈ S(T) : t 6∈ Fi}. Then,

because of iii), µ(Dj) = 0. Let us call D =
S
j∈N Dj . Therefore, µ(D) = 0.

Finally, for each j ∈ N , let Gj = Fj ∩ {t ∈ T : fj = 0}. Then, µ(Gj) = 0.
Let G =

S
j∈N Gj . Obviously, µ(G) = 0.

We claim that, for each t ∈ T− (A∪B∪C∪D∪G), there exists i ∈ N such
that

t ∈ Fi and f̃ ∈ Ci+1(t) (4)

Clearly, due to ii), that assertion is true if {j ∈ N : t ∈ Fj} = N .
Otherwise, let i be the greatest index such that t ∈ Fi. Hence, because of

iii )̃f ∈ Ci+1(t)(Recall that n+ 1 ≡ 1).
We now point out that, t ∈ Fi−(A∪B∪C∪D∪G) implies that fi(t) > 0. Be-

sides, f̃ ∈ Ci+1(t) implies that ci+1(t, f̃) = 0. These facts force that, for an index
i satisfying (4), the equality (3) can take place if and only if

P
j∈N c

j(t, f̃) = 0.

But this equality implies that cj(t, f̃) = 0 for all j ∈ N , which in turns yield that
f̃ ∈ Cj(t) for all j ∈N. Since this property holds for all t ∈ T−(A∪B∪C∪D∪G)
and for all j ∈ N , the theorem is proved.

4. MAIN THEOREM.

In this section we prove the main result of this note that is a simple conse-
quence of theorem 2.
Theorem 3: Let

gi : TxS(T)→ R
hi : TxS(T)→ R

i ∈ N, be two families of weak∗-continuous functions satisfying
i)∀(t, f̃) ∈ TxS(T) there exists i ∈ N such that gi(t, f̃) ≥ hi(t, f̃).
ii)hi(t, f̃) ≤ min{gi(t0, f̃ 0) : (t0, f̃) ∈ TxS(T)} for all (t, f̃) ∈ TxS(T) such

that t 6∈ Fi.
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Then, there exists f̃ ∈ S(T) such that

gj(t, f̃) ≥ hj(t, f̃) ∀j ∈ N, ae(µ) (5)

As before, Fi denotes a chosen support for the i-th component of f̃ = (f̃1, . . . , f̃n).
Proof:
Let i ∈ N and

Ci : T→ 2S(T)

be the mapping defined by

Ci(t) = {f̃ ∈ S(T) : gi(t, f̃) ≥ hi(t, f̃)}

Because of the weak∗-continuity of the functions gi and hi(and hence, of the
functions gi(t, .) and hi(t, .)∀t ∈ T) and the compacity of the set S(T), the set
Ci(t) is non empty and weak∗-closed for each t ∈ T, for each i ∈N. Moreover,
the weak∗- continuty of gi and hi yields that

Ci = {(t, f̃) ∈ TxS(T) : gi(t, f̃) ≥ hi(t, f̃)}

is closed in TxS(T) whenever this set is considered with the product topology
L(T)xB(S(T)). This proves that the mappings Ci is measurable for each i ∈N.
On the other hand, because of i), given t ∈ T, f̃ ∈ S(T), there exists i ∈ N

such that f̃ ∈ Ci(t). That proves that

[
j∈N

Cj(t)

covers S(T) for each t ∈ T.
Finally, if t 6∈ Fi, because of ii), f̃ ∈ Ci(t).
Those considerations show that the correspondences Ci, i ∈ N , satisfy the

conditions i), ii) and iii) of theorem 2. Hence, that result guaratees the exis-
tence of f̃ ∈ S(T) such that

f̃ ∈ Cj(t) ∀j ∈ N,ae(µ)
But, clearly, such an element satisfies that

gj(t, f̃) ≥ hi(t, f̃) ∀j ∈ N, ae(µ)
which is (5). This completes the proof.
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5. FINAL REMARKS.

Our theorem 3 is a true generalization of Peleg’s Lemma which is obtained
by considering hi(t, f̃) = fi(t), in a context that take T finite. In the general
case, however, this particular form for the h’s function cannot be adopted since
they fail to be weak∗-continuous.
We also note that ii) can be stated in Peleg’s terms by using nonnegative

functions.
We would like to point out that in [4], the authors proved an extension of

another result due to Peleg ([11] lemma) which in turns is a generalization of the
wellknown Kaster, Kurarowski and Mazurkiewicz lemma, similar to theorem 3
in this note. That result was obtained for every t ∈ T. However, the conditions
put on the multivalued mappings involved are stronger. We require that the
multivalued mappings are upper and lower weak∗-semicontinuous.
We close by mentioning that theorem 3 as well as theorem 2 can be used as

tools for proving existence theorems for equilibrium concepts defined in a game
theoretic framework considering a measure space of players.
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