
 

 

 

 

 

 

 

Uncertainty in Cropland Data Layer derived land-use change estimates: putting 
corn and soy expansion estimates in context 

 
 
 
 

A THESIS 
SUBMITTED TO THE FACULTY OF  

UNIVERSITY OF MINNESOTA 
BY 

 

 

 

 

Ryan R. Noe 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF  
MASTER OF SCIENCE 

 
 

Jason Hill 
 
 
 
 

January 2015 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Ryan R. Noe 2015



 

 i 

Acknowledgements 

This research was funded in part by the USDA CenUSA Bioenergy grant. Bonnie Keeler 

aided in selecting the research question, and provided feedback throughout. Marvin 

Bauer provided comments on an early draft. I cannot thank Brian Krohn and Kimberly 

Mullins enough for their unmitigated willingness to provide feedback on any and all 

questions I have encountered since I started working for Jason. Their moral support and 

intellectual guidance was invaluable for completing this research and has helped me grow 

as a scientist. I thank Jasmine Cutter for proof-reading, comments, and encouragement. I 

am grateful to Natalie Hunt, Nat Springer, and all members of the Hill lab group past and 

present for their feedback and support. I am indebted to my family and friends for their 

endless encouragement. Lastly, I am grateful to my adviser, Jason Hill, for the resources 

and freedom to learn new skills and explore this and other research questions. 



 

 ii 

Abstract 

Increased demand for corn for ethanol and the subsequent record high commodity prices 

has resulted in rapid expansion of corn and soy in the Midwestern U.S. Whether or not 

this expansion is replacing existing agricultural production or is expanding onto 

previously uncultivated grass or pasture land has profound implications for ecosystem 

services such as soil carbon storage, soil erosion prevention, and water quality. Several 

studies have used the Cropland Data Layer (CDL) to track fine scale land-use changes 

driven by corn and soy. However, these studies rarely account for the variability in data 

quality throughout the CDL’s history. Here I compare established techniques as well as 

the application of USDA’s Common Land Unit (CLU) data for removing ‘noise’ from 

change rasters and quantifying the land covers lost to corn and soy expansion. I compare 

these estimates to equivalent measures from the National Agricultural Statistics Services 

(NASS) and use the discrepancy between them to identify spatial and temporal variability 

in CDL data that could influence land-use change study results. The CLU results differed 

little from established techniques, but both improved over direct comparisons of CDLs. 

Comparison to NASS data revealed pre-2010 versions of the CDL underestimate corn 

and soy area much more than later versions, leading to the detection of illusory land-use 

change when they are compared to post-2010 versions. Spatial and temporal variability 

resulted in errors that were several times larger than the trends the data are being used to 

detect. According to the CDL, approximately five million hectares of corn and soy 

expanded onto the grass, pasture, hay, and wheat between 2007 and 2012. However, over 
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the same time period, the CDL overestimated the amount of corn and soy expansion by 

3.5 million hectares in the unmodified treatment and by 1.5 million with cleaning 

methods applied. This work suggests that studies that use the CDL should test for and 

report variability and uncertainty in their results. 
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1. Introduction 

1.1 Observed recent land-use change 

Increased demand for food and fuel has resulted in elevated commodity prices, 

motivating producers to increase production (Gecan et al. 2009; Claassen & Nickerson 

2011). In the last decade, the area devoted to corn and soy production in the Midwestern 

United States (defined as IA, IL, IN, KS, MN, MO, ND, NE, OH, SD, and WI) has 

reached record highs eight times. In this domain, production of these two crops increased 

by 6.25 million ha between 2006 and 2014 (USDA-NASS 2014b). National Agricultural 

Statistics Service (NASS) census data show large increases in the area of cropland and 

even larger decreases in the area of pasture between 2007 and 2012 (Figure 1 ). While 

this suggests possible corn and soy expansion onto pasture, it could also be explained by 

increasing pressure from urban expansion or a transition from pasture to hay. 

Though NASS data show unambiguous increases in the area devoted to corn and soy 

production, a lack of spatial detail and data on natural vegetation prevent it from being 

used for a comprehensive understanding of land-use change. Importantly, the lack of a 

sub-county spatial component precludes identifying what specific transitions are 

occurring. It is possible to know that the area of one crop is increasing and another is 

decreasing, but whether the land-use changes of those crops is direct or indirect cannot be 

ascertained from NASS data. Simply tracking change in total area can hide a complex 

web of land-use change and the environmental consequences of those transitions. At the 

county level, the finest spatial resolution available, only a few major crops are reported 
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on an annual basis, and pasture area data are only available in census releases every five 

years. Furthermore, strict privacy concerns result in data being redacted if there are only a 

few producers in a given county. Inconsistent temporal reporting of many crops and the 

sparse non-cropland data make even tracking correlations between increases of one land 

cover and decreases of another difficult.  

1.2 Implications for ecosystem service provisioning 

Whether corn and soy expansion is occurring on existing agricultural land or on 

natural vegetation has a spectrum of consequences for ecosystem services. Grassland and 

other natural vegetation enable the accumulation and long-term storage of soil carbon. 

Many studies have shown at least a 50% loss of soil carbon when converting grass or 

pasture land to cropland (Bowman et al. 1990; Gebhart et al. 1994; Unger 2001). Soil 

carbon losses are even higher in areas with precipitation matching that of the Dakotas, 

Nebraska, and Kansas (Guo & Gifford 2002). Given that one of the goals of U.S. biofuel 

policy is to reduce the carbon intensity of our transportation fuel, it is especially 

important to understand if soil carbon is being lost due to increased demand for corn and 

soy. Emissions from soil carbon under corn and soy expansion have the potential to 

undermine the already uncertain carbon emission reductions from corn-based biofuels 

(Mullins et al. 2011; Fargione et al. 2008).  

Natural vegetation is also effective at preventing soil erosion and reduces the flow of 

nutrients into waterways that cause both local pollution and larger-scale eutrophication. 

Corn, and to a lesser extent soy, require extensive fertilizer and pesticide application 
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relative to grass or pasture land. In the Upper Mississippi River Basin, corn and soy 

production alone is responsible for 52% and 25% of nitrogen and phosphorous pollution, 

respectively (Alexander et al. 2008). Excess nitrogen can contaminate local water 

supplies, increasing the risk for methemoglobinemia (blue baby syndrome) or require 

costly removal technologies (Wolfe & Patz 2002). Increased nutrient loading has far 

reaching economic implications. Algal blooms in the Gulf of Mexico results in millions 

of dollars of damage to the tourism and fishing industries (Downing et al. 1999). 

Additionally, the shallow root system of corn makes the land used to produce it 

vulnerable to soil erosion. Sediment run-off not only decreases the long term productivity 

of the land, it increases turbidity in local waterways which can change the species 

composition (Fargione et al. 2009). 

Perhaps most difficult to quantify, grasslands can provide services such as 

pollination, pest control, and wildlife habitat (Werling et al. 2014). A comprehensive 

assessment of land-use change in the Midwest is necessary to understand how elevated 

commodity prices translates into changes in ecosystem service provisioning. 

1.3 Application and uncertainty of the Cropland Data Layer 

1.3.1 Diverse applications of the CDL 

Several studies have sought to overcome the limitations of NASS data by using the 

Cropland Data Layer (CDL) (Mueller & Harris 2013). With a minimum of 56m spatial 

resolution, eight years of annual Midwest releases, and 133 land covers tracked, the CDL 

is the ideal dataset to answer questions about rapid agricultural land-use change and the 
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associated environmental consequences. In addition to traditional land-use change 

studies, discussed in detail shortly, the relatively high spatial and temporal resolution of 

the CDL enables it to track changes in rotations on a field by field basis (Yost et al. 2014; 

Stern et al. 2012; Long et al. 2014; Plourde et al. 2013). The crop specific land covers 

have made it popular with those predicting landscape changes in response to biofuel 

policy (Li et al. 2012; Elliott et al. 2014). Others use the CDL as an input for water 

quality, yield, and ecosystem service modeling studies (Karcher et al. 2013; Resop et al. 

2012; Meehan et al. 2013).  

1.3.2 Uncertainty and sensitivity 

While all of these studies are sensitive to variability in the quality of CDL data, the 

vast majority of these studies make only minor adjustments to compensate for obvious 

issues (e.g., mismatched resolutions, changing classifications). The ‘as-is’ use of the CDL 

is sometimes justified by its 85% to 95% overall accuracy for major crops, and often 97% 

producer and user accuracy for corn and soy (Boryan et al. 2011; USDA-NASS 2014a). 

However, errors of just a few percent can translate to millions of hectares of improperly 

classified land when examining major crops across several states. Spatial variability in 

data quality can also result in estimates that seem reasonable in aggregate, but reveal 

over- and under- estimates when viewed at finer scales. Furthermore, comparison of 

multiple datasets multiplies their error rates. All of these potentials for error propagation 

are especially troublesome given that these data are being used to detect changes on the 

order of hundreds of thousands of hectares in a 100 million hectare study area (Wright & 
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Wimberly 2013). While the reported changes may be occurring on the landscape, the data 

used to detect them are laden with unreported uncertainty.  

Accuracy assessments of CDL-derived estimates would add confidence to these 

results, however the quantity of data and labor required to assess fine scale changes 

taking place at regional extents over several years is typically unobtainable. Additionally, 

auxiliary sources of information on grass and pasture are rare. As an alternative, the most 

prominent studies on the subject have used a combination of conservative assumptions 

and qualitatively driven processing techniques to produce estimates from the CDL. These 

assumptions and processing decisions are usually well defended, but the results are not 

presented in the context of other data sources, or other assumptions. This context is vital 

to understand how results compare to potential errors in the data. 

1.3.3 Wright and Wimberley (2013) assumptions and results 

 The most cited paper on the subject, Wright and Wimberley (2013), examined a 

broad area of rapid transition, the five western Corn Belt states (ND, SD, NE, MN, and 

IA), between 2006 and 2011. They found that the areas of most intense grassland to corn 

and soy conversion were in the eastern Dakotas and southern Iowa. However, they 

examined only transitions between corn-soy and grassland. Their reported 530,000 

hectares of net grassland to corn-soy conversion does not fully answer where the 1.75 

million hectares of new corn-soy production that occurred over this period went, nor does 

it examine possible indirect effects of corn and soy expansion.  
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The narrow focus of their study required creating only two aggregate classes; one 

comprised of corn and soy, and another comprised of the grass/pasture, other hay/non-

alfalfa, and fallow/idle cropland classes. This is the only major study to include 

fallow/idle in an aggregate grass category. They did not include double-cropped winter 

wheat and soy in the corn and soy class. 

Comparisons between the 2006 and 2011 CDLs were made after resampling the 

2011 CDL to 56m. To mitigate the numerous individual change pixels that arose from 

noise in the inputs, they employed a simple but aggressive cleaning method.  The change 

raster was processed with a 5x5 majority filter. This choice of filter was qualitatively 

justified by arguing that the output resembled the size and shape of fields. The area of 

detected change removed by the filter is not reported, nor is a comparison to other 

potential filters presented.   

Making minor changes to the assumptions proposed by Wright and Wimberley 

can drastically change the results. For example, changing the baseline year from 2006 to 

2007 quadruples the amount of conversion in the data (Figure 3 ). The results are also 

more sensitive to the inclusion of ‘Fallow/Idle cropland’ when using 2006 as a baseline. 

While this alone provides little information on which assumptions are more accurate, the 

magnitude of the sensitivity provides perspective on the robustness of the results.  

1.3.4 Johnston (2013) assumptions and results 

Johnston’s (2013) work expanded on Wright and Wimberley’s by considering 

annual transitions over seven years and by looking at exchanges between six aggregate 
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land classes instead of two. However, the study area was confined to the Dakota Prairie 

Pothole Region. While an ecologically sensitive area, the non-political boundaries 

prevent any comparisons to NASS data.  

Johnston found increasing grassland coverage between 2006 and 2010, and a 

sharp decline between 2011 and 2012 resulting in grassland coverage 9% lower than 

2006 levels. In total, 800,000 hectares of land converted to corn-soy, 80% of which was 

formally split evenly between grassland and wheat. Grassland was also lost indirectly as 

displaced small grains expanded onto grassland. The addition of annual transitions 

demonstrates that a four year trend can be completely reversed and hidden in a single 

year. Her work also demonstrates that examining just one transition can hide complex 

indirect interactions. 

This study used the most common definition for its aggregate grass class: 

‘Grass/pasture and ‘Other Hay/Non-alfalfa’. Change detection did not employ any 

cleaning methods to restrict transitions by field size or shape. However, due to poor 

alignment of roads, any land ever classified as developed was masked out. This 

assumption may further overestimate the area of the already inflated 56m rasterized 

roads. 

1.3.5 Environmental Working Group and Farm Bureau assumptions and results 

In the past two years, three reports by have been released by advocacy 

organizations with opposing views on corn’s value as a biofuel. While these reports were 
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carried out by professional GIS analysts and make defensible assumptions, the variability 

in the CDL allowed them to come to very different conclusions.  

The Environmental Working Group (EWG) released two reports on the drivers, 

spatial distribution, and environmental implications of agricultural expansion (Cox & 

Rundquist 2013; Faber et al. 2012). In their 2012 agricultural expansion report they used 

the 2008 through the 2011 national CDLs to track expansion of several commodity crops 

onto natural vegetation. To limit the analysis to realistic management units and mitigate 

the effects of varying resolutions, the EWG employed filters that eliminated land covers 

and transitions smaller than 4 hectares.  Using these assumptions the EWG found 9.3 

million ha of natural vegetation loss to seven crops in just five years. They, however, did 

not compare this estimate to an independent source, such as NASS data. Over the same 

time period NASS data show the total area of the same crops decreasing by 700,000 ha.  

The Farm Bureau’s multi-state land-use change report (2013) examined the extent 

of land-use change in the Midwest under elevated commodity prices. In the seven state 

region, they found 3.45 million hectares of net land-use change away from grassy land 

covers, 2.34 million hectares of which was to corn or soy. Their results are not directly 

comparable to others because their definition of grassland included wetlands and 

herbaceous wetlands. They did not employ any filters or cleaning methods. While their 

findings support the perception of grassland loss to corn and soy expansion, they argue 

that variability in the data quality of the CDL preclude it from being used for policy 

making.    
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1.4 Changes in CDL methodology 

Though iterations of the CDL were first produced in 1997, national coverage did 

not begin until 2008, and coverage for the entire agriculture-dominated Midwest was 

only available shortly before, in 2006. Despite spanning only eight years in the Midwest, 

the CDL has undergone many methodological changes. Changes in classifications, 

satellite sensors, and resolution have expanded the capabilities of the CDL and improved 

its accuracy, but they also confound analysis of land cover changes in ways for which it 

is difficult to account and correct. 

The desire for more frequent imagery over a broader area prompted the 

acquisition of imagery from the India Resource Satellite’s Advanced Wide Field Sensor 

(AWFiS) beginning in 2006 (Bailey & Boryan 2010). This enabled broader coverage, but 

at a coarser 56m resolution compared to 30m for Landsat. AWFiS imagery was used until 

2011 when imagery from the satellites Deimos-1 and UK-DMC-2 enabled the production 

of a consistent national 30m CDL. While this represents and improvement in data quality, 

it also makes aligning and comparing older and newer datasets more difficult. 

In addition to changes in imagery source, the CDL has had varied auxiliary 

classification data. While the CDL captures and classifies non-agricultural imagery each 

year, the training data required to perform the classification comes from the less 

frequently released National Land Cover Dataset (NLCD) (Jonhson & Mueller 2009). 

Using already-classified data for training increases the potential for error propagation 

because classification errors that exist in the NLCD would carry over to the CDL.  



 

10 

Additionally, the NLCD is released every five years, but the data that go into a given 

release can span several years before the release, and the product is not available until 

two years after its namesake year. This results in using imagery that is between five and 

ten years old to classify non-agricultural land covers. The five year release cycle also 

results in sudden, large fluctuations in non-agricultural land covers, which can mask 

actual land-cover change. 

With one exception, since 2006 the CDL has used a consistent collection of 

commercial software products to classify its input imagery. However, there are classes in 

later versions of the CDL that did not exist in the earlier versions. For example, cells with 

the classification ‘Sweet Corn’ first appeared in 2008. Reclassification into broader 

categories is the typical practice to correct for these changes, but no guidance is provided 

on whether sweet corn grown in 2007 was most likely classified as ‘Corn’, ‘Other Crops’, 

or ‘Misc Vegs & Fruits’. These discrepancies between years typically affect classes that 

have relatively small area, but they add uncertainty to comparisons over longer time 

periods.  

The 2006 Nebraska CDL differs from other CDLs in that it was classified with an 

older method that limited the number of scenes that could be used to make the 

classification (USDA-NASS 2014a). It is also unique in that the non-agricultural land 

covers are taken directly from the 2001 NLCD, rather than using the NLCD for training 

data. Furthermore, it is the only modern CDL to have ‘Undefined/Non-agricultural’ cells. 

Of the over 900,000 hectares of undefined land, approximately 580,000 and 732,000 ha 
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were classified as ‘Grass/Pasture’ in 2005 and 2007 respectively (Figure 2 ). These 

factors contribute to anomalies that make the 2006 Nebraska CDL difficult to compare 

even to other states of that year. 

1.5 Research Objectives 

I attempt to answer two questions that will improve our understanding of land-use 

change in the Midwest. First, what is the quantity and prior land cover of new corn and 

soy land? Second, are those changes large enough to be distinguished from, or potentially 

influenced by, variability in the CDL? I test the application of Common Land Unit (CLU) 

data and established raster-based techniques for detecting land-use change with the CDL, 

and compare previous studies’ estimates to equivalent estimates from NASS at regional, 

state, and county levels. With both spatial and temporal comparisons between CDL-

derived estimates and NASS, I identify anomalous areas and years of the CDL. I put my 

land-use change estimates, as well as previous published estimates, in the context of the 

uncertainty demonstrated in the data.  

 

2. Methods  

2.1 Study area data preparation 

The 11-state study area was selected to encompass the states that make up the core of 

the Corn Belt and to also capture transitions that are happening at its periphery. These 

states made up approximately 80% of 2013 U.S. corn and soy production (USDA-NASS 
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2014b). Their selection was also contingent on data availability. States were excluded if 

they did not have a 2007 CDL. The state of Michigan and the Minnesota counties of Polk 

and Otter tail were excluded due to incomplete CLU data. The 11-state (minus two 

counties) study area was extracted from seamless national CDL files for 2008 to 2013. 

Individual state files from 2006 and 2007 were first projected to Albers Equal Area Conic 

and then mosaicked together. Alignment of roads was checked visually and by using the 

ArcGIS Combine tool to determine if alignment could be improved by shifting the cells. 

The 2007 CDL was found to have better alignment when shifted north one cell (56m). 

CDLs with 30m resolution were resampled to 56m for comparisons to earlier CDLs. 

However, for CLU analysis and comparisons between 30m CDLs, the higher resolution 

was retained. 

2.2 Software and data sources 

 Seamless national CDL files for 2008-2013 were obtained from the USDA CDL 

website (USDA-NASS 2013). Individual state CDLs for 2007 and 2008, state boundary,  

and county boundary shapefiles were obtained from the geospatial data gateway. The 

CLU data used in this analysis were limited to what was publically available in 2008, and 

were obtained from www.geocomunity.com. Later versions of the CLU were not made 

public. NASS data were all obtained using the quickstats query tool available at 

quickstats.nass.usda.gov (USDA-NASS 2014b). All GIS operations were performed 

using ESRI ArcGIS 10.2 (ESRI 2013). Operations on tabular data were performed with 

the Python data analysis package Pandas 0.15 (McKinney 2010).  
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2.3 Treatments and metrics 

Treatments were selected to represent common applications of the CDL while also 

maintaining comparability with NASS data. To test the influence of temporal variability 

in the CDL’s methodological history, two combinations of comparison years were 

selected. The comparison between 2007 and 2012 captures much of the range and 

subsequent variability of the CDL’s history and also allows for direct comparison with 

NASS pasture data. The years 2011 and 2013 were selected for comparison because, 

despite the short time frame, there was significant corn and soy expansion over that time 

period, but more importantly those CDLs were produced with the most consistent data 

sources and methodology.  

To test the ability of cleaning methods to improve the accuracy of change estimates, 

no cleaning was compared to a method prescribed by Wright and Wimberley as well as a 

method employing a dataset of land management units derived from high resolution 

aerial imagery. These methods are discussed in detail in section 2.5. 

Due to limitations of NASS data, the accuracy of a given treatment is determined  by 

the net change in area of corn and soy. The net change metric is not ideal for assessing 

the environmental consequences of transitions, because  the consequences of those 

transitions may not be equivalent. For example, converting pasture to corn may release 

soil carbon faster than it is sequestered by converting corn to pasture. 

The net change metric is also limited in its ability to assess spatial accuracy. While 

the CDL may estimate the change in corn and soy area for a given state perfectly relative 
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to NASS data, there is no guarantee that the location of those changes or their prior land 

covers are accurate. To improve the spatial component of this metric, comparisons of 

change in total area are made at regional, state, and county levels to reveal potential 

spatial trends in error that would be hidden in an aggregate estimate.  

2.4 Aggregation and re-classification 

2.4.1 Importance of aggregation and re-classification 

Aggregation and re-classification is a vital part of any multi-year study that uses the 

CDL because some classifications are now in use that did not exist in earlier years. 

Maintaining comparability with independent datasets such as NASS requires ensuring 

that any aggregation is equivalent in both datasets. Classification ambiguity, both 

between studies that use the CDL and within the CDL itself, is especially common in 

grassland classes. Despite its importance, there is usually very little justification, 

quantitative or otherwise, for the re-classification decisions in a given study.  Here, 

quantitative and qualitative justifications are provided for classifications that are 

inconsistently called grassland between studies.  

2.4.2 Treatment of ‘Other Hay/Non-Alfalfa’ 

Some re-classifications are straightforward, for example, the class ‘Other Hay/Non 

Alfalfa’ was not used before 2009, but 87% of land with that classification in 2009 had 

been classified as grass/pasture in at least two of the three prior years. Given the prior 

land cover, one can infer that ‘Other Hay/Non Alfalfa’ should be considered a grass land 
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cover. Although including this class in the aggregate grassland class increases the area of 

grassland, including it will always result in a lower net grassland loss estimate. Because 

this land cover did not exist earlier time period, it impossible for it to contribute to 

grassland to corn-soy conversion, but it can contribute to the reverse and thus reduce the 

net loss estimate. ‘Other Hay/Non-Alfalfa' is also necessary to include because it is 

inconsistently included on a state-by-state basis, even in recent iterations of the CDL. 

2.4.3 Treatment of ‘Alfalfa’ 

Even though alfalfa has many similarities with other hay and pasture, it was excluded 

from the aggregate grassland class because of its tendency to be grown in rotation with 

corn. Unlike other hay, alfalfa experiences autotoxicity and does not grow well on land 

previously used to produce alfalfa (Chon et al. 2003). When a stand of alfalfa becomes 

less productive, it is common practice to grow corn before returning to alfalfa (Miller 

1983). This frequent exchange between alfalfa and corn would confound estimates of 

grassland to corn conversion. 

2.4.4 Treatment of ‘Fallow/Idle Cropland’ 

A more ambiguous classification is ‘Fallow/Idle Cropland’. There is evidence that 

this class has been inconsistently classified between 2006 and future years of the CDL. In 

2006 its area was twice as large as any future year. Half of this land was then classified as 

grassland in at least two of the next three years. Normally this would be an indication that 

it should be included in an aggregate grassland class. However, looking at the prior 
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classification of 2013 ‘Fallow/Idle Cropland’ indicates that it was most often classified as 

wheat before 2013.  

For further understanding of inconsistencies in ‘Fallow/Idle Cropland’ classification, 

its effects on amount of net grassland to corn and soy conversion detected were compared 

in Western Corn Belt states. Definitions of grassland that included ‘Fallow/Idle 

Cropland’ doubled the amount of net grassland to corn-soy conversion found in 

comparisons that use 2006 as the baseline, but have almost no effect in comparison that 

use 2007 as a baseline (Figure 3 ). Therefore it is likely that this classification was treated 

differently in 2006. Because 2006 is not being used as one of the comparison years in this 

study, ‘Fallow/Idle Cropland’ was not included in the aggregate grassland class. 

However, studies that use the 2006 CDL extensively may achieve better results by 

including it. 

2.4.5 Other classification considerations 

Agricultural re-classification decisions were made based on the prominence of the 

crop and comparability with NASS data. ‘Alfalfa’, ‘Fallow/Idle Cropland’, as well as the 

ten field crops with the greatest area were maintained. All agricultural covers deemed 

minor or incomparable between datasets were assigned to ‘Other Agriculture’. Due to 

low changes rates, non-grass natural vegetation was aggregated into a single category.   
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2.4.1 Treatment of double cropping 

Although most double crop classifications are not present in early versions of the 

CDL, and were minor in later versions, they were maintained to make accurate 

comparisons with NASS data. If land other than hay or alfalfa is harvested multiple times 

in the same year, NASS counts the area twice, once for each crop (USDA-NASS 2012). 

Because it is not possible to count a raster cell twice, double-crop classifications where 

neither classification is ‘Other Agriculture’ are not aggregated with their respective 

classes until the data have been converted to tabular form, then their area is added to both 

of the crops grown on that land. For analyses that focus on expansion of individual crops 

(e.g., corn and soy expansion), double-cropped systems that contained the crop were re-

classified to that crop. 

2.5 Strategies for minimizing noise 

A limitation of several land-use change studies is the identification of change between 

rasters on an unrealistic cell by cell basis (Johnston 2013; Farm Bureau 2013). Raster 

cleaning methods have been applied to remove presumably erroneous individual change 

pixels and visually approximate fields (Wright & Wimberly 2013; Cox & Rundquist 

2013), but the ability of these methods to improve the quantitative accuracy of estimates 

is rarely assessed. I attempt to improve on past approaches by applying the Common 

Land Unit (CLU). The CLU delineates discreet units of uniformly managed land from 

permanent features visible in aerial photography (Adkins 2013). By combining the CDL 

and the CLU one can evaluate how land-use is changing on a field-by-field basis each 
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year. Here, the qualitative considerations behind these methods are discussed, and the 

ability of the methods to decrease discrepancies from NASS in corn and soy change 

estimates is compared. 

2.5.1 Raster-based moving window filters 

A long-used method for removing spurious values and smoothing rasters of all types 

is a moving window filter. In this class of filters each cell’s value is determined by a 

mathematical function of the surrounding cells. For continuous data, this could consist of  

taking the average the surrounding eight cells, but for categorical data operations are 

limited to what can be determined by counting the cells of different categories in each 

window. Typically, the majority of the surrounding cells is assigned to the analysis cell. 

Wright and Wimberley (2013), among others, selected a 5x5 window for their majority 

filter. This requires that of the 24 cells forming a square around a given cell, 13 of them 

had to be classified as change for the center cell to be classified as change. At 56m 

resolution this is equivalent to requiring a cell to be touching or one cell away from 4 

hectares of changing land. While this is very effective and removing the obviously 

erroneous cells, it also has a tendency to round the corners of fields and remove small or 

thin parcels of detected change that could be actual land-use change. 

The major advantage of this approach is that it does not require any auxiliary data 

sources, and is still able to generate a more realistic looking landscape. However, as with 

any simple algorithm, it is unable to replicate the many factors that go into delineating a 

landscape.  
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2.5.2 Common Land Unit based  filtering 

In an effort to introduce more information into the filtering methodology, I 

applied the CLU polygon dataset. The CLU improves on the analysis by adding 

boundaries professionally delineated from aerial imagery to within three meters accuracy.  

This incorporates the complex patterns that are used to managed the landscape rather than 

simplify them. The polygons can conform to much finer features than 56m cells, and their 

area can be calculated to avoid biases from cell counting.  

The CLU also provides several benefits when comparing multiple years of data. 

Foremost, the fixed boundaries allow for tracking changes on a field-by-field basis from 

year to year with greatly reduced edge effects. Because the CDL is only used to 

determine the land cover of a field, and not its shape or size, rasters of different 

resolutions can be compared without information loss from re-sampling. Additionally, the 

tabular format of the data can be quickly manipulated and queried in ways that would 

require generating several intermediate files using a raster-based approach.  

While the CLU improves on directly comparing cells, it does have some 

drawbacks. Due to restrictions in the 2008 Farm Bill, the most recent available version of 

these data is from 2008. Furthermore, the available data have been stripped of their meta-

data, which prevents identifying the exact year the units were delineated. Even with 

somewhat outdated CLUs, the boundaries are likely still appropriate because they are 

drawn to conform to non-changing features (Adkins 2013). However, in an exceedingly 

dynamic time for agricultural production, these units may need updating to capture sub-
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divisions of previous uncultivated units. Changes in field boundaries, such as adding 

stream buffers or additional rows of production to the edges of fields would not be 

detected by this CLU snapshot. Even small buffers and contours that already exist in the 

CLU dataset may not be detected or may be improperly classified because of the coarse 

resolution of the CDL.  

Lastly, there is uncertainty with regard to whether or not CLUs truly have a 

uniform land cover. In contrast to the Farm Service Agency’s definition for a field, their 

definition for a CLU does not preclude multiple crops within a CLU. A CLU is 

delineated along crop boundaries if the same boundary is used for multiple years (USDA 

Farm Service Agency 2012). Researchers with full access to the data have suggested that 

the amount of CLUs with mixed covers is as high as 50%, but no context is given on the 

size or distribution of these inclusions (Bailey & Boryan 2010; Gelder et al. 2008). This 

presents a problem because the CLU filter assumes that the majority land cover within it 

is the land cover of the entire unit. Despite this uncertainty, the CLU adds valuable 

boundary information, especially when crop lines are consistent between years. 

 Frequent occurrences of CLUs with mixed land covers may upwardly bias area 

estimates of more prevalent crops. Additionally, in the unlikely event of a tie, the lower 

land cover value is assigned, which would be biased toward corn. Ultimately, while the 

CLU offers new and relevant information to detecting land-use change, it too introduces 

assumptions and variability that cannot fully be accounted for without an extensive 

accuracy assessment. 
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2.6 Common Land Unit preparation 

Although the CLU is nominally distributed on a county basis, each file typically had 

dozens to hundreds of CLUs located outside of the county boundary. To ensure that every 

CLU in my study area was used, a script was used to perform a spatial join operation 

between every CLU and a shapefile of states and counties. CLUs were assigned attributes 

for the state and county in which their centroid fell, regardless of what county file they 

were distributed in. Additionally, a unique ID was assigned to every CLU to facilitate 

joins between multiple datasets derived from the CLU.  Next, the CLUs that fell within 

the study area were selected and exported to new shapefiles. This created a library of only 

CLUs that fell in the study area, even if they were distributed with a county outside of the 

study area.  

2.7 Common Land Unit based analysis 

To create tabular land cover data, the library of Midwest CLUs was iterated over and 

the ArcGIS Zonal Statistics tool was used to determine the majority land cover of each 

CLU in each year. The land cover in each year was exported to a tabular format for 

analysis in Pandas. 

Within Pandas, corn and soy expansion was quantified by first re-classifying all 

double crop classifications that contained corn or soy to corn and soy. Next, all CLUs 

that were classified as anything other than corn or soy in the first comparison year, but 
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were classified as corn or soy in the second comparison year, were selected and exported. 

The process was reversed to identify the CLUs that had transition from corn or soy to 

anything else. Both of these subsets were aggregated to the county level using the 

‘groupby’ operation. Lastly, the expansion and loss were summed for each county, 

providing the net change in corn and soy area in each county between the comparison 

years, which can be directly compared to NASS data.  These steps were repeated for 

different combinations of crops and comparison years. 

2.8 Cropland Data Layer raster based analysis 

To calculate corn and soy expansion, the input land cover rasters were first 

reclassified into binary (corn-soy or not corn-soy) rasters. While it is possible to calculate 

net change by simply comparing the totals on a county level between two years, such a 

method does not allow for either the identification of the specific transitions that are 

occurring or the application of raster cleaning techniques.  

The ArcGIS Combine tool was used to create a change raster that could identify land 

transitioning both to and from corn and soy between comparison years. The change raster 

values were aggregated to the county level using the ArcGIS Zonal Histogram tool. 

As a means of reducing noise and restricting the analysis to only realistically sized 

changes, Wright and Wimberley and others have applied filters to change rasters. To test 

the influence of this method, the ArcGIS Focal Statistics tool was used to calculate the 

majority value of the change raster in a 5 by 5 cell moving window. The filtered change 

raster values were similarly aggregated to the county level.  
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Prior land cover of corn and soy expansion was identified with the ArcGIS Zonal 

Histogram tool by using the change raster to define the zones and the CDLs to identify 

the land cover. Net expansion was calculate for all crops by subtracting the quantity of 

land that expanded onto corn and soy on a crop by crop basis.  

2.9 NASS data preparation 

Using the NASS quickstats tool, county and state level census and survey data for 

major commodity crops and for pasture were downloaded. Except for hay and alfalfa, 

which are only reported as harvest area, the planted area attribute was used. Planted area 

was preferred over harvested area because the CDL has no mechanism for identifying 

failed crops. Using harvested area has the potential to underestimate agricultural 

expansion because, for example, the 2012 drought would reduce the harvested area more 

than in a typical year. Unfortunately this prevented the use of census data for many crops, 

because the census only reports harvested area.  

 Using a similar approach as a study that compared NASS agricultural area estimates 

to those of the NLCD, survey data for corn and soy were compiled at the county level and 

joined to a shapefile for comparison with other estimates and visualization (Maxwell et 

al. 2008).  Counties that did not have estimates for both crops in all years of interest were 

excluded. State level estimates were downloaded separately rather than summing county 

estimates to minimize the effect of data withheld for privacy reasons.  
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3. Results and Discussion 

3.1 Prior land cover of new corn and soy land 

A simple intersection of the corn and soy change raster cells with the 2007 CDL 

reveals the distribution of prior land covers for corn and soy expansion (Figure 4 ). While 

this method shows alarming amounts of land-use change, it is also vulnerable to the many 

anomalies in CDL data. To put these changes in context, the net change from 2007 to 

2012 in corn and soy area according to the unmodified CDL was 8.8 million ha, while 

NASS reports only 5.4 million. Despite re-classification and re-sampling to make the 

CDL and NASS derived estimates comparable, the change estimates for the most 

accurately detected crops, vary by 3.4 million ha, or 63% of the NASS reported change.  

The CDL documentation cautions against comparing area estimates derived from cell 

counting to those reported by NASS due to a downward bias for major land covers 

reported in several studies (Gallego 2004; Gallego et al. 2008; USDA-NASS 2014a). 

This bias results from smaller features being generalized under moderate resolution 

imagery (Czaplewski 1992). However, unless otherwise noted, all comparisons presented 

here are of change in area. Any bias from cell counting should be equal in all inputs, thus 

minimizing differences from NASS change estimates. 

3.2 Comparison of prior land cover by treatment 

 Between 2007 and 2012 corn and soy expanded primarily onto grass/pasture and 

wheat (Figure 5 ). There was generally strong agreement on the quantity and distribution 
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of prior land covers of new corn and soy land between the majority filter and CLU, with 

the exception of the open space developed category. This category consists mostly of 

roads, which were poorly detected and aligned in early 56m data. Both the majority filter 

and CLU treatments were effective at avoiding these errors. The majority filter cleaning 

method detected one million fewer hectares of net grassland to corn and soy conversion 

than the unmodified CDL and the CLU. Given the unmodified CDL’s tendency to 

overstate changes, this could indicate that mixed CLUs are being erroneously classified 

as all corn. Of course, the majority filter has a tendency to aggressively remove change 

pixels, so the truth very well may lie between these points. Wheat losses were about a 

half to a third as large as those of grassland. Concerns of grassland loss due to corn and 

soy expansion are well founded, but other crops are absorbing some of the expansion as 

well.  

 The distribution of prior land covers differed in the 2011 to 2013 comparison and 

the quantity of change was an order of magnitude lower, but was still dominated by 

grass/pasture and wheat (Figure 6 ). More crops expanded onto corn and soy land as the 

prices declined, but wheat and grass/pasture still saw losses to corn and soy. Notably, the 

unmodified CDL detected about half as much grassland to corn and soy conversion as the 

two cleaned treatments in the 2011 to 2013 comparison. It is possible that cleaning 

methods that were applicable to comparisons of older versions of the CDL may introduce 

unnecessary changes in later versions.  
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3.3 Comparison to NASS data 

Direct comparisons of 2007 and 2012 versions of the CDL resulted in large errors. 

Cleaning methods were effective at reducing those errors, though they may not be 

applicable in all cases. In 2007 to 2012 comparisons, the change in corn and soy area was 

best estimated by the CLU filter, while this method performed the worst in comparisons 

between 2011 and 2013 (Figure 7 ). The difference between the unmodified and cleaned 

estimates was much larger in the 2007 to 2012 treatment than in 2011 to 2013, indicating 

that the cleaning techniques play a more important role when working with older versions 

of the CDL. In the 2007 to 2012 treatment, the difference between the majority filter and 

the CLU was minor, but both offered a large improvement over no cleaning. Even after 

cleaning, users tracking corn and soy between these two years have over a million 

hectares of illusory land-use change to contend with. Errors in the 2011 to 2013 treatment 

were smaller, but the amount of land-use change was as well. On a percentage basis, 

performance between comparison year groups was similar for the majority filter, better 

for no cleaning, and much worse for the CLU (Figure 8 ). The variability in response to 

cleaning methods reflects temporal variability in the input data.  

 Error assessments that depend on large area aggregation of change estimates are 

especially vulnerable to spatial variability in accuracy. Overestimates in one area can 

cancel underestimates in another, leading to incorrect distributions of land-use change, 

but correct area change estimates. To mitigate this, study area wide estimates are broken 

down to state and county aggregates to determine if the trends remain. This is also useful 
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for identifying reliable subsets to study further or hot spots for illusory land-use change. 

For example, looking at the state level errors for 2011 to 2013 reveals that direction and 

magnitude of errors can vary widely by state (Figure 9 ). 

 The state level variation poses a challenge for simple cleaning methods, and as 

demonstrated here, even more sophisticated datasets such as the CLU. The tendency for 

these methods to increase or decrease area estimates uniformly across the landscape does 

little to address spatial variability. A case by case assessment of the performance of a 

cleaning method is necessary for determining which to use in a given geography. 

3.4 Sources of variability 

The biggest driver of errors in corn and soy area estimation is temporal variability. 

Though one would not expect the CDL estimate to have perfect agreement with NASS 

estimates, there is a temporal trend to the size of the error. The size of the underestimate 

decreases with later years (Figure 10 ). This improvement in area estimation has the 

unfortunate side-effect of artificially inflating corn and soy expansion estimates between 

strongly underestimating years and more accurate years by millions of hectares. This 

land-use change is indistinguishable from actual land-use change happening at the same 

time and in some cases is much larger. 

A possible explanation for this jump is the change in resolution from 56m to 30m, 

which happened at the same time. However, re-sampling the later imagery to 56m has 

little effect on the total area of corn and soy. It could also be explained simply by better 

classification techniques and imagery sources. 
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Spatial variability also plays an important role, but it is more difficult to quantify. 

Even for the relatively accurately classified corn and soy, very few counties are able to 

estimate the change in area to within 1,000 hectares of NASS estimates (Figure 11 Figure 

16 ). Congruent with the total area estimate errors discussed earlier, comparisons between 

2007 and 2012 tend to overestimate the amount of change, while comparisons between 

2011 and 2013 underestimate it. However, there is clear spatial variability at the county 

level. Cleaning methods had little influence on the spatial distribution of the errors, and 

only marginally reduce the magnitude across the landscape. 

Interestingly, several counties in eastern North and South Dakota had large 

underestimates of corn and soy expansion under all years and treatments. This is 

especially striking because other studies that have used the CDL have highlighted this as 

an area of corn and soy expansion, but this indicates even those estimates are too low. It 

is also worth noting that southeastern Minnesota, an area being studied for the rapid 

expansion of corn and soy demonstrated by the CDL, is an area of overestimation in all 

treatments.  

Comparison at the county level of majority filter and CLU cleaning methods show no 

noticeable improvements with the CLU. Given the restrictions on the CLU, majority 

filters are an appealing alternative. However, accurate area estimates from a majority 

filter at the aggregate level does not mean the underlying spatial arrangement is correct. 

The aggressive filter may be reducing the size of some fields, and not removing 
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erroneous ones elsewhere (0). For applications that require precise assessment of fields, 

the CLU may be a better choice. 

3.5 Replication of Wright and Wimberley 

Wright and Wimberley’s study is a useful case study of the strengths and weaknesses 

of the CDL because it asks a simple yet important question of the data, but its results are 

very sensitive to variability in the CDL. While the previously discussed sensitivity 

analysis indicates that Wright and Wimberley may have under estimated the amount of 

grassland to corn and soy conversion (Figure 3 ), examining NASS data suggests the 

opposite. Although corn and soy area definitely increased between 2006 and 2011 in their 

study area, the area devoted to all principal field crops actually declined by 900,000 

hectares (USDA-NASS 2014b).  

Unfortunately, the net grassland to corn and soy conversion metric employed by 

Wright and Wimberley is not comparable to NASS data. The most that can be done is to 

put the net grassland to corn and soy estimates in the context of the discrepancy between 

CDL and NASS corn and soy expansion estimates using their cleaning methods (Error! 

eference source not found.). In North and South Dakota, reportedly hot spots for 

change, the CDL’s overestimate of corn and soy expansion eclipses the reported 

grassland to corn and soy conversion. Nebraska contends with the opposite problem, only 

a small amount of conversion is reported in the face of a large underestimate of corn and 

soy expansions in the state. Although corn and soy expansion is not directly comparable 

to Wright and Wimberley’s net grassland to corn and soy conversion metric, the 
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magnitude of the errors relative to the reported conversion calls into question the 

reliability of the results.  

4. Conclusions 

Corn and soy expansion is happening at a rapid rate in the Midwest, and the CDL 

indicates that the majority of that expansion is happening at the expense of grass, pasture, 

hay, and wheat land. This pattern was apparent under all cleaning methods and year 

combinations compared here. According to the CDL, between 2007 and 2012 

approximately five million hectares of corn and soy expanded onto the grass, pasture, 

hay, and wheat. However, over the same time period the CDL overestimated the amount 

of corn and soy expansion by 3.5 million hectares in the unmodified treatment and 1.5 

million with cleaning methods applied.  

Variability in the CDL can reveal either staggering land-use change trends or 

overwhelming uncertainty when in reality there is some of both. The environmental and 

policy questions being answered with the CDL cannot wait for perfect data. While any 

analysis should examine and respond to variability specific to the question at hand, there 

are a few guidelines for CDL based analysis that can be gleaned from this research. 

First, while of intense interest for both policy and environmental questions, studying 

land-use change with the CDL can be unreliable. If the research question can be 

answered with NASS data, then a great deal of uncertainty can be avoided by forgoing 

the higher resolution of the CDL. If the CDL must be used, comparisons between pre and 
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post 2010 versions of the CDL should be avoided. Improvements in the CDL’s accuracy 

make it difficult to separate actual land-use change from improvements in classification.  

 The CDL’s inclusion of non-agricultural classifications is tempting, but they 

should be used cautiously. Their classification is dependent on many assumptions and 

their accuracy is unreported. Given the variability with the most accurately classified 

crops, it is difficult to be confident in conclusions involving specific non-agricultural land 

covers. 

Lastly, imperfect assumptions are impossible to avoid when working with CDL 

data. In the absence of a reliable data source to compare against, performing a sensitivity 

analysis on those assumptions can reveal potential pitfalls and add confidence to an 

assumption.   

The discussion and assessment of variability in CDL data quality presented here 

should not deter people from using the CDL. The frequency, resolution, extent, and 

variety of land covers tracked are unparalleled by other data sources and provide an 

invaluable resource for understanding the consequences of a dynamic agricultural 

landscape. However, these impressive characteristics and high classification accuracies 

can inspire analyses that sometimes go beyond the capability of the data. The land-use 

change trends we are most interested in are often on the scale of thousands to tens of 

thousands of hectares, but error propagation from spatial and temporal variability 

introduce uncertainty that can quickly overwhelm the results.  
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5. Tables 

Table 1. Reclassification crosswalk 

CDL Classification New Classification CDL 

Code 

New 

Code 

 CDL Classification New Classification CDL 

Code 

New 

Code 

Background No Data 0 0  Clouds/No Data No Data 81 0 

Corn Corn 1 1  Developed Developed 82 122 

Cotton Other Agriculture 2 2  Water Water 83 111 

Rice Other Agriculture 3 2  Wetlands Other Natural 87 141 

Sorghum Sorghum 4 4  Nonag/Undefined No Data 88 0 

Soybeans Soybeans 5 5  Aquaculture Water 92 111 

Sunflower Sunflower 6 6  Open Water Water 111 111 

Peanuts Other Agriculture 10 2  Perennial Ice/Snow Water 112 111 

Tobacco Other Agriculture 11 2  Developed/Open Space Open Space Developed 121 121 

Sweet Corn Other Agriculture 12 2  Developed/Low Intensity Developed 122 122 

Pop or Orn Corn Other Agriculture 13 2  Developed/Med Intensity Developed 123 122 

Mint Other Agriculture 14 2  Developed/High Intensity Developed 124 122 

Barley Barley 21 21  Barren Developed 131 122 

Durum Wheat Wheat 22 22  Deciduous Forest Other Natural 141 141 

Spring Wheat Wheat 23 22  Evergreen Forest Other Natural 142 141 

Winter Wheat Wheat 24 22  Mixed Forest Other Natural 143 141 

Other Small Grains Other Agriculture 25 2  Shrubland Other Natural 152 141 

Dbl Crop 

WinWht/Soybeans 

Double Wheat-

Soybeans 

26 26  Grassland/Pasture Grass/Pasture/Hay 176 176 



 

33 

Rye Other Agriculture 27 2  Woody Wetlands Other Natural 190 141 

Oats Other Agriculture 28 2  Herbaceous Wetlands Other Natural 195 141 

Millet Other Agriculture 29 2  Pistachios Other Agriculture 204 2 

Speltz Other Agriculture 30 2  Triticale Other Agriculture 205 2 

Canola Canola 31 31  Carrots Other Agriculture 206 2 

Flaxseed Other Agriculture 32 2  Asparagus Other Agriculture 207 2 

Safflower Other Agriculture 33 2  Garlic Other Agriculture 208 2 

Rape Seed Other Agriculture 34 2  Cantaloupes Other Agriculture 209 2 

Mustard Other Agriculture 35 2  Prunes Other Agriculture 210 2 

Alfalfa Alfalfa 36 36  Olives Other Agriculture 211 2 

Other Hay/Non Alfalfa Grass/Pasture/Hay 37 176  Oranges Other Agriculture 212 2 

Camelina Other Agriculture 38 2  Honeydew Melons Other Agriculture 213 2 

Buckwheat Other Agriculture 39 2  Broccoli Other Agriculture 214 2 

Sugarbeets Sugarbeets 41 41  Peppers Other Agriculture 216 2 

Dry Beans Beans 42 42  Pomegranates Other Agriculture 217 2 

Potatoes Other Agriculture 43 2  Nectarines Other Agriculture 218 2 

Other Crops Other Agriculture 44 2  Greens Other Agriculture 219 2 

Sugarcane Other Agriculture 45 2  Plums Other Agriculture 220 2 

Sweet Potatoes Other Agriculture 46 2  Strawberries Other Agriculture 221 2 

Misc Vegs & Fruits Other Agriculture 47 2  Squash Other Agriculture 222 2 

Watermelons Other Agriculture 48 2  Apricots Other Agriculture 223 2 

Onions Other Agriculture 49 2  Vetch Other Agriculture 224 2 

Cucumbers Other Agriculture 50 2  Dbl Crop WinWht/Corn Double Wheat-Corn 225 225 

Chick Peas Other Agriculture 51 2  Dbl Crop Oats/Corn Double Oats-Corn 226 226 

Lentils Other Agriculture 52 2  Lettuce Other Agriculture 227 2 

Peas Other Agriculture 53 2  Pumpkins Other Agriculture 229 2 
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Tomatoes Other Agriculture 54 2  Dbl Crop Lettuce/Durum Wht Wheat 230 22 

Caneberries Other Agriculture 55 2  Dbl Crop Lettuce/Cantaloupe Other Agriculture 231 2 

Hops Other Agriculture 56 2  Dbl Crop Lettuce/Cotton Other Agriculture 232 2 

Herbs Other Agriculture 57 2  Dbl Crop Lettuce/Barley Barley 233 21 

Clover/Wildflowers Other Agriculture 58 2  Dbl Crop Durum 

Wht/Sorghum 

Double Wheat-Sorghum 234 234 

Sod/Grass Seed Other Agriculture 59 2  Dbl Crop Barley/Sorghum Double Barley-

Sorghum 

235 235 

Switchgrass Other Agriculture 60 2  Dbl Crop WinWht/Sorghum Double Wheat-Sorghum 236 234 

Fallow/Idle Cropland Fallow/Idle 61 61  Dbl Crop Barley/Corn Double Barley-Corn 237 237 

Forest Other Natural 63 141  Dbl Crop WinWht/Cotton Wheat 238 22 

Shrubland Other Natural 64 141  Dbl Crop Soybeans/Cotton Soybeans 239 5 

Barren Developed 65 122  Dbl Crop Soybeans/Oats Double Soybeans-Oats 240 240 

Cherries Other Agriculture 66 2  Dbl Crop Corn/Soybeans Double Corn-Soybeans 241 241 

Peaches Other Agriculture 67 2  Blueberries Other Agriculture 242 2 

Apples Other Agriculture 68 2  Cabbage Other Agriculture 243 2 

Grapes Other Agriculture 69 2  Cauliflower Other Agriculture 244 2 

Christmas Trees Other Agriculture 70 2  Celery Other Agriculture 245 2 

Other Tree Crops Other Agriculture 71 2  Radishes Other Agriculture 246 2 

Citrus Other Agriculture 72 2  Turnips Other Agriculture 247 2 

Pecans Other Agriculture 74 2  Eggplants Other Agriculture 248 2 

Almonds Other Agriculture 75 2  Gourds Other Agriculture 249 2 

Walnuts Other Agriculture 76 2  Cranberries Other Agriculture 250 2 

Pears Other Agriculture 77 2  Dbl Crop Barley/Soybeans Double Barley-

Soybeans 

254 254 
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6. Figures 

 

Figure 1 Changes in area of different types of agricultural land between NASS censuses 

in the Midwest. 
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Figure 2 Classification of 2006 Nebraska ‘Non-ag/undefined’ cells in 2005 and 2007.  

Only transitions larger than 10,000 ha are shown here. 
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Figure 3 Influence of grassland definition and comparison years on net grassland to corn 

and soy conversion detected in IA, MN, ND, NE, and SD. 
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Figure 4 Land cover net loss to corn and soy in the Midwest from 2007 to 2012 with 

unmodified CDL. 
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Figure 5 Prior land covers of net corn and soy expansion in the Midwest 2007 to 2012. 
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Figure 6 Prior land covers of net corn and soy expansion in the Midwest 2011 to 2013. 
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Figure 7 Absolute error between CDL-derived estimates of corn and soy expansion and 

NASS estimates in the Midwest under two cleaning methods and year combinations. 
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Figure 8 Relative error between CDL-derived estimates of corn and soy expansion and 

NASS estimates in the Midwest under two cleaning methods and year combinations. 
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Figure 9 Error in corn and soy expansion estimates between CDL-derived estimates and 

NASS on a state basis between 2011 and 2013. 
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Figure 10 Underestimate of CDL Midwest corn and soy area relative to NASS. 

The difference between a later and earlier year’s value is the minimum amount of illusory 

corn and soy expansion in a comparison.  
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Figure 11 Difference of 2007 to 2012 corn and soy change estimate between NASS and unmodified CDL.  

Negative values indicate the CDL derived value underestimated the amount of change relative to the NASS value, while positive 

indicates an over estimate.  
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Figure 12 Difference of 2007 to 2012 corn and soy change estimate between NASS and 5x5 majority filtered CDL.  
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Figure 13 Difference of 2007 to 2012 corn and soy change estimate between NASS and CLU filtered CDL.  
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Figure 14 Difference of 2011 to 2013 corn and soy change estimate between NASS and unmodified CDL. 
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Figure 15 Difference of 2011 to 2013 corn and soy change estimate between NASS and 5x5 majority filtered CDL. 
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Figure 16 Difference of 2011 to 2013 corn and soy change estimate between NASS and CLU filtered CDL.



 

51 

Figure 17 Comparison of no filtering, a 5x5 majority filter, and the CLU. 

Black lines represent the boundaries of CLUs that transitioned from grass to corn or soy 

between 2007 and 2013. Blue represents the same transition under different cleaning 

methods.  
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Figure 18 Wright and Wimberley’s grassland loss results in the context of the CDL’s 

deviation from NASS data on corn and soy expansion in the Midwest. 
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