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ABSTRACT 

Obesity is a major public health problem; in the U.S. nearly one third of the 

population is obese. The adipose tissue is innervated by the sympathetic nervous 

system (SNS), which regulates fat mass by playing a key role in initiating lipolysis 

and regulating lipid mobilization. TLQP-21, a 21 amino acid peptide encoded by the 

pre-pro-peptide VGF (non acronymic) expressed in the brain and sympathetic 

neurons innervating the adipose organ.  Complement 3a receptor 1, C3aR1, is the 

target receptor for TLQP-21. Based on previous finding where peripheral TLQP-21 

decreases adipocyte diameter and enhance β-adrenergic receptors (β-ARs) lipolysis 

in adipocytes the hypothesis tested in my thesis is that C3aR1 and β-ARs are 

required for TLQP-21 anti-obesity effects and the pro-lipolytic effects are mediated by 

increased mobilization of [Ca2+]i.  

Departing from the first experimental structural analysis of TLQP-21 in solution and 

receptor-bound state, we tested our hypothesis using a combined in vitro and in vivo 

approach. Using 3T3L1 cells and pre-adipocytes as our in vitro model, we 

determined that TLQP-21 enhances lipolysis via increased intracellular Ca2+ 

concentration [Ca2+]i, and activation of the MAPK/ERK pathway. The physiological 

effects of TLQP-21 were investigated in vivo using wild type, β-less (β1, β2, β3-AR 

KO) and C3aR1 KO mice. Chronic TLQP-21 treatment in obese wild type mice 

significantly decreased body weight and fat mass promoting an overall healthier 

metabolic phenotype. Conversely β-less and C3aR1 KO resulted fully resistant to the 

anti-obesity effects.  

Herein we identified the mechanism of TLQP-21 pro-lipolytic and anti-obesity effect 

and could thus be regarded as a novel target for pharmacotherapies of obesity. 
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1.1 SIGNIFICANCE OF THESIS  

 

Obesity is globally increasing and is becoming a significant public health problem; in 

the U.S. more than one third of the population is obese [Ogden et al., 2014]. Visceral 

obesity is the main risk factor for type 2 diabetes, cardiovascular disease, liver 

dysfunction and metabolic syndrome [Després and Lemieux, 2006].  

The adipose tissue is innervated by the sympathetic nervous terminals (SNS), that 

release norepinephrine (NE) whose main function is to regulate fat mass by initiating 

lipolysis and regulating lipid mobilization via the beta-adrenergic receptor (β-ARs) 

activation [Bartness and Bamshad, 1998]. However, obese patients often have 

impaired catecholamine-induced lipolysis [Arner, 1999].  

A helpful treatment of obesity cold be a drug molecule that specifically increases 

lipolysis, however sympathomimetic drugs cause many unwanted side effects. A 

pharmacotherapy that directly targets fat stores without over activating the 

sympathetic nervous system would be ideal for the treatment of obesity and its 

comorbidities. 

In this thesis we describe how the VGF derived peptide, TLQP-21 can limit obesity by 

specifically increasing lipolysis through the MAPK pathway without causing ectopic 

fat deposition or adverse effects, instead it promotes an overall healthier phenotype 

in obese mice. 
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1.2 STRUCTURE, DISTRIBUTION and FUNCTION  

of VGF and its DERIVED PEPTIDES  

 

1.2.1 Structure of VGF, a neurotrophin inducible gene 

VGF (not acronymic) neurosecretory protein was identified for its rapid and ruboust 

transcriptional regulation by nerve growth factor (NGF) and other neurotrophins 

including BDNF and NT3 in rat pheochromocytoma PC12 cells  [Levi et al., 1985; 

Cho et al., 1989; Salton et al., 1991; Bonni et al., 1995]. The vgf is a single copy 

gene composed of three exons and two small introns that interrupt the 5’ 

untranslated encoding sequence; while exon 3 encodes for the entire protein coding 

sequence of VGF (Figure 1.1) [Hahm et al., 1999]. cAMP response element (CRE) 

and CCAAT box are essential for NGF induction of vgf,  and is it mediated through 

the Ras-dependent signaling pathway [D'Arcangelo et al., 1996]. The primary VGF 

gene product is evolutionary conserved among species with an 85% identity [Ferri et 

al., 2011]. The vgf gene encodes a 617-amino acid polypeptide in humans, and a 

615- amino acid protein in rats [Levi et al., 1985], present on chromosome 7q22 in 

humans [Canu et al., 1997] and on chromosome 5 in mice [Hahm et al., 1999].  

 

 

 

Figure 1.1. Schematic diagram of the vgf gene (adapted from Jethwa and Ebling, 
2008). The entire VGF protein sequence is encoded by exon 3. 

 

The VGF protein has a typical secretory leader sequence of 22 amino acid (single 

peptide) at the N-terminal, which promotes translocation into the endoplasmic 

reticulum [Levi et al.,1985]. Following cleavage between amino acid 23 and 24, a 

highly acidic 68kDa VGF precursor polypeptide is generated rich in proline and 
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glycine [Salton et al., 1991]. However, in western blot analysis, the VGF protein is 

detected as a doublet of an 80-90kDa protein due to no post-translational 

modification after protein biosynthesis takes place and the very high proline content 

that reduces electrophoretic mobility of the protein [Levi et al., 1985]. 

 

1.2.2 Processing of VGF derived peptides 

Within the VGF polypeptide, ten potential cleavage sites with basic amino acid 

residues for prohormone convertases 1/3 and 2 (PCs), members of the family of 

subtilisin/kexin-like serine proteinases [Seidah and Chrétien, 1999; Steiner, 1998] 

have been identified (Figure 1.2). These ten cleavage sites are also highly 

conserved across species. However, since some N-terminal human VGF peptides do 

not present the classic motifs for PC cleavage, it is possible that other 

endoproteases, yet to be identified, are also involved in processing of VGF [Levi et 

al., 2004]. Thus, the number of VGF peptide might be greater than currently known.  

 

 

 

Figure 1.2. Schematic diagram of potential cleavage sites for prohormone 
convertases in the VGF structure (adapted from Bartolomucci et al., 2011). The 
arrowheads represent paired or multiple basic residues that are potential PC 
cleavage sites, the asterisk represents a noncanonical cleavage site 553RPR555 
that is cleaved to generate a number of peptides. 
 

 

Upon cleavage, proVGF yields a number of smaller peptides that together 

with proVGF are stored in large dense core secretory granules in neuronal and 

neuroendocrine cells, and released in response to membrane depolarization stimuli 

through regulated secretory pathways [Trani et al., 2002; Possenti et al., 1989]. 

Garcia et al., [2005] showed that along with an N-terminal signal peptide-containing 

domain, the C-terminal 73-amino acid fragment of VGF, containing two predicted α-

helical loops and four potential prohormone convertase (PC) cleavage sites (Figure 

1.2), is necessary and sufficient to sort into large dense core vesicle and the 
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regulated secretion from PC12 and INS-1 cells. Because of the processing, 

packaging, storing and regulated release of VGF and its fragments, VGF is 

considered part of the granin family of peptides [Bartolomucci et al., 2011].  

VGF is a multifunctional peptide precursor. Through western blot analyses and mass 

spectrometry several VGF peptides have been identified and some have been shown 

to be biologically active. In western blots analysis, besides the 80-90kDa protein, 

using a panel of antibodies against the C-terminal nonapeptide of rat VGF protein, 

two species with apparent molecular weights of 20 kDa (VGF20 or NAPP129) and 10 

kDa (VGF10 or TLQP-62) are detected in rat brain homogenates, in extracts of 

primary cultures of cerebellar granule cells and in neuronal, endocrine, and 

pancreatic β-cell lines. The cleavage sites used for NAPP129 is KRKRKK488 motif 

targeted by both PC1/3 or PC2, while the Arg-Pro-Arg555 (RPR555) sequence (rat 

VGF) preferentially cleaved by PC1/3 gives raise to peptides containing the N-

terminal TLQP motif (Figure 1.2) [Trani et al., 2002]. Others peptides of 18 kDa and 

6 kDa (VGF18 and VGF6 or HFHH41) are also often detected in western blots [Trani 

et al.,1995; 2002; Possenti et al., 1999]. The first VGF peptide identified was a C-

terminal AQEE 30 or Peptide V in bovine posterior pituitary [Liu et al., 1994]. 

Presently known N-terminal and C-terminal VGF derived peptides in mouse are 

depicted in Figure 1.3.  

 

 
 

Figure 1.3. VGF derived peptides in rat [modified from Lewis et al., 2015]. The 
proVGF polypeptide and derived peptides along with the first study where the specific 
peptide was first described.  

 

Levi et al., 1985; Cho et al., 1989;  
Salton et al., 1991  

Ferri et al., 1995 

Yamaguchi et al., 2007; Fujihara et al., 2012  

Trani et al., 2002  

Trani et al., 2002; Succu et al., 2004  

Trani et al., 2002  

Bartolomucci et al., 2006  

Liu et al., 1994   

Succu et al., 2004  
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In human cerebrospinal fluid three N-terminal fragments (amino acids 23–62 

APPG40, 26–62 APPG37, and 23–59 GRPE37) have been identified [Stark et al., 

2001]. By convention the VGF derived peptides are designated by the four N-terminal 

amino acids and the total length [Levi et al., 2004], for example VGF10 is called 

TLQP-62. Several biologically active VGF peptides have been identified in rodents 

and possess multiple biological activities, including regulation of energy balance, 

pain, depression, stress, gut contraction, sex behavior and reproduction. See Table 

1.1. 

 
 

Table 1.1. VGF derived biologically active peptides. The VGF derived peptides 
known to exert a biological function along with the study where the specific functions 
were first described.   

 

1.2.3 Tissue distribution of VGF and its derived peptides 

VGF is widely expressed in several neurons throughout the brain with the highest 

expression being in the hypothalamus, especially in the preoptic, periventricular, 

paraventricular (PVN), supraoptic (SON), suprachiasmatic (SCN), and arcuate nuclei 

Peptide name and Amino acid position 
in the VGF (rat) sequence 

Biological function References  

NERP-1 (285-309) suppress vasopressin secretion, penile 
erection 

Toshinai et al. 2009;  
Melis et al., 2012 

NERP-2 (313-350) suppress vasopressin secretion, orexigenic 
effects, locomotor activity,  
body temperature, oxygen consumption, 
penile erection,  
enhances glucose stimulated insulin 
secretion (GSIS)  

Toshinai et al., 2010;  
Melis et al., 2012;  
Moin et al., 2012 

NERP-3 (180-209) induces vasopressin secretion Fujihara et al., 2012 
TLQP-62 (556-617) enhances GSIS, memory, orexigenic effects, 

induces behavioral mechanical and cold 
hypersensitivity, increases neuronal 
excitability  

Petrocchi et al., 2015;  
Lin et al., 2015;  
Brancia et al., 2010;  
Moss et al., 2008,  
Bartolomucci et al., 2007 

HHPD-41 (577-617) orexigenic effects Bartolomucci et al., 2007 
TLQP-21 (556-576) increases energy expenditure, increases 

lipolysis, feeding behavior,  
anti-hypertensive, enhances GSIS, 
modulates inflammatory pain, regulates 
apoptosis, modulates stress response and 
gastric contractility 

Bartolomucci et al., 2006; 
Jethwa et al., 2007;  
Possenti et al., 2012;  
Fargali et al., 2014;  
Fairbanks et al., 2014;  
Severini et al., 2008; 2009; 
Zhang et al., 2013;  
Stephens et al., 2012;  
Petrella et al. 2012: 
Razzoli et al., 2012: 
Sibilia et al., 2012;  

AQEE-30 (588-617) facilitates penile erection, induces thermal 
hyperalgesia  

Succu et al., 2004; 2005;  
Riedl et al., 2009 

LQEQ-19 (599-617) facilitates penile erection, induces thermal 
hyperalgesia  

Succu et al., 2004; 2005;  
Riedl et al., 2009 
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(ARC) [van den Pol et al., 1989; Salton et al., 1991; Snyder and Salton, 1998; Wisor 

et al., 1997; Razzoli et al., 2012].  

During embryogenesis VGF mRNA is restricted to specific neurotrophin targets in the 

central and peripheral nervous system.  More specifically, VGF expression in the 

peripheral nervous system (PNS) is found in the dorsal root ganglion and 

sympathetic ganglia, neural crest cells migrating to enteric ganglia, in primordia of the 

vagal (X) complex, in the α- and γ-motor neurons of the ventral horn and in the dorsal 

horn neurons of the spinal cord, cranial nuclei, basal forebrain, adrenal and pituitary 

[Snyder and Salton, 1998; Snyder et al., 1998; Ferri et al., 1992]. In later 

embryogenesis VGF expression is also detected in the esophagus, stomach and 

pancreas [Levi et al., 2004]. At birth VGF mRNA expression is found in neurons 

throughout the brain and additionally found in a subset of peripheral neuroendocrine 

tissues, including the anterior and posterior pituitary lobes, adrenal medulla, β-cells of 

the pancreas, and gastrointestinal tract [Salton et al., 1991; Snyder and Salton, 1998; 

Ferri at al., 1992; Brancia et al., 2010].  

VGF C-terminal peptides and NERP peptides have been found in several 

hypothalamic locations and endocrine organs [Yamaguchi et al., 2007; Mishiro-Sato 

et al., 2010; Cocco et al., 2007]. In pancreatic islets, VGF C-terminus peptides are 

detected in glucagon and in pancreatic polypeptide cells, while TLQP-11 (rat VGF556–

567) and TLQP-21 (rat VGF556–576) peptides are restricted to somatostatin containing 

D-cells. NERP-1 is found in most islet cells, including alpha and beta cells [Cocco et 

al., 2007]. In the adrenal gland, TLQP peptides are restricted to only to the adrenalin 

cells [D’Amato et al., 2008]. In the gut, VGF derived peptides are found in the ghrelin, 

somatostatin, enterochromaffin, enterochromaffin-like, and principal cells. The C-

terminal peptides are found in the gastric innervation [Ferri et al., 2011]. 
  

1.2.4 Physiological functions of VGF and derived peptides 

The tissue specific expression and distribution of VGF and its derived peptides 

suggest different physiological roles in these different tissues [Bartolomucci et al., 

2011].  

 

Energy balance  

The regulation of eating behavior and energy metabolism is regulated by many nuclei 

of the CNS, particularly the hypothalamus, which modulates the action of the central 
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and peripheral mediators activating catabolic or anabolic pathways [Horvath, 2005; 

Williams et al., 2000; Schwartz et al., 2000]. The ARC expresses receptors for leptin, 

insulin and ghrelin, and responds to peripheral metabolic changes by finely regulating 

feeding and energy expenditure [Horvath, 2005]. These two processes occur through 

distinct neural pathways [Cone, 2001], with the activation of the different sub-

population of the ARC. Activation of cells neuropeptide (NP) Y / agouti-related 

peptide (AGRP) located in the medial ARC determines the activation of the anabolic 

pathway where food intake is stimulated and energy expenditure is reduced; while 

activation of the proopiomelanocortin/cocaine- and amphetamine-regulated transcript 

(POMC/CART) neurons located in the lateral ARC produces catabolic effects, 

decreased food intake and increased energy expenditure [Schwartz et al., 2000].  

More specifically, activation of the POMC/CART neurons by leptin triggers the 

release of α-melanocyte–stimulating hormone (α -MSH) from POMC axon terminals, 

which in turn activates melanocortin receptor 4 (MC4R), leading to suppressed food 

intake and increased energy expenditure [Horvath, 2005]. Overexpression of the 

agouti protein (Ay/a) or its receptors, while ablation of MC4R (MC4R -/- )  or α-MSH, 

all cause decrease in satiety signal induces the onset of  obesity associated with 

hyperphagia, hyperinsulinemia, and hyperglycemia [Barsh et al. 1999]. These genetic 

models show how the central melanocortin system regulates energy balance as well 

as glucose homeostasis [Barsh et al. 1999].  

The NPY/AGRP and POMC/CART neurons project to other regions of the 

hypothalamus including the paraventricular nucleus (PVN), zona incerta, perifornical 

area (PFA) and lateral hypothalamus (LHA), known as the second order neurons 

[Schwartz et al., 2000].  NPY release in LHA/PFA regions that express thyrotropin-

releasing hormone (TRH), corticotropin-releasing hormone (CRH) oxytocin (OXY) 

causes orexigenic effects; whereas α-MSH from the POMC neurons in the PVN 

stimulates anorexic effects [Schwartz et al., 2000].  Integration of peripheral 

signals with central signaling regulates feeding behavior, energy expenditure, and 

energy storage.  

 

Vgf and energy balance  

The high expression of VGF in the hypothalamus [van den Pol et al., 1989] first 

suggested that VGF and its derived peptides could be play a role in energy balance 

since this brain region plays an important role in the regulation of energy 
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homeostasis [Cone et al., 2001]. VGF is expressed in POMC and NPY neurons in 

ARC and its expression is modulated by the nutritional status [Hahm et al., 1999; 

2002]. Fasting induced the expression of vgf in the NPY neurons, while feeding 

switches the expression to POMC neurons [Hahm et al., 1999]. Moreover, similar to 

NPY, in fasting conditions leptin administration inhibits the fasting induced increase in 

VGF mRNA suggesting that leptin regulates VGF expression [Hahm et al., 2002]. 

Additionally, VGF expression in the ARC of leptin-deficient ob/ob and leptin receptor-

mutant db/db mice resembled the expression of fasted wild-type mice [Hahm et al., 

2002]. These data implied VGF in the central regulation of energy homeostasis. 

In addition to the expression of VGF in the ARC, the best evidence of VGF regulating 

energy homeostasis is from the VGF knock out mice [Hahm et al., 1999]. The VGF -/- 

mice at birth are identical to heterozygous and wild type mice. A few days after birth 

a VGF -/- are substantially smaller in size and weight compared to wild-type 

littermates, with 50-70% less weight at weaning and during adulthood [Hahm et al., 

1999]. Lower body weight was paralleled by approximately 50% less body fat 

compared to wild-type littermates confirming decreased adiposity. As expected, 

consistent with decreased peripheral adiposity, leptin levels were decreased as well 

as serum glucose and insulin levels, while serum corticosterone level was increase, a 

metabolic profile similar to fasting. However, food intake was comparable to wild type 

mice or increased per grams of body weight. VGF -/- mice fed ab libitum displayed a 

600 to 800% increase in hypothalamic AgRP and NPY gene expression and 75% 

decrease of POMC mRNA, resembling the phenotype of mice fasting 48h [Hahm et 

al., 1999; Mizuno et al., 1998]. Additionally, compared to the wild type mice, VGF -/- 

mice are hyperactive [Hahm et al., 1999] and hypermetabolic with a 50% increase in 

O2 consumption along with an increase expression of uncoupling protein in BAT and 

significantly smaller white adipose depots and adipocyte diameter [Watson et al., 

2009], due to increased sympathetic innervation and lipolysis [Fargali et al., 2012]. 

Moreover, VGF-/- mice presented reproductive abnormalities similar to leptin deficient 

mice suggesting that the reduced circulating leptin was insufficient to activate the 

hypothalamic-pituitary-gonadal axis (HPG) [Hahm et al., 1999]. 

Further studies demonstrated that VGF deletion prevents obesity and reduces weight 

gain in obese mouse models, even under high fat conditions and gold thioglucose 

[Hahm et al., 2002] blocking the development of hyperglycemia and hyperinsulinemia 

pinpointing the requirement of VGF in the development of obesity  [Watson et al., 

2005]. Ablation of the vgf gene in Ay/a suppresses the obese phenotype, however, 
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ablation of the vgf gene in ob/ob mice blocked hyperphagia given by the lack of leptin 

signaling on the melanocortin system, but did not prevent the development of 

increased adiposity or reduced body temperature. These results lead to the 

hypothesis that VGF might be acting downstream of AgRP-melanocortin circuits 

[Hahm et al., 2002].  

  

Vgf-derived peptides and energy homeostasis   

The lean, hypermetabolic and resistant to obesity phenotype attributes an anabolic 

role to VGF, however ablating the vgf gene does not elucidate which of its derived 

peptides are driving the anabolic effects.  

Administration of TLQP-21, identified in rat brain by of immunoprecipitation, 

microcapillary liquid chromatography–tandem mass spectrometry and database 

searching algorithms [Bartolomucci et al., 2006] in mice and Siberian hamsters 

induced catabolic effects [Bartolomucci et al., 2006; Jethwa et al., 2007]. In 

Bartolomucci et al., [2006], 14 days of itracerebroventricular (i.c.v.) TLQP-21 

treatment in chow fed mice induced an increase in resting energy expenditure and 

rectal temperature associated by an increase in catabolic markers in peripheral 

organs without affecting body weight and food intake. Specifically, elevated 

epinephrine content, up-regulation of β2-ARs were found in the brown adipose 

tissue; while uncoupling protein 1 (UCP-1) peroxisome proliferator-activated receptor 

δ (PPAR δ) and β3-AR were increased in epidydimal white adipose tissue 

[Bartolomucci et al., 2006]. Chronic i.c.v. TLQP-21 treatment in high fat diet fed mice 

prevented the onset of the obese phenotype limiting weight and fat gain, normalizing 

gherin levels, lowering serum leptin and triglycerides (TG) levels, while free fatty 

acids (FFA) and glucose level were unaffected [Bartolomucci et al., 2006]. Moreover, 

hypothalamic expressions of agouti-related protein (AgRP), NPY, α-melanocyte-

stimulating hormone (α-MSH), POMC, and corticotrophin-releasing hormone (CRH) 

were normalized by TLQP-21 treatment in high fat diet mice [Bartolomucci et al., 

2007].  These data show that i.c.v. administration of TLQP-21 limits the early phase 

of diet-induced obesity by enhancing energy expenditure and catabolic pathways in 

the adipose organ [Bartolomucci et al., 2006]. 

Similar catabolic effects are reported in Jethwa et al., [2007] using Siberian 

hamsters, normally used as a seasonal model of energy balance to understand the 

hypothalamic mechanisms regulating energy balance [Jethwa et al., 2007]. During 
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winter Siberian hamsters become hypophagic and catabolize abdominal fat reserves 

as an energy source losing up to 40% of their total body weight [Bartness et al., 

1989; Klingenspor et al., 1996] paralleled with a significant increase in VGF mRNA in 

the arcuate nucleus during winter when catabolic compared to the summer when 

anabolic [Barrett et al., 2004]. Acute i.c.v. administration of TLQP-21 to Siberian 

hamsters decreased food intake and body weight in a dose dependent manner 

without affecting energy expenditure. Chronic treatment caused a sustained 

reduction in food intake and a decrease in body weight and abdominal fat pad 

content, again with no effects on oxygen consumption suggesting that the weight loss 

was given by a reduced caloric intake rather than increases in metabolic rate [Jethwa 

et al., 2007]. Together these data are in contrast with the anabolic drive observed in 

the VGF -/-  mice suggesting that the VGF derived peptides exerts catabolic effects 

[Hahm et al., 1999].  

Bartolomucci et al., [2007] report preliminary evidences suggesting that i.c.v. 

injections of TLQP-62 and its cleaved product HHPD-41 increase feeding behavior in 

overnight fasted mice exerting opposite effects compared to TLQP-21 [Bartolomucci 

et al., 2007]. Another prevalently anabolic VGF derived peptides is NERP-2, an N-

terminal peptides [Toshinai et al., 2010; Melis et al., 2012]. i.c.v. administration of 

NERP-2 in rats increases food intake through the orexin pathway [Toshinai et al., 

2010]. Moreover NERP-2 injections acutely increased body temperature, oxygen 

consumption and locomotor activity via the orexin system [Toshinai et al., 2010]. 

From these studies it has emerged that some of the VGF derived peptide have 

opposing physiological effects, some exert catabolic effects (TLQP-21), while others 

oppose these effects by driving anabolic functions (TLQP-62; HHPD-41; NERP-2) 

suggesting that the germline VGF -/-  model could be obscuring the specific actions of 

its peptides.  
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1.3 THE ADIPOSE ORGAN  

 

1.3.1 Adipocytes 

Adipocytes are classically divided into white and brown, while a third putative cell 

type named beige/brite have recently been proposed [Giralt et al., 2013]. White 

adipocytes are the primary long-term storage of chemical energy under the form of 

triacylglycerol; brown adipocytes express UCP1 and play an important role in energy 

expenditure by heat production [Rothwell and Stock, 1987]. These cell types have 

specific morphological and physiological differences, their own vascular and nerve 

supply and distributed in distinct locations of the body [Cinti, 2001]. Conventionally 

white adipocytes are considered leptin positive and UCP1 negative cells, while brown 

adipocytes are UCP1 positive and leptin negative cells [Cinti et al., 1997]. Brown 

adipocytes are normally present within several subcutaneous and visceral white 

adipose depots (WAT) and are not exclusive to interscapular fat [Cinti, 2012]. Brown 

adipocytes are the primary cells in brown adipose tissue.  The adipose organ is 

innervated and vascularized [Bartness and Bamshad, 1998], with the brown adipose 

tissue (BAT) being five-six times more innervated and vascularized than white 

adipocytes [Cinti, 2012]. However, certain stimuli such as cold and catecholaminergic 

stimulation can induce increased vascularization and innervation in WAT with an 

increase in the number of brown adipocytes within WAT [Murano et al., 2009]. The 

process is known as “browing” of the adipose tissue where white adipocytes 

morphologically and functionally resemble a brown adipocyte [Cinti, 2002]. These 

beige/brite (brown in white) cells, also called “brown like” cells have characteristics of 

white and brown adipocytes, they are leptin and UCP1 postive cells found within the 

white adipose depots and considered protective against diet induced obesity [Wu et 

al., 2012; Walden 2012; Himms-Hagen et al., 2000]. It has been suggested that the 

brown like cells are a result of the conversion or transdiffrentiation of the white fat 

cells to brown adipocytes [Cinti, 2002] or are generated by specific beige precursor 

cells [Wu et al., 2013]. 

 

1.3.2 Morphology, distribution and function of white adipocytes 

WAT serves several functions: it is a thermal insulator, provides mechanical support 

for organs, has a role in the inflammation process through pre-adipocytes acting as 
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macrophage like cells [Cousin et al., 1999], it is an endocrine organ [Kershaw and 

Flier, 2004], and most importantly it is the storage site of lipids under the form of 

triacylglycerols (TAG) that provide a long term fuel reserve [Cinti, 2001].   

The major component of adipose tissue are the parenchymal cells called adipocytes, 

but also stromal vascular cells, blood vessels, nerves and lymph nodes build up the 

tissue. One big large lipid droplet and few and small mitochondria with randomly 

oriented cristae characterizes the unilocular white adipocytes (Figure 1.4) [Cinti, 

2001]. 90% of the cell volume is occupied by the single cytoplasmic triacylglycerol-

(TAG) containing lipid droplet that displaces the cell nucleus and organelles against 

the plasma membrane, giving the cell a ring shape [Cinti, 2001].  

White adipose depots (WAT) are not as richly vascularized as brown depots, 

however an extensive capillary network surrounds each adipocyte [Crandall and 

DiGirolamo, 1990], that plays an important role in increasing substrate delivery for 

triglyceride clearance after feeding and transporting the lipolyitic products (non-

esterified free fatty acids and glycerol) during fasting or during exercise [Rosell and 

Belfrage, 1979; Pénicaud et al., 2000], as well as many other secreted protein factors 

(leptin, resistin, adiponectin, cytokines) to other organs [Yildiz et al., 2004; Steppan et 

al., 2001].  

White depots are primarily located in three major anatomical areas: visceral or 

intraperitoneal fat pads that surround the inner organs and are divided into 

perigonadal, perirenal, retroperitoneal, mediastinic, and mesenteric; subcutaneous 

adipose depot divided into interscapular, subscapular, axillary, cervical and inguinal; 

and dermal adipose, a relatively continuous sheath of lipid [Cinti, 1999; Kissebah and 

Krakower, 1994]. Even though the exact mechanisms are still unknown, it has been 

shown that visceral/intraabdominal fat; mostly perigonadal and mesenteric fat are the 

greatest risk factor for insulin resistance and metabolic abnormalities [Bergman et al., 

2006]. This is likely due to anatomical position of the visceral fat (portal circulation 

into the liver) and the molecular characteristics such as increased lipolytic ability 

[Bergman et al., 2006; Després et al., 2008]. Abdominal obesity is a major risk factor 

for chronic diseases including, type 2 diabetes, cardiovascular disease, cancer and 

metabolic syndrome [Kahn et al., 2006; Després et al., 2008] that leads to premature 

death. 

 



 14 

 

 

Figure 1.4. Morphology and distribution of white adipose tissue. (A) 
Transmission electron microscopy of epidydimal white adipose tissue and 
enlargement of the framed area in A, showing the cytoplasm of a white adipocyte 
containing few and small mitochondria (M) with randomly-oriented cristae. PV, 
pinocytosis vesicles; SER, smooth endoplasmic reticulum; L, lipid droplet. N, 
nucleus. (B) Gross anatomy of the adipose organs of adult mice kept at 20°C and at 
4°C. (From Cinti. The adipose organ: morphological perspectives of adipose tissues. 
Proc Nutr Soc. 2001 Aug; 60(3):319-28.) 
 

 

1.3.3 Innervation of white adipose depots 

Sympathetic innervation of white adipose tissue (WAT) was shown over 100 years 

ago [Dogiel, 1898]. In situ immunohistochemistry was first used to identify direct 

sympathetic innervation in WAT. TH-positive, substance P and CGRP positive 

nerves within the white depots were indicative of SNS and sensory innervation 

[Bartness and Bamshad, 1998; Bartness et al., 2009, Bamshad et al., 1998; 

Giordano et al., 1996]. Sympathetic innervation differs in the different white adipose 

depots; perirenal and retroperitoneal visceral fat and subcutaneous scapular fat have 

the highest simpato-sensory innervation [Slavin and Ballard, 1978; Youngstrom and 
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Bartness, 1995]. Parenchymal fibers that express tyrosine hydroxylase (TH), an 

enzyme that is widely considered to be a marker of sympathetic/noradrenergic fibers 

[Giordano et al., 2008] have been shown to have at least three physiological 

functions in WAT: 1) regulation of cell proliferation and fat mass, the higher the 

innervation the lower the proliferation [Hausman et al. 2001; Foster and Bartness, 

2006], 2) control some of the proteins secreted by the adipocytes [Trayhurn et al., 

1995] and most importantly lipid mobilization or lipolysis [Bartness and Bamshad, 

1998; Bartness et al., 2002].  

The role of SNS innervation for lipid mobilization in WAT was assessed with 

electrophysiology recording [Niijima, 1989], chemical or surgical denervation, and 

electrical stimulation [Bartness and Bamshad, 1998]. Surgical sympathectomy 

reduces lipolysis in the denervated depots, while electrical stimulation of sympathetic 

nerve endings stimulates lipolysis and the release of free fatty acids (FFA) [Bartness 

and Bamshad, 1998]. However, surgical denervation is not fully selective for the SNS 

nerves since it affects sensory innervation too, therefore the reduction in lipolysis 

cannot be not purely attributed to the direct effect of SNS on adipocytes.  

Pseudorabies virus (PRV) as a trans-synaptic retrograde neural tracer has been 

used to identify the CNS–SNS–WAT circuitry, identifying the SNS nuclei that project 

their efferent neurons to white fat [Bamshad et al., 1998]. This method, besides 

providing neuroatomical evidence of SNS within WAT also allowed elucidating the 

different grade of SNS innervation in the white fat depots [Bartness, 1995; Bamshad 

et al., 1998]. The different degree of innervations accounts for the difference in lipid 

mobilization among the fat pads [Youngstrom and Bartness, 1995]. After inoculation 

in epidydimal (eWAT) and subcutaneous inguinal WAT (iWAT), PRV-infected 

sympathetic preganglionic cells were present in the spinal cord (intermediolateral cell 

group, central autonomic nucleus), the brainstem (nucleus of the solitary tract, lateral 

and rostroventrolateral reticular nuclei, and the C1/rostroventrolateral, 

rostroventromedial and caudal raphe nuclei/areas, ventral and alpha portions of the 

gigantocellular reticular nucleus and the raphe magnus nucleus), the midbrain 

(periaqueductal gray) and forebrain (hypothalamic regions: arcuate nucleus, dorsal, 

lateral, paraventricular, suprachiasmatic, nuclei and medial preoptic area; non-

hypothalamic regions: zona incerta, medial amygdala, septum and bed nucleus of 

the stria terminalis) (Figure 1.5) [Bamshad et al., 1998]. Within the hypothalamic 

region, labeled neurons were detected in nuclei involved in food intake and body 

weight and most importantly lipid mobilization in WAT [Bartness, 1995; Zaia et al., 
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1997]. Moreover, PRV inoculations have also allowed the identification of the 

ganglion innervating iWAT, T13 caudally, and eWAT, cells in ganglia T13 and L1-L2 

[Youngstrom and Bartness, 1995].   

Many tissues are innervated by both the SNS and the parasympathetic nervous 

system (PSNS) where they exert opposing effects. Controversial evidence is shown 

for parasympathetic innervation in WAT. Krejer et al. [2007] after chemically 

denervating the SNS innervation in WAT using the catecholaminergic neurotoxin 6-

hydroxy-dopamine (6OHDA) to selectively destroy the SNS innervation sparing the 

parasympathetic nerves in white fat, and subsequent PVR inoculation, show bilateral 

and dense labeling in the dorsal motor nucleus of the vagal nerve (DMV) of the brain 

stem. Moreover, a selective and specifically surgically vagotomy in WAT 

(parasympathectomized) reduced insulin-mediated glucose and free fatty acid uptake 

and increase in HSL activity suggest that the physiological role of this 

parasympathetic input has anabolic effects on white adipocytes’ metabolism 

opposing the catabolic action of SNS in WAT [Kreier and Buijs, 2007]. On the other 

hand, Giordano et al. [2006] show no histochemical evidence for three proven 

immunohistochemical markers of PSNS innervation, vesicular acetylcholine 

transporter (VAChT), markers for parasympathetic nerves; vasoactive intestinal 

peptide (VIP) and neuronal nitric oxide synthase (nNOS) the only two known 

neurotransmitters of parasympathetic noncholinergic nerves in visceral and 

subcutaneous fat pads of lean (C57) and obese mice (ob/ob) as well as in rats 

[Giordano et al., 2006]. Moreover, using the same sympathectomy approach followed 

by injection of PRV into the SNS denervated tissue to label the proposed PSNS 

outflow from brain to WAT, no labeling in the sympathetic chain, spinal cord or brain 

was detected compared to the vehicle-injected WAT inoculated with PRV suggesting 

a complete lack of significant WAT PSNS innervation and the presence of only WAT 

SNS innervation. 

Aside from the immunohistochemical evidence of sensory innervation in white fat 

depots [Bartness et al., 1998; Foster and Bartness, 2006], also neuroatomical 

evidence has been provided by application of the anterograde tract tracer true blue 

into inguinal and dorsal subcutaneous WAT that labels pseudounipolar neurons in 

the dorsal root ganglia [Fishman and Dark, 1987]. Sensory neurons in the dorsal root 

ganglia reach white depots [Fishman and Dark, 1987] and are thought to participate 

in the neural negative feedback control of the SNS innervation, reducing the SNS 
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drive to WAT therefore regulating the lipolytic rate and body fat accumulation in WAT 

[Song et al, 2009; Bartness et al., 2010].  

 
 

Figure 1.5. Schematic diagram of the sympathetic nervous system outflow 
from the central nervous system to white adipose (From Bartness and Bamshad, 
1998). Pseudorabies virus (PRV) was injected into the inguinal subcutaneous and 
epididymal white adipose tissue pads. PRV only travels through circuits retrogradely 
and only in synaptically connected neurons. This yields a hierarchical chain of 
functionally connected neurons labeling circuits from their end to their beginnings in a 
backward manner. 
 
BNST, bed nucleus of the stria terminalis; Lat Septum, lateral septum; MPOA, medial 
preoptic area: SCN, suprachiasmatic nucleus; DMN, dorsal medial nucleus; PVN, 
paraventricular nucleus of the hypothalamus; C1, C1 epinephrinergic cell group; A5, 
A5 noradrenergic cell group; NTS, nucleus of the solitary tract; RVLM, rostral 
ventrolateral medulla; RVMM, rostral ventromedial medulla; Caudal Raphe, caudal 
raphe nuclear group; IML, intermediolateral cell column of the spinal cord.  
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1.3.4 Lipolysis in white adipose depots  

Lipolysis is a tightly regulated catalytic pathway where TAG, the main energy source 

of the body, are hydrolyzed to generate fatty acids and glycerol. Upon increased 

energy demand, TAG stores are mobilized by their hydrolytic cleavage into non-

esterified fatty acids (NEFAs), delivered via circulation to peripheral organs for β-

oxidation and ATP production. Impaired lipolysis is often associated with obesity 

where basal lipolysis is increased releasing higher amounts of NEFA’s in circulation 

that may contribute to the development of insulin resistance and decreased 

responsiveness to stimulated lipolysis [Large et al., 1999; Arner, 1999]. 

Many enzymes and regulatory proteins are involved in the regulated process of 

lipolysis, but the three most important and crucial lipases involved are adipose 

triglyceride lipase (ATGL) that performs the first step hydrolyzing TAGs to generate 

diacylglycerols (DAGs) and NEFA’s, hormone-sensitive lipase (HSL) hydrolyses 

DAGs generating monoacylglycerols (MAGs) and NEFA’s and finally monoglyceride 

lipase (MGL) that cleaves MAGs into NEFAs and glycerol [Zimmermann et al., 2004; 

Villena et al., 2004; Holm, 2003]. HSL is able to hydrolyze TAG, DAG and MAG, with 

the relative maximal hydrolysis rates for TAG:DAG:MAG being 1:10:1 [Lass et al., 

2011], showing that HSL is the rate limiting enzyme for DAG hydrolysis. ATGL is the 

rate limiting enzyme for TAGs hydrolysis, in fact ATGL deficiency is associated with 

limited lipolysis and significant fat accumulation [Haemmerle et al., 2006]; while HSL 

deficient mice do not show increased fat deposition and are not overweight or obese 

[Haemmerle et al., 2002]. Moreover, in the absence of ATGL, NEFA and glycerol 

mobilization in response to β-adrenergic stimulation is only around 30%, suggesting 

that ATGL is essential for the full sympathetic induced lipolysis in adipocytes 

[Schweiger et al., 2006].  

Lipolysis has a central role in lipid and energy homeostasis. Catecholamines are the 

primary activators of lipolysis, however other hormones, including glucagon and 

natriuretic peptides are important stimulating agents of lipolysis [Slavin et al., 1994; 

Sengenès et al., 2000]. Catecholamines, mainly neurotransmitter norepinephrine 

(NE), released from the postganglionic sympathetic nerve terminals innervating white 

depots [Arner, 2005; Bartness et al., 2009] bind and activate the β-adrenoreceptors 

(β-ARs) [Bartness and Bamshad, 1998; Bartness et al., 2009] present on the 

plasmatic membrane of the adipocytes. There are three type of β-ARs (β1, β2 and β3), 

β3-ARs being the most abundant in mature adipocytes [Collins and Surwit, 2001]. 
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The activation of β-ARs triggers intracellular signalling that initiate lipolysis and 

regulate lipid mobilization.   

Briefly, when NE binds to Gs-coupled β-AR it activates adenylyl cyclase (AC), which 

increases intracellular cyclic AMP (cAMP) resulting in the activating of cAMP 

dependent protein kinase A (PKA) [Jaworski et al., 2007]. PKA phosphorylates HSL 

in three serine residues (563, 659, and 660) that causes activation and consequent 

translocation from the cytosol to the lipid droplet where it can exert its mechanism of 

action [Holm, 2003]. PKA also phosphorylates perilipin [Clifford et al., 2000], the lipid 

droplet associated protein, moving it from the lipid droplet so that a larger surface of 

the lipid droplet is exposed to the lipases [Holm, 2003]. PKA also promotes the 

dissociation CGI-58 from the lipid droplet surface allowing for the interaction and 

activation of ATGL [Lass et al., 2006]. ATGL's enzymatic activity is co-activated by 

the protein comparative gene identification-58 (CGI-58)  [Lass et al., 2006], this 

activation is induced during fasting and by glucocorticoids [Zimmermann et al., 2004]; 

while protein G0S2 specifically inhibits ATGL [Yang X et al., 2011]. Together the 

hydrolase activity of ATGL and HSL are responsible for more than 95% of lipolysis in 

murine WAT is given by the hydrolase activity of ATGL and HSL [Schweiger et al., 

2006].  Besides PKA, HSL has phosphorylation sites for other protein kinase such 

extracellular signal-regulated kinase (ERK1/2) [Greenberg et al., 2001; Rapold et al., 

2013; Drira et al., 2014]; glycogen synthase kinase-4 [Olsson et al., 1986]; 

Ca2+/calmodulin-dependent kinase II, and AMP-activated kinase (AMPK) that can 

regulate the enzymes’ activity [Garton et al., 1989]. To this date no effective 

regulators have been found for MGL and it is thought to be constitutively active [Lass 

et al., 2011].  

Insulin exerts the most potent anti-lipoytic activity in adipocytes through the PI3K/Akt 

pathway and activation of protein kinase B (PKB) to induce phosphorylation of 

phosphodiesterase 3B (PDE3B). Activation of PDE3B results in the decrease of 

cAMP and thus PKA activity, reducing the phosphorylation of HSL and perilipin 

causing decrease in lipolysis [Langin, 2006]. NE, released by the postganglionic 

catecholaminergic neurons can also bind the α-ARs (α1 or α2). Activation of α2-AR by 

NE switches on the counteracting mechanism of β-ARs since α2 AR is coupled to G 

inhibitory (Gi) protein receptors that inhibit AC lowering cAMP levels, thus limiting 

lipolysis [Lafontan et al., 1997]. On the other hand, α1 AR subtype has not been 

linked to lipolysis regulation so far, while it is involved in the control of glycogenolysis 

and lactate production [Lafontan et al., 1997]. 
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1.3.4 TLQP-21 and lipolysis in white adipose depots  

Other hormones and products of the sympathetic neurons beside NE regulate 

lipolysis including TLQP-21 [Possenti et al., 2012] and NPY [Turtzo et al., 2001]. NPY 

acting through its Y2 receptors (Y2R) on the adipocyte membrane promotes 

adipogenesi and down-regulates lipolysis [Valet et al., 1990; Turtzo et al., 2001; Kuo 

et al., 2007].   

Our laboratory identified TLQP-21 as a neuropeptide regulator of NE-induced 

lipolysis  [Possenti et al., 2012]. We showed that TLQP-21 is present in a 

subpopulation of sympathetic nerve fibers innervating WAT but not in adipocytes. 

Moreover, we showed for the first time that TLQP-21 does bind in a specific manner 

to the membrane of adipocytes from various fat pads and this binding was saturable. 

The binding was further increased in white depots of obese mice. Peripheral chronic 

TLQP-21 treatment in mice decreases adipocyte diameter, and increases tyrosine 

hydroxylase (TH) enzymatic activity and NE content in WAT. Contrarily to the 

increase in energy expenditure shown after i.c.v. treatment of the TLQP-21 peptide 

[Bartolomucci et al., 2006], peripheral treatment did not increase plasma epinephrine 

or temperature suggesting that peripheral TLQP-21 treatment does not activate 

central pathways [Possenti et al., 2012]. Peripheral TLQP-21 treatement increases 

sympathetic nerve sprouting in WAT [Possenti et al., 2012]. Incubation of primary 

mouse adipocytes with TLQP-21 and isoproterenol (ISO) led to the observation that 

TLQP-21 acts as a neuromodulator on adipocytes by increasing ISO-induced 

lipolysis [Possenti et al., 2012]. In 3T3L1 adipocytes TLQP-21 also potentiates ISO-

induced phosphorylation of AMPK and HSL, but not PKA and PKC [Possenti et al., 

2012]. These in vivo and in vitro findings indicate TLQP-21 as a novel pro-lipolytic 

agent that potentiates NE/β-AR-induced lipolysis. Moreover, TLQP-21 has been 

shown to increase intracellular Ca2+ levels ([Ca2+]i) in several cell lines including 

cerebellar granules  [Severini et al., 2008], GH3 [Petrocchi et al., 2013], brain and 

spinal cord-derived primary microglia [Chen et al., 2013], and insulinoma cell lines 

[Petrocchi et al., 2015]. Based on these evidences we hypothesized that TLQP-21 

would bind to a seven transmembrane domain receptor on adipocytes membrane; 

perhaps a Gq coupled receptor that activates phospholipase C beta (PLCβ) [Possenti 

et al., 2012]. In 2013 Hanneduche et al., using CHO-K1 cell line and rat ovary cell 

line O-342 identified the GPCR, C3aR1 (Complement 3a Receptor 1) as the target 

receptor for TLQP-21 [Hanneduche et al., 2013]. The C3aR1 receptor is expressed 
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on adipocytes and its expression is increased in obesity [Mamane et al., 2009], a 

finding in agreement with our receptor binding data [Possenti et al., 2012]. 

Furthermore, TLQP-21 modulation of pain [Rizzi et al., 2008; Fairbanks et al., 

2014] can be mediated by the multiligand-binding protein gC1qR expressed in 

macrophages and microglia [Chen et al., 2013]. 
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1.4 AIM OF this THESIS  

TLQP-21 has been shown to enhance adrenergic-induced lipolysis in adipocytes and 

to target the C3aR1. However the structure of TLQP-21, the mechanism of C3aR1 

activation, as well as the molecular mechanisms of TLQP-21 mediated lipolysis have 

yet to be elucidated. Therefore, the primary goal of this thesis is to determine TLQP-

21 structure and function and to identify its pro-lipolytic and anti-obesity effect using a 

combined in vitro and in vivo approach.  
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2.1 SUMMARY 
 

TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-

associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the 

adipose tissue and targets the G-protein-coupled-receptor (GPCR) Complement-3a-

Receptor1 (C3aR1). So far, the mechanisms of TLQP-21-induced receptor activation 

remained unexplored. Here, we report that TLQP-21 is intrinsically disordered and 

undergoes a disorder-to-order transition, adopting a α-helical conformation, upon 

targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 

are located at the C-terminus, with mutations in the last four amino acids 

progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal 

amidation abolishing its function completely. Interestingly, the human TLQP-21 

sequence carrying a S20A substitution activates the human C3aR1 receptor with 

lower potency compared to the rodent sequence. These studies reveal the 

mechanism of action of TLQP-21 and provide molecular templates for designing 

agonists and antagonists to modulate C3aR1 functions. 

 

 

Graphical Abstract 
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2.2 INTRODUCTION 
 

The Vgf gene is a member of the extended granin family of peptide-precursor 

proteins that encodes a 615 amino acid pro-peptide (617 in rodents) [Bartolomucci et 

al., 2001]. This pro-peptide is processed to yield several bioactive fragments, with at 

least eight possessing non-redundant biological functions [Bartolomucci et al., 2011; 

Hahm et al., 1999]. Due to their involvement in the pathophysiology of human 

diseases such as psychiatric, neurological and metabolic disorders as well as several 

tumors, VGF peptide fragments are also being investigated as possible disease 

biomarkers [Bartolomucci et al., 2011]. The best studied fragment is the C-terminal 

internal peptide designated TLQP-21, whose sequence and function we have 

identified and extensively characterized [Bartolomucci et al., 2006]. TLQP-21 is a 

multifunctional peptide that regulates energy balance [Bartolomucci et al., 2006, 

Jethwa et al., 2007, Possenti et al., 2012], glucose metabolism [Stephens et al., 

2012], gastric function [Severini et al., 2009], nociception [Rizzi et al., 2007, Chen et 

al., 2013, Fairbanks et al., 2014], blood pressure regulation [Fargali et al., 2014], 

reproduction [Aguilar et al., 2013] and stress [Razzoli et al., 2012]. Importantly, it was 

found that a central infusion of TLQP-21 increases energy expenditure and prevents 

obesity in rodents [Bartolomucci et al., 2006, Jethwa et al., 2007]. Additionally, 

chronic peripheral infusions of TLQP-21 in obese rodents led to decreased adipocyte 

diameter [Possenti et al., 2012] improved hypertension [Fargali et al., 2014] and 

diabetes [Stephens et al., 2012], making it an important target to counteract obesity-

associated disorders. However, the molecular mechanisms of TLQP-21 function are 

still largely unknown. The recent discovery that TLQP-21 directly targets the 

Complement 3a receptor 1 (C3aR1) has reinvigorated both physiological and 

pharmacological interest for this peptide as a potential drug target [Hannedouche et 

al., 2013]. C3aR1 is a member of the GPCR superfamily, characterized by seven 

transmembrane domains and a large second extracellular loop [Klos et al., 2013, 

Roglic et al., 1996]. While its role in the innate immune response is well established, 

C3aR1 is now emerging with a much broader pattern of expressions in different 

tissues and functions involving cell metabolism [e.g. Mamane et al., 2009; Lo et al., 

2014]. In obesity, a significant increase of adipose-tissue specific C3aR1 expression 

has been found [Mamane et al., 2009], with concomitant increase of TLQP-21 

binding affinity [Possenti et al., 2012]. Additionally, knockout studies targeting C3, 
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C3aR1 and VGF suggest direct involvement of the C3aR1 receptor in both adiposity 

and energy balance [Mamane et al., 2009, Hahm et al., 1999, 2001, Roy et al., 2008, 

Fargali et al., 2012, Watson et al., 2005]. Here, we used solid-state NMR 

spectroscopy in combination with photoaffinity labeling, biological assays as well as 

alanine-scanning mutagenesis to elucidate the structural determinants of TLQP-21 

binding to C3aR1. We studied the binding of TLQP-21 to cells expressing the 

receptor as well as receptor knockout cells. We found that the TLQP-21 peptide is 

intrinsically disordered but adopts an ordered helical conformation upon interacting 

with cells expressing the C3aR1 receptor. Furthermore, we determined that the C-

terminal domain of the peptide comprises the hot-spots for its biological function, with 

the R21A mutation able to abrogate TLQP-21 activity completely. Finally, we found 

that the human sequence of TLQP-21 carrying a S20A substitution activates human 

C3aR1 receptor with lower potency than the rodent sequence. Overall, these studies 

reveal a folding-upon-binding mechanism for the activation of the C3aR1 receptor by 

the TLQP-21 peptide, and identify the hot-spots to tune its biological function. 
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2.3 EXPERIMENTAL PROCEDURES 
 

Peptide Synthesis and NMR spectroscopy.  

General. All solvents used were HPLC grade. DIEA and TFA (peptide 

synthesis grade) were purchased from Fisher. Fmoc-protected amino acids, HBTU 

and HOBt, were purchased from AnaSpec. Preloaded Fmoc-AA-PEG-PS resins were 

purchased from Applied Biosystems. N-Fmoc isotopically labeled amino acids were 

purchased from Cambridge Isotope Laboratory. All other reagents were obtained 

from Sigma-Aldrich.  

Synthesis of TLQP22.1 Starting with Fmoc-ARG−PEG-PS resin (initial loading 0.18 

mmol/g), the 21 residue peptide TLQP21 was synthesized using Fmoc solid-phase 

synthesis on a CEM microwave peptide synthesizer. Side-chain protecting groups 

were 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for Arg, 

triphenylmethyl (Trt) for Gln and His; and tert-butyl ethers (tBu) for Ser and Thr. 

Fmoc removal was achieved using a solution of 20% piperidine in DMF for 5 min. 

HBTU/HOBt/DIEA couplings required 7 min preactivation time following reaction 

times of  60 min. Upon reaction completion, the peptide-resin was deprotected and 

cleaved from the resin in batches of 200 mg with 2 mL of reagent B:  85% TFA, 5% 

phenol, 5% water, 5% TIPS for 4 h at 25 °C under mechanical stirring. The cleavage 

mixture was then filtered and the resin was washed with 2 mL reagent B. The 

cleaved peptide fractions were pooled together and precipitated by addition of 200 

mL of cold diethyl ether and incubated for 24 h at 4 ºC. The precipitated peptide was 

collected by centrifugation and washed three times with 200 mL of cold diethyl ether. 

The crude peptide pellet was dried under N2 gas flow and dissolved in 50 mL of 

HPLC grade water. The crude peptide was filtered using a 0.2 µm polycarbonate 

filter and purified by reversed-phase HPLC on a C18 preparative column (Vydac, 

218TP15 C18; 15 µm particles, 22 × 250 mm). The crude peptide solution was pre-

equilibrated with 90% HPLC buffer A (99.9% water, 0.1% trifluoroacetic acid) with a 

flow rate of 10 mL/min. Peptide purification protocol consisted of: 1) linear gradient 

from 10% to 20% of buffer B (acetonitrile and 0.1% TFA) in 30 min and 2) 

subsequent isocratic elution. Fractions containing peptides were determined by 

analytical HPLC and pooled together before lyophilization. The molecular weight of 

the purified peptide was determined using ESI-MS (Agilent MSD SL Ion Trap). To 

remove TFA ions from the peptide, a simple exchange method was followed. Briefly, 
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ion exchange resin (AG1-X8, Biorad) was prepared by washing with 10 vol of acetic 

acid (2.16M), followed by 10 vol of acetic acid (0.16M) and finally 5 vol of water. 

Purified peptide was dissolved in water at a concentration of approximately 4mg/mL 

and loaded onto the equilibrated resin. After one hour of incubation with shaking, the 

peptide was eluted from the resin by gravity and the resin was washed with water. 

Pooled peptide was aliquoted and the volume accurately measured. Samples from 

several aliquots were taken and submitted for amino acid analysis. Amino acid 

analysis was performed by the Protein Chemistry Laboratory (Texas A&M 

University). Ion-exchanged peptides were lyophilized and stored at -20 ºC until use.  

NMR spectroscopy (Veglia et al., 2012). For solution NMR experiments, the 

TLQP-21 peptide powder was dissolved in 120mM NaCl, 20mM NaHPO4, pH 7.0, 

5% D2O and transferred into a Shigemi tube. Heteronuclear single quantum (HSQC) 

and multiple quantum (HMQC) correlation experiments were run to verify the labeling 

pattern in the isotopically labeled peptides. Magic angle spinning (MAS) samples 

were prepared by dissolving 0.5 to 1 mg of TLQP21 in 20 µL of 20 mM phosphate 

buffer, 120mM NaCl at pH 7.0. The suspension was vortexed and briefly sonicated. 

The mixture was transferred to a 3.2 mm thin wall rotor MAS rotor. 3T3L1, N38 or 

splenocytes were centrifuged in 2.15 mL microfuge tubes for 2 min at 13300 rpm. 

Twenty microliters of wet cell pellet were pipetted into a clean 0.5 mL microfuge tube 

and (where applicable) incubated with the selective C3aR1 antagonist SB 290157 for 

3 hr at 4 ºC. The cell pellet was added to 2.10 mg of lyophilized TLQP-21 powder, 

briefly vortexed and incubated at 37 ºC overnight. The mixture was transferred to a 

3.2 mm thin wall rotor MAS rotor.  All of the NMR experiments were performed on a 

VNMRS spectrometer operating at a proton frequency of 600 MHz. One-dimensional 
13C spectra were acquired using a cross-polarization (CP) sequence with 1 ms 

contact time and spectral width of 100 kHz. The sample was spun at 8 kHz and the 

temperature was kept at 37 ºC. Chemical shifts were assigned using refocused 

Insensitive Nuclei Enhanced by Polarization Transfer (rINEPT) and Total Through 

Bond Correlation Spectroscopy (TOBSY) experiments acquired using a BioMAS 

probe. Pulse widths were 5.5 µs (13C, 15N), 2.5 µs (1H) with 100 kHz (direct 13C 

dimension) and 3.33 kHz (indirect 1H dimension) spectral widths. Typically, a total of 

128 scans with 30 increments in the indirect dimension were acquired. The data were 

processed using NMRPipe and analyzed with Sparky software. 
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Secondary Structure Prediction. To analyze the secondary structure propensity of 

TLQP21 two programs were used: PredictProtein and JUFO. PredictProtein 

(www.predictprotein.org) is an automatic Internet service that includes software for 

the prediction of protein structure and function. The JUFO 

(http://www.meilerlab.org/index.php/servers/show?s_id=5) server provides a 

simultaneous prediction of secondary structure and trans-membrane spans from the 

protein sequence. It uses an Artificial Neural Network trained on databases of 

membrane proteins and soluble proteins. 

 

Splenocyte isolation   

Three to five C3aR1 knockout (Jackson Laboratory, C.129S4-C3ar1tm1Cge/J, stock 

number 005712) and specific wt BALB/cJ mice were euthanized with CO2 and 

spleens were harvested. Spleens were placed in complete media (RMPI with 10% 

FBS, 1% 2-mercaptoethanol and 1% penicillin/streptomycin) and filtered through a 

100µm, then 70µm mesh nylon screen to yield a single-cell suspension. Red blood 

cells were removed with 5ml of ACK lysis buffer (150mM NH4Cl, 10mM KHCO3, 

0.1mM Na2EDTA, pH 7.4) and incubated for 5 minutes. 10ml of complete media was 

added to wash cells; cells were centrifuged (10min at 200x g) and supernatant was 

discarded. The splenocytes were washed two additional times with complete media. 

Splenocytes were seeded at 1x106 cells/ml and stored in an incubator (37°C, 5% 

CO2) for 4 hours until NMR sample preparation. All animal experiments were 

approved by the IACUC, University of Minnesota.  

 

Gastric contraction assay 

Wistar female rats (250-350 g; Charles River) were euthanized by inhalation of 75% 

CO2 in air. The stomach was removed and washed in fresh Tyrode’s solution as 

previously described (Severini et al., 2009). Longitudinal strips were obtained from 

the rat longitudinal forestomach (RLF) musculature and mounted vertically in a 5 ml 

organ bath in oxygenated (95% O2 and 5% CO2) Tyrode’s solution at 37 °C. 

Responses were recorded isotonically by a strain gauge transducer (DY 1, Basile, 

Milan, Italy) and displayed on a recording microdynamometer (Unirecord, Basile. 

Milano, Italy). Tissues were allowed to equilibrate for about 60 min and the 

superfusion buffer was changed every 10 min. Saturating concentrations of 

acetylcholine (ACh, 25 µM) were added every 20 min, washing the tissue after 1 min 

contact time, until reproducible contractile responses were obtained. After 30 min 
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equilibration time, peptide activity was tested, washing the tissue as soon as the 

contraction peak had developed, after a contact time with muscle strips of 1-3 min. 

Since we demonstrated that an interval of 20 min was necessary to obtain a 

complete recovery, this interval was used for every peptide addition. Peptides were 

purchased from Primm (Milano, IT) C3a70-77 for Anaspec (USA) and C3aR1 

antagonist from Calbiochem (USA). Data were analyzed with unpaired t-tests. All 

animal experiments were approved by the Ethics Committee of the Italian Ministry of 

Health. 

 

Receptor cross-linking experiment  

Crosslink peptide with N-terminal biotin and benzoylphenylalanine (Bpa) 

substitution of H12 was purchased from AAPPTec (Louisville, KY), purified by HPLC 

as the acetate salt, and verified by mass spectrometry.  

Membrane preparation: Confluent CHO and 3T3 cells were washed twice with 

cold PBS before collecting the cells by scraping into cold Homogenization Buffer (20 

mM HEPES, 1 mM EDTA, 255 mM sucrose, pH 7.6). Cells were briefly sonicated to 

lyse then centrifuged 20 min at 10,000 × g, 4 ºC. The precipitated membranes (P1) 

were resuspended in resuspension Buffer (20 mM HEPES, 1 mM EDTA, pH 7.6). 

The supernatants were transferred to fresh tubes and centrifuged 60 min at 41, 000 × 

g, 4 ºC. These precipitated membranes (P2) were also resuspended in resuspension 

Buffer. Both membrane protein concentrations were determined by BCA assay 

(Pierce). 

Crosslinking: 3T3 and CHO membranes were diluted with PBS to 0.5 mg/mL 

protein. 1 mL of diluted membranes was aliquoted into a 96-well plate. An equivalent 

volume of TLQP-21 crosslink peptide was added to the diluted membranes and 

incubated for 10 min at room temperature. The 96-well plate was then placed on ice 

and transferred to the cold room for crosslinking. Crosslinking was achieved by a UV 

lamp (8 watt, 365 nm) for 30 min. Aliquots were collected from the 96-well plate and 

combined. In some cases (P2ppt), proteins were precipitated through addition of 

trichloroacetic acid to achieve a 6% solution. After 30 min incubation on ice, the 

samples were centrifuged to isolate the protein pellets. The protein pellets were 

washed twice with cold acetone and then resuspended in RIPA buffer (25 mM Tris 

base, 150 mM NaCl, pH 8.0, 1% deoxycholic acid, 1% Triton X-100). 

Western Blotting: Aliquots of either the crosslinked P1 or P2 membrane 

solution or the solubilized precipitated membrane solution (P2ppt) were loaded onto 
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4-12% bis-TRIS gels and separated with MOPS buffer (Invitrogen) before transfer to 

nitrocellulose membranes. After blocking for 1 h in 5% milk in TBS-T, the membranes 

were washed 4 × 10 min with TBS-T and blotted with guinea pig anti-TLQP21 

antibody [Possenti R et al., 2012]; 1:10,000 5% BSA) for 72 h at 4 ºC, and then 90 

min in anti-guinea pig IRDye 680RD (Li-Cor, 926-68077). The membranes were then 

scanned by Li-Cor Odyssey. 

 

GPCR β-arrestin recruitment assay: G-protein independent  

The assay was done as previously reported [Lin et al., 2013]. Briefly, HTLA cells (an 

HEK293 cell line stably expressing a tTA-dependent luciferase reporter and a β-

arrestin2-TEV fusion gene) were cultured in DMEM supplemented with 10% FBS and 

5 µg/ml. Puromycin and 100 µg/ml Hygromycin. HTLA cells were transfected with 

C3aR-tTA construct using the calcium phosphate method and incubated overnight at 

37°C. Cells were plated in Poly-L-Lys (PLL) coated 384-well white clear bottom cell 

culture plates at a density of 15,000 cells in 50 µl per well of DMEM with 1% dFBS 

and incubated overnight. Drug solutions were prepared in sterile 1XHBSS, 20 mM 

HEPES, pH 7.4 (assay buffer) at 6x dilution and added to cells (10 µl per well) for 

overnight incubation at 37°C. The following day, the medium was replaced by 20 µl 

per well of BrightGlo reagent (diluted 10-x with assay buffer). Plates were incubated 

for 20 minutes at room temperature in the dark before being counted on a 

luminescence counter. 
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2.4 RESULTS 
 

TLQP-21 targets the C3aR1 receptor 

To establish the selective binding of the TLQP-21 to the C3aR1 receptor, we 

carried out photoaffinity labeling experiments. First, we synthesized a biotin-

conjugated TLQP-21 peptide, substituting F13 with a benzophenone derivative; we 

then incubated the peptide with both 3T3L1 and CHO cells which express the C3aR1 

(Figure S2.1 and [Possenti et al., 2012, Choy et al., 1995, Cassina et al., 2013]). 

Upon UV irradiation of the reaction mixture, the modified peptide consistently cross-

linked with a protein running at approximately 55 kDa on the SDS-PAGE, 

corresponding to the nominal molecular weight of the C3aR1 receptor [Klos et al., 

2013, Roglic et al., 1996] (Figure 2.1A). To test the binding specificity of the TLQP-

21 for the C3aR1 receptor, we carried out the same reaction in the presence of 

SB290157, a well-documented C3aR1antagonist [Ames et al., 2001]. In the presence 

of the antagonist, we observed a substantial reduction in cross-linking efficiency 

(Figure 2.1B), indicating that SB290157 competes with TLQP-21 binding to the 

C3aR1 receptor.  

To provide additional evidence that TLQP-21 targets the C3aR1, we used a β-

arrestin recruitment assay in HTLA cells transfected with the C3aR1 receptor [Lin et 

al., 2013]. We found that the EC50 for mouse TLQP-21 is approximately 3 times lower 

than that of C3a and the EC50 for the human TLQP-21 is approximately 22 times 

lower than C3a (Figure 2.1C; EC50, C3a=3.0µM; mouse TLQP-21=10.3µM; human 

TLQP-21=68.8µM), indicating that both human and mouse TLQP-21 species are 

active toward human C3aR1, although with different potency.  
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Figure 2.1. TLQP-21 binding in 3T3L1 and CHO cells and activity at the C3aR1. 
A) Photoactivated crosslinking of a modified TLQP-21 peptide (CL) in CHO and 3T3 
cells. CHO membranes were treated with PBS or CL (100 µM). A band of ~56 kDa 
was observed with anti-TLQP21 in membrane fractions P1and P2 from CL-treated 
but not PBS-treated membranes. Labeling remained in the protein pellet when P2 
membranes were TCA-precipitated (P2 ppt). P2 membranes from 3T3 cells were 
treated with PBS or increasing concentrations of CL. B) Crosslinking of a modified 
TLQP-21 peptide (CL) to membranes prepared from 3T3L1 cells is reduced in the 
presence of the C3aR1 antagonist SB290157. Lanes 2 and 3 show that crosslinking 
is not affected by DMSO used to dissolve SB290157. C) The β-arrestin recruitment 
assay showed that TLQP-21 is an agonist for the human C3aR1, similarly to the 
human C3a peptide. The mouse TLQP-21 has higher potency than the human 
TLQP-21. 
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TLQP-21 undergoes a disorder-to-order transition upon binding C3aR1 

Secondary structure predictions showed that the TLQP-21 sequence has a 

low propensity to form a well-order α-helix [Garcia et al., 2005] (Figure S2.2). 

Accordingly, solution NMR experiments in aqueous solutions showed that the peptide 

is essentially unstructured, with a chemical shift index typical of random coil 

conformations (Figure S2.2). Addition of the helical-promoting solvent 

trifluoroethanol or dodecyl phosphocholine micelles left the resonances of the peptide 

essentially unperturbed, excluding its propensity to adopt an ordered conformation in 

membrane mimicking environments (Figure S2.2). We then tested the peptide’s 

interactions with lipid membranes using magic angle spinning (MAS) solid-state NMR 

spectroscopy. To visualize the peptide, we synthesized three different TLQP-21 

analogs with 15N, 13C labels interspersed throughout its primary sequence: TLQP-21-

ALP, labeled at A16, L17, P18; TLQP-21-PAR, labeled at P4, A6, R9; and TLQP-21-

PARRPA, labeled P4, A6, R9, R11, P19, A20. (Figure S2.3). We performed two different 

experiments: the refocused INEPT (rINEPT) experiment, which is sensitive to more 

dynamic regions of proteins (Fyfe et al., 1995), and cross-polarization (CP) 

experiments [Engelke and Steuernagel 2007], which detects more rigid domains 

(Figure S2.3). The peptide was reconstituted with large unilamellar vesicles of 

DOPC:DOPE. Under these conditions, we did not observe any peptide resonances in 

the CP spectra, excluding a strong binding of the peptide to the membrane vesicles, 

and at the same time supporting the dynamic nature of the peptide. In contrast, the 

rINEPT experiment detected essentially all of the labeled sites, displaying a well-

resolved spectrum of TLQP-21 with chemical shift values corresponding to the 

tabulated random coil values (http://www.bmrb.wisc.edu) (Figure 2.2A,C,E and 

Figure S2.2D). Taken with the solution NMR experiments, the solid-state NMR 

spectra showed that the peptide is intrinsically disordered in solution and does not 

have a strong tendency to associate with lipid bilayers.  

 

 

 

 

 

 

 



 35 

 

 
 
Figure 2.2. Structural analysis of TLQP-21 in presence of target 3T3L1 cells. 
Overlay spectra of refocused INEPT spectrum of TLQP-21 13C and 15N labeled at P4-
R6-A9 (A,B), P4-A6-R9-R11-P19-A20 (C,D) or A16-L17-P18 (E,F) with resonance 
assignments indicated. Experiments were performed in buffer (A,C,E) or in the 
presence of 3T3L1 cells after 24 hour incubation at 37ºC (B,D,F). G,H. Chemical shift 
index of TLQP-21 in buffer (red) or in the presence of 3T3L1 cells (blue) 
(Schwarzinger, et al., 2000).  

 

 

To test TLQP-21 binding under the native conditions rather than in a 

reconstituted system, we probed the peptide-receptor interactions by incubating the 

peptide with 3T3L1 cells that express C3aR1 (Figure S2.1). Under these conditions, 

TLQP-21 underwent a disorder-to-order transition (Figure 2.2B,F,D). Specifically, the 

chemical shifts of the Cα-Hα resonances changed significantly (Figure 2.2G,H), 

consistent with a structural transition from random coil to α-helical conformation 

(Figure 2.3). The experiment was repeated for three labeled TLQP-21 analogs 

spanning the core sequence, and in all cases we observed the same chemical shift 

transitions from random coil to helix (Figure 2.2). 
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Figure 2.3. A structural model of TLQP-21 upon receptor binding. The backbone 
conformation was obtained with XPLOR-NIH software (Schwieters et al., 2003) 
constraining the dihedral angles of the residues showing helical chemical shifts. The 
conformation of the side chains is arbitrary. Electrostatic surface calculated with 
APBS (Baker et al., 2001) illustrates the positively charged N-terminal domain of 
TLQP-21 and primarily neutral C-terminal domain.  
 

To confirm the specificity of the binding under NMR conditions, we analyzed 

TLQP-21 binding in the presence of N2-[(2,2-Diphenylethoxy)acetyl-L-Arginine (or 

SB290157), a potent inhibitor of C3aR1 that does not antagonize either C5aR or 

other GPCRs [Ames et al., 2001]. Since the concentration of the receptor is 

unknown, we used 5 µM of the inhibitor. In the spectrum of TLQP-PAR (Figure 2.4C) 

we detected two conformations of the peptide: one with chemical shifts 

corresponding to the unfolded peptide, and a weaker set matching the helical 

structure. These data indicate that there is only a partial saturation of the receptor on 

the adipocytes with the SB290157 inhibitor. To circumvent this issue, we used 

splenocytes derived from either wild type mouse expressing C3aR1 receptor [Kwan 

et al., 2013], or from a C3aR1 knockout mouse. Again, for the wild type cells we 
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observe the backbone chemical shifts matching those of the folded helical 

conformation (Figure 2.4E). Conversely, TLQP-21 incubated with the C3aR1 

knockout splenocytes exhibits chemical shifts those of the unfolded structure (Figure 

2.4F). Finally, although the N38 cell line has been proposed as a negative control for 

TLQP-21 activity [Cassina et al., 2013], we detected significant expression of the 

C3aR1 receptor using QPCR (Figure S2.1). As a result, we have observed binding 

of the TLQP-21 peptide to the receptor with concomitant transitions from disordered 

to helical conformation (Figure S2.4). 

 

 
 
Figure 2.4. Structural analysis of TLQP-21 in presence of C3aR1 knockout cells 
and a C3aR1 antagonist. Refocused INEPT spectra of TLQP-21, labeled with 13C 
and 15N at P4-A6-R9 with resonance assignments indicated. Experiments were 
performed in buffer (A,D), in the presence of 3T3L1 cells (B), in the presence of 
3T3L1 cells incubated with the C3aR1 antagonist SB290157 (C), in the presence of 
splenocytes derived from wild type (E) or in the presence of splenocytes derived from 
a C3aR1 knockout mice (F). 
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Determination of the hot spots for TLQP-21 biological function  

After establishing the structural determinant of TLQP-21 binding to C3aR1, 

we sought to identify the hot spots for the peptide activity. The primary amino acid 

sequence of murine TLQP-21 (TLQPPASSRRRHFHHALPPAR) corresponds to 

amino acids 556–576 of the VGF pro-peptide [Bartolomucci et al., 2006, 2011]. One 

of the best characterized bioassays for TLQP-21 activity is the contraction of 

stomach fundus strips [Severini et al., 2009]. At a dose of 3µM TLQP-21 induces up 

to ~69% of the corresponding contraction promoted by acetylcholine. To elucidate 

the hot spots responsible for optimal biological activity, we synthesized and tested 

the biological response of two truncated analogs of the TLQP-21 peptide: one without 

the C-terminal sequence (TLQP-11), and the second without the N-terminus (HFHH-

10). We found that TLQP-11 is essentially inactive, with zero response at 

concentrations up to 10µM (Table 2.1), while HFHH-10 induced a modest biological 

activity, with ~3% response at a concentration of 3µM, 62% at 6µM, and 75% at 

10µM. These experiments suggest that the hot spots for biological activity are 

situated at the C-terminus, and demonstrate that the entire peptide sequence is 

required for its optimal activity. We next performed Ala-scanning mutagenesis 

[Morrison and Weiss 2001] on the C-terminal portion of TLQP-21 We found that 

mutations of endogenous amino acids with Ala had no significant effects, with the 

exception of the four C-terminal amino acids. Specifically, the P18A mutant showed 

partial biological function with ~65% activity at 3µM. The P19A mutant showed only 

residual activity with 19% at 3µM (and 35% at 6µM) (Table 2.1; Figure S2.5). 

Interestingly, the human TLQP-21, in which Ser is in position 20 (Ala for the rodent 

sequence), showed limited biological activity toward the rodent receptor with ~20% at 

3µM compared to the mouse sequence (Table 2.1), a finding which is in line with the 

β-arrestin activity assays reported in Figure2.1C. Importantly, the R21A mutant 

resulted in a complete loss of activity (Table 2.1; Figure S2.5), even after increasing 

the dose up to 10µM. The inactive R21A mutant does not block the activity of a 

subsequent infusion of TLQP-21, suggesting that it does not behave as a C3aR1 

antagonist (Table 2.1; Figure S2.5). Note that under our conditions the biological 

activity elicited by TLQP-21 is similar to that of the C3aR1 agonist C3a70-77 [Hugli and 

Erickson 1977], with 3µM TLQP-21 and C3a70-77 causing approximately 69% and 

55% contraction of fundus strips, respectively, relative to acetylcholine (Figure S2.5). 
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Finally, we investigated the effects of capping the TLQP-21 C-terminus via amidation. 

Although this post-translational modification is not observed for the TLQP-21 peptide 

in vivo [Bartolomucci et al., 2006], it represents a pre-requisite for the activity of 

several other hormonal peptides such as CRH [Vale et al., 1981], and it increases the 

stability of several synthetic peptides [Adessi and Soto 2002]. Upon C-terminal 

amidation, the TLQP-21 peptide is completely inactivated (Table 2.1), suggesting 

that the free carboxylic group is necessary for activity. 

  

 
 

Table 2.1. Contractile activity on rat stomach fundus exerted by TLQP-21 
mutants (mutations highlighted in bold).  

 

 

 

Importantly, NMR spectra of the R21A mutant (labeled with 13C and 15N at A16, L17 

and P18) in the presence of 3T3L1 cells show a conformational transition similar to 

that of the wild-type peptide (Figure 2.5). Therefore, the loss-of-function character of 

the inactive mutant is probably due to changes in the electrostatic interactions at the 

C-terminal portion of the peptide. The latter is supported by the chemical structure of 

C3a [Hugli and Erickson 1977], by the analogous mutations at R77 of C3a 
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[Nattesheim et al., 1988], as well as the chemical structure of the C3aR1 antagonist 

SB290157, which includes a hydrophobic N-terminal diphenylethoxy group linked to 

the acetyl-L-Arg moiety [Ames et al., 2001] that closely mimics the C-terminal 

residues of the TLQP-21 peptide.  

 

 

Figure 2.5. Structural analysis of mutant R21A in presence of target 3T3L1 
cells. Refocused INEPT spectra of R21A mutant, labeled with 13C and 15N at A16-L17-
P18 with resonance assignments indicated. Experiments were performed in buffer 
(left panel) or in the presence of 3T3L1 cells (right panel).   
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2.5 DISCUSSION 

The role of the TLQP-21 neuropeptide in the pathophysiology of 

gastrointestinal and metabolic functions has been recognized by several independent 

studies [Bartolomucci et al., 2011]. Despite this, the molecular mechanisms for 

eliciting TLQP-21 function have remained elusive until a recent study identified the 

C3aR1 receptor as the target for TLQP-21 [Hannedouche et al., 2013]. Indeed, our 

photoaffinity labeling and β-arrestin assays (Figure 2.1) data support these previous 

studies, showing that TLQP-21 cross-links with the C3aR1 receptor selectively. A 

second putative receptor for TLQP-21, the globular head of C1q has been recently 

described [Chen et al., 2013]. Published [Possenti et al., 2012, Hannedouche S et 

al., 2013, Passina et al., 2013] and current data do not support a second binding site 

in either CHO or 3T3L1 cells (Figure 2.1) and there is no apparent 

structural/functional similarity between TLQP-21 and the predicted C1q ligands 

[Gaboriaud et al., 2003].  

Importantly, the NMR measurements demonstrated that the peptide is 

intrinsically disordered in solution and does not assume an ordered conformation 

upon addition of helical-inducing environments. However, when incubated with cells 

expressing C3aR1, the TLQP-21 peptide undergoes a folding-upon-binding 

transition, adopting a well-defined α-helical conformation (Figure 2.3). This structural 

transition does not occur in the presence of C3aR1-knockout cells and can be 

inhibited upon treatment of 3T3L1 cells with a selective and competitive antagonist of 

the C3aR1 receptor [Ames et al., 2001].  

Transition from a random coil to helix is a common mechanism for activating 

GPCRs of the secretin family [Shoichet and Kobilka 2012; Hollenstein et al., 2014; 

Parthier et al., 2009; Kamik et al., 2003]. For these receptors, the ligand peptides 

have been found to be disordered in aqueous solutions, but adopted a structured 

helical conformation upon binding the extracellular domains of the receptors. The 

driving force for their binding and folding is the formation of amphipathic helices in 

which the hydrophobic residues embed into the binding site. At least six different 

examples have been reported in the literature, e.g. CRH, PACAP, Glucagon, GLP-1 

etc, where the high-resolution structures have been solved by either NMR or X-ray 

crystallography [Pal et al., 2012]. While the apparent mechanism of TLQP-21 helix 

folding is reminiscent of these peptide hormones, the chemical nature of this VGF-
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derived peptide is rather different, as TLQP-21 sequence is flanked by two pairs of 

proline residues at both termini. In the structural model derived from our chemical 

shift measurements, hydrophobic and hydrophilic residues are not segregated into 

two distinct faces of the helix; rather, the charges are interspersed throughout the 

peptide sequence (Figure 3). This suggests a mechanism of recognition by the 

cognate receptor that is different from that of other peptide hormones for which a 

structural analysis has been conducted [Parthier et al., 2009]. Furthermore, the C-

terminus of peptides active at class B GPCR act as a docking site to initiate the helix 

formation, and the N-terminal residues are responsible for the activation of the 

receptors [Parthier et al., 2009; Karnik et al., 2003]. Conversely peptides active at 

class A GPCR (including the C3aR1) [Beck-Sickinger et al., 1994; Neelamkavil, et 

al., 2005] as well as other peptides of the granin family [Bartolomucci et al., 2011] do 

not show a common binding mechanism.  The hot spots for TLQP-21 activity reside 

at the C-terminus. In fact, alanine-scanning mutagenesis and the bioassay of fundus 

strip contraction showed that the C-terminal sequence (-PPAR21) is central to TLQP-

21 biological activity (Table 2.1). A similar situation is found for the C3a peptide, the 

first ligand ever identified for the C3aR1 [Nettesheim et al., 1988]. In the absence of 

the receptor, the C3a peptide is organized in helical segments interrupted by short 

flexible loops that become less defined at residue 66 [Klos et al., 2013], while they 

adopt a significantly more ordered helical conformation in the crystal lattice 

[Nettesheim et al., 1988]. As with TLQP-21, the C3a peptide’s hot spots are located 

at the C-terminus, with R77 playing a critical function [Ames et al., 2001; Hugli and 

Erickson 1977; Nettesheim et al., 1988]. By deleting the C-terminal R77 of C3a it is 

possible to ablate the peptide’s function at C3aR1 completely, although the deletion 

mutant is still able to form an ordered helix [Nettesheim et al., 1988]. A very similar 

result was obtained with TLQP-22.1 The R21A mutant of TLQP-21 is inactive while 

still undergoing an α-helix conformational change. A full understanding of the 

similarities in the mechanism of action of TLQP-21 and C3a is currently lacking. In 

CHO and HeK239 cells transfected with C3aR1, TLQP-21 binds the receptor with 

100 fold lower affinity than C3a [Hannedouche et al., 2013], while both these ligands 

induce a similar contraction of gastric fundus strips (present data) and insulin release 

(Stephens et al., 2012; Lo et al., 2014). Conversely, mouse TLQP-21 enhances 

isoproterenol induced in mouse adipocytes [Possenti R et al., 2012], while in an 

heterologous system Lim et al (2013) showed that human serum C3a exerts the 

opposite effect in murine 3T3L1 cells.  Finally, using mouse genetic it has been 
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demonstrated that C3aR1 knockout mice are transiently resistant to diet-induced 

obesity and are protected from insulin resistance and liver steatosis [Mamane et al., 

2009], similar to VGF knockout mice [Hahm et al., 1999, 2002]. In conclusion, 

although the mechanism of binding to the C3aR1 receptor may appear similar for 

both TLQP-21 and C3a, differences in their primary sequences might account for the 

non-fully overlapping biological actions. 

Another important finding of our investigation relates to the different function 

between human and rodent TLQP-21 sequences. A recent study reported that the 

human TLQP-21 sequence is 5-fold less potent toward the rodent C3aR1 than the 

corresponding rodent sequence [Hannedouche et al., 2013]. Here, we tested the 

potency of these two peptides toward the human C3aR1 receptor and found that both 

human and mouse TLQP-21 sequences target the human receptor with different 

potency. Specifically, we found an EC50 for the mouse TLQP-21 approximately 3 

times lower than the C3a peptide, while the corresponding EC50 for the human 

TLQP-21 is approximately 22 times lower (Figure 2.1C). The rodent (rat and mouse) 

and primate (human, chimpanzee, and macaque) TLQP-21 sequences differ by four 

amino acids [Bartolomucci et al 2011]. However, Ser20 substitutes Ala20 at the C-

terminus of the rodent peptide in the human sequence (Table 2.1), resulting in a 

mutation leading to a peptide with lower potency toward the primate and the rodent 

C3aR1. In support, mutations at the C-terminus of C3a reduce the affinity toward the 

human receptor [Klos et al., 2013]. Interestingly, casoxin C (Tyr-Ile-Pro-Ile-Gln-Tyr-

Val-Leu-Ser-Arg) and Oryzatensin (Gly-Tyr-Pro-Met-Tyr-Pro-Leu-Pro-Arg) are short 

bioactive peptides with sequence analogy with the human complement C3a(70-77) 

and substitution of Ala76 in C3a with either Ser or Pro respectively [Takahashi et al., 

1996,1997]. The biological activity of casoxin C and oryzatensin in the ileum-

contraction assay is similar to C3a70-77 but with lower potency [Takahashi et al., 1996, 

1997]. Overall these data suggests that, unlike the mutation of the Arg77/Arg21 

which abrogate activity at the C3aR1 (see above), mutating the Ala76 in C3a and 

Ala20 in TLQP-21 could reduce their biological activity.   

The lower potency of the human TLQP-21 peptide might reduce the lipolytic 

potential of humans and may constitute one of the factors explaining human 

vulnerability to obesity. Conversely, the rodent peptide could represent a gain of 

function mutation with respect to the basal TLQP-21 activity toward the C3aR1 

receptor and suggests possible point mutations for augmenting or reducing TLQP-21 

potency in humans. Synthetic molecules designed to target GPCRs have already 
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been developed into potent agonists and antagonists by engineering lactam-bridges 

promoting α-helical structures [Neelamkavil et al., 2005; Ammoun et al., 2003; Grace 

et al. 2007; Murage et al., 2008; Pellecchia et al., 2008]. The mouse TLQP-21 

sequence represents a molecular template for designing new analogues of this 

peptide that can serve as agonists or antagonists for C3aR1 having important 

implication for obesity [Possenti et al., 2012], diabetes [Stephens et al., 2012], 

hypertension [Fargali et al., 2014], pain [Fairbanks et al., 2014] and potentially 

immune functions.  

In summary, our results show a folding-upon-binding mechanism for TLQP-21 

that activates the cognate C3aR1 receptor. Using a combination of spectroscopic 

and biological assays, we identified the hot spots for TLQP-21 function as residing at 

the C-terminal sequence of the peptide. C-terminal amidation or mutation of the basic 

arginine 21 residue obliterates peptide function, suggesting that both positive and 

negative electrostatic interactions at the C-terminus are necessary for biological 

activity.   

This study represents a major step toward understanding the molecular 

mechanism for activation of TLQP-21 and paves the way for designing new 

agonists/antagonists to modulate the function of the C3aR1 receptor [Reid et al., 

2013].  
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2.6 SUPPLEMENTARY FIGURES 
 

 

 

Figure S2.1, related to Figure 2.1. and Figure S2.4. Gene expression of C3aR1. 
C3aR1 mRNA was measured by real time QPCR in 3T3L1, N38 and CHO cells and 
normalized over β-actin expression.  
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Figure S2.2, related to Figure 2.2. Software prediction and secondary structural 
characterization of free TLQP-21. A) Two dimensional total correlation 
spectroscopy spectrum of TLQP-21 dissolved in NMR buffer at acquired at 37ºC. 
Only the amide region (~7-9ppm) is shown for clarity. B) Secondary structural 
prediction of TLQP-21 using JUFO and PredictProtein software. C) Chemical Shift 
index (ΔHα) of TLQP-21 using assigned Hα chemical shift in (A). D) Overlay of 
TLQP-21 rINEPT in the absence (black) and presence (red) of small unilamellar 
vesicles composed of DOPC/DOPE lipids. No changes in chemical shift are detected 
when TLQP21 interacts with SUVs. Asterisks indicate natural abundance 13C of lipid 
molecules.  
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Figure S2.3, related to Figure 2.2. TLQP-21 peptide synthesis and chemical 
characterization. TOBSY and INEPT spectra. A) Sequences of TLQP21 mouse 
isoform with the location of isotopic labeling. B) Overlay of two 15N-HSQC 
fingerprinting spectra of TLQ-P21 corresponding to the isotopic labeled peptides 
(blue = ALP labeling, red=PARRPA labeling). C) SDS-PAGE of purified synthetic 
TLQP21 stained with Coomassie. D) Analytical HPLC trace showing single peak 
corresponding to pure TLQP-22.1 E) TOBSY and INEPT spectra of 13C/15N TLQP-21 
(P4-A6-R9) in buffer (red) or in presence of 3T3L1 cells (blue) illustrating the 
assignment of the resonances. INEPT spectrum contains only signals from 13C-1H 
pairs. TOBSY spectrum contains the signals from the adjacent 13C-13C groups, 
allowing for the spin system assignment. 
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Figure S2.4, related to Figure 2.4. Structural analysis of TLQP-21 in presence of 
N38 cells.  Refocused INEPT spectra of TLQP-21, labeled with 13C and 15N at A16-
L17-P18 with resonance assignments indicated. Experiments were performed in buffer 
(A), in the presence of 3T3L1 cells (B) or in the presence of N38 cells (C) 

 

 

 

 
Figure S2.5, related to Table 2.1 Gastric fundus strip contraction assay. (A) 
Graphs show example of the contractile responses evoked by TLQP-21 (top arrows) 
and the C-terminal mutants P18A, P19A and R21A. (B) The C3a71-77 induces a 
contraction similar to TLQP-21 while the C3aR1 antagonist SB290157 antagonizes 
TLQP-21-induced contraction of stomach fundus strips.  *p>0.5, **<0.01, **<0.002.1 
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3.1 SUMMARY 

The VGF-derived TLQP-21 peptide has been shown to bind to the 

Complement 3a Receptor (C3aR1) on adipocytes membranes and to increase ISO 

(isoproterenol)-induced lipolysis in adipocytes. However, the molecular mechanisms 

are still largely unknown. This study aimed to delineate the mechanism of action of 

TLQP-21-induced lipolysis using 3T3L1 and mouse adipocytes as a model. TLQP-21 

was unable to induce lipolysis but enhanced ISO-induced lipolysis in 3T3L1 

adipocytes. Furthermore, we showed that TLQP-21 increased the cAMP activator 

forskolin-induced lipolysis in 3T3L1 cells as well as in β1, β2, β3-AR knockout 

adipocytes suggesting that increased [cAMP]i exerts a permissive effect on TLQP-

21-induced lipolysis. Additionally, we directly demonstrated that TLQP-21 pro-lipolytic 

effect is mediated by increased [Ca2+]i and phosphorylation of MAPK/ERK. These 

results indicate a novel mechanism of TLQP-21 induced lipolysis in 3T3L1 cells and 

this study has important implications to design innovative pro-lipolytic 

pharmacological agents. 
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3.2 INTRODUCTION 

Lipolysis is a complex and tightly regulated multistep process mostly 

stimulated by catecholamine hormones Briefly, norepinephrine (NE), released by the 

postganglionic sympathetic neurons innervating adipose fat depots, stimulate lipid 

mobilization via activation of β-adrenoreceptors (β-ARs) on adipocyte membranes 

[Jocken and Blaak, 2008].  In response to the adrenergic stimulation, adenylate 

cyclase (AC) is activated to generate cyclic AMP (cAMP). cAMP activates protein 

kinase A (PKA) that catalyzes the phosphorylation of hormone sensitive lipase (HSL) 

that causes the activation and translocation of this lipase from the cytosol to the lipid 

droplet [Holm, 2003]. PKA also phosphorylates perilipin that moves away from the 

lipid droplet increasing the surface area on the droplet for more lipolysis. Aside from 

HSL, there are other important lipases and proteins involved in the breakdown of 

triglycerides. The main lipases are, adipose triglyceride lipase (ATGL) that performs 

the first step hydrolyzing triacylglycerol (TAGs) to generate diacylglycerols (DAGs), 

hormone-sensitive lipase (HSL) hydrolyses DAGs generating monoacylglycerol 

(MAG) and lastly monoglyceride lipase (MGL) that cleaves MAG into glycerol and 

NEFAs [Zimmermann et al., 2004; Lass et al., 2006; Duncan et al., 2007]. As an end 

result of lipolysis, NEFAs and glycerol are released from adipocytes and delivered to 

peripheral tissues [Lass et al., 2011; Ahmadian et al., 2009; Duncan et al., 2007]. 

Overeating and obesity compromises the normal physiological regulation of lipolysis 

leading to decreased catecholamine-induced lipolysis in obese patients [Arner, 1992; 

Large et al., 1999]. Therefore, identifying new drugs that could finely tune lipolysis 

would be extremely helpful for obese patients by directly targeting excessive fat 

mass.  

The TLQP-21 peptide spans from residue 556 to residue 576 of the rodent 

VGF precursor sequence [Bartolomucci et al., 2006]. Originally identified in rat brain 

tissue extracts [Bartolomucci et al., 2006], TLQP-21 is a multifunctional peptide 

important in many physiological states [Bartolomucci et al., 2006; Sibilia et al., 2010; 

2012; Brancia et al., 2010; Rizzi et al. 2008; Fairbanks et al., 2014; Fargali et al., 

2014]. TLQP-21 is expressed in sympathetic nerve terminals innervating white 

adipose tissue (WAT) and binds to C3aR1 expressed on the adipocyte membrane 

thereby increasing ISO-induced lipolysis [Hanneduche et al., 2012; Cero et al., 2014]. 

The Complement 3a, a potent anaphylatoxin, product of adipsin cleavage of 

C3 [White et al., 1992; Choy and Spiegelman, 1996; Lo et al., 2014] was the first 
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ligand characterized for C3aR1 [Markiewski et al., 2007] and its role in adipocyte 

function remains poorly characterized. Similarly the cell signaling cascade activated 

by C3aR1 activation is poorly characterized [Lo et al., 2014]. We have previously 

shown that TLQP-21 increases phosphorylation of AMPK, ERK and not PKA 

substrates [Possenti et al., 2012]. In presence of ISO, TLQP-21 increased the 

phosphorylation of AMPK, ERK as well as HSL and enhances ISO-induced lipolysis 

in mature murine adipocytes. The exact mechanism of TLQP-21-induced lipolysis is 

still unclear. TLQP-21 treatments increased intracellular Ca2+ concentration ([Ca2+]i) 

in several cell lines including cerebellar granules  [Severini et al., 2008], GH3 

[Petrocchi et al., 2013], brain and spinal cord-derived primary microglia [Chen et al., 

2013], and insulinoma cell lines [Petrocchi et al., 2015]. Importantly, in hamster CHO-

K1 cell line and rat ovary cell line O-342, the cell signaling cascade activated by 

TLQP-21/C3aR1 seemed dependent upon ATP priming that led to increased [Ca2+]i 

and sensitive to pertussotoxin, suggesting the C3aR1 receptor to either be a Gi/o 

coupled receptor [Hanneduche et al., 2012].   

Based on these findings the working hypothesis in this current study was that 

TLQP-21 pro-lipolytic effect requires increased [cAMP]i and is mediated by increased  

[Ca2+]i and downstream phosphorylation of  the MAPK/ERK pathway. 
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3.3 EXPERIMENTAL PROCEDURES 

Peptide Synthesis  

For methods refer to Chapter 2.  

 

Cell culture 

3T3-L1 cells were plated on 6 wells plates and maintained in DMEM with 

supplemented with 10% fetal calf serum (Lonza) and with penicillin/streptomycin 

100units/ml (Invitrogen, Carlsbad, CA) in a humidified atmosphere of 5% CO2 at 

37°C. Media was changed every other day until cells were confluent. Once confluent, 

differentiation into adipocytes was initiated by using a differentiation cocktail 

containing 10% fetal bovine serum (FBS) (Atlas) 0.5mM methylisobutylxanthine 

(Sigma Aldrich, Saint Louis, MO), 10µg/ml insulin (Sigma Aldrich, Saint Louis, MO), 

and 0.25µM dexamethasone (Sigma Aldrich, Saint Louis, MO). After 48 hours, the 

media was replaced with FBS medium supplemented only with 10µg/ml insulin, 

which was removed after 2 day. Thereafter, the differentiated cells were maintained 

in DMEM with 10% FBS and media changed every other day used in experiments 8-

9 days after induction. 

 

Primary adipocytes isolation  

Epidydimal fat pads (eWAT) from wild type and β-less mice were dissected under 

sterile conditions and washed in KRH buffer + 1% BSA fatty acid free (Roche). After 

finely mincing and digesting the tissue using collagenase type II (Sigma) for 30 

minutes at 37°C in KRH buffer + 1%BSA, the digestion was then stopped by adding 

KRH + 1% BSA and the cell suspension centrifuged at 1240 rpm (or 200g) for 3 

minutes to separate mature single adipocytes from the stromal vascular fraction. 

Adipocytes cell suspension was extensively washed and passed throw a 100µm cell 

strainer to separate single cells.  

 

Pre-adipocytes isolation, culture, differentiation 

A similar protocol was used for the isolation of pre-adipocytes, HBSS was used 

instead of KRH for the isolation process. Cell suspension was filtered through a 

25µm mesh to remove endothelial cell and isolate stromal vascular fraction. The 

stromal vascular fraction was plated onto 12-well plates in DMEM/F12+10%FCS at a 

density of 150.00 cells/cm2. Once confluency was reached, differentiation was 
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induced by the addition of induction media containing 250µM methylisobutylxanthine 

(Sigma Aldrich, Saint Louis, MO), 10µg/ml insulin (Sigma Aldrich, Saint Louis, MO), 

100nM dexamethasone (Sigma Aldrich, Saint Louis, MO) and 60µM of indomethacin. 

After 48 hours, the induction media was replaced with insulin containing media, 

which was removed after 2 days. From that day forward, the maintenance media, 

DMEM/F12+10%FCS, was replaced every other day and differentiated cells used at 

day 8-9 after induction. 

 

Lipolysis assay  

3T3-L1 adipocytes were serum-starved in Krebs-Ringer buffer containing HEPES 

(KRH buffer) (NaCl at 120mM; KCl at 4.7mM; CaCl2 at 2.2mM; HEPES at 10mM; 

KH2PO4 at 1.2mM; MgSO4 at 1.2mM; glucose at 5.4mM) supplemented with 1% 

bovine serum albumin (BSA) fatty acid free (Roche) for 3 hours. Following starvation 

the cells were incubated with KRH buffer containing 4% BSA with TLQP-21 (100nM) 

in presence and absence of Isoproterenol (ISO) (Sigma) concentrations raging from 

1nM, 15nM, 50nM, 100nM, 1µM; Forskolin (100nM, 1µM and 10µM) (Sigma) or 

ethylene glycol tetraacetic acid (EGTA) (1mM). 

For the intracellular cheletor 1,2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic 

acid tetra (acetoxy- methyl) ester (BAPTA-AM) (Sigma) experiments, the 

differentiated cells were first pre-exposed to BAPTA-AM (5µM) in KRK with 4% BSA 

for 10 min, the buffer was then removed and replaced with buffer containing different 

treatments. 1µM and 10µM MEK1/2 inhibitor U0126 (Calbiochem) was used to inhibit 

the activation of MEK1 and MEK2 that are directly responsible for the activation of 

ERK.  

In the pre-adipocytes’ lipolytic experiments, a similar protocol to the 3T3L1 

cells was used. For lipolysis in primary adipocytes, 150-200,000 adipocytes were 

incubated in 1X KRH buffer + 4% BSA fatty acid free (Roche) for 180 minutes at 

37°C with Isoproterenol (1nM to 10mM) or Forskolin (10µM). 

In all experiments, lipolysis was measured as the rate of glycerol release over 

a 3h period. Following the 3 hours of incubations with treatments at 37°C and 5% 

CO2, the media was collected and incubated at 60°C for 20 min to inactivate any 

enzymes released from the cells. Media was stored at -20°C until the glycerol assay 

was performed.  
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For 3T3L1 cells, free glycerol concentration was measured by reacting 80µl of 

conditioned media with 120µl of Free Glycerol Reagent from the Free Glycerol 

Determination kit (Sigma) in a flat-bottom 96-well plate. For the primary and pre- 

adipocytes, 30µl of supernatant was combined to 120µl of free glycerol reagent. All 

samples were allowed to incubate for 15 minutes at room temperature. Absorbance 

was measured at 540 OD on a plate reader (Synergy H1, BioTEK) to determine 

glycerol content and was normalized to total cellular protein content determined with 

the Bradford Assay (Thermo Scientific). The data were normalized to the control 

response detected in the same experiment and are expressed as fold change over 

controls. 

 

Western blot 

3T3L1 cells were rinsed 3X with cold PBS and harvested in RIPA buffer containing 

protease (Complete Mini, Roche) and phosphates inhibitors (Thermo Scientific). 

Lysates were then sonicated and centrifuged at 12,000 rpm for 10 min the protein 

concentration was determined using Bradford Assay (vendor). Equivalent amount of 

cell extracts were diluted in sodium dodecyl sulfate (SDS) sample buffer and boiled 

for 5 min at 95°C. Proteins were resolved by SDS-polyacrylamide gel electrophoresis 

and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA Individual 

proteins were detected with the specific primary antibodies following incubation 

overnight at 4°C (tubulin, p44/42 and pp44/42 all at 1:1000 from Cell Singnaling). 

Incubation with peroxidase-coupled secondary goat-anti-rabbit antibodies (1:20.000, 

LI-COR) was performed at room temperature for 1 h and developed with enhanced 

chemiluminescence (LI-COR). 

 

Quantitative Real-Time PCR 

Undifferentiated and differentiated 3T3L1 were harvested in 400µl TRI REAGENT 

(Molecular Research Center, Inc., Cincinnati, Ohio) and RNA was ISOlated follwing 

the manufacturer’s instructions. Total RNA was digested with Dnase I using DNA-

free (Ambion, Austin, TX) and tested for the presence of DNA contamination using 

PCR. Total RNA concentration and purity was then determined using NanoDrop at 

the UV absorbency of 260 nm (NanoDrop 2000 UV-Vis Spectrophotometer, Thermo 

Scientific). 1µg of RNA was converted into cDNA using iScript cDNA Synthesis Kit 

(Bio-Rad Laboratories, Hercules, CA).  The mouse neuronal ion channels PCR array 
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(Qiagen) was used according the manufactures instructions using the C1000 thermal 

cycler ™ (Bio-Rad Laboratories, Hercules, CA). The PCR reactions were carried out 

using IQ™ Syber Green Supermix. Thermal cycling conditions were hotstart for 10 

minutes and 40 cycles of 95°C for 15 sec and 60°C for 60 sec with the ramp rate 

between the 95°C to 60°C sec being 1°C/sec. The results were calculated by the 

comparative Ct method using β-actin as an endogenous reference gene.  

 

Fura-2 loading and Ca2+ measurements  

3T3-L1 cells grown to confluence and were differentiated in chamber slides (Lab 

Tex). On day 8 of differentiation, cells were loaded and incubated for 90 minutes with 

FURA-2 acetoxymethyl ester, then washed in Hanks' balanced salt solution (HBSS, 

Thermo Scientific) free from Ca2+.  Single cell fluorescence was visualized using a 

Nikon UV-fluor 20X or 40X oil-immersion objective.  Intracellular Ca2+concentration 

[Ca2+]i will be measured as the ratio of fluorescence emitted when the cells will be 

alternately excited at 340 and 380 nm (F340/F380). Cells were treated with TLQP-21 in 

presence or absence of ISO. [Ca2+]i  and prostaglandin F2α (PGF2α) known to be 

responsible for calcium mobilization in 3T3-L1 cells used a positive control. Image 

acquisition and data analyses were performed using Image-1 MetaMorph software 

running on a Dell Optiplex 760 microcomputer. [Ca2+]i was measured as the ratio of 

fluorescence emitted at 510 nm when the cells were alternately excited at 340 nm 

and 380 nm [F340/F380)].  [Ca2+]i was calculated following calibration using the Fura-2-

AM calcium imaging calibration kit (Life Technologies). 

 

Statistical Analysis 

Statistical Analysis was evaluated using the analysis of variance (ANOVA) using 

Statistica 12. After a statistically significant ANOVA result, we performed between-

group comparisons using the Tukey post hoc analysis for comparisons of all means. 

The data are reported as the means ± SEM from at least 2-5 independent 

experiments with n=3 for each experiment. Graphs were performed with Graphpad 

Prism, version 5. 
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3.4 RESULTS 

TLQP-21 potentiates lipolysis  

3T3L1 adipocytes were incubated with TLQP-21 ranging from 50nM to 1µM 

and ISO ranging from 1nM to 1µM. As expected, ISO-induced a dose-dependent 

increase in lipolysis starting from 10nM [F(8,79)=29.1, p<0.00001]. Conversely, 

treatment with TLQP-21, even in the micro molar range, did not affect lipolysis, a 

finding in line with previous results obtained with mice mature adipocytes [Possenti et 

al., 2012].  

  

Figure 3.1. ISO but not TLQP-21 dose dependently induced lipolysis in 3T3L1 
cells. Dose response study of ISO and TLQP-21 in 3T3L1 adipocytes. Treatments: 
ISO at 0 nM, 1nM, 10nM, 50nM, 100nM and 1µM; TLQP-21 at 50nM, 100nM and 
1µM. TLQP-21 does not induce lipolysis per se. *p<0.001, **p<0.001, *** p<0.0001. 

 

Subsequently, we co-incubated the adipocytes with ISO and TLQP-21 and 

found that TLQP-21 potentiated lipolysis induced by the β-adrenergic receptor 

agonist isoproterenol [F(5,65)=62.1, p<0.0001]  (Figure 3.2A). Moreover, 3T3L1 cells 

incubated with 50nM ISO and increasing doses of TLQP-21 displayed an initial 

increase in glycerol which plateaued at 100nM [F(5, 38)=101.8, p<0.00001] (Figure 
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3.3B). These data suggest that in 3T3L1 cells the target receptor for TLQP-21, 

C3aR1, could get saturated around 100nM. 

 

Figure 3.2. TLQP-21 potentiates ISO-induced lipolysis. Dose response study to 
ISO at 0 nM, 50nM and 100nM and TLQP-21 at 100nM in 3T3L1 adipocytes. Dose 
response study to TLQP-21 at 50nM, 100nM, 1µM and 10 µM and 50nM ISO. 
**p<0.001 

 

Furthermore, to examine whether TLQP-21-mediated pro-lipolytic effects 

requires NE (or ISO) induced priming or the permissive action of increased [cAMP]i, 
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3T3L1 cells were incubated with adenylate cyclase (AC) activator Forskolin (Forsk) 

that increase intracellular cAMP without the activation of the β-ARs. As expected 

[Schimmel, 1984], Forsk induced a dose-dependent increase of glycerol release from 

adipocytes (Figure 3.3) [Figure 3.3A; F(4,19)=695.64, p<0.00001] with TLQP-21 

potentiating lipolysis induced by a maximal (10µM) but not a sub-maximal (100nM or 

1µM) dose of Forsk [Figure 3.3B; F(7,28)=211.01, p<0.0001]. Overall, suggesting 

that the 10µM Fosrk increases intracellular cAMP and lipolysis to an extent that is 

similar to Iso 50-100nM.  

 

Figure 3.3. TLQP-21 enhances Forskolin-induced lipolysis in 3T3L1. TLQP-21 
requires cAMP to lipolysis in 3T3L1 adipocytes. **p<0.001; ***p<0.0001. 
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We next used β-less adipocytes to further characterize the pro-lipolytic 

mechanism of TLQP-21.  As predicted, mature adipocytes collected from β-less mice 

and stimulated in vitro were unresponsive to ISO treatment but were responsive to 

Forsk [F(2,8)=17.8, p<0.001] indicating that the lipolytic pathway downstream of β-

AR is  maintained (Figure S3.1). We next isolated, cultured and differentiated β-less 

pre-adipocytes into mature adipocytes and treated with Forsk (1µM or 10µM) in 

presence or absence of TLQP-21 (100nM or 1µM). TLQP-21 potentiated Forsk-

induced lipolysis in β-less adipocytes although with a slightly different pharmacology 

compared to 3T3L1 that can be explained by the altered signaling and biogenesis 

characteristic of this mutant strain [Bachman et al 2002; Tavernier et al., 2005] 

[F(4,15)=9.4, p<0.0005] (Figure 3.4). Altogether, these data demonstrate that 

increased cAMP exerts a permissive action for TLQP-21-induced lipolysis. 

 

 

Figure 3.4. TLQP-21 requires cAMP to induce lipolysis. TLQP-21 stimulates 
Forsk-induced lipolysis in β-less pre-adipocytes **p<0.001.  
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TLQP-21 pro-lipolytic effects are mediated by C3aR1 activation  

We next examined the effect of C3a on lipolysis in 3T3L1 adipocytes. We 

used an murine octapeptide containing the C-terminal fragment of the C3a 

anaphylatoxin peptide, the C3a70-77, a well established C3aR1 agonist [Hugli and 

Erickson, 1977]. Similarly to TLQP-21, C3a70-77 did not modulate lipolysis in absence 

of isoproterenol (Figure 3.5A), while enhanced ISO-induced lipolysis [F(5,26)=64.8, 

p<0.000001](Figure 3.5).  

 

Figure 3.5. C3a70-77 enhances lipolysis in 3T3L1. Similar to TLQP-21, C3a70-77 
peptide potentiates ISO-induced lipolysis in 3T3L1 adipocytes. ***p<0.0001. 
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Furthermore, we recently established that the C-terminal arginine at position 

21 in the TLQP-21 peptide sequence is required for C3ar1 activation [Cero et al., 

2014; Chapter 2]. Specifically, an R21A mutant is deprived from its biological activity 

in the stomach fundus strip contraction assay [Cero et al., 2014]. These findings led 

us to investigate whether the R21A peptide modulates lipolysis in 3T3L1 adipocytes. 

In marked contrast with the pro-lipolyitic activity of TLQP-21, equimolar concentration 

of R21A mutant peptide did not potentiate ISO-induced lipolysis [F(5,65)=33.4, 

p<0.00001] (Figure 3.6A). Moreover, contrarily to TLQP-21, the R21A mutant did not 

increase the phosphorylation of AMPK (Figure 3.6B). Overall, these results highlight 

the critical role of Arg-21 for activating C3aR1-induced lipolysis. 

 

 

Figure 3.6. TLQP-21 but not R21A mutant enhances lipolysis in 3T3L1. Unlike 
TLQP-21, the R21A mutant peptide does not potentiate ISO-induced lipolysis in 
3T3L1 adipocytes. *p<0.001, **p<0.001. 

 

 

A 

B 

0

2

4

6

8

10

g
ly

ce
ro

l n
m

o
l/m

g
 p

ro
te

in
fo

ld
 c

an
g

e
 o

v
e

r 
co

n
tr

o
l

** *

**

ns

- - + + + 
- + - + - 
- - - - + 

100nM Iso 

100nM R21A 

100nM TLQP-21 

A 



 64 

TLQP-21 increases lipolysis with a mechanism dependent upon 
increased [Ca2+]i. 

Based on previous work [Severini et al., 2008; Petrocchi et al., 2013; Chen et 

al., 2013; Petrocchi et al., 2015], we hypothesized that TLQP-21 increases [Ca2+]i to 

promote ISO-induced lipolysis. To test this hypothesis, 3T3L1 adipocytes were pre-

treated with the intracellular Ca2+ chelator BAPTA-AM, a cell-permeable molecule 

that is enzymatically converted to the non cell-permeable calcium chelator BAPTA 

once within the cell, and performed our lipolyistic experiments in presence of 100nM 

ISO with or without equimolar concentration of TLQP-21. BAPTA-AM pre-treatment 

prevented TLQP-21-induced enhancement of ISO-induced lipolysis [F(5,141)=30, 

p<0.0001] (Figure 3.7A). Additionally, to determine if increased [Ca2+]i is mobilized 

from intracellular or intracellular compartments we also used the extracellular Ca2+ 

chelant EGTA. Similarly to BAPTA, EGTA pretreatment prevented TLQP-21 induced 

lipolysis [F(5,155)=33, p<0.0001] (Figure 3.7B). Together, our data demonstrate that 

calcium mobilization is required for TLQP-21 enhanced lipolysis (Figure 3.7C), 

possibly via activation of the highly expressed membrane transient receptor potential 

(TRP) TRPC1 and TRPM2 (Table S3.1).  

We next aimed to provide a direct evidence in support of TLQP-21-increased [Ca2+]i 

by using FURA2-AM, a membrane permeable ratiometric florescent dye that binds to 

free intracellular Ca2+ thus allowing to determine global cytosolic changes in its 

concentration [Gericke et al., 2009]. Surprisingly, TLQP-21 alone or after ATP and 

UTP priming [Hanneduche et al., 2012] did not lead to an appreciable increase in 

[Ca2+]i (Figure S3.4) in our experimental conditions. The absence of FURA-

detectable increase in [Ca2+]i is compatible with a local membrane event [Pedersen 

et al., 1997] or suggestive of a permissive effect of calcium on TLQP-21-induced 

lipolysis.  
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Figure 3.7. TLQP-21 induced lipolysis is dependent on the rise of free 
intracellular Ca2+. (A) TLQP-21 potentiation of lipolysis is blocked by the intracellular 
Ca2+ chelator BAPTA-AM and (B) prevented by the extracellular Ca2+ chelant EGTA. 
(C) Schematic representation of proposed mechanism. 

 

TLQP-21 activates the MAPK/ERK pathway to promote lipolysis  

After establishing that TLQP-21 requires Ca2+ mobilization to promote 

lipolysis and based on the evidences that i) TLQP-21 increase the phosphorylation of 

ERK and increases ISO-induced phosphorylation of ERK and HSL [Possenti et al., 

2012] and ii) that ERK has been shown to phosphorylate HSL thereby inducing 

lipolysis [Greenberg et al., 2001], we hypothesized that TLQP-21 activation of C3aR1 

could signal via the MAPK/ERK pathway. 
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We first assessed the effects of Iso and TLQP-21 on ERK phosphorylation in 

presence and absence of the MAPK inhibitor U0126. Following 3h of incubation, as 

previously shown [Greenberg et al., 2001], U0126 10µM decreased β-adrenergic 

stimulated pERK (Figure S3.5). TLQP-21 enhanced Iso-induced ERK 

phosphorylation and partially restored the inhibitory effects of U0126 on ISO-induced 

pERK (Figure S3.5).   

We next tested the effects of a lower dose of U0126 on TLQP-21 mediated 

lipolysis (the 10µM dose dramatically inhibited spontaneous and ISO-induced 

lipolysis, data not shown). Pre-incubating 3T3L1 adipocytes with 1µM U0126 

completely prevented TLQP-21 pro-lipolytic effect without affecting ISO-induced 

lipolysis [F(10,22)=43.7, p<0.000001] (Figure 3.8). Overall these and previous data 

demonstrate that TLQP-21 pro-lipolytic effect is mediated by MAPK/ERK activation.  

 

 

 
Figure 3.8. TLQP-21 lipolysis is mediated by the activation of MAPK/ERK 
pathway. 1h pre-incubation with MEK1/2 kinase inhibitor U0126 completely blocks 
TLQP-21 lipolysis in fully differentiated 3T3L1 cells. **p<0.001; ***p<0.0001. 
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3.5 DISCUSSION 

In this study we investigate the molecular mechanism of TLQP-21 mediated 

lipolysis in adipocytes. Here we demonstrate the ability of TLQP-21 to enhance 

catecholamine and cAMP-stimulated lipolysis in adipocytes. Moreover, we 

demonstrated that TLQP-21 mediated lipolysis requires increased intracellular cAMP 

and Ca2+ mobilization and is mediated by MAPK/ERK activation.  

We demonstrate that in 3T3L1 adipocytes, TLQP-21 stimulates β-AR’s-

activation-induced lipolysis, as well as lipolysis induced by the adenylate cyclase 

(AC) activator Forskolin (Forsk). TLQP-21 does not compete with catecholamines to 

bind to β-ARs; instead it specifically binds to the C3aR1 [Possenti et al., 2012; 

Hanneduche et al., 2012; Cero et al., 2014]. cAMP signaling is the major pro-lipolyitic 

pathway in adipose tissue, where cAMP activates PKA that consequently activates 

HSL by phosphorylation finally resulting in DG hydrolisis [Kolditz et al. 2010]. 

Catecholamine-stimulation leads to higher concentrations of total cAMP compared to 

Forsk [Litosch et al., 1982], therefore higher concentration of Forsk were required to 

detect the pro-lipoltytic effects of TLQP-21 in 3T3L1 cells. Importantly, we showed in 

3T3L1 cells that at a submaximal dose of ISO, increasing concentrations of TLQP-21 

produces higher lipolytic effects until it reached a plateau (100nM) (Figure 3.2B). 

These results suggest that in 3T3L1 adipocytes C3aR1 saturation could be around 

100nM, similar to what was found in mature adipocytes [Possenti et al., 2012]. 

However, in β-less adipocytes stimulated with a submaximal dose of Forsk, a higher 

concentration of TLQP-21 (1µM) was required to enhance lipolysis (Figure 3.3B), 

suggesting an altered cAMP activation in cells deficient of βARs. Overall, we 

conclude that increased cAMP exerts a permissive effect on TLQP-21-induced 

lipolysis while our data do not support the conclusion that signaling molecules should 

act as primers for C3aR1 activation [Hanneduche et al., 2012]. In contrast to TLQP-

21, the null peptide R21A [Cero et al., 2014, Chapter 2], does not exert any lipolytic 

effect, thus identifying the C-terminal arginine of TLQP-21 as the essential amino 

acid within the TLQP-21 sequence for its pro-lipolytic effect (Figure 3.6).  

Being C3a another potent ligand for C3aR1 [Nettesheim et al., 1988; Choy et 

al., 1996], and having the C3aR1 agonist C3a70-77 [Hugli and Erickson 1977] similar 

contractile activity on fundus strips compared to TLQP-21 (see Chapter 2), we 

assessed the lipolytic effects of C3a70-77 on 3T3L1 cells. We observed that similar to 

TLQP-21, C3a70-77 did not exert any pro-lipolytic effects; while when co-incubated 
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with ISO, the peptide induced a similar lipolyitic effect (Figure 3.5). These data are in 

contrast with previously published data [Lim et al., 2013] where C3a has been shown 

to inhibit ISO-induced glycerol release. It is important to note that the C3aR1 agonist 

used in Lim et al., [2013] was purified human serum C3a used on murine 3T3L1 

cells, which suggest a species-specific difference in peptide/receptor activation; a 

finding consistent with our demonstration that the human TLQP-21 sequence is ~8-

fold less potent at the human C3aR1 compared to the rodent TLQP-21 [Cero et al., 

2014]. To use a direct loss of function approach we incubated C3aR1 KO adipocytes 

with ISO in the presence and absence of TLQP-21. In our experiments C3aR1 KO 

pre-adipocytes were unresponsive to ISO treatments suggestive of altered βAR 

functions, and therefore we could not observe TLQP-21 potentiation of ISO-induced 

lipolysis (data not shown). Additionally, we also attempted to use in 3T3L1 

adipocytes the C3aR1 antagonist, SB290157 [Cero et al., 2014]. However the 

antagonist is soluble in DMSO (0.053%), which induced lipolysis per se, thus limiting 

its validity in our experimental conditions. Overall, despite we lack a direct 

demonstration that antagonizing C3aR1 is necessary and sufficient to explain TLQP-

21 effect, current and previous data strongly are in strong support of the hypothesis 

that its effect in adipocyte is mediated by C3aR1 (see also Chapter 2 and 4). 

With our pharmacological approach we demonstrate that TLQP-21 requires 

mobilization of intracellular Ca2+ to improve lipolysis. Indeed, pre-treating 

differentiated 3T3L1 cells with the intracellular Ca2+ chelator BAPTA or with the 

extracellular Ca2+ chelator EGTA, prevented TLQP-21 pro-lipolytic effects (Figure 

3.7). Conversely, we were unable to detect the increase of free intracellular Ca2+ in 

the differentiated 3T3L1 cells even after priming the cells with ATP/UTP 

[Hanneduche et al., 2012] (Figure S3.4). A finding in contrast to the observed 

increased [Ca2+]i exerted by TLQP-21 in several other cell lines [Severini et al., 2008; 

Petrocchi et al., 2013; Chen et al., 2013; Petrocchi et al., 2015]. Hence, TLQP-21 

binding to C3aR1 receptor in the 3T3L1 cells may not be activating the PLC/PKC 

pathway which is line with our previously published phosphorylation data where 

TLQP-21 failed to phosphorylate PKC [Possenti et al., 2012]. Conversely, the lack of 

increased [Ca2+]i detection by FURA2-AM is also compatible with a highly localized 

and transient membrane local increase similarly to other molecules [Pedersen et al., 

1997]. We speculate that C3aR1 activation could be coupled to a Ca2+ channels, 

such as the TRP channels, and the quick and transient increase of [Ca2+]i  given by 

TLQP-21 could be hard to detect in adipocytes having a limited cytoplasmic 
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compartment. Moreover, since the extracellular physiological level of Ca2+ is 4-fold 

higher than the intracellular milieu (1mM vs 100nM), it is reasonable to conclude that 

the influx of Ca2+, from the extracellular rather than the intracellular compartments, 

plays a major role in TLQP-21-induced lipolysis.   

Increase of intracellular Ca2+ levels positively modulates Ras, the small 

GTPase that activates the Raf/MAPK/ERK pathway  [Cullen et al., 2002; Agell et al., 

2002], activating the downstream ERK cascade [Greenberg et al., 2001; Chuderland 

et al., 2008]. ERK has been reported as an alternative-signaling pathway to activate 

lipolysis in adipocytes by directly activating HSL by phosphorylation [Greenberg et 

al., 2001; Rapold et al., 2013; Drira et al., 2014]. TLQP-21 phosphorylates ERK and 

potentiates ISO-induced phosphorylation of ERK and HSL in 3T3L1 cells [Possenti et 

al., 2012 and present work]. Thus, we postulated that in adipocytes TLQP-21 

mobilizing Ca2+ to promote lipolysis could consecutively be activating the 

Ras/Raf/MAPK/ERK pathway. As previously shown [Greenberg et al., 2001], high 

dose of U0126 (10µM) decrease ISO-induced phosphorylation of ERK; however we 

observe a partial recovery of ERK phosphorylation in presence of TLQP-21.  

Moreover, TLQP-21 enhanced ISO-induced lipolysis was blocked by MEK1/2 

inhibitor (Figure 3.8). Our data clearly demonstrate that TLQP-21 mediated lipolysis 

is MAPK/ERK dependent. Because calmodulin (CaM), the calcium binding protein, is 

the most abundant Ca2+ sensor that binds to increased intracellular Ca2+ forming the 

Ca2+/Calmodulin that activates CaM kinase (CaMK) prolonging the effects of a 

transient Ca2+ increase, it would be of interest to block CaMK and study TLQP-21 

induced lipolysis. Moreover, since the ERK pathway plays a major role in cell 

proliferation and differentiation, it would also be of interest to investigate whether 

TLQP-21 affects these cellular processes.  

Lipolytic catecholamine resistance is a considered to be hallmark in obesity 

and metabolic syndrome [Arner, 1999]. Adipose lipolysis is positively regulated by 

catecholamine and cAMP signaling pathway [Langin, 2006] that decreases with age 

[Lönngvist et al., 1990] and is impaired in obesity [Reynisdottir et al., 1994; 

Stallknecht et al., 1997]. Hence, TLQP-21 potentiating lipolysis without causing 

cardiovascular side effects [Fargali et al., 2014] could be a new drug target worth 

investigating that for the treatment of obesity (See Chapter 4).  

In summary, we established that in vitro TLQP-21 potentiation of lipolysis in 

adipocytes requires increased intracellular cAMP rather than priming via β-ARs 

activation. Moreover, we provide mechanistic insights demonstrating that TLQP-21 



 70 

mediated lipolysis require an increase in intracellular Ca2+ levels that might trigger the 

activation of the MAPK/ERK pathway enhancing ISO/cAMP-induced HSL 

phosphorylation (Figure 3.9) [Possenti et al. 2012].  

 

 

 

 

Figure 3.9. Model of the mechanism activated by TLQP-21 to enhance lipolysis  
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3.6 SUPPLEMENTARY FIGURES 

 

 

Figure S3.1. Lipolytic response of primary wt (black) and β-less (grey) 
adipocytes to ISO and Forsk treatment.  β-less adipocytes undergo lipolysis when 
treated with Forsk but not with ISO. Treatments: ISO (1nM, 10nM, 100nM, 1µM and 
10µM) and Forsk at 10µM **p<0.001, *** p<0.0001, **** p<0.00001 vs control. 
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Figure S3.2. In 3T3L1 cells, nor TLQP-21 alone neither ATP/UTP priming does 
evoke TLQP-21 induced rise in [Ca2+]i. Differentiated 3T3L1 cells loaded with 
Fura2-AM and treated with the indicated pharmacological agents to release calcium. 
Intracellular calcium release was measured with the membrane-permeable calcium 
indicator FURA 2-AM (ratiomaetric measurement at 340nm and 380nm, expressed 
as 340/380. (A) TLQP-21 per se does not induce increase of [Ca2+]i. (B-C) Priming of 
the 3T3L1 cell with 100µM ATP or UTP doesn’t elicit TLQP-21 to increase [Ca2+]i. 
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 Table S3.1. Summary of TRP channels expression (Ct values) in undifferentiated 
(preadipocytes) and differentiated (adipocytes) 3T3-L1 cells followed by 40 cycles of 
amplification. 

 

 

 

 

Figure S3.3. Effects of TLQP-21 on phosphorylation of ERK. 3h incubation of 
50nM ISO in the presence or absence of 100nM and 10µM U0126.  TLQP-21 
restores the inhibitory effects of MEPP/ERK inhibitor U0126 on the phosphorylation 
of ERK given by ISO.  

 

 

Preadipocyte Adipocyte
Trpa1 29.3 33.4
Trpc1 28.8 28.9
Trpc3 39.9 37.7
Trpc6 NA NA
Trpm1 35.2 36.0
Trpm2 28.2 27.2
Trpm6 31.2 34.2
Trpm8 NA 40.1
Trpv1 34.8 31.8
Trpv2 30.5 29.1
Trpv3 34.6 35.9
Trpv4 33.7 32.1
β-actin 19.8 20.2

TRP Gene Mouse 3T3L1 cell line 

control 10uM U0126 
50nM Iso+ 
100nM T-21 50nM Iso 

50nM Iso+ 
100nM T-21+ 
10uM U0126 

50nM + 
10uM U0126  

pERK 

tERK 

Tubulin 
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4.1 SUMMARY 

We have previously demonstrated that chronic TLQP-21 treatment decreases 

adipocyte diameter and induces sympathetic nerve sprouting in white adipose tissue 

(WAT) of diet-induced obese mice. Mechanistically TLQP-21 enhances beta-

adrenergic receptor (β-ARs)-activation induced lipolysis via phosphorylation of 

hormone sensitive lipase (HSL). The molecular mechanism of action in vivo 

remained so far largely unexplored.  

Here, using a pharmacogenomics approach we tested the hypothesis that 

TLQP-21 anti-obesity effect is mediated by C3aR1 (Complement 3a Receptor 1) and 

require functional β-ARs. Diet-induced obese wt; β1, β2, β3-adrenergic receptors 

knockout mice (β-less) and C3aR1 knockout mice were injected i.p. for four weeks 

with TLQP-21 or vehicle. TLQP-21 decreased weight and fat mass in wt but not in β-

less mice. We also established that TLQP-21 anti-obesity effect is due to a low grade 

pro-lipolytic effect in the absence of changes in food intake. The anti-obesity effect 

was associated with a healthier metabolic phenotype as demonstrated by a 

normalization of branch chain amino acids (BBCA) and fed state hyperglycemia in 

absence of ectopic fat deposition in liver or muscle. Finally, we demonstrated that 

TLQP-21 activation of C3aR1 is necessary and sufficient to explain its anti-obesity 

effect. Taken together these results identify TLQP-21 as a novel target for anti-

obesity therapies and suggest a possible mechanism of action.  
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4.2 INTRODUCTION 

Obesity, a major public health challenge worldwide, is a major risk factor for 

chronic diseases including, type 2 diabetes, cardiovascular disease and cancer 

[Gudp et al., 2009]. Despite considerable advances in our understanding of the 

multiple signaling pathways involved in appetite regulation and energy homeostasis, 

we currently possess very few safe and effective therapeutic answers to obesity.  

The Vgf (not acronymic) gene encodes for a 617 amino acid pre-pro- 

neurosecretory peptide [Levi et al., 1985, Salton et al., 1991] that is expressed 

throughout the brain and in several neuroendocrine and endocrine organs [Salton et 

al., 2000; Levi et al., 2004, Possenti et al., 1999]. The VGF peptide precursor, a 

member of the chromogranin/secretogranin family [Bartolomucci et al., 2011], 

undergoes endoproteolytic cleavage by prohormone convertases (PCs) generating 

several smaller bioactive products stored in secretory granules that are released 

upon regulated depolarization [Trani et al., 1995]. The implication of Vgf in energy 

homeostasis was first suggested by the evidence that germline deletion of the Vgf 

gene that confers a lean, hyperactive, hypermetabolic and an obese resistant 

phenotype [Hahm et al., 1999; Watson et al., 2009]. TLQP-21, one of the biologically 

active VGF-derived peptides, was first identified in rat brain by mass spectrometry 

and later shown to be expressed in sympathetic nerve terminals innervating white 

adipose tissue (WAT) as well [Bartolomucci et al., 2006; Possenti et al., 2012]. 

Complement 3a receptor 1 (C3aR1), a GPCR, has recently been identified as the 

main target for TLQP-21 [Hannedouche et al., 2013; Cero et al., 2014; See Chapter 

2 and 3].  

We have previously shown that central administration of TLQP-21 increases 

energy expenditure and prevents early phase of diet induced obesity [Bartolomucci et 

al., 2006]; while two week of chronic peripheral TLQP-21 delivery with osmotic 

minipumps in obese mice increased lipolysis, reduced adipocyte diameter and 

promoted eWAT sympathetic innervation [Possenti et al., 2012]. Remarkably, these 

physiological effects are paralleled by a normal myocardial morphology [Possenti et 

al., 2012] and normalized blood pressure [Faragli et al., 2014]. Contrasting data have 

been reported on the ability of TLQP-21 to enhance glucose-stimulated insulin 

secretion (GSIS). Stephens et al [2012] showed that TLQP-21 enchases GSIS and 

protected β-cells degeneration in rats preventing the onset of diabetes [Stephens et 

al., 2012]. Conversely, more recent work showed no effect of TLQP-21 on insulin 
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secretion in perfused rats pancreas [Christiansen et al., 2015] or a modest 

potentiation of glucose-stimulated insulin secretion in insulinoma cell lines [Petrocchi 

et al. 2015]. 

Mechanistically, TLQP-21 does not increase lipolysis per se in adipocytes, but 

it enhances the β-adrenergic receptor induced lipolysis [Possenti et al., 2012; See 

Chapter 3]. However, the potential for TLQP-21 to exert an anti-obesity effect and 

the exact mechanism of action remains to be identified. The identification of C3aR1 

receptor as the target receptor for TLQP-21 and the ability of TLQP-21 to enhance 

the NE/β-AR induced lipolysis lead us to hypothesize that TLQP-21 anti-obesity 

effect are mediated by C3aR1 activation and dependent upon functional β-ARs 

expression.  
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4.3 EXPERIMENTAL PROCEDURES 

 

Animals Studies 

4-6 weeks old male β-less and their specific wt background strain [Bachman et al 

2002],  C57Bl6/J, C3aR1 KO and their specific wt background strain BALBc/J 

(Jackson Labs). Male mice were used in all our studies. All procedure were approved 

and performed according to Institutional Animal Care and Use Committee, University 

of Minnesota. Mice housed in same-sex groups of siblings (3-4 per cage) were under 

standard laboratory conditions at a constant temperature of 22±2°C in a 12h light/ 

12h dark cycle, with food and water ad libitum. For the high fat diet induced obesity 

studies mice were fed a standard diet (STD, D12450B - Research Diets, Inc. 3.85 

Kcal/g), and were then switched to a 60% kcal high-fat diet (HFD, D12492, - 

Research Diets, Inc. 5.24 Kcal/g) for nine weeks to induce a diet-induced obesity 

phenotype. Food intake and body weight were measured once a week to keep track 

of the phenotype. For the sub chronic and acute experiments, C3aR1 KO and wt 

were fed a STD. 

 

Experimental groups 

After nine weeks on HFD only the obese prone mice were selected for our 

experiments.  Seven days before the beginning of the experiment, all animals were 

single housed for baseline recording. From day one body weight, food intake were 

measured every other day while body composition using EcoMRI-100 (QNMR 

Systems, Houston, TX) was performed on the last day to asses basal body 

composition. Based on the body weight mice from each genotype were randomized 

to the following experimental groups: (i) saline group (Con); (ii) 5mg/kg/d of TLQP-21 

(iii) 5mg/kg/d R21A treatment. 

 

Treatment and Experimental Conditions 

TLQP-21 peptide and R21A mutant [Cero et al., 2014] were syntesized using the 

solid phase peptide synthesis method at the University of Minnesota. Lyophilized 

TLQP-21 was dissolved in sterile saline. Starting from day 1 of the experiment, a 

daily intra-peritoneal (i.p.) injection of either saline, TLQP-21 or R21A was 

administerd to mice alternating sides of injection. During chronic treatment, food 

intake and body weight were monitored every other day. A whole body composition 
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scanning was performed weekly. Glucose tolerance test (GTT) was also performed 

following an overnight fast (12h-14h). Blood glucose levels were measured from tail 

bleeding 0, 30, 60, and 120 min after an i.p. administration of D-glucose 2g/Kg. 

Accucheck Aviva glucometer (Roche Diagnostics, Indianapolis, IN, USA) was used to 

measure glucose (mg/dl).  

A week prior to sacrifice, energy expenditure was monitored using indirect 

calorimetry. At the end of the experimental session, all mice were deeply 

anesthetized with CO2 and were sacrificed by decapitation.  

 

 
Figure 4.1. Cartoon of experimental protocol for chronic in vivo peripheral 
treatment studies.  

 

Indirect calorimetry and body composition 

For the chronic studies, oxygen consumption (VO2) and carbon dioxide production 

(VCO2) were measured for each mouse after 24h acclimatization to the metabolic 

chamber using the Oxymax Comprehensive Lab Animal Monitoring System 

(Columbus Instruments, Ohio); respiratory exchange ratio (RER) calculated as 

VCO2/VO2. Data were expressed as ml/h/mouse and analyzed with fat-free and fat 

mass as continuous predictors in an ANCOVA model [Tschop et al., 2011]. Body 

composition was measured with Echo MRI 3-in-1 (Echo Medical System).   

 

Tissue and plasma collection  

Following decapitation plasma was promplty collected from trunk blood in 

heparinized tubes (Sarstedt, s.r.l., IT). Epidydimal (eWAT) and subcutaneous 

inguinal (scWAT) were manually collected, immediatly frozen in dry ice and stored at 
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−80°C. Liver and muscle biopsies were dissected and chemical composition 

analyzed with the Echo MRI 3-in-1. 

 

Lipid Extraction  

Lipids were extracted using a chloroform:methanol:water extraction with the final 

solution containing chloroform:methanol (1:2, v/v) and containing 3,4,5-

trichloropyridine internal standard. NMR spectra were acquired using a gradient-

enhanced 1D NOESY-presaturation pulse sequence for water suppression on a 

Bruker Avance III 700-MHz spectrometer with a TCI 1.7-mm cryoprobe at the 

Minnesota NMR Center.  Acquisition parameters were as follows:  2s 

relaxation delay, 4.1ms mixing time, 4s acquisition time, 20 ppm sweep width, 8 

dummy scans and 128 transients.  1H 90° pulse width and transmitter offset were 

optimized for each sample.  All spectra were zero-filled to 128k data points, Fourier 

transformed with 1 Hz line broadening applied, manually phased, baseline corrected 

and integrated using Topspin software [Sparling ML et al., 1989; Pollesello P et al., 

1997]. 

 

Metabolomic Samples 

Plasma samples were diluted in a pH 7.4 phosphate buffer solution containing DSS 

internal standard and 20% D2O. To selectively detect small molecule metabolites, 

T2-edited spectra were acquired using a gradient-enhanced 1D CPMG 

pulse sequence with excitation sculpting for water suppression on a Bruker Avance 

III 700-MHz spectrometer with a TCI 1.7-mm cryoprobe at the Minnesota NMR 

Center.  Acquisition parameters were as follows:  2s presaturation relaxation delay, 

4.6s acquisition time, 20 ppm sweep width, 16 dummy scans and 1024 

transients.  1H 90° pulse width and transmitter offset were optimized for each 

sample.  All spectra were zero-filled to 256k data points, Fourier transformed with 0.3 

Hz line broadening applied, and manually phased using Topspin software.  Baseline 

correction and chemical shift referencing to the DSS peak at 0 ppm were performed 

using the Processor module in Chenomx NMR Suite 7.1. Metabolites were identified 

and quantified relative to DSS using the Profiler module in Chenomx NMR Suite 7.1 

with the Chenomx 700-MHz Compound Library [Beckonert et al., 2007; 

Papathanasiou et al., 2008]. 
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mRNA extration, reverse transcription and quantitative Real-Time PCR 

RNA was obtained by homogenizing around 50 to 100mg of frozen tissue in 500µl of 

TRI REAGENT (Molecular Research Center, Inc., Cincinnati, Ohio) on ice following 

manufacturer’s instructions. Total RNA was digested with Dnase I using DNA-free 

(Ambion, Austin, TX) and tested for the presence of DNA contamination using PCR. 

Total RNA concentration and purity was then determined using NanoDrop at the UV 

absorbency of 260 nm (NanoDrop 2000 UV-Vis Spectrophotometer, Thermo 

Scientific). 1µg of RNA was converted into cDNA using iScript cDNA Synthesis Kit 

(Bio-Rad Laboratories, Hercules, CA) and relative quantification of mRNAs was 

performed with 3.5µl of cDNA used in each 11.5µl real-time-RT-PCR reaction using 

C1000 thermal cycler ™ (Bio-Rad Laboratories, Hercules, CA). The PCR reactions 

were carried out using IQ™ Syber Green Supermix (BIO-RAD).  Primers for the 

target genes are on Table 1. Thermal cycling parameters were as follows: an initial 

denaturing step (95°C for 10 min), followed by 40 cycles of denaturing- annealing 

and extending (95 °C for 45 s, 58 °C for 45 s and then 60°C for 1min) in a 96-well 

BioRad plate. The results were calculated by the comparative Ct method using β-

actin as an endogenous reference gene, according to the Applied Biosystems ABI 

PRISM 7700 User Bulletin #2. The expression relative to β-actin was determined by 

calculating 2-ΔCt. See Table 1 for list and sequence of primers. 

 

Table 4.1. List of primers used in this study. Primers sequences. FP and RP, are 
referred to as forward and reverse primers, respectively.  UCP1 uncoupling protein 1; 
NRF1 nuclear respiratory factor 1; COX1 mitochondrially encoded cytochrome c 
oxidase I; ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex; Ndufs1 
NADH dehydrogenase (ubiquinone) Fe-S protein 1; PGC1a peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha; Tfam transcription factor A, 
mitochondrial 

FP:
RP:
FP:
RP:
FP:
RP:
FP:
RP:
FP:
RP:
FP:
RP:
FP:
RP:
FP:
RP:
FP:
RP:

UCP1 GTCCCCTGCCATTTACTGTCAG
ATTCGTGGTCTCCCAGCATAG

C3aR1 TCGATGCTGACACCAATTCAA
TCCCAATAGACAAGTGAGACCAA

PGC-1a TCACACCAAACCCACAGAAA
TCTGGGGTCAGAGGAAGAGA

Tfam GATGATTCGGCTCAGGGAAAA
CAGCCATCTGCTCTTCCCAAG

Ndufs1 TTGCCGTGGCCGCCATATTG
GCTGTGCCAGTTGTGCGAACA

COX-1 GGATTTGTTCACTGATTCCCATTA
GCATCTGGGTAGTCTGAGTAGCG

ATP5b TGCCACTTCCAAGGTAGCGT
TCTTGGCCCTCCTGGTCTCT

NRF-1 ACATTGGCTGATGCTTCAGAA
TGCGTCGTCTGGATGGTCAT

Gene name: Primer sequence (5'-3')

β-actin GGC ACC ACA CCT TCT ACA ATG
GGG GTG TTG AAG GTC TCA AAC
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Acute in vivo lypolisis protocol 

After approval of the protocol by the Mayo Animal Care and Use Committee, two 

series of experiments were performed, as described below, in Sprague Dawley rats 

fed a regular rodent chow diet (4.5% dietary fat). The experiments were conducted in 

the morning under natural living conditions (i.e., non-fasting). Tail arterial and i.v. 

infusion catheters were placed acutely as described above. The stable isotope [U-
13C] palmitate was infused constantly for 90 min via the infusion catheter at 

0.5µmol•kg-1•min-1. After 20 minutes of infusion for tracer equilibration, blood 

samples were taken at 5 min intervals for the measurement of basal lipolysis. 

Isoproterenol infusion (30ng/min) was then started and continued for 60 minutes. 

After 15 min of equilibration, TLQP-21 (40µg) (n=8) or saline (n=8) were injected i.v. 

as a bolus. Blood was sampled periodically thereafter to determine the rate of 

appearance (Ra) of plasma palmitate. Palmitate Ra was calculated using non-steady 

steady state assumptions. 

 

Measure of C3aR1 in humans 

Percutaneous abdominal adipose tissue biopsies were obtained from 208 non-

diabetic Pima Indians. Subjects had undergone a 12-hour overnight fast prior to the 

biopsy, and the specimens were immediately frozen in liquid nitrogen. Total RNA was 

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and was further 

purified using a RNeasy Micro Kit (Qiagen, Valencia, CA, USA). The rRNA was 

prepared and the cDNA synthesized for analysis on Human Exon 1.0 ST Array 

microarrays (Affymetrix, Santa Clara, CA, USA) using the GeneChip Whole 

Transcript Sense Target Labeling Assay kits (Affymetrix). Processing and analyses of 

the Human Exon 1.0 ST arrays was done as previously described [Mason et al., 

2011]. All data were standardized for sex and exon array batch as described [Mason 

et al. 2011]. 

 

Statistical Analysis  

Data are reported as mean ± SEM. Statistical Analysis was evaluated using t-test for 

comparison of two groups and analysis of variance (ANOVA), with repeated 

measures followed by Tukey post hoc multiple comparison analyses which can be 

used also in case of non significant F value [Wilcox, 1987]. Statistical analyses were 

performed with Statistics software version 12 and significance was set at p<0.05.  
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4.4 RESULTS 
 

Increased adipose tissue C3ar1 expression in obese mice and humans 

The identification of C3aR1 as the TLQP-21 receptor [Hannedouche et al., 

2013: Cero et al., 2014; See Chapter 2] prompted us to determine the receptor 

expression in the adipose tissue of mice and humans. C3aR1 mRNA level was 

increased in the eWAT of diet-induced obese wild type [t14=4.005, p=0.0013] and β-

less [t11=4.327, p=0.0012] mice (Figure 4.2A), thus supporting previous observations 

[Mamane et al., 2009; Possenti et al., 2012]. Importantly, we also established that the 

same association is also present in humans. We studied the tissue expression of 

C3aR1 in non-diabetic Pima Indians of Arizona, a population having the highest 

prevalence of type 2 diabetes of any population worldwide, and a very obese 

population [Urquidez-Romero et al., 2014; Hanson et al., 2015]. A positive correlation 

was observed between C3aR1 expression in adipose tissue and the BMI (r=0.27, p= 

7 x 10-5). No difference in correlation was observed in males vs. females (P value for 

sex interaction =0.42) (Figure 4.2B).1 

 
Figure 4.2. Positive association between C3aR1 expression and obesity in mice 
and humans. (A) High fat diet increases C3aR1 in eWAT of wt and β-less mice.  
n=6-7 per group. Data represent the mean +/- SEM. ***p<0.0005, **** p<0.00001 vs 
respective lean group. (B) A positive correlation between C3aR1 expression in 
adipose tissue and BMI in 208 Pima Indians (r=0.27, p= 7 x 10-5).  

                                                        
1Preliminary analysis using a commercially available kit for TLQP-21 showed an 
association between plasma TLQP-21 and obesity. However, recent results obtained 
in our lab with a new genetic model of loss of TLQP-21 function casted some doubt 
on the specificity of the immunoassay, thus data are not included here. 
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Chronic TLQP-21 treatment exerts an anti-obesity effect in mice 

Having previously established that TLQP-21 enhance β-adrenergic receptors  

(β-ARs)–mediated lipolysis in mature and 3T3L1 adipocytes [Possenti et al., 2012; 

Cero et al., 2014; Chapter 3], prompted us to test whether TLQP-21 required 

functional β-ARs to promote lipolysis and weight loss in vivo. To address this 

question we used a triple knockout of the β1, β2, β3-ARs [β-less; Bachman et al. 

2002]. β-less and wt mice were fed a 60% high fat diet (HFD) for 9 weeks to induce 

obesity. As expected diet induced higher body weight and fat mass gain and glucose 

intolerance in β-less compared to the wt mice (Figure S4.1). Once the obese 

phenotype was established, both experimental groups received a daily intra-

peritoneal (i.p.) injection for 28 consecutive days of 5mg/kg/d TLQP-21 or saline 

(Table 4.2). The dose was chosen based on previous data [Possenti et al., 2012; 

Stephens et al., 2012] and a preliminary dose-response study conducted in a small 

sample of wt mice (not shown). After only seven days of consecutive peripheral 

TLQP-21 treatment, wt obese mice displayed a significant decrease in body weight 

compared to saline injected controls, difference that was maintained over the course 

of the 28 days of treatment [F(2,23)=5.13, p=.001879] (Figure 4.3A). Consistent with 

the decreased body weight observed in wt TLQP-21-treated mice, body composition 

analysis revealed a significant decrease in fat mass [F(3,69)=3.616, p=.0431] 

(Figure 4.3B) but no change in lean mass compared to saline-treated control (Figure 

4.3C). Conversely β-less mice receiving the same chronic TLQP-21 treatment 

displayed no reduction in body weight (Figure 4.3A) fat [F(1,21)=.59363, NS] 

(Figure 4.3B) or in lean mass (Figure 4.3C) [F(1,21)=1.9166, NS] compared to 

saline-treated controls.  
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Figure 4.3. TLQP-21 opposes obesity in wt but not β-ARs knockout mice. Fold 
changes in (A) body weight  (B) fat mass (C) and lean mass of mice treated with 
TLQP-21 and saline, (wt saline: n=11; 5mg/kg/d T-21: n= 9);  (β-less saline: n=12; 
5mg/kg/d T-21: n= 11). Data represent the mean +/- SEM. * represents p<0.05, 
**p<0.005, *** p<0.0005 vs respective saline group. 

 

We next aimed to identify the physiological mechanism of TLQP-21 anti-

obesity effect. Chronic peripheral TLQP-21 treatment did not affect food intake 

(Figure 4.4A), indicating that the anti-obesity effect is not mediated by lower energy 

intake. Based on the evidence that TLQP-21 enhances Iso-induced lipolysis in vitro 

and decreases adipocyte diameter in vivo [Possenti et al., 2012; Cero C et al., 2014; 

Chapter 3], we hypothesized that the decreased fat mass could be associated with a 

low grade pro-lipolytic profile. We first tested the acute effect of TLQP-21 on ISO-

induced lipolysis in rats. During ISO infusion (30ng/min), FFA (measured with the 

Palmitate method) more than doubled in both groups. However, in the saline group 

FFA progressively waned, so that by the end of the experiment it was ~75% of the 

initial Iso-stimulated rate. In contrast, there was no waning of FFA in the TLQP-21 

treatment group (TLQP-21 at 40µg) (Figure 4.4B), indicating a potentiation of ISO-

induced lipolysis [F(2,18)=2.7, p=0.09]. Based on this evidence we performed an 

MRI-based lipidomic profiling of the plasma of wt mice chronically treated with TLQP-

21 in vivo under both fed and fasting conditions. Consistent with the mild acute pro-

lipolytic effect, TLQP-21 showed a trend for enhanced plasma FFA (Figure 4.4C). 

Conversely TLQP-21 did not affect the concentration of other lipid species nor 

average chain length and unsaturation ratio (Table 4.2). Overall we conclude that 
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TLQP-21 exerts a mild but consistent pro-lipolytic effect in vivo. This result prompted 

us to determine associated change in energy expenditure. Somewhat surprisingly, 

chronic TLQP-21 treatment was not associated with increased energy expenditure 

measured with indirect calorimetry after 24 days of treatment in either wt or β-less 

mice (Figure 4.4D and Figure S4.2), a finding that was confirmed in acute (Figure 

S4.3) and sub-chronic injected lean wt mice (Figure S4.4). 

 
Figure 4.4. Physiological effects of acute and chronic in vivo TLQP-21 
treatment. (A) Food intake. (B) TLQP-21 (40µg) acutely prolongs isoproterenol 
(30ng/min) (ISO)-induced lipolysis determined with plasma palmitate rate of 
appearance (Ra). (n=8). (C) Plasma free fatty acids (FFA) following 28 days 
treatment in a fed and fasted state. (D) Energy expenditure (wt saline: n=7; 5mg/kg/d 
TLQP-21: n= 7 and β-less saline: n=8; 5mg/kg TLQP-21: n= 9 mice per group) Data 
represent the mean +/- SEM. * represents p<0.05 
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Overall our data demonstrate that TLQP-21-anti-obesity effect requires 

functional β-ARs and suggest that the physiological mechanism is a chronic low-

grade amplification of adrenergic-induced lipolysis likely resulting in local, rather than 

systemic, increase in energy expenditure [Bal et al., 2012]. In partial support of local 

activation, we detected increased expression of Tfam and a modest increase of other 

mitochondrial markers in the scWAT of TLQP-21 treated mice (Figure S4.5). 

 

 

The anti-obesity effects of TLQP-21 are mediated by C3aR1 activation.  

We next aimed to test the hypothesis that TLQP-21 induced-C3aR1 activation 

is necessary and sufficient to explain its anti-obesity effect. We recently 

characterized a functionally inactive R21A mutant of TLQP-21 [Cero et al., 2014; 

Chapter 2]. Therefore we injected wt obese mice with the R21A (5mg/kg/d) following 

the same protocol used for the endogenous peptide. Chronic R21A i.p. treatment had 

no effects on body weight (Figure 4.5A), fat mass (Figure 4.5B), food intake (Figure 

4.5D), or energy expenditure (Figure 4.5E). Surprisingly, a significant increase in 

lean mass was observed by the end of the experimental treatment [F(2,23)=4.81, 

p=.0179] (Figure 4.5C) for which we currently lack a functional explanation. 

We next asked the question if TLQP-21 anti-obesity effect requires functional 

C3aR1 expression. We treated HFD-fed C3aR1 KO mice with saline or TLQP-21 

(5mg/kg/d) in our standard protocol. TLQP-21 treated C3aR1 KO mice did not differ 

from saline-injected controls in body weight (Figure 4.6A), fat mass (Figure 4.6B), 

lean mass (Figure 4.6), food intake and energy expenditure (Figure 4.6 and Figure 

S4.6). The drastic weight lowering effect of chronic injections (both saline and 

peptide injection) can probably be explained with the altered metabolic profile of this 

strain [Mamane et al., 2009]. Overall, our results demonstrate that TLQP-21 

activation of C3aR1 is necessary and sufficient to explain its anti-obesity effect.  

 

 



 89 

 
  

Figure 4.5. The C-terminal Arg (R) is essential for TLQP-21 weight-lowering 
effects in high fat diet fed mice. Fold changes in (A) body weight  (B) fat mass (C) 
and lean mass of mice treated with (D) food intake and (E) energy expenditure wt 
mice treated with R21A and saline over 4 weeks (wt saline: n=11; 5mg/kg/d R21A: 
n= 6). *** p<0.0005 vs respective saline group. 

 

 
 
Figure 4.6. TLQP-21 requires C3aR1 receptor to exert its anti-obesity effect. (A) 
Longitudinal body weight, (B) fat mass, (C) lean mass, (D) food intake and (E) 
energy expenditure wt mice treated with R21A and saline over 4 weeks of treatment 
(C3aR1 KO saline: n=6; 5mg/kg/d TLQP-21: n= 7).  
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TLQP-21 anti-obesity effect is associated with a healthier metabolic 
phenotype  

Elevated level of branch chain amino acids (BCAA; valine, leucine, 

isoleucine) has consistently been associated with obesity and type 2 diabetes in 

humans and murine models [Newgard et al., 2009; Huffman et al., 2009]. We 

investigated the consequences of TLQP-21 treatment on circulating BCAA in fed or 

fasting condition using an MRI-based metabolomics profiling. As expected [She et 

al., 2007], fasting lowered circulating BCAAs in saline treated mice (Figure 4.7A). 

Remarkably, TLQP-21 treated wt mice showed significantly lower isoleucine, leucine 

and valine already in the fed state with values indistinguishable from overnight fasted 

saline-treated mice (Figure 4.7A) (Table 4.3). Furthermore TLQP-21 also lowered 

fed but not fasting plasma glucose concentration (Figure 4.7A) (Table 4.3). 

Contrasting evidences have previously been published on the role of TLQP-21 on 

glucose tolerance and insulin secretion [Stephens et al., 2012; Christiansen et al., 

2015; Petrocchi et al. 2015]. In our study, despite improved BCCAs and lower fat 

mass and body weight, fasting glycemia and glucose tolerance were not improved by 

chronic TLQP-21 treatment (Figure 4.7B). In further support, acute injection of 

TLQP-21 in both lean and leptin receptor deficient db/db mice did not improve 

glucose tolerance as well (Figure S4.7). 

Finally, we asked the question whether the mild increase in circulating FFA in 

absence of detectable increase in whole body energy expenditure was associated 

with ectopic fat accumulation. We measured liver and quadriceps skeletal muscle 

concentration of fat and fat-free mass at sacrifice in chronically treated saline and 

TLQP-21 wt mice. No difference emerged between groups in either organ (Figure 

4.7 C, D), thus excluding that increase FFA would cause fat accumulation and 

associated lypopoxicity [Schaffer, 2003].  

Overall, TLQP-21 opposes obesity and promotes a healthier metabolic 

phenotype in mice.  
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Figure 4.7. TLQP-21 opposes obesity and promotes a healthier metabolic 
phenotype in high fat diet fed mice. (A) Metabolomic analysis of glucose and 
branch chain amino acids (B) glucose tolerance test. (C-D) Fat and fat-free mass in 
muscle and liver following chronic TLQP-21 treatment (wt saline: n=7; 5mg/kg/d 
TLQP-21: n= 7). Data represent the mean +/- SEM. * represents p<0.05 **p<0.005  
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4.6 DISCUSSION 

These data demonstrate an anti-obesity effect of chronic peripheral TLQP-21 

treatment. In this study we show that in vivo TLQP-21 requires β-ARs and C3aR1 

receptors to limit body weight and fat mass accumulation, a finding that is consistent 

with our in vitro results discussed in the Chapter 3.  

Our gene expression analysis confirms and extends previous findings 

demonstrating a positive association between C3aR1 expression in both adipocyte 

and stromal vascular fraction and obesity [Mamane et al., 2009; Possenti et al., 

2012]. In addition, we detected a positive correlation between the C3aR1 expression 

and BMI independent from gender in non-diabetic obese Pima Indians of Arizona. 

These murine and human data clearly suggest that obesity increases the expression 

of C3aR1 on adipocytes.  In contrast to our human data, Gupta et al., [2014] have 

reported no change in C3aR1 in female obese omental adipose tissue but significant 

downregulation in the subcutaneous adipose tissue of obese vs control subjects. The 

discrepancy could arise from the samples used, women undergoing weight loss 

surgery was used in the latter study compared to non-obese and non-diabetic 

subjects. Furthermore ethnicity can also explain the discrepant findings.  

In adipocytes TLQP-21 enhances β-ARs and cAMP-activated lipolysis (see 

Chapter 3). We have previously reported that two weeks of peripheral TLQP-21 

treatment increases lipolysis decreasing adipocyte diameter and augmenting 

sympathetic innervation [Possenti et al., 2012]. Therefore, we explored the effects of 

chronic peripheral TLQP-21 treatment in wt and β-less obese mice. Obese wt mice 

undergoing four weeks TLQP-21 treatment decreased body weight and fat mass, 

despite normal food consumption.  Conversely, obese β-less resulted fully resistant 

to the TLQP-21 anti-obesity effect. These data are in line with our in vitro data on β-

less pre-adipocytes that do not increase lipolysis in response to ISO treatment 

(Chapter 3).  However, we observed that forskolin could rescue the defective 

response of β-less pre-adipocytes to TLQP-21. Therefore, we believe that since 

lipolysis in vivo is mainly driven by the sympathetic nervous system through the 

activation of the β-ARs, TLQP-21 treatment in β-less mice cannot overcome the 

defective lipolysis. Interestingly, chronic TLQP-21 treatment did not affect energy 

expenditure. Chronic central TQLP-21 administration upturns energy expenditure 

limiting body weight [Bartolomucci et al., 2006], therefore we speculate that the 

mechanisms used by central and peripheral TLQP-21 in lowering body weight are 
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distinct. Nonetheless, the question on where the fat hydrolyzed by TLQP-21 is 

dissipated still remains. Because TLQP-21 induces a concentration dependent 

contractile activity on rat longitudinal forestomach [Severini et al., 2009], we could 

speculate that TLQP-21 could be increasing peristalsis, however we have not 

observed abnormal frequency in excretion or dysentery in mice treated with TLQP-

21, confirming previously published results showing no effects on gastric emptying 

when TLQP-21 is administered peripherally [Severini et al., 2009]. Another possibility 

is that TLQP-21 might cause malabsorption of lipids and these are therefore 

excreted. A bomb calorimetry on feces, bile acids and pancreatic lipase analysis 

could help answering our question.   

By mutating the C-terminal amino acid of TLQP-21 sequence we generated a 

null peptide that still binds to the C3aR1 receptor forming an alpha helix 

conformation, but is completely ineffective in all our functional assays, such as 

contraction of stomach fundus and lipolysis [Cero et al., 2014; Chapter 2, Chapter 

3].  In order to ascertain whether the TLQP-21’s anti-obesity effects are dependent 

on the presence of the arginine 21, we chronically treated obese wild type mice with 

the mutant peptide R21A. Opposite to TLQP-21, 28 days of R21A treatment had no 

effects on body weight or fat mass. We also tested the specificity of the C3aR1 

receptor, identified as the target receptor for TLQP-21 [Hannedouche et al., 2013], 

for it’s the anti-obesity effects. Our results show that the anti-obesity effect of TLQP-

21 is abolished in C3aR1 KO mice.  

The complement-binding protein, gC1qR that binds to the globular heads of 

C1q, has been suggested as an alternative receptor for TLQP-21 important in 

modulating neuropathic pain [Chen et al., 2013]. There is controversy regarding the 

expression of gC1qR on adipocytes [Kim et al., 2009; Dembitzer et al. 2012]. In 

addition as discussed in the Chapter 2, there is no structural similarity between 

TLQP-21 and the specific gC1qR ligands; moreover TLQP-21 does not undergo the 

transition to alpha helix in C3aR1 KO cells [Cero et al., 2014]. Since we 

unambiguously demonstrate that lack of C3aR1 prevents the anti-obesity effects of 

TLQP-21, we thus suggest that TLQP-21’s metabolic effect is entirely C3aR1 

mediated.  

Since TLQP-21 promotes in vitro lipolysis (see Chapter 3), we tested its pro-

lipoltyic effect in vivo and observed that TLQP-21 prolonged and increased ISO-

induced lipolysis. Moreover, TLQP-21 in wt obese mice promoted a low grade but 

consistent pro-lipolytic effect. Increased lipolysis is associated with excess fat 
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accumulation in non-adipose depots and increased circulating free fatty acids (FFA) 

causing lipotoxixity insulin resistance, inflammation and cardiovascular disease 

[Arner and Rydén, 2015]. However, TLQP-21 induced weight loss and a mild 

increase in lipolysis but had no effect on ectopic fat deposition in metabolically active 

tissue such as muscle and liver and did not cause adverse metabolic effects, but 

rather led to a healthier metabolic phenotype.  

Chronic TLQP-21 treatment increased mRNA expression of the mitochondrial 

gene Tfam, the single mitochondrial transcription factor that controls the transcription 

of the mitochondrial genome [Gaspari et al., 2004], in scWAT but not eWAT. 

Mitochondrial dysfunction, activity and decreased MtDNA are present in white 

adipose tissue of obese and diabetic patients [Kaaman et al., 2007; Choo et al., 

2006] therefore the increased Tfam expression suggests an increase in mitochondrial 

number and biogenesis.  

It has been reported that TLQP-21 prevents the onset of diabetes by 

enhancing glucose-stimulated insulin secretion (GSIS) and protecting β-cells 

degeneration [Stephens et al., 2012]. In our model, chronic TLQP-21 does not 

ameliorate glucose tolerance. We also detected no improvement in glucose tolerance 

with a single TLQP-21 injection in lean and diabetic mice suggesting that TLQP-21 

has little or no insulinotropic effects on β-islets, a finding in line with recent work by 

Christiansen et al., [2015] and Petrocchi et al. [2015]. However, TLQP-21 treated 

mice displayed a significant lower plasma glucose levels in the fed state associated 

with lower levels of all five metabolites being Leu, Ile, Val, Phe, and Tyr that are 

highly association with metabolic disease [Newgard et al., 2009; Wang et al., 2011; 

Huffman et al., 2009].  These data suggest that TLQP-21 treatment promotes an 

overall improvement in the metabolic phenotype. Adipose tissue has been 

hypothesized to be the major site where excess BCAAs are stored in the form of lipid 

[Felig et al., 1969] and adipose tissue has been shown to catabolize circulating 

BCAAs in vivo [Herman et al., 2010] in line with our increased mitochondria 

hypothesis since the first enzyme in the catabolism of BCAAs, branched chain 

aminotransferase BCAT2 or BCATm are expressed on mitochondria.  

Overall our data show that TLQP-21 in vivo requires β-AR’s and C3aR1 receptors to 

exert its anti-obesity effects. TLQP-21 anti-obesity effect and mechanism are 

consistent with a potentiation of β-AR-induced lipolysis In a translational prospective, 

the possibility to have a drug target that promotes lipolysis without causing adverse 
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cardiovascular side-effects [Faragli et al., 2014; Possenti et al., 2012], and inducing a 

healthy metabolic phenotype would be of great interest for the pharmacotherapy of 

obesity. Therefore, increasing our knowledge about the in vivo anti-obesity 

mechanism of action of TLQP-21 may add to the development of peptides that can 

be used as against obesity and type 2 diabetes. 
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4.6 SUPPLEMENTARY FIGURES 

 

 
 

Figure S4.1. Phenotype of β-less and wt mice under 9 weeks of 60% HFD. (A) 
Body weight change, (B) fat and fat free mass and (C) glucose tolerance in obese β-
less mice. **p<0.005, *** p<0.0005 vs respective wt. 
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 Figure S4.2. Chronic TLQP-21 treatment does not alter energy expenditure. 
Metabolic cages analysis reveled that chronic TLQP-21 treatment has no effect on 
VO2, VCO2, RER or locomotor activity in (A) wt nor (B) β-less mice (wt saline: n=7; 
5mg/kg/d T-21: n= 7 and bless saline: n=8; 5mg/kg/d T-21: n= 9 mice per group).  
Data represent the mean +/- SD.  
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Figure S4.3. Acute TLQP-21 treatment does not affect energy expenditure. A 
single injection of 5mg/kg/d TLQP-21 treatment had no effects on energy 
expenditure. (n=4 mice of each group, saline and TLQP-21). Data represent the 
mean +/- SD.  

 
 
 
 

 
Figure S4.4. Sub-chronic TLQP-21 treatment does not affect energy 
expenditure. 4 days of 5mg/kg/d TLQP-21 treatment had no effects on energy 
expenditure. (n=6 mice of each group, saline and TLQP-21). Data represent the 
mean +/- SD. 
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Figure S4.5. Effects of TLQP-21 on mitochondrial genes. Relative gene 
expression of mitochondrial genes in scWAT of saline and TLQP-21 wt mice. (n=6-7 
per group). Data represent the mean +/- SEM.  

 

 

 

 
Figure S4.6. Sub-chronic TLQP-21 treatment in C3aR1 KO does not affect 
energy expenditure. 4days of 5mg/kg/d TLQP-21 treatment had no effects on 
energy expenditure. (n=6 mice of each group, saline and TLQP-21). Data represent 
the mean +/- SD. 
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Figure S4.7. Acute TLQP-21 treatment does not affect glucose clearance in 
mice. Glucose tolerance phenotype 30 min after i.p. injection of glucose (2 g kg−1) (A) 
in lean CD1 and (B) db/db male mice. (db/db: saline: n=9; 5mg T-21: n= 9); (CD1: 
saline: n=6; 5mg T-21: n= 6). Data represent the mean +/- SEM. 

 

 

 

 

 
Table 4.2. TLQP-21 treatment does not affect lipodomics. Lipodomics on plasma 
samples from fed and fasted saline and 5mg/kg/d T-21 subjected mice. (n=5-6 mice 
of each group). All lipids are expressed as mMol/L. Data represent the mean +/- 
SEM.  DHA: docosahexaenoic acid; ARA: arachidonic acid; EPA: eicosapentaenoic 
acid.  

 

Condition
Treatment saline TLQP-21 saline TLQP-21

Total cholestrol mmol/L 0.53 ± 0.13 0.63 ± 0.2 1.05 ± 0.31 1.4  ± 0.34
Tryglycerides mmol/L 0.32 ± 0.07 0.54 ± 0.14 0.9 ± 0.24 1.26  ± 0.17 condition p<0.05
Phospholipids mmol/L 0.48 ± 0.07 0.65 ± 0.27 1.1 ± 0.33 1.64  ± 0.28 condition p<0.005

Free FA mmol/L 1.66 ± 0.45 3.03 ± 0.89 2.63 ± 0.43 3.98  ± 0.97 treat p=0.07
Polyunsaturated mmol/L 0.75 ± 0.21 1.01 ± 0.36 1.74 ± 0.53 2.47  ± 0.4 condition p<0.05

Linoleic acid mmol/L 0.37 ± 0.1 0.43 ± 0.13 1.04 ± 0.32 1.4  ± 0.24 condition p<0.005
DHA mmol/L 0.05 ± 0.01 0.03 ± 0.005 0.1 ± 0.03 0.07  ± 0.003

ARA+EPA mmol/L 1.31 ± 0.3 2.71 ± 0.72 2.37 ± 0.41 3.73  ± 1.07
Unsaturation ratio 0.56 ± 0.05 0.44 ± 0.06 0.61 ± 0.11 0.63  ± 0.1

Average chain length 10.91 ± 0.5 10.6 ± 0.32 10.71 ± 0.13 11.1  ± 0.39

fed fasting statistical analysis



 102 

C
on
di
tio
n

Tr
ea
tm
en
t

sa
lin

e
TL

Q
P-

21
sa

lin
e

TL
Q

P-
21

3-
H

yd
ro

xy
bu

ty
ra

te
0.

04
 ±

 0
.0

6
0.

03
 ±

 0
.0

6
1.

17
 ±

 0
.0

8
0.

27
 ±

 0
.0

7
 c

on
di

tio
n 

p<
0.

00
00

00
1;

 tr
ea

t p
<0

.0
00

00
2;

  c
on

di
tio

n*
tre

at
 p

<0
.0

00
00

2 
A

ce
ta

te
0.

1 
± 

0.
07

0.
1 

± 
0.

07
0.

59
 ±

 0
.1

0.
13

 ±
 0

.0
8 

  c
on

di
tio

n 
p<

0.
00

3;
 tr

ea
t p

<0
.0

07
;  

co
nd

iti
on

*t
re

at
 p

<0
.0

07
 

A
ce

to
ne

0.
02

 ±
 0

.0
1

0.
01

 ±
 0

.0
1

0.
07

 ±
 0

.0
2

0.
02

 ±
 0

.0
2

A
la

ni
ne

0.
17

 ±
 0

.0
7

0.
23

 ±
 0

.0
8

0.
58

 ±
 0

.1
0.

19
 ±

 0
.0

9
  c

on
di

tio
n*

tre
at

 p
<0

.0
1

C
re

at
in

e
0.

09
 ±

 0
.0

34
0.

1 
± 

0.
03

7
0.

59
 ±

 0
.0

5
0.

14
 ±

 0
.0

4
  c

on
di

tio
n 

p<
0.

00
00

02
; t

re
at

 p
<0

.0
00

02
;  

co
nd

iti
on

*t
re

at
 p

<0
.0

00
02

 
C

re
at

in
e 

ph
os

ph
at

e
0.

11
 ±

 0
.0

2
0.

1 
± 

0.
02

0.
32

 ±
 0

.0
3

0.
11

 ±
 0

.0
3

  c
on

di
tio

n 
p<

0.
00

04
; t

re
at

 p
<0

.0
00

8;
 c

on
di

tio
n*

tre
at

 p
<0

.0
01

 
Fo

rm
at

e
0.

17
 ±

 0
.0

7
0.

18
 ±

 0
.0

8
0.

91
 ±

 0
.1

0.
26

 ±
 0

.1
  c

on
di

tio
n 

p<
0.

00
01

; t
re

at
 p

<0
.0

01
;  

co
nd

iti
on

*t
re

at
 p

<0
.0

01
 

G
lu

co
se

2.
39

 ±
 1

.0
2

2.
13

 ±
 1

.0
9 

10
.1

9 
± 

1.
44

2.
48

 ±
 1

.2
9

  c
on

di
tio

n 
p<

0.
00

3;
 tr

ea
t p

<0
.0

04
;  

co
nd

iti
on

*t
re

at
 p

<0
.0

06
 

G
ly

ce
ro

l
0.

14
 ±

 0
.0

7
0.

11
 ±

 0
.0

7
0.

63
 ±

 0
.0

8
0.

25
 ±

 0
.0

7
  c

on
di

tio
n 

p<
0.

00
1;

 tr
ea

t p
<0

.0
05

;  
co

nd
iti

on
*t

re
at

 p
<0

.0
1 

Is
ol

eu
ci

ne
0.

05
 ±

 0
.0

3
0.

06
 ±

 0
.0

3
0.

22
 ±

 0
.0

4
0.

07
 ±

 0
.0

4
  c

on
di

tio
n 

p<
0.

01
; c

on
di

tio
n*

tre
at

 p
<0

.0
2 

La
ct

at
e

0.
86

 ±
 0

.4
5

0.
1 

± 
0.

48
3.

88
 ±

 0
.6

3
0.

1 
± 

0.
57

  c
on

di
tio

n 
p<

0.
01

; t
re

at
 p

<0
.0

1;
  c

on
di

tio
n*

tre
at

 p
<0

.0
1 

Le
uc

in
e

0.
18

 ±
 0

.0
4

0.
2 

± 
0.

05
0.

38
 ±

 0
.0

6
0.

19
 ±

 0
.0

6
 c

on
di

tio
n*

tre
at

 p
<0

.0
5 

Ly
si

ne
0.

13
 ±

 0
.0

4
0.

18
 ±

 0
.0

4
0.

35
 ±

 0
.0

6
0.

16
 ±

 0
.0

5 
 c

on
di

tio
n*

tre
at

 p
<0

.0
2

Ph
en

yl
al

an
in

e
0.

03
 ±

 0
.0

1
0.

04
 ±

 0
.0

1
0.

11
 ±

 0
.0

1
0.

03
 ±

 0
.0

1
  c

on
di

tio
n 

p<
0.

00
3;

 tr
ea

t p
<0

.0
06

;  
co

nd
iti

on
*t

re
at

 p
<0

.0
02

 
Py

ru
va

te
0.

00
5 

± 
0.

00
2

0.
00

4 
± 

0.
00

2
0.

03
 ±

 0
.0

02
0.

00
4 

± 
0.

00
2

  c
on

di
tio

n 
p<

0.
00

00
7;

 tr
ea

t p
<0

.0
00

05
;  

co
nd

iti
on

*t
re

at
 p

<0
.0

00
2 

Su
cc

in
at

e
0.

03
 ±

 0
.0

1
0.

03
 ±

 0
.0

1
0.

15
 ±

 0
.0

1
0.

03
 ±

 0
.0

1
  c

on
di

tio
n 

p<
0.

00
00

6;
 tr

ea
t p

<0
.0

00
03

;  
co

nd
iti

on
*t

re
at

 p
<0

.0
00

2 
Ta

ur
in

e
0.

21
 ±

 0
.1

2
0.

2 
± 

0.
13

1.
42

 ±
 0

.1
7

0.
26

 ±
 0

.1
5

  c
on

di
tio

n 
p<

0.
00

02
; t

re
at

 p
<0

.0
00

5;
  c

on
di

tio
n*

tre
at

 p
<0

.0
00

6
Ty

ro
si

ne
0.

05
 ±

 0
.0

2
0.

06
 ±

 0
.0

2
0.

15
 ±

 0
.0

3
0.

06
 ±

 0
.0

3
  c

on
di

tio
n 

p<
0.

04
;  

co
nd

iti
on

*t
re

at
 p

<0
.0

2
Va

lin
e

0.
12

 ±
 0

.0
4

0.
15

 ±
 0

.0
4

0.
34

 ±
 0

.0
5

0.
11

 ±
 0

.0
5

  c
on

di
tio

n 
p<

0.
04

; t
re

at
 p

<0
.0

3;
  c

on
di

tio
n*

tre
at

 p
<0

.0
07

fa
st

in
g

 fe
d

st
at

is
tic

al
 a

na
ly

si
s

Ta
bl

e 
4.

3.
 E

ffe
ct

s 
of

 T
LQ

P-
21

 t
re

at
m

en
t 

on
 m

et
ab

ol
om

ic
s.

 S
um

m
ar

y 
of

 m
et

ab
ol

ite
s 

in
ve

st
ig

at
ed

 in
 p

la
sm

a 
sa

m
pl

es
 fr

om
 fe

d 
an

d 
fa

st
ed

 s
al

in
e 

an
d 

5m
g/

kg
/d

 T
-2

1 
su

bj
ec

te
d 

m
ic

e.
 (n

=5
-6

 m
ic

e 
of

 e
ac

h 
gr

ou
p)

. A
ll 

m
et

ab
ol

iti
es

 a
re

 e
xp

re
ss

ed
 a

s 
m

M
ol

/L
. D

at
a 

re
pr

es
en

t 
th

e 
m

ea
n 

+/
- S

E
M

. 



 103 

  

 

 

Chapter Five  

 

 

 

CONCLUSION and PRESPECTIVE 
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Since the discovery of the biologically-active VGF derived peptide TLQP-21 

and the identification of its role in energy homeostasis [Bartolomucci et al., 2006], 

there has been a growing interest in the biology of this neuropeptide. TLQP-21 was 

shown to regulate energy expenditure, food intake, body mass, glucose metabolism, 

gastric functions, stress, nociception, hypertension and reproduction demonstrating 

[Bartolomucci et al., 2006; Jethwa et al., 2007, Severini et al., 2009; Razzoli et al., 

2012; Rizzi et al. 2008; Fairbanks et a., 2014; Fargali et al., 2014; Aguilar et al., 

2013; Pinilla et al., 2011]. Compared to the extensive pharmacological and gain of 

functions studies very little was known, until recently, about its molecular mechanism 

of action. Thus, the focus of my work has been to elucidate the structural and 

chemical properties of TLQP-21 and to characterize its pro-lipolytic and anti-obesity 

mechanism of the action. The goal of this chapter is to summarize concepts and 

outcomes discussed in the preceding chapters putting these findings into 

prospective.  
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C3aR1 is the target receptor for mouse TLQP-21 

Among the several biologically active VGF derived peptides described [Table 

5.1], TLQP-21 is the only peptide for which two putative receptors have recently been 

identified, namely the complement 3a Receptor 1 (C3aR1) [Hanneduche et al., 2013] 

and globular head domains of complement component C1q, designated 

gC1qR [Chen et al., 2013].  

 

Table 5.1. VGF derived peptides in rat [modified from Lewis et al., 2015]. The 
proVGF polypeptide and derived peptides along with the first study where the specific 
peptide was first described. 

 

In 2012 we were the first to demonstrate that TLQP-21 binds with high affinity 

to adipocyte membranes and that the binding was increases in obesity [Possenti et 

al., 2012]. Based on the phosphorylation pattern and the increase in [Ca2+]i in several 

cell lines, we had hypothesized that TLQP-21 would bind to a G coupled protein 

receptor (GPCR) [Possenti et al., 2012]. Additionally, atomic force microscopy of 

living cells revealed significant amounts of TLQP-21 binding sites, all part of a single 

class of binding sites for TLQP-21 in CHO cells [Cassina et al., 2012]. Hanneduche 

et al., [2013] identified the C3aR1 as the target receptor for TLQP-21 in CHO and O-

342 cells. C3aR1 is a GPCR part of the immune innate complement pathway with 

C3a protein being its primary ligand [Klos et al., 2013]. We confirmed and extended 

this result by using crosslinking experiments using pholabeled TLQP-21 peptide, 

murine C3aR1 antagonists, C3aR1 antagonists as well as structural analysis using 

NMR [Cero et al., 2014]  

Levi et al., 1985; Cho et al., 1989;  
Salton et al., 1991  

Ferri et al., 1995 

Yamaguchi et al., 2007; Fujihara et al., 2012  

Trani et al., 2002  

Trani et al., 2002; Succu et al., 2004  

Trani et al., 2002  

Bartolomucci et al., 2006  

Liu et al., 1994   

Succu et al., 2004  
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Despite the name, the role of C3aR1 is not restricted to the innate and 

complement response, but it plays functional roles in neurogenesis [Klos et al., 

2013], cancer [Opstal-van Winden et al., 2012] and hormone release from pituitary 

gland [Francis et al., 2013]. C3aR1 KO mice are transiently resistant to diet induced 

obesity emphasizing the importance of this receptor in metabolism as well [Mamane 

et al., 2009]. Germaline knockout of C3aR1 could be activating alternative pathways 

that could explain the resistance to obesity not allowing to fully evaluating the role of 

C3aR1. 

C3a, a derived C3 complement peptide, is the first identified and thus far the 

most potent agonist at C3aR1 [Markiewski et al., 2007]. C3a is 77-aa peptide 

consisting of three to four helical regions and a series of nonregular residues at the 

C-terminal responsible for binding at C3aR1 [Chazin et al., 1988; Markiewski et al., 

2007; Coulthard and Woodruff, 2015]. C3a is a potent anaphylatoxin molecule that 

directly triggers degranulation of mast cells initiating the anti-inflammatory response 

[Markiewski et al., 2007]. Serum carboxypeptidase regulates the activity of this 

powerful biological active peptide by rapidly cleaving off C-terminal arginine residue 

(R77) generating a peptide devoid of its pro-inflmmatory activity biological activities 

[Bokisch et al., 1970] that loses its ability to bind to C3aR1 but instead binds to C5L2 

[Johswich et al., 2006]. Compared to C3a that adopts an ordered helical 

conformation in solution [Nettesheim et al., 1988], TLQP-21 acquires an α-helix 

conformation only upon receptor binding while being unstructured in solution [Cero et 

al., 2014]. Similar to TLQP-21 the hot-spots for C3a are located at the C-terminus. 

R77 in C3a plays a critical role for C3a function since deletion at this site does also 

generate a null peptide still able to form an ordered helix [Ames et al., 2001; Hugli 

and Erickson 1977; Nettesheim et al., 1988]. In 2005 Garcia et al., using secondary 

structure predictions predicted within the VGF polypeptide the presence of three α-

helix structures, one at the N-terminal VGF domain while the other two at the C-

terminal VGF domain, one of which embedded within the TLQP-21 sequence [Garcia 

et al., 2005]. Similarly, by mutating R21A in the TLQP-21 sequence we generate a 

null TLQP-21 peptide that preserves its ability to bind to C3aR1 forming a α-helix 

[Cero et al., 2014]. C3a is produced by adipocytes; it is the product of adipsin, the 

first adipokine ever described [White et al., 1992; Choy and Spiegelman, 1996; Lo et 

al., 2014]. However the role of C3a in adipocyte function remains poorly 

characterized. C3a acting on its C3aR1 receptor has been shown to limit lipolysis 

[Lim et al., 2013]. It is important to note that Lim J et al. used human C3a on murine 
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C3aR1 receptors. We demonstrate here that mouse C3aR1 agonist C3a70-77 [Hugli 

and Erickson 1977] produces similar contractile activity on fundus strips to rodent 

TLQP-21 and potentiates ISO-lipolysis in 3T3L1 cells. It remains to be established if 

TLQP-21 does also exert an anaphylatoxic effect. 

Chen et al., [2013] identified the complement-binding protein that binds to the 

globular heads of C1q, gC1qR, as an alternative receptor for TLQP-21 that activates 

rat macrophages casing mechanical hypersensitivity in rats modulating neuropathic 

pain [Chen et al., 2013]. The gC1qR is a ubiquitously expressed multi-binding 

hydrophilic protein lacking transmembrane-spanning regions that interacts with 

components of the complement, kinin, coagulation cascades and select microbial 

and viral pathogens [Ghebrehiwet et al., 1994; Dembitzer et al., 2012; Peerschke and 

Ghebrehiwet, 2007]. gC1qR has been found in the cellular compartments including 

mitochondria, nucleus and cytoplasm and is also thought to be located at the plasma 

membrane [Dedio et al., 1998; Petersen-Mahrt et al., 1999; Ghebrehiwet et al., 1995; 

van Leeuwen et al., 2011]. There have been contrasting data regarding the 

expression of gC1qR in adipose tissue. Kim KB et al. [2009] report gC1qR as a lipid 

draft protein expressed in adipocytes. Conversely Dembitzer et al. [2012] report the 

complete lack of this protein in adipose tissue.  

Overall our in vitro and in vivo finding strongly indicates that C3aR1 is the 

mouse TLQP-21 receptor and it entirely mediates TLQP-21’s metabolic effect. 

Moreover, there is no structural similarity between TLQP-21 and the specific gC1qR 

ligands [Gaboriaud et al., 2003].  
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Figure 5.1. Schematic diagram of C3aR1 receptor–ligand interactions of 
complement proteins C3a and the VGF cleaved product TLQP-21 [adapted from 
Coulthard LG and Woodruff TM, 2015]. C3a and TLQP-21 are both C3aR1 ligands. 

 

TLQP-21 reverses obesity by potentiating adrenergic-induced 

lipolysis  

Having established the TLQP-21’s structure and chemical properties we then 

focused on its function. We had previously shown that TLQP-21 decreases adipocyte 

diameter by increasing β-agonist induced phosphorylation of HSL and ERK [Possenti 

et al., 2012] and therefore hypothesized that TLQP-21 enhances β-agonist induced 

lipolysis. To test this hypothesis we established an in vitro protocol in 3T3L1 

adipocytes. First, we confirmed that TLQP-21 per se does not affect lipolysis in 

adipocytes, [Possenti et al., 2012]; however TLQP-21 peptide potentiates 

isoproterenol (ISO) and forskolin (Forsk) induced lipolysis. The potentiation of Forsk 

induced lipolysis demonstrates that TLQP-21 mediated lipolysis is cAMP dependent 

rather β-AR-dependent. These results are validated by the enhancement of TLQP-21 

Forsk induced lipolysis in β-less pre-adipocytes. Based on the increase of [Ca2+]i 

induced by TLQP-21 in several cell lines we hypothesized that TLQP-21 requires 

[Ca2+]i to potentiate lipolysis and therefore blocked intracellular and extracellular Ca2+ 

using specific Ca2+ chelants and found that TLQP-21 loses its ability to enhance 

lipolysis.  Moreover, by specifically blocking the MAPK/ERK pathway we observed 

that TLQP-21 mediated lipolysis is completely abolished. Overall we demonstrate 
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that TLQP-21 pro-lipolytic effect is mediated by increase [cAMP]i and [Ca2+]i via the 

MAPK/ERK pathway.  

After pinpointing the pro-lipolytic in vitro effects of TLQP-21 we addressed the 

whole body physiological effects of chronic peripheral TLQP-21 treatment. Having 

previously demonstrated that TLQP-21 is selectively expressed in sympathetic nerve 

terminals innervating WAT and that TLQP-21 treatment increases ISO-induced 

lipolysis and sympathetic nerve sprouting within the adipose tissue, we hypothesized 

that TLQP-21 requires β-ARs to enhance lipolysis and limit body weight. Chronic 

TLQP-21 treatment decreased body weight and fat mass in diet-induced obese wild 

type mice. Conversely, obese β-less and C3aR1 KO mice resulted fully resistant to 

the TLQP-21 anti-obesity effect, thus demonstrating that TLQP-21 in vivo requires β-

AR and C3aR1 to exert its anti-obesity effect. However, the decreased fat mass was 

not associated with increased energy expenditure indicating that peripheral TLQP-21 

acts on different pathways compared to central administration of TLQP-21 where 

increased energy expenditure was observed [Bartolomucci et al., 2006]. Our results 

suggest that weight loss is mediated by TLQP-21 activation of moderate but 

significant lipolysis without causing ectopic fat deposition in other metabolically active 

tissue. Since peripheral TLQP-21 in vivo promotes fat loss without increasing energy 

expenditure, we remain with the question where is the fat is winding up. Despite 

being unlikely to justify a ~25% decrease in fat mass, it is possible that TLQP-21 is 

affecting fat absorption leading to the excretion of lipids in the feces. A bomb 

calorimetry on feces would answer this question. Nevertheless it is interesting to note 

that TLQP-21 induced a generalized healthier phenotype consisting in normalized 

branch chain amino acids and glycaemia.  

 

Human versus rodent TLQP-21 peptide  

Primate`s, including human, TLQP-21 sequence differs from rodent TLQP-21 

sequence by only three amino acids, S6A, L8A and S20A (Figure 5.3) [Bartolomucci 

et al., 2011]. Since the C-terminal portion is essential for the biological activity of 

TLQP-21, we believe that the serine present at position 21 in the human peptide is 

mostly responsible for its lower potency at C3aR1. Compared to rodent TLQP-21, 

human TLQP-21 induces a fifth of gastric contraction on rat stomach which could 

suggest specie-specific interaction [Cero et al., 2014]. However, our binding assay 
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studies using human C3aR1 also showed that human TLQP-21 has 8 time lower 

potency compared to the rodent TLQP-21 on the human receptor [Cero et al., 2014]. 

Hannedouche et al., [2013] have also reported that the human TLQP-21 sequence is 

5-fold less potent toward the rodent C3aR1 than the corresponding rodent sequence.  

Overall these data suggest that the human TLQP-21 peptide is poorly active at 

C3aR1. In support of this hypothesis, we have recently published a study showing 

that humanized VGF KO mouse expressing full-length hVGF instead of the mouse 

VGF are obese prone with heavier weight and fat pads compared to the wild type 

mice [Sadahiro et al., 2015]. 

Given the size of their side chain, serine and alanine are classified as 

small/tiny aminoacids. Alanine is an aliphatic amino acid not particularly hydrophobic 

that can be substituted by any other small amino acids [Betts and Russell, 2003], 

while serine is a non-aromatic small amino acid with a hydroxyl group, polar but 

neural amino acid. It is possible that during evolution either S20 in the mouse TLQP-

21 was substituted by A20 or A20 in human TLQP-21 substituted by S20. It has been 

show that Ser substations with Ala results in higher biological activity [Stockhaus et 

al., 1992]. Preliminary analysis on VGF evolutionary biology suggest that S20 is the 

ancestral form of TLQP-21 peptide, while the mutation occurred in the murine lineage 

thus causing a gain of function in the mouse TLQP-21 increasing the binding potency 

to C3aR1 and its metabolic/lipolytic efficiency (unpublished). 

 
Figure 5.3. Human and mouse gene and TLQP-21 sequence. Due to a single 
base modification in the three base codon for serine within the mouse TLQP-21 
peptide, serine was substituted by alanine generating a gain in function in mouse 
TLQP-21 peptide.  

 

Since rodent TLQP-21 promotes lipolysis and opposes obesity, it would be 

worth investigating whether rodent TLQP-21 produces the same effects in humans. 
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Considering that rodent TLQP-21 binds more potently to the human C3aR1 in 

comparison to the human TLQP-21, we could speculate that rodent TLQP-21 could 

also potentiate lipolysis in human adipocytes limiting obesity. This hypothesis is 

strengthened by preliminary lipolytic data where murine but not human TLQP-21 

increased lipolysis on human adipocytes (unpublished). Because pharmacological 

TLQP-21 treatment specifically targets lipolysis without causing adverse 

cardiovascular side effects, instead it lowers blood pressure and normalizes obesity-

induced hypertension [Possenti et al., 2012; Fargali et al., 2014] and circulating free 

fatty acids and glucose and downturns the obesity–induced branch chain amino acid 

promoting a healthier phenotype, we believe that TLQP-21 would be an interesting 

target for anti-obesity drug discovery projects.  

Conclusion and future prospective 

Even though we provided compelling evidences that the pro-lipolytic 

mechanism of action for TLQP-21 requires the activation of the MAP/ERK pathway, 

we have not yet elucidated all the molecular steps in this activation. Future works 

should aim to have a better understanding of the downstream signaling pathways 

activated by TLQP-21. Moreover, keeping in mind that the MAP/ERK pathway is a 

key signaling pathway in cell differentiation, survival and proliferation, it is natural to 

ask whether TLQP-21 promotes any of these effects on adipocytes.  

Based on the functional role of TLQP-21 and the identification of R21 being 

essential its biological activity, we have engineered a mouse that carries a germline 

point mutation in the sequence encoding for TLQP-21, generating a selective loss of 

function for TLQP-21 while peptide preserving other VGF peptides (Δ-TLQP-21). We 

have been breeding and started the phenotyping characterization of this model of 

TLQP-21 loss of functions and predict that homozygous Δ-TLQP-21 mice will present 

impaired lipolysis and increased vulnerability to obesity.  

In conclusion, the work presented here identifies the molecular mechanism 

whereby TLQP-21 enhances adrenergic-induced lipolysis and exerts an anti-obesity 

effect in rodents via activation of C3aR1. Its mechanism of action could be a key 

component in safely limiting obesity by reducing fat mass, therefore having positive 

effects in obesity. Together, these data enriches the obesity field in understanding 

alternative lipolytic pathways that could be used to mildly increasing lipolysis without 

the side effects associated with β-AR agonists.  
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