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Abstract

Nowadays, we are in a rapid process of urbanization, which leads to severe mobility

challenges, e.g., traffic congestion and gas consumption. To address these challenges, it

is essential to model human mobility, and improve urban mobility efficiency with novel

applications based on mobility models. Existing human mobility models and resultan-

t applications are mostly driven by data from isolated urban systems, e.g., cellphone

networks or transportation systems, which leads to a bias against urban residents not

involved and thus inefficiency of resultant applications. In this dissertation, we pro-

pose a cyber-physical system called mobileCPS to model the human mobility at fine

spatiotemporal granularity and then design novel mobility-driven applications. Specifi-

cally, we design a three layer architecture for mobileCPS: (i) a real-time data feed layer

where we collect multi-source urban data related mobility from extremely-large urban

infrastructures, e.g., cellphone networks and transportation systems, which is one of the

largest urban data consolidations for academic research; (ii) a mobility abstraction layer

where we design a human mobility model driven by multi-source data we collected with

a multi-view learning technique, which is the first work that models human mobility

with multi-source data; (iii) an application design layer where we present two mobil-

ity driven applications, i.e., a real-time carpooling service called coRide and last-mile

transit service called Feeder, to improve urban mobility efficiency. coRide is the first

systemic carpooling service with real-world implementation and a dynamic fare model,

and Feeder is the first last-mile transit service driven by multi-source urban data. The

key intellectual contributions of this work include (i) a human mobility modeling tech-

nique iteratively driven by heterogenous multi-source urban data; (ii) a set of optimal,

approximation and online algorithms for a mobility-driven carpooling problem; (iii) a

data-driven inference technique for last-mile passenger demand. We implement and

evaluate mobileCPS based on extremely large datasets in the Chinese city Shenzhen

with cellphone and transportation systems including taxis, buses, and subways, captur-

ing more than 27 thousand vehicles and 10 million urban residents. The results show

that mobileCPS (i) increases mobility model accuracy by 51%, (ii) reduces mileage by

33% with its carpooling, and (iii) reduces the last mile distance by 68%.
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Chapter 1

Introduction

Cyber-physical systems (CPS) refer to a set of systems featuring coupling between the

cyber intelligence and the physical world. With the increasing popularity of could com-

puting, CPS are merging into major systems of our society, e.g., smart grids, medical

devices, manufacturing, transportation, and telecommunication [1]. Enabled by the u-

biquitous availability of communication, computation, and control capabilities, CPS are

envisioned to redefine the way that people interact with the physical world. Researcher-

s have accumulated abundant knowledge for designing CPS for various applications,

such as military surveillance, infrastructure protection, scientific exploration, and smart

environments, mostly in relatively stationary settings. However, CPS involved mobile

elements received little attention from research community. CPS in mobile setting in-

teract with phenomena of interest at different locations and environments, and where

spatiotemporal context information are constantly changing. This unique feature calls

for new solutions to seamlessly integrate mobile computing with physical-world process-

es by sharing information among a set of networked CPS.

In this dissertation, we investigate CPS related to mobile urban systems, e.g., cell-

phone networks, bus networks, subway networks, and taxi networks, to improve urban

mobility efficiency. Nowadays, we are in a rapid process of urbanization where more than

half of people in the world has moved to urban areas [2]. Such urbanization leads to sev-

eral sustainability issues, e.g., traffic congestion and gas consumption. To ensure urban

sustainability, how to capture human mobility at urban scale is one of the fundamental

challenges we need to address. Such human mobility has many real-world applications,

1
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e.g., transportation, urban planning, social networking, and location based services [3].

To capture generic human mobility patterns, several theoretical models have been pro-

posed, e.g., the gravity model and the radiation model [4], along with corresponding

applications [2]. However, a key drawback of these theoretical models is that they can-

not capture human mobility at fine spatiotemporal granularity, e.g., mobility at road

segment levels in real time. Therefore, applications based on these models are usually

inefficient and unpractical in real-world setting.

Recently, thanks to upgrades of urban infrastructure systems, many real-time location-

tracking devices become available, e.g., cellphones, onboard GPS devices and smartcard-

s. These devices generate massive real-time mobility data, which hold the key potential

to revolutionize real-time human mobility modeling and their applications. Specifi-

cally, our work is motivated by two important observations based on the upgrades of

urban systems: (i) in addition to macro-level historical statistics, the availability of

massive micro-level mobility data makes it possible to model human mobility in fine

spatiotemporal granularity for novel application design; (ii) integrated information from

multi-source mobile urban systems allows more accurate modeling and drives novel ap-

plications.

In this dissertation, we propose a cyber-physical system called mobileCPS, which

captures real-time human mobility based on multi-source urban system data in order

to design real-world applications to address urban mobility issues during urbanization.

Interacting with large-scale mobile urban systems in real time, mobileCPS has a three-

layer architecture as follows: (i) a real-time data feed layer where mobileCPS collects

multi-source mobility data from mobile urban systems, e.g., cellphone networks, taxi

networks, bus networks, and subway networks; (ii) a mobility abstraction layer where

mobileCPS integrates mobility models driven by the collected multi-source data for a

comprehensive rendering of human mobility at urban scale in real time; (iii) an applica-

tion design layer where mobileCPS enables novel urban applications by the integrated

urban mobility model to improve urban mobility efficiency. Most importantly, we im-

plement mobileCPS based on extremely large datasets in the Chinese city Shenzhen

with cellphone data and transportation data including taxis, buses, and subways. In

particular, the key contributions of the dissertation are as follows:

• To our knowledge, we propose the first cyber-physical system, mobileCPS for
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human mobility modeling and their applications based on real-time multi-source

data from extremely-large urban infrastructures. mobileCPS is the first systematic

closed-loop CPS that explores correlated urban systems and their real-time data to

design mobility models, which are used to drive practical applications to improve

urban systems themselves. Most importantly, we implement our mobileCPS with

three layers based on four urban systems, i.e., cellphone, taxi, bus, and subway

in the Chinese city Shenzhen, with 10 million cellphone users and 16 million

smartcard users involved. To our knowledge, this is one of the largest systems for

human mobility modeling driven by real-world datasets.

• In the real-time data feed layer of mobileCPS, we integrate four data feeds from

cellphone, taxi, bus and subway systems, and explore their spatiotemporal gran-

ularity in terms of human mobility modeling. We present our data maintenance

process, including data access, data cleaning, and privacy protection. We release

our data for the benefit of the research community, which is the first released

multi-source large-scale urban data.

• In the mobility abstraction layer of mobileCPS, we propose a multi-view learning

technique to design a human mobility model call coMobile to integrate incomplete

yet complementary knowledge from individual urban systems. To our knowledge,

the proposed model is the only human mobility model driven by more than one

view, which aims to address over-fitting of single view models. It is challenging

to apply multi-view learning in human mobility modeling, because data-driven

views are mostly incomplete to urban-scale mobility. In this work, (i) we design a

single-view learning technique based on context-aware tensor decomposition with

both real-time and historical data to improve completeness of single-view mobility

models; (ii) we formulate a multi-view modeling problem based on improved single-

view models with a joint optimization, which minimizes overall weighted deviation

from observed mobility to the ground truth; (iii) we propose an iterative learning

process to solve this optimization by alternatively updating the ground truth and

view completeness until no further improvement can be made for the objective

function. We evaluate coMobile based on an extremely large dataset in the Chinese

city Shenzhen, including data about taxi, bus and subway passengers along with
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cellphone users, capturing more than 27 thousand vehicles and 10 million urban

residents. The evaluation results show that coMobile outperforms a single-view

model by 51% on average.

• In the application design layer of mobileCPS, we propose the first systematic work

to design, implement, and evaluate a carpool service, called coRide, for large-scale

taxicab networks intended to reduce total mileage for less gas consumption. Our

coRide consists of three components: a dispatching cloud server, passenger clients,

and onboard customized devices, called TaxiBox. In the coRide design, in response

to the delivery requests of passengers, dispatching cloud servers calculate cost-

efficient carpool routes for taxicab drivers and thus lower fares for the individual

passengers. To improve coRide’s efficiency in mileage reduction, we formulate a

NP-hard route calculation problem under different practical constraints. We then

provide (i) an optimal algorithm using Linear Programming, (ii) a 2 approximation

algorithm with a polynomial complexity, and (iii) its corresponding online version

with a linear complexity. To encourage coRide’s adoption, we present a win-win

fare model as the incentive mechanism for passengers and drivers to participate.

We test the performance of coRide by a comprehensive evaluation with a real-world

trial implementation and a data-driven simulation with 14,000 taxi data from the

Chinese city Shenzhen. The results show that compared with the ground truth,

our service reduces 33% of total mileage; with our win-win fare model, we lower

passenger fares by 49% and simultaneously increase driver profit by 76%.

• In the application design layer of mobileCPS, we propose another application

Feeder, which is a transit service to tackle the last-mile problem, i.e., passengers’

destinations lay beyond a walking distance from a public transit station. Feeder

utilizes ridesharing-based vehicles (e.g., minibus) to deliver passengers from exist-

ing transit stations to selected stops closer to their destinations. We infer real-time

passenger demand (e.g., exiting stations and times) for Feeder design by utilizing

extreme-scale urban infrastructures, which consist of 10 million cellphones, 27 t-

housand vehicles, and 17 thousand smartcard readers for 16 million smartcards in

a Chinese city Shenzhen. Regarding these numerous devices as pervasive sensors,

we mine both online and offline data for a two-end Feeder service: a back-end
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Feeder server to calculate service schedules; front-end customized Feeder devices

in vehicles for real-time schedule downloading. The key novelty of Feeder is that

it is transparent to passengers by utilizing historical and real-time streaming data

from extremely large urban infrastructures. We implement Feeder using a fleet of

vehicles with customized hardware in a subway station of Shenzhen by collecting

data for 30 days. The evaluation results show that compared to the ground truth,

Feeder reduces last-mile distances by 68% and travel time by 52% on average.

We organize the dissertation as follows. Chapter 3 gives the architecture of mo-

bileCPS and its the real-time data feed layer. Chapter 2 introduces related work. Chap-

ter 4 presents the our human mobility model coMobile on the mobility abstraction layer.

For the application design layer, Chapter 5 describes our first mobility-driven application

coRide for real-time carpooling, and Chapter 6 introduces our second mobility-driven

application Feeder for last-mile transit. Chapter 7 presents our future work. Chapter 8

concludes this dissertation.



Chapter 2

Related Work

Analyzing the human mobility in urban scales has many real world applications, e.g.,

urban planning [2], transportation [5] and social networks [6]. In this chapter, we briefly

introduce three types of work related to this dissertation, i.e., mobility modeling, real-

time carpooling services and last-mile transit services.

2.1 Mobility Modeling

Modeling the human mobility in urban scales is crucial for mobile applications, urban

planning and social networks [2]. However, almost all existing models are driven by

single views. We made the first attempt to model the human mobility with multi-

source data [7], but our previous work was to use transportation data to adjust the

modeling process based on cellphone data, and did not treat these two kinds of data

equally as two views. As follows, we summarize the related work by different views.

2.1.1 Cellphone View

Modeling from the cellphone view based on call detail records (CDR) is the most com-

mon method, e.g., modeling how residents move around the cities [8]; estimating cell-

phone users’ travel range [9]; predicting where cellphone users will travel next [10].

However, the models from cellphone views are mostly biased against a certain group of

residents, leading to inaccurate analyses. To our knowledge, we are the first to combine

data from more than one carrier to model the human mobility.

6
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2.1.2 Transportation View

Transportation data are another important data source for human mobility, e.g., bus

data [11], subway data [12], taxicab data [13], and private vehicle data [14]. However,

the models driven by data from one kind of transportation are mostly biased against

the passengers using other transportation. To our knowledge, there is no model driven

by more than one transportation mode, and we are the first to combine data from three

kinds of transportation for mobility modeling.

2.1.3 Other Views

Other data generated by urban residents have also been used to study human mobility,

e.g., social networks or mobile ad hoc networks, i.e., with check-in data [6] and proximity

data [15]. However, the number of residents captured by these views is often extremely

limited compared to the cellphone data and transportation data, which leads to a bias

that cannot be quantified.

2.1.4 Summary

In short, almost all human mobility modeling is based on single views, which are often

incomplete in terms of capturing the human mobility at urban scale in real time. Such

a shortcoming motivates us to take a multi-view approach, which uses incomplete yet

complementary views to model the human mobility. As a result, the fundamental dif-

ference between related work and our mobility modeling is that our model is driven by

multi-source real-time urban data from heterogenous urban systems.

2.2 Real-time Carpooling

The premise of taxicab carpooling is not new, but in real world it is normally negotiated

privately by drivers and passengers in an ad hoc manner. We lack a systematic design

to balance benefits of all the involved parties, e.g., drivers, passengers, and taxicab

operators. Two types of previous work are directly related to our carpooling work:

existing carpooling applications and taxicab system applications.
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2.2.1 Existing Services for Carpooling

Limited ad hoc taxicab carpools exist in both developed and developing countries. For

example, in New York City, up to four passengers can carpool together in a single taxicab

ride during 6 AM to 10 AM on a weekday, along three preset routes in Manhattan at a

flat fare of $3 or $4 per passenger, significantly less than the regular metered rates [16].

In Beijing, ad hoc taxicab carpooling is also allowed with the consent of both passengers

and drivers, and every passenger pays 60% of the regular fare. Further, some door to

door shuttle services are also available in major airports, and can enable shared rides to

or from airports [17]. However, in the aforementioned carpool services, both time and

locations are preset and the services are arranged on the spot by passengers or drivers in

a small-scale ad hoc manner, and no infrastructure is provided to improve the efficiency

of carpooling.

Several papers have been proposed after our conference paper [18] to explore carpool

services, e.g., real-time carpooling [19], slugging form of carpooling [20], and social effects

of carpooling [21]. Uber recently proposes a new service called Uberpool [22], which uses

real-time passenger requests to group several passengers together with similar origin and

destination with a heuristic solution. In contrast, our work is from system aspects to

explore carpool issues with a hardware-software co-design with implementation.

There are several pieces of theoretical work about carpools for private cars. The

carpools for private cars is with regular passengers and fixed routes to or from work,

which leads to a private classic carpool problem where one has to assign drivers to

subsets of carpool participants to reduce the detour of drivers [23]. It is different from

our carpool where the drivers do not be considered. Some work has been proposed

to find the opportunities for carpool by finding the shared common routes by tracking

personal mobile devices [24] [25], but the whole system architecture and how to calculate

the carpool route is not given. Fagin et al. [23] first present a simple carpool scheduling

algorithm in which no penalty is assessed to a carpool member who does not ride on

any given day. The proposed algorithm, the FW share, is shown to be fair, in a certain

reasonable sense. Naor et al. [26] provide an axiomatic characterization of the fair

share and indicates that the FW share is the unique one satisfying these requirements.

Recently, Coppersmith et al. [27] show that the greedy algorithm is optimal among

online algorithms for the private carpool problem. Different from the classic carpool
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problem, our service focuses on how to pool passengers in different taxicabs to optimize

the total mileage. In our service, passengers do not have a regular and fixed route, and

drivers are not like the passengers needed to be considered.

2.2.2 Taxi System Applications

The increasing availability of GPS devices has encouraged a surge of research intend-

ed to improve the efficiency of large-scale taxicab networks. First, several systems are

proposed for the benefit of passengers or drivers, e.g., allowing passengers to query

the expected duration and fare of a planed taxicab trip based on the history of previ-

ous trips [28] and query real-time taxicab availability to make informed transportation

choices [29], as well as recommending optimal pickup locations or routes [30] [31] [32].

Second, taxicab traces can also help taxicab network operators better oversee taxicabs

and provide efficient service to passengers, e.g., discovering spatial and temporal causal

interactions to provide timely and efficient service in certain areas with disequilibri-

um [33] [34], and detecting anomalous taxicab trips to discover driver fraud or road net-

work changes [35]. Third, traces from experienced taxicab drivers can help other drivers

improve their driving performance, e.g., navigating newer drivers to smart routes based

on those of experienced taxicab drivers [36], and assisting other drivers to improve their

driving performance with GPS records from experienced taxicab drivers [37]. Fourth,

large scale taxicab traces enable us to better understand traffic conditions of cities, e.g.,

semantics of origin-destination flows [38], traffic congestion and volumes [5], and traffic

patterns between regions with different functions [39]. Finally, large scale traces also

can help in city planning, e.g., detecting flawed urban planning [40] or improving map

inference [41] [42].

Yet existing research on taxicab systems focuses on scheduling individual taxicabs,

assuming that one taxicab can accommodate only a single delivery request at a time. In

contrast, our carpooling service allows shared delivery. Technically, we focus on carpool

route calculation and a win-win fare model, neither of which has been investigated

before.
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2.3 Last-mile Transit

The last-mile problem is how to deliver passengers from existing urban transit stations

to their final destinations. To tackle the last-mile problem, several services have been

proposed as last-mile transit with different focuses. Two types of the work are related to

our last-mile transit services: existing services for last-mile transit and vehicular system

applications.

2.3.1 Existing Services for Last-Mile Transit

In addition to obvious solution, e.g., walking, bikes, taxicabs, and personal vehicles,

taxicab ridersharing and minibus services are two major efforts for the last-mile problem.

Some cities, e.g., New York City [16], Beijing [19] and Shenzhen [43], introduce taxicab

ridersharing services for passengers to share taxicabs for ad hoc rides, but both time

and locations are preset and no infrastructure support is provided. Some cities, e.g.,

Hong Kong [44], use minibuses to deliver passengers closer to their destinations, but

they have fixed routes and schedules.

The key difference between our work and ridersharing is that it learns passenger

demand automatically, while ridersharing assumes demand is given in advance. Our

work is also different from the above services in terms of low infrastructure costs, flexible

network coverages, and real-time supports from our server with online data from urban

infrastructures.

2.3.2 Transit System Applications

Another type of related work is urban data-driven vehicular applications [45] [46] [47] [42].

Many novel applications are proposed to assist urban residents or city officials, e.g.,

assisting mobile users to make transportation decisions, such as taking a taxicab or

not [29], finding parking spots for drivers [48], inferring real-world maps based on GPS

data [41], predicting bus arrival times [49], enabling passengers to query taxicab avail-

ability to make informed transit choices [28], informing drivers with smart routes based

on those of experienced drivers [36], predicting passenger demand for taxicab driver-

s [31], recommending optimal pickup locations [30], modeling the urban transit [45],

suggesting profitable locations for taxicab drivers by constructing a profitability map
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where the nearby regions of drivers are scored serving as a metric for a taxicab driver

decision making process [50], detecting the taxicab anomaly [51], navigating new drivers

based on GPS traces of experienced drivers [37], and enabling us to better understand

region functions of cities [39].

Yet existing research on these systems has not focused on the last-mile problem,

and typically utilizes only one type of datasets. But Feeder utilizes streaming data from

several urban infrastructures to tackle the last-mile problem without the burden on the

passenger side. Such a unique combination has not been investigated before.



Chapter 3

mobileCPS Architecture

In this chapter, we first introduce the architecture of mobileCPS, and then introduce

data management.

3.1 Architecture

As in Figure 3.1, we present mobileCPS’s architecture, which consists of three layers.

Taxicab 

Data Feed

Bus 

Data Feed

Subway 

Data Feed

Cellular 

Data Feed

Mobility Abstraction:

coMobile

Real-time 

Carpooling:

coRide

Last-mile 

Transit:

Feeder

More 

Applications

Urban Infrastructures (Taxicabs, Buses, Subway, Cellular Networks)

Real-Time 

Data Feed 

Layer

Mobility 

Abstraction 

Layer

Application

Design 

Layer

Figure 3.1: MobileCPS Architecture
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• Real-Time Data Feed Layer ensures a secure and reliable feeding mechanism

to establish multi-source data feeds through urban infrastructures in a privacy-

preserving method. At a macro level, mobileCPS establishes the data feed for

anonymous cellphones in the cellular networks; at a micro level, mobileCPS es-

tablishes the data feeds in the transit networks including taxicabs, buses and

subways. The details are given in the later part of this chapter.

• Mobility Abstraction Layer transparentizes heterogeneous features in our multi-

source data to enable an effective mobility abstraction with mobility information.

As a result, mobileCPS enables novel mobility modeling by integrating individual

mobility models based on single-source data. The details are given in Chapter 4.

• Application Design Layer bridges our mobility model to real-world applica-

tions to improve urban efficiency, e.g., increasing urban transit ridership and re-

ducing travel and waiting time for urban residents by novel transit services. In

this dissertation, we design two mobility-driven transit services, i.e., coRide for

carpooling and Feeder for last-mile transit. The details are given in Chapters 5

and 6, respectively.

Similar to the IP layer, i.e., the narrow waist of the Internet, the mobility abstraction

layer essentially serves as the narrow waist of mPat, allowing a separation between

data feeds and applications. Based on the real-time input from the data feeds, the

mobility abstraction provides appropriate service interfaces for accurate rendering of

human mobility, which are utilized by the applications to improve performance. coMo-

bile’s three-layer architecture suggests a horizontal view of building high-performance

applications based on correlated mobile systems, but traditional stand-alone CPS, e.g.,

systems based on cellular networks or transportation networks, do not have such ca-

pacities. The narrow waist allows fellow researchers to add more transit modes (e.g.,

bicycles) or applications without redesigning the whole architecture.

3.2 Data Management

In this section, we first introduce the Real-Time Data Feed Layer in terms of data feeds,

storage and management.
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3.2.1 Urban Data Feeds

We have been collaborating with several Shenzhen government agencies and service

providers, and establishing a reliable feeding mechanism that feeds mobileCPS various

data collected within Shenzhen infrastructures without impacting data sources in service

providers. For security and efficiency purposes, such a mechanism is facilitated with a

commercial solution called Shenzhen Transmission Standard, which is customized for

Shenzhen infrastructures and operates with high performance and low overhead, even at

high volume of streaming data, e.g., vehicular GPS. This mechanism enables continuous

capture and delivery of data from service providers to coMobile’s data feed layer with

end-to-end sub-second latency. Further, it has the ability to provide the data in a

variety of formats, e.g., binary or text files, enabling direct real-time analyses. Since the

data are already being collected to help the service providers to operate their services,

our feeding mechanism incurs little marginal cost. We briefly introduce the established

feeds in the layer as follows.

• Cellphone Data Feed is established for 10.4 million users in Shenzhen. The total

records of data (including call detail records [CDR] among 17859 cell towers) are

more than 5 million per day.

• Taxicab Data Feed is established through Shenzhen Transport Committee, to

which all taxicab companies upload their taxicab status (GPS and occupancy) in

real time by a cellular network used by all taxicabs in Shenzhen. The temporal

granularity for this feed is extremely high, i.e., the uploading period is less than

30s. The daily size of all taxicab status data is 2 GB.

• Subway Data Feed is established by streaming entering and exiting records in

smart card transactions. Such a feed accounts for more than 16 million smart

cards, leading to 10 million daily transactions. A total of 2,570 fixed smartcard

readers in 127 subway stations capturing 60 thousand subway passengers per hour.

• Bus Data Feed consists of two parts: a GPS feed for all buses in real time (2

GB per day), and a transaction record feed from 16 million smartcards. A total of

14,270 onboard smartcard readers in 13 thousand buses capturing 168 thousand

bus passengers per hour.
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The heat map of their spatial granularity is given by Figure 3.2 with an area of 14 × 5

km2. The lighter the icon, the high the passengers captured by the data feeder.

Cell Towers

Bus StationsSubway Stations

Taxi Locations

Figure 3.2: Data Spatial Granularity

Our endeavor to consolidate the above feeds enables an extremely fine-grained mobility

tracking that is unprecedented in terms of both quantity and quality. To facilitate

mobility analyses based on real-time and historical data, we have stored the data from

these feeds as in Figure 3.3. Due to large sizes of location updates (90 GB per day) in

the cellphone feed, we only store the activity data.

Collection Period 10/01/13-Now Collection Period 01/01/12-Now
Number of Users 10,432,246 Number of Taxis 14,453

Data Size 680 GB Data Size 1.7 TB
Record Number 434,546,754 Record Number 22,439,795,235

SIM ID Date and Time Plate Mumber Date and Time
Cell Tower ID Activities Status GPS Coordinates 

Collection Period 01/01/13-Now Collection Period 07/01/11-Now

Number of Vehicles 10,000 Number of Cards 16,000,000
Data Size 720 GB Data Size 600 GB

Record Number 9,195,565,798 Record Number 6,212,660,742

 Plate Number Date and Time Card ID Date and Time
Velocity GPS Coordinates Device ID Station Name

Format

Taxicab GPS Dataset

 Bus GPS Dataset

Format

Format

Cellphone Dataset

Format

Smart Card for Subway & Bus 

Figure 3.3: Datasets from Real-Time Feeds
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3.2.2 Data Storage and Maintenance

Such big amounts of mobility data require significant efforts for the efficient storage and

daily maintenance. We utilize a 34 TB Hadoop Distributed File System (HDFS) on a

cluster consisting of 11 nodes, each of which is equipped with 32 cores and 32 GB RAM.

For daily maintenance, we use the MapReduce based Pig and Hive. Pig is a high-level

data-flow execution framework for parallel computation and Hive is a data warehouse

infrastructure for data summarization and ad hoc querying.

Due to the extremely large size of our data, we found three main kinds of errant

data. (i) Missing Data: e.g., a taxicab’s GPS data were not uploaded within a given

time period. Such missing data are detected by monitoring the temporal consistence

of incoming data for every data source, e.g., a taxicab. (ii) Duplicated Data: e.g.,

the smart card datasets show two identical records for the same smart card. Such

duplicated data are detected by comparing the timestamp of every record belonging to

the same data source, e.g., the same smart card. (iii) Data with Logical Errors: e.g.,

GPS coordinates show that a vehicle is off the road. Such data with logical errors are

detected later when we analyze the data. To detect these errors, we utilize a digital

map of Shenzhen to verify if a GPS location is plausible or not. This is performed by

checking the previous location and the duration between the timestamps of these two

records. The above errors may result from various reasons, e.g., hardware malfunctions,

software issues, and communications.

To address the above errors, for all incoming data, we first filter out the duplicated

records and the records with missing or errant attributes. Then we correct the obvious

numerical errors by various known contexts. We next store the data by dates and

categories. Finally we compare the temporal consistence of the data to detect the

missing records. Admittedly, the missing or filtered out data (which accounted for 11%

of the total data) may impact the performance of our later analyses, but given the long

time period, we believe we are still be able to provide insightful analyses as follows.

While the streaming data for the human mobility study have the potential for great

social benefits, we have to protect the privacy of the residents involved for wider ap-

plications. We took four active steps for privacy protections. (i) Anonymization: All

data analyzed are anonymized by the service providers who were not involved in this

project, and all identifiable IDs, such as SIM card IDs, are replaced by a serial identifier
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during the analyses. (ii) Minimal Exposure: We only store and process the information

which are useful for our mobility analysis, and drop other information for the minimal

exposure, e.g., we store the cell tower IDs to infer locations in the cellphone data, but

not durations of calls. (iii) Aggregation: The mobility patterns obtained by coMobile

are given at aggregated results with a mobility graph in a large spatiotemporal parti-

tion. We do not focus on individual residents during the analyses. (iv) Nature of Data:

The nature of different data also provides a certain level of privacy protections, e.g., the

taxicab and bus GPS data do not involve any identity about passengers; the smartcard

data only show passengers’ locations at transit station levels.



Chapter 4

coMobile: Human Mobility

Modeling

In this chapter, as the mobility abstraction layer of MobileCPS, we present our human

mobility model called coMobile based on a generic human mobility modeling technique.

4.1 Introduction

Human mobility is of great importance for various urban applications, e.g., urban plan-

ning, transportation, social networking, and location based services [3]. Recently, thanks

to upgrades of urban infrastructures, many real-time location-tracking devices become

available, e.g., cellphones, onboard GPS devices and smartcards. These devices generate

massive real-time location data, which hold the key potential to revolutionize real-time

human mobility modeling. Based on these real-time data, several data-driven models

have been proposed, e.g., driven by data from cellphones [52], smartcards [53], taxis [13],

buses [11], or subways [14]. However, a common feature of these models is that they

capture mobility only from one view, e.g., a cellphone view or a transportation view.

These single-view models are sufficient if single-view data are complete, but in reality

this is not the case. From the cellphone view, the models driven by cellphone data

cannot capture residents without cellphone data, e.g., residents who do not have cell-

phones and residents who have cellphones but do not use their cellphones during our

modeling time; similarly, from the transportation view, the models driven by one kind

18
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of transportation data, e.g., taxi, cannot capture the passengers who use other trans-

portation modes, e.g., bus and subway, and further there is no urban infrastructure that

can capture private vehicles at urban scale. To our knowledge, no data-driven urban

human mobility models are based on a complete view so far. As a result, these single-

view human mobility models essentially use residents captured by these single views as

a sample to study all residents, which inevitably leads to a bias and thus over-fitting of

their models, as shown in Section 4.2.

To address this issue, we aim to combine different views for multi-view modeling.

Each view is incomplete to capture mobility by itself, but one view is often comple-

mentary to others, e.g., the cellphone view can capture some private-vehicle passengers,

whereas the transportation view can capture some inactive cellphone users. But a view’s

ability to capture human mobility is unknown a priori and is highly dynamic based on

spatiotemporal contexts. As a result, such dynamic view completeness makes multi-view

human mobility modeling extremely challenging.

In this chapter, serving as the mobility abstraction layer, we propose coMobile, a

generic framework to capture human mobility with a multiple-view learning technique.

In coMobile, we first design a single-view learning technique based on context-based

tensor decomposition to improve completeness of single-view models. Then, we integrate

those improved single-view models together by formulating a convex optimization to

obtain the ground truth of urban mobility. Most importantly, we implement coMobile

based on extremely large datasets in the Chinese city Shenzhen with cellphone data

and transportation data including taxis, buses, and subways. In particular, the key

contributions of the chapter are as follows:

• We propose the first multi-view learning framework for human mobility to inte-

grate incomplete yet complementary knowledge from individual views. To our

knowledge, the proposed model is the only human mobility model driven by more

than one view, which aims to address over-fitting of single view models. It is chal-

lenging to directly apply multi-view learning in human mobility modeling, because

data-driven views are mostly incomplete to urban-scale mobility.

• We design a single-view learning technique based on context-aware tensor de-

composition with both real-time and historical data to improve completeness of
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single-view models. This technique addresses data sparsity challenges of partic-

ular views to improve their completeness. In particular, we use a cellphone-view

model as an example to show how we extract three contexts, i.e., cellphone user

density, calling location patterns, and calling time patterns, based on historical

data for joint tensor decomposition.

• Based on improved single-view models, we formulate a multi-view modeling prob-

lem by designing a joint optimization, which minimizes overall weighted deviation

from observed mobility to the ground truth. To solve this optimization, we propose

an iterative learning process to alternatively update the ground truth and view

completeness until no further improvement can be made for the objective function.

We formally prove the convexity of the joint optimization and the convergence of

our iterative learning.

• We implement our multi-view human-mobility model based on two datasets in the

Chinese city Shenzhen, with 10 million cellphone users and 16 million smartcard

users involved. To our knowledge, this is one of the largest human mobility models

driven by real-world datasets. We evaluate our model by comparing it to a single-

view model, and results show that we reduce error rates by 51% on average.

We organize this chapter as follows. Section 4.2 gives our motivation. Section 4.3

presents the model overview. Section 4.4 depicts our single-view modeling. Section 4.5

describes our multi-view modeling. Sections 4.6 and 4.7 give the implementation and

evaluation of our method, followed by the discussion in Section 4.8. Section 4.9 concludes

the chapter.
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4.2 Motivation

We first show the drawback of single-view models and the opportunity of multi-view

models.

4.2.1 Drawback of Single-View Models

We give two comparisons: (i) models driven by two different cellphone views; (ii) models

driven by a cellphone view and a transportation view.

As in Figure 4.1, we first compare models driven by two one-day CDR (call detail

records) datasets from two carriers in Shenzhen. This kind of models driven by single-

carrier data is mostly used for human mobility modeling [8]. A point indicates a spatial

unit covered by a cell tower, and an edge linking two points together indicates the

mobility between them. We only show the major mobility for the clarity of the figure.

As shown by the circles, we found that each model can capture some unique mobility

that cannot be captured by the other, which leads to over-fitting of these models driven

by CDR data from single cellphone carriers.

Cellphone Carrier 1

Cellphone Carrier 2

Figure 4.1: Models Driven by Two Carrier’s CDR Data
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We combine the CDR data from different carriers, and obtain a model driven by

combined CDR data, i.e., a model driven by the cellphone view. Similarly, we combine

data from different urban transportation, i.e., taxi, bus and subway, together, and

then obtain a model driven by the transportation data, i.e., a model driven by the

transportation view. Due to different spatial granularity, we use a urban-region-based

model to show captured mobility in the morning rush hour.

As in Figure 4.2, every point indicates a region in the Shenzhen urban area; every

edge linking two regions together indicates the mobility volume between them. The

size of a vertex indicates associated mobility, and the different color indicates urban

districts. As shown by the circles, we also found that each model can capture some

mobility that cannot be captured by the other.

Model Driven by Combined Cellphone Data

Model Driven by Combined Transit Data

Figure 4.2: Models Driven by Cellphone and Transit Data
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4.2.2 Opportunity for Multi-View Models

Due to the limitation of the single-view models, we are motivated to combine two

separate views together in order to design a multi-view model for human mobility.

As shown by Figure 4.3, from the transportation view, we aim to combine four

independent models (i.e., four triangles) driven by data from taxis, buses, subways,

and private vehicles for human mobility modeling. But currently there is no urban

infrastructure that can capture private transportation in real time at urban scale. Some

efforts have been made by the research community to install GPS devices in the private

vehicles to study human mobility [54], but only limited private vehicles are involved.
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Figure 4.3: Multi-View Modeling

Alternatively, we can design a model driven by cellphone CDR data as in Figure 4.3.

But there are two challenges. (i) Some cellphone users would not use their cellphones

(i.e., being inactive) during the time we perform modeling. To address this issue, we

design a technique based on tensor decomposition with correlated contexts to infer

locations of inactive cellphone users in Section 4.5. (ii) Some urban residents who opt

out of allowing their CDR data used for other purposes or do not have cellphones at

all. Therefore, for these residents, we cannot capture their mobility.
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As a result, neither the transportation view nor the cellphone view is complete by

itself, but one view is often complementary to another. For example, the model driven by

cellphone data can provide some mobility about residents using private transportation;

whereas the model driven by transportation data can provide some mobility about

residents without cellphone CDR data. It motivates us to design an effective modeling

technique to combine these two views for better mobility modeling.
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4.3 Model Overview

In this section, we first introduce views we used for multi-view modeling, and then we

present a concept called mobility graph to capture the real-time human mobility, and

finally we give the architecture of coMobile.

4.3.1 Multi-View Data

We have been working with several service providers and the Shenzhen Transport Com-

mittee (hereafter STC) for data access of urban infrastructures as introduced in Sec-

tion 3.2. We consider two kinds of data, i.e., cellphone data and transportation data,

as two individual views to model human mobility.

Cellphone View: Cellphone CDR (call detail records) data are used to infer cell-

phone users’ locations at cell tower levels. We utilize CDR data through two major

operators in Shenzhen with more than 10 million users. The CDR data give 220 million

locations per day.

Transportation View: Data from three kinds of transportation modes, i.e., taxi,

subway and bus, are used to detect transportation passengers’ locations. We study

transportation data through STC to which taxicab, bus and smartcard companies up-

load their data in real time.

• Taxi data are used to infer taxi passengers’ origins and destinations based on

status (i.e., pickups and dropoffs) at GPS location levels. They account for 14

thousand taxis, each of which generates 2 records/min.

• Smartcard data are used to infer origins and destinations of residents with

smartcards used to pay bus and subway fares, which capture more than 10 million

rides and 6 million passengers per day. Smartcard data and subway map data

are used together to detect subway passengers’ origins and destinations at subway

station levels.

• Bus data are used to infer bus passengers’ origins and destinations along with

smartcard data (showing that a passenger uses a smartcard at a bus station) at

4849 bus station levels. They account for all 13 thousand buses, each of which

generates 2 records/min.



26

Our endeavor of consolidating the above data-driven views enables extremely large-

scale real-time urban phenomenon rendering, e.g., human mobility, which is unprece-

dented in terms of both quantity and quality.

4.3.2 Mobility Graph

In this work, we use Mobility Graph to capture human mobility in real time at urban

scale, which is a time-varying graph where a vertex indicates a spatial unit (e.g. a

urban region or a street block) and a weight of an edge linking two vertices indicates

the mobility volume between them. Due to its time-varying nature, a mobility graph

Gt is associated with a time period t (e.g., 4-5PM), which shows the mobility during

this particular time period.

Figure 4.4 gives a simplified example of a mobility graph with only 3 vertices. The

number of people moving between different spatial units, i.e., weights of edges, should

include people associated with a particular view, e.g., the cellphone view or the trans-

portation view. In this work, our main objective is to obtain mobility graphs based on

single-view modeling, and then to combine them together by multi-view modeling for a

comprehensive human mobility graph.

Figure 4.4: Mobility Graph

4.3.3 coMobile Framework

We introduce our coMobile Framework by Figure 4.5. From the bottom, we have ur-

ban data generated by urban infrastructures, e.g., cellphone data and transportation
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data, which are introduced in Section 3.2. Based these two kinds of data, we design

two single-view models capturing mobility patterns of cellphone users and urban trans-

portation users by two mobility graphs, which are introduced in Section 4.4. Then,

we present our multi-view learning to integrate single-view models for more complete

human mobility modeling, which is introduced in Section 4.5. Finally, the obtained

human mobility model can be used in many applications, e.g., ridesharing and last-mile

transit as introduced in Chapters 5 and 6.

Single-View 
Modeling

Multi-View 
Modeling

Urban 
Applications

Urban Data
Cellphone Data Transportation Data

Transportation 
View Model

Cellphone 
View model

Human Mobility 
Model

Figure 4.5: coMobile Overview

Note that we only consider two specific views in coMobile but it can be generalized to

more views if more data are available. In coMobile, we first generate single-view models

and then combine them together at model levels, instead of raw data levels (e.g., using

multi-source raw data to directly design a multi-view model). This is because in many

applications due to privacy issues, raw data are not available, and only high-level single

models can be used as input. Our coMobile is still applicable to this situation.
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4.4 Single-View Mobility Modeling

We introduce how to model urban mobility based on two single views, i.e., a cellphone

view and a transportation view.

4.4.1 Cellphone-View Modeling

As introduced earlier, the key challenge to model human mobility based on cellphone

data is that inactive cellphone users or residents without cellphones do not generate

any CDR data. As a result, we cannot model their mobility to obtain mobility graph.

For residents without cellphones, the solution is limited although the model based on

transportation can capture some of them. In this subsection, we focus on inactive

cellphone users to infer their mobility by an observation that inactive cellphone users

who did not use their cellphones today may use their cellphones before during the similar

trips [55]. Accordingly, we formulate a tensor decomposition problem to infer mobility

of both active and inactive users based on real-time and historical data.

Tensor Construction

We infer locations of cellphone users for specific time slots by a three dimensional tensor

A ∈ RN×K×M .

• A cellphone user dimension indicates individual cellphone users differentiated by

SIM IDs: [u1, ..., uN ].

• A time slot dimension indicates specific time windows (e.g., one hour window from

5PM to 6PM): [t1, ..., tK ].

• A spatial unit dimension indicates specific spatial units (e.g., a urban region):

[s1, ..., sM ].

• An entry A(n, k,m) indicates the number of CDR records a user n has in a spatial

unit m during a slot k.

With our cellphone data, we fill this tensor A, and then obtain all cellphone users’

locations with a specific spatiotemporal partition. However, a key challenge is that the
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tensor A is sparse because for inactive cellphone users, their corresponding entries are

empty due to lacking CDR data.

Figure 4.6: Tensor Decomposition

A common approach to address this issue is to use tensor decomposition. As in

Figure 4.6, we have a tensor with three dimensions indicating cellphone users, spatial

units, and time slots. An entry denotes a tuple [user, location, time]. But this tensor

is sparse due to inactive cellphone users. Based on the classic Tucker decomposition

model [56], we decompose A into a core tensor I along with three matrices, U ∈ RN×du ,

S ∈ RM×ds , and T ∈ RK×dt . U , S, and T infer correlations between different cellphone

users, different spatial units, and different time slots, respectively. du, ds and dt are the

number of latent factors and very small.

The following objective function is used to optimize the decomposition.

||A − I × U × S × T ||2 + λ(||I||2 + ||U||2 + ||S||2 + ||T ||2)

where the first term is to measure the error of decomposition and the second term is

a regularization function to avoid over-fitting. || · ||2 denotes the l2 norm and λ is the

parameter to control the contribution of the regularization function. By minimizing

this objective function, we obtain the optimized I, U , S, and T by the sparse tensor A,

which is given by cellphone data. As a result, we use I×U×S×T = A′ to approximate

A where × is the tensor-matrix multiplication.

However, a key challenge for this decomposition is that A is over sparse especially

under fine spatiotemporal partition, which leads to poor performance of decomposition.
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To address this issue, in this work, we propose a technique to use historical cellphone

data to establish correlated contexts that improve the performance of the decomposition.

Context Extraction

To provide additional information for the decomposition, we use the historical cellphone

data to extract three contexts, i.e., cellphone user density, calling location pattern,

and calling time pattern. We use three matrices to denote these three contexts as in

Figure 4.7.

• Cellphone User Densities are given by a matrix B where a row denotes a spatial

unit; a column denotes a time slot; an entry denotes the average CDR record

count in this spatial unit for this time slot over a period of historical time.

• Calling Location Patterns are given by a matrix C where a row denotes a spatial

unit; a column denotes a cellphone user; an entry denotes a cellphone user’s CDR

record count in this spatial unit given a period of historical time.

• Calling Time Patterns are given by a matrix D where a row denotes a time slot; a

column denotes a cellphone user; an entry denotes a cellphone user’s CDR record

count in this time slot given a period of historical time.

All the matrices B, C, and D can be obtained by a set of historical cellphone data.

Context-based Tensor Decomposition

We present a joint tensor decomposition based on the three extracted context matrices.

In particular, we design the objective function as follows.

min
I,U ,S,T

L(I,U ,S, T ) = ||A − I × U × S × T ||2

+λ1||B − S × T ||2 + λ2||C − S × U||2 + λ3||D − T T × U||2

+λ4(||I||2 + ||U||2 + ||S||2 + ||T ||2).

(4.1)

where the first term is to measure the error of decomposing A; the second, third, and

forth terms are to measure the error of factorizing matrix B, C, and D, respectively; the
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Figure 4.7: Context Matrix Factorization

last term is to avoid over-fitting. In our setting, du = ds = dt. λ1, λ2, λ3, and λ4 are

preset parameters to indicate term weights. We normalized all values to [0, 1] for the

decomposition.

In this objective function, A and B share S and T ; A and C share S and U ; A
and D share U and T . Since B, C, and D are not sparse, they lead to accurate S, T
and U , which increases the performance of decomposing A. As a result, the historical

cellphone user calling patterns are transferred into the decomposition of A, which leads

to an accurate tensor decomposition.

Because this objective function does not have a closed-form solution to find the

global optimal I, U , S, and T , we use an element-wise optimization algorithm as a

numeric method [57] to obtain a local optimal solution. Finally, after we obtain I, U ,

S, and T , we use I × U × S × T = A′ to obtain cellphone mobility graph GC of all

cellphone users.

4.4.2 Transportation-View Modeling

Based on our transportation data, we model human mobility by three transportation

modes, i.e., taxi, bus and subway. Given attributes of our transportation data, we di-

rectly obtain origins and destinations of taxi, bus and subway passengers at GPS, bus

station, and subway station levels. In this work, we use a space alignment technique
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where we assign taxi GPS locations, bus stations, and subway stations into correspond-

ing spatial units based on a specific spatial partition of urban areas. Thus, for a pair of

spatial units, e.g., from an airport to a train station, we aggregate all the above passen-

gers who traveled between these two spatial units to obtain a mobility volume during

a particular time period, because these three kinds of transportation modes are inde-

pendent from each other. Thus, from the transportation view, obtaining transportation

mobility graph GT is straightforward.

Our context-aware tensor decomposition can also be used to improve completeness of

the transportation-view model since we have missing data issues (e.g., GPS records) as

well. The process is conceptually similar to the tensor decomposition for the cellphone-

view model, which is omitted due to the space limitation.

Further, we did not consider private vehicles in our transportation view due to lack

of private vehicle data. However, some urban residents using private transportation

would be captured by multi-view learning, which is introduced as follows.

4.5 Multi-View Mobility Modeling

In this section, based on single-view modeling, we introduce multi-view modeling in

coMobile. Even though our data can only form two views to obtain two mobility graphs,

i.e., the cellphone mobility graph GC and the transportation mobility graph GT , we

aim to tackle a more generic problem, i.e., multi-view modeling, and thus double-view

modeling is a concrete example of multi-view modeling.

We first formulate a joint optimization problem for multi-view human mobility mod-

eling, and then we develop an iterative learning processing to solve this problem, and

finally we theoretically analyze the performance of modeling in terms of convexity and

convergence.

4.5.1 Joint Optimization

The main objective of our multi-view modeling is to obtain a comprehensive human

mobility graph GH for a given time period based on several single-view mobility graphs,

e.g., GC and GT . Because we have the same spatial partition for different mobility

graphs, they have the same number of edges and vertices, and the key difference is edge
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weights. Since different edges are independent in a human mobility graph, we use one

edge ab in a human mobility graph GH as an example to show how we obtain the human

mobility from one spatial unit a to another spatial unit b by our multi-view technique,

and combine different edge weights together to obtain a complete human mobility graph

GH .

For a specific edge ab in GH , the volume of passengers traveling from a spatial unit a

(e.g., an airport) to b (e.g., a train station) during a time period t (e.g., 4-5PM) is x∗ab·t,

which is the unknown ground truth we want to infer. Assuming we have V different

views, which leads to V different mobility graphs that are incomplete by themselves yet

complementary to each other. For a specific view v ∈ [1, V ], we use xvab·t to indicate the

weight of the edge ab during t in the mobility graph Gv; for a specific view v ∈ [1, V ],

we use wvab·t to indicate the completeness degree of this view during a time period t

from this edge ab of Gv. The completeness degree of a view quantifies its capability to

capture human mobility. The stronger the capability is, the higher the degree is. Under

different spatiotemporal contexts, the completeness degree of the same view is different.

We use a vector Wab·t = {w1
ab·t, ..., w

v
ab·t, ..., w

V
ab·t} to indicate completeness degrees for

all V views.

In coMobile, based on the above definitions, V and xvab·t are given in advance by the

datasets; whereas x∗ab·t and Wab·t are unknown. Therefore, we present a joint optimiza-

tion to obtain optimal x∗ab·t and Wab·t together. The basic idea behind our multi-view

learning is that a view with a higher completeness degree provides more comprehensive

information, so the ground truth should be close to mobility observed by a view with

a higher completeness degree. As a result, we should minimize the deviation from mo-

bility observed by a view v to the ground truth x∗ab·t (unknown), proportionally to its

completeness degree wvab·t (also unknown). Therefore, we develop the following objective

function for multi-view learning.

min
x∗ab·t,Wab·t

F(x∗ab·t,Wab·t) =

V∑
v=1

[wvab·t ·D(x∗ab·t, x
v
ab·t)],

s.t.,R(Wab·t) = 1.

(4.2)

D(x∗ab·t, x
v
ab·t) is a distance function that describes the distance between x∗ab·t and

xvab·t. Therefore, the term
∑V

v=1[wvab·t · D(x∗ab·t, x
v
ab·t)] indicates the overall weighted
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distance between the observed mobility and the ground truth. We aim to find the

optimal x∗ab·t and Wab·t that minimize this overall weighted distance under a constraint.

R(Wab·t) is a constraint function, which gives the distribution of view completeness.

Without this constraint, the optimization problem is unbounded. For the sake of sim-

plicity, we set R(Wab·t) = 1. Other constraint functions can also be used since we can

divide R(Wab·t) by a constant.

The rationale behind this function is that for a more-complete view, we have a high

penalty if the mobility observed from this view has a longer distance to the ground

truth. In contrast, for a less-complete view, we have a low penalty if the mobility

observed from this view has a longer distance to the ground truth. Thus to minimize

the objective function, ground truth relies on the more complete views.

4.5.2 Iterative Learning

We develop an iterative learning technique based on the block coordinate descent [58]

to solve this optimization. Since in our objective function we have two sets of variables,

i.e., both the ground truth x∗ab·t and the view completeness degree Wab·t, we aim to

iteratively yet alternatively optimize these two sets of variables until the result converges.

In particular, we optimize the value of one set to minimize the objective function while

keeping the value of the other set fixed, and then we swap the fixed variable and the

optimized variable to continue this process until the result converges. Figure 4.8 gives

the description of our iterative technique.

In Step 1, we first initialize x∗ab·t and Wab·t based on the average value of x∗ab·t,

because the initialization does not affect the final results based on the property of the

block coordinate descent [58]. In Step 2, we first fix the initialized x∗ab·t, and then find

the optimal Wab·t that minimizes the objective function. In Step 3, with this optimized

Wab·t, we fix it and then find the optimal x∗ab·t that minimizes the objective function

again. Then, with this optimized x∗ab·t, we go back to Step 2 to fix x∗ab·t again, and then

to further optimizeWab·t. This is an iterative process to alternatively optimize x∗ab·t and

Wab·t until the result converges.

Based on the property of the block coordinate descent [58], the convergence of the

above iterative process is based on the distance function and constraint function used.
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Figure 4.8: Iterative Multi-View Learning

As follows, we theoretically analyze the performance of our technique in terms of con-

vexity and convergence.

4.5.3 Theoretical Analyses

We use Negative Log Function as our constraint function:

R(Wab·t = {w1
ab·t, ..., w

v
ab·t, ..., w

V
ab·t}) =

V∑
v=1

exp(−wvab·t).

This negative log function maps a number between 0 and 1 to a number from 0 to

∞, which enlarges the difference between different view completeness degrees for better

modeling.

Further, we use Normalized Squared Loss function as our distance function given as

D(x∗ab·t, x
v
ab·t) =

(x∗ab·t − xvab·t)2

STD(x1
ab·t, ..., x

v
ab·t, ..., x

V
ab·t)

.

This normalized squared loss is an effective method to measure the distance between

two variables and consider the distribution of xvab·t at the same time.

As follows, we prove the convexity and convergence of our iterative learning with

the above two functions.

THEOREM: If the negative log function and the normalized squared loss function are

used, then convergence of our iterative process in Figure 4.8 is guaranteed.
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PROOF: Based on the convergence proposition on the block coordinate descent [58],

the iterative process converges to a stationary point, if the optimizations in Steps 2 and

3 are convex. Thus, the rest of our proof has 2 steps: (i) in Step 2, if x∗ab·t is fixed, the

optimization for Wab·t is convex; (ii) in Step 3, if Wab·t is fixed, the optimization for

x∗ab·t is convex.

To prove the convexity of Step 2, we use another variable yv = exp(−wv). Therefore,

the optimization problem becomes a new function with only one variable of yv.

min
y1,...,yv ,...,yV

F(y1, ..., yv, ..., yV ) =

V∑
v=1

[−log(yv) ·D(x∗ab·t, x
v
ab·t)],

s.t.,
V∑
v=1

yv = 1.

With this new variable yv, we have a linear constraint function and a linear objective

function (i.e., a linear combination of negative logarithm functions). Therefore, both

the constraint function and objective function are convex, which leads to the fact that

any local optimal solution is also the global optimal solution for Step 2.

To prove the convexity of Step 3, we treat the objective function as an unconstrained

optimization with only one variable. In Step 3, since the normalized squared loss func-

tion is convex, the objective function is a linear combination of convex functions, which

makes it convex. �

Note that other constraint and distance functions can also be used in our iterative

process but may not lead to the convexity of the optimization problem, and thus the

convergence of the iterative process cannot be guaranteed.
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10 Districts

500 Regions

101 K Road SegmentsDowntown

Airport

Figure 4.9: Shenzhen Urban Partition

4.6 Real-World Implementation

We implement coMobile based on cellphone and transportation data in Shenzhen intro-

duced in Section 3.2. Since this chapter concentrates on modeling, we briefly introduce

our data-related issues during our implementation. We establish a secure and reliable

transmission mechanism, which feeds our server the data collected by STC and service

providers with a wired connection. As shown in Section 3.2, we have been storing a

large amount of data, requiring significant efforts for the daily management. We utilize

a 34 TB Hadoop Distributed File System (HDFS) on a cluster consisting of 11 nodes,

and each of them is equipped with 32 cores and 32 GB RAM. For daily management, we

use the MapReduce based Pig and Hive. Because of the extremely large size of our data,

we have been finding several kinds of errant data, e.g., duplicated data, missing data,

and data with logical errors. To address these issues, we conduct a detailed cleaning

process to filter out errant data.

For real-world implementation, we have to decide the spatiotemporal partition for

the mobility graph, which decides the spatiotemporal granularity of our model. For

example, we have more than 110 thousand road segments, 496 urban regions, and 10

urban districts in Shenzhen, and we can capture the mobility with one of those three

spatial partitions for every 15 mins, 30 mins, 60 mins, or even longer. Due to the spatial
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Ground TruthcoMobile

Residential

Figure 4.10: Mobility Graphs in Shenzhen

resolutions of our data (especially for bus, subway, and cellphones), we use a urban-

region partition proposed by the Shenzhen government as our spatial partition, which is

given by Figure 4.9. Different colors indicate different population density. Based on this

partition, we implement our multi-view mobility modeling technique coMobile based on

two views. A human mobility graph obtained by coMobile for major urban areas during

the evening rush hour at region levels is given by the left of Figure 4.10.
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4.7 Data-Driven Evaluation

4.7.1 Evaluation Methodology

Based on our implementation, we compare coMobile with a single-view human mobility

model called WHERE. WHERE [8] is a model driven by cellphone data, and it is

based on spatial and temporal probability distributions of human mobility and produces

synthetic cellphone records as the inferred mobility. We compare these two models with

the inferred ground truth. In this project, to infer the ground truth, we introduce

another new cellphone related dataset for the evaluation. Different from regular CDR

data, this dataset logs locations of all cellphone users at cell tower levels for every 15

mins even without activities. We use the mobility graph obtained from this dataset

as the ground truth, which is given in Fig. 4.10. By a visual comparison, we found

that we underestimate the mobility at residential areas and overestimate the mobility

at downtown areas.

We utilize three months of data to evaluate these two models. We use Mean Average

Percent Error (MAPE) in a time slot as a metric to test those two models MAPE =
100
n

∑n
i=1

|T̄i−Ti|
T̄i

, where n = 496 × 496 = 246016 is the total number of region pairs,

i.e., the total number of edges in a mobility graph; Ti is the inferred mobility between

a region pair i; T̄i is the ground truth of the mobility between a region pair i. An

accurate model yields a small MAPE, and vise versa. We use 90 days of data, leading

to 90 experiments. The average results were reported.

We investigate the impact of different contexts by adjusting three model parameters,

i.e., λ1, λ2, and λ3, which control contributions of different contexts in our tensor

decomposition with Eq.(1). The default setting is λ1 = λ2 = λ3 = λ4 = 1
4 where we

consider all contexts and the regularization term equally. Further, we investigate the

impact of historical cellphone data on the model performance in terms of extracting

correlated contexts.

We compare two models’ inferring accuracy in terms of MAPE values by (i) a low

level comparison on five particular region pairs, (ii) a high level comparison on all 246016

region pairs, (iii) different lengths of slots, and (iv) different amount of historical data.
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4.7.2 Evaluation Results

Figure 4.11 plots the MAPE under one hour slots with the two-way mobility between a

residential region and five other regions. We found that coMobile outperforms WHERE

in general. This is because WHERE only uses the cellphone data to model the human

mobility from the cellphone view alone; whereas coMobile uses two views to model the

human mobility, which leads to better performance. We also found that the performance

gain between coMobile and WHERE is lower during the rush hour. One of the possible

explanations is that the repeatable mobility patterns are higher during the rush hour,

so all models have better performance. Comparing the five region pairs, we found that

for the commuting region pairs (e.g., between the residential region and the industrial,

commercial or downtown regions), all models have better performance than the region

pairs on which the residents go for travel (i.e., between the residential region to the

airport or train station regions). This is due to the fact that repeatable pattern for

travel is limited.
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Figure 4.11: MAPE under One Hour Slot for 24 Hours of a day

Figure 4.12 gives the MAPE on all region pairs under one hour slots. We found that

all two models have higher MAPE than the MAPE we observed in Figure 4.11. This is

because the urban mobility is highly dynamic between various regions pairs, many region

pairs have very limited mobility, which leads to high MAPE. But we also found that

relative performance between these two models is the same as in Figure 4.11. coMobile

is better than WHERE, which shows the advantage of using multi-view learning to

model the human mobility. coMobile outperforms WHERE by 51% in terms of MAPE,

resulting from its multi-view learning from both cellphone data and transportation data.

Figure 4.13 plots the MAPE of coMobile and WHERE with different slot lengths

from 15 mins to 12 hours. Basically, the MAPE of both models reduces with the increase
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Figure 4.12: Hourly MAPE
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Figure 4.13: Effects of Lengths

of the modeling lengths. This is because the mobility in a longer time slot is much more

stable. coMobile significantly outperforms WHERE when the slot length is short. This

is because the transportation data can capture lots of mobility during a short time

period. We notice that the slot length becomes longer than 6 hours, both coMobile and

WHERE have the similar performance, because in a long time slot, the cellphone data

alone is capable of inferring mobility.

Figure 4.14 shows how much historical information is necessary for coMobile and

WHERE. As expected, the longer the time, the lower the MAPE for both models,

the better the performance. But a too long history does not help much, especially for

coMobile whose MAPE became stable when the historical data are longer than 4 weeks.

It shows that coMobile does not reply on long-term historical cellphone data, thanks to

the transportation view. But WHERE needs a longer historical period of data, i.e., 9

weeks, before its MAPE becomes stable.

Figure 4.15 shows the impact of two contexts, i.e., cellphone user densities and

calling time&location patterns as introduced in Section 4.4.1. In particular, we set

λ2 = λ3 = 0 and λ1 = λ4 = 1
2 to obtain a model called coMobile w/ User Density, which

only considers the cellphone user density as a context. Similarly, we set λ1 = 0 and

λ2 = λ3 = λ4 = 1
3 to obtain a model called coMobile w/ Time&Location Patterns, which

only considers time&location patterns as contexts. We compare them with coMobile,

which considers all contexts. In generally, coMobile outperforms the other two models.

We found that for the early morning, considering time&location patterns is better than
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Figure 4.14: Historical Data
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Figure 4.15: Impacts of Contexts

considering user density; while for the late night, considering user density is better than

considering time&location patterns. Also, during some slots in the afternoon or evening,

e.g., 14:00, 15:00 and 18:00, it leads to better performance if we do not consider certain

contexts.

4.7.3 Evaluation Summary

In short, we have the following observations. (i) As in Figure 4.11, the accuracy of

human mobility modeling is highly depended on both locations and time of day. (ii)

As in Figure 4.12, both models have better performance in the morning rush hour

in general due to the predicability of morning commutes, and coMobile outperforms

WHERE during all times. (iii) As in Figure 4.13, the length of slots has significant

impacts on performance of all models. (iv) As in Figure 4.14, how much historical data

to be used by coMobile does not significantly affect the performance of coMobile. (v)

As in Figure 4.15, the same contexts have different effects according to the time of day,

but considering them together leads to better average performance.
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4.8 Discussion

We provide some discussion about coMobile as follows.

Privacy Protections. While the data for the human mobility study have the

potential for great social benefits, we have to protect the privacy of the residents in-

volved for wider applications. We took three active steps for privacy protections. (i)

Anonymization: All data analyzed are anonymized by the service providers who were

not involved in this project, and all identifiable IDs, such as SIM card IDs, are replaced

by a serial identifier during the analyses. (ii) Nature of Data: The nature of different

data also provides a certain level of privacy protections, e.g., the taxicab and bus G-

PS data do not involve any identity about passengers; the smartcard data only show

passengers’ locations at transit station levels. (iii) Aggregation: the mobility patterns

obtained by coMobile are given at aggregated results with a mobility graph in a large

spatiotemporal partition. We do not focus on individual residents during the analyses.

Public Data Access. Accessing empirical datasets is vital to the geographic in-

formation system research, but such datasets are usually not available for the fellow

researchers due to the privacy issues. As an initiative step, the partial aggregated data

used in this work have been made for public access in the website of Transport Com-

mittee of Shenzhen Municipality [59]. Most importantly, we release the first big urban

data [7], which include the large-scale Shenzhen data including taxi, bus, subway, s-

martcard, and cellphone data. This is the first time that such comprehensive urban

data are released for the benefit of research community. Moreover, we will release more

detailed data with privacy protection schemes after this paper is accepted.

Implementation in Different Cities. The residents in different cities typically

have different mobility patterns due to geographic and demographic features. It is

therefore extremely important to implement the proposed architecture in different cities

to validate its generalizability. Currently, we have access to partial taxicab and cellphone

data in Shanghai, the second largest city in China, and are negotiating with other service

providers for potential implementation.
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4.9 Conclusions

In this chapter, as the mobility abstraction layer for mobileCPS, we design, implement

and evaluate a human mobile modeling technique called coMobile based on context-

aware tensor decomposition and iterative multi-view learning. It is the first human

mobility model based on both a cellphone view and a transportation view. Our endeav-

ors offer a few valuable insights: (i) the human mobility modeling based on single-view

data introduces biases, which can be addressed by using historical data and multi-view

data; (ii) to model human mobility, every view itself is incomplete but they are often

complementary to each other, and thus it is essential to model the completeness degree

of a view before inferring the mobility; (iii) multi-view learning for human mobility re-

quires an iterative optimization process to improve the accuracy of modeling, and thus

how to select an objective function and constraint function to ensure the convergence

is essential for real-time applications.



Chapter 5

coRide: Real-time Carpooling

In this chapter, we introduce a taxicab carpooling application as a component on the

application design layer for mobileCPS. This carpooling service is built upon the mobil-

ity model we proposed in the last chapter. In particular, based on mobility modeling,

we found urban regions with high human mobility demand yet low taxi supply, and

then provide the carpooling service to increase taxi supply for a balanced relationship

between passenger demand and taxi supply.

5.1 Introduction

Among all transportation modes, taxicabs play a particularly prominent role in resi-

dents’ daily commutes in many metropolitan areas [60] [61]. Based on a recent survey

in New York City [62], over 100 taxicab companies operate more than 13, 000 taxicabs,

with stable demand of 660, 000 passengers per day, and transport more than 25% of all

transit passengers, accounting for 45% of all transit fares paid. To fulfill such delivery

requests, these taxicabs travel a total of roughly 800 million miles per year [61]. Unfor-

tunately, with 25 MPG, these taxicabs consume about 32 million gallons of gas every

year, more than the total annual gas consumption in some middle-sized countries (e.g.,

Central African Republic [63]), therefore leading to severely harmful tailpipe emissions

and energy consumption. On the other hand, in carbon emissions trading under the

Kyoto Protocol [64], governments will provide economic incentives for achieving reduc-

tions in the emissions of carbon pollutants. Thus, for both environmental and economic

45
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purposes, it is imperative to find a practical initiative to support the same delivery

requests for taxicab transportation from passengers with lower total mileage and less

carbon emissions.

In this chapter, we argue that a taxicab carpool service is a promising solution. The

key advantage of a carpool service is that it can pool groups of several passengers heading

in the similar direction into one rather than several taxicabs. In other words, a carpool

service provides a valid solution for delivering the same number of passengers with lower

total mileage and thus less gas. The economic incentive for drivers is that groups of

passengers can pay a higher aggregated fare, whereas the incentive for passengers is

that every passenger will pay less than in a non-carpool situation. With an effective

fare model, we can achieve a win-win situation. Furthermore, carpools can also improve

the availability of taxicab service during rush hours and after major events.

Admittedly, taxi carpool is not a new concept and has been around for years. But

they are mostly negotiated by individual drivers and passengers in an ad hoc manner

without a facilitating infrastructure. Until now, we have lacked a systemic study of

carpooling in large scale taxicab networks. We note that many studies have focused on

taxicab scheduling [28] [31] [33] [34] [29] [32] [35] or novel systems taking advantage

of taxicab mobile traces [5] [41] [42] [36] [39] [37] [65] [38] [40], but little research has

been done on taxicab carpool services with a software and hardware co-design. In this

chapter, we present the first systematic study of how to design, evaluate, and implement

taxicab carpool services in real-world scenarios. Specifically, the key contributions of

this chapter are as follows:

• To the best of our knowledge, we conduct the first carpool service that considers

the mutual benefits for passengers and drivers in large-scale taxicab networks and

provide a comprehensive study of how to fill the same passenger delivery requests

with less total mileage and thus less gas consumption. To achieve our goal, we

develop customized hardware, TaxiBox, with multiple sensors and onboard devices

(such as CDMA communication module, MIC, camera, and carpool fare meters).

Further, we develop a passenger client app, which are used to locate on-duty taxis

and to send carpool requests. Using these frontend devices, we design a taxicab

carpool system, coRide, with a backend server to gather requests from passengers,

to inform drivers of carpool requests, to calculate carpool routes for drivers, and
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to estimate carpool fares for passengers.

• In coRide, we introduce a mathematical concept delivery graph to represent a

carpool route schedule for delivering passengers. Given requests provided by pas-

sengers, we seek an optimal delivery graph to achieve the minimum total mileage.

We show that this optimization is NP-hard by linking it to the classic traveling

salesman problem, and provide (i) an optimal solution with integer programming,

(ii) a 2-factor approximation solution with a polynomial complexity, and (iii) an

online algorithm to accommodate online streaming requests with a linear com-

plexity. In addition, we consider different real-world constraints, e.g., passenger

travel periods, number of available taxicabs, and taxicab capacities.

• Based on the carpool route, we propose a win-win carpool fare model to encourage

both drivers and passengers to participate in carpooling. In this model, given

a carpool benefit due to mileage reduction, passengers and a driver will share

this benefit based on a ratio dynamically adjusted by the supply and demand

relationships in a taxicab network.

• To test the performance of coRide in real-world setting, we implement coRide with

a small-scale real-world trial in Shenzhen with 3 taxicabs and 12 passengers for 31

days. The results show that we reduce mileage by 49% comparing to the ground

truth without carpool services.

• To test the performance of coRide at large-scale systems, We use a real-world

dataset consisting of GPS traces from more than 14, 000 taxicabs in a Chinese

city Shenzhen with a population of 13 million. The evaluation results show that

compared with the ground truth, our carpool service reduces the total mileage by

as much as 33%, and our win-win fare model lowers passenger fares by 49% and

increases driver profit by 76% at the same time.

The rest of the chapter is organized as follows. Section 5.2 proposes the motivation

for the design. Section 5.3 presents the coRide system overview. Section 5.4 depicts the

passenger clients. Section 5.5 describes our customized device, TaxiBox. Section 5.6

explains the algorithms for carpool route calculation. Section 5.7 presents a win-win
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carpool fare model. Section 5.8 shows real-world small-scale implementation about our

coRide system. Section 5.9 validates our service with a big dataset. Finally, we conclude

this chapter in Section 5.10.
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5.2 Motivation

In this section, based on two datasets about traces and fares of 14, 000 taxicabs in the

Chinese city Shenzhen with a population of 13 million, we first introduce the basic

properties of large scale taxicab networks in dense urban areas. Then, we present

evidence about the inefficiencies of current taxicab networks, demonstrate opportunities

for carpools to address these inefficiencies, and identify challenges to facilitate carpooling

in current taxicab networks. Details of the datasets appear in Section 3.2.

5.2.1 Drawback of Taxicab Networks

In developed countries such as United States, taxicabs are usually used to serve passen-

gers to airports, and personal vehicles are used for other activities, excepting extreme

large cities such as New York City. But in developing countries, due to high costs of

owing personal vehicles, taxicabs and other public transportation are popular for daily

activities. In dense urban areas such as Beijing, taxicabs are affordable for local travel-

ing with an initiate fare about 2 USD for a 3 KM trip, and are more comfortable than

other public transportation with cheaper fares (such as buses or subway). Due to the

popularity and the affordability of taxicab services, the number of taxicabs in a taxicab

network of a large city is typically more than 10,000. Thus, these taxicabs can be easily

found on streets at the most of time and locations (except in rush hours or in hot pickup

spots) and are commonly used for shopping, traveling to and from the work or schools,

and other daily activities.

We discuss the inefficiencies from three perspectives, i.e., society, drivers and pas-

sengers, based on a taxicab dataset shown in Figure 5.1.

For society, the key inefficiency of taxicab networks is the large gas consumption

of a long-travel distance. We observe that these taxicabs travel a total of 1.2 billion

kilometers per year, consuming about 100 million liters of gas to deliver 200 million

passengers and causing harmful tailpipe emissions. Figure 5.2 gives the total travel

distance of all taxicabs in the network on an hourly basis.

For drivers, the key inefficiency is low profits, which are decided mainly by delivery

distances (i.e., the mileage with paying passengers). Intuitively, drivers should earn

more profit in rush hours, but this is not the case in large cities with severe congestion.
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Collection Period 6 Months 

Collection Date 01/01/12-06/30/12

Numbe of Taxicabs 14,453

Number of Passengers 98,472,628

Total Travel Distance 594,031,428 (KM)

 Total Fare 2,255,052,932 (CNY)

 Average Travel Distance 6.032 (KM)

Average Fare 22.9 (CNY)

Taxicab Network Summary

Figure 5.1: Taxi Data Statistics
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Figure 5.2: Travel Distance
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Figure 5.3: Delivery Distance

In regular hours without congestion, the total distance (i.e., also including total mileage

without paying passengers) is high, but the percentage of delivery distance is low, since

it is not easy to find a passenger. In rush hours with congestion, the percentage of

delivery distance is high (i.e., easy to find a passenger), but the total distance is low

due to the slow pace of traffic. Figures 5.3 shows the average delivery distance. It

shows delivery distances at different times of day (i.e., rush and non-rush hours) are not

significantly different.

For passengers, key inefficiencies are high fares and low availability. According to

statistics about New York City [61] [62], the average fare is 11.44 USD for a 2.8 mile trip

with an 11-minutes travel time, which is 5.8 times higher than the average public transit
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Figure 5.4: Delivery Intervals
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Figure 5.5: Occupancy Rate

fare (bus or subway) on average. In our statistics, the average fare of 22.9 Chinese Yuan

(CNY) for taxicabs is 11 times of a bus fare of 2 CNY on average. These two datasets

also provide some evidence about the low availability of taxicab services. First, in the

time intervals between deliveries presented in Figure 5.4, a small interval indicates that

a taxicab will pick up a new passenger right after it drops off an old passenger, i.e., low

availability. In Figure 5.4, the average time interval in rush hours is small, less than

3 minutes, indicating low availability of taxicab services. Second, low availability can

also be seen in the taxicab occupancy ratios in Figure 5.5, where a high occupancy ratio

indicates fewer empty taxicabs. The ratios in Figure 5.5 indicate that more than 80%

of taxicabs are occupied on average during the rush hour. Thus, Figures 5.4 and 5.5

indicate the low availability of taxicabs during the rush hour.

5.2.2 Opportunities for Taxicab Carpool

We show the opportunities that carpools provide to address the above inefficiencies.

Specifically, we discuss three factors to show how likely carpooling services can be

achieved in reality: (i) the distance between passengers’ origins as well as the distance

between passengers’ destinations; (ii) the travel distances of shared routes between

passengers; (iii) the passenger preference to the carpooling services. The benefit of

carpooling servers can be further unleashed, if we have more passengers who (i) start

from close origins or end at close destinations, and (ii) share the long distance common

routes, and (iii) are willing to accept carpooling services.
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Close Origins and Close Destinations

Based on the dataset, we show 200 consecutive trips to an airport in Figure 5.6 where

most passengers came to the airport from the downtown and several hot spots.

Airport

Downtown 

 Common 

Route 

Hot Spot

Origin

Destination

Figure 5.6: Trips to an Airport

Similarly, we show 200 consecutive trips from an airport in Figure 5.7. We observe the

similar phenomenon that the most passengers came to the downtown and several hot

spots from the airport.

Origin

Destination

Airport

Downtown 

 Common 

Route 

Hot Spot

Figure 5.7: Trips from an Airport
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Figure 5.8: Close Origins
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Figure 5.9: Close Destinations

In Figure 5.8, we show the CDF of distances between the origins of 1, 000 trips to the

airport. Similarly, almost 50% of the trips have an origin closer than 1 KM to another

origin, and almost 90% of trips have an origin closer than 5 KM to another origin. In

Figure 5.9, we show the CDF of distances between destinations of 1, 000 trips from the

airport. 60% of trips have a destination closer than 1 KM to another destination, and

80% of trips have a destination closer than 5 KM to another destination.
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Figure 5.10: Shared Distance to Airport
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Figure 5.11: Shared Distance from Airport

Based on the dataset, Figure 5.10 shows the CDF of distances of shared routes of

1, 000 trips to the airport. More than 90% of trips share at least 7.5 KM with another
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trip, and more than 50% of trips share at least 20 KM with another trip. Figure 5.11

shows the CDF of distances of shared routes of 1, 000 trips from the airport. Similarly,

more than 90% of trips share at least 5 KM with another trip, and more than 50% of

trips share at least 20 KM with another trip.

From the above figures, we observe a good opportunity for carpools to benefit mul-

tiple parties. For passengers, a taxicab carpool can increase the availability of taxicab

services in extreme weathers, peak hours or hot pickup locations, reducing the waiting

time for passengers; in addition, multiple passengers in a carpool can share the fare

together, reducing the fare paid by individual passengers. For taxicab drivers, a taxicab

carpool can increase profits, since the aggregated carpool fare is higher than the regular

service fare with the same travel distance. For operators, a taxicab carpool can provide

more transportation capacity and enable more efficient gas consumption. Note that

taxicab carpools do not aim to completely replace the traditional taxicab services, but

serve as a key supplement for the situations where regular taxicab services are insuf-

ficient in peak hours or extreme weathers, or situations where some passengers would

like to take transportation that is cheaper than traditional taxicab services yet more

convenient than bus and subway.

Although taxi carpooling is not well supported at regulatory levels in many countries,

according to a taxi pooling survey taken in Beijing [66], 75% of interviewees accept

carpooling services; 57% of interviewees have carpooled with others at least once; 73%

of interviewees accept a simple carpooling price mechanism where every passenger pays

60% of the regular service fare for the shared distance, leading to extra profits for drivers;

several key concerns about carpooling pointed out by more than half of interviewees are

as follows (i) prolonged travel time (64%), (ii) hard to find passengers to carpool or hard

to find carpoolable taxicab (50%), and (iii) unable to print duplicated receipts for all

passengers (50%). Based on the above survey, we find that most passengers are willing

to accept carpools and to share the benefits of carpools with co-riders and the driver,

but we still face several challenges to enable a practical carpool service in large-scale

taxicab networks, which we will introduce next.
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5.2.3 Challenges for Taxicab Carpool

We present three challenges and some possible solutions for implementing carpool ser-

vices in the current taxicab networks.

Acquisition of Detailed Status about Taxicabs: To find the most suitable

taxicab, a dispatching center should acquire detailed information about taxicabs, e.g.,

how many seats are left, which is difficult to obtain in current taxicab networks, where

only the general taxicab status (e.g., locations, speeds, with passenger or not, etc) can

be obtained by dispatching centers through real-time GPS record uploading. Thus, an

onboard device should be installed in taxicabs to let dispatching centers monitor the

detailed status of taxicabs and find the most suitable taxicab.

Carpool Route Calculation: After finding the most suitable taxicab, a dispatch-

ing center should calculate the optimal carpool route based on multiple received requests

in a centralized way, and send the calculated route to a driver. This route should be

efficient in terms of the total distance to deliver all assigned passengers. In addition,

the calculation of routes should be fast enough to enable a responsive taxicab carpool

service.

Fare Estimation and Calculation: With a carpool route schedule, dispatching

centers should notify passengers with fare details of several carpool options for their

approval. A win-win carpool fare model that estimates fares is missing in the taxicab

business. Further, current fare meters can calculate only a single fare, and a more

advanced fare meter that can record multiple concurrent trips is desirable for carpooling.

To address these challenges, we aim to develop a carpool system, coRide, as a hard-

ware and software co-design with a passenger client app and an front-end onboard device

called TaxiBox, along with a back-end cloud server to upgrade current taxicab networks.

coRide employs multiple sensors and devices attached to TaxiBox to effectively manage

taxicab networks. We provide an overview of coRide in Section 5.3.
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5.3 Service Overview

In this section, we present an overview of coRide, which consists of three key parts: a

cloud server, passengers clients, and onboard TaxiBox devices as shown in Figure 5.12.

Mobile 

App

Onboard TaxiBox

Carpool 

Selection

Phone 

Call
Route 

Calculation

Fare 

Estimation

Delivery 

Requests
Carpool 

Schedules

Physical and 

Delivery Status

Cloud Server

Onboard Sensing

External Devices

Central Control

Passenger Clients

coRide

Figure 5.12: coRide Overview

Passenger Client: Passenger participation is required by our design, which can

be encouraged by our win-win fare model discussed later. Assuming that passengers

will be willing to participate, they will provide delivery requests to the dispatching

center. The most common way to provide delivery requests is to call the dispatching

center by phone to provide the number of passengers, pickup time, origin, destination,

and possible delivery deadline. Further, mobile apps can be used to provide delivery

requests without calling the dispatching center. Based on the delivery requests provided

by passengers, the dispatching center will return a carpooling option with a reduced fare

for their approval, along with a non-carpool option with a regular fare for comparison.

An example of such passenger clients is given in Section 5.4.

Onboard TaxiBox: When a carpool is approved by passengers, a dispatching

center will locate a suitable taxicab for the carpool based on the current status of

taxicabs and then send a carpool route schedule to this taxicab’s TaxiBox. The driver

will respond to this carpool request by changing the status of the taxicab and then

performing the carpool route schedule. These functions are performed by three key

components of TaxiBox, which will be introduced in detail in Section 5.5.
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Cloud Server: In this chapter, we will focus on function designs for a cloud server

at dispatching centers with an emphasis on taxicab carpool services rather than regular

services. In our carpool service design, a cloud server is mainly in charge of

(i) receiving delivery requests from passengers;

(ii) calculating carpool routes based on delivery requests;

(iii) estimating carpool fares for passengers to approve;

(iv) sending carpool routes to suitable taxicabs;

(v) obtaining the physical and delivery status of taxicabs.

In the rest part of the chapter, we present the detailed passenger client and Taxi-

Box design in Sections 5.4 and 5.5; for the dispatching cloud server, we describe three

key functions, the carpool route calculation and fare model in Sections 5.6 and 5.7,

respectively.

5.4 Frontend Passenger Client

We embed coRide as a carpooling service into one of our taxicab-booking app for taxi-

cab passengers about the taxicab network in Shenzhen. In Figure 5.13, we show the

app screenshots about on-duty taxicabs checking, carpooling request submitting, and

phonecall for services.

For the on-duty taxicab checking function, based on the access of real-time data of

taxicabs in Shenzhen, we analyze both locations and status of all taxicabs and show them

with different icons based on their status on a Shenzhen city map. For the carpooling

function, based on the location and time entered by users, the app sends a carpooling

request to the cloud server, which returns a carpooling schedule based on the status of

taxis. The current version of our app is in test based on the regulation of Shenzhen city.

Although our app is specifically designed for Shenzhen, the key functions, e.g., on-duty

taxi checking and carpooling request submitting, can be generalized to other cities as

well.
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Phonecall for ServicesOn-duty Taxicabs Carpooling Location

拼车

Figure 5.13: App Screenshot

5.5 Frontend Onboard TaxiBox

In this section, we present our hardware design, and then show the deployment about

TaxiBox, and final propose the capability of taxicabs with TaxiBox.

5.5.1 TaxiBox Design

As shown by Figure 5.14, our onboard device, TaxiBox, consists of three main parts:

central control system, onboard sensing system, and external devices.

The central control system has two key parts, the power module and the CPU mod-

ule. For the power module, we employ TPS54160 from Texas Instruments, which is

a 60V, 1.5A, step down SWIFT DC/DC converter with an integrated high-side MOS-

FET. For the CPU module, we use a 32 bit 72 MHz processor STM32F103 from ARM

Cortex-M3 processors with A/D Convertors of 12-bit accuracy.

The onboard sensing system has open interfaces to multiple sensors, and the current

hardware has (i) alcohol and smoke sensors, (ii) a ± 2g triaxial acceleration sensor, and

(iii) a camera and a microphone. Based on the above sensors, a dispatching center is

capable of monitoring the comprehensive physical status of a taxicab on streets.
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Figure 5.14: TaxiBox Hardware Design

Various external devices can be integrated into our TaxiBox. Some external devices

in the current TaxiBox design include (i) a display and a speaker integrated to the

display; (ii) a traditional fare meter for fare calculation and receipt printing; (iii) backup

power for a situation in which the main power is not available; (iv) an emergency button;

(v) a GPS module with a separate GPS antenna; and (vi) a CDMA 1X communication

module with a separate antenna.

In some existing taxicab networks, the communication modules usually use GPRS

(e.g., for GPS coordinates uploading) between taxicabs and dispatching centers. But

in our design, taxicabs typically have a larger dataset to upload to or download from

a dispatching center. Thus, a CDMA 1X, instead of GPRS, communication module

is attached to TaxiBox, since CDMA employs different channels for voice and data

communications, which clearly has advantages in terms of communication speed and

stability, compared to GPRS that employs the same channel for data communications.

5.5.2 TaxiBox Deployment

We have deployed our TaxiBox in 98 taxicabs as shown by Figure 5.15. The alcohol

and smoke sensors are installed in the ceiling of taxicabs for better sensor functions.
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The camera is in front of passengers so as to take pictures from a better angle. The

main part of TaxiBox is hidden above the glove box. The display is installed above the

air-conditioner control panel for easier access by drivers. The 3 axis acceleration sensor

is hidden under the glove box.

 

 

 

  

Alcohol & Smoke 

Sensor

Camera Central Control

MIC & Meter & 

Display

3-Axis ACC Sensor

Figure 5.15: TaxiBox Deployment

5.5.3 TaxiBox Capability

In this section, based on the hardware we deployed in taxicabs, we introduce the capa-

bilities of TaxiBox.

Taxicab Physical Status Sensing: Dispatching centers should be fully aware of

the status (e.g., location, speed, etc.) of taxicabs to provide better carpool service.

With GPS and CDMA 1X modules onboard, a taxicab can periodically upload its

real-time physical status to a dispatching center. The onboard traditional fare meter

and TaxiBox with a display can function together as a smart meter that can record

the status of several trips, i.e., the delivery distance and fare for different passengers

onboard, whereas the traditional fare meter can only record a single delivery distance.

Further, a speaker is integrated into the display so dispatching centers can issue a voice

schedule or voice navigation.
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Taxicab Delivery Status Sensing: In addition to a taxi’s physical status, a dis-

patching center is also interested in the real time status of its deliveries. The status

of deliveries includes delivery distances, with passengers or not, fare, duration, start

time, end time, pickup and dropoff location, which all can be obtained by TaxiBox and

uploaded to dispatching centers.

In current taxicab status design, the status of taxicab about passengers is either 0,

indicating no passenger onboard, or 1, indicating passengers onboard, but exactly how

many passengers cannot be obtained. But unlike regular taxicab services, for a carpool

service, the number of passengers in a trip is another key status of taxicab trips, since

it decides how many other passengers can be pooled into the same taxicab. But in the

current taxicab network, the only way for a dispatching center to obtain the number

of passengers in a taxicab is to contact working drivers, which can create a dangerous

distraction for driving.

With capabilities of TaxiBox in our design, we propose the solution of counting

passengers with the camera of TaxiBox. When passengers first enter a taxicab, the

driver will reset the fare meter and the camera will automatically take a picture to

show the current image inside the taxicab. With a face detection algorithm [67], a

TaxiBox can obtain the number of passengers inside a taxicab and change the status of

taxicabs from 0 to the number of passengers onboard. The reasons we process images

in TaxiBox without uploading them to dispatching centers are twofold: first, uploading

images costs much more communication traffic than changing a number in GPS trace

records (20KB extra vs. 0 extra uploading), and the amount of data a TaxiBox can

upload via CDMA is limited by a monthly payment plan (30MB per month); second,

uploading images may lead to privacy violations. A picture taken from a camera inside

a taxicab is shown in Figure 5.16 where with a face detection algorithm, we can count

the number of passengers with TaxiBox.

Under taxicab scenarios, when the camera takes pictures, several passengers could

face in different directions, so a multi-view face detection algorithm has to be considered.

The face of passengers can also be hidden by other objects such as seats, so we can

improve the results by taking multiple pictures. In this chapter, we focus mainly on

taxicab system design, instead of image processing, so we employ a state-of-the-art face

detection algorithm [67] to serve our carpool service. Its performance curve is given in
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Figure 5.16: Picture inside Taxi
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Figure 5.17: Detection Performance

Figure 5.17 with different thresholds for a false positive rate.

5.6 Backend Cloud Server

In this section, we focus on the cloud server design in term of carpool route calculation.

We first propose preliminaries about our carpool work, then define a carpool route

calculation problem, and finally propose its solution.

Carpools can be classified into four categories:

(i) one origin to one destination (1→ 1);

(ii) one origin to many destinations (1→ N);

(iii) many origins to one destination (N → 1);

(iv) many origins to many destinations (N → N).

For the sake of presentation, we will focus on 1→ N because (i) 1→ 1 is a special case

of 1 → N ; (ii) N → 1 can be solved with 1 → N by reversing origin and destination;

and (iii) N → N can be solved with a special 1 → N with constraints on the order in

which to visit all origins and destinations. Without loss of generality, we use 1 → N

model (e.g., carpool passengers from an airport) as an example for the design.
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5.6.1 Preliminaries

For a carpool, a passenger will provide a delivery request with an origin, a destination,

a start time and an optional end time (A possible end time serves as a deadline for

delivery, but our model works with an unknown end time). Thus, given several requests

for carpooling from the same origin as in Figure 5.18(a), we shall analyze distances

between their destinations, which can be shown as a complete graph. We construct this

complete graph as shown in Figure 5.18(b) by (i) treating both origin and destinations

as vertices, and (ii) linking all vertices to each other with directed edges, associated

edge weights with pairwise mileage costs.

D1:[a, b];   

D2:[a, c];   

D3:[a, d];   

D4:[a, e];   

D5:[a, f];   

D6:[a, g];

D7:[a, h];

D8:[a, i];

D9:[a, j];

(a) Requests (c) Delivery Graph (no carpool)

a

c

b

i

d

e
f

g

h

j

(b) Complete Graph G

Mij
c

b

i d

e

fg

h

j

a

Origin a

Maj

Figure 5.18: Complete Graph

Subfigures (a) and (b) in Figure 5.18 give an example of how to create a complete

graph based on 9 delivery requests from the origin a. A weight on an edge (e.g., Mij)

indicates the real-world mileage between two locations. Given the complete graph, we

can obtain a carpool route based on a delivery graph, which is defined as follows.

Definition 1: Delivery Graph: With a complete graph G given by delivery requests,

a delivery graph is a subgraph of G where (i) the origin vertex can reach all destination

vertices; (ii) no branches exist at any vertex but the origin vertex (i.e., spoke topology)

With this definition, a delivery graph uniquely indicates a carpool route where the

total carpool mileage is equal to the sum of all its edges’ weights. In Definition 1, the

condition (i) is to make sure that with a carpool route, all passengers can be delivered

from the origin to their destinations; the condition (ii) is to make sure that every

passenger will take only one taxicab during the carpool, i.e., without relay. Subfigure (c)

in Figure 5.18 gives an example of a delivery graph without carpool, i.e., all passengers
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are delivered by separate drivers with separate mileages, e.g., Maj .
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Figure 5.19: Delivery Graph with Carpool

The examples of a delivery graph DG with carpool are given in Subfigure (a) of

Figure 5.19. In DG, the origin vertex a can reach all destination vertices, and no

branches exist at any destination vertex. A delivery graph (e.g., DG) indicates a real-

world carpool by specifying (i) a passenger assignments for taxicabs, and (ii) a delivery

order for a taxicab’s passenger assignment. For example, DG shows that three taxicabs

fulfill passenger requests with destinations on three paths (the total weight on edges of

a path indicates the real-world mileage): Taxi 1 delivers passengers to b, with a mileage

Mab; Taxi 2 delivers passengers to c, d, e and f , with a mileage Mac+Mcd+Mde+Mef ;

Taxi 3 delivers passengers to g, h, i and j, with a mileage Mag +Mgh +Mhi +Mij .

Subfigure (b) of Figure 5.19 gives an example of carpools prohibited by coRide. To

carpool by this subgraph, we have to at least use two taxicabs to deliver passengers

to c, d, e and f : the first taxicab delivers passengers with destination c, d, and e, but

carries only the passenger with destination f from origin a to an intermediate vertex d;

the second taxicab has to pick up this passenger at vertex d (a relay), and then deliver

him or her to destination f as shown in Subfigure (c).

We argue that the carpool service with a relay is not practical in real world, because

(i) the relayed passenger has to pay multiple times to different drivers, and (ii) the

coordination between taxicabs would lead to a large layover delay. Therefore, coRide

supports only the delivery graphs with a spoke topology to indicate a practical real-world

carpool route schedule for drivers to deliver passengers without a relay.
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5.6.2 Carpool Route Calculation Problem

Based on the delivery graph proposed in the last subsection, we propose our carpool

route calculation problem: Given a complete graph based on delivery requests,

find the minimum weight delivery graph.

The complete graph can be easily constructed based on delivery requests provided

by passengers; as a subgraph, a delivery graph specifies passenger assignments and

delivery orders to fulfill all delivery requests; the minimum total weight of a delivery

graph indicates it fulfills all requests with a carpool spending the minimum total mileage.

To perform a practical carpool, we also consider three constraints as follows.

(i) Taxicab Capacity c; it shows how many passengers can be pooled into one taxi.

(ii) Number of Available Taxicabs n; it shows how many taxicabs can be used for

carpool at the origin.

(iii) Travel Period [tsi , t
e
i ]; it shows the earliest pickup time tsi and the latest dropoff

time tei for a delivery request i.

Based on the above discussion, our carpool route calculation problem is related to a

multiple traveling salesmen problem (called mTSP where multiple salesmen start from

a depot to visit different cities with the minimum total distance [68]) with the special

carpool constraints. An mTSP is generally solved with Integer Programming to the

optimal solution. But for our large scale setting, the optimal solution results in a long

running time, since it is NP-Hard. Thus, an approximation algorithm should be used

to obtain a delivery graph within a reasonable time.

Another key feature of our carpool route calculation problem is that instead of

booking a carpool trip a day or two in advance, some passengers may provide online

delivery requests just tens of minutes before the starting time of their deliveries. So an

online algorithm is also necessary. Therefore, the design agenda about our solution to

the carpool route calculation problem is given as follows:

(i) we use Integer Linear Programming to formulate our carpool route calculation to

obtain the optimal solution in Section 5.6.3;

(ii) for a practical (faster) solution, we propose a 2-factor approximation algorithm to

obtain a sub-optimal solution in Section 5.6.4;

(iii) to consider online requests, we present our online algorithm in Section 5.6.5.
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5.6.3 Optimal Algorithm

We formulate our Carpool Route Calculation with following definitions.

(1) G = (V,A): a weighted complete graph where vertex a is the origin vertex where a

carpool starts and V ′ = V −{a} is the set for destinations, and a weight on A indicated

as cij is the real-world mileage cost from vertex i to vertex j ;

(2) xij = 1 if edge (i, j) ∈ A is used; xij = 0 otherwise;

(3) [tsi , t
e
i ]: a travel period for a passenger to vertex i;

(4) n: the number of available taxicabs; c: the taxicab capacity;

(5) yi: total number of dropped passengers before vertex i;

(6) qi: total number of dropped passengers at vertex i;

(7) pi: time arriving at vertex i;

(8) wi: latest starttime of dropped passengers before vertex i;

(9) T (i, j): travel time between vertex i and vertex j.

min
∑

(i,j)∈A

cijxij

s.t.
∑
i∈V

xij = 1 ∀j ∈ V ′ (5.1)

∑
j∈V

xij ∈ {0, 1} ∀i ∈ V ′ (5.2)

∑
j∈V ′

xaj ≤ n
∑
i∈V ′

xia = 0 (5.3)

yi + qi ≤ c ∀i ∈ V ′ (5.4)

If xij = 1⇒ yi + qi ≤ yj ∀i, j ∈ V ′ (5.5)

pi ≤ tei ∀i ∈ V ′ (5.6)

If xij = 1⇒ pi + T (i, j) ≤ pj ∀i, j ∈ V ′ (5.7)

max{wi, tsi}+ T (a, i) ≤ tei ∀i ∈ V ′ (5.8)

If xij = 1⇒ wi ≤ wj ∀i, j ∈ V ′ (5.9)∑
i/∈S

∑
j∈S

xij ≥ 1 ∀S ⊆ V ′ (5.10)

xij ∈ {0, 1} ∀i, j ∈ V (5.11)
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where (4.1) ensures that exactly one taxicab visits a destination; (4.2) ensures that

exactly one taxicab leaves one destination for the next delivery, or the carpool is over and

no delivery needs to be made; (4.3) is about the constraint on the number of available

taxicabs; (4.4) and (4.5) are about the taxicab capacity constraint; (4.6), (4.7), (4.8)

and (4.9) are about the travel period constraint; (4.10) is to prevent the formation of

subtours not including origin vertex a. Note that though a taxicab has disjoint vertices

in a delivery graph, they can share the same route in the real world when performing a

carpool.

Since the traditional traveling salesmen problem is NP-Hard, as a generalized ver-

sion, our problem is also NP-Hard (due to space constraint we omit the formal proof).

Therefore, when the number of destinations increases, the running time to solve the

above integer programming increases exponentially. Although integer linear program-

ming is sufficient for a small number of destinations, we need to accommodate the case

where the number of destinations is large with an efficient algorithm.
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5.6.4 Approximation Algorithm

We first propose an approximation algorithm, and discuss impacts of three constraints.

Approximation Algorithm without Constraints

An approximation algorithm without constraints is under a scenario where all passen-

gers’ travel periods are not considered; the origin has unlimited taxicabs with unlimited

capacities.

We first present some rationales. Any carpool from the same origin can be performed

with two key steps: (i) we shall assign passengers to different empty taxicabs; (ii)

we shall calculate a delivery order for a given passenger assignment for a particular

taxicab. In the followings, we will describe how to make use of this rationale for our

approximation algorithm in two steps and provide its approximation ratio.

(i) Passenger Assignment: Based on a complete graph G created with delivery

requests, we will show how to assign passengers in Figure 5.20.
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Figure 5.20: Passenger Assignment

To assign passengers to different taxicabs, we shall take into account the distances

between destinations given by G in subgraph (a). The objective is to find a minimum

weight subgraph of G to assign destination vertices to different paths (every path is

used by an unique taxicab). Since the minimum spanning tree (MST) is the minimum

weight subgraph of G, in this chapter we try to employ an MST to obtain a passenger

assignment. Subgraph (b) gives a G’s MST Ta with three subtrees rooted at origin

vertex a. Based Ta, we assign the passengers, who have destination vertices in the same

subtree, into the same taxicab. For example, passengers with destinations c, d, e and f
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are assigned into Taxicab 2, as in Subgraph (c). Note that Ta is not a delivery graph

we try to obtain, because Ta has branches at destination vertices. Thus, we have shown

how to conduct passenger assignment based on a given complete graph.

(ii) Delivery Order Calculation: Based on the assignment in step (i), in Fig-

ure 5.21 we show how to calculate a delivery order for passengers in the same taxicab.

a

c

d

e f

a

c

d

e f
(a) a Subtree ST 

from MSP Ta

(b) Doubling to 

enable traversal
(c) Traversal Order

a c d

ef d

Figure 5.21: Delivery Order Calculation

As in step (i), a passenger assignment for a particular taxicab is given by a subtree

rooted at the origin vertex a. Thus, we employ Subtree 2 (named ST ) in the MST

Ta in subfigure (a) as an example to show how to obtain a delivery order. With an

observation on ST , we found that ST only gives a passenger assignment, but not a fixed

delivery order since ST has a branch that requires passenger relay, which is prohibited

by coRide. Thus, a new subgraph transformed from ST should be created to calculate

an order without relay. In this chapter, we use a depth-first traversal from root vertex

to decide a delivery order. But as we can see in subfigure (a), ST is a directed graph,

and cannot be traversed based on current edges. Thus, as in subfigure (b), we double

the edges in ST to create loops to enable a traversal a → c → d → e → d → f . This

order is not a delivery order since it involves duplicated vertices, i.e., d, thus a longer

total mileage Mac +Mcd +Mde +Med +Mdf .

To obtain a delivery order, we use a shortcut strategy to eliminate duplicated vertices

in a traversal. In Figure 5.22, we show how to shortcut some edges about duplicated

vertices, thus further reducing a delivery mileage.

As in subfigure (a) and (b), we shortcut edge ed and df with a new edge ef , and then

shortcut edge fd, dc and ca with another new edge fa. Note that based on triangle
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(c) Delivery Mileage 

Mac+Mcd+Mde+Mef
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d
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b

h

i

Taxi 1

Taxi 2 Taxi 3
(d) Delivery Graph

Figure 5.22: Shortcutting about Duplicated Vertices

inequality, the length of an added edge (e.g., Mef ) is always shorter than the sum of edges

it shortcutting (e.g., Med +Mdf ). Further, we delete the edge fa to obtain the delivery

order a→ c→ d→ e→ f and the total mileage cost of 4 edges (Mac+Mcd+Mde+Mef )

as in subfigure (c). Therefore, with a traversal, we have shown that how to calculate

a delivery order based on a given passenger assignment. With the above two steps, we

finish our approximation algorithm to obtain our delivery graph in subfigure (d).

Proof of Approximation Ratio: We have proved that our traversal algorithm has a

constant performance ratio of 2, i.e., the total mileage obtained by our carpool schedule,

is at most 2 times the optimal mileage we obtained by the optimal solution using integer

programming. This is because (i) with shortcutting, the weight of our delivery graph

W (S) is smaller than a weight of a Traversal W (T ′), i.e., W (S) < W (T ′); (ii) a traversal

is exactly two times of a MST, W (T ′) = 2W (T ); (iii) the MST is smaller than or equal

to the Optimal solution since the optimal solution is a spanning tree and MST is the

smallest spanning tree, 2W (T ) ≤ 2W (O). Thus, W (S) < W (T ′) =2W (T ) ≤ 2W (O),

therefore W (S)
W (O) < 2.

During the construction of the minimum spanning tree, three constraints, i.e., Taxi-

cab Capacity, Number of Available Taxicabs, Travel Period, have special impacts, which

will be introduced in the following three subsections.

Impact of Number of Available Taxicabs n

In this section, we show how to solve a carpool problem with constraints on the number

of available taxicabs n.
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We can reduce the total mileage by delivering passengers separately, if they are

heading in significantly different directions. In a delivery graph G, every subtree rooted

at the origin is associated with a separate taxicab, which satisfies all delivery requests in

this subtree. For example, in Figure 5.23, the spanning tree has three subtrees (boxed),

and therefore we need three taxicabs to satisfy the deliveries.

a

c

d

g

e f

j

b

h i

Taxi 1: a → b;

Taxi 2: a →c→d→e→f;

Taxi 3: a →g→h→i→j;

Figure 5.23: Minimum Number of Taxicabs for Deliveries

When constructing a spanning tree, we have to find one spanning tree whose number of

subtrees rooted at origin is not bigger than n. Figure 5.24 shows how to impose such a

constraint during a spanning tree construction.

Adding edge ab 

indicates 2 taxis

a

cb

Adding edge cb 

indicates 1 taxi

a

cb

Figure 5.24: Constraints on Number of Available Taxicabs n

In Figure 5.24, given n = 1, i.e., there is only one taxicab available for origin a,

suppose that after adding edge ac, currently the minimum edge that should be added

to the tree is edge ab according to Prim’s algorithm. But adding edge ab indicates that

we need two taxicabs to fulfill the deliveries, which is against to n = 1. Alternatively,

we can add edge cb and it will still fulfill the deliveries yet with one taxicab.
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Note that if the only constraint is the number of taxicabs, there is always a spanning

tree (e.g., a “path” graph where one taxicab takes all passengers) under the constraint

of the number of taxicabs.

Impact of Taxicab Capacity c

In this section, we consider how to solve a carpool problem with constraints on the

taxicab capacity c.

Since the taxicab capacity is limited (e.g., 4 for a sedan and 6 for a van), a delivery

graph should not have infinite depth for any delivery branch. It is clear that given a

fixed spanning tree, the minimum taxicab capacity is equal to the size of its biggest

subtree rooted at the origin, because a taxicab has to deliver all passengers in this

subtree from the origin. Figure 5.25 gives an example, where the biggest subtree has

four vertex, therefore the minimum taxicab capacity is 4.

Taxi 1: a → b;

Taxi 2: a →c→d→e→f;

Taxi 3: a →g→h→i→j;

1

4 13 2

a

c

d

g

e f

j

b

h i 4 13 2

Figure 5.25: Minimum Taxicab Capacity for Deliveries

When constructing a spanning tree, we have to control the sizes of subtrees to make

sure the size of the largest subtree less than given capacity constraint c. Figure 5.26

shows how to consider it during the construction of a spanning tree.

In Figure 5.26, suppose c = 1 for simplicity, and suppose that after adding edge ac,

currently the minimum edge should be added to the tree is edge cb according to Prim’s

algorithm. But adding edge cb indicates that we need taxicabs with capacity of 2 to

fulfill the deliveries, which is against to c = 1. Alternatively, we can add edge ab and it

will still fulfill the deliveries yet with capacity of 1.

Note that if the only constraint is capacity, there is always a spanning tree (e.g., a
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Adding edge cb 

requires capacity of 2 

a

cb

Adding edge ab 

requires capacity of 1 

a

cb

Figure 5.26: Constraints on Taxicab Capacity c

star graph where every taxicab only takes one passenger) under the taxicab capacity

constraint.

Impact of Travel Period

In this subsection, we analyze the carpool problem with constraints on the travel periods

of deliveries.

A travel period of a delivery i is specified by [tsi , t
e
i ], where tsi is the earliest time that

a delivery i can start, and tei is the latest time that delivery i must finish. The reason to

consider travel periods is that in practice, two deliveries with non-overlapping periods

cannot be carpooled together, even though they have the same origin and destination.

Thus, a carpool schedule is valid only if its minimum spanning tree fits the travel periods

of all deliveries on this tree, which needs to be validated when constructing the minimum

spanning tree.

We first provide some rationale behind the validations. Due to a carpool, a taxicab

has to leave origin vertex after the carpool start time, which is given by the start time of

last passenger in this carpool. Given this carpool start time, the validation is based on

the expected travel times of all deliveries. According a schedule based on the minimum

spanning tree, if the carpool start time plus a travel time of a delivery i is smaller than

or equal to delivery i’s end time, then this spanning tree can accommodate delivery i.

To impose this constraint, for a minimum spanning tree Ta and a delivery i with

travel period [tsi , t
e
i ] from origin vertex a to destination vertex i, we need to ensure that
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a spanning tree Ta can accommodate delivery i by satisfying:

max
k∈p

tsk + T (a, i) ≤ tei ,

where p is a path on Ta from a to i, hence maxk∈p t
s
k is the start time of last passenger,

and T (a, i) is the travel time from a to i in p of Ta. The left-hand side is expected

arrival time of delivery i by this carpool, and the right-hand side is the latest end time

of delivery i, given by the passenger. Thus, if the left-hand side is not bigger than the

right-hand side, it indicates that Ta can accommodate i. Figure 5.27 gives an example

of how to validate whether the MST can accommodate a delivery or not.

Minimal Spanning 

Tree Ta 

a

cd

e

D1:[a, c, t
s
c=2, t

e
c=7];   

D2:[a, d, t
s
d=2, t

e
d=6];   

D7:[a, e, t
s
e=3, t

e
e=8];

Delivery Requests 

Travel Time

T(a,c)=3; T(d,c)=1; 

   T(a,d)=3; T(d,e)=0.5; 

T(a,e)=3; T(c,e)=1; 

Figure 5.27: Validation on Travel Period

In Figure 5.27, suppose that during the construction of a spanning tree, the next

minimum edge should be added to the spanning tree according to Prim’s algorithm is

an edge de. Based on delivery requests and travel time in Figure 5.27, maxk∈p t
s
k =

max{2, 2, 3} = 3; T (a, e) = 3 + 1 + 0.5 = 4.5; thus, maxk∈p={a→c→d→e} t
s
k + T (a, e) =

7.5 ≤ tee = 8. Therefore, the edge de is a safe edge and can be added to the spanning

tree.

Note that if the only constraint is the travel period, there is always a spanning tree

(a star graph where every taxicab only takes one passenger) under this constraint.

Put All Constraints Together

A practical approximation algorithm shall construct a minimum spanning tree that (i)

accommodates all travel periods of its deliveries, (ii) has the biggest size of subtrees not
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bigger than c, and (iii) has a number of subtrees not bigger than n. The details about

how to impose the three constraints have been given in pervious section. We note that

the order of imposing constraints should not be changed, since it is easiest to find more

taxicabs to fulfill requests, relatively easier to find bigger taxicabs to fulfill requests, and

harder to require passengers to change their schedules. If the conditions conflict with

each other, we can always find a feasible solution by using more taxicabs. Note that with

highly diverse travel periods or a small taxicab capacity, lots of taxicabs will be used to

satisfy deliveries individually, which is a delivery schedule based on “fat” spanning trees

with small yet many subtrees. In contrast, with a small number of available taxicabs,

lots of deliveries will be pooled into one taxicab and then be fulfilled one by one, which

is a delivery schedule based on “thin” spanning trees with big yet fewer subtrees.

5.6.5 Online Algorithm

Instead of providing requests a day or two earlier, some passengers may provide online

requests a hour, or even several minutes, before the delivery start time. In coRide,

we response to online requests by adding them to an existing carpool schedule. Given

an online request k and a delivery graph about existing carpool schedules, our online

algorithm has three key steps as shown by the example in Figure 5.28:

(i) Adding New Online Request to the Existing Delivery Graph: Based on the

location of request k, we add k to the closest request f already in the delivery graph.

This is the optimal solution for adding this online request. This is because if the optimal

solution adds k to another request instead of f , we can always add k to f to obtain a

smaller delivery graph, which is better than the optimal solution. So k must be added

to f in the optimal solution.

(ii) Selecting a set of Close Requests regarding to the New Online Request:

Based on the location of request k, we select a set of requests that are closer to the new

online request k than any other requests already in the delivery graph. In this example,

we select h and f as the close requests to k.

(iii) For Every Close Request, Adjust the Structure of the Delivery Graph

for Small Weight: For every close request, we first find a route from this close request

to the new online request. Then, we compare if the longest link between two requests

on this route is longer than the link from the new online request to this close request.
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If so, we add this link to the delivery graph, and delete the longest link. For example,

in our example, for the close request h, we first find a route from h to k, which is from

h to g to a to c to d to e to f to k. We select the longest link in this route, i.e., g to h,

and then we compare it to the link from k to h. In our case, the distance from g to h

is longer than that from k to h, so we add a new edge from k to h, and the delete the

edge from g to h for a smaller total weight, as shown in the figure.
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Figure 5.28: Online Algorithm
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Figure 5.29: Close
Request

The most important part of this online algorithm is its time complexity. Assuming

we have |C| close requests for an online request in Step (ii), and for every close requests,

we at most go through all existing |N | requests for the adjustment in Step (iii). Thus,

the time complexity is O(|C| × |N |). But we can prove that |C| is smaller than 7, so

we have a linear time complexity O(|N |). For example in Figure 5.29, for a new online

request k, we at most have 6 close requests, which form a regular hexagon. If we have

one more close request, e.g., k′, it will make one of existing requests, i.e., f , closer to k′

than k. Thus f is not a close request any more, which makes the total count of close

requests smaller than or equal to 6.

5.7 Win-Win Fare Model

Generally, a taxicab fare consists of three main parts: an initial charge for every service;

surcharge for luggage, waiting time, etc; and main charge based on traveled distance. In

our model, we focus on how to consider a carpool benefit into calculations of the main

charge. Such a carpool benefit shall be shared between the passengers (as a group) and

the driver, as well as among the passengers themselves. The rationale behind sharing

the carpool benefits with drivers is that we have to encourage drivers to participate
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in the non-mandatory carpool application. We believe that negotiating privately by

passengers alone and sharing the benefits only between passengers will severely hurt the

interests of drivers, since the total profit for all drivers will decrease significantly.

5.7.1 Carpool Benefit

A carpool benefit B between the total non-carpool fare and a fare paid for a carpool

distance is given as follows:

B =
c∑
i=1

τi − τ,

where c is the total number of passengers in this carpool; τi is the separate non-carpool

fare for passenger i; τ is the regular fare for a distance equal to the carpool distance

(not the carpool fare). Thus, the total non-carpool fare of all passengers is given by∑
τi, and the regular fare for the carpool distance is given by τ , and their difference is

a carpool benefit B. Given a carpool schedule, all three parameters are obtainable, and

thus B is also obtainable.

For example, Figure 5.30 shows three passengers (with non-carpool fare τ1 = 17,

τ2 = 32, τ3 = 45) carpooled together with a distance of a regular fare τ = 52, leading to

B = 42. Note that τ = 52 is a regular fare for a distance equal to the carpool distance,

and is not the actual carpool fare all passengers will pay together under our model.

Origin

τ1=17
τ2=32

τ3=45

τ=52

Carpool 

Route

Individual 

Route

= (τ1+τ2+τ3) – τ

= (17+32+45) – 52 =42

Carpool Benefit B

∑τi=94

Figure 5.30: Carpool Benefit

To build a win-win fare model, we need to (i) share a carpool benefit between the

driver and all passengers as a group and (ii) share the benefit within the passenger

group.
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5.7.2 Sharing Percentage between Driver and Passenger

We use ρ to indicate the sharing percentage of the passengers (all passengers as a group)

for a given carpool benefit B, and hence 1− ρ is the sharing percentage of the driver.

(i) For a carpool benefit B, all passengers as a group pay:

Total Fare Paid by Passengers =
c∑
i=1

τi − ρ×B,

where
∑
τi is the sum of regular fares by all passengers in a non-carpool situation; ρ×B

is the benefit to passenger group.

(ii) For a carpool benefit B, a driver collects:

Total Fare collected by Drivers = τ + (1− ρ)×B,

where τ is the fare a driver collects for the carpool distance; (1− ρ)×B is the benefit

for a driver to carpool. Note it is easy to check that the total carpool fare paid by

passengers equals the amount collected by the driver in our model.

In real-world scenarios, ρ can be dynamically decided based on various factors about

the supply and request relationship in a taxicab network. In this chapter, we give an

example to define ρ = # of occupied taxicabs
# of total taxicabs in a certain area during a time window to bal-

ance the carpool incentives between the driver and the passenger. Thus, for a large ρ,

i.e., more occupied taxicabs, the more benefit will be given to the passengers to encour-

age passengers to carpool; for a small ρ, i.e., more empty taxicabs, the more benefit will

be given to the driver to discourage passengers to carpool, balancing deliveries among

other empty taxicabs. In Figure 5.30, given ρ = 1
2 , the total carpool fare collected by

drivers is 52 + 1
2 × 42 = 73, which is equal to the total carpool fare for all passengers,

i.e., 94− 1
2 × 42 = 73.

5.7.3 Sharing Percentage among Passengers

Among the total carpool benefits for all passengers, i.e., ρ×B, we shall decide a sharing

percentage to show a carpool benefit for a particular passenger i, and thus model the

carpool fare for a passenger i. It is given as follows.

Carpool Fare Paid by a Passenger i = τi − ρ×B× τi∑
τi
,
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where τi is the non-carpool fare a passenger i has to pay at a non-carpool situation;

ρ × B × τi∑
τi

is the carpool benefit for a particular passenger i. In Figure 5.30, given

ρ = 1
2 , the carpool fare paid by a passenger 3 is 45− 1

2 × 42× 45
94 ≈ 34.

Currently, we use τi∑
τi

to share the carpool benefit among passengers based on their

non-carpool fare. In other words, we differentiate passengers by their destinations to the

common origin, not the delivery order. But the last dropped off passenger typically will

have a farther destination than other passengers (since our carpool graph is based on the

minimum spanning tree), so he/she will share more carpool benefit than other earlier

dropped off passengers in our fare model, which implicitly compensates to the passengers

with a longer traveling time. In more advanced designs, the sharing percentages among

passengers can also be directly decided by the priority of services, e.g., based on the

delivery order µi of passenger i in a carpool, the sharing percentage can be defined as
µi

Σµj
.

5.7.4 Fare Model Evaluation

In this subsection, we numerically evaluate our fare model. Based on three delivery

requests in Figure 5.30, Figure 5.31 shows the impact of different sharing percentages

ρ on the fare that every passenger pays and the fare the driver collects. It shows when

ρ increases from 0 to 1 (indicating a trend of an undersupplied taxicab services in the

real world), the carpool incentive for the passenger increases from 0% fare savings to

44% fare savings, whereas the carpool incentive for the driver decreases from 80% more

profit to 0% more profit. By adjusting sharing percentage ρ according to taxicab supply,

our model can dynamically balance the carpool incentives for drivers and passengers.

Given requests with fixed non-carpool fares, a short carpool distance will increase the

carpool benefit (the same
∑
τi, but a smaller τ), which results in a win-win situation

(i.e., more profits for drivers and lower fares for passengers). Taking the passengers

with τ1 = 17 and τ2 = 32 in Figure 6.22 as examples, physically, the lower bound of

a fare paid for the carpool distances should be τmin = max{τ1, τ2} = 32. In addition,

passengers may not select a carpool delivery where they pay a fare together more than

the sum of their regular non-carpool fares. So, logically, the upper bound for τ is

τmax = τ1 + τ2 = 49. Figure 5.32 shows impacts of different carpool route distances (by

different τ from τmax to τmin) on the savings percentages of passengers and profiting
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Figure 5.31: Incentive Balancing
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Figure 5.32: Win-Win Model

percentages of drivers. First, it shows a win-win situation as long as τ < τmax. Second,

the smaller τ , the higher the profit for drivers, the lower the fare for passengers.
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5.8 Real-World Implementation

We have installed the customized TaxiBox in a small portion (98 taxicabs) of the taxicab

network of a Chinese city Shenzhen with a population of 10 million to test the function-

ality of TaxiBox. We quickly learned that it takes time to install hardware in current

taxicabs, and that it is much more difficult than we had anticipated. Although the taxi-

cab operators requested that their drivers cooperate with the deployment, drivers still

were not enthusiastic about installing devices to taxicabs with no immediate benefits

to them. During the deployment, it was usual for drivers to not appear or to arrive

late and leave early due to business or personal matters. It was also hard to persuade

drivers to be more involved in system testing, e.g., logging passenger numbers for every

delivery. How to provide an incentive for them to be involved in system deployment

and testing is a key question we need to address.

For a large scale carpool deployment, through the operators from which we obtained

datasets, the dispatching center to collect delivery requests via phone apps we introduced

has been established. But the detailed regulation laws are still under progress to being

passed, and hope to be completed within this year. Thus, a large scale carpool service

evaluation is hard to conduct for the current situation. In this section, we describe our

trial implementation of our coRide system. We rent 3 taxicabs to drive 12 volunteers

from a subway station to their workplaces as in Figure 5.33.

Carpooling 
Vehicles

Subway 
Station

TaxiBox 

Figure 5.33: Experiment in Tanglang Station

Based on their final destinations, we formulate a request graph, and then obtain a

delivery graph for them based on our approximation algorithm under several constraints,
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e.g., a vehicle count of 3, a vehicle capacity of 4, and a tolerated waiting time of 5 mins.

The taxicabs will go back to the subway station until all volunteers are delivered. We

plot the data of the 12 involved volunteers for a 31 day period evaluation in Figure 5.34.

We use a metric called the percentage of reduced total mileage, which is obtained by

the total mileage used to deliver all passengers with carpool, and the total mileage used

to deliver all passengers without carpool. Due to different combinations of volunteers

based on their starting time, the percentage of reduced mileage is different at different

days even though their origins and destinations are the same. On average, we reduce

mileage by 49% for all passengers.

30
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70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

% of Reduced Total Mileage (%) 

Figure 5.34: Reduced Mileage
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5.9 Data-Driven Evaluation

In this section, we perform a large scale trace-driven evaluation of a real-world dataset

about GPS records of 14, 453 taxicabs belonging to different taxicab companies in Shen-

zhen. The first dataset contains daily GPS trace data of the taxicab network, and the

second dataset is about deliveries. The GPS dataset was collected by letting each taxi-

cab upload its records 30 seconds on average to a centralized base station, and the

delivery dataset was obtained by an offline method. Figure 5.35 gives details about

these datasets.

Collection Period 01/01/12-06/30/12 Collection Period 01/01/12-06/30/12

Numbe of Taxis 14,453 Numbe of Taxis 14,453

Data Size 450GB Data Size 18GB

Record Number 3,888,000,000 Record Number 95,000,000

Plate Mumber Date and Time Plate Mumber Begin & End Time

Status Speed Delivery Distance Delivery Duration

Direction GPS Coordinates Delivery Fare Unload Distance

Description of Datasets

GPS Dataset Delivery Dataset

Format Format

Figure 5.35: Details of Datasets

In the GPS dataset, key attributes are taxicab status and GPS coordinates, which

can indicate whether a taxicab at a certain location is empty or not. In the delivery

dataset, the key attributes are delivery distance, duration and fare, which can describe a

taxicab delivery event. Further, the unload distance indicates the distance between the

end location of the last delivery and the begin location of this delivery. By combining

these two datasets, we can fully understand the daily operational situation of the entire

taxicab network and conduct a valid evaluation. Due to the large size of the datasets,

we mainly found two kinds of errors. (i) Location Error: GPS coordinates show that a

taxicab is off the road. (ii) Missing Records: a fair amount of GPS records are missing.

The errors may result from different reasons, e.g., GPS device malfunctions, software

issues, etc. We perform a preprocessing to clean datasets to rule out taxicabs with more

than 10% of missing or errant records.



84

5.9.1 Evaluation Methodology

To show the effectiveness of carpool services, we compare two carpool route calcula-

tion algorithms, the optimal carpool and the approximation algorithm, indicated as

coRide , with the ground truth, which is the original GPS traces from the dataset. To

show the performance of coRide to address online requests, we also plot the performance

of coRide online.

The above algorithms are evaluated based on three different real-world constraints.

(i) Taxicab Capacity c to show that how many deliveries can be pooled together in a

single taxicab. (ii) Number of Available Taxicabs n to show that how many taxicabs

can be used at an origin to fulfill all delivery requests. (iii) Travel Period [tsi , t
e
i ] to

show the delivery start time and a tolerated end time. For travel period constraints,

since we can obtain the actual travel period about every delivery in the dataset, we

use a tolerated detour time t (minutes) plus the actual end time of a trip to show this

constraint. For example, for an actual travel period [tsi , t
e
i ] in the dataset about delivery

i, with a tolerated detour time t, the travel period we used to test a spanning tree is

[tsi , t
e
i + t], instead of the actual travel period [tsi , t

e
i ].

From the three perspectives of society, passengers, and drivers, we evaluate the

performance of the above algorithms by several metrics. From society’s perspective,

with the Percentage of Reduced Total Mileage, we investigate how much mileage

we can reduce by carpooling, given the above constraints and different time lengths

between the time to provide delivery requests and time to start deliveries for online

requests. We also investigate the impacts of both the hours of the day and days of

the week on the percentage of reduced total mileage. From passengers’ perspective,

with the Percentage of Reduced Fare paid by passengers, we show the minimum

fare they can pay, given tolerated detour times. From drivers’ perspective, with the

Percentage of Increased Profit earned by drivers, we present the maximum fare

they can collect, given tolerated detour times. Further, we investigate our operating

model by different carpooling locations and carpooling times. In addition, we also

investigate two practical metrics, i.e., (i) the running time of the optimal algorithm

to show why this optimal algorithm is not feasible in terms of running time, and (2)

the increased individual mileage due to carpooling to show a possible negative effect of

carpooling, i.e., increasing the travel time for passengers.
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In the evaluation, for datasets about individual days of the week, we first process

datasets to obtains delivery requests, and then based on the delivery requests we calcu-

late the carpool route by different algorithms. By processing these requests on a daily

basis, we show the performance when passengers provide delivery requests 24 hours

earlier than the delivery start time, and for requests starting at one day and ending at

the day after, we classify them into the day they start. For coRide online, we show its

performance when passengers provide requests at 1, 3, 6 and 12 hours earlier than the

delivery start time. The results are average outcomes of 7 days of evaluations.

5.9.2 Reduced Total Mileage

In this subsection, we evaluate coRide via the percentage of reduced total mileage at

different parameters.
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Figure 5.36: Total Mileage vs. c
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Figure 5.37: Total Mileage vs. n

Taxicab Capacity c

Figure 5.36 plots the effect of taxicab capacity c on the percentage of reduced total

mileage with tolerated detour time t = 5 and number of available taxicabs n = 16.

With the increase of taxicab capacity c, the percentage of reduced total mileage for

coRide carpool and the optimal carpool also increases. For example, in coRide carpool,

the percentage of reduced total mileage increases from 0% to 22%, when taxicab capacity

c increases from 1 to 4. This is because when taxicab capacity c increases, a delivery

of a taxicab can be pooled with more other deliveries, and thus it can reduce the total
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mileage. It implies that a carpool functions more effectively when taxicabs can carry

more passengers. We observe that the optimal carpool always outperforms coRide

carpool. But during the increase of taxicab capacity c from 4 to 10, the performance

gain increases between the optimal carpool and coRide carpool. This indicates the

optimal carpool functions better when c is larger.

Number of Available Taxicabs n

Figure 5.37 plots the effect of the different number of available taxicabs n on the per-

centage of reduced total mileage with tolerated detour time t = 5 and taxicab capacity

c = 4. We observe that with the increase of number of available taxicabs n, the per-

centages of reduced total mileage in coRide carpool increase from −11% to 27%. These

are some negative percentages of reduced total mileage when the number of available

taxicabs n is small, and a similar situation is also shown in the performance of the

optimal carpool. This is because that with fewer taxicabs at an origin, we have to pool

more unrelated deliveries in this origin into the same taxicab, and drop them off one by

one, and it will increase the total mileage. But when the number of available taxicabs

n is larger than 8, we can reduce the total mileage by carpools. We also find that when

the number of available taxicabs n is larger than 20, the performance gain between

the optimal carpool and coRide increased. It may result from the fact that a spanning

tree with more subtrees will not necessarily help coRide to achieve the global minimum

mileage.

Travel Period [tsi , t
e
i ]

Figure 5.38 plots the effect of different travel periods in terms of different tolerated

detour time on the percentage of reduced total mileage with the number of available

taxicabs n = 16 and taxicab capacity c = 4. In Figure 5.38, we observe that with the

increase of tolerated detour time t in terms of minutes, the percentages of reduced total

mileage in coRide carpool increase from 0% to 33%, while these of the optimal carpool

increase from 0% to 40%, leading to a 7% performance gain. While in a carpool, with

more detour time, more mileage can be reduced by pooling more deliveries together. The

increase of t enables a larger travel period, making more deliveries correlated with each

other in time. With the increase of tolerated detour time t, the increases of performance
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gain slow down between the percentages of reduced total mileage of the optimal carpool

and coRide carpool.
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Figure 5.38: Total Mileage vs. t
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Figure 5.39: Mileage (Online)

Online Requests

In the above coRide carpool, we process requests by days, so it means we pool the

delivery requests that passengers provided by 24 hours in advance (named coRide online-

24). In Figure 5.39, we evaluate the performance of coRide for online requests situations

where (i) the half of the passengers provides requests in advance of 24 hours, and based

on them, we build carpool graphs, (ii) the other half of the passengers provides requests

in advance of 1, 3, 6 and 12 hours (indicated as coRide online-1, etc), and we use our

online algorithm to optimally add these online requests together to the existing carpool

graphs every 1, 3, 6 or 12 hours, leading to new different carpool graphs. We observe

that coRide online-24 outperforms all other versions, indicating the early the passengers

provide requests, the better the performance. This is because with more requests to

begin with, we can build a more effective spanning tree.

Hourly Windows on Weekdays and Weekends

We evaluate coRide carpool’s performance via the percentage of reduced total mileage

on weekdays and weekends, respectively. The other constraints are set as t = 5, n = 16

and c = 4. Figure 5.40 plots the average percentage of reduced total mileage in different

1 hour time windows for five weekdays. We observe that in weekday rush hours, e.g.,
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Figure 5.40: Weekday Mileage
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Figure 5.41: Weekend Mileage

07 : 00− 10 : 00, the percentages of reduced total mileage for two carpool schemes, the

optimal carpool and coRide carpool are both higher than 30%. In contrast, in non-rush

hours, e.g., 00 : 01− 7 : 00, the percentages of reduced total mileage for them are below

20%. Figure 5.41 shows the average percentage of reduced total mileage in a weekend.

We observe that different from weekday, the high percentages of reduced total mileage

in weekend are between daytime 10 : 00−21 : 00. There is no significant high percentage

of reduced total mileage in certain time windows among 10 : 00 − 21 : 00 than others.

But in Figure 5.40, there are higher performances in time windows 07 : 00 − 10 : 00

and 16 : 00− 20 : 00 than others. It shows that performance of carpool on weekends is

different than that on weekdays, since people would take taxicabs at different time on

weekdays and weekends.

Running Time of Algorithms

Figure 5.42 shows the running time of the optimal carpool algorithm and coRide carpool

algorithm at different carpool passenger numbers p at a single origin. We observe that as

the passenger number p increases from 2 to 18, the running time for the coRide carpool

algorithm is negligible compared to the running time for the coRide carpool algorithm.

This is because that our carpool route calculation problem is NP-hard, and the optimal

carpool algorithm uses Integer Programming to obtain the solution, which leads to a

longer running time, and is not practical for real-world carpool route calculation with

a large number of passengers.
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Figure 5.42: Time vs. p
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Figure 5.43: Mileage vs. t

Percentage of Increased Individual Mileage

We evaluate the performance of coRide carpool by the percentage of increased individual

mileage due to carpools with different travel periods. This increased individual mileage

also provides an indication of the detour time a passenger will tolerate for carpooling

with others. Note that although the individual mileage increases, the fare for individual

passengers is actually reduced, since more passengers will share the fare for common

routes, leading to a large carpool benefit, as showed by our Fare Model in Section 5.7.

Figure 5.43 plots the effect of different travel periods in terms of t on the percentage of

increased individual mileage with n = 16 and c = 4. With the increase of t from 1 to 10,

the percentage of increased individual mileage in coRide carpool increases from 0% to

30%, while that of the optimal carpool has a similar trend. In coRide and the optimal

carpool, with more detour time, a high mileage is added to individual deliveries, since

after carpool, most of the passengers will have a new yet longer route compared to the

ground truth.

5.9.3 Reduced Fare

We evaluate the performance of coRide carpool in terms of maximally reducing the fare

for individual passengers, based on the win-win fare model we proposed in Section 5.7.

Based on the datasets, we have the ground truth for regular fares of individual pas-

sengers, and based on the carpool route, we shall have the carpool fare. We let all

the passengers and the driver to evenly share the carpool benefit due to the mileage
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Figure 5.44: Reduced Fare
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Figure 5.45: Increased Profit

reduction of a carpool route. In Figure 5.44, we observe that with the increase of toler-

ated detour time t, the percentages of reduced fare for individual passengers in coRide

carpool increase from 0% to as much as 49%. In a carpool, with more detour time, high

mileage can be shared with other passengers, thus leading to a large carpool benefit for

fare reductions. It will lead to an economic incentive for passengers to carpool.

5.9.4 Increased Profit

In this subsection, we evaluate the performance of coRide carpool in terms of maximally

increasing the profit for taxicab drivers based on our win-win fare model. With the

method similar to that of the last subsection, we can produce an increased profit by

comparing the total carpool fare collected by the taxicab driver, and the ground truth

of the regular fare about the first passenger picked up in the carpool, which gives the

fare the driver will collect in the case that no carpool is conducted. In Figure 5.45, we

plot the effects of different travel periods in terms of t on the percentage of increased

benefits. It shows that with the increase of tolerated detour time t, the percentage of

increased benefits for the drivers in coRide carpool increases from 0% to as much as

76%, which leads to a considerable incentive for taxicab drivers to take carpool trips.
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5.10 Conclusions

In this chapter, as one component of the application design layer for mobileCPS, we

analyze, design, implement, and evaluate a prototype taxicab carpool system coRide to

reduce the total mileage to deliver passengers. Our effort provides a few valuable insights

and guidelines, which are hoped to be useful for realizing carpooling services commer-

cially in near future. Specifically, (i) we found unprecedented evidence of inefficiencies

of current systems, and opportunities for new systems based on our real-world datasets;

(ii) we implemented a customized hardware supporting the essential functionalities for

carpooling; (iii) we affirmed that complicated route functions should be implemented in

a centralized cloud and near optimality can be achieved; (iv) it is important to establish

incentives for all the parties involved (e.g., a win-win situation); and (v) finally our

work only addresses the technical frontier, and it is even more critical to establish a

right policy that would make a large scale deployment feasible.



Chapter 6

Feeder: Last-mile Transit

In this chapter, we introduce a last-mile transit application called Feeder as another

component on the application design layer for mobileCPS. Feeder is also built up ur-

ban mobility modeling, but it requires more-detailed travel information at individual

passenger levels in real time.

6.1 Introduction

Pubic transit contributes significantly to reduction of travel delay and gas consump-

tion [69], e.g., in 2013, public transit reduced 865 million hours of travel delay and 450

million gallons of gas in U.S., achieving a saving of $142 billion congestion cost [70].

However, public transit (e.g., train or subway) typically stops only every mile on average

to maintain a high speed, which means that most of an urban area is beyond an easy

walking distance from a transit station, as shown by our large-scale empirical analysis

in Section 6.2. This issue is known as “the last-mile problem”, which is a key barrier to

better public-transit utilization [71].

In this chapter, we propose a real-time transit service, called Feeder, which uti-

lizes ridesharing-based vehicles (e.g., minibuses) to deliver passengers from their exiting

transit stations to nearby dropoff locations called service stops, thus reducing walking

distances to their destinations. Although Feeder is conceptually applicable to all pub-

lic transit, we focus on the design for subway and train networks where the last-mile

problem is more serious. We envision that Feeder is operated by a city transit authority

92
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with following distinctive features: different from bike systems, Feeder uses only flexible

vehicles without high costs for fixed docking infrastructures or extra efforts to carry or

park bikes; different from taxicabs, a passenger in Feeder pays a much lower flat fare and

also travels more environmental friendly due to a large number of co-riders; different

from regular bus services, Feeder is tailored for last-mile trips with a ring route starting

from a high-demand station, featuring dynamic departure times and data-driven stops.

In Feeder, a passenger is mainly engaged in three phases: (i) wait for a Feeder vehicle

to depart; (ii) ride the vehicle to a service stop; (iii) walk the “last-mile” to destinations.

Therefore, Feeder has the three objectives to enhance passenger experience on waiting,

riding and walking. (i) Minimizing Passenger Wait Time: This objective would be

easily achieved by optimizing vehicle departure times, if passengers can provide where

and when they will exit upstream transit (e.g., an exiting time in a subway station).

However, in real world, passengers normally do not know future exiting times in advance.

(ii) Minimizing Passenger Riding Time: This objective would also be easily achieved

by optimizing vehicle routes based on real-time urban traffic, if we have a real-time

sensor network for traffic detection at urban scale. But the traffic speed sensors, e.g.,

loop sensors, are only installed at major intersections in most cities. (iii) Minimizing

Passenger Walking Distance: This objective would be achieved naturally by optimizing

service stop locations, if passengers are willing to provide fine-grained destinations (e.g.,

a home address). However, passengers may be reluctant to provide such information due

to extra efforts or privacy concerns. As a result, we face an essential challenge to infer

detailed passenger last-mile transit demand (i.e., exiting stations, times and fine-grained

destinations) for Feeder optimizations without active contributions from passengers or

dedicated urban infrastructures.

To address this challenge, we employ existing extreme-scale urban infrastructures

to infer last-mile transit demand and traffic speeds, transparently to passengers. In

particular, we utilize various devices that generate passengers’ location data (e.g., cell-

phones and smartcard readers) in existing infrastructures in order to infer real-time

passenger exiting times and station as well as destinations for Feeder. Further, we use

GPS-equipped vehicle networks, e.g., taxi and bus, to infer real-time traffic speeds to

design optimal routes for Feeder vehicles. As a result, the key novelty of our Feeder

service is that it is a completely transparent, automatic, and data-driven solution yet
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with neither marginal costs for deploying an ad hoc demand-collecting system nor extra

efforts from the passenger side.

Conceptually, our core method provides a new possibility of using heterogenous data

from existing urban infrastructures to improve urban efficiency, as opposed to previous

monolithic and closed ad hoc systems. As a real-world effort, we implement this method

by integrating streaming data from four infrastructures in Shenzhen, China: (i) a 10.4

million user cellular network; (ii) a 14 thousand taxicab network; (iii) a 13 thousand bus

network; and (iv) an automatic fare collection system for a public transit network (i.e.,

subway and bus) with 16 million smartcards. We establish near real-time access to the

above data sources for online analyses. Further, we store 400 million cellphone records,

32 billion GPS records, and 6 billion smartcard records for offline analyses. The key

contributions of the chapter are as follows:

• We utilize various infrastructures to infer passenger last-mile demand in real time.

To our knowledge, the utilized data have by far the highest standard for urban

study in two aspects: (i) the most complete data including cellular, taxicab, bus

and subway data for the same city, and (ii) the largest passenger coverage (i.e.,

95% of 11 million permanent residents in Shenzhen). The sample data are given

in [72].

• We conduct the first work to design a real-time data-driven service Feeder for

the last-mile problem by a two-end solution. For the back end, we propose and

implement a cloud server (called the Feeder server). It provides an online data

fusion based on integrated heterogenous data for three key components: (i) a

departure time computation to minimize wait times based on straightforward yet

efficient smartcard data processing; (ii) a service stop selection to minimize last-

mile walking distances based on cellphone and taxi data; (iii) an online route

calculation with a 3
2 approximation algorithm to obtain a route to connect the

stops. For the front end, we customize and deploy a piece of hardware (called

the Feeder device) as an onboard device to download departure times and upload

status from/to the Feeder server in real time. Feeder spans the entire life cycle

of data-driven application design, starting from hardware design, through data

collection, cleaning, offline analysis, online processing, real-world utilization, to
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field evaluation.

• We implement Feeder in Shenzhen for a field study to test its real-world perfor-

mance. We rent 3 cars installed with our hardware in a subway station where 12

passengers were picked up every morning from the station to their workplaces for

30 days.

• We test Feeder by a comprehensive evaluation with 4 TB Shenzhen data. The

results show that Feeder reduces last-mile distances by 68% and travel times by

52% compared to the ground truth.

We organize this chapter as follows. Section 6.2 gives our motivation. Section 6.3

presents an overview. Section 6.4 describes the front-end devices. Sections 6.5, 6.6, 6.7,

and 6.8 depict the back-end server. Sections 6.9 and 6.10 validate Feeder with a real-

world test and a large-scale evaluation, followed by the discussion and conclusion in

Sections 6.11 and 6.12.



96

6.2 Motivation

To justify our motivation, we explore both severity and ubiquity of last-mile trips by

answering two questions: how long is a typical last-mile trip, and how frequently last-

mile trips occur among all trips, based on datasets we have collected. The details of

data are given in Section 6.5.
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Figure 6.1: Last-Mile in XD
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Figure 6.2: Length in XD

In Figure 6.1, we show last-mile trip lengths between a subway station XingDong

in Shenzhen and inferred passenger destinations closer to it than other stations. The

average length is given in Figure 6.2. The average distance 1.4 km is longer than the

distance that passengers are willing to walk [73], i.e., 400 to 800 m.
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Figure 6.3: Last-Mile Trips
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Figure 6.4: All Trip Lengths

In Figure 6.3, we plot the proportion of lengths from all inferred destinations to
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their closest stations, i.e., last-mile trips. In a log-log scale, a point, e.g., (1.6 km,

0.3%), indicates the last-mile trips with a length from 1.59 km to 1.6 km account for

0.3% of all last-mile trips we studied. The first part of the distribution follows an

uniform distribution (i.e., the horizontal line), and the second part follows a power-

law distribution (i.e., the big tail). Interestingly, the boundary is around 1.6 km. It

reveals that the lengths of last-mile trips are uniformly distributed within the one-mile

boundary, while outside this boundary, the longer the trip, the less frequently it occurs.

Thus, we confirm the severity of the trips within the one-mile boundary.

We study the frequency of last-mile trips among all trips. Because last-mile trips

are usually finished by walking, they are more likely to be captured by cellphone data,

instead of transit data (including taxicab, bus, and subway). In Figure 6.4, we study

CDF of lengths of trips captured by cellphone and transit data. We found that 63%

of trips captured by cellphone data are shorter than 1.6 km, while only 12% of trips

captured by transit data are shorter than 1.6 km (most of them are taxicabs). Since

cellphone trips can be seen as proxies for all trips, we confirm the ubiquity of last-mile

trips by showing that they (i.e., the trips shorter than 1.6 km) have a high frequency

of 63% among all trips. We also verify that passengers normally do not use existing

transit for last-mile trips since they only account for 12% of all transit trips.
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6.3 Service Overview

We first present an operational scenario for Feeder based on Figure 6.5. Without the

Feeder service, a passenger would (i) enter public transit at an entering station, and (ii)

exit public transit at an exit station, and (iii) walk to his/her final destination. Thus,

the last-mile walking distance is from the exiting station to the destination.

1 2

Entering Station DestinationExiting Station

Feeder 

StopFeeder Terminal
Walking 

with Feeder

Walking 

without Feeder
…...

Figure 6.5: Feeder Operational Scenario

In this work, we envision that each of major transit stations has a Feeder terminal where

a Feeder service is operated individually. Therefore, with Feeder, a passenger would (i)

get on a Feeder vehicle at his/her exiting station (which is also a terminal of a Feeder

service); (ii) wait for this Feeder vehicle to leave the terminal based on a departure time,

which is optimally calculated according to inferred passenger exiting stations and times;

(iii) get off this Feeder vehicle at one of service stops on the service route, which are

optimally selected by Feeder according to inferred fine-grained destinations and real-

time traffic info; (iv) walk to the final destination. Thus, with Feeder, the walking

distance is reduced to the distance from the Feeder-service stop to the destination.

Based on the above scenario, three key design challenges for a Feeder service are (i)

how to infer exiting stations and exiting times for transit passengers in order to optimize

vehicle departure times, (ii) how to infer fine-grained destinations in order to optimize

service stop locations, and (iii) how to infer real-time traffic info in order to optimize

routes to link different stops. These challenges are solved in the following framework,

which consists of three key components as in Figure 6.6.

Urban Infrastructures. They include cellular, taxicab, bus and subway networks,

playing an important role in our Feeder design. We collaborate with several service
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Figure 6.6: Feeder Overview

providers and government agencies to establish the real-time access from infrastructure

data sources to our Feeder server. Thus, we enable a complete rendering about dynamics

in last-mile transit demand for passengers in different categories, e.g., cellphone, taxicab,

bus and subway users, which almost cover all residents in urban areas.

Back-end Feeder Server. A Feeder server is located at a dispatching center to

receive and process real-time data from urban infrastructures. Its functions include

(i) Data Management (introduced in Section 6.5): integrating heterogenous data (i.e.,

cellphone, taxicab, bus, and smartcard data) for real-time last-mile transit demand

mining, i.e., passenger exiting stations and times as well as destinations; (ii) Departure

Time Calculation (introduced in Section 6.6): calculating effective departure schedule

online based on mined passenger exiting stations and times to minimize passenger wait

times; (iii) Stop Location Selection (introduced in Section 6.7): selecting efficient stops

offline based on mined destinations to minimize last-mile walking distances. (iv) Service

Route Computation (introduced in Section 6.8): selecting efficient route online based

on real-time traffic info to minimize riding times.

Front-end Feeder Device. A Feeder device is a customized device installed on a

Feeder vehicle. It senses and uploads physical and logical status of each Feeder vehicle

(e.g., locations and numbers of onboard passengers), as well as downloads departure

times and stop locations to/from the Feeder server. These functions are performed by

the three subsystems of a Feeder vehicle as introduced in Section 6.4.
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6.4 Frontend Device

In our project [74], we develop a prototype for front-end data transmission to support

functions in Feeder. Figure 6.7 gives a Feeder device’s real-world deployment, including

three subsystems: (i) an external device system with a GPS module, a CDMA 1X

module, and an emergency button; (ii) a sensing system with a camera, a MIC attached

to a display, and a ± 2g triaxial acceleration sensor; (iii) a central control system with a

TPS54160 power module and a STM32F103 CPU module. Based on these subsystems,

we discuss the capability of a Feeder device as follows.
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Figure 6.7: Feeder Device Design and Deployment

By Feeder devices, a Feeder server shall be fully aware of Feeder vehicles’ physical

status, e.g., locations. Thus, in this design, every Feeder vehicle periodically senses and

uploads its physical status to the server. The logical status, i.e., numbers of onboard

passengers, is also important to the Feeder service, because it affects departure times.

We envision that drivers or fare collecting devices will track the number of onboard

passengers and thus change logical status to inform the server.

A Feeder device shall have an efficient communication module for uploading and

downloading to/from the Feeder server. In the most existing vehicular networks (e.g.,

Shenzhen taxicab networks), GPRS is typically used for the communication between

vehicles and a dispatching center. But in our Feeder service, departure times and stops

have to be sent to Feeder vehicles on time, and vehicle status is also needed to be

uploaded to the Feeder server in a timely manner. Thus, we employ a CDMA 1X

module utilizing separate channels, instead of GPRS, for better performance.
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To summarize, the proposed Feeder device is capable of sensing detailed vehicle sta-

tus and efficiently communicating with the back-end Feeder server, therefore providing

a comprehensive front-end support for the Feeder service.

6.5 Data Management

In this section, we first present data input, and then discuss our data cleaning, and

finally describe our data fusion.

6.5.1 Data Input

We have been collaborating with Shenzhen service providers and government agencies

for access to infrastructures. Conceptually, we use four kinds of devices as sensors to

sense real-world passenger demand in this version of reference implementation.

• Cellphones as Sensors are used to detect cellphone users’ locations at cell-tower

levels based on call detail records.

• Taxicabs as Sensors are used to detect taxicab passengers’ locations based on

taxicab status (i.e., GPS and occupancy). The locations obtained by taxicab

data have a higher spatial accuracy than cellphone data and thus provide a com-

plimentary view, since the taxicab dropoff locations are normally the locations

where passengers want to get off.

• Buses as Sensors are used to detect bus passengers’ locations by cross-referencing

data of onboard smartcard readers for fare payments.

• Smartcard Readers as Sensors are used to detect a total of 16 million s-

martcards used by passengers to pay bus and subway fares. These reader sensors

capture 10 million rides and 6 million passengers per day. There are two kinds

of reader sensors: (i) a total of 14,270 onboard mobile reader sensors in 13 thou-

sand buses capturing 168 thousand bus passengers per hour, and (ii) a total of

2,570 fixed reader sensors in 127 subway stations capturing 60 thousand subway

passengers per hour.
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We establish a secure and reliable transmission mechanism, which feeds our server the

above sensor data collected by Shenzhen Transport Committee and service providers by

a wired connection without impacting the original data sources. Since these data are

already being collected to help service providers operate their services, our large-scale

sensor data collection incurs little marginal cost. The details are given in Section 3.2.

6.5.2 Data Fusion

Our endeavor of consolidating and cleaning these data enables extremely large-scale

resident sensing from different perspectives, which is unprecedented in both quantity

and quality. In particular, we show the number of passengers detected by three kinds

of data in 5-min slots in Figure 6.8, where we do not differentiate subway and bus

passengers, since they are both detected by smartcard readers as sensors.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

 D e t e c t e d  b y  T a x i c a b  S e n s o r s   ( H o u r l y  A V G :  2 1  K )
 D e t e c t e d  b y  R e a d e r  S e n s o r s   ( H o u r l y  A V G :  2 2 8  K )    

 

 

 D e t e c t e d  b y  C e l l p h o n e  S e n s o r s  ( H o u r l y  A V G :  2 . 6  M )    

# o
f D

ete
cte

d R
esi

de
nts

2 4  H o u r s  

 

Figure 6.8: Detected Residents by Data

Though comprehensive enough, the above data are in different granularity and for-

mats, which call for a data fusion procedure. Such a data fusion procedure aims to

transparentize the heterogeneity of the above data to infer passenger demand through

an integrated representation. As follows, we first discuss the heterogeneity of the uti-

lized sensor data from the passenger coverage as well as spatial and temporal resolutions

in Table 6.1.

As in Table 6.1, (i) cellphone sensors cover 95% of 11 million residents, but each

sensor produces a record only when used for an activity, e.g., making a call, and the

corresponding location is only given as one of 17,859 cell towers in Shenzhen; (ii) taxicab

sensors cover daily taxicab passengers only accounting for 4% of all residents, but log

the origins and the real destinations of passengers in fine GPS coordinates during 24
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Table 6.1: Heterogeneous Sensor Data
Sensor Resident Temporal Spatial
Name Coverage Resolution Resolution

Cellphone 95% Sparse 17,859 Towers

Taxicab 4% Continuous GPS Coordinates

Reader 55% Continuous 10,448 Stations

hours of a day; (iii) reader sensors cover daily bus and subway passengers accounting for

55% of all residents, and log locations for passengers as one of 10,448 transit stations,

i.e., 127 for subway and 10,321 for bus, when they use their smartcards.

Due to large scales of the heterogenous data, our fusion procedure is optimized for

simplicity and speed. Thus, we utilize a unified tuple (i.e., a data record) as a generic

abstraction to transparentize the heterogenous sensor data.

r = (i, S, T ),

where i is an ID for a cellphone, taxicab, or smartcard user; S is a location in terms

of stations, cell towers, or taxicab GPS coordinates; T is an associated time based on

a granularity in minutes. Note that although many residents have both cellphones and

smartcards, and they may also take taxicabs, we cannot merge these three different

kinds of passengers in the following Feeder server design, due to the lack of unified IDs

across different datasets.

6.6 Departure Time Calculation

We first discuss why we need dynamic departure times, and show how we predict

passenger-exiting stations and times for dynamic departure times, and present how

we optimize departure time.

6.6.1 Motivation for Dynamic Departure Time

Our motivation for dynamic departure times is based on the key difference in passenger

arrival between regular transit and Feeder. In regular transit, passengers arrive at a

transit station from various origins; however, in Feeder, passengers arrive at a Feeder

terminal mostly from one origin, i.e., upstream public transit, e.g., subway. As a result,
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passenger arrival for regular transit cannot be accurately predicted due to its various

passenger origins, and thus they typically use fixed departure times [69]; but the pas-

senger arrival for Feeder can be predicted by observing current passengers on public

transit, which are known based on real-time smartcard transactions. Thus, we are in-

spired to predict Feeder passenger arrival by predicting exiting (in terms of stations and

times) of current passengers in public transit. Such a passenger exiting prediction for

public transit is used as a passenger arrival prediction for Feeder to calculate dynamic

departure times for short wait times.

To support our motivation, based on empirical datasets, we locate an existing bus

line similar to the last-mile transit with a terminal in a subway station yet with fixed

departure times. In Figure 6.9, we show (i) the number of onboard passengers for its

buses with fixed departures when leaving the terminal, and (ii) the number of passengers

exiting the subway station. Without consideration of real-time fluctuation on exiting

passengers, the number of passengers in buses with fixed departure times also fluctuates

as in the boxes. Such fluctuates may lead to potentially longer passenger wait times,

because a previous bus leaving with only few passengers may leave many passengers to

the next bus, which may not have the space for all these passengers to leave together in

our mid-size Feeder vehicles. Further, we simulate onboard passenger numbers about

the same bus line with dynamic departures based on the number of exiting subway pas-

sengers. We observed that the number of onboard passengers under dynamic departure

times does not fluctuate significantly. In short, it suggests that dynamic departure times

can reduce wait time with well-predicted passenger demand in terms of exiting stations

and times from public transit.

6.6.2 Exiting Time & Station Inference

To obtain such a real-time number of exiting passengers in a public transit station (which

is also a terminal of Feeder), a trivial method is to use historical demand. But it assumes

that passenger demand is stable, which is often not the case in fine-grained time periods.

With real-time data, a straightforward method is to collect the demand when passengers

exit this station for a time period. However, after such demand becomes available, it

is too late to schedule departures because passengers have already been waiting during

the period. We show how to predict passenger exiting times and stations as follows.
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Figure 6.9: # of Passengers
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Figure 6.10: Travel Time

Exiting Times

In this work, we notice that public transit systems have relatively stable travel times

between the same two stations in different periods, especially as we found in subway

networks. Figure 6.10 gives the CDF of standard deviations on travel times based on

our data. We found that 50% of travels have a deviation smaller than 2.2 mins, and 87%

of travels have a deviation smaller than 5 mins. This nice feature allows us to use the

timing information from smartcard transactions when passengers enter, instead of exit,

the transit system. By predicting when passengers will exit a certain exiting station

ahead of time, we have sufficient time to schedule departure times of Feeder vehicles.

Our exiting time prediction using entrance as a condition is more accurate than the

prediction based on pure historical information as shown in the evaluation.

Exiting Stations

We infer an exiting station of a passenger by inspecting the transit pattern of this

passenger in the recent history under real-time contexts. This is because the majority

of passengers as regular commuters exit at the same stations daily near workplaces

or homes. For example, Figure 6.11 gives the CDF of distinct exiting stations for

passengers in a week, and we found that 67% of all passengers only exit at two distinct

stations or fewer, e.g., home and workplace. If we use more contexts (time of day), the

distinct exiting stations would be even fewer. More rigorously, we show the CDF of the

conditional entropy of passenger exiting stations given entering stations and times in
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Figure 6.11: Distinct Station
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Figure 6.12: Entropy

Figure 6.12 where the conditional entropy is lower than 0.7, indicating there are only

20.7 possible exiting stations among total 127 stations. Such a result indicates that

urban transit is highly patterned by commutes, which allows us to provide accurate

prediction on exiting stations, given the real-time entering contexts.

6.6.3 Departure Time Optimization

An optimization overview for a station Sj is in Figure 6.13.

… Tc+τTc Td

A =f(B)=f(C)  

Current 
Slot

Tc+1 ...

Departure Period

*

Figure 6.13: Overview of Departure Optimization

Given the current time slot is Tc and the time slot number of round-trip travel about

Sj is τ , we have a departure period from the next slot Tc+1 to the slot Tc+τ . Among

these slots, we aim to select a departure slot T ∗d with the minimum expected passenger

wait time. Thus, we calculate an expected average passenger wait time (indicated as

ATd) for every possible departure slot Td where d ∈ [c + 1, c + τ ]. A is a function of

several expected exiting-passenger numbers (indicated as BTd for Td) in Td and other
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slots in the departure period. Further, BTd is based on the aggregation on probability

(indicated as C) of passengers exiting station Sj during Td. In the following, we use four

steps to show how to obtain C, B, A and finally T ∗d . Note that we compute in a time slot

unit, instead of the exact time, since it is difficult to find many transactions with the

same exact times even with our large datasets. For concise notation, we match a pair of

entering and exiting tuples for the same passenger to obtain an entry with the following

format: (i, Si, T i, Sj , Tj), indicating that a passenger i entered station Si during slot T i

and exited station Sj during slot Tj . Similarly, with ∗ as the wildcard character, we

present the entry set {·} about all entries for the passenger i as {(i, ∗, ∗, ∗, ∗)}.
Step 1: For every current passenger i in the transit system, we calculate the

probability C(i, Si, T i, Sj , Td) that i who entered Si during T i will exit Sj during Td as

follows.

C(i, Si, T i, Sj , Td) =
|{(i, Si, ∗, Sj , ∗)}|
|{(i, Si, ∗, ∗, ∗)}|

· |{(∗, S
i, T i, Sj , Td)}|

|{(∗, Si, T i, Sj , ∗)}|
,

where the first factor is for exiting station prediction showing that among all historical

trips where i entered Si, how many times i exited Sj ; the second factor is for exiting

time prediction showing that among all historical trips where any passenger entered Si

during T i and exited Sj , how many times s/he exited Sj during Td. All these subsets

can be obtained by aggrergation operations on histroical data.

For example, suppose a passenger i = 1 entered station Si=1 during slot T i=1. We

aim to calculate the probability that passenger 1 will exit Sj=0 during Td=4, given the

current time slot is Tc=3. Based on historical transaction entries of the passenger 1,

suppose among 10 times that the passenger 1 entered S1, s/he exited S0 9 times. As

a result, we have |{(1, S1, ∗, ∗, ∗)}| = 10 and |{(1, S1, ∗, S0, ∗)}| = 9. Further, based on

historical transaction entries of all passengers, suppose among 100 times that a passenger

entered S1 during T 1 and exited S0, there are 80 times that a passenger exited during T4.

Thus, we have |{(∗, S1, T 1, S0, ∗)}| = 100 and |{(∗, S1, T 1, S0, T4)}| = 80. Finally, based

on the formula in Step 1, we have C(1, S1, T 1, S0, T4) = |{(1,S1,∗,S0,∗)}|
|{(1,S1,∗,∗,∗)}| ·

|{(∗,S1,T 1,S0,T4)}|
|{(∗,S1,T 1,S0,∗)}| =

9
10 ·

80
100 = 72

100 .

Step 2: We aggregate probabilities for all N passengers for the expected number
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BSj ·Td of passengers who exit Sj during Td, given entering slots and stations.

BSj ·Td =
N∑
i=1

C(i, Si, T i, Sj , Td).

In our example, suppose only one passenger i = 1 is in the system now, i.e., N = 1,

we have BS0·T4 =
∑N=1

i=1 C(i, Si, T i, S0, T4) = C(1, S1, T 1, S0, T4) = 72
100 .

Step 3: With a length of t, we divide a potential departure period from the next

slot Tc+1 to Tc+τ into equal slots. If a vehicle departs from Sj right after a given time

interval Td where d ∈ [c+ 1, c+ τ ], we calculate the average passenger wait time ASj ·Td

for all passengers arriving during the departure period as

[
∑d

y=c+1 BSj ·Ty · (d− y) · t] + [
∑c+τ

z=d+1 BSj ·Tz · (τ − (z − d)) · t]∑c+τ
x=c+1 BSj ·Tx

,

where (i) the denominator
∑c+τ

x=c+1 BSj ·Tx is the expected passenger number during

the departure period from Tc+1 to Tc+τ . (ii) The first term in the numerator, i.e.,∑d
y=c+1 BSj ·Ty · (d− y) · t, is the total wait time for the passengers who arrive before the

vehicle departs (i.e., arriving from Tc+1 to Td) and leave with the current vehicle. The

passengers arrived at Ty have an expected number of BSj ·Ty and an expected wait time

(d− y) · t. (iii) The second term in the numerator, i.e.,
∑c+τ

z=d+1 BSj ·Tz · (τ − (z − d)) · t,
is the minimum total wait time for the passengers who arrive after the vehicle departs

(i.e., arriving from Td+1 to Tc+τ ) and have to wait for the vehicle to come back yet

with an unknown future departure time. The passengers arrived at Tz have an expected

number of BSj ·Tz and the minimum expected wait time (τ − (z − d)) · t.
In our example, c = 3, τ = 2, t = 10, d = 4, j = 0, BS0·T4 = 72

100 , and suppose

BS0·T5 = 18
100 , so average wait time AS0·T4 for all passengers if the vehicle departs after

T4 is

[
∑4

y=4 BS0·Ty · (4− y) · 10] + [
∑5

z=5 BS0·Tz · (2− (z − 5)) · 10]∑5
x=4 BS0·Tx

.

Thus, we have AS0·T4 =
72
100
·(4−4)·10+ 18

100
·(2−(5−5))·10

72
100

+ 18
100

= 4.

Step 4: We move Td through all possible departure slots from Tc+1 to Tc+τ , and

compare all resultant ASj ·Td , and finally select the departure time after the slot T ∗d

associated with the minimum ASj ·T ∗d among all ASj ·Td .
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In our example, we continue to calculate the average wait timeAS0·T5 associated with

the other possible departure slot, i.e., T5, and then we compare AS0·T5 with AS0·T4 , and

finally select the smaller one to set the depart time for a minimum expected average

wait time.

As an intuitive example, only one vehicle is waiting at Sj , but in our evaluation we

consider a multiple vehicle situation where we select the Top n slots with the minimum

average wait times for n vehicles as the departure slots. The coordination of vehicles

is implicitly considered in the departure time calculation. Further, the slot length, the

vehicle capacity and the data history length also have impacts on Feeder performance,

which are evaluated in Section 6.10.

6.7 Stop Location Selection

We first present our motivation, and then show how to infer passengers’ destination,

and finally optimize stop selections.

6.7.1 Motivation for Data-Driven Stop Locations

Different from regular transit, last-mile transit aims to reduce passengers’ walking dis-

tances to destinations [71]. As a result, we need a destination-driven stop selection to

reduce walking distances. However, large-scale fine-grained destinations are usually un-

known. We are inspired by the fact that the fine-grained destinations of cellphone and

taxicab users have already been captured by cellphone and taxicab data, which have

the potential to serve as proxies for destinations of all passengers.

The destinations of cellphone users are used to infer all destinations because almost

every urban resident has a cellphone, e.g., in Shenzhen our cellphone records cover 95%

of the permanent residents. Further, a total of 17,859 cell towers partitions the 1,991

km2 Shenzhen area into fine-grained cells with the average coverage area of 1,991
17,859km2

≈ 333×333m2, which are generally within a walking distance, and thus are fine enough

to serve as destinations.

The destinations of taxicab users are also good proxies for all destinations, providing

a complimentary view. This is because in urban areas, the residents live in high-rise

apartments in high density, so numerous residents would share the same fine-grained
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Figure 6.14: Inferred Destinations in Downtown

destinations, e.g., the front gate of a residential community. Thus, it is very common

that a public transit passenger’s destination is shared with a neighbor who uses taxicabs,

and thus the destination of this public transit passenger is captured by taxicab data.

To support our motivation, Figure 6.14 highlights the Shenzhen downtown area with

bus and subway stations, cell towers, and taxicab destinations. We found that (i) cell

towers are distributed in fine granularity and more evenly than public transit stations,

and (ii) taxicab destinations accumulated from one hour cover all major road segments.

Note that these two modes of travel (captured by cellphones and taxicabs) have their

unique advantages, which cannot be replaced by the other.
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More rigorously, we show the CDF of coverage areas of all 17,859 cell towers in

Figure 6.15 where 61% of cell towers have a coverage area smaller than 0.2 km2. Further,

we show the CDF of numbers of daily taxicab destinations per 100 m2 among 216

Shenzhen urban regions in Figure 6.16 where 91% of regions have at least one destination

per 100 m2, which is typically within a walking distance.

6.7.2 Passenger Destination Inference

Based on the above discussion, we infer the passengers’ destination set D by combining

a Cellphone users’ destination set Dc and a Taxicab users’ destination set Dt.

To obtain Dc, we employ historical cellphone data offline for a given period (e.g.,

one month) to infer the two most frequently visited locations, i.e., home and workplace,

for every cellphone user at cell-tower levels. This process is executed offline by finding

two most frequently connected cell towers during the work time (9AM-5PM) and the

non-work time (6PM-8AM) on weekdays, respectively, for every user. Based on the

previous study [8], this approach has a high accuracy to infer important locations for

cellphone users.

To obtain Dt, we employ taxicab data to accumulate all obtained destinations into

Dt starting from the latest data, until the size of Dt is equal to the size of Dc. The

reason behind this size-based accumulation is that due to lack of identifiable passenger

ID in taxicab tuples, we have to accumulate all destinations in Dt for a period of time

(in terms of days) to track more destinations for taxicab passengers, thus potentially

more destinations shared by public transit passengers. We stop the accumulation if the

size of Dt is equal to the size of Dc to avoid that Dt numerically dominates the stop

selection.

6.7.3 Stop Location Optimization

We assign every destination in the destination set D to the closest public transit station

based on their locations. This is because passengers usually exit public transit stations

closest to their destinations. Thus, we have a subset Dj of D for a transit station Sj . As

follows, we individually select stops for every public station. We first introduce Schwarz-

criterion-based service stop selection, and then discuss context-aware stop updating.
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Schwarz Criterion Based Section

We utilize the classic K -mean clustering on all destinations in Dj , and select the cen-

troids of clusters as the stops for the station Sj . But one key issue is to determine K,

i.e., the number of stops. The more the stops, the more delay is reduced for passengers

to walk to destinations. But more stops could lead to an overfitting problem, and also

incur more increased delay for onboard passengers due to frequent vehicle stopping.

Thus, to balance the stop number K, we employ the Schwarz criterion [75] as follows.

M∑
i=1

(li − c(li))2 + 2λKlogM,

whereM is the total number of destinations inDj ; li is the GPS location of a destination;

c(li) is the nearest centroid to li among K centroids; λ is the regularization factor.

The first term
∑M

i=1(li − c(li))
2 is called the distortion term, which shows the sum

of Euclidean distances of each destination to its nearest centroid. Under our Feeder

context, we regard the distortion term as the average reduced delay for passengers

due to the increased stops to reduce the average last-mile walking distance to their

destinations. The second term 2λKlogM is called the penalty term where K has to

be regularized by M with a term logM , because the penalty level of increasing K is

decided by both K itself and M . This penalty term is introduced in order to avoid

overfitting. In our Feeder context, we can also regard the penalty term as the average

increased delay for the vehicle stopping in the increased stops.

In the above criterion, the lower the value, the better the clustering performance.

However, in real-world setting, it is not practical to set too many stops for a small

service area to minimize the criterion. Thus, for a station Sj with a coverage area Ej ,

we set the upper bound of Kj for Sj to
Ej

100×100m2 , because an urban block is normally

100× 100 m2. The Kj for Sj is selected among one to its upper bound to minimize the

Schwarz criterion, i.e., finding the “elbow” of the curve of this criterion against Kj .

Context-Aware Stop Updating

We explore context-based stop updating for shorter last-mile distances. This is because

we found that passenger destinations are quite different under different contexts, e.g.,

weekdays and weekends, as shown in the evaluation. For all destinations in Dj about a
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station Sj , we use the day of week as a context to divide Dj into two subsets, i.e., D1
j to

D2
j . Each of which contains the destinations from the data for weekdays and weekends,

respectively. We use each of them to update stop locations of the corresponding day. For

a practical reason, we did not use other contexts (e.g., the time of day) to more frequently

update stops. This is because consistently changing stops may discourage passengers

to take Feeder, since they may not know where vehicles would stop in advance. The

performance of this updating is tested in the evaluation.

6.8 Service Route Calculation

In this section, based on selected stops, we calculate a route A to connect a station Sj

and all its selected stops with the minimum cost. We first introduce the speed modeling,

and then present our route calculation.

6.8.1 Motivation for Traffic-based Routes

The regular transit is typically used to connect two far regions, so their routes are

almost fixed due to intermediate stops [69]. In contrast, the last mile transit is used to

cover a small area centered at a transit station, so it typically starts and ends at the

same location with a typical ring route with few stops. As a result, it can visit all stops

by several routes with different traffic speeds at different times of day, thus enabling

dynamic routes to save travel time.

Based on empirical datasets, we investigate a bus line with a ring route similar to the

last mile transit. Figure 6.17 gives the time of each bus took to finish the fixed route.

We found some fluctuations along the time due to the traffic condition in the rush hour.

In contrast, we plot the travel time of several taxicabs going through the same stops yet

with dynamic routes using less time. One important reason is that different routes have

different speeds at different times of day, and the experienced taxicab drivers usually

select the fastest route accordingly. In short, it suggests that using traffic-based routes

can reduce passenger travel time.
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6.8.2 Travel Time Inference

As shown in Figure 6.17, the travel time has an online nature, i.e., the travel time is

different for the same route in different times of day. To address this issue, we regard

taxicabs and buses as roving sensors to continuously infer real-time traffic speeds. In

particular, a tuple r = (id, l,m) of the taxicab or bus tuple sets indicates that a taxicab

or bus passenger id was at a location l at a moment m, which is used to calculate the

traffic speed on the corresponding road segment. The average time interval for those

tuples is less than 30 seconds, thus enabling an accurate and continuous travel time

monitoring in urban scales. Figure 6.18 shows average traffic speeds during 6PM in 496

Shenzhen regions where a warmer color indicates a slower speed. In short, we obtain

the travel time based on the taxicab and bus data.
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Figure 6.17: Travel Time Figure 6.18: Traffic Speeds in Regions

6.8.3 Service Route Optimization

Theoretically, by regarding the station and stops as vertices, we obtain a complete graph

with time-dependent weights. The weight on an edge indicates the real-time travel time

(obtained by pervasive buses and taxicabs) for a particular time of day between two

vertices (i.e., stops) of the edge. Thus, our route calculation problem is formulated

as follows: given a complete graph including a station and all its stops, find a route to

connect all stops with the minimum weight, i.e., the travel time. This problem is related

to the multiple traveling salesmen problem (called mTSP where n salesmen start from

a depot to visit different cities with the minimum weight [68]). But our problem has a
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relaxed constraint where we can use fewer than n vehicles to visit these stops, instead

of exact n, and n is the number of available vehicles for station Sj . By an analogy to

the NP-hard mTSP, our problem is also NP-hard.

To solve this NP-hard problem, we propose an approximation algorithm with a

bounded performance ratio. Our algorithm produces a route to connect a station Sj to

its Kj stops, given the travel time between them as the weights. Note that the travel

time changes at different times of day, so the Feeder server recalculates the route online

and sends the route to a vehicle after its arrival at the public station. Specifically, the

algorithm is given in three steps.

Step 1: Connecting all stops from Sj by the minimum spanning tree Tj. We

employ the minimum spanning tree (MST) algorithm to link the stops belonging to the

public transit station Sj to obtain a MST Tj rooted at Sj as an underlying connection.

Figure 6.19 gives an example to show the eight stops of Sj and the resultant MST Tj .
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Figure 6.19: Connecting Stops by a MST
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Figure 6.20: Add Perfect Matching

Step 2: Adding a special minimum perfect matching Mj to Tj to obtain

an underlying structure T̄j. (i) We first find a vertex set V ′ containing all vertices

with an odd degree in Tj ; (ii) we construct the minimum weighted perfect matching Mj

for all vertices in V ′; (iii) we add the edges of Mj to Tj to obtain a new graph T̄j ,

as an underlying structure to calculate the final route. Note that a perfect matching

M on V ′ is a set of pairwise non-adjacent edges (i.e., no two edges share a common

vertex in V ′) linking all the vertices in V ′; further, such a perfect matching with the

minimum weight for vertices in V ′ can always be found in a polynomial time [76], since

the number of vertices in V ′ is always even. In Figure 6.20, the left subfigure gives the

grey vertices with an odd degree in Tj as V ′; the right subfigure gives their minimum

perfect matching Mj , consisting of three new edges (bold), which are added to MST

Tj to obtain T̄j . The reason why we add Mj to Tj to obtain T̄j is to enable cycles to

calculate the route; a cycle is a vertex traversal Sj ⇒ Sj that starts at the station Sj
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and stops when it visits Sj again.

Step 3: Obtaining the final route A with a shortcutting based traversal

on T̄j. (i) From the station Sj , we perform a depth-first traversal on T̄j ; (ii) during this

traversal, if we find a vertex that has already been visited before, we shortcut this vertex

(except for the root Sj) to visit the next vertex directly; (iii) we obtain the resultant

graph, consisting of one or more cycles about the root Sj , and each cycle is driven by

at lease one vehicle. Figure 6.21 gives a traversal on T̄j where the left figure gives the

shortcutting based traversal by shortcutting k2, i.e., deleting k1 → k2 and k2 → k3 yet

adding k1 → k3; the right figure gives the final route with 2 subroutes.
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Figure 6.21: Obtaining Final Route by a Traversal

Note that we focus on the reduced travel time, so better performance can be achieved

by having (i) a large vehicle capacity c and (ii) the number nj of vehicles for Sj equal to

or larger than the number of cycles about Sj . Therefore, different passengers can select

vehicles for the cyclic subroute that quickly visits the stops close to their destinations

without long detours. Our design accounts for the constraint on the number of vehicles

nj for Sj , e.g., if only one vehicle can be used nj = 1, we merge all cycles into one big

cycle by shortcutting Sj , and make a route equal to the depth-first traversal on T̄j , i.e.,

shortcutting all visited vertices, so a vehicle visits all stops and then goes back to Sj .

In the appendix, we prove that our approximation algorithm has a bounded per-

formance ratio of 3
2 , i.e., the travel time of the route obtained by our algorithm is at

most 3
2 times of the optimal travel time. Though having the same ratio bound with the

state-of-the-art solution for mTSP [68], our algorithm has a novelty in its shortcutting

mechanism based on the vehicle number constraint.
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6.9 Real-World Implementation

In this project, we have tried for a commercialized implementation of Feeder. The

designed Feeder devices have been configured on 98 vehicles in Shenzhen, and our serv-

er has full capacities to efficiently perform Feeder server functions. However, through

Shenzhen Transport Committee, we have been informed that such commercialized tran-

sit services require a government-issued permit. Alternatively, we implemented Feeder

by ourselves at a subway station Tanglang in Shenzhen for a small-scale trial to show

this system would function well in the real world. To enable a practical test with our

12 prearranged volunteers, we use 3 low capacity vehicles, i.e., taxicabs, as Feeder ve-

hicles with Feeder devices to drive them to their workplaces as in Figure 6.22. But in

a real-world service with more potential passengers, a Feeder vehicle shall have a high

capacity, enabling more environmental friendly services.

Station Exit 
Overpass

Feeder Vehicles

Feeder 
Device

Subway Station 

Figure 6.22: Feeder Service in Tanglang Station

6.9.1 Overview

Based on taxicab and cellphone data, we first obtain the inferred destinations that are

closer to Tanglang than other stations. Next, we use these destinations to obtain eight

service stops, and then find the route based on our route computation to link these

stops to the Tanglang station. The stops and route are given in Figure 6.23. Further,

after arriving at the final stop, the vehicles have to use the same path to go back to the

station due to terrain features.

We collected the data in a 30-day period about the 12 passengers who take the
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Figure 6.23: Real-World Scenario

subway to work and exit at Tanglang station every morning. After exiting the station,

they were picked up individually or together based on their exiting times, and then were

dropped off at their workplaces. We calculate departure times based on their smartcard

data in an online fashion for vehicles to leave. The vehicles would go back to the station

until all prearranged passengers were picked up and then delivered. We videotaped the

service, with which arriving moments, departure moments, last-mile distance and travel

time (equal to wait time plus ride time) were calculated.

6.9.2 Field Study

We use two metrics, i.e., travel time and last-mile distance, to compare Feeder with

regular bus services with fixed departures. We also provide a walking time for reference.

We first evaluate Feeder by the travel time, which is divided into (i) the wait time from

exiting the station to leaving with vehicles; (ii) the ride time from leaving with vehicles

to arriving destinations. Figure 6.24 gives the average wait and ride time among 12

passengers during 30 days, compared to using a regular bus with fixed departures.

Feeder significantly reduces the travel time, compared to a 38 min bus trip. The ride

time is stable around 14 mins, but the wait time is variable around 9 mins.

We evaluate the average travel time for 12 passengers in Figure 6.25. We found the

wait time for some passengers is shorter than others. This is because the prediction
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Figure 6.24: Average Travel Time in 30 days

about the passengers with highly regular patterns is accurate, which leads to effective

departure times. But for the passengers with irregular patterns (e.g., they go to work

from different stations), the prediction is not accurate, leading to ineffective departure

times, which may increase their wait time. Feeder is better than scheduled bus because

of a combined effect that the bus stop is farther than the Feeder stop to both stations

and final destinations of passengers and Feeder has a better schedule.
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Figure 6.25: Individual Time
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Figure 6.26: Last-Mile Distance

Finally, we evaluate Feeder by the last-mile distance. Due to the limited passengers,

we utilize the taxicab and cellphone data to obtain all potential destinations along this

route in one day. Then, we show if the passengers with these destinations were using

Feeder to get off at the closest stops, what the average last-mile distance would be in

the eight stops. We also provide a walking distance from the Tanglong station to every
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stop for reference. In Figure 6.26, the stops 2 and 4 are more effective since the distance

for passengers who got off at these two stops is less than 300 m. For other stops, the

average last-mile distance is about 500 m, still much shorter than regular buses.
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6.10 Data-Driven Evaluation

With datasets introduced in Section 3.2, we perform a large-scale data-driven evaluation

about 127 stations on all five of Shenzhen subway lines, though Feeder also applies to

major bus stations.

6.10.1 Evaluation Methodology

For every station, we first obtain stops based on destinations of cellphone and taxicab

users; then, we find the shortest route to link stops to the station; finally, we use

streaming smartcard data to decide the number of exiting passengers during a given time

slot to simulate a real-world scenario (with unexpected passengers), and we calculate

departure times based on passenger arrival prediction with online data.

We envision that only the half of exiting subway passengers would take the Feeder

service. The destinations of these passengers are randomly set to the real-world des-

tinations of taxicab and cellphone users. We use two key metrics: Percentage of the

Reduced Last-Mile Distance and Percentage of the Reduced Travel Time com-

pared to the ground truth under different logical contexts: (i) Time of Day; (ii) Day

of Week; (iii) District Population. In addition, we investigate several key param-

eters on the system performance: (i) Departure Slot Length t as a time unit for

vehicles to leave stations (the default is 4 mins); (ii) Historical Dataset Length h to

show the impact of historical smartcard data amounts (the default is 6 months); (iii)

Vehicle Status in terms of the vehicle number n and the vehicle capacity c to

investigate the impact of Feeder vehicles (the defaults are given later).

We compare Feeder with its three variations to show the effectiveness of Feeder

design components.

(i) Feeder+DBSCAN utilizing DBSCAN clustering in the stop selection, which is

used to show the advantage of Feeder using the Schwarz-criterion-based stop selection;

(ii) Feeder+Fixed-Schedule utilizing the fixed departures based on vehicle numbers

and the travel time without any smartcard data, which is used to show the advantage

of Feeder using smartcard data for the departure computation; (iii) Feeder+Train

utilizing real-time train arrivals as references to set the departure time, which is used

to show Feeder’s advantage from using individual smartcards; (iv) Feeder+Offline
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utilizing only historical smartcard datasets to obtain departure times, which is used to

show Feeder’s advantage from using real-time online data and from its arrival prediction;

We evaluated Feeder extensively, but due to space limitations, we report impacts

of Feeder+DBSCAN on reduced last-mile distances, and impacts of others on reduced

travel time. The ground truth of last-mile distances and travel time is obtained by

locations of destinations and stations, and an average walking speed of 5 km/h and an

average driving speed of 35 km/h. All results are based on the average of a three-month

evaluation. For scalability, we maintain transit patterns by probability distributions for

every passenger exiting at a station and update them every day. Thus, in the real-time

mode, the running time is negligible compared to departure periods.

6.10.2 Impacts of Logical Contexts

We test the impacts of three logical contexts as follows.

Time of Day

We evaluate impacts of the time of day during the normal public transit operating hours

from 7AM to 11PM. Figure 6.27 plots the reduced last-mile distance among the evalu-

ated subway stations in Shenzhen during 16 hours. Both of services significantly reduce

the last-mile distance. But in the rush hour, Feeder outperforms Feeder+DBSCAN by

19%; whereas in the non-rush hour, Feeder has better performance with a gain of 26%

over Feeder+DBSCAN. It shows Feeder’s advantage by utilizing Schwarz based stop

selection. Feeder has performance of a 68% last-mile distance reduction at the default

time 6PM.

Figure 6.28 shows the average reduced travel time. In the non-rush hour, all services

reduce the travel time by 47% on average; in the rush hour, their performance drops

to 43% on average. But Feeder outperforms Fixed-Schedule shown by 11% more travel

time reduction, because Feeder employs dynamic departure times based on collected

data. Further, Feeder outperforms Feeder+Offline by 21% more travel time reduction,

thanks to the utilization of real-time datasets. Feeder also outperforms Feeder+Train

by 14%, thanks to individual smartcard based prediction. Feeder+Train cannot predict

exact numbers of arriving passengers, thus leading to a suboptimal schedule. Feeder

has performance of a 52% travel time reduction at the default time 6PM.
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Figure 6.27: Reduced Distance

7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3
2 0
3 0
4 0
5 0
6 0
7 0
8 0

 

 F e e d e r + O f f l i n e
 F e e d e r% 

of 
Re

du
ce 

Tim
e (

%)

O p e r a t i n g  H o u r s  

 F e e d e r + F i x e d - S c h e d u l e  
 F e e d e r + T r a i n

 

Figure 6.28: Reduced Time

Note that we show the performance of the Feeder service in terms of percentages,

instead of the nominal values, because of the various travel time and last-mile distances

at different subway stations. In Figures 6.29 and 6.30, we show the nominal values of

the reduced travel time and the last-mile distance for the subway station CheGongMiao

with the largest passenger arrival in Shenzhen. In Figure 6.29, we found that the average

reduced last-mile distance fluctuates but Feeder performs better than Feeder+DBSCAN.

In Figure 6.30, we observed a similar tendency as previously shown in Figure 6.28, i.e.,

Feeder outperforms others, and the performance is better in the non-rush hour.
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Figure 6.29: Distance at CGM
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Figure 6.30: Time at CGM
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Day of Week

Feeder+Weekday as well as Feeder+Weekend are used to test context-aware stop up-

dating based on the performance of Feeder on weekdays and weekends. Figures 6.31

and 6.32 plot their reduced distance and time, respectively. In both of the figures, we

found that Feeder+Weekday has higher reduced distances than Feeder+Weekend during

the morning and evening rush hour. This is because the residents travel in the morning

and evening rush hour on the weekday, while they travel in the regular daytime on the

weekend.
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Figure 6.31: Reduced Distance
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Figure 6.32: Reduced Time

District Population

Feeder+Urban gives the performance of Feeder in three urban districts (i.e., FuTian,

LuoHu, and NanShan) in Shenzhen with high population levels, while Feeder+Rural

gives the performance in three rural districts (i.e., Baoan, LongHua, and LongGang)

with low population levels. Figures 6.31 and 6.32 plot their reduced distances and times.

We found that Feeder+Rural has higher reduced distances than Feeder+Urban during

all day. This is because there are fewer and sparser subway stations in the rural districts,

leading to long last-mile distances.

6.10.3 Impacts of System Parameters

We test the impacts of four system parameters as follows.
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Time Slot Length t

In Figure 6.33, we evaluate impacts of the slot length t, which decides the Feeder’s

granularity on scheduling. Note that t has no effect on Fixed-Schedule and co-design

schedules with train arrivals. With the increase of t, the performance of Feeder and

Feeder+Offline increases first and then decreases. This is because the prediction on

exiting passengers in a smaller slot is not accurate. But when the slot becomes too

long, the passenger wait times are also prolonged.
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Figure 6.33: Time vs. t
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Figure 6.34: Time vs. h

Historical Dataset Length h

We investigate how much historical information is necessary for the predictions on pas-

senger exiting stations in Figure 6.34. As expected, the longer the time, the better the

performance. But a too long slot does not help much. Even with 6-month historical

datasets, Feeder reduces 52% of the travel time for passengers.

Vehicle Status n & c

In Feeder, we set a different vehicle number n for each different station due to the

various demand. For a station Sj , the default nj = N(τ)
c where the default c is set to 20,

which is the normal capacity of a MiniBus; N(τ) is the number of exiting passengers

using Feeder (i.e., the half of all passengers) during the round trip time slot τ for a

vehicle of a station Sj . Figure 6.35 plots the reduced time on different multiples of n.
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With more vehicles, the percentage of the reduced time for Feeder increases, since the

intervals between departures are reduced. The default multiple of n is 1.5.
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Figure 6.35: Time vs. n
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Figure 6.36: Time vs. c

We investigate the impact of the vehicle capacity c on Feeder in Figure 6.36. With

the increase of c, the reduced time for Feeder increases. This is because a vehicle with

a large capacity carries more passengers, and thus reduced the wait time. It implies

that Feeder functions more effectively when vehicles can carry more passengers. The

performance of Feeder+Train is depended on capacity since it cannot predict passenger

numbers of each train, and a larger vehicle can reduce uncertain of passenger arrivals.

6.10.4 Evaluation Summary

We have the following observations based on the results. (i) The performance of Feeder

is depended on the time of the day as shown by Figures 6.27, 6.28, 6.29 and 6.30.

The day of week and district population also have significant impacts on Feeder as in

Figures 6.31 and 6.32. Among these three real-world contexts, the district population

has the largest affects on the performance, and then the day of week, and finally the

time of day. (ii) The slot length has significant impacts on Feeder’s performance, and

generally as in Figure 6.33, the longer the slots, the more accurate the prediction about

exiting passenger numbers, yet the longer the wait time. But when the slot length is

set between 4 to 8 mins, the difference in performance is not obvious. (iii) How much

historical data to be used by Feeder significantly affects the performance of Feeder as in

Figure 6.34. Normally the longer the history, the better the performance. But the effect
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becomes less obvious when the history is longer than 6 months. (iv) The Feeder vehicle

status, i.e., vehicle number and vehicle capacity, has big impacts on the passenger travel

time as in Figures 6.35 and 6.36. It seems Feeder is more sensitive to the vehicle capacity

than the vehicle number, which motivate us to use few big vehicles, instead of more small

vehicles, in real-world large-scale implementation. (v) The three design components of

Feeder, i.e., stop selection, route computation, and departure time computation are

more effective than DBSCAN-based stop selection, fixed departure times and routes, as

shown by the fact that Feeder outperforms others.
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6.11 Discussion

Passenger Involvement. Feeder is described as an automatic and transparent service

for passengers who do not have to provide any additional information, e.g., arriving

time at public transit stations or real destinations such as home and work addresses.

But unfortunately the majority of passengers is not willing to provide detailed travel

demand due to several reasons such as manual efforts and privacy. Sampling a subset

of passengers who are willing to provide requests would introduce a bias against other

passengers.

First-Mile Travel and Other Types of Travel. In this work, we focus on the

last-mile problem only, and do not aim to address generic travels or the first-mile travel

where passengers travel from origins to transit stations. It has a different setting where

the time of a passenger starting the travel from an origin cannot be accurately predicted

without active passenger involvement such as smartphone apps. A dedicated first-mile

service based smartphone apps may also be used to address the last-mile problem if

passengers would like to participate by providing detailed demand.

Privacy Protections. We took three steps to protect passenger privacy. (i)

Anonymization: all data are anonymized by providers and all identifiable IDs in da-

ta are replaced with serial identifiers. (ii) Minimal Exposure: we only store and process

the data that are useful for our Feeder service, and drop other information for the min-

imal exposure. (iii) Aggregation: our Feeder service uses the aggregated results and is

not focused on individual residents.

Real-world Deployment Issues. We focus on technical aspects of Feeder, and

here we discuss some real-world issues. (i) Focusing on data utilization, we envision

that a passenger would pay a flat fare for short last-mile transit in Feeder. But more

sophisticated fare models can be designed based on unique public transit fare structures

in targeted cities. (ii) A portion of passengers (e.g., visitors) may pay cash to purchase

temporary cards, so we have no historical data about these passengers. But our method

still applies because we can infer their exiting stations and times by general travel trends

given entering stations and times. (iii) In a city where exiting a station does not require

using smartcards, we can still infer an exiting station of a passenger by exploring his/her

next entering station, assuming most passengers take round trips. (iv) If passengers use
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their smartcards in the Feeder service, Feeder design would be easier because we would

know their real destinations. But we still need Feeder to predict passenger-exiting times

in subway networks to schedule vehicle departures. (v) The main deployment cost for

Feeder is the service vehicle, which we envision would be carpooling-based passenger

vehicles such as passenger vans or minibuses, instead of regular taxis. Based on this

carpooling feature, Feeder would significantly reduce passenger fare comparing to the

taxicabs. In Feeder, the most of calculation is performed at the server side because we

have to use real-time data consolidated in the server for prediction. If the real-time

smartcard data can be accessed by frontend onboard devices, the calculation can also

be dispatched to the frontend.
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6.12 Conclusions

In this chapter, as one component of the application design layer for mobileCPS, we an-

alyze, design, implement, and evaluate a service Feeder to tackle the last-mile problem

with extreme-scale urban sensing infrastructures, reducing 68% of last-mile distances

and 52% of travel time on average. Our technical endeavors provide a few valuable

insights, which are hoped to be useful for commercially implementing Feeder-like data-

driven services in the near future. Specifically, (i) we found unprecedented evidence of

the last-mile problem, and design guidelines based on large-scale infrastructure dataset-

s; (ii) we customized an onboard device supporting the essential functionalities (e.g.,

communication and sensing) for real-time on-demand services; (iii) we combined several

yet independent datasets to design a data-driven service and affirmed that complicat-

ed functions (e.g., stop location and departure time optimizations) should be designed

based on real-world data.



Chapter 7

Future Work

In this chapter, I present my future work along with some concrete directions.

7.1 Overview

My future work is to address the fundamental challenge in CPS with mobile urban

systems. In short, it is to balance real-time mobility demand and supply based on

heterogeneous models from imperfect data. (i) Due to loose-control sensing in het-

erogeneous systems, the physical data we have are far from perfect. They are noisy,

sparse, implicit, untimely, and inconsistent. (ii) Based on these imperfect data from

different systems, the models we have are heterogeneous in terms of scale, timeliness,

and granularity, and completeness, especially when we consider the multi-source data

driven models. (iii) Based on these models, we need some application-specific designs

to improve the urban mobility efficiency, which typically requires domain knowledge to

dynamically balance mobility demand and supply in real-world setting.

To address those challenges, my future work essentially has two parts. The theo-

retical part is to design and test novel computer science techniques focused on data life

cycles, including low-quality heterogeneous data cleaning, data fusion, model integra-

tion, model predictive control along with privacy and security issues in urban systems.

The application part is to implement several novel multi-source data-driven applications.
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7.2 Specific Directions

I use three concrete directions to introduce my future work in three directions.

7.2.1 Imperfect-data Inference

The first direction is about imperfect-data inference. Currently, we are working with

our collaborators in Shenzhen to improve the Shenzhen bus arrival prediction service.

The bus system in Shenzhen has more than 14,000 buses, and 10,000 stations with more

than a 10 million ridership. The goal of this project is to accurately infer bus arrival

time by real-time bus GPS. The preliminary version of the service has been deployed,

and the user request account is given in Figure 7.1.
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20

30

0 5 10 15 20

Bus Arrival Prediction

Figure 7.1: Bus Arrival Prediction

But the key challenge we have for this service is that the bus GPS data is missing

all the time. To address this challenge, we propose a solution to integrate multi-source

data from nearby taxis, smartcards and user app data to increase the accuracy of this

service. The technical approach is to use context-aware tensor decomposition to recover
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missing bus GPS data by minimizing recovering errors.

7.2.2 Heterogeneous-Model Integration

The second direction is heterogeneous model integration. We are working with our

collaborators in Shenzhen to model real-time energy consumption as in Figure 7.2.
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Figure 7.2: Transportation Energy Modeling

Our goal is to infer the real-time energy consumption at road segment level. The

challenge is the fine spatiotemporal granularity from multiple heterogeneous data sources.

Based on our datasets in Shenzhen, we can model electricity and gas consumption of

commercial vehicles, but the key challenge is about private vehicles since they do not

upload their data to the cloud server. We aim to use existing urban infrastructures,

e.g., cellphone, OBD devices, cameras and loop sensors to infer the traffic volume and

speed, and thus to infer the energy consumption as shown in the figure. The techni-

cal approach is to preform heterogeneous model integration based on semi-supervised

multi-view learning to minimize disagreement between heterogeneous models.
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7.2.3 Mobility Demand and Supply Rebalancing

Finally, the last direction is about mobility demand and supply rebalancing in urban

systems. We are working with our collaborators in Department of Transportation in

Washington D.C. to design an efficient bike rebalancing algorithm for the D.C. Bike

System as Figure 7.3.

Capital Bikeshare System

Washington D.C.

[10 Bikes /0 Dock]

[0 Bike / 10 Docks]Bike Rebalancing 

Figure 7.3: D.C. Bike Rebalancing

It gives the station map for the DC bike system. Every dot is a station, and the bigger

the station, the higher the demand. Due to high demand, we often find some stations

without any bikes (where passengers cannot rent bikes), and some nearby stations with

any docks (where passengers cannot return bikes). To address this issue, the system

operators need to use trucks to move bikes between stations to ensure sufficient bike

supply. But the key challenge we have is the dynamics passenger demand in the D.C.

bike system. We aim to propose a uncertain demand and supply model based on real-

time data with correlated contexts, e.g., weather, train schedule, other events. The

technical approach is to preform robust model predictive control based on uncertain
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demand models to balance bike supply among different stations.



Chapter 8

Conclusions

In this dissertation, we propose a three-layer cyber-physical system called mobileCPS

for the human mobility modeling and their urban applications. Specifically, for the

real-time data feed layer, we found that integrating multi-source data from mobile ur-

ban systems enables high spatiotemporal granularity and coverage, making it suitable

for many urban phenomenon modeling and application design. But such large-scale

multi-source data have many errors, which have to be fixed before their potentials can

be fully released. For the mobility abstraction layer, we found that the human mobility

modeling based on single-view data introduces biases, which can be addressed by using

multi-view learning methods. Every view itself is incomplete but they are often com-

plementary to each other, and thus it is essential to model the completeness degree of

a view before inferring the mobility. For application design layer, we targeted at two

specific applications, i.e., carpooling service coRide and last-mile transit service Feeder.

Both coRide and Feeder are driven by real-time multi-source urban data and improve

the urban mobility efficiency. Finally, the key insight from this dissertation is that mo-

bile urban infrastructures, e.g., cellphone, taxi, bus and subway systems, are amazingly

complex distributed systems, which interact with each other explicitly or implicitly in

real time at urban scale. The multi-source mobility data generated by these mobile sys-

tems can be used to infer the real-time urban phenomena, e.g., urban mobility patterns,

which can be used to design and evaluate future mobility services, e.g., carpooling and

last-mile transit, to address the most pressing concerns related to sustainability in our

urbanization.
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