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Abstract

The advent of high-speed Internet, modern devices and global connectivity has intro-

duced the world to massive amounts of data, that are being generated, communicated and

processed daily. Extracting meaningful information from this humongous volume of data

is becoming increasingly challenging even for high-performance and cloud computing plat-

forms. While critically important in a gamut of applications, clustering is computationally

expensive when tasked with high-volume high-dimensional data. To render such a criti-

cal task affordable for data-intensive settings, this thesis introduces a clustering framework,

named random sketching and validation (SkeVa). This framework builds upon and markedly

broadens the scope of random sample and consensus RANSAC ideas that have been used

successfully for robust regression. Four main algorithms are introduced, which enable clus-

tering of high-dimensional data, as well as subspace clustering for data generated by unions

of subspaces and clustering of large-scale networks. Extensive numerical tests compare the

SkeVa algorithms to their state-of-the-art counterparts and showcase the potential of the

SkeVa frameworks.
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Chapter 1

Introduction

As huge amounts of data are collected perpetually from communication, imaging, and mo-

bile devices, medical and e-commerce platforms as well as social-networking sites, this is

undoubtedly an era of data deluge [1]. Such “big data” however, come with “big challenges.”

The sheer volume and dimensionality of data make it often impossible to run analytics and

traditional inference methods using stand-alone processors, e.g., [2, 3]. In addition, as the

cost of cloud computing is rapidly declining [4], there is a need for redesigning those tra-

ditional approaches to take advantage of the flexibility that has emerged from distributing

required computations to multiple nodes, as well as reducing the per-node computational

burden. Consequently, “workhorse” learning tools have to be re-examined in the face of

today’s high-cardinality sets possibly comprising high-dimensional data.

Clustering (a.k.a. unsupervised classification) refers to categorizing into groups unla-

beled data encountered in the widespread applications of mining, compression, and learn-

ing tasks [5]. Among numerous clustering algorithms, K-means is the most prominent one

thanks to its simplicity [5]. It thrives on “tight” groups of feature vectors, data points

or objects that can be separated via (hyper)planes (Fig. 1.1). Its scope is further broad-

ened by the so-termed probabilistic and kernel K-means, with an instantiation of the latter

being equivalent to spectral clustering – the popular tool for graph-partitioning that can

cope even with nonlinearly separable data [6] (Fig. 1.3). These tools can also be used to

cluster non-vectorial objects as they rely only on similarities between datapoints. In addi-
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Figure 1.1: Example of a dataset with K = 2 clusters that are linearly separable.

tion, subspace clustering (SC) is a popular method that can group non-linearly separable

data by assuming they are generated by a union of (affine) subspaces in a high-dimensional

Euclidean space [7]. SC enjoys wide applicability, with applications that span image and

video segmentation to identification of switched linear systems in control theory [7].

Furthermore, clustering algorithms can also find applications in graphs and networks

(Figs. 1.4,1.5). As nowadays large-scale networks generate massive amounts of data, numer-

ous challenges are posed regarding their efficient processing [8]. Many of these networks,

such as social and biological, exhibit community structure which is indicative of groups

(clusters) within which the edge density is relatively high compared to the edge density

between groups [9]. These communities generally denote common roles or similar behav-

ior between nodes of the network, e.g., “friends” on Facebook or “followers” on Twitter.

The task of identifying these communities is similar to clustering and has received a lot of

attention recently, especially in the context of social networks [10].

1.1 Context and motivation

A key question with regards to clustering data sets of cardinality N containing D-

dimensional vectors with N and/or D huge, is: How can one select the most “informative”
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Figure 1.2: Example of dataset generated by the union of K = 3 subspaces.

vectors and/or dimensions so as to reduce their number for efficient computations, yet retain

as much of their cluster-discrimination capability?

Feature selection is a rich topic [11] explored extensively from various angles, including

pattern recognition, source coding and information theory, (combinatorial) optimization [12,

13], and neural networks [14]. Unfortunately, most available selection schemes do not scale

well with the number of features D, particularly in the big data regime where D is massive.

Recent approaches to dimensionality reduction and clustering include subspace clustering,

where minimization problems requiring singular value decompositions (SVDs) are solved

per iteration to determine in parallel a low-dimensional latent space and corresponding

sparse coefficients for efficient clustering [15]. Low-dimensional subspace representations

are also pursued in the context of kernel K-means [16, Alg. 2], where either an SVD on a

sub-sampled kernel matrix, or, the solution of a quadratic optimization task is required per

iteration to cluster efficiently large-scale data.

Randomized schemes select features with non-uniform probabilities that depend on the

so-termed “leverage scores” of the data matrix [17, 18]. Unfortunately, their complexity

is loaded by the leverage scores computation, which, similar to [15], requires SVD com-
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Figure 1.3: Example of a dataset with K = 2 clusters that are not linearly separable.

putations – a cumbersome (if not impossible) task when D ≫ and/or N ≫. Recent

computationally efficient alternatives for feature selection and clustering rely on random

projections (RPs) [17–20]. Specifically for RP-based clustering [20], the data matrix is left

multiplied by a data-agnostic (fat) d×D RP matrix to reduce its dimension (d ≪ D); see

also [21] where RPs are employed to accelerate the kernel K-means algorithm. Clustering

is performed afterwards on the reduced d-dimensional vectors. With its universality and

quantifiable performance granted, this “one-RP-matrix-fits-all” approach is not as flexible

to adapt to the data-specific attributes (e.g., low rank) that is typically present in big data.

Multiple algorithms have been developed by the machine learning [7] and data min-

ing [22] communities for the task of subspace clustering. The more recent SC methods

can offer high levels of clustering performance, at the cost, however, of high computational

complexity. The main computational burden in these algorithms is the large number of

datapoints, which have a quadratic effect on the required complexity. A key question in

this case, is whether high clustering performance can be maintained while not exceeding
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Figure 1.4: Facebook egonet with N = 744 vertices, |E| = 30, 023 edges, and K = 5 communities.

the computational budget that is available.

In addition, a plethora of algorithms have been developed for community identification

purposes. Since networks can be considered as graphs, most of the community identification

algorithms are related to graph partitioning or aim at optimizing graph related metrics, such

as modularity [23]. However, as the number of communities and their sizes increase, there is

an urgent need for scalable algorithms able to handle the immense amount of data. For this

purpose, clustering, can be employed to identify communities in networks where grouping

data has strong ties with community identification. Specifically, spectral clustering [24], one

of the “workhorse” algorithms in clustering, shows great potential for community identifi-

cation as it presumes a graph structure on the input data, and can be consequently used as

an “off-the-shelf” tool for clustering communities in networks. However, since spectral clus-

tering entails eigenvalue decompositions and realizations of K-means, the computational

complexity may become prohibitively high in large-scale networks.
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Figure 1.5: Synthetic network with N = 10, 000 vertices, |E| = 250, 214 edges, and K = 13 communities.

1.2 Thesis contributions

This thesis aims to provide a framework for clustering large-scale datasets and networks,

using randomization. Albeit distinct, the inspiration comes from random sampling and

consensus (RANSAC) methods, which were introduced for outlier-resilient regression tasks

encountered in computer vision [25–30].

This thesis’s approach aspires to not only account for structure, but also offer a gamut

of novel randomized algorithms trading off complexity for clustering performance by devel-

oping a family of what is termed sketching and validation (SkeVa) algorithms. The SkeVa

family includes two algorithms based on efficient intermediate K-means clustering steps.

The first is a batch method, while the second is sequential thus offering computational

efficiency and suitability for streaming modes of operation.

The third member of the SkeVa family is kernel-based and enables big data clustering of

even nonlinearly separable data sets. In addition, this method can be employed to cluster

large-scale networks by exploiting the relation of kernel methods to spectral clustering.

Finally, the fourth member of the SkeVa family bypasses the need for intermediate K-

means clustering thus trading off performance for complexity. This method borrows ideas
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from kernel-based approximation of probability density functions (pdfs) [31], and a variant

of it can be used for subspace clustering of high-volume datasets.

Most of the proposed algorithms have the potential of massive parallelization, and there-

fore can be used also in a distributed fashion. This enables using them in a massive dat-

acenter or cloud computing platform. Extensive numerical validations on synthetic and

real data-sets highlight the potential of the proposed methods, and demonstrate their com-

petitive performance on clustering massive populations of high-dimensional data versus

state-of-the-art alternatives.

1.3 Thesis outline

The remainder of this thesis is organized as follows.

• Chapter 2 introduces the family of SkeVa algorithms for Big Data clustering, along

with extensive numerical tests.

• In Chapter 3 an extension of SkeVa is introduced for subspace clustering along with

numerical tests and a rigorous performance analysis.

• Chapter 4 presents a SkeVa algorithm for identification of communities in large-scale

networks.

• Chapter 5 presents a concluding discussion on the SkeVa approaches, as well as a brief

discussion on future research thrusts.

1.4 Notational conventions

Lowercase bold letters, x, denote vectors, uppercase bold letters, X, denote matrices, and

calligraphic uppercase letters, X , denote sets. The (i, j)th entry of matrix X is denoted by

[X]ij . Moreover, RD stands for the D-dimensional real Euclidean space, E[·] the expectation
of a random variable, and ‖ · ‖ a norm.
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Chapter 2

Big Data Clustering via Random

Sketching and Validation

In response to the need for learning tools tuned to big data analytics, the present chapter

introduces a framework for efficient clustering of huge sets of (possibly high-dimensional)

data. Building on random sampling and consensus (RANSAC) ideas pursued earlier in a

different (computer vision) context for robust regression, a suite of novel dimensionality- and

set-reduction algorithms is developed. The advocated sketch-and-validate (SkeVa) family

includes two algorithms that rely on K-means clustering per iteration on reduced number

of dimensions and/or feature vectors: The first operates in a batch fashion, while the

second sequential one offers computational efficiency and suitability with streaming modes

of operation. For clustering even nonlinearly separable vectors, the SkeVa family offers

also a member based on user-selected kernel functions. Further trading off performance for

reduced complexity, a fourth member of the SkeVa family is based on a divergence criterion

for selecting proper minimal subsets of feature variables and vectors, thus bypassing the

need for K-means clustering per iteration. Extensive numerical tests on synthetic and

real data sets highlight the potential of the proposed algorithms, and demonstrate their

competitive performance relative to state-of-the-art random projection alternatives.
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2.1 Preliminaries

Consider the D × N data matrix X := [x1, . . . ,xN ] with D and/or N being potentially

massive. Data {xn}Nn=1 belong to a known number of K clusters (K ≪ N). Each cluster

Ck is represented by its centroid ck that can be e.g., the (sample) mean of the vectors in Ck.
Accordingly, each datum can be modeled as xn = Cπn + vn, where C := [c1, . . . , cK ]; the

sparseK×1 vector πn comprises the data-cluster association entries satisfying
∑K

k=1[πn]k =

1, where [πn]k ∈ (0, 1] when xn ∈ Ck, while [πn]k = 0, otherwise; and the noise vn captures

xn’s deviation from the corresponding centroid(s).

For hard clustering, the said associations are binary ([πn]k ∈ {0, 1}), and in the cele-

brated hard K-means algorithm they are identified based on the Euclidean (ℓ2) distance

between xn and its closest centroid. Specifically, given K and {xn}Nn=1, per iteration

i = 1, 2, . . ., the K-means algorithm iteratively updates data-cluster associations and cluster

centroids as follows; see e.g., [5].

[i-a] Update data-cluster associations: For n = 1, . . . , N ,

xn ∈ Ck[i] ⇔ k ∈ arg min
k′∈{1,...,K}

‖xn − ck′ [i]‖22 . (2.1a)

[i-b] Update cluster centroids: For k = 1, . . . ,K,

ck[i+ 1] ∈ arg min
c∈RD

∑

xn∈Ck [i]

‖xn − c‖22

=
1

∣

∣Ck[i]
∣

∣

∑

xn∈Ck[i]
xn . (2.1b)

Although there may be multiple assignments solving (2.1a), each xn is assigned to a single

cluster. To initialize (2.1a), one can randomly pick {ck[1]}Kk=1 from {xn}Nn=1. The iterative

algorithm (2.1) solves a challenging NP-hard problem, and albeit its success, K-means

guarantees convergence only to a local minimum at complexity O(NDKI), with I denoting

the number of iterations needed for convergence, which depends on initialization [5, § 9.1].

Remark 1. As (2.1a) and (2.1b) minimize an ℓ2-norm squared, hard K-means is sensitive

to outliers. Variants exhibiting robustness to outliers adopt non-Euclidean distances (a.k.a.
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dissimilarity metrics) δ, such as the ℓ1-norm. In addition, candidate “centroids” can be

selected per iteration from the data themselves; that is, c ∈ Ck[i] in (2.1b). Notwithstanding

for this so-termed K-medoids algorithm, one just needs the distances {δ(xn,xn′)} to carry

out the minimizations in (2.1a) and (2.1b). The latter in turn allows {xn}Nn=1 to even

represent non-vectorial objects (a.k.a. qualitative data), so long as the aforementioned (non-

)Euclidean distances can become available otherwise; e.g., in the form of correlations [5,

§ 9.1].

Besides various distances and centroid options, hardK-means in (2.1) can be generalized

in three additional directions: (i) Using nonlinear functions ϕ : RD → H, with H being

a potentially infinite-dimensional space, data {xn} can be transformed to {ϕ(xn)}, where
clustering can be facilitated (cf. Sec. 2.2.3); (ii) via non-binary πn ∈ [0, 1]K , soft clustering

can allow for multiple associations per datum, and thus for a probabilistic assignment of

data to clusters; and (iii) additional constraints (e.g., sparsity) can be incorporated in the

[πn]k coefficients through appropriate regularizers ρ(π).

All these generalizations can be unified by replacing (2.1) per iteration i = 1, 2, . . ., with

[i-a] Update data-cluster associations: n = 1, . . . , N ,

πn[i] ∈ arg min
π∈[0,1]K ;

1
⊤
π=1

δ

(

ϕ(xn),

K
∑

k=1

πkck[i]

)

+ ρ(π) . (2.2a)

[i-b] Update cluster centroids:

{ck[i+ 1]}Kk=1 ∈ arg min
{ck}

K
k=1⊂H

N
∑

n=1

δ

(

ϕ(xn),

K
∑

k=1

[

πn[i]
]

k
ck

)

. (2.2b)

In Sec. 2.2.3, function ϕ will be implicitly used to map nonlinearly separable data {xn}Nn=1 to

linearly separable (possibly infinite dimensional) data {ϕ(xn)}Nn=1, whose distances can be

obtained through a pre-selected (so-termed kernel) function κ [5, Chap. 6]. The regularizer

ρ(π) can enforce prior knowledge on the data-cluster association vectors.

To confirm that indeed (2.1) is subsumed by (2.2), let ϕ(xn) = xn; choose δ as the

squared Euclidean distance in R
D; and set ρ(π) = 0, if π ∈ EK := {ek}Kk=1, whereas
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ρ(π) = +∞ otherwise, with ek being the kth K-dimensional canonical vector. Then (2.2a)

becomes πn[i] ∈ argmin
π∈{0,1}K ;1⊤π=1‖xn −∑k πkck[i]‖22, which further simplifies to the

minimum distance rule of (2.1a). Moreover, it can be readily verified that (2.2b) {ck[i +
1]}Kk=1 ∈ argmin{ck}Kk=1

∑

n‖xn −∑k[πn[i]]kck‖22 separates across ks to yield the centroid

of (2.1b) per cluster.

To recognize how (2.2) captures also soft clustering, consider that cluster Ck is selected

with probability πk := Pr(Ck), and its data are drawn from a probability density function

(pdf) p parameterized by θk; i.e., x|Ck ∼ p(x;θk). If p is Gaussian, then θk denotes its

mean µk and covariance matrix Σk. With θ := [θ⊤
1 , . . . ,θ

⊤
K ]⊤ and allowing for multiple

cluster associations, the likelihood per datum is given by the mixture pdf: p(x;π,θ) =
∑K

k=1 πkp(x;θk), which for independently drawn data yields the joint log-likelihood (Π :=

[π1, . . . ,πN ])

ln p(X;Π,θ) =

N
∑

n=1

ln

( K
∑

k=1

[πn]kp(xn;θk)

)

. (2.3)

If ϕ(xn) := xn, ck := p(xn;θk), and δ(xn,
∑

k πkck) := − ln(
∑

k[πn]kp(xn;θk)) in (2.2),

then soft K-means iterations (2.2a) and (2.2b) maximize (2.3) with respect to (w.r.t.) Π

and θ. An alternative popular maximizer of the likelihood in (2.3) is the expectation-

maximization algorithm; see e.g., [5, § 9.3].

If the number of clusters K is unknown, it can also be estimated by regularizing the

log-likelihood in (2.3) with terms penalizing complexity as in e.g., minimum description

length criteria [5].

Although hard K-means is the clustering module common to all numerical tests in Sec.

V, the novel big data algorithms of Secs. III and IV apply to all schemes subsumed by

(2.2).

2.2 The SkeVa Family

Five novel algorithms based on random sketching and validation are introduced in this

section. Relative to existing clustering schemes, their merits are pronounced whenD and/or

N take prohibitively large values for the unified iterations (2.2a) and (2.2b) to remain
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computationally feasible.

2.2.1 Batch algorithm

For specificity, the SkeVa K-means algorithm will be developed first for D ≫, followed by

its variant for N ≫.

Using a repeated trial-and-error approach, SkeVa K-means discovers a few dimensions

(features) that yield high-accuracy clustering. The key idea is that upon sketching a small

enough subset of dimensions (trial or sketching phase), a hypotheses test can be formed by

augmenting the original subset with a second small subset (up to d affordable dimensions)

to validate whether the first subset nominally represents the full D-dimensional data (error

phase). Such a trial-and-error procedure is repeated for a number Rmax of realizations,

after which the features that have achieved the “best” clustering accuracy results are those

determining the final clusters on the whole set of dimensions.

Starting with the trial-phase per realization r, ď dimensions (rows) of X are randomly

drawn (uniformly) to obtain X̌(r) := [x̌
(r)
1 , . . . , x̌

(r)
N ] ∈ R

ď×N . With ď small enough, K-

means is run on X̌(r) to obtain clusters {Č(r)
k }Kk=1 and corresponding centroids {č(r)k }Kk=1 [cf.

(2.1a) and (2.1b)]. These sketching and clustering steps comprise the (random) sketching

phase.

Moving on to the error-phase of the procedure, the quality of the ď-dimensional clus-

tering is assessed next using what is termed validation phase. This starts by re-drawing

ď′-dimensional data {x̌(r′)
n }Nn=1 (ď′ ≪ D− ď), generally different from those selected in draw

r. Associating each x̌
(r′)
n with the cluster x̌

(r)
n belongs to, the centroids corresponding to

the extra ď′ dimensions are formed as [cf. (2.1b)]

č
(r′)
k =

1
∣

∣Č(r)
k

∣

∣

∑

x̌
(r)
n ∈Č

(r)
k

x̌(r′)
n . (2.4)

Let x̄
(r)
n := [x̌

(r)
n

⊤, x̌
(r′)
n

⊤]⊤ and c̄
(r)
k := [č

(r)
k

⊤, č
(r′)
k

⊤]⊤ denote respectively the concatenated

data and centroids from draws r and r′, and likewise for the data and centroid matrices

X̄(r) and C̄(r). Measuring distances {δ(x̄(r)
n , c̄

(r)
k )} and using again the minimum distance

rule data-cluster associations and clusters {C̄(r)
k }Kk=1 are obtained for the “augmented data.”
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If per datum xn the data-cluster association in the space of ď dimensions coincides with

that in the space of d := ď+ ď′ dimensions, then xn is in the validation set (VS) V(r)
D ; that

is,

V(r)
D :=

{

xn

∣

∣

∣ x̌
(r)
n ∈ Č(r)

k1
, x̄(r)

n ∈ C̄(r)
k2
, and k1 = k2

}

. (2.5)

Quality of clustering per draw is then assessed using a monotonically increasing rank func-

tion f of the set V(r)
D . Based on this function, a ď-dimensional trial r1 is preferred over

another ď-dimensional trial r2 if f(V(r1)
D ) > f(V(r2)

D ).

The sketching and validation phases are repeated for a prescribed number of realizations

Rmax. At last, the ď-dimensional sketching r∗ := argmaxr∈{1,...,Rmax} f(V
(r)
D ) yields the final

clusters, namely {Č(r∗)
k }Kk=1; see Alg. 2.1.

Algorithm 2.1 Batch SkeVa K-means

Input: Data X; number of clusters K; reduced dimensions ď and ď′ for the sketching

and validation phases, respectively; ranking function f ; number of realizations (draws)

Rmax.

Output: Data-cluster associations on X.

1: for r = 1 to Rmax do

2: Randomly sample ď≪ D rows of X to obtain X̌(r).

3: Run K-means on X̌(r); obtain clusters {Č(r)
k }Kk=1 and centroids {č(r)k }Kk=1 [cf. (2.1)].

4: Randomly sample ď′ ≪ D rows of X (other than those in step 2) to obtain X̌(r′).

5: Per cluster k, form c̄
(r)
k := [č

(r)
k

⊤, č
(r′)
k

⊤]⊤.

6: Associate {x̄(r)
n }Nn=1 to closest {c̄(r)k }Kk=1.

7: Identify validation set V(r)
D [cf. (2.5)].

8: end for

9: r∗ := argmaxr∈{1,...,Rmax} f(V
(r)
D ).

10: Associate data to clusters on X as in {Č(r∗)
k }Kk=1.

With regards to selecting f , a straightforward choice is the VS cardinality, that is

f(V(r)
D ) := |V(r)

D |, which can be thought as the empirical probability of correct clustering.

Alternatively, a measure of cluster separability, used extensively in pattern recognition, is
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Fisher’s discriminant ratio [5], which in the present context becomes

FDR(r) :=

K
∑

k1=1

K
∑

k2=1;
k2 6=k1

∥

∥

∥
c̄
(r)
k1

− c̄
(r)
k2

∥

∥

∥

2

2
(

σ̄
(r)
k1

)2
+
(

σ̄
(r)
k2

)2
(2.6)

where (σ̄
(r)
k )2 is the unbiased sample variance of cluster k:

(

σ̄
(r)
k

)2
:=

1

|Č(r)
k | − 1

∑

x̌n∈Č
(r)
k

∥

∥

∥
x̄(r)
n − c̄

(r)
k

∥

∥

∥

2

2
. (2.7)

The larger the FDR(r), the more separable clusters are. Obtaining FDR(r) is computation-

ally light since distances in (2.7) have been calculated during the validation phase of the

algorithm. The only additional burden is computing the numerator in (2.6) in O[(ď+ ď′)K2]

complexity. Based on FDR, a second choice for f is

f(V(r)
D ) =

∣

∣V(r)
D

∣

∣ exp

(

− 1

FDR(r)

)

.

Instead of FDR(r), the exponent is −1/FDR(r) to avoid pathological cases where FDR(r)

approaches +∞, e.g., when all points in a cluster are very concentrated so that (σ̄
(r)
k )2 ≈ 0.

Alg. 2.1 incurs overall complexity O(NKRmaxďI), where I is an upper bound on the

number of iterations needed for K-means to converge in step 3, plus O(NKRmaxď
′) required

in step 6 of Alg. 2.1. Parameters ď, ď′, and Rmax are selected depending on the available

computational resources; (ď, ď′) should be such that running the computations of Alg. 2.1 on

(ď+ ď′)-dimensional vectors can be affordable by the processing unit used. A probabilistic

argument for choosing Rmax can be determined as elaborated next.

Remark 2. Using parameters that can be obtained in practice, it is possible to relate the

number of random draws Rmax with the reliability of SkeVa-based clustering, along the lines

of analyzing RANSAC [25].

To this end, let p denote the probability of having out of R SkeVa realizations at least

one “good draw” of ď “informative” dimensions, meaning one for which K-means yields

data-cluster associations close to those found by K-means on the full set of D dimensions.

Parameter p is a function of the underlying cluster characteristics. It can be selected by the
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user and reflects one’s level of SkeVa-based big data clustering reliability, e.g., p := 0.95. The

probability of having all “bad draws” after R SkeVa repetitions is clearly 1 − p. Moreover,

let q denote the probability that a randomly drawn row of X is “informative.” In other

words, q quantifies prior information on the number of rows (out of D) that carry high

discriminative information for K-means. For instance, q can be practically defined by the

leverage scores of X, which typically rank the importance of rows of X in large-scale data

analytics [18, 20]. An estimate of the leverage scores across the rows of X expresses q

as the percentage of informative rows. Alternatively, if xnj = mk + Σ
1/2
k vnj is the data

generation mechanism per cluster k, with vnj ∼ N (0, ID), then the ith entry of xnj is

e⊤i xnj ∼ N (e⊤i mk, [Σk]ii). Thus, rows of X are realizations of a Gaussian 1×N random

vector. If these rows are clustered in K ′ groups, q can capture the probability of having

an “informative” row located within a confidence region around its associated centroid that

contains a high percentage α ∈ (0, 1) of its pdf mass. Per SkeVa realization, the probability of

drawing ď “non-informative” rows can be approximated by (1−q)ď. Due to the independence

of SkeVa realizations, 1 − p = (1 − q)ďR, which implies that R ≃ log(1 − p)/[ď log(1 − q)].

Clearly, as R increases there is (a growing) nonzero probability that the correct clusters will

be revealed. On the other hand, it must be acknowledged that if R is not sufficient, clustering

performance will suffer commensurately.

It is interesting to note that as in [25], R only depends implicitly on D, since q is a

percentage, and does not depend on the validation metric or pertinent thresholds and bounds.

2.2.2 Sequential algorithm

Drawing a batch of ď′ features (rows of X) during the validation phase of Alg. 2.1 to assess

the discriminating ability of the features drawn in the sketching phase may be computa-

tionally, especially if ď′ is relatively large. The computation of all distances {δ(x̄(r)
n , c̄

(r)
k )}

in step 6 of Alg. 2.1 can be prohibitive if ď′ becomes large. This motivates a sequential

augmentation of dimensions, where features are added one at a time, and computations are

performed on only a single row of X per feature augmentation, till the upper-bound ď′ is

reached. Apparently, such an approach adds flexibility and effects computational savings
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Algorithm 2.2 Sequential (Se)SkeVa K-means.

Input: Data X; number of clusters K; reduced dimensions ď and ď′ of reduced dimensions

for the sketching and validation phases, respectively; ranking function f ; number of

realizations (draws) Rmax.

Output: Data-cluster associations on X.

1: for r = 1 to Rmax do

2: Randomly sample ď≪ D rows of X to obtain X̌(r).

3: Run K-means on X̌(r) to obtain clusters {Č(r)
k }Kk=1 and centroids {č(r)k }Kk=1.

4: Initialize the auxiliary set of dimensions A = ∅.
5: for j = 1 to ď′ do

6: Randomly sample 1 dimension of X (other than those in step 2 and in A) to obtain

row x̌(r′) of X.
7: Include sampled dimension in A.

8: Form {c̄(r)k := [č
(r)
k

⊤, č
(r′)
k ]⊤}Kk=1 as in Alg. 2.1.

9: Associate {x̄(r)
n }Nn=1 to closest {c̄(r)k }Kk=1.

10: Identify validation set V(r)
D [cf. (2.5)].

11: if f(V(r)
D ) < f

(r)
max or |∇f(V(r)

D )| ≤ ǫ then

12: Go to step 2.

13: end if

14: end for

15: f
(r+1)
max = f(V(r)

D ).

16: r∗ = r.

17: end for

18: Data-cluster associations on X according to {Č(r∗)
k }Kk=1.
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since sequential augmentation of dimensions does not need to be carried out till ď′ is reached,

but it may be terminated early on if a prescribed criterion is met. These considerations

prompted the development of Alg. 2.2.

The sketching phase of Alg. 2.2 remains the same as in Alg. 2.1. In the validation phase,

and for each dimension in the additional ď′ ones, {č(r
′)

k }Kk=1 are obtained as in Alg. 2.1 [cf.

(2.4)], and likewise for V(r)
D . If f(V(r)

D ) is smaller than the current maximum value f
(r)
max in

memory, the ď-dimensional clustering {Č(r)
k } is discarded, and a new draw is taken. This

can be seen as a “bail-out” test, to reject possibly “bad clusterings” in time, without having

to perform the augmentation using all ď′ dimensions.

Experiments corroborate that it is not necessary to augment all D − ď dimensions (cf.

Fig. 2.1), but using a small subset of them provides satisfactory accuracy while reducing

complexity. An alternative route is to stop augmentation once the “gradient” of f , meaning

finite differences across augmented dimensions, drops below a prescribed ǫ > 0; that is,

|∇f(V(r)
D )| ≤ ǫ. The sequential approach is summarized in Alg. 2.2, and has complexity

strictly smaller than O[NKRmax(ďI + ď′)].

Remark 3. Using N in the place of D whenever D ≪ N , or equivalently, replacing

X ∈ R
D×N with X⊤, both the batch and sequential schemes developed for D ≫ can be

implemented verbatim for N ≫. This variant of SkeVa K-means will be detailed in the next

subsection for nonlinearly separable clusters.

2.2.3 Big data kernel clustering

A prominent approach to clustering or classifying nonlinearly separable data is through

kernels; see e.g., [5]. Vectors {xn}Nn=1 are mapped to {ϕ(xn)}Nn=1 that live in a higher

(possibly infinite-) dimensional space H, where inner products defining distances in H,

using the induced norm ‖ · ‖H := 〈· | ·〉1/2H , are given by a pre-selected (reproducing) kernel

function κ; that is, 〈ϕ(xn) | ϕ(xn′)〉H = κ(xn,xn′) [5]. An example of such a kernel is the

Gaussian one: κΣ(xn,x) := exp[−(x− xn)
⊤Σ−1(x− xn)/2]/[(2π)

D/2(detΣ)1/2].

For simplicity in exposition, the novel kernel-based (Ke)SkeVa K-means approach to

big data clustering will be developed for the hard K-means. Extensions to kernel-based
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Figure 2.1: f(V
(r)
D ) vs. the number of augmented dimensions ď′ for a synthetic data-set, with D = 2, 000, N =

1, 000, ď = 50, and full-rank data-model (cf. Secs. 2.2.2 and 2.4).

soft SkeVa K-means follow naturally, and are outlined in Appendix B. Similar to (2.1), the

kernel-based hard K-means proceeds as follows. For i ∈ {1, 2, . . . , I},

[i-a] Update data-cluster associations: For n = 1, . . . , N ,

xn ∈ Ck[i] ⇔ k ∈ arg min
k′∈{1,...,K}

‖ϕ(xn)− ck′[i]‖2H (2.8a)

[i-b] Update cluster centroids: For k = 1, . . . ,K,

ck[i+ 1] ∈ argmin
c∈H

∑

xn∈Ck [i]
‖ϕ(xn)− c‖2H =

1
∣

∣Ck[i]
∣

∣

∑

xn∈Ck[i]
ϕ(xn) (2.8b)

where Euclidean norms ‖ ·‖2 in the standard form of K-means have been replaced by ‖ ·‖H.
As the potentially infinite-size {ck[i + 1]}Kk=1 cannot be stored in memory, step (2.8b) is

implicit. In fact, only κ and the data-cluster associations suffice to run (2.8). To illustrate
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this, substitute {ck[i+ 1]}Kk=1 from (2.8b) into (2.8a) to write

∥

∥

∥

∥

∥

ϕ(xn)−
1

∣

∣Ck′ [i+ 1]
∣

∣

∑

x′
n∈Ck′ [i+1]

ϕ(x′
n)

∥

∥

∥

∥

∥

2

H

= 〈ϕ(xn) | ϕ(xn)〉H (2.9)

− 2
∣

∣Ck′ [i+ 1]
∣

∣

∑

x′
n∈Ck′ [i+1]

〈ϕ(xn) | ϕ(x′
n)〉H

+
1

∣

∣Ck′ [i+ 1]
∣

∣

2

∑

(x′
n,x

′′
n)∈(Ck′ [i+1])2

〈ϕ(x′
n) | ϕ(x′′

n)〉H

= κ(xn,xn)−
2

∣

∣Ck′ [i+ 1]
∣

∣

∑

x′
n∈Ck′ [i+1]

κ(xn,x
′
n)

+
1

∣

∣Ck′ [i+ 1]
∣

∣

2

∑

(x′
n,x

′′
n)∈(Ck′ [i+1])2

κ(x′
n,x

′′
n) . (2.10)

Having established that distances involved in SkeVa K-means are expressible in terms

of the chosen kernel κ, the resulting iterative scheme is listed as Alg. 2.3. After randomly

selecting an affordable subset X̌(r), comprising ν̌ columns of X per realization r, and

similar to the trial-and-error step in line 3 of Alg. 2.1, the (kernel) K-means of (2.8) is

applied to X̌(r). The validation phase of KeSkeVa K-means is initialized in line 4, where

a second subset X̌(r′) comprising ν̌ ′ columns from X \ X̌(r). The distances between data

{ϕ(x(r′)
n )} and centroids {č(r)k } involved in step 5 of Alg. 2.3 are also obtained through kernel

evaluations [cf. (2.10)]. This KeSkeVa that operates on the number of data-points rather

than dimensions follows along the line of RANSAC [25] but with two major differences: (i)

Instead of robust parameter regression, it is tailored for big data clustering; and (ii) rather

than consensus it deals with affordably small validation sets across possibly huge data-sets.

During the validation phase, clusters Č(r′)
k are specified according to x

(r′)
n ∈ Č(r′)

k ⇔
k ∈ argmink′∈{1,...,K}‖ϕ(x(r′)

n ) − č
(r)
k′ ‖

2
H. Gathering all information from draws (r, r′), the

augmented clusters C̄(r)
k := Č(r)

k ∪ Č(r′)
k (step 5 of Alg. 2.3) lead to centroids

c̄
(r)
k :=

1
∣

∣C̄(r)
k

∣

∣

∑

xn∈C̄
(r)
k

ϕ(xn) . (2.11)

Given the “implicit centroids” obtained as in (2.11), data X(r) are mapped to clusters

{C̄(r)
k } which are different from Č(r)

k . To assess this difference, the distance between ϕ(x
(r)
n



2.2 The SkeVa Family 20

and c̄
(r)
k is computed, and columns of X(r) are re-grouped in clusters { ˇ̄C(r)

k }Kk=1 as

x(r)
n ∈ ˇ̄C(r)

k ⇔ k ∈ arg min
k′∈{1,...,K}

∥

∥

∥ϕ
(

x(r)
n

)

− c̄
(r)
k′

∥

∥

∥

2

H
. (2.12)

Recall that distances are again obtained through kernel evaluations [cf. (2.10)].

The process of generating clusters and centroids in KeSkeVa K-means can be summa-

rized as follows: (i) Group randomly drawn data X(r) into clusters Č(r)
k with centroids č

(r)
k ;

(ii) draw additional data-points, augment clusters C̄(r)
k , and compute new centroids c̄

(r)
k ;

(iii) given c̄
(r)
k , find clusters ˇ̄C(r)

k as in (2.12). Since č
(r)
k 6= c̄

(r)
k in general, data belonging

to Č(r)
k do not necessarily belong to ˇ̄C(r)

k , and vice versa; while data common to ˇ̄C(r)
k and

Č(r)
k , that is data that have not changed “cluster membership” during the validation phase,

comprise the validation set

V(r)
N :=

{

x(r)
n ∈ X̌(r)

∣

∣

∣ ∃k s.t. x(r)
n ∈

(

Č(r)
k ∩ ˇ̄C(r)

k

)}

. (2.13)

Among Rmax realizations, trial r∗ with the highest cardinality |V(r∗)
N | is identified in Alg. 2.3,

and data are finally associated with clusters {Č(r∗)
k }Kk=1. The overall complexity of Alg. 2.3

is O(DKRmaxν̌
2I) in step 3, when {κ(xn,xn′)}Nn,n′=1 are not stored in memory and kernel

evaluations have to be performed for all employed data per realization, plus O(DRmaxν̌ν̌
′)

in step 5. If {κ(xn,xn′)}Nn,n′=1 are stored in memory, then Alg. 2.3 incurs complexity

O(KRmaxν̌
2I +Rmaxν̌ν̌

′), which is quadratic only in the small cardinality ν̌.

One remark is now in order.

Remark 4. Similar to all kernel-based approaches, a critical issue is selecting the proper

kernel – more a matter of art and prior information about the data. Nonetheless, practical

so-termed multi-kernel approaches adopt a dictionary of kernels from which one or a few

are selected to run K-means on [32]. It will be interesting to investigate whether such multi-

kernel approaches can be adapted to the SkeVa-based operation to alleviate the dependence

on a single kernel function.
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Algorithm 2.3 Kernel (Ke)SkeVa K-means

Input: Data X; number of clusters K; number ν̌ and ν̌ ′ of data during sketching and

validation phase, respectively; number of realizations Rmax.

Output: Data-cluster associations on X.

1: for r = 1 to Rmax do

2: Randomly sample ν̌ ≪ N columns of X to obtain X̌(r).

3: Apply K-means [cf. (B.2) and (2.2)] on {ϕ(x(r)
n )}ν̌n=1; obtain clusters {Č(r)

k }Kk=1 and

centroids {č(r)k }Kk=1.

4: Randomly select ν̌ ′ ≪ N columns of X, other than those of step 2, to obtain X̌(r′).

5: Associate {ϕ(x(r′)
n )}ν̌′n=1 to the closest centroids {č(r)k }Kk=1; obtain clusters {C̄(r)

k }Kk=1

and centroids {c̄(r)k }Kk=1 [cf. (2.11)].

6: Obtain clusters { ˇ̄C(r)
k } on X̌(r) according to (2.12).

7: Identify the validation set V(r)
N .

8: end for

9: r∗ = argminr∈{1,...,Rmax}|V
(r)
N |.

10: Associate {ϕ(xn)}Nn=1 according to the closest centroids obtained from clusters

{Č(r∗)
k }Kk=1.
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2.3 Divergence-Based SkeVa

A limitation of Algs. 2.1 and 2.2 is the trial-and-error strategy which requires clustering

per random draw of samples. This section introduces a method to surmount such a need

and select a small number of data or dimensions on which only a single clustering step is

applied at the last stage of the algorithm. As the “quality” per draw is assessed without

clustering, this approach trades off accuracy for reduced complexity.

2.3.1 Large-scale data sets

First, the case where random draws are performed on the N data will be examined, followed

by draws across theD dimensions. Any randomly drawn data from {xn}Nn=1 will be assumed

centered around their sample mean.

Since intermediate clustering will not be applied to assess the quality of a random draw,

a metric is needed to quantify how well the randomly drawn samples represent clusters. To

this end, motivated by the pdf mixture model [cf. (2.3)], consider the following pdf estimate

formed using the randomly selected data

p̌(r)(x) :=
1

ν̌

ν̌
∑

n=1

κ
(

x(r)
n ,x

)

(2.14)

where κ stands for a user-defined kernel function, parameterized by x
(r)
n , and satisfying

∫

κ(x
(r)
n ,x)dx = 1 for the estimate in (2.14) to qualify as a pdf. Here, the Gaussian kernel

κΣ(x
(r)
n ,x) := exp[−(x − x

(r)
n )⊤Σ−1(x − x

(r)
n )/2]/[(2π)D/2(detΣ)1/2] is considered with

Σ := σ2ID.

Having linked random samples with pdf estimates, the assessment whether a draw rep-

resents well the whole population {xn}Nn=1 translates to how successful this draw is in

estimating the actual data pdf via (2.14). A random sample where all selected data form a

single cluster is clearly not a good representative of {xn}Nn=1. For example, if the selected

points are gathered around 0 (recall that drawn data are centered around their sample

mean), then the resulting pdf estimate (2.14) will resemble the uni-modal (thick) dashed

curve in Fig. 2.2. Such a pdf estimate is a poor representative of the whole data-set, and
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Figure 2.2: Examples of pdf mixtures fitted to data-points. Reference pdf estimate is the uni-modal thick

dashed curve; the larger the divergence from this estimate, the larger the probability of producing meaningful

clustering.

clustering on that small population of data should be avoided. On the contrary, random

draws yielding the multi-modal (thick) solid curve in Fig. 2.2 should be highly rated as

potential candidates for clustering. As a first step toward assessing draws is a metric quan-

tifying how “far” the pdf p̌(r) is from p̌(0)(x) := κ(0,x).

Among candidate metrics of “distance” between pdfs, the Cauchy-Schwarz divergence

[33] is chosen here:

∆CS

(

p̌(r) ‖ p̌(r′)
)

:= − log

(

∫

p̌(r)(x)p̌(r
′)(x)dx

)2

∫

[p̌(r)(x)]2dx
∫

[p̌(r′)(x)]2dx
.

The reason for choosing ∆CS over other popular divergences, such as the Kullback-Leibler
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one, is the ease of obtaining pdf estimates via (2.14). Specifically, the numerator in ∆CS

can be expressed as [cf. (2.14)]

∫

p̌(r)(x)p̌(r
′)(x)dx =

1

ν̌ν̌ ′

ν̌
∑

n=1

ν̌′
∑

n′=1

∫

κ
(

x(r)
n ,x

)

κ
(

x
(r′)
n′ ,x

)

dx . (2.15)

The right-hand-side of (2.15) is simplified further if the chosen kernel is the Gaussian one.

As the convolution of Gaussian pdfs is also Gaussian, it is not hard to verify that

∫

κΣ
(

x(r)
n ,x

)

κΣ
(

x
(r′)
n′ ,x

)

dx = κ2Σ
(

x(r)
n ,x

(r′)
n′

)

for which (2.15) becomes

∫

p̌(r)(x)p̌(r
′)(x)dx =

1

ν̌ν̌ ′
1⊤K

(r,r′)
2Σ 1

where the ν̌ × ν̌ ′ matrix K
(r,r′)
2Σ has (n, n′)th entry [K

(r,r′)
2Σ ]nn′ := κ2Σ(x

(r)
n ,x

(r′)
n′ ). It thus

follows that

∆CS

(

p̌(r) ‖ p̌(r′)
)

=− 2 log

(

1

ν̌ν̌ ′
1⊤K

(r,r′)
2Σ 1

)

+ log

(

1

ν̌2
1⊤K

(r,r)
2Σ 1

)

+ log

(

1

ν̌ ′2
1⊤K

(r′,r′)
2Σ 1

)

. (2.16)

Notice that when r′ is simply {0}, the last summand in (2.16) becomes log κ2Σ(0,0) =

−D(log 2π)/2 − (log det 2Σ)/2.

The metric in (2.16) is computed per draw of the so-termed divergence-based DiSkeVa K-

means summarized in Alg. 2.4. A number Rmax of realizations are attempted to discover a

“good” draw r∗ of data, to which clustering is finally performed. Line 3 in Alg. 2.4 checks

whether the randomly selected subset yield via (2.14) a pdf p̌(r) that differs enough from

the “singular” pdf p̌(0) = κΣ(0, ·). If the divergence exceeds ∆max, realization r will be

further explored, otherwise r+1 is drawn. Notice that threshold ∆max is adaptively defined

and takes, according to line 8, the maximum recorded value from realization r = 0 till the

current one.

If p̌(r) passes the first check of being far from p̌(0), lines 4 to 10 implement the second

step of consenting whether r is indeed a “good” realization. To this end, a number of
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Algorithm 2.4 Divergence (Di)SkeVa K-means on N .

Input: Data X; number of clusters K; number ν̌ and ν̌ ′ of points for sketching and vali-

dation phases, respectively; number of realizations Rmax; ∆max = 0, ∆′
min = +∞.

Output: Data-cluster associations.

1: for r = 1 to Rmax do

2: Let X̌(r) denote ν̌ randomly selected points after centered around their sample mean.

3: if ∆CS(p̌
(r) ‖ p̌(0)) > ∆max then

4: Let X̌(r′) denote ν̌ ′ randomly selected points, other than those in step 2, after

centered around their sample mean.
5: X̄(r) := [X̌(r), X̌(r′)].

6: if ∆CS(p̄
(r) ‖ p̌(r′)) < ∆′

min then

7: ∆′
min := ∆CS(p̄

(r) ‖ p̌(r′)).
8: ∆max := ∆CS(p̌

(r) ‖ p̌(0)).
9: r∗ := r.

10: end if

11: end if

12: end for

13: Perform K-means on X̌(r∗) and associate X to clusters obtained by K-means on X̌(r∗).
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ν̌ ′ additional data-points is drawn to form X̄(r) := [X̌(r), X̌(r′)] in line 5. The mixture

pdf p̄(r) corresponding to X̄(r), should stay as close as possible to p̌(r) since reliable pdf

estimates should remain approximately invariant as extra data are added. Drastic changes

of ∆CS before and after augmentation suggests that the draw is likely not to be a good

representative of the whole population. Notice here that ∆′
min is also adaptively defined

to take the minimum value among all recorded divergences from the start of iterations.

Moreover, both updates of ∆′
min and ∆max are performed once the candidate draw r has

passed through the “check-points” of lines 3 and 6.

In the case where the Gaussian kernel is employed, Alg. 2.4 has overall complexity

o[DRmaxν̌
2+DRmax(ν̌ν̌

′+ ν̌ ′2)], if the kernel matrix K2Σ of all data {xn}Nn=1 is not stored

in memory and calculations of all kernel sub-matrices in (2.16) are performed per realization;

plus, O(Dν̌KI) for a single application of K-means on the finally selected draw r∗. If K2Σ

is available in memory, then Alg. 2.4 incurs complexity o[Rmaxν̌
2+Rmax(ν̌ν̌

′+ ν̌ ′2)+Dν̌KI],

that is quadratic only in the small subset sizes.

Remark 5. Along the lines of Remark 2, let p denote the probability of having out of R

SkeVa realizations at least one “good draw” of size ν̌, meaning one for which K-means

yields centroids close to those found with the “full data-set.” Moreover, let q denote the

probability of a datum to lie “close” to its associated centroid. For example, q can capture

the probability of having a datum located within a confidence region which is centered at its

associated centroid and contains a high percentage of its pdf mass. The probability of having

all “bad draws” is clearly 1−p. Assuming that data are drawn independently, the probability

of having one draw contain only data located “far away” from centroids is (1 − q)ν̌. Due

to the independence of random draws in SkeVa, 1 − p = (1 − q)ν̌R, which implies that

R ≃ log(1 − p)/[ν̌ log(1 − q)]. Analogous to Remark 2, this argument neither involves N

nor it depends on the validation metric or pertinent thresholds and bounds.

2.3.2 High-dimensional data

Alg. 2.4 remains operational also when DiSkeVa K-means deals with D ≫. Although the

proposed scheme can be generalized to cope with both N ≫ and D ≫, for simplicity of
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exposition it will be assumed that only D ≫. To this end, consider the following pdf

estimate R
ď:

p̌(r)(x̌) :=
1

N

N
∑

n=1

κ
(

x̌(r)
n , x̌

)

, ∀x̌ ∈ R
ď

where x̌
(r)
n denotes a ď× 1 subvector of the D × 1 vector xn.

The counterpart of Alg. 2.4 on dimensions is listed as Alg. 2.5. Although along the

lines of Alg. 2.4, there is a notable difference. In the validation step, where dimensions are

increased (cf. line 6) and a pdf estimate is needed for the augmented set of variables. To

define divergence between pdfs of different dimensions, vectors have to be zero padded from

the ď-dimensional x̌
(r)
n to the (ď + ď′)-dimensional χ̄

(r)
n := [x̌

(r)
n

⊤,0⊤]⊤. Recall here that

x̄
(r)
n := [x̌

(r)
n

⊤, x̌
(r′)
n

⊤]⊤. To avoid confusion, pdf mixtures on these zero-padded vectors are

given by

q̄(r)(x̄) =
1

N

N
∑

n=1

κ
(

χ̄(r)
n , x̄

)

, ∀x̄ ∈ R
ď+ď′ . (2.17)

Similar to Alg. 2.4, the overall complexity of Alg. 2.5 is o[(ď+ ď′)N2Rmax] for computa-

tions in (2.16), plus O(ďNKI) for a single application of K-means on the finally selected

draw r∗.

Remark 6. If multi-core machines are also available, the validation phases of Algs. 2.1-2.5

can be readily parallelized, using recent advances on efficient parallel computing platforms

such as MapReduce [34,35].

2.4 Numerical Tests

The proposed algorithms were validated on synthetic and real data-sets. Tests involve either

large number of data (N ≫) and/or large number of dimensions (D ≫). The following

methods were also tested: (i) The standard hardK-means [cf. (2.1)], run on the full range of

N data-points and D dimensions, which is abbreviated in the figures as “full K-means”; (ii)

the state-of-the-art RP-based feature-extraction scheme [20, Alg. 2], with a Bernoulli-type

RP matrix as in [36]; (iii) the randomized feature-selection (RFS) algorithm [20, Alg. 1; ǫ =

1/3], a leverage-scores-based scheme; and (iv) the “approximate kernel K-means” algorithm
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Algorithm 2.5 Divergence (Di)SkeVa K-means on D.

Input: Data X; number of clusters K; number ď and ď′ of dimensions for sketching and

validation phases, respectively; number of realizations Rmax; ∆max = 0, ∆′
min = +∞.

Output: Data-cluster associations.

1: for r = 1 to Rmax do

2: Center randomly selected X̌(r) around their sample mean to obtain X̌(r).

3: if ∆CS(p̌
(r) ‖ p̌(0)) > ∆max then

4: Center randomly selected X̌(r′), other than those in step 2, around their sample

mean to obtain X̌(r′).
5: Form X̄(r) := [X̌(r)⊤, X̌(r′)⊤]⊤.

6: Form X̄
(r)

:= [X̌(r)⊤,0⊤]⊤ and estimate pdf mixture q̄(r) [cf. (2.17)].

7: if ∆CS(p̄
(r) ‖ q̄(r)) < ∆′

min then

8: ∆′
min := ∆CS(p̄

(r) ‖ q̄(r)).
9: ∆max := ∆CS(p̌

(r) ‖ p̌(0)).
10: r∗ := r.

11: end if

12: end if

13: end for

14: Perform K-means on X̌(r∗) and associate X to clusters obtained by K-means on X̌(r∗).
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[16, Alg. 2], which solves for an “optimal” data-cluster association matrix given a randomly

selected subset of the original data-points. For fairness, the naive kernel K-means algorithm

in [16, Alg. 1] is not tested, because a random draw of data and the application of K-means

is done only once in [16, Alg. 1]; hence, the attractive attribute of multiple independent

draws is not leveraged as in SkeVa. To mitigate initialization-dependent performance, each

realization of K-means, including also its usage as a module in other competing methods,

is run five times with different initialization per run, keeping finally only the data-clusters

association that results with the smallest sum of distances of data from the associated

centroids.

As figures of merit the relative clustering accuracy and the execution time (in secs) were

adopted. Relative clustering accuracy is defined as the percentage of points assigned to

the correct clusters (empirical probability of correct clustering), relative to that of (kernel)

K-means on the full data-set. Regarding computational time evaluations, tests in Sec. 2.4.1

are run using Matlab [37] on a SunFire X4600 PC with a 32-core AMD Opteron 8356,

clocked at 2.3GHz with 128GB RAM memory [38], without the use of parallelization, on

a single computational thread. Tests in Secs. 2.4.2, 2.4.3 and 2.4.4 are run on an HP Pro-

Liant BL280c G6 server using 2 eight-core Sandy Bridge E5-2670 processor chips (2.6GHz)

and 128GB of RAM memory [38]. In the latter tests, algorithms were allowed to exploit

MATLAB’s inherent multithread capabilities [39] on the 16 cores of the server. Moreover,

all plotted curves are averages over 50 Monte Carlo realizations.

To construct synthetic data, D × 1 vectors {xn}Nn=1 were generated according to the

following model per cluster k:

xnj = mk +Σ
1/2
k vnj , j ∈ {1, . . . , N/K} (2.18)

where it is assumed that N is an integer multiple of K, mk is the D × 1 mean (centroid)

of cluster k, noise vnj ∼ N (0, ID) is standardized Gaussian, and Σk is the covariance

matrix of the data generated for cluster k; hence, xnj ∼ N (mk,Σk). Means {mk}Kk=1 are

selected uniformly at random from a D-dimensional hypercube, as in [20]. To accommodate

data-models with limited degrees of freedom, the “rank of data,” controlled by the number

of non-zero eigenvalues of Σk, was used as a tuning parameter. In certain cases, clusters
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were well separated—a scenario whereK-means achieves relatively high clustering accuracy.

Throughout this section Rmax = 10 except for the tests using the KDDb database [40] for

which Rmax = 20.

2.4.1 Large number of dimensions (D ≫)

Tests cases in this subsection have D ≫ N . Competing methods are the “full K-means,”

RP [20, Alg. 2], and RFS [20, Alg. 1; ǫ = 1/3]. Model (2.18) was used to generate N = 1, 000

D-dimensional vectors for K = 5 clusters, for several values of D, and variable “data-rank.”

It can be seen from Figs. 2.3 and 2.4 that Algs. 2.1 (SkeVa K-means) and 2.2 (SeSkeVa K-

means) approach the accuracy of the full K-means algorithm as the number of sampled

dimensions d increases. As expected, computational time is significantly lower than that of

full K-means, since the latter operates on all D dimensions. Moreover, SeSkeVa K-means

needs more time than RP [20] to achieve the same clustering accuracy (cf. Figs. 2.3 and

2.4), since RP utilizes K-means as a sub-module only once, after dimensionality-reduction

has been effected by left-multiplication of X with a (fat) d×D RP matrix. However, this

changes as D grows large. As Fig. 2.5 demonstrates, wheneverD is massive, left-multiplying

X by the RP d × D matrix in [20] can become cumbersome, resulting in computational

times larger than those of SeSkeVa K-means.

Fig. 2.6 shows results for the real data-set ARCENE [41], which contains mass-spectra

of patients diagnosed with cancer, as well as spectra associated with healthy individuals.

Clustering involves grouping 100 (D = 10, 000)-dimensional spectra in two clusters (K = 2).

The number of augmented dimensions for all employed algorithms is ď′ = 100. All proposed

algorithms approach the performance of RP and full K-means, while requiring less time.

Alg. 2.5 is the fastest one at a comparable performance.

Fig. 2.7 depicts results for the real ORL database of 400 face-images, from 40 different

subjects (10 each) [42, 43]. Images have size 92 × 112 with 8-bit grey levels, resulting in

D = 10, 304. Only 30 images (3 subjects) were used, and as such the task is to group

these images into K = 3 clusters. As with the ARCENE data, the number of additional

dimensions for all proposed algorithms is ď′ = 100. Algs. 2.1, 2.2, and 2.5 exhibit similar
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Figure 2.3: Synthetic data (D = 2, 000 and full-rank model).
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Figure 2.4: Synthetic data (D = 2, 000 and rank equal to 500).
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Figure 2.5: Synthetic data (D = 500, 000 and rank equal to 1, 000).
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performance, while requiring much less time than the full K-means. Again, Alg. 2.5 is the

fastest one at a comparable performance.

Tests were also performed on a subset of the KDDb 2010 data-set (K = 2, D =

2, 990, 384) [40]. The version of the data-set is the one transformed by the winner of the

KDD 2010 Cup (National Taiwan University). In each run 10, 000 data-points were chosen

randomly from both classes, and clustering was performed on this subset. The RFS per-

formance is not reported in Fig. 2.8 as there were issues regarding memory usage due to

the required SVD computations. Here, the number of augmented dimensions is ď′ = 1, 000.

All algorithms exhibit performance similar to full K-means; however Alg. 2.1 and Alg. 2.5

require significantly less time than all competing alternatives.

It should be noted also that the required amount of memory per iteration for Algs. 2.1

and 2.2 is at most O[N(ď+ ď′)], in contrast with the competing algorithms whose memory

requirements grow linearly with D.

2.4.2 Large number of points (N ≫)

Here the number of datapoints is much greater than the dimension of the dataset (N ≫ D).

Alg. 2.4 is compared with the “full K-means” and the “approximate kernel K-means”

algorithm [16]. N = 100, 000 vectors with D = 5 were generated according to (2.18) for

K = 5 clusters. Although “approximate kernel K-means” can accommodate nonlinearly

separable clusters by using nonlinear kernel functions, the linear kernel was used here:

κ(x,y) := x⊤y, ∀x,y. The Gaussian kernel function κΣ, with Σ := ID, was used in (2.14).

Fig. 2.9 shows clustering accuracy across the number ν̌ of randomly selected data per draw.

The number of additional points ν̌ ′ is set equal to 100. As Fig. 2.9 demonstrates, Alg. 2.4

approaches the performance of the full K-means algorithm, even with ν̌ = 100 sampled

data, while requiring markedly lower execution time than both “full” and “approximate

kernel K-means.”
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Figure 2.6: Simulated performance for real data-set ARCENE.
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Figure 2.7: Simulated performance for real data-set ORL.
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Figure 2.8: Simulated performance for real data-set KDDb.
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2.4.3 Kernel clustering

Nonlinearly separable data are mapped here using a prescribed kernel function to high-

dimensional spaces to render them linearly separable. Algs. 2.3 and 2.4, with kernel K-

means applied only at the end, are compared with the “full kernel K-means” and the

“approximate kernel K-means” [16]. Throughout, Σ := 5ID was used in (2.14). Tests were

performed on a subset (N = 35, 000) of the MNIST-784 data-set, which contains 28 × 28

pixel images of handwritten digits grouped in K = 10 clusters. The kernel used in this

case is the sigmoid one κ(x,y) = tanh(αx⊤y + b) with parameters α = 0.0045, b = 0.11,

in accordance to [44]. Both the sigmoid and the Gaussian (for the case of Alg. 2.4) kernels

are considered stored in memory. Fig. 2.10 depicts the relative clustering accuracy for this

data-set and the required time in seconds. It is clear that accuracies of all three algorithms

are close and approach the performance of “full kernel K-means” as the number of sampled

data-points increases. However, the time required by Algs. 2.3 and 2.4 is significantly less

than the time required by the “full” and “approximate kernel K-means.”

2.4.4 Exploiting multiple computational threads

To showcase the scalability of the proposed algorithms in the presence of multiple computa-

tional nodes, the algorithms were run on multiple computational threads. The independent

draws r of the proposed algorithms were executed in parallel. Moreover, competing al-

gorithms were allowed to exploit MATLAB’s multithread capabilities, e.g., matrix-matrix

multiplications in RP [39]. Figs. 2.11 and 2.12 show simulation results for the ARCENE and

KDDb data-sets, respectively. Clearly, parallelization of the iterations on the proposed al-

gorithms is beneficial since the algorithms exhibit about an order of magnitude less required

time than that of competing methods.
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Figure 2.9: Synthetic data (D = 5, N = 100, 000, K = 5).
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Figure 2.10: A subset of the MNIST data-set.
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Figure 2.11: A subset of the ARCENE data-set with multithreading.
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Figure 2.12: A subset of the KDDb data-set with multithreading.
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Chapter 3

Large-scale Subspace Clustering

using SkeVa

The nowadays massive amounts of generated and communicated data present significant

challenges in their processing. Subspace clustering (SC) methods, while being able to suc-

cessfully classify nonlinearly separable datapoints in many occasions, incur prohibitively

high computational complexity when processing large-scale data. Inspired by the random

sampling and consensus (RANSAC) method, and extending the sketching and validation

(SkeVa) scheme introduced in Chapter 2, the present Chapter capitalizes on kernel-based

approximation of probability density functions to introduce a randomized scheme for SC,

SkeVa-SC, tailored for large-scale data. The proposed scheme exploits also sparsity in the

underlying data representation to reduce the computational burden of SC, while achieving

high clustering accuracy. Extensive numerical tests on synthetic and real data, as well as

a rigorous performance analysis, corroborate the rich potential of the proposed algorithm

and the competitive performance relative to state-of-the-art scalable SC approaches.
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3.1 Preliminaries

3.1.1 The subspace clustering problem

Consider data {xi ∈ R
D}Ni=1 drawn from a union of K affine subspaces, each denoted by

Sk. Points belonging to a subspace Sk can be described as:

xi = Ukyi + µk + ei , ∀xi ∈ Sk , (3.1)

where dk (often dk ≪ D) is the dimensionality of the subspace Sk, Uk ∈ R
D×dk is a basis

of Sk, yi ∈ R
dk is the low-dimensional representation of point xi within Sk, µk ∈ R

D is the

“centroid” or intercept of Sk, and ei ∈ R
D is the noise vector. The case of Sk being linear

corresponds to µk = 0. Using (3.1), any point xi can be described as

xi =

K
∑

k=1

[πi]k (Ukyi + µk) + ei , (3.2)

where πi is known as the cluster assignment vector for point xi and [πi]k denotes the kth

entry of πi under the constraints of [πi]k ≥ 0 and
∑K

k=1[πi]k = 1. If πi ∈ {0, 1}K then

point xi can belong to only one subspace (hard clustering), while if πi ∈ [0, 1]K then point

xi can belong to multiple clusters (soft clustering). In the latter case, [πi]k can be thought

of as the probability that point xi belongs to cluster Sk.

Given the data matrix X = [x1,x2, . . . ,xN ] ∈ R
D×N and the number of subspaces

K, the SC task involves extracting the point-to-subspace assignment vectors {πi}Ni=1, the

subspace bases {Uk}Kk=1, their dimensions {dk}Kk=1, the low-dimensional representations

{yi}Ni=1, as well as the centroids of the subspaces {µk}Kk=1 [7]. The SC task can be also cast

as the following optimization problem:

min
Π,{Uk},{yi},M

K
∑

k=1

N
∑

i=1

[πi]k‖xi −Ukyi − µk‖22

subject to (s.to) Π⊤1 = 1

(3.3)

where Π := [π1, . . . ,πN ], M := [µ1,µ2, . . . ,µK ], and 1 denotes the all-ones vector.

The problem in (3.3) is non-convex as Π, {Uk}Kk=1, {yi}Ni=1 and M are unknown. How-

ever, when the point-to-subspace assignments Π and the subspace dimensions {dk}Kk=1 are
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given, bases of the subspaces can be recovered by using the singular value decomposi-

tion (SVD) on the data points associated with each subspace. Indeed, given the vectors

Xk := [xi1 , . . . ,xiNk
] ∈ R

D×Nk , associated with Sk (
∑K

k=1Nk = N), a dk-dimensional sub-

space basis Uk can be extracted by taking as Uk the matrix comprising the first dk (from

the left) column vectors of U, where Xk = UΣV⊤ is the SVD of Xk − [µk, . . . ,µk] and

µk = (1/Nk)
∑

i∈Sk
xi. On the other hand, when {Sk}Kk=1 are given, and in the case of hard

clustering, the assignment matrix Π can be recovered by finding the closest subspace to

each datapoint, i.e., ∀i ∈ {1, 2, . . . , N},

[πi]k :=















1, if k = arg min
k′∈{1,...,K}

∥

∥xi − µk′ −Uk′U
⊤
k′xi

∥

∥

2

2
,

0, otherwise ,

(3.4)

where ‖xi − µk −UkU
⊤
k xi‖2 is the distance of point xi from Sk.

The simple K-subspaces algorithm [45], which is a generalization of the ubiquitous K-

means one [46] for SC, builds upon this observation. It solves the SC problem in the

following fashion: (i) first, fixing Π and then solving for the remaining unknowns; and (ii)

fixing {Sk}Kk=1 and then solving for Π.

The previous discussion suggests that due to the employment of SVD, SC entails high

computational complexity whenever dk and/or Nk are massive.

As the proposed algorithm (cf. Section 3.2), will use ideas from Kernel smoothing, a

brief primer is provided in Appendix A. Specifically the optimal bandwidth of a kernel

estimator, (A.9) will prove useful to attaining good clustering performance.

3.1.2 Prior work

Multiple algorithms have been developed by the machine learning [7] and data-mining com-

munity [22], in addition to K-subspaces, to solve (3.3). A probabilistic (soft) counterpart of

K-subspaces is the mixture of probabilistic PCA [47], which assumes that data are drawn

from a mixture of degenerate Gaussian distributions. Building on the same assumption, the

agglomerative lossy compression (ALC) [48] utilizes ideas from rate-distortion theory [49]

to minimize the required number of bits to encode each one of the clusters, up to a certain
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distortion level.

The most successful class of algorithms for solving (3.3) uses spectral clustering [24] to

find the point-to-subspace assignments. Algorithms in this class generate first an affinity

matrix A ∈ R
N×N that captures the similarity between datapoints, and then perform

spectral clustering on this matrix. Matrix A implies a graph G whose vertices correspond

to datapoints and the weights of the edges between datapoints are given by the entries of

A. Spectral clustering algorithms form the graph Laplacian matrix:

L := D−A , (3.5)

where D ∈ R
N×N is a diagonal matrix such that (s.t.) [D]ii =

∑N
j=1[A]ij . The algebraic

multiplicity of the 0 eigenvalue of L is equal to the number of connected components in

G [24]. The corresponding eigenvectors of the 0 eigenvalues are indicator vectors of the

connected components. In general, G will be connected however the trailing eigenvectors of

L can still be used to recover cluster assignments as follows: After forming L, spectral clus-

tering algorithms identify the K trailing eigenvectors {vk ∈ R
N}Kk=1 of L. As the rows(and

columns) of L correspond to datapoints, similarly the rows of V = [v1, . . . ,vK ] ∈ R
N×K

also correspond to datapoints. Let {zi ∈ R
K}Ni=1 be the rows of V. This transformation

from the vertex space to the space spanned by the trailing K eigenvectors of L is assumed

to enhance and highlight the separability of datapoints. Finally, K-means is employed on

{zi ∈ R
K}Ni=1 to recover the point-to-cluster assignments. Normalized versions of spectral

clustering [50, 51], where scaled versions of the Laplacian matrix L are used, have strong

relations to graph partitioning problems such as Min-Cut and Ratio-Cut, and can also be

employed for subspace clustering.

The sparse subspace clustering algorithm (SSC) [52] exploits the fact that under the

union of subspaces model, only a small percentage of datapoints suffice to provide a low-

dimensional affine representation of any xi, i.e., xi =
∑N

j=1,j 6=iwijxj, ∀i ∈ {1, 2, . . . , N}.
Specifically, SSC solves the following sparsity-imposing optimization problem:

min
W

‖W‖1 + λ‖X−XW‖22

s.to W1 = 1; diag(W) = 0

(3.6)
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Algorithm 3.1 Unnormalized spectral clustering [24]

Input: Data affinity matrix A; number of clusters K

Output: Data-cluster associations.

1: Form diagonal matrix D, with entries [D]ii =
∑N

j=1[A]ij

2: L = D−A

3: Extract K trailing eigenvectors {vk ∈ R
N}Kk=1 of L. Let V = [v1, . . . ,vK ] ∈

R
N×K

4: Let {zi ∈ R
K}Ni=1 be the rows of V; zi corresponds to the i-th vertex (i-th

datapoint).
5: Group {zi}Ni=1 into k clusters {Ci}ki=1

where W = [w1,w2, . . . ,wN ] ∈ R
N×N , with wi being the sparse vector that contains the

coefficients for the representation of xi, λ > 0 is the regularization coefficient, and ‖W‖1 :=
∑N

i,j=1[W]i,j . Afterwards, W is used to create the affinity matrix [A]ij := |[W]ij |+ |[W]ji|.
Finally, spectral clustering is performed using the affinity matrix A and cluster assignments

are identified. Using those cluster assignments, M is computed by taking sample means per

cluster (affine subspace), and {Uk}Kk=1, {yi}Ni=1 by applying SVD on Xk − [µk, . . . ,µk]. To

facilitate the discussion, SSC is summarized in Alg. 3.2.

The low-rank representation algorithm (LRR) [53] works similarly to SSC, but replaces

the ℓ1 norm in (3.6) with the nuclear norm ‖W‖∗ :=
∑ρ

i=1 σi(W), where ρ stands for the

rank and σi(W) for the ith singular value of W. The high clustering accuracy achieved by

both SSC and LRR comes at the price of high complexity. Solving (3.6) scales quadratically

with the number of datapoints N , on top of performing spectral clustering across K clusters,

rendering thus SSC computationally prohibitive for large-scale SC. When data are high-

dimensional (D ≫), methods based on (statistical) leverage scores, random projections [20],

or the more recent sketching and validation (SkeVa) approach, introduced in Chapter 2, can

be employed to reduce the dimensionality to a computationally affordable level. When the

number of data points is large (N ≫), the current state-of-the-art approach, scalable sparse

subspace clustering (SSSC) [54], involves drawing randomly n < N data points, performing

SSC on them, and expressing the rest of the datapoints according to the clusters identified
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by that random draw of samples. While this greatly reduces the required complexity,

performance can potentially suffer as the random sample might not be representative of

the whole dataset, especially in cases where n ≪ N under non-equally populated clusters.

To alleviate this issue the present thesis introduces a structured trial-and-error approach to

identify a “representative” n-point sample from a dataset with n ≪ N , while maintaining

low computational complexity.

Algorithm 3.2 Sparse Subspace Clustering (SSC) [52]

Input: Data X; number of clusters K; λ

Output: Data-cluster associations.

1: Solve (3.6) for W.

2: [A]ij := |[W]ij |+ |[W]ji|.
3: Perform spectral clustering (Alg.3.1) on A.

4: Identify point-to-subspace associations.

Regarding kernel smoothing, the majority of developed algorithms address the important

issue of bandwidth selection H of the kernel function to achieve desirable convergence rate

properties in the approximation of the unknown pdf [55–58]. The present thesis, however,

showcases one of the very few, if not the only one algorithm that provides a framework to

randomly choose those kernel functions yielding a small error when estimating a multi-modal

pdf.

3.2 Proposed algorithm

Following SkeVa (Chapter 2), the proposed algorithm (named here SkeVa-SC and shown in

Alg. 3.3) aims at iteratively finding a representative set of n randomly drawn datapoints,

X̌ ∈ R
D×n, run subspace clustering on X̌, and associate the remaining datapoints X̃ =

X \ X̌ ∈ R
D×N−n with the subspaces extracted from X̌. SkeVa-SC is performed for a

prescribed number of Rmax iterations, where each iteration consists of two stages: A random-

sketching and a validation phase. The structure and philosophy of this algorithm is similar

to the DiSkeVa (cf. Alg. 4 Chapter 2) algorithm that has been used successfully for



3.2 Proposed algorithm 49

clustering high-dimensional data.

At each iteration (indexed here by r), the random-sketching stage of the algorithm is

performed as follows: A randomly chosen population of the data is drawn, X̌(r), and a pdf

p̌(r)(x), induced by this random sample, is estimated. As the clusters are assumed to be

well-separated, p̌(r)(x) is expected to be multimodal. Thus, p̌(r)(x) is compared with a

unimodal pdf p̌
(r)
0 (x), using a measure d(p̌(r), p̌

(r)
0 ) of pdf discrepancy. If p̌(r) is sufficiently

different from p̌
(r)
0 , i.e., d(p̌(r), p̌

(r)
0 ) ≥ ∆0, where ∆0 is some pre-defined threshold, SkeVa-SC

proceeds to the validation stage; otherwise, SkeVa-SC advances to the next iteration r+1,

without performing the validation one.

At the validation stage of SkeVa-SC, another random sample of n′ datapoints, different

from the one in X̌(r), is drawn, forming X̄(r) ∈ R
D×n′

. The purpose of this stage is to

evaluate how well X̌ represents the whole dataset. The pdf p̄(r)(x) of X̄(r) is estimated and

compared to p̌(r)(x) using d(p̌(r), p̄(r)). A score ψ[d(p̌(r), p̄(r))] is assigned to X̌(r), using a

non-decreasing scoring function ψ : R → R.

Finally, after Rmax iterations, the set of n datapoints X̌(r∗) that yielded the highest

score, r∗ := argmaxr ψ[d(p̌
(r), p̄(r))] is selected and SC (SSC, or any other algorithm) is

performed on it, i.e.,

min
W

‖W‖1 + λ
∥

∥

∥X̌
(r∗) − X̌(r∗)W

∥

∥

∥

2

2

s.to W1 = 1; diag(W) = 0 .

(3.7)

The remaining datapoints X̄(r∗) := X \ X̌(r∗) are associated with the clusters defined by

X̌(r∗). This association can be performed either by using the residual minimization method,

described in SSSC [54], or, if subspace dimensions are known, by identifying the subspace

that is closest to each datapoint, as in (3.4).

Remark 7. Threshold ∆0 can be updated across iterations. If ∆
(0)
0 = −∞ stands for the

initial threshold value, ∆
(r)
0 , at iteration r ∈ {1, . . . , Rmax}, can be updated as follows:

∆
(r)
0 :=















d(p̌(r), p̌
(r)
0 ) , if d(p̌(r), p̌

(r)
0 ) ≥ ∆

(r−1)
0 ,

∆
(r−1)
0 , otherwise .

(3.8)
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Remark 8. As the iterations of SkeVa-SC are independent from each other, they can be

readily parallelized, using schemes such as MapReduce [34].

To estimate the densities at each step of SkeVa-SC, kernel density estimators, or kernel

smoothers (cf. Appendix A) are employed. In other words, SkeVa-SC, much like DiSkeVa,

(cf. Alg. 4 Chapter 2) attempts to solve the following optimization problem: min
X̌(r) d(f, f̂),

where f̂(x) := (1/n)
∑n

i=1KH(x − x
(r)
i ), with x

(r)
i being the ith column of X̌(r). As the

pdf f to be estimated is generally unknown, a sensible choice for the bandwidth matrix

is H := h2ID, h > 0, as it provides isotropic smoothing across all dimensions and greatly

simplifies computation.

To perform computations in closed form, the dissimilarity d(·, ·) is chosen as the inte-

grated square error (ISE):

dISE(f, g) :=

∫

(f(x)− g(x))2 dx , (3.9)

or, as in Chapter 2, the Cauchy-Schwarz divergence [33]:

dCS(f, g) := − log

(∫

f(x)g(x)dx
)2

∫

f2(x)dx
∫

g2(x)dx
. (3.10)

Moreover, the kernel that will be used is the following Gaussian multivariate function

KH(x− xi) = φH(x− xi), where φH is defined in (A.7).

The estimated pdfs that are used by SkeVa-SC are defined as follows:

f̂ (r)(x) :=
1

n

n
∑

i=1

φH

(

x− x
(r)
i

)

, (3.11a)

f̂
(r)
0 (x) := φH0

(

x− 1

n

n
∑

i=1

x
(r)
i

)

, (3.11b)

f̃ (r)(x) =
1

n′

n′

∑

i=1

φH′

(

x− x̃
(r)
i

)

, (3.11c)

where x̄
(r)
i is the ith column of X̄(r), and H,H0,H

′ are appropriately defined bandwidth

matrices. It is then easy to show that for a measure such as (3.9) or (3.10), and by using

property (A.8) several of the dissimilarities of pdfs that were previously mentioned can be
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Algorithm 3.3 Sketching and validation SC (SkeVa-SC)

Input: Data X; maximum number of iterations Rmax; bandwidth h

Output: Clustered data; bases of subspaces

1: for r = 1 to Rmax do

2: Sample n≪ N datapoints of X; call sampled matrix X̌(r).

3: Estimate pdf p̌(r) of X̌(r); evaluate dissimilarity d(p̌(r), p̌
(r)
0 ) from a unimodal pdf

p̌
(r)
0 [cf. (3.11)].

4: if d(p̌(r), p̌
(r)
0 ) ≥ ∆ then

5: Sample n′ ≪ N new datapoints X̄(r); evaluate pdf p̄(r) of X̄(r).

6: Evaluate dissimilarity d(p̌(r), p̄(r)) and assign a score ψ[d(p̌(r), p̄(r))] to X̌(r).

7: end if

8: end for

9: r∗ := argmaxr ψ[d(p̌
(r), p̄(r))].

10: Perform SSC (Alg. 3.2) on X̌(r∗); obtain data-cluster associations.

11: Associate X \ X̌(r∗) to clusters defined in step 10.

computed in closed-form as follows:

dISE(p̌
(r), p̌

(r)
0 )=

1

n2

n
∑

i=1

n
∑

j=1

φ2H(x
(r)
i − x

(r)
j )

+ φ2H0(0)

− 2

n

n
∑

i=1

φH+H0

(

x
(r)
i − 1

n

n
∑

i=1

x
(r)
i

)

. (3.12a)

dISE(p̌
(r), p̄(r))=

1

n2

n
∑

i=1

n
∑

j=1

φ2H(x
(r)
i − x

(r)
j )

+
1

n′2

n′

∑

i=1

n′

∑

j=1

φ2H′(x̄
(r)
i − x̄

(r)
j )

− 2

nn′

n
∑

i=1

n′

∑

j=1

φH+H′(x
(r)
i − x̄

(r)
j ) . (3.12b)
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dCS(p̌
(r), p̌

(r)
0 )=− 2 log





1

n

n
∑

i=1

φH+H0



x
(r)
i − 1

n

n
∑

j=1

x
(r)
i









+ log
1

n2

n
∑

i=1

n
∑

j=1

φ2H

(

x
(r)
i − x

(r)
j

)

+ log φ2H0(0) . (3.13a)

dCS(p̌
(r), p̄(r))=− 2 log





1

nn′

n
∑

i=1

n′

∑

j=1

φH+H′

(

x
(r)
i − x̄

(r)
j

)





+ log
1

n2

n
∑

i=1

n
∑

j=1

φ2H

(

x
(r)
i − x

(r)
j

)

+ log
1

n′2

n′

∑

i=1

n′

∑

j=1

φ2H′

(

x̄
(r)
i − x̄

(r)
j

)

. (3.13b)

Given that the computation of the Gaussian dissimilarities between n D-dimensional dat-

apoints incurs a complexity of O(Dn2), Alg. 3.3 yields a computational complexity of

o[DRmax(n
2 + nn′ + n′2)] per iteration, if the Gaussian kernel is utilized. As with any

algorithm that involves kernel smoothing, the choice of bandwidth matrices H,H′,H0 is

critical to the performance of Alg. 3.3.

3.3 Performance Analysis

The crux of Alg. 4.1 is the Rmax number of independent random draws of n data to identify

a subset X̌(r∗) that “represents well” the whole population of data. Since SkeVa-SC aims at

large-scale clustering (N ≫ n), it is natural to ask whether Rmax iterations suffice to mine

a subset of data whose pdf approximates well the unknown f . It becomes therefore crucial,

prior to any implementation of SkeVa-SC, to have an estimate of the minimum number of

Rmax that ensures a “good draw” with high probability. Such concerns are not taken into

account in SSSC [54], where only a single draw is performed prior to applying SC. Along

the previous lines, this section provides with a theoretical analysis which establishes such

a lower-bound on Rmax, when the underlying pdf f abides by GMM. Due to the universal
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approximation properties of GMM [5,59,60], such a generic assumption on f is also met in

the mixture of probabilistic PCA [47] as well as ALC [48].

Performance analysis will be based on the following generic assumption. It pertains to

modeling the multimodal pdf f of the data by a mixture of Gaussian ones. This assumption

seems appropriate as any pdf or multivariate function that is t-th order integrable t ∈ [0,∞),

can be approximated by a mixture of appropriately many Gaussians [31,59].

Assumption 1. Data are generated according to the GMM model, i.e., the pdf f of the

data is given by

f(x) =
L
∑

ℓ=1

wℓφΣℓ
(x− µℓ),

L
∑

ℓ=1

wℓ = 1 , (3.14)

where L ≥ K, µℓ ∈ R
D and Σℓ ∈ R

D×D stand for the mean vector and the covariance

matrix of the ℓth Gaussian pdf, respectively, and {wℓ}Ll=1 ⊂ [0, 1] are the mixing coefficients.

Using As. 1, the mean of the entire dataset is µ0 =
∑L

ℓ=1wℓµℓ, and can be estimated

by the sample mean of all data drawn from f .

Definition 1. A “dissimilarity” function d : X ×X → R is called a metric or a distance if

the following properties hold ∀f1, f2, f3 ∈ X : 1. d(f1, f2) ≥ 0; 2. d(f1, f2) = 0 ⇔ f1 = f2; 3. d(f1, f2) = d(f2,

Property 4 (depicted in Fig. 3.1) is widely known as the triangle inequality one. A semi-

distance is a function d for which properties 1, 3, 4, and [d(f, f) = 0,∀f ∈ X ] hold. A

divergence is a function d where X is the space of pdfs, and for which only properties 1 and

2 hold. The class of Bregman divergences are generalizations of the squared Euclidean dis-

tance and include the Kullback-Leibler [61] as well as the Itakura-Saito one [62], among oth-

ers. Furthermore, generalized symmetric Bregman divergences, such as the Jensen-Bregman

one, satisfy the triangle inequality property [63]. Although dISE is not a distance, since it

does not satisfy the triangle inequality property,
√
dISE (the ℓ2-norm) qualifies as a distance

function.

If f̂ denotes an estimate of the data pdf f , and f0 stands for a reference pdf (a rigorous

definition will follow), Fig. 3.1 depicts f, f̂ and f0 as points in the statistical manifold X [64],

namely the space of probability distributions. Letting δ′ := d(f, f0), the triangle inequality
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property suggests that

|d(f, f̂)− δ′| ≤ d(f0, f̂) ≤ d(f, f̂) + δ′ . (3.15)

f

d(f, f̂)

f̂

d(f0, f̂)

f0δ′ := d(f, f0)

Figure 3.1: The triangle inequality property in the statistical manifold.

Definition 2. Given a dissimilarity function d which satisfies the triangle inequality prop-

erty in Def. 1, an event at an iteration of Alg. 4.1, denoted as Bδ, is deemed “bad” if the

dissimilarity between the kernel-based estimator f̂ and the true pdf f is larger than or equal

to some prescribed value δ, i.e.,

Bδ := {d(f̂ , f) ≥ δ} , (3.16)

where {St(. . .)} denotes the event of the statement St(. . .) being true. Naturally, an f̂ such

that the complement B∁
δ of Bδ holds true will be called a “good” estimate of the underlying

f . Given f0 ∈ X , and thus δ′ := d(f, f0), the triangle inequality property suggests that

δ′ − d(f0, f̂) ≤ d(f, f̂). This implies that for a fixed δ′, the smaller d(f0, f̂) is, the larger

d(f, f̂) becomes. For any arbitrarily fixed δ0 ≤ δ′ − δ, any f̂ for which d(f0, f̂) < δ0 implies

that δ ≤ δ′ − δ0 < δ′ − d(f0, f̂) ≤ d(f, f̂), i.e., Bδ occurs. In other words,

∀δ0 ∈ (0, d(f, f0)− δ], {d(f0, f̂) < δ0} ⊆ Bδ , (3.17)

Here, f0 is chosen as the unimodal Gaussian pdf f0(x) := φH0(x − µ0) that is centered

around µ0. This is in contrast with the multimodal nature of the true f , under the assump-

tion of a number K > 1 of well-separated clusters. According to (3.17), an estimate f̂ that

is “close” to the unimodal f0 will trigger the “bad” event Bδ.
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Remark 9. Note that, in this section, f0 is centered in the sample mean of the whole

dataset, while in Alg. 4.1, f̂0 at each iteration is centered around the sample mean of the

sampled data. This is to avoid a step that incurs O(N) complexity in SkeVa-SC. If the

dataset mean is provided (via a preprocessing step) then the unimodal pdf at each iteration

f̂
(r)
0 can be replaced by the pdf induced by the dataset mean f0.

The maximum required number of iterations Rmax can be now lower-bounded in a

manner similar to RANSAC-type algorithms [25].

Theorem 1.

1. Given a distance function d [cf. Def. 2], a δ > 0, a “success” probability p ∈ (0, 1) of

Alg. 4.1, i.e., the probability that after Rmax iterations a random draw of data-points

yields an estimate f̂ that satisfies B∁
δ [cf. (3.16)], Alg. 4.1 requires

Rmax ≥ log(1− p)

log

(

1− E[d(f̂ ,f0)]
d(f,f0)−δ

) , (3.18)

iterations to succeed in identifying a “good” f̂ , where expectation is taken w.r.t. the

data pdf f , i.e.,

E

[

d(f̂ , f0)
]

:=

∫

d(f̂ , f0)f(x)dx .

2. Given a probability q ∈ (0, 1) and under As. 1 as well as d :=
√
dISE [cf. (3.9)], the

following lower bound holds with probability 1− q:

Rmax ≥ log(1− p)

log
(

1− ζ
θ1+θ2

) . (3.19)
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Here,

ζ2 := E[dISE(f̂ , f0)]

=
1

(4π)D/2|H0|1/2
+

1

n

1

(4π)D/2|H|1/2

+

(

1− 1

n

)

w⊤Ω2w

− 2
∑

ℓ

wℓφH+H0+Σℓ
(µℓ − µ0) , (3.20a)

θ1 :=

[

− 2 log(q/2)

nh (4π)D/2

]1/2

+

{

1

n(4π)D/2|H|1/2

+ w⊤

[(

1− 1

n

)

Ω2 − 2Ω1 +Ω0

]

w

}1/2

, (3.20b)

θ2 :=

{

w⊤Ω0w +
1

(4π)D/2|H0|1/2

−2
∑

ℓ

wℓφΣℓ+H0(µℓ − µ0)

}1/2

, (3.20c)

where w := [w1, w2, . . . , wL]
⊤ is a vector containing the mixing coefficients of (3.14)

and Ωα ∈ R
L×L, α ∈ {0, 1, 2}, is a matrix whose (i, j)th entry is given by

[Ωα]ij = φαH+Σi+Σj(µi − µj) . (3.21)

Proof. By definition, 1 − p is the probability that Alg. 4.1 fails to identify a “good” draw

(cf. Def. 2) after Rmax iterations. Since iterations are independent it holds that

[Pr(Bδ)]
Rmax = 1− p . (3.22)

Then, Rmax can be lower-bounded as

[Pr(Bδ)]
Rmax ≤ 1− p⇔ Rmax log (Pr(Bδ)) ≤ log(1− p)

⇔ Rmax ≥ log(1− p)

log (Pr(Bδ))
, (3.23)

where the last inequality follows from the trivial fact that Pr(Bδ) < 1 ⇔ log Pr(Bδ) < 0.

Using (3.17), Pr(Bδ) is lower-bounded as

Pr(Bδ) = Pr
(

d(f̂ , f) ≥ δ
)

≥ Pr
(

d(f̂ , f0) < δ0

)

, (3.24)
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where δ0 := d(f, f0)− δ; thus when δ is fixed, so is δ0. Furthermore, by Markov’s inequality,

Pr
(

d(f̂ , f0) < δ0

)

= 1− Pr
(

d(f̂ , f0) ≥ δ0

)

≥ 1−
E

[

d(f̂ , f0)
]

δ0
. (3.25)

Combining (3.24) with (3.25) yields

Pr(Bδ) ≥ 1−
E

[

d(f̂ , f0)
]

δ0
. (3.26)

Using now (3.26) and that log(1 − p) < 0, it is easy to establish (3.18) via (3.23). In the

case where 1−E[d(f̂ , f0)]/δ0 ≤ 0, (3.26) is uninformative, and 1 is used as the trivial lower

bound of Rmax. This completes the proof of Thm. 1.1.

Regarding the proof of Thm. 1.2, closed-form expressions of E[d(f̂ , f0)] as well as values

for δ, δ0 and δ′, using dISE(·, ·), to establish (3.19) are provided in Appendix C.

Fig. 3.2 depicts the Rmax values as the number of sampled data n increases for a synthetic

one-dimensional (D = 1) dataset of N = 480 with K = 3 clusters generated according to

(3.14). The cluster means are {−1, 1, 2}, the variances are {0.5, 0.5, 0.5}, and the number

of data per cluster are {100, 180, 200}, respectively. The Rmax values are obtained using

(p, q) := (0.99, 0.01) in Thm. 1.2. The results shown in Fig. 3.2 are intuitively pleasing: As

the number of sampled points n increases, the required number of random draws decreases,

and at n = 480 only one draw is required.

For the same dataset, Fig. 3.3 depicts the accuracy [% of correctly clustered data (cf. Sec-

tion 3.4)] of Alg. 4.1 using K-means clustering instead of SSC, as Rmax increases. Here, the

number of sampled data n is set to n = 10 and the number of data for the validation phase

is set to n′ = 50. Alg. 4.1 is compared to the simple scheme of taking a single random draw

of n data and performing K-means. The vertical red line in Fig. 3.3 indicates the value of

Rmax provided by Thm. 1.2. The results are averaged over 10 independent Monte Carlo

runs.

When reliable estimates of f are unknown, values for Rmax can be estimated on-the-fly

by using (3.18) and sample averaging. The ensemble averages of Thm. 1.1 can be replaced
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Figure 3.2: Rmax values versus number of sampled points n for K = 3 clusters generated by (3.14) with

D = 1, cluster means {−1, 1, 2}, variances {0.5, 0.5, 0.5} and number of points per cluster {100, 180, 200}.

by sample ones, where averaging takes place across iterations. In particular, E[d(f̂ , f0)]

[cf. (3.18)] is replaced by d̄(r)(f̂ , f0), which denotes the sample average of d(f̂ , f0), as of

iteration r. Moreover, since the number n′ of data used in the validation phase is set to

be larger than or equal to the number n of data drawn in the sketching phase of Alg. 4.1,

f̃ of (3.11c) provides potentially better estimates of f than f̂ does. As a result, distance

d(f̃ (i), f
(i)
0 ) stands now as a surrogate to δ′ [cf. (3.15)]. Further, by d :=

√
dISE and by using

(C.3), (C.14), as well as replacing ensemble averages by sample ones, an estimate of δ0 at

iteration r of Alg. 4.1 is

δ̄
(r)
0 :=

√

− 2 log(q/2)

nh (4π)D/2
+ d̄(r)(f̃ , f̂) + d̄(r)(f̃ , f0) , (3.27)

where d̄(r)(f̃ , f̂) and d̄(r)(f̃ , f0) are the sample averages of d(f̃ , f̂) and d(f̃ , f0), respectively.

Therefore, according to (3.11), the following quantities can be computed at each iteration

of Alg. 4.1:

d̄(r)(f0, f̂) =
1

r

r
∑

i=1

d(f
(i)
0 , f̂ (i)) , (3.28a)
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Figure 3.3: Accuracy (% of correctly clustered data) versus Rmax number of sampled points n for the data

used in Fig. 3.2. Alg. 4.1 is compared to the simple scheme of taking a single random draw of n data,

followed by clustering. The vertical line represents the Rmax value given by Theorem 1.

d̄(r)(f̃ , f̂) =
1

r

r
∑

i=1

d(f̃ (i), f̂ (i)) , (3.28b)

d̄(r)(f̃ , f0) =
1

r

r
∑

i=1

d(f̃ (i), f
(i)
0 ) . (3.28c)

Consequently, (3.18) can be approximated at each iteration r using equations (3.27) and

(3.28a)-(3.28c) as

R̂(r)
max ≥ log(1− p)

log

(

1− d̄(r)(f0,f̂)

δ̄
(r)
0

) =: Ř(r)
max . (3.29)

Based on the previous sample averages, a simple rule for updating R̂
(r)
max, which quantifies

the maximum number of iterations to be executed in Alg. 4.1, as of iteration r, is

R̂(r)
max := max

{

Ř(r)
max, R0

}

, (3.30)

where R0 is a prescribed absolute minimum number of iterations. Fig. 3.4 shows the values

of (3.30) as iterations of Alg. 4.1 are run for the dataset used in Figs. 3.2 and 3.3. Here
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R0 := 3, and R̂
(r)
max approaches the theoretical value given by Thm. 1, as values of the

distances are averaged across iterations.
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Figure 3.4: Estimates R̂
(r)
max [cf. (3.30)] versus iteration index for a dataset with K = 3 clusters generated

by (3.14) with D = 1, cluster means {−1, 1, 2}, variances {0.5, 0.5, 0.5} and number of points per cluster

{100, 180, 200}. The horizontal line represents the Rmax value given by Theorem 1 when f is known.

3.4 Numerical Tests

The proposed algorithm is validated using synthetic and some real datasets. SkeVa-SC

is compared to the current state-of-the-art algorithm, Scalable sparse subspace clustering

(SSSC). The metrics evaluated are:

• Accuracy, i.e. percentage of points correctly clustered:

Accuracy =
# of points correctly clustered

N

• Normalized mutual information (NMI [65]) between the experimental results and the

ground truth labels:

NMI =
I(Π;Π ′)

max{H(Π),H(Π ′)}
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whereΠ is a random variable that takes values {1, 2, . . . ,K} with probabilities p(πk) =

Pr (Π = k) = Nk
N , i.e. the probabilities of a datapoint belonging to cluster k. Here

Nk is the number of datapoints that belong to cluster k, and its value is provided by

the algorithms tested. Π ′ is a random variable identical to Π but with probabilities

derived by the ground-truth labels. I(Π;Π ′) denotes the mutual information [61]

between the random variables Π and Π ′:

I(Π;Π ′) =
∑

i,j

p(πi, π
′
j) log

p(πi, π
′
j)

p(πi)p(π
′
j)

and H(Π) denotes the entropy [61] of random variable Π:

H(Π) = −
∑

i

p(πi) log p(πi)

• Time (in seconds) required for clustering all datapoints.

The bandwidth matrix used for Algorithm 3.3 is H = (h(C,n))2I with h similar to the one

in (A.9), where the unknown quantity pertaining to the curvature of the function to be

estimated is replaced with a user-defined constant C, thus:

h(C,n) =

[

CDφ2I(0)

n

]1/(D+4)

=

[

CD

n (4π)D/2

]1/(D+4)

(3.31)

Furthermore the scoring function ψ used in Algorithm 3.3 is the identity function, ψ(x) = x.

All results represent the averages of 10 independent Monte Carlo runs.

3.4.1 Synthetic data

Tests on synthetic datasets of dimension D = 100 and D = 500 with K = 5 subspaces

are shown in Fig. 3.5 and Fig. 3.6 respectively, where the proposed algorithm is compared

to SSSC [54]. The subspaces have dimensions {12, 10, 5, 3, 2} and number of datapoints in

each subspace is proportional to the subspaces dimension, i.e. Nk = 200dk. The datapoints

for each subspace have been generated according to (3.1), where {µk = 0}Kk=1, the subspace

bases {Uk ∈ R
D×dk}Kk=1 are randomly generated so that the subspace angle η(i, j) between
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Si,Sj is at least π/4,∀(i, j), i = 1, . . . ,K, j = 1, . . . ,K, i 6= j. The subspace angle η(i, j) is

defined as:

η(i, j) = min
u,v

{

arc cos(
|uTv|
‖u‖‖v‖ )|u ∈ Si,v ∈ Sj ,

}

The projections yi of xi’s onto their subspaces are also randomly generated by being drawn

from a uniform distribution on the volume of the unit dk-dimensional hypercube: yi ∼
U [−1, 1]dk , where U denotes uniform distribution. Finally AWG noise, with variance σ2 =

0.1 is added to all datapoints: ei ∼ N (0, σ2ID). The number of points for the validation

stage of Alg.3.3 is n′ = 600 and the maximum number of iterations is set to Rmax = 100.

As the number of sampled points n increases, so does the clustering accuracy, as well as

the normalized mutual information (NMI) between the cluster assignments and the ground

truth ones. Both of these metrics for the proposed method are larger than those of SSSC,

corroborating the fact that a single random sketch may not be representative of the data

to ensure reliable clustering. Additionally, the required time is not much higher than the

SSSC algorithm.

3.4.2 Real data

The real datasets tested are the PenDigits [66] dataset, the Extended Yale Face database [67]

and the PokerHand UCI [68] database. The PenDigits dataset includes N = 10992 dat-

apoints of dimension D = 16, separated into K = 10 clusters, with each datapoint rep-

resenting a handwritten digit. Clusters group same digits, and each cluster contains 250

datapoints.

The results for the PenDigits dataset are shown in Fig. 3.7. Here C = 10−3 (cf (3.31)),

H = (h(C,n))2I,H0 = (h(C,n)
2 )2I,H′ = (h(C,n′))2I, n′ = 700 and Rmax = 150. Similar

to synthetic results as the number of datapoints increases so does the accuracy and NMI

of both Alg. 3.3 and SSSC, with Alg. 3.3 showing higher accuracy and NMI levels at the

cost of higher computational time. The accuracy and NMI difference between SSSC and

Alg. 3.3 is not as pronounced as in the synthetic datasets, possibly because the PenDigits

dataset is uniform: all clusters have the same number of datapoints.

The Extended Yale Face database contains N = 2414 face images of K = 38 people,
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each of dimension D = 2016. The dimensionality of the data was reduced using PCA

by extracting the 114 most important features and Alg. 3.3 and SSSC were tested on the

dimensionality reduced and normalized data. Fig. 3.8 shows the results for this dataset.

Here C = 10−2, H = (h(C,n))2I,H0 = (h(C,n)
2 )2I,H′ = (h(C,n′))2I, n′ = 700 and Rmax =

150. Again Alg. 3.3 exhibits higher accuracy and NMI than its one-shot random sampling

counterpart with the clustering time being slightly higher.

The PokerHand database contains N = 106 datapoints, belonging to K = 10 clusters.

Each D = 10-dimensional datapoint is a 5-card hand drawn from a deck of 52 cards, with

each card being described by its suit(spades, hearts, diamonds and clubs) and rank. Each

cluster represents a valid Poker hand. Fig. 3.9 shows the results for this dataset, compared

to SSSC. Here C = 10−2, H = (h(C,n))2I,H0 = (h(C,n)
2 )2I,H′ = (h(C,n′))2I, n′ = 800

and Rmax = 150. Similarly, to the previous datasets Alg. 3.3 exhibits higher accuracy than

SSSC, while retaining low clustering time, corroborating the fact that Alg. 3.3 can handle

very large datasets. However, NMI is at suprisingly low levels, for both algorithms.
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Figure 3.5: Simulated tests on a synthetic dataset with K = 5 subspaces, D = 100 and N = 6, 400 datapoints
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Figure 3.6: Simulated tests on a synthetic dataset with K = 5 subspaces, D = 500 and N = 6, 400

datapoints.
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Figure 3.7: Simulated tests on real dataset PenDigits, with N = 10992 datapoints dimension D = 16 and

K = 10 clusters.
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Figure 3.8: Simulated tests on real dataset Extended Yale Face Database B, with N = 2414 datapoints

dimension D = 114 and K = 38 clusters.
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Figure 3.9: Simulated tests on real dataset Pokerhand, with N = 106 datapoints dimension D = 10 and

K = 10 clusters.
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Chapter 4

Community Identification in

networks using SkeVa

In our era of data deluge, clustering algorithms that do not scale well with the dramatically

increasing number of data have to be reconsidered. Spectral clustering, while powerful, is

computationally and memory demanding, even for high performance computers. Capitaliz-

ing on the relationship between spectral clustering and kernel k-means, the present Chapter

introduces a randomized algorithm for identifying communities in large-scale graphs based

on a random sketching and validation approach, that enjoys reduced complexity compared

to the clairvoyant spectral clustering. Numerical tests on synthetic and real data demon-

strate the potential of the proposed approach.

4.1 Preliminaries

4.1.1 The spectral clustering algorithm

Consider an arbitrary undirected graph G(V, E), where V is the set of vertices of the graph

and E is the set of edges. Denote also the vertices in G as {νi ∈ V}Ni=1, |V| = N , while let

eij ∈ E be the edges between vertices νi and νj, i 6= j. Each edge eij is characterized by a

weight wij that is interpreted as the similarity between vertices νi and νj . LetW ∈ R
N×N be

a matrix (a.k.a. adjacency matrix) such that [W]ij = wij . The Laplacian matrix L ∈ R
N×N
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of G is defined as

L = D−W (4.1)

where D = diag(d1, d2, . . . , dN ), di :=
∑N

j=1wij . Spectral clustering algorithms leverage a

key property of the eigenspace of L; when K connected components are present in G, L
possesses K zero eigenvalues, and their corresponding eigenvectors are indicators of these

connected components. In general, clusters (or communities in the present context) are not

expected to be completely disconnected from the other clusters in the graph. In such a case,

clusters are expected to induce eigenvalues close to 0 in L. Spectral clustering algorithms

find the K trailing (corresponding to the smallest eigenvalues) eigenvectors {vi ∈ R
N}Ki=1

of L. Then, cluster assignments are obtained by executing K-means on the rows of V =

[v1, . . . ,vK ] ∈ R
N×K . It turns out that this mapping of vertices to rows of V increases the

separability of the clusters and therefore clusters can be obtained by a simple algorithm

such as K-means. Variants of the previous algorithm use normalized versions of L [50, 51].

In the case where the number of clusters K is unknown, one may monitor the behavior of

the eigenvalue values and estimate the value of K by identifying the point where a “jump”

is observed in eigenvalue magnitudes.

4.1.2 The kernel K-means algorithm

KernelK-means is a generalization of the popularK-means algorithm tailored for clustering

data which are either available in non-vectorial form or they are not linearly separable [6,69].

Instead of dealing with vectors {xi ∈ R
D}Ni=1, kernel K-means works with images of those

vectors, {φ(xi) ∈ F}Ni=1, mapped in a linear space F of potentially infinite dimension.

Kernel K-means minimizes the (non-convex) objective:

K
∑

j=1

N
∑

i=1

‖φ(xi)−
1

|Cj|
∑

l∈Cj

φ(xl)‖2F (4.2)

where {Ci}Ki=1 denote the clusters, while the centroid of cluster k is denoted by µk :=

(1/|Ck|)
∑

j∈Ck
φ(xj). Capitalizing on the representer theorem [70], a distance between any
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datapoint in F and the centroid of cluster k can be written as

‖φ(x)i − µk‖2 = ‖φ(xi)−
1

|Ck|
∑

j∈Ck

φ(xj)‖2

= [K]ii −
2

|Ck|
∑

j∈Ck

[K]ij

+
1

|Ck|2
∑

j,l∈Ck

[K]jl , (4.3)

where K ∈ R
N×N is a matrix such that [K]ij := φ(xi)

Tφ(xj), with φ(xi)
Tφ(xj) denoting

the inner-product of points φ(xi), φ(xj) in F . From (4.3) it is clear that for kernel K-means

to operate only knowledge of inner-products (or similarities) between datapoints is required

and not the datapoints themselves, effecting thus clustering of non-vectorial or categorical

objects (such as vertices of a graph). The optimization problem of minimizing (4.2) is solved

in an alternating fashion similar to K-means. The objective (4.2) can be recast in matrix

form as follows

min
{Π,C}

tr(K)− tr(C1/2ΠTKΠC1/2)

= min
{Π̃}

tr(K)− tr(Π̃TKΠ̃)

= max
Π̃

tr(Π̃TKΠ̃) , (4.4)

where Π̃ := ΠC1/2; Π = [π1, . . . ,πK ] ∈ R
N×K is the cluster membership matrix such

that Π1 = 1 (1 is the all-one column vector) and entries of the vectors {πk ∈ R
N}Kk=1

are [πk]i = 1 if point i belongs to cluster k and 0 otherwise (hard clustering); C :=

diag(1/|C1|, . . . , 1/|CK |) ∈ R
K×K . While this optimization problem is NP-hard due to the

binary nature of Π̃, it can be simplified if Π̃ is relaxed to a unitary matrix, i.e., Π̃T Π̃ = I.

The relaxed problem has a well-known solution [71]

max
Π̃

tr(Π̃TKΠ̃) =

K
∑

i=1

λi(K) (4.5)

with {λi(K)}Ki=1 denoting the K largest eigenvalues of K. The optimal Π̃∗ is then a ma-

trix whose columns are the K eigenvectors corresponding to {λi(K)}Ki=1. From (4.5) the

connection of kernel K-means and spectral clustering becomes apparent [72], since kernel
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K-means is equivalent to maximizing the trace of the similarity matrix K, while spectral

clustering minimizes the trace of a quantity involving I − K. Kernel K-means incurs a

complexity of O(KN2I), where I is the number of required iterations until convergence.

Remark 1. In both spectral clustering and kernelK-means the choice of similarity measure

is critical for the performance of the algorithm.

4.1.3 Prior work

In large social, biological networks, or networks that exhibit community structure, L is

presumed to be sparse. In this case, methods such as Arnoldi/Lanczos iterations [71] can

be used to efficiently compute the trailing eigenspace of L, as usually only matrix-vector

products are required. Readily available packages that tackle large-scale sparse eigenvalue

problems exist [73]. Distributed eigensolvers and parallel versions of k-means [74] can

also be used. Care should be taken when the number of communities K is very large.

While the trailing eigenvectors of L can be computed efficiently, the final clustering step

would require clustering N K-dimensional vectors, which can prove challenging even for

distributed versions of k-means. Multiple approaches that aim to tackle specifically large-

scale spectral clustering tasks are available. These approaches come in three major flavors:

Parallelization/distributed processing, random sampling and random projections.

A useful overview of performing spectral clustering for sparse Laplacian matrices in par-

allel is given in [75]. The parallelization can be performed using either MapReduce [34] or

MPI [76]. Pre-processing of the data using k-means and random projection trees is investi-

gated in [77]. In this method the preprocessing step reduces the original N datapoints to

M < N representatives and performs spectral clustering on these M representatives, which

results in a reduced graph which speeds up execution of the spectral clustering algorithm.

However, as usually only similiraties between datapoints are given and not the datapoints

themselves, algorithms such as kernel k-means or k-medoids, that can work using only

similarities have to be employed.

Random sampling and random projections of the data are advocated in [78]. The ran-

dom projection step involves projecting the data points to a lower dimensional space and
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computing the similarity matrix from these lower-dimensional representations of the data

points. Again, as usually only the similarities are given and not the datapoints them-

selves, this part of the algorithm cannot provide the needed computational time reduction.

Afterwards entries of the similarity matrix are randomly sampled and spectral clustering

is performed using this reduced similarity matrix. Nyström’s method is proposed in [79]

and [80], to form a low-rank similarity matrix, which is enabled by sampling the original

similarity matrix and using the similarities between the sampled and non-sampled points.

Finding the eigenspace of the new low-rank similarity matrix is much more efficient, however

one should perform the sampling carefully, as it can drastically influence the final result.

When the similarity matrix is sparse, the Nyström eigenspace can be very similar to the

original eigenspace, leading to highly accurate clustering.

Random sampling of the similarity matrix is explored in [81], whereby entries of the

similarity matrix are sampled randomly, based on a budget constraint, and all other entries

are set to zero. This sparsifies the similarity matrix and leads to faster computation of

the eigenvectors. Random sketching is promoted in [82] and [83]. Entries of the similarity

matrix are randomly sketched using a random projection matrix to reduce the size of the

similarity matrix. This reduction allows for faster computation of the eigenspace.

Large-scale kernel K-means methods can also significantly speed-up the clustering pro-

cess. Results in [72] have shown that using kernel k-means instead of spectral clustering

can reduce the computation time required. Again care should be taken when using kernel

K-means. While the Laplacian matrix of a social network might be sparse, the similarity

matrix in general is not, possibly increasing the clustering time of kernel K-means (com-

pared to spectral clustering methods), especially in cases where the number of clusters K is

small. Methods to scale the kernel K-means algorithm are also available. Random sampling

of the kernel matrix is investigated in [16], where the centroids (cluster representatives) are

forced to reside on the subspace spanned by those sampled points. Simulated tests demon-

strate that the resultant algorithm can tackle large datasets effectively. Parallelization of

the kernel k-means algorithm is proposed in [84]. Here, low-dimensional embeddings allow

kernel k-means to be used in a distributed fashion using the MapReduce framework.
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4.2 The proposed algorithm

The proposed randomized algorithm (tabulated as Algorithm 4.1) capitalizes on the rela-

tionship between spectral clustering and kernel K-means and is inspired by random sam-

pling and consensus (RANSAC [25]) techniques. As it utilizes kernel K-means it requires as

input the similarity matrix K ∈ R
N×N and the number of communities K. The algorithm

works iteratively, for a prescribed number of Rmax iterations. At each iteration n≪ N data

points are sampled uniformly at random. The corresponding rows and columns of K are

then used to form a smaller matrix Ǩ ∈ R
n×n. The algorithm then runs kernel K-means

on Ǩ, obtaining a rough sketch of the clusters {Čk}Kk=1 and their centroids {µ̌k}Kk=1. This

is denoted as the “random sketching” phase of the algorithm. At the next step (“valida-

tion phase”) the algorithm evaluates how “good” the clustering obtained by the random

sketching step is. It does so by sampling another set of n′ ≤ N −n datapoints and forming

the matrix Ǩ′ ∈ R
n×(n+n′). Notice that Ǩ′ is of the form Ǩ′ = [Ǩ|K̃] where K̃ ∈ R

n×n′

contains the similarities between the initially sampled n points and the newly sampled n′

points. Using Ǩ′ the newly sampled n′ points can be assigned to their closest cluster,

and centroids {µ̌′k}Kk=1 can be then updated accordingly. Afterwards, the points in Ǩ are

checked for their closest cluster according to the updated centroids {µ̌′k}Kk=1. Points that

did not change clusters after the update using n′ points are deemed to be in the validation

set (VS) of the iteration, i.e.,

VS(r) =
{

φ(x) ∈ Ǩ(r)|∃k s.t. φ(x) ∈ Č
(r)
k ∩ Č ′(r)

k

}

(4.6)

where r denotes the iteration index. Each iteration is ranked according to a scoring func-

tion f that depends on the validation set. One example of such a scoring function is the

cardinality of the validation set: f(VS) := |VS|.
After Rmax iterations the algorithm chooses the one that had the highest score, r∗ :=

argmax f(VS(r)). The remaining N − n datapoints are then clustered according to the

centroids of Ǩ(r), {µ̌(r)k }Kk=1. The proposed algorithm incurs a complexity of O(KRmaxn
2I+

Rmaxnn
′), which is quadratic only in the number of sampled points n.

Remark 2. Similarly to RANSAC [25], the number of iterations Rmax can be related to
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the reliability of the algorithm. Let p be the probability of drawing a “good” sample at

iteration r. Then the probability of getting a “bad” draw is 1−p. If the total probability of

failure for Algorithm 4.1 is q then it is desirable to have a large enough number of iterations

R such that

(1− p)R < q . (4.7)

Hence, the maximum number of iterations can be set according to

Rmax ≥ log q

log(1− p)
. (4.8)

Remark 3. As each iteration r is independent from the others, the algorithm admits

parallelization through efficient processing schemes such as MPI [76] and MapReduce [34].

Remark 4. In cases where the similarity matrixK is very sparse, the probability of drawing

a good sample is very small. Therefore the algorithm needs to be modified so that sampled

entries contain sufficient information (few zero entries) to facilitate clustering.

4.3 Numerical tests

The performance and time complexity of the proposed algorithm are evaluated on synthetic

and real datasets. The proposed algorithm is compared to normalized spectral cluster-

ing [50], which utilizes Lanczos iterations to compute the trailing eigenvectors of L in a fast

and efficient manner, and kernel K-means on the whole network. The kernel used for Algo-

rithm 4.1 and kernel K-means in all experiments is K := (−1/2)JDJ where D ∈ R
N×N is a

matrix containing the shortest path distances between all vertex pairs and J := I−(1/N)11T

is the double centering operator.

To assess community identification performance, three metrics are used [85]:

• Average cluster conductance: Conductance is a measure of how many edges of a

cluster point outside it, and it is defined as:

g(Ck) =
|UCk

|
2|ZCk

|+ |UCk
| (4.9)

where ZCk
is the set of edges in cluster Ck that have both endpoints in Ck, while UCk

is the set of edges that go out of Ck, i.e., edges that have only one endpoint in Ck.
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Algorithm 4.1 Random Sketching and Validation for Spectral Clustering (SkeVa-SC)

Input: Gram matrix K, number of clusters K, number of points to sample n, maximum

number of iterations Rmax

Output: Clustered data

1: for r = 1 to Rmax do

2: Sample n≪ N points; call sampled Gram matrix Ǩ(r).

3: Run K-means on Ǩ(r); obtain K clusters {C(r)
k }Kk=1.

4: Sample another set of n′ points; form augmented Gram matrix Ǩ′(r) ∈ R
n×(n+n′).

5: For each of the n′ sampled points find the closest cluster and assign them to the

corresponding cluster.

6: For all sampled points in Ǩ(r) find their closest cluster.

7: |VS(r)| = number of datapoints that did not change cluster after the augmentation

in Step 4.

8: end for

9: r∗ = argmax f(VS(r)).

10: Group the remaining points according to the clusters given by r∗.

The values of (4.9) are computed for each identified community and are averaged over

their number K to produce the average cluster conductance.

• Modularity: Modularity is one of the most popular measures used in community

identification. It compares the density of edges in subgraphs of the clustered graph

with the expected density if there were no community structure, i.e., the graph was

random. It is defined as

g(Ck) =
1

4
(|ZCk

| − E [|ZCk
|]) (4.10)

where the expectation is taken over a random graph with the same degree sequence.

• Clustering accuracy: Accuracy is the percentage of correctly classified vertices,

given as a number in [0, 1] with 1 corresponding to 100% accuracy. It is used only for

synthetic networks as there were no available ground-truth assignments for the real
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networks used.

All experiments are conducted via MATLAB [37] on an Intel Core i5 − 4570 machine

clocked at 3.2GHz with 16 Gigabytes of RAM. All reported values are the averages of 10

independent runs.

4.3.1 Synthetic networks

Synthetic networks are generated randomly according to the method described in [86]. This

method generates binary adjacency matrix W ∈ {0, 1}N×N where [W]ij = 1 indicates the

existence of an edge between vertices i and j. Figure 4.1 shows the results for a synthetic

network with N = 5, 000 vertices, K = 9 communities, and |E| = 126, 427 edges, where

300 of the nodes do not belong to a specific community. The average degree of each vertex

is 50.04 and the mixing parameter (cf. [86]) is µ = 0.3. This µ defines the number of

edges between communities. As a rule of thumb, well-defined communities are created for

µ < 0.5. The number of points for validation n′ is set to n′ = 700 and Rmax = 10. Figure 4.2

shows the results for a synthetic network with N = 10, 000 vertices, K = 13 communities,

|E| = 250, 214 edges, and 200 of the nodes do not belong to a specific community. The

network can be viewed in Fig. 1.5 Again, the average degree of each vertex is 50.04 but

the mixing parameter is µ = 0.2. Here the number of points used for validation is set to

n′ = 1, 000 and Rmax = 20. It can be seen that as the number of sampled datapoints

n increases, the proposed algorithm approaches the performance of kernel K-means and

spectral clustering, while requiring one order of magnitude less computational time.

4.3.2 Real data

Algorithm 4.1 was also tested on a real datasets. The first dataset consists of the largest

connected component of a “Facebook egonet,” i.e., the network of friends of a single facebook

user [87], pictured in Fig.1.4. Vertices correspond to people and edges denote whether two

vertices are “friends” on Facebook. This network contains N = 744 vertices, |E| = 30, 023

edges, and K = 5 communities. Figure 4.3 shows the simulation results for this network.

Since the size of the network is small, all algorithms exhibit low clustering time. Clearly,
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as the number of sampled vertices increases, the conductance and modularity metrics for

the proposed approach the levels of kernel K-means and spectral clustering. Here the

maximum number of iterations is Rmax = 10 and n′ = 200. Figure 4.4 shows results for

the largest connected component of an arXiv collaboration network on High energy physics

theory [88] with N = 8, 638 vertices, |E| = 24, 806 edges, and K = 100 communities.

Vertices correspond to authors and edges indicate whether two authors have co-authored a

paper. Again, as the number of sampled vertices increases the algorithm exhibits similar

behavior with kernel K-means and spectral clustering. Here, Rmax = 10 and n′ = 800.
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Figure 4.3: Facebook egonet with N = 744 vertices, |E| = 30, 023 edges, and K = 5 communities.
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Figure 4.4: Collaboration network of arXiv High Energy Physics Theory with N = 8, 638 vertices, |E| =

24, 806 edges, and K = 100 communities.
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Chapter 5

Conclusion and Future Research

Inspired by RANSAC ideas that have well-appreciated merits for outlier-resilient regression,

this thesis introduced a novel algorithmic framework for clustering massive numbers of high-

dimensional data. Several members of the proposed sketching and validation (SkeVa) family

were introduced. The first two members, a batch and a sequential one tailored to streaming

modes of operation, required K-means clustering in low-dimensional spaces and/or a small

number of data-points. To enable clustering of even nonlinearly separable data, a third

member of the family leveraged the kernel trick to cluster linearly separable mapped data.

Kernel-based SkeVa also allowed for clustering-based community identification of large net-

works with a low-computational footprint, by exploiting the relationship between kernel

methods and spectral clustering.

A divergence metric was utilized to develop the fourth member of the SkeVa family that

bypasses intermediate K-means clustering to trade-off accuracy for reduced complexity,

by using ideas from kernel smoothing techniques. This method also allows for subspace

clustering of high-volume datasets, by using the Sparse subspace clustering algorithm, but

can potentially utilize any other subspace clustering algorithm.

Theoretical bounds on the number of required iterations were provided for this member

of the SkeVa family. Extensive numerical tests on synthetic and real data-sets demonstrated

the competitive performance of SkeVa algorithms over their state-of-the-art counterparts.

Most of the SkeVa algorithms are amenable to parallelization, enabling distributed cluster-
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ing of high-volume, high-dimensional data and networks.

Future research will focus on rigorous performance analysis of the proposed framework,

and on the development of online clustering tools that are able to handle streaming data

in an efficient manner, as well as implementations on distributed and parallel platforms.

Furthermore, robust variants of SkeVa capable of handling outliers will be pursued. Finally,

efficient methods for clustering of overlapping communites will be considered.
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Appendix A

Kernel Smoothing

Kernel density estimation or kernel smoothing [31] is a nonparametric method used to es-

timate an unknown pdf f from a finite number n of its samples. Kernel density estimators,

similarly to the histogram and unlike parametric estimators, make no assumptions about

the unknown pdf. Due to the use of kernel functions, instead of rectangular bins, kernel

smoothers enjoy faster convergence rates than the histogram estimator as n tends to infin-

ity [31]. However, the convergence rate is smaller than that for parametric estimators. For

datapoints {xi}ni=1 ∼ f , sampled from a multivariate pdf f , the kernel density estimator of

f is given by [31] :

f̂(x) =
1

n

n
∑

i=1

KH(x− xi) (A.1)

where KH(x − xi) denotes a pre-defined kernel function centered at xi, with bandwidth

matrix R
D×D ∋ H ≻ 0. This bandwidth matrix allows for different amounts of smoothing

across different dimensions. Typically, KH(x) is chosen to be a density so that f̂(x) is also

a density. In this case, the role of bandwidth can be understood more clearly as H takes

the role of the covariance matrix of the density KH(x).

The performance of kernel smoothers is usually assessed using the mean integrated

square error (MISE):

MISE(f̂ ;H) := E

[∫

(

f(x)− f̂(x)
)2
dx

]

. (A.2)

Here
∫

denotes integration across the D-dimensional Euclidean space, and dx stands for

dx1dx2 . . . dxD, where x := [x1, x2, . . . , xD]
⊤. The choice of bandwidth matrix H has a

notable effect on MISE. As a result, it makes sense to find values of H that allow MISE to

stay in relatively low levels. Note that

E[f̂(x)] =

∫

KH(x− y)f(y)dy =

∫

KH(u)f(x−H1/2u)du (A.3)
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Letting n → ∞ and H := h2ID, where h > 0 and ID is the D × D identity matrix, it is

possible to minimize (A.2) with respect to h. To this end h has to be defined as a function

of n satisfying:

lim
n→∞

h = 0, lim
n→∞

nh = ∞ (A.4)

Then the Taylor expansion of f around a point x is

f(x− hu) = f(x)− hu⊤Df (x) +
1

2
h2u⊤Hf (x)u+ o(h2u⊤u) (A.5)

where Df (x) = [∂f(x)∂x1
, ∂f(x)∂x2

, . . . , ∂f(x)∂xD
] is a vector of first-order partial derivatives of f and

Hf (x) ∈ R
D×D is the Hessian matrix of f whose entry (i, j) is [Hf (x)]ij = ∂2f(x)

∂xi∂xj
. Using

(A.2),(A.3),(A.4) and (A.5) and solving for h the (asymptotically optimal) value is given

by [31]:

h∗ =

[

D
∫

K2(x)dx

n
∫

xx⊤K(x)dx
∫

(∇2f(x))2dx

]1/(D+4)

. (A.6)

where
∫

xx⊤K(x =
(∫

x2iK(x)dx
)

ID and ∇2f(x) =
∑D

i=1
∂2f(x)
∂x2

i
. In addition, when the

density f to be estimated is a mixture of Gaussians, and the kernel is chosen to be a

Gaussian density KH(x− xi) := φH(x− xi), where

φH(x− xi) :=
1

(2π)D/2|H|1/2 exp
(

−1

2
(x− xi)

⊤H−1(x− xi)

)

, (A.7)

with mean xi and covariance matrix H, it is possible to compute (A.2) in closed form. This

closed-form computation is enabled by the following property of Gaussian densities [33]:

∫

φHi(x− xi)φHj (x− xj)dx = φ(Hi+Hj)(xi − xj) , (A.8)

that is, the convolution of two Gaussian densities is also a Gaussian density. In the case

where KH(x) = φID (x), the optimal asymptotic bandwidth of (A.6) becomes

h∗ =

[

Dφ2ID (0)

n
∫

(∇2f(x))2dx

]1/(D+4)

. (A.9)
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Appendix B

Soft Kernel K-means

Since this appendix deals with N ≫, the clustering schemes of Sec. 2.1 will be applied here

to a reduced number ν̌ ofD×1 vectors. Let X̌(r) ∈ R
D×ν̌ denote the subset of data obtained

by sketching columns of X. In this context, (2.2) proceeds as follows. For i = 1, 2, . . .,

[i-a] Update data-cluster associations: For n = 1, . . . , ν̌,

πn[i] ∈ arg min
π∈[0,1]K

1
⊤
π=1

δ
(

ϕ
(

x(r)
n

)

,
∑

k
πkck[i]

)

+ ρ(π) . (B.1a)

[i-b] Update cluster centroids:

{ck[i+ 1]}Kk=1 ∈ arg min
{ck}⊂H

ν̌
∑

n=1

δ

(

ϕ
(

x(r)
n

)

,
∑

k

[

πn[i]
]

k
ck

)

. (B.1b)

Recall that given a kernel κ, if ϕ(x) := κ(x, ·), then inner products in H can be obtained as

kernel evaluations: 〈ϕ(x) | ϕ(x′)〉H = 〈κ(x, ·) | κ(x′, ·)〉H = κ(x,x′), where 〈· | ·〉H denotes

the inner product in H. Moreover, function δ is chosen as

δ
(

ϕ
(

x(r)
n

)

,
∑

k
[πn]kck

)

=
∥

∥

∥
ϕ(x(r)

n )−
∑

k
[πn]kck

∥

∥

∥

2

H
,

with ‖·‖H := 〈· | ·〉1/2H . It can be shown then by the Representer’s theorem [5] that due to the

limited number of data {ϕ(x(r)
n )}ν̌′n=1, looking for a solution of (B.1b) in H is equivalent to

looking for one in the low-dimensional linear subspace H(r) := span{ϕ(x(r)
1 ), . . . , ϕ(x

(r)
ν̌ )},

of rank ≤ ν̌, and where span stands for the linear span of a set of vectors. For notational

convenience, let Φ(X̌(r)) := [ϕ(x
(r)
1 ), . . . , ϕ(x

(r)
ν̌ )], and Φ(X̌(r))b :=

∑ν̌
n=1 bnϕ(x

(r)
n ), for

any b ∈ R
ν̌ .
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Centroid ck belongs to H(r), and can be expressed as a linear superposition of Φ(X̌(r)).

Specifically, there exists bk ∈ R
ν̌ s.t. ck = Φ(X̌(r))bk. Upon defining B := [b1, . . . , bK ],

then [c1, . . . , cK ] = Φ(X̌(r))B. Moreover,

δ
(

ϕ
(

x(r)
n

)

,
∑

k
[πn]kck

)

=
∥

∥

∥
ϕ(x(r)

n )− Φ
(

X̌(r)
)

Bπn

∥

∥

∥

2

H

which can be also obtained through kernel evaluations. Letting K(r) denote the ν̌× ν̌ kernel

matrix with (n, n′)th entry [K(r)]nn′ := κ(x
(r)
n ,x

(r)
n′ ), and k

(r)

n′(r) the ν̌ × 1 vector with nth

entry [k
(r)

n′(r) ]n := κ(x
(r)
n ,x

(r)
n′ ), it follows from the linearity of inner products that for any

ν̌ × 1 vector ξ, 〈Φ(X̌(r))ξ | ϕ(x(r)
n )〉H = ξ⊤k

(r)

n(r) and 〈Φ(X̌(r))ξ | Φ(X̌(r))ξ〉H = ξ⊤K(r)ξ.

As such, the quadratic term in (B.2) becomes

∥

∥

∥ϕ
(

x(r)
n

)

− Φ
(

X̌(r)
)

Bπn

∥

∥

∥

2

H

=
〈

ϕ
(

x(r)
n

)

∣

∣

∣ϕ
(

x(r)
n

)

〉

H
− 2
〈

Φ
(

X̌(r)
)

Bπn

∣

∣

∣ϕ
(

x(r)
n

)

〉

H

+
〈

Φ
(

X̌(r)
)

Bπn

∣

∣

∣Φ
(

X̌(r)
)

Bπn

〉

H

= κ
(

x(r)
n ,x(r)

n

)

− 2π⊤
n B

⊤k
(r)

n(r) + π⊤
nB

⊤K(r)Bπn (B.2)

which shows that kernel K-means in (B.1) boils down to solving a finite-dimensional opti-

mization task w.r.t. B and Π := [π1, . . . ,πν̌ ].

Moreover, distances in H between ϕ(x
(r′)
n ) ∈ Φ(X̌(r′)) and centroids č

(r)
k = Φ(X̌(r))b

(r)
k

needed in step 5 of Alg. 2.3 can be efficiently computed because they are also expressible

in terms of kernel evaluations as follows;

∥

∥

∥
ϕ
(

x(r′)
n

)

− Φ
(

X̌(r)
)

b
(r)
k

∥

∥

∥

2

H

=
〈

ϕ
(

x(r′)
n

)

∣

∣

∣
ϕ
(

x(r′)
n

)

〉

H
− 2
〈

Φ
(

X̌(r)
)

b
(r)
k

∣

∣

∣
ϕ
(

x(r′)
n

)

〉

H

+
〈

Φ
(

X̌(r)
)

b
(r)
k

∣

∣

∣
Φ
(

X̌(r)
)

b
(r)
k

〉

H

= κ
(

x(r′)
n ,x(r′)

n

)

− 2b
(r)
k

⊤k
(r)

n(r′)
+ b

(r)
k

⊤K(r)b
(r)
k .
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Appendix C

Performance bounds using the

integrated squared error

Upon definition of d, ∀f, g ∈ X ,

d(f, g) :=
√

dISE(f, g) :=

√

∫

(f(x)− g(x))2 dx . (C.1)

using (C.1), the concavity of
√·, and Jensen’s inequality [61], an upper bound on E[d(·, ·)]

is provided as follows:

E[d(·, ·)] = E

[

√

dISE(·, ·)
]

≤
√

E [dISE(·, ·)]

=
√

E [d2(·, ·)] , (C.2)

and consequently, E2[d(·, ·)] ≤ E[d2(·, ·)].
Based on (3.25), define δ0 := d(f0, f̂), which is a random variable given its dependance

on f̂ . By the triangle inequality property, δ0 can be bounded as

δ0 ≤ d(f, f̂) + δ′ . (C.3)

While d(f, f̂) is a quantity that depends on f̂ , and it is thus random, it will be further

bounded by deterministic quantities, yielding a deterministic bound on δ0.
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Distance δ′ := d(f, f0) can be expressed in closed form using As. 1 and property (A.8):

δ′2 = d2(f, f0) =

∫

(f(x)− f0(x))
2 dx

=

∫

f2(x)dx+

∫

f20 (x)dx− 2

∫

f(x)f0(x)dx

=

∫

∑

ℓ

∑

ℓ′

wℓwℓ′φΣℓ
(µℓ − x)φΣℓ′

(µℓ′ − x)

+

∫

φH0(µ0 − x)φH0(µ0 − x)

− 2

∫

∑

ℓ

wlφΣℓ
(µℓ − x)φH0(µ0 − x)

= w⊤Ω0w +
1

(4π)D/2|H0|1/2

− 2
∑

ℓ

wℓφΣℓ+H0(µℓ − µ0) , (C.4)

where w := [w1, w2, . . . , wL]
⊤ is formed by the mixing coefficients of (3.14), and |H| denotes

the determinant ofH. Distances d(f̂ , f) and d(f̂ , f0) are random variables since they depend

on f̂ , which in turn depends on the randomly drawn data xi. As such, only their expectation,

w.r.t. the true data pdf f can be computed in closed form. As data are drawn independently

per iteration, the expectations do not depend on the iteration r. Under As. 1, E[d2(f̂ , f0)]

and E[d2(f, f̂)] can be also expressed in closed form [31] as

E[d2(f̂ , f0)] = E[dISE(f̂ , f0)] = E

[
∫

(

f̂(x)− f0(x)
)2
dx)

]

=

∫

f20 (x)dx+ E

[∫

f̂2(x)dx

]

− 2E

[∫

f0(x)f̂(x)dx

]

=
1

(4π)D/2|H0|1/2
+

∫

E

[

f̂2(x)dx
]

− 2E

[
∫

f0(x)f̂(x)dx

]

=
1

(4π)D/2|H0|1/2
+

1

n

1

(4π)D/2|H|1/2

+

(

1− 1

n

)

w⊤Ω2w

− 2
∑

ℓ

wℓφH+H0+Σℓ
(µℓ − µ0) . (C.5)
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and

E[d2(f̂ , f)] = E[dISE(f̂ , f)]

=
1

n(4π)D/2|H|1/2

+w⊤

((

1− 1

n

)

Ω2 − 2Ω1 +Ω0

)

w . (C.6)

with

E[f̂2(x)] =
1

n2

∑

i

∑

j

E [φH(x− xi)φH(x− xj)]

=
1

n2

∑

i=j

E
[

φ2H(x− xi)
]

+
1

n2

∑

i 6=j

E [φH(x− xi)φH(x− xj)]

=
1

n
E
[

φ2H(x− xi)
]

+
n2 − n

n2
E
2 [φH(x− xi)]

=
1

n

1

(4π)D/2 |H|1/2
+

(

1− 1

n

)

w⊤Ω2w , (C.7)

where the third equality is due to the fact that xi’s are independently drawn from f .

Moreover,

E

[∫

f0(x)f̂(x)dx

]

=
1

n
E

[

∑

i

∫

φH0(x− µ0)φH(x− xi)dx

]

=
1

n
E

[

∑

i

φH+H0(xi − µ0)

]

= E [φH+H0(x− µ0)]

=

∫

∑

ℓ

wℓφΣℓ
(x− µℓ)φH+H0(x− µ0)dx

=
∑

ℓ

wℓφH+H0+Σℓ
(µℓ − µ0) . (C.8)

Interestingly, the probability of d(f, f̂) being far from its ensemble average E[d(f, f̂)]
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can be bounded as [89]

Pr
(∣

∣

∣‖f − f̂‖p − E

[

‖f − f̂‖p
]∣

∣

∣ ≥ t
)

≤ 2 exp

(

− nt2h2−2/p

2‖KI(x)‖2p

)

, (C.9)

where ‖ · ‖p denotes the ℓp-norm for p ≥ 1, i.e., ‖f‖p :=
(∫

|f(x)|pdx
)1/p

. For the Gaussian

kernel with covariance matrix H := h2ID and p = 2, the norm ‖KI(x)‖2p becomes

‖KI(x)‖22 = ‖φI(x)‖22
=

∫

φ2I(x)dx = φ2I(0) =
1

(4π)D/2
. (C.10)

Consequently, (C.9) becomes

Pr
(∣

∣

∣
d(f, f̂)− E

[

d(f, f̂)
]∣

∣

∣
≥ t
)

≤ 2 exp

(

−nt
2h (4π)D/2

2

)

. (C.11)

Letting q := Pr(|d(f, f̂)− E[d(f, f̂)]| ≥ t), (C.11) yields

q ≤ 2 exp

(

−nt
2h (4π)D/2

2

)

, (C.12)

and solving (C.12) w.r.t. t, it is easy to arrive at

t ≤
√

− 2 log(q/2)

nh (4π)D/2
. (C.13)

Since 1− q = Pr(|d(f, f̂)−E[d(f, f̂)]| < t), the distance d(f, f̂) can be upper bounded from

above with probability 1− q as

d(f, f̂) <

√

− 2 log(q/2)

nh (4π)D/2
+ E[d(f, f̂)]

≤
√

− 2 log(q/2)

nh (4π)D/2
+

√

E[d2(f, f̂)] . (C.14)

where the second inequality follows readily from (C.2).

An upper bound with probability 1 − q to obtain the value of δ0 can be now derived

using (C.3) and (C.14):

δ0 ≤ d(f, f̂) + δ′

≤
√

− 2 log(q/2)

nh (4π)D/2
+

√

E[d2(f, f̂)] + δ′ := θ . (C.15)
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In lieu of δ0, θ will be used so as to avoid pathological cases where 1−E

[

d(f̂ , f0)
]

/δ0 ≤ 0.

Thus using (C.2) and (C.15), the “bad” event probability Pr(Bδ) [cf. (3.26)] can be

further lower-bounded with probability 1− q by

1−
E

[

d(f̂ , f0)
]

θ

≥ 1−

√

E

[

d2(f̂ , f0)
]

δ′ +

√

− 2 log(q/2)

nh(4π)D/2 +

√

E[d2(f, f̂)]

. (C.16)

Finally, using (C.16), the lower bound on Rmax of (3.19) reduces to

Rmax ≥ log(1− p)

log



1−
√

E[d2(f̂ ,f0)]

δ′+

√

−
2 log(q/2)

nh(4π)D/2
+
√

E[d2(f,f̂)]





, (C.17)

with ζ := (E[d2(f̂ , f0)])
1/2, θ1 := (−2 log(q/2)/(nh(4π)D/2))1/2 + (E[d2(f, f̂)])1/2, and θ2 :=

δ′, that establish the bound of Thm. 1.2.
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