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Abstract: 
Secondary structure of protein sequences is dependent on both internal and external 

interactions of amino acid residues and ligand-binding partners. Internal residue 

features can leave a protein in an ordered, folded state, or in a disordered, unfolded 

state. Structural characteristics can be further influenced by protein-ligand binding 

interactions with a lipid membrane surface. Structural features can be altered upon 

membrane binding, causing disordered proteins to become more ordered in 

structure. The stabilizing influence of methionine (Met) oxidation in an aromatic-Met 

hydrogen bonding interaction, within a small, 15-residue peptide was studied using 

Differential Scanning Calorimetry (DSC) and Circular Dichroism (CD) Spectroscopy 

to observe changes in structural strength. By observing the ordered to disordered 

transition of this peptide, changes in enthalpy and transition temperature were 

determined. This added aromatic-oxidized Met interaction causes a stronger and 

more stable ordered peptide structure due to internal residue interaction. Multiple 

intrinsically disordered proteins were studied upon binding to a membrane surface to 

determine the influence that physiological membrane surfaces and curvature have 

on appropriate conformer formation of synaptic vesicle (SV) binding proteins. 

Various C2 domains of synaptotagmin I (Syt I) and α-Synuclein (αS) were studied 

using DSC, CD and Carboxyfluorescein (CF) release assays. The proper folding of 

these proteins is important for their necessary function, and misfolding or sequence 

mutation can significantly alter their functionality within neuronal environments. 

These studies are vital to enhance understanding of the dependence of internal 

residue and membrane binding interactions on structural properties of proteins, as 

these specific interactions are not limited to individual systems.   
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pH 7.5 buffer. Upon addition of αS to the LUV mixture, corrections in molar 
phospholipid concentration were accounted for. Scans are normalized to the 
appropriate phospholipid concentration in each case. 

Figure 4.3: CD spectra from thermal denaturation of αS in the presence of different 
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Chapter One: Introduction to structural dependence on internal 

sequence and binding partners 

 
1.1  Introduction and Background 

A protein or peptide’s structure is dependent on the internal interactions between the 

amino acid residues, or external interactions with the environment. Internal 

interactions can result from amino acid characteristics, such as side chain size, 

hydrophobicity or charge. These interactions dictate secondary structural character 

of the protein resulting in α-helical or β-sheet folded states or an unfolded, randomly 

coiled state. The influence of oxidation of a Met residue in aromatic-Met α-helix 

interactions was studied. Through oxidation of the Met side chain structural stability 

of the folded or ordered complex is altered, as a direct representation of side chain 

interaction roles in protein folding. 

 

The resulting folded or unfolded state of the protein dictated by its internal sequence 

can further be affected by the characteristics of ligand binding. Ligand binding of the 

protein to a small molecule or a membrane surface can induce structural changes in 

folded conformation or strength of the folded state due to the necessary function of 

the protein. Proteins that lack strong internal interactions contributing to their 

structural specificity in a non-ligand bound state, classify as an intrinsically 

disordered protein, resulting in a randomly coiled, unfolded solution state. This 

randomly coiled state of the protein is the disordered, unstructured state, obtained 

prior to binding or induction of secondary external interactions. Ligand binding 

partners of intrinsically disordered proteins are initiators of secondary structure 

formation of the complex, making these proteins difficult to study in the absence of 

ligand. The effect of membrane composition and/or curvature was used to study the 

structural and functional effects of multiple intrinsically disordered membrane binding 

proteins. Induced changes in structural conformers of these proteins is dependent 

on binding specificity and membrane order, leading to advances in understanding 
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their functional and mechanistic properties. These proteins, found in the neuronal 

environment were observed as their obtained structured conformers when binding 

specific ligands and/or ranges of complex physiological lipid membrane surfaces are 

impacted.  

 

The induced structural state of specific peptides or proteins due to internal sequence 

features and binding partners is presented here to assist in determining the function 

and significance of specific complexes. By understanding the changes that occur 

within protein structure due to internal and external interactions, the interactive 

properties of the specific complex can be more defined.  

 

Chapter Two: Oxidation increases the strength of the methionine-

aromatic interaction 
 

2.1 Double mutant cycle significance and introduction 
Through recent computational studies, it has been hypothesized and observed that 

an aromatic-Met interaction increases the structural stability of an ordered or folded 

protein upon oxidation of the Met side chain. Aromatic-Met interactions are present 

in ~33% of protein structures (2012, Protein Data Base), where the majority of these 

sequences have more than five instances of this interaction occurring. This 

interaction of oxidized Met and aromatic is significantly stronger than a hydrophobic 

interaction, indicating it could play a role in stabilizing the protein’s structure, but also 

in ligand-binding [1]. Through protein sequence/structure analysis, aromatic-Met 

interactions are abundant when compared to non-sulfur-aromatic interactions [2]. 

Met’s sulfur group is important, due to its propensity to form interactions with 

aromatic side chains within α-helical structures at i and i + 4 positions [3]. Met’s 

susceptibility to sulfur oxidation allows this study to become significantly important to 

a wide range of diseases including Crohn’s Disease [4], irritable bowel syndrome [5], 

pulmonary fibrosis [6, 7, 8], cancer [9,10] and many others.  
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A helix/coil approach [3] was used to experimentally study this interaction via DSC 

and CD, where the calculated enthalpy, or strength of stability of the ordered state, 

increases for two aromatic-Met induced peptides upon Met oxidation. An 

experimental energetic evaluation of the strength of interaction between an aromatic 

and Met residue corroborate computational findings of an oxidized Met construct as 

more stable than its un-oxidized form. As a means of eliminating the possibility of 

potentially unknown additional contributing interactions within the 15-mer constructs, 

a double mutant cycle (DMC) was constructed [11, 12, 13]. A DMC experiment 

enables evaluation of the contribution of specific residues to a peptide’s structural 

stability. 

 

To construct a DMC, peptide constructs where each of the key residues, in this case 

aromatic residues and Met, were systematically replaced by the neutral residue 

alanine (Ala) at singly and then doubly, where Ala replaces one or both residues 

respectively. By evaluating the difference in ΔG between the Met-aromatic (oxidized 

or un-oxidized) and its respective singly substituted construct, giving a ΔΔG and 

then subtracting the ΔΔG of the singly substituted to the doubly substituted mutant, 

the result is a ΔΔΔGInt (Figure 2.1). The value of ΔΔΔGInt indicates if the specific 

interaction is contributing to the stabilization of structure. If ΔΔΔGInt equals zero, the 

interaction observed is not contributing to the structural stability, if greater than zero, 

the interaction is stabilizing and if less than zero, destabilizing [11, 12, 13]. 

 

2.2 Materials and Methods 
Peptide Synthesis 

To study the appropriate pair sequences in a peptide chain, the un-oxidized amino 

acid Met and oxidized Met (ox) was inserted into the sequence: a) Tyr-Gly-Gly-Ser-

Ala-Ala-Glu-Ala-Aromatic-Ala-Lys-Ala-Met-Ala-Arg-NH2, b) Tyr-Gly-Gly-Ser-Ala-

Ala-Glu-Ala-Aromatic-Ala-Lys-Ala-Met (ox)-Ala-Arg-NH2. The design of those 

peptides, a capping box at the N-terminus and blocked at the C-terminus, is based 

on [3]. The peptides were assembled on Fmoc-PAL-PEG-PS resin by Fmoc 



	
  

	
   4	
  

chemistry using a PE Biosystems PioneerTM protein synthesis system. Single Met 

oxidation was accomplished by incorporation of Fmoc-Met (ox)-OH during synthesis. 

Standard N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N-

methylmethanaminium hexafluorophosphate N-oxide (HATU)/ N,N-

diisopropylethylamine (DIEA) (1/2.4 eq.) activation, in 1-methyl-2-pyrrolidinone 

(NMP), was applied. Fmoc deprotection was achieved with 20% piperidine in NMP. 

The final release of the peptides, with removal of the side chain protecting groups, 

were accomplished by exposure of the peptide-resin to 82.5% trifluoroacetic acid 

(TFA), 5% phenol, 5% thioanisol, 2.5% 1,2-ethanedithiol, 5% water (Reagent K). 

The peptides were precipitated with cold methyl-t-butyl ether, vortexed, centrifuged, 

decanted, and dried over argon. The dried peptide was dissolved in degassed water 

and purified by high-performance liquid chromatography (HPLC) using a reversed-

phase C8 HPLC column. Peptide elution was achieved with a linear gradient from 0 

to 34% B (95% acetonitrile / 5% water / 0.1% TFA) in 40 min at a flow rate of 2.5 

mL/min with detection at 280 nm using a System Gold Beckman Coulter system. 

The HPLC fractions were collected and analyzed by mass spectrometry (MS). 

 

Circular Dichroism Spectroscopy (Peptide Studies) 

All peptides were stored in tetrafluoroethylene (TFE) post synthesis, the organic 

solvent was removed via evaporation using N2 gas prior to use. To ensure complete 

removal of the TFE, the sample was then put under vacuum for one hour. The dried 

peptide was re-constituted in 10mM KH2PO4, 100mM KCl at pH 7.5, and prepared 

for CD data collection. All CD experiments were performed on a Jasco J-815 CD 

Specrometer (Annapolis, MD) using a 0.1cm quartz cuvette using 150μM peptide 

concentration for all samples. Concentrations of the peptide samples were 

determined using a Nanodrop Spectrometer. Data points were collected from 200 to 

260nm in 1nm increments from -2°C to 60°C for YM, YM (ox), FM and FM (ox). 

Peptides used for the DMC, YA, FA, AM, AM (ox) and AA, one data point was 

collected at 222nm at each 0.5°C or 2°C change as temperature increased from -

2°C to 60°C. Cooling melts were also collected on all peptides (YM, YM (ox), FM, 
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FM (ox), YA, FA, AM, AM (ox), AA) similar to the DMC, as temperature decreased 

from 60°C to -2°C. All collected data points were an average of 3 acquisitions of the 

ellipticity recorded.  

 

Differential Scanning Calorimetry (YM and YM (ox)) 

All peptides were stored in TFE post synthesis; the organic solvent was removed via 

evaporation using Ar gas prior to use. The dried peptide was then re-constituted in 

10mM KH2PO4, 100mM KCl at pH 7.5, and prepared for DSC data collection. DSC 

experiments were performed on a NanoDSC (TA Instruments, New Castle, DE) at a 

scan rate of 1°C/min. DSC experiments were conducted at 100μM peptide 

concentration for un-oxidized, and 150μM for oxidized. Concentrations of the peptide 

samples were determined using a Nanodrop Spectrometer. To ensure the enthalpy 

measured was independent of concentration, experiments were conducted at 

different concentrations. 

 

2.3 Double mutant cycle results 

Utilization of the DMC is dependent on evaluation of the free energy (ΔG) of the 

ordered to disordered transitions of the nine peptide constructs (Table 2.1). CD 

directly measured the change in ellipticity as a function of temperature to analyze 

thermal melting and cooling of each construct. Based upon the observation of: 1) an 

isodichroic point in each of the peptide constructs and [14] 2) reversibility in the 

change in ellipticity of each peptide construct, defined by heating and cooling melt 

overlap, free energies were calculated through the use of a two state (ordered to 

disordered) model. 

 

A common elliptic value at ~202nm upon changing temperature was observed upon 

spectra overlay (Figure 2.2). This isodichroic point is indicative of two state behavior 

[14]. The spectra at the lowest temperature are consistent with the presence of α-

helical (ordered) content that upon increasing temperature, the structure transitions 

to a more randomly coiled (disordered) state.  
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Heating and cooling melts of four aromatic-methionine peptides (YM, YM (ox), FM, 

FM (ox)) (Figure 2.3) show absence of hysteresis indicating reversibility. Lack of 

hysteresis is also shown in the five mutated peptides (YA, FA, AM, AM (ox), AA) 

used in determining ΔΔΔGInt (Figure 2.4). 

 

Based upon the determination of a two state compliance through isodichroic and 

heating/cooling melt overlap, thermodynamic analysis was undertaken on all nine 

constructs. The Gibbs-Helmholtz equation was used to relate the free energy to the 

change in temperature, which is dependent upon the enthalpy (ΔHTm), change in 

heat capacity (ΔCp), and transition temperature (Tm). As such, the enthalpy change 

(ΔHTm) associated with this process at the transition temperature is a parameter 

from the global fit of the fractional change of signal with temperature. Fit parameters 

(enthalpy change, transition temperature, and heat capacity change) for YM and YM 

(ox) were tested by comparing the parameters obtained via the fit of the CD data to 

the same parameters directly measured by DSC. DSC monitors the rate of change 

of heat absorbed with increasing temperature (Cp), integration of this signal change 

with temperature is enthalpy (ΔHTm). The transition temperature (Tm) is the midpoint 

of the area of the curve, and the change in heat capacity (ΔCp) is the difference in 

the pre and post transition baselines.  

 

The denaturation data was fit using a two state assumption, where the peptide 

transitions from a structured to unstructured state. From this assumption the K, or 

equilibrium constant, of this transition is equal to concentration of the unfolded 

peptide divided by the concentration of the folded peptide: 

 

𝐾 = [$]
[&]

 (Equation 2.1) 

 

To further test the validity of this assumption, the enthalpy associated with a two 
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state transition (Van’t Hoff enthalpy) was calculated from the CD data using the 

equation ΔHVH=4RTm2 (dΘ/dT)Tm where R is the ideal gas constant, Tm is the 

transition temperature, Θ is the normalized ellipticity at 222nm, which is the 

fractional change in the states, and (dΘ/dT)Tm is the slope at the mid-point of the 

transition, then compared to the enthalpy change obtained through fitting the data. 

The closer the values of the enthalpies of the fit and the Van’t Hoff are to one 

another, the more compliant the transition is with two-state behavior and the closer 

the ratio of the enthalpies is to one. The oxidized and unoxidized constructs had 

ratios of 0.86 and 0.85 respectively, consistent with a transition from a structured to 

unstructured state. Along with this the Van’t Hoff ratio was also calculated for the 

enthalpy determined through DSC for both, YM and YM (ox) peptide constructs 

according to ΔHVH=4RTm2(ΔCpMax/ΔHcal), where ΔCpMax is the maximum of the 

endotherm, and ΔHcal is the enthalpy found through the DSC. This gave a Van’t Hoff 

ratio of 0.83 and 0.63 for the unoxidized and oxidized constructs respectively, 

consistent with two state behavior. Note these enthalpies are at the detection limit of 

DSC, and there is more noise associated with the endotherms than the CD data. 

The ΔHTm value was further confirmed by comparing the enthalpy from the fit of the 

CD data to the enthalpy directly measured via DSC for both peptide constructs 

(Table 2.2).  

 

Conformity of thermodynamic analysis with physical reality was evaluated through 

direct comparison of the melting transition temperatures. The melting transition 

temperature in a two state model occurs where the population of folded peptide 

equals the population of unfolded peptide or where each is occupying 0.5 of the 

population (Figure 2.5). A fraction of unfolded peptide indicated as α or FUnfolded, 

represents the fraction unfolded at any temperature in the melting range: 

 

F()*+,-.- = α = [(]
( 0[1]

 (Equation 2.2) 
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Fraction unfolded is represented as concentrations, and can be converted to an 

equation of the signal observed for each peptide unfolded (disordered)àfolded 

(ordered) transition. A representation of fraction unfolded in terms of ellipticity, or Θ: 

 

𝛼 = 34567893:58;<;
3=>?58;<;93:58;<;

  (Equation 2.3) 

 

Where ΘTotal is the observed ellipticity at each temperature, ΘFolded is the ellipticity of 

the fully ordered form of the peptide and ΘUnfolded is the ellipticity of the fully 

disordered form of the peptide. The convergence of fit values of the transition 

temperature with the plotted midpoint of the CD thermal denaturation curves strongly 

indicates the correlation of the fit parameters. 

 

Thermodynamic parameters necessary to complete a DMC were determined 

through this thermodynamic analysis, displayed in Table 2.3 and Table 2.4. All 

peptides were fit as described above, using the Gibbs Helmholtz equation, giving 

ΔHTm, CD (kcal/mol), ΔCp (kcal/molK) and Tm (°C) values. The aromatic-Met 

peptides are displayed in Table 2.3, and peptides used for ΔΔΔGInt analysis are 

displayed in Table 2.4. 

 

In ΔΔΔGInt determination, the difference in ΔG of the mutated aromatic in the 

presence and absence of methionine from the wild type results in the ΔΔGAroMàAlaM 

and ΔΔGAroAlaàAlaAla: 

 

ΔΔGBC+D→B,FD = ΔGBC+D-­‐‑ΔGB,FD   (Equation 2.4) 

 

ΔΔGBC+B,F→B,FB,F = ΔGBC+B,F-­‐‑ΔGB,FB,F   (Equation 2.5) 

 

The difference of these two ΔΔG values gives a ΔΔΔG of interaction correlating to 

the observed residue interaction contributing to structural stability or de-stability: 
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𝛥𝛥𝛥𝐺JKL = ΔΔ𝐺MNOP→MQRP − ΔΔ𝐺MNOMQR→MQRMQR (Equation 2.6) 

 

The ΔΔΔGInt indicates that other interactions contributing to structure have been 

removed from the observation allowing for determination of the free energy 

contributing toward an ordered state of the peptide due to the aromatic-Met 

interaction [11, 12, 13]. It can be seen in Table 2.5 that the ordered stability 

contribution of the oxidized state of each aromatic-Met peptide is ~0.4/0.6 kcal/mol 

greater than that of the un-oxidized form of the peptide. This increase in free energy 

seen in the calculation of ΔΔΔGInt indicates the oxidized Met residue is causing an 

increase in ordered stability of these peptides. 

 

Although the CD thermal denaturation curves are fit using the Gibbs Helmholtz two 

state transition, it is important to address the lack of limiting baseline behavior at the 

completely ordered state of the peptide. At -2°C a completely ordered limiting value, 

or slope equal to zero, is not obtained which indicates a fully ordered state was not 

achieved. Observation of the full peptide’s transition was observed using DSC for 

YM and YM (ox) peptides (Figure 2.6) which indicates completely ordered behavior 

is reached at 0°C. Due to the high concentration and larger volume needed for DSC 

experiments, CD was used for thermodynamic analysis of FM, FM (ox) and all five 

DMC constructs. The comparison and consistency of fit DSC and CD data for the 

original YM and YM (ox) peptides, indicates the strength of this thermodynamic 

analysis. The analysis proposed is consistent with the hypothesis in that an increase 

in structural strength and stability is caused from the oxidation of Met in the 

aromatic-Met interaction. By computing DMC free energies of interaction, there 

remains a consistent relationship of each peptide contribution, giving strength to the 

significance of these values. The DMC relationship is consistently in agreement with 

the experimental analysis of increasing strength due to oxidation and should not be 

disregarded. Through two state certainty via an isodichroic point and overlay of 

heating and cooling melts, these peptide constructs accurately depict two state 
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behavior. Further analysis should be completed through DSC to clarify the fully 

ordered states of these peptides, giving clarity to the lack of limiting baseline 

behavior at low temperatures.  

 

Chapter Three: Randomly organized lipids and marginally stable 

proteins: a coupling of weak interactions to optimize membrane 

signaling 
 

3.1 Introduction 

A cell membrane is a pliable and responsive surface. Changes in the local 

environment of a given lipid are propagated in all directions within a leaflet by the 

weak cooperative interactions between each lipid molecule and its six nearest 

neighbors [15]. This type of propagation behavior suggests that the membrane has 

great signaling potential. Another key facet to consider with regard to biological 

membranes and signaling is the high degree of lipid species diversity. The 

distribution and diversity of lipids in eukaryotic membranes is thought to maintain the 

system in a nearly random distribution which, according to information theory [16], 

maximizes the amount of information that can be cooperatively propagated in a 

signaling event because it is not biased in any one direction as in a more ordered 

system. Together, the weak cooperativity of lipid molecules and their nearly random 

distribution suggest the membrane constitutes a major information transducer in the 

cell. 

 

To transduce the vast array of information encoded within the mosaic membrane 

into the cell interior requires both transient organization of the signaling lipid species 

and a recipient protein that further senses and propagates the message. A lipid 

mixture near a critical point, teetering on a phase boundary between random 

distribution and restricted domain, could fulfill the first requirement. Domain 

formation can increase the probability of a particular signaling event, for instance, by 



	
  

	
   11	
  

providing platforms for protein-protein interactions that initiate the intracellular 

portion of a signaling cascade. In this sense, transient order in lipid organization 

allows for a discrete message to be propagated at levels above background thermal 

noise, or in other words, above the milieu of all other possible messages encoded in 

the membrane lipid distribution.  

 

Subsequent detection and propagation of such a wide range of membrane-encoded 

messages would seem to require a protein with complementary features; the protein 

would need to have a tendency towards random distributions so as to maximize the 

amount and diversity of information that can be recognized and propagated. 

Intrinsically disordered proteins are one well-known class of proteins with this 

tendency. Intrinsically disordered proteins are natively unfolded and have significant 

structural and conformational plasticity making them uniquely sensitive to differences 

in local environment, not unlike the near random but pliable membrane surface. 

Moreover, intrinsic disorder can facilitate propagation of information within the body 

of a protein [17]. When we measured the stability of a specific class of proteins by 

thermal denaturation we found that these proteins, whose functional role is directly 

linked to membrane biology, have features of intrinsic disorder; these proteins retain 

some secondary structure, but are marginally stable or nearly disordered [18, 19, 

20]. Specifically, this seems to be the case with C2 domains of synaptotagmin I (Syt 

I) in neurons (involved in exocytosis) and the C2 domains of dysferlin (Dys) in 

muscle (responsible for sensing and repairing membrane damage). Currently, there 

are 14496 C2 domains annotated in 9258 protein sequences within the SMART non-

redundant database [21]. It is unknown if this marginally stable behavior is a general 

feature of C2 domains, but denaturations carried out previously on various C2 

domains from protein kinase C also converge on this finding [22]. Moreover, when 

we denatured the C2A domain of cotton Syt I, we found it had the same hallmarks 

as human Syt I, suggesting potential conservation across phylogenetic kingdoms.  
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A new potential rule for membrane signaling emerges when we simultaneously 

consider the near disordered nature of membrane lipids as well as membrane-

sensing proteins, namely maximum flow of signaling information through the 

membrane and into the cell is optimized by the cooperation of the two near-random 

distributions of membrane lipids and proteins. Indeed, when lipid species diversity 

and protein intrinsic disorder are compared, both increase with organism complexity 

[23, 24]. While at first glance, this hypothesis may seem to imply uni-directionality of 

information flow (a marginally stable protein only decodes the information of the 

membrane), the mechanism applies in both directions. Protein interactions with 

membranes can induce membrane domain formation (order) if the protein has 

specificity for some of the lipids and these lipids are distributed non-ideally [25, 26]. 

If, however, the protein’s interaction with the membrane depends on intracellular 

signals (such as calcium ion), then the protein becomes a means to relay 

intracellular conditions back to the membrane potentially for amplification via weak 

cooperative lipid-lipid interactions. The end result is reciprocal exchange of 

information. 

 

Here we explore our hypothesis that the distribution of lipids within the eukaryotic 

membrane is coupled to interactions with weakly stable but structured proteins to 

transduce and modulate signaling information. Studies of protein stability and 

membrane disruption were completed in which membrane lipid composition is a 

variable. C2 domain stabilities are found to be highly sensitive to changes in lipid 

composition and undergo correlated changes with membrane information content. 

 

3.2 Materials and Methods 
Protein Constructs 

The C2 domains studied were constructs derived from human Syt I, cotton Syt I, and 

Dys. The only C2A construct of human Syt I used for experiments in this study, 

contained residues 96-265. In the top half of Table 3.1, thermodynamic parameters 
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are reported for a shorter human Syt I C2A construct containing residues 140-265. 

Additional residues in the 96-265 C2A construct correspond to the region between 

C2A and Syt I’s single transmembrane helix. The human Syt I C2B domain included 

residues 272-422. The constructs from Dys include two different isoforms of the C2A 

domain: the canonical C2A domain (C2A wild type/C2A) and the variant resulting 

from alternative splicing of the first exon (C2Av1). Of the two C2 domains in cotton 

Syt I, only the C2A domain was studied. Purification of these constructs was carried 

out as previously described [18, 19, 20]. 

Preparation of Lipid Samples 

All lipids were purchased from Avanti Polar Lipids (Birmingham, AL). Samples 

without cholesterol were prepared as previously described [20]. Cholesterol-

containing samples were prepared by aliquoting lipid stocks into a 4:1 mixture of 

chloroform:methanol followed by rotary evaporation using a Buchi R-215 at a 

temperature between 50-60°C. The lipid films were then placed under vacuum for a 

minimum of 8 hours to remove excess solvent and hydrated with the appropriate 

buffer. LUVs were prepared by hand extrusion using a 0.1μm filter. SUVs were 

prepared through multiple rounds of extrusion with filters of gradually smaller pore 

sizes ending with a 0.03μm pore size. 

Differential Scanning Calorimetry (DSC) 

DSC experiments as well as both scan rate and concentration dependent controls 

were performed on a NanoDSC (TA Instruments, New Castle, DE) as described 

previously [18, 19, 20]. All scans were conducted in chelexed 20 mM MOPS, 100 

mM KCl, pH 7.5 using saturating ligand concentrations. All scans with lipid contained 

one of the following: 1) LUVs of 60:40 POPC:POPS; 2) LUVs of (80:20):30 

(POPC:POPS):cholesterol; 30 mole percent cholesterol was doped on top of a 

mixture POPC:POPS (80:20)  3) LUVs with the mixture shown in Table 3.2 plus 45 

mole percent cholesterol doped in; or 4) SUVs of 3). The concentration of the 

calcium stock solution used for all scans was verified using both a calcium ion 
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selective electrode (ThermoScientific) and a BAPTA chelating assay 

(Invitrogen/Molecular Probes, Eugene, OR). The concentration of all lipid stock 

solutions was confirmed through a phosphate assay according to standard protocols 

[20]. For the experiments reported in this study the human Syt I C2A construct was 

found have an average reversibility of 93% except in the presence of LUVs 

composed of the membrane domain forming mixture in which the reversibility was 

found to be 46%. For a justification of the thermodynamic parameters reported for 

the other domains discussed please see references [18, 19, 20]. 

 
Tryptophan Fluorescence 

Tryptophan Fluorescence (TF) experiments were performed on a Lifetime 

Spectrometer (Fluorescence Innovations, Bozeman, MT) using nanomolar protein 

concentrations as previously described [18, 20]. No time-resolved measurements 

were made; instead the integrated intensity of the lifetime decay was used to monitor 

intrinsic tryptophan fluorescence (excitation and emission wavelengths of 295 and 

340 nm, respectively). Buffers, Ca2+ stocks, and lipid samples used were identical to 

that described above. Percent reversibility was measured by comparing the 

integrated fluorescence lifetime intensity of the sample before heating and after 

cooling. Due to the exceptionally low stability of the Dys and cotton Syt I C2A 

domain, no change in tryptophan fluorescence could be detected for these 

constructs. As a result, only the Syt I C2 domains were studied using this method. 

 

Circular Dichroism Spectroscopy 
CD experiments were performed on a Jasco CD Spectrometer (Annapolis, MD), 

using 15µM of the Syt. I C2A domain (residues 96-265) with 700µM LUVs composed 

of POPC:POPS (60:40) and 1mM Ca2+ in a 0.1 cm quartz cuvette. The spectrum 

was obtained in the same buffer system used for DSC and TF. Data points were 

collected in 1 nm increments and averaged over 5 acquisitions. Spectra collected 

were corrected for any buffer contributions by subtracting a buffer scan from the 

corresponding protein scan. 
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Carboxyfluorescein Release Assay 

LUVs containing CF dye were prepared as previously described [21]. To determine 

the effect of protein binding on membrane leakage, the dye signal was monitored 

with excitation and emission wavelengths of 492 nm and 515 nm, respectively, as a 

function of time and temperature, with one addition of ligand and one addition of 

protein. In the absence of ligand or protein, 20mM MOPS, 100mM KCl, 0.02% NaN3 

was added to obtain constant increases of volume at each addition of solution. All 

fluorescence measurements were performed on a Fluorolog 3 double excitation and 

double emission monochromoter (Horiba Jobin Yvon) in a 500µL quartz cuvette. 

Appropriate temperatures were chosen to enhance membrane transition and 

perturbation of the LUV lipid compositions listed in Table 3.2, on which the 

experiments were performed [27]. Time and temperature dependent experiments 

were performed for a period of 60 minutes using a temperature controlled water bath 

(Pharmacia Biotech Multitemp III). The cuvette contained 300µL of liposome sample 

at the start of the fluorescence scan, 100µL of buffer or Ca2+ solution titrated in after 

15 minutes, and 85µL of buffer or protein titrated in after 30 minutes. The cuvette 

was placed in the fluorometer and the scan was immediately started at constant 

temperature (20.4°C). Buffer or Ca2+ solution was added at 15 minutes, followed by 

buffer or protein at 30 minutes. At the time of the second injection, the temperature 

was set to increase to 75°C and the change in CF fluorescence was monitored in 

order to confirm consistency between experiments as well as dye release. Within the 

cuvette the concentration of liposome was 200µM and concentration of Ca2+ ion 

solution was 3mM after its addition at 15 minutes. A 50.6µM stock sample of the Syt 

I C2A domain (encoding residues 96-265) was added in one increment of 85µL to 

obtain a concentration of 13.33µM. Triton X-100 detergent was added after each 

scan to completely disrupt the membrane and confirm the presence of CF within the 

liposome as well as determine the maximum efflux. 
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3.4 Results and Discussion 
C2 domains at neuronal, muscle, and plant membranes are weakly held 

together 
C2 domains are functional modules exploited by numerous proteins in membrane 

trafficking and signaling events [28, 29]. As such, they are likely candidates for the 

decoding and propagation of information stored within the membrane’s changing 

lipid distribution. Currently, there are 39 unique crystal structures of C2 domains that 

have been assigned via SCOP classification [29]. Of these structures most share a 

similar overall fold such as those in human Syt I, the canonical and variant forms of 

Dys, cytosolic phospholipase A2 α, protein kinase C, and extended synaptotagmins 

(Fig. 3.1) [19, 28, 29, 30]. No crystal structure is available for Gossypium (cotton) 

Syt I; however, a good quality homology model can be computed based on its 

similarity with human Syt I. While the C2 domain structures of human and cotton Syt 

I as well as the canonical and variant forms of Dys C2A are highly similar, their free 

energies of stability at 37 °C (ΔG37°C) are not, spanning from 0.017-2.32 kcal/mol 

(Fig. 3.2, lower panels; Table 3.1). Despite this range, these different C2 domain 

stabilities are similar in the sense that all are at the lower limit of what constitutes a 

folded protein and all have features of protein disorder. Given that marginal stability 

is found in C2 domains from tissues of different embryonic origin (neurons and 

muscle) as well as different eukaryotic organisms (humans and plants), it brings up 

the question of whether or not this is a conversed feature of membrane associated 

C2 domains. The initial data presented here suggests this may be the case and 

earlier DSC denaturation work on the α-, β-, and γ-isoforms of protein kinase C, 

wherein all C2 domains were found to have a ΔG37°C of ~1 kcal/mol, further supports 

this hypothesis [22]. 

 

Membrane composition and curvature set the protein ensemble 

The marginal stability of the C2 domains tested above suggested that each would be 

sensitive to changes in their local environment, particularly the membrane surface 

with which they interact [31, 32]. To test this hypothesis, a C2 domain construct of 
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human Syt I was denatured in the presence of vesicles of varying lipid composition 

and the resulting data was used to calculate ΔG37°C. Human Syt I C2A (encoding 

residues 96-265) in the presence of non-domain forming LUVs (60:40 mixture of 

POPC:POPS, Fig. 3.3 upper left panel) was found to be weakly stable with a 

ΔG37°C of 2.18 kcal/mol (Fig. 3.2, upper left panel; Table 3.1). When the 

composition includes cholesterol ((80:20):30 mixture of (POPC:POPS):chol as 

LUVs), this basal stability decreases to 1.67 kcal/mole (Fig. 3.3, middle panel; 

Table 3.1). 
 

When the LUV membrane complexity mimics the heterogeneity of the plasma 

membrane (PM) (Table 3.2), C2A’s stability and unfolding profile undergo additional 

dramatic changes (Fig. 3.3, middle panel). This PM mimic is based upon the 

distribution and mole percents of lipid species found in a SV, specifically the 

cytosolic face with which Syt I interacts in vivo [33]. In the presence of this SV mimic 

and saturating Ca2+, human Syt I C2A has a stability of 5.75 kcal/mol. If, however, 

physiological unsaturated PS and PI lipids are replaced with PS and PI containing 

saturated acyl chains, a chimeric lipid mixture is made; the composition of which still 

replicates the general characteristics and distributions found in a synaptic vesicle, 

but also weakly forms domains as suggested by the subtle DSC transition seen with 

LUVs alone (Fig. 3.3, left panel). Using this LUV chimera, the calculated ΔG37°C in 

the presence saturating Ca2+ was 7.09 kcal/mol and increased further still to 7.6 

kcal/mol using SUVs of identical composition. Indeed, human Syt I C2A’s ΔG37°C 

increases 23% (5.75 to 7.09 kcal/mol) in response to this local change in lipid 

distribution and increases an additional 7% (7.09 to 7.6 kcal/mole) in response to 

increased curvature. This latter observation is of particular importance to human Syt 

I because vesicles undergoing exocytosis and subsequent recycling experience a 

broad range of positive and negative curvatures both of which can change lipid 

distributions [34, 35]. If Syt I senses these changes, as suggested by the change in 

ΔG37°C presented here, it will have ramifications on the protein’s conformational 

ensemble. 
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The same rule of membrane composition sensitivity seen for C2A alone seems to 

extend to the C2AB fragment of human Syt I, which includes both C2 domains of the 

protein [18]. The C2A and C2B domains are stabilized by different lipid species, 

where C2A is stabilized by PS and C2B by PIP2 [18]. Because one domain becomes 

destabilized when the other is stabilized, both C2 domain ensembles are set by 

interactions with either lipid type. This is best illustrated in the TF denaturations of 

C2AB which have a strong fluorescence contribution from the C2B core tryptophan 

(Fig. 3.3, right panel). In the presence of 60:40 POPC:POPS LUVs, C2A is 

stabilized and C2B is destabilized (green). However, addition of Ca2+ drives C2A into 

a PS-bound state which makes the destabilization of C2B more prominent (orange 

and red). In contrast, when C2AB is in the presence of 95:5 POPC:PIP2 LUVs, C2B 

is stabilized and C2A is destabilized (blue). As with PS-containing membrane, Ca2+ 

accentuates this effect (purple). The denaturations reveal a strikingly broad range of 

stabilities that highlight the ability of the membrane to broaden or narrow the 

conformational ensemble of C2B within the C2AB fragment using the lipid binding 

ability of either domain.  

 

The responsiveness of human Syt I C2 domains is further exemplified by a few 

peculiar changes in the baseline heat capacity (ΔCp) (Fig. 3.2, top left panel). C2A 

and C2B have a very large ΔCp under some membrane conditions. As can be seen 

in Table 3.1 the large ΔCp values can have a dramatic effect on the calculated 

stability of the domain, as it narrows the temperature range over which the protein 

appears stable and consequently can give rise to a negative ΔG37°C . While we are 

not concluding that the C2A domain is unfolded under these conditions (indeed at 25 

°C, a temperature well below the calculated cold denaturation threshold, C2A is still 

folded; Fig. 3.2 top right panel), the changes in ΔCp provide another metric for the 

protein’s sensitivity to the local membrane environment. Both C2 domains of human 

Syt I are known to have partial membrane insertion capabilities [36, 37]. Moreover, 

structural orientation modeling of C2 domains bound to PIP2 suggests a fairly large 
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surface area of contact between protein and membrane [38]. Since one contribution 

to the change in baseline heat capacity is the change in solvation of the protein in 

native and denatured states, partial insertion into the 60:40 POPC:POPS (for C2A) 

or 95:5 POPC:PIP2 (for C2B) membranes, or significant reduction in solvent 

accessibility due to surface adherence could alter solvation of the native C2 domain. 

If in the unfolded form of the protein, hydrophobic residues partially partitioned into 

the membrane, solvation could also be altered leading to a change in ΔCp. This 

latter example, however, would result in a reduced ΔCp because hydrophic residues 

would be protected from aqueous solution and not be surrounded by water cages 

that differentially absorb heat. Since this is the opposite of our data, the large ΔCp’s 

point instead to unique membrane modifications of the native state. Regardless of 

the root cause, the behavior of the C2 domain is membrane composition and 

condition-dependent. 

 

Unique Syt I C2A conformers invoke distinct membrane-disruption 

responses in a synaptic vesicle mimic 

From the cumulative denaturation studies above, it appears that these C2 domains 

(from human Syt I, in particular) are acutely sensitive to membrane environment and 

are capable of adopting numerous conformations. This intrinsic plasticity leads to a 

question similar to that discussed for membrane lipid diversity and encoded 

information. Just as different lipid-lipid pairs constitute different potential signals, so 

too should C2 domain conformers. In this context, noise comes from the breadth of 

the C2 domain’s conformational ensemble (determined by the free energy of 

stability). The signal is a particular subset of conformers that are simultaneously 

selected from the ensemble and more heavily weighted by binding of ligand (such as 

membrane and Ca2+). The resulting conformer subset mediates molecular events 

that fulfill a biological function of the C2 domain as a means to propagate the given 

signal [39]. 

 

To test this definition of function, we applied our recently developed CF efflux assay 
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to human Syt I C2A using vesicles that had either the domain forming or non-domain 

forming SV compositions listed in Table 3.2. From human Syt I C2A’s change in 

stability shown above, it appears that the membrane domain forming mixture selects 

a smaller set of conformers from the ensemble (as suggested by the 23% increase 

in ΔG37ºC compared to non-domain forming mixture). When looking at the change in 

efflux as a function of time, the C2A conformers selected by the domain forming 

mixture reduce release. This can be seen by the downward inflection at ~37 °C 

(where the phase transition occurs). However, when the lipid mixture mimics the SV, 

the extent to which C2A limits efflux increases; the downward inflection has a larger 

magnitude. In both cases, however, when the sample temperature increases beyond 

the melting temperature of C2A, the rate of efflux increases dramatically. Thus, the 

distinct C2A conformers selected by each lipid mixture send unique signals back to 

the membrane, resulting in differential efflux outcomes that may relate to function 

(Fig. 3.4) [39]. 

 

3.5 Closing Comments 

Eukaryotic lipids are numerous. If each lipid combination is regarded as a potential 

signal, the eukaryotic membrane becomes a repository of information, highly 

diversified by chemical variation in head group and acyl chain. These signals likely 

have specificity, suggested by both the unique lipid distributions found amongst 

compartments and leaflets as well as the numerous proteins that selectively bind to, 

partition into, or enzymatically target them. Within this context, a non-random 

distribution of lipids (like those found in membrane domains) could reduce 

information in a local region of the membrane. Membrane domains are non-ideal 

mixtures of lipids. As such, domains could have fewer potential combinations of 

lipids and consequently less information. In this scenario, predictable signaling 

outcomes come about from restricting available combinations of lipids either in a 

signaling domain or upon protein binding.  
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Much like the membrane, C2 domains that associate with or are tethered to the 

membrane also seem to be dominated by weak interactions. This marginal stability 

imparts these proteins with a membrane-responsive character, where the 

conformational distribution of the protein is set by the lipid composition and 

information content. This selection/restriction of the protein conformational ensemble 

by the membrane can be viewed as a decrease in the informational entropy of the 

protein, which in turn reciprocally affects the membrane (Fig. 3.4). If lipid diversity is 

a means to store information and weakly stable membrane-associated proteins 

conformationally respond to membrane composition (Fig. 3.2 and Fig. 3.3) while 

simultaneously affecting membrane distribution (Fig. 3.4), then these weak 

interactions provide a means for translating and transducing membrane-encoded 

information to downstream effector molecules whether they be proteins required for 

membrane repair (Dys) or for regulated release of neurotransmitter (human Syt I). In 

both cases, noise that manifests as non-functional combinations of lipids or non-

functional protein conformers is unrecognized by the cell; the cell cannot make 

sense of the information presented in these non-signaling states. However, when a 

particular signal is to be transmitted, the near randomness of both lipid distribution 

and protein structure condense into a particular configuration associated with the 

signal allowing for its propagation. 

 

Chapter Four: αS’s thermodynamic properties of SV trafficking 

 
4.1 Introduction  

αS is a protein found in the neuronal environment, involved in the regulation of SV 

transport to the PM. αS is a small intrinsically disordered, membrane binding peptide 

that regulates SV trafficking. It is the overexpression or mutation of this peptide that 

correlates to the onset of Parkinson’s Disease (PD) [40]. This peptides functionally 

specific binding process has not been extensively studied and is unclear, leading to 

minimal understanding of its role in PD. It is hypothesized that upon binding the 
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membrane surface, αS reduces SV membrane rigidity within the bilayer before it 

fuses with the PM of the neuron. By reducing membrane rigidity, the vesicle has a 

higher propensity for fusion with the PM surface, to then excrete neurotransmitter 

contents into the synaptic cleft. The binding of αS to a SV is dependent on both the 

very unusual phospholipid composition of a SV, and on its very small size. The 

complex phospholipid head-group moiety that is present in a SV is significant to its 

proper trafficking and fusion capabilities. To accurately study this binding event, it is 

essential to determine the lipid composition that most closely mimics the outer leaflet 

of the SV membrane, the surface with which αS interacts. The dependence of αS-

membrane binding affinity on the specific phospholipid components of SVs and the 

change in structural conformation of αS, upon binding different membrane 

compositions, will dictate the proper changes of the peptide for function. As an initial 

approach to the study of αS, a physiological mixture of phospholipids within a SV 

was determined. A complex synaptic mixture of phospholipids and cholesterol is the 

surface to which αS binds. The curvature of the membrane binding surface is 

significant to SVs, as the vesicle is only 0.03 microns in diameter, a highly curved 

bilayer surface is created [33]. The extent of membrane surface curvature to which a 

peptide can bind to, will induce different curved intensities of the bound conformer, 

further altering its defined folded state. Through thermodynamic analysis, the study 

of the peptide-membrane binding interface will lead to a clearer representation of the 

peptides proper function. The effect of mixture complexity and liposomal surface 

curvature has been explored through preliminary CF release assays, DSC and CD 

spectroscopy experiments. 

 

4.2 Materials and Methods 

Preparation of Lipid Samples 
All lipids were purchased from Avanti Polar Lipids (Birmingham, AL). Samples 

without cholesterol were prepared as previously described [27]. Cholesterol-

containing samples were prepared by aliquoting lipid stocks into a 4:1 mixture of 

chloroform:methanol followed by rotary evaporation using a Buchi R-215 at a 
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temperature between 50-60°C. The lipid films were then placed under vacuum for a 

minimum of 8 hours to remove excess solvent and hydrated with the appropriate 

buffer. LUVs were prepared by hand extrusion using a 0.1μm filter or 0.2μm (CF). 

SUVs were prepared through multiple rounds of extrusion with filters of gradually 

smaller pore sizes ending with a 0.03μm pore size.  

 

Carboxyfluorescein Release Assay 

LUVs containing CF dye were prepared as previously described [27]. To determine 

the effect of protein binding on membrane leakage, the dye signal was monitored 

with excitation and emission wavelengths of 492nm and 515nm respectively as 

functions of time and temperature. All fluorescence measurements were performed 

on a Fluorolog 3 double excitation and double emission monochromator (Horiba 

Jobin Yvon) in a 500μL quartz cuvette. Appropriate temperatures were chosen to 

enhance membrane transition and perturbation of the LUV lipid compositions, on 

which the experiments were performed [33]. Experiments were performed for a 

period of 60 minutes using a temperature controlled water bath (Pharmacia Biotech 

Millitemp III). A buffer composed of 20mM MOPS, 100mM KCl and 0.02% NaN3 was 

used, with 200μM LUVs and 0.8μM αS when in the presence of peptide. Triton X-

100 detergent was added after each scan to completely disrupt the membrane and 

confirm the presence of CF within the liposome as well as determine the maximum 

efflux. 

 

Differential Scanning Calorimetry (Liposome Transition) 
Liposome transition DSC experiments were performed on a NanoDSC (TA 

Instruments, New Castle, DE) at a scan rate of 0.167°C/min. DSC samples were 

prepared using 10mM liposome concentration of LUVs or SUVs. The liposome 

sample was annealed, or allowed to reach an ordered equilibrium by transitioning 

through a temperature range of 5-55°C. Once properly annealed, αS was re-

constituted in 20mM MOPS, 100mM KCl at pH 7.5, and added to the sample to 

reach a 250:1 [L]:[P] ratio. The DSC sample then contained 18μM αS and 6.67mM 
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liposome. Concentration of αS was determined using a Nanodrop Spectrometer. 

Liposome concentration was determined through a phosphate assay and was used 

to determine enthalpy per mole of liposome [20]. 

 

Circular Dichroism Spectroscopy (αS): 
αS was re-constituted in 20mM MOPS, 100mM KCl at pH 7.5, and prepared for CD 

data collection. All CD experiments were performed on a Jasco J-815 CD 

Spectrometer (Annapolis, MD) using a 0.1cm quartz cuvette using 5-15μM αS 

concentrations, and 1-5.6mM liposome concentrations for all samples. 

Concentrations of the αS samples were determined using a Nanodrop 

Spectrometer. Data points were collected from 200 to 260nm in 1nm increments 

from -2°C to 60°C. All collected data points were an average of 3 acquisitions of the 

ellipticity recorded. 

 

Differential Scanning Calorimetry (αS Transition): 

One DSC experiment was performed on a NanoDSC (TA Instruments, New Castle, 

DE) at a scan rate of 1°C/min. αS was re-constituted in 20mM MOPS, 100mM KCl at 

pH 7.5, and the DSC sample contained 20μM αS and 4mM SV mimicked liposome 

concentration as SUVs. Concentration of αS was determined using a Nanodrop 

Spectrometer.  

 

4.3 Determination of physiological SV mimic 

The SV is comprised of many transmembrane domain proteins and a complex 

mixture of phospholipids that make up the bilayer of this small liposome. As 

determined from MS, 50.4% of the synaptic membrane surface is made of 

phospholipids, including both the inner and outer leaflets of the membrane bilayer. 

Cholesterol is found in a high mole percent concentration of a 1:0.8 mole ratio of 

phospholipid:cholesterol. MS analysis showed that SVs contain PC, PE, PS, PI, SM, 

cholesterol and hexosylceramide [33]. A quantitatively accurate characterization of 

this complex mixture is necessary to properly mimic the physiological binding 
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surface of αS, and to allow the determination of the deleterious effects of the 

peptide. However, the specific, yet different, inner and outer leaflet lipid 

compositions are not known. This is critical information as αS binds to the outer, not 

inner leaflet. PC and SM phospholipids are found in the outer leaflet of the PM 

indicating that αS does not bind a membrane of this composition [24]. The fusion of 

a SV to the neuron’s PM forces the SV outer leaflet to become the inner leaflet of the 

bilayer. This fusion of the vesicle from the inner leaflet of the PM indicates that the 

inner leaflet of the fusing SV is comprised of PC and SM, correlating to the outer 

leaflet of the PM. Therefore, in order to mimic the outer leaflet of the SV, a 

phospholipid mixture excluding PC and SM was created. This outer leaflet mimic is 

then comprised of PE, PS, PI and cholesterol, as shown in Table 4.1 [42]. PE, PS, 

PI and cholesterol percentages were calculated from the MS analysis of the tail 

length contributions from each phospholipid head group. The degree of saturation 

within phospholipid tails was calculated by their percent contribution in the MS 

analysis [33].  

 

In an approach to defining the membrane interactions within the SV bilayer upon 

binding of αS, experiments observing membrane characteristics were designed. The 

difference in each phospholipid head group within the bilayer is known to effect 

protein/peptide binding, and to more clearly determine the impact of specific 

phospholipid head groups on the peptide’s binding rearrangement, a simpler 

physiological mixture was studied, shown in Table 4.2. The SV mixture was 

simplified to contain only PE and PS phospholipids, allowing for the direct impact of 

the two most prevalent phospholipids within a SV’s outer leaflet, on αS binding. 98% 

of the mimicked SV composition is comprised of PE and PS, both anionic and 

negatively charged head groups [33]. By simplifying this mixture, the impact of 

specific head-groups on the binding of αS becomes clearer. Through studying these 

two phospholipid head-groups interactions with αS, the focus of the experiments is 

on lipid ordering, which determines bilayer rigidity. Upon binding of a peptide to the 

membrane surface, a specific rearrangement of phospholipids is obtained, which 
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strongly dictates affinity. Using this simplified mixture, direct observation of protein-

induced changes in membrane order are observed. By studying αS’s interaction with 

this simplified membrane surface, the binding parameters of αS to the membrane, 

dependent on membrane head-group composition, will be defined. It is this 

observation of membrane ordering that will bring understanding to the relevance of 

such a complex mixture to the binding and fusion of SVs. 

 

4.4 Results and Discussion: membrane reordering due to αS binding 
The high content of cholesterol within the SV mimic and simplified SV mimic, lipid 

mixture is an important feature regarding αS’s role in the SV fusion process. To 

better understand the reduction of rigidity within the membrane, or the reduction of 

gel phased lipid bilayers, a CF release assay was used to observe the impact of 

cholesterol on the liposome rearrangement within the bilayer [27]. As the liposome 

transitions from a fluid- to gel-like state, the internally quenched CF molecules 

escape upon rearrangement and ordering of the phospholipids. This rearrangement 

is related to an increase in percent efflux of CF, when passed through the bilayer 

transition temperature, due to protein binding and subsequent lipid rearrangement. 

Through use of the simplified synaptic mimic, POPE:SOPE:POPS, the 

rearrangement of lipids due to phospholipid head group interactions in the absence 

αS upon transitioning from fluid to gel states causes no change in CF efflux, seen in 

Figure 4.1 (left, black). This lack of CF efflux suggests an ideally mixed 

phospholipid bilayer, in which there are no interactions on the surface causing 

rearrangement of phospholipids. In the presence of αS there is a large increase in 

CF release from the liposome after passing through a fluid to gel transition, 

indicating that αS causes a rearrangement of phospholipids within the bilayer, 

allowing for CF escape during the fluid to get liposome transition (Figure 4.1, left, 
green). This rearrangement of the phospholipids, or specific ordering of the 

membrane, is due to αS binding, but the extent to which this occurs in a true SV 

membrane remains unknown. The addition of the physiologically appropriate amount 

of cholesterol to the system shows a lack of CF release from the vesicle in the 
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absence and presence of αS, seen in Figure 4.1 (right, green). By adding 

cholesterol to a bilayer, the now liquid ordered phase causes a broadening in the 

observable transition, or less distinct, as cholesterol has the ability to induce 

ordering within the lipid bilayer. Cholesterol addition to the membrane is essential in 

understanding these complex mixtures, as 45% of the SV membrane is composed of 

cholesterol [40]. By adding an appropriate amount of cholesterol to the system, 

ordering of phospholipids is induced but is compensated by the presence of 

cholesterol, allowing for a more complex transition to the αS bound state. 

Cholesterol addition to the membrane induces the ordering transition by filling space 

between phospholipid tails, reaching a more rigid state of the bilayer, inhibiting CF 

release, as seen in Figure 4.1 (right). The dramatic change in CF release through 

the addition of cholesterol is significant to the sterols presence in physiological 

mixtures as a partner in keeping membrane rigidity upon reordering. Therefor, the 

lack of efflux seen in Figure 4.1 (right) is not indicative of lack of phospholipid 

rearrangement and order, but evidence that the ability for cholesterol to induce 

rigidity makes the αS-SV binding process more complex. The ability for cholesterol 

to create a less observable CF efflux transition of lipids makes αS’s ability to inhibit 

the rigidity within the SV surface uncertain. When determining functional roles in the 

trafficking of vesicles, it is important to emphasize that αS’s role in vesicle fusion is 

not solely dependent on the membrane rearrangement upon binding, as the addition 

of cholesterol causes stability within the bilayer when αS is bound.  

 

The observed phospholipid-ordering of a liposome phase transition from the gel- to 

fluid-state of the bilayer was also observed through DSC to directly measure the 

energy of the bilayer transition (Figure 4.2). By continually transitioning a liposome 

of simplistic SV mimicked character through its gel to fluid-phase, a specific 

rearrangement and order of phospholipids occurs within the bilayer. This annealing 

of the membrane or specific equilibrated order is reached within the bilayer and 

allows for repeated observation through DSC (Figure 4.2 black). As was seen in the 

CF release assay experiments, a significant shift in the ordering of phospholipids 
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occurs upon binding of αS to the membrane (Figure 4.1, left, green) and upon 

binding of αS to the annealed liposome within the DSC cell, a shifted transition is 

apparent as phospholipids rearrange to a different ordering within the bilayer (Figure 
4.2, red). The narrowing of the transition peak for both LUVs and SUVs in the 

presence of αS (Figure 4.2, red), indicates a shift to a more ordered bilayer from the 

wider, more mixed transition peak observed of liposomes in the absence of αS 

(Figure 4.2, black). The observed shifted transition is apparent as phospholipids 

rearrange to a more mixed or complex order within the bilayer [43]. 

 

Through direct integration of the DSC transition endotherm, the enthalpy (ΔH), 

transition temperature (Tm) and entropy (ΔS) of the liposome can be determined. 

The observed shift in energetics upon αS binding is directly represented as a shift in 

ΔH and Tm of the liposome. The observed shifted transition is apparent as 

phospholipids rearrange to a more mixed or complex order within the bilayer. Upon 

addition of a physiologically relevant amount of cholesterol to the liposomes, the 

transition from gel to fluid-states was not observable (not shown). The lack of an 

observable transition is consistent with CF release assay results (Figure 4.1, right), 
as cholesterol causes a smoother transition between states, weakening the 

sharpness of a transition and broadening the area. When high amounts of 

cholesterol are reached, the gel- to fluid- transition can become unobservable, and is 

indicated through CF and DSC results. The lack of observed transition does not 

indicate that it is absent, but indicates that it is again more complex. The energetic 

values represented in Table 4.3, indicate a shift in enthalpy and melting temperature 

for both LUV and SUV mimicked liposomes. By also observing two sizes of 

liposomes, the significance of membrane curvature is also represented here, as 

Figure 4.2, left are LUVs, and Figure 4.2, right are SUVs. In comparison of 

curvature affect on the enthalpy and melting temperature change upon binding of 

αS, both transition shifts are consistent in narrowing upon binding, indicating a more 

ordered bilayer is obtained (Figure 4.2, red), but it is significant that when SUVs 

bind αS, there is a greater shift in enthalpy and melting temperature than when 
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bound LUVs (Figure 4.2, left). This greater shift indicates stronger interaction with 

SUV liposomes and more rearrangement influence due to high curvature, as the 

binding of αS to the surface is more responsive. Entropy is also represented in 

Table 4.3, where a decrease in entropy or membrane disorder is seen when binding 

SUVs, again indicative of more order within the bilayer. A more ordered and shifted 

state was obtained through binding of αS, indicating the significance of curvature 

due to this peptides function.  

 

4.5 Results and Discussion: conformational shifts in folded αS due to 
membrane complexity and curvature 

It has been observed and further proposed that ordering of the phospholipids within 

the SV bilayer is effected upon binding of αS, but the conformation of the protein is 

also altered upon binding the membrane surface. αS holds a randomly coiled or 

intrinsically disordered structure in solution, and upon binding to the SV, α-helical 

structure is obtained. Small changes in phospholipid composition and vesicle 

diameter have vast effects upon the structural membrane bound conformer of αS. It 

has been previously observed that different levels of membrane bilayer curvature 

cause vast differences in the structure of αS [44]. CD spectroscopy was used to 

visualize the effect that curvature and complexity in liposomal mixture has on the 

structural properties of bound αS. 60:40 POPC:POPS LUVs, 60:40 POPC:POPS 

SUVs and SV mimicked SUVs were observed in the presence of αS through a 

temperature range of 37-91°C, Figure 4.3. The peptide’s bound α-helical character 

was observable for both POPC:POPS mixed liposome sizes (Figure 4.3, A and B), 

however, it is evident that SUV bound αS species depicts enhanced α-helical 

structure. By changing the size and curvature of the mimicked vesicle, αS reaches 

different bound conformers. When compared to the αS physiological environment, 

SUV sized SV mimicked liposomes were observed (Figure 4.3, C) but due to 

intensity of mixture complexity, light scattering of the signal caused an unobservable 

structure determination. However, the SUVs of the simple POPC:POPS mixture is 

relevant in comparison to a SV when indicating curvature significance. To more 
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clearly depict the strong curvature affects on conformer structure, LUV and SUV 

bound CD spectra are shown in Figure 4.4 at 37°C, where SUV bound α-helical 

intensity is significant. A change in mimicked curvature to that of a physiological SV, 

is significantly important to obtain strong secondary structure formation of αS. 

Although lack of structure seen from the complex and accurate SV mimicked mixture 

(Figure 4.3, C), it is important to appreciate the dependence of the diameter size of 

the vesicles on structure formation (Figure 4.3, A and B) The curvature of an SUV 

sized vesicle, comparable to the appropriate diameter of a SV, is incredibly 

important in pulling out appropriate conformers of αS.  

 

The sensitivity of αS to lipid rigidity (CF and transitional shifts) strongly suggests that 

the complex interplay of cholesterol-modulated lipid rigidity when combined with the 

equally dramatic impact of curvature (CD spectra) on rigidity within the context of the 

SV mimic will induce a distinct SV-induced αS conformation. A means to define how 

membrane properties modulate and induce distinct protein conformers, even when 

they are nearly or are intrinsically disordered is by observing the peptides folded to 

unfolded transition using DSC. Through the direct measure of the enthalpy of the 

ordered-to-disordered transition in the presence of membrane (the area under the 

curve in Figure 4.5), a direct measure of the heat capacity change (ΔCp) as well as 

a direct measure of the Tm enables the probability to be calculated of the SV defined 

propensity of αS to be disordered or ordered, as induced by the SV membrane 

mimic. 

 

In the presence of the SV membrane mimic, relevant in both complex lipid 

composition as well as SV curvature, that a robust endotherm is observed (Figure 
4.5). By contrasting this robust signal to that of the equivalent experiment with a 

simple binary lipid mixture comprised of POPC:POPS, there was a complete 

absence of an αS endotherm. This is extremely significant as CD carried out in the 

presence of POPC:POPS clearly shows α-helical content. As high cholesterol 

content of the SV membrane mimic scatters the CD signal (Figure 4.3, C) and 
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obfuscates the αS signal, the ability to then measure this complex mixture’s effect on 

conformer formation via DSC is significant to this study. 

 

Through use of the Gibbs-Helmholtz equation that was constrained by the 

experimentally defined DSC enthalpy, heat capacity change and transition 

temperature, the free energy (ΔG) at physiological temperature associated with αS 

induced by the SV membrane mimic was calculated (Table 4.4). It is the energetic of 

free energy that reveals the propensity of αS to sample disordered states when 

associated with the SV membrane mimic where fraction folded = 1/1+e(- ΔG/RT). 

Figure 4.6 displays the free energy profile of the bound state to a physiologically 

relevant SV mimic, more clearly representing the probability of αS to sample 

disordered states when bound to the SV membrane mimic. At physiological 

temperature and when bound to the SV membrane mimic with high curvature, a 

significant fraction (~10%) of αS is disordered. Such disordered protein states are 

implicated in formation of tangled aggregates (toxic oligomers) at the membrane 

surface. 

 

4.6 Closing comments 

The role of lipid rigidity with regard to lipid phase behavior, organization and 

curvature in the presence and absence of αS is observable through the CF release 

assay, DSC and CD studies. It is apparent that the αS binding process and role in 

trafficking of SVs is incredibly complex, causing significant changes within the 

bilayer order upon binding. This bilayer ordering is significant in the measurement of 

membrane rigidity in that the ordering of phospholipids and cholesterol would cause 

changes in membrane behavior. The difference in conformers of αS formed upon 

binding, are dependent both on membrane mixture and liposome curvature. The role 

of the SV membrane mimic on αS conformers is apparent and significant, in that 

small changes in liposome complexity and diameter produce vast changes in 

conformational characteristics. The changes in αS conformer formation might play a 

role in binding affinity and functional properties related to the rigidity of the vesicle. 
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Rigidity of lipid bilayers is subject to fluctuation due to direct observation of lipid 

ordering and strong differences in αS conformer formation induced by different 

phospholipid mixtures and curvature. Further experiments are necessary using 

physiologically relevant phospholipid mixtures and liposome sizes to directly 

measure the αS conformer’s affect on SV rigidity. However it is important to 

emphasize the significance of the drastic changes within membrane order and 

observed αS conformer formation due to binding, a direct effect to its function in the 

SV fusion process.  
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Illustrations:  
 

	
  
Figure 2.1: Thermodynamic double mutant cycle example of Aromatic-Methionine (AroMet) 
peptides. Nomenclature is: Wild-type peptide (AroMet and AroMet(ox)), singly mutated 
peptide (AlaMet and AlaMet (ox)) and doubly mutated peptide (AlaAla). Aro, Met/M and Ala 
represent aromatic residue, methionine (un-oxidized or oxidized) and alanine, respectively. 
Free energy of each peptide denaturation is represented as ΔG at each step in the cycle. 
ΔΔG values are determined by the difference in ΔG denaturation values of peptides at 0°C, 
which were used to determine the ΔΔΔGInt.  
 
Table 2.1: All peptides used in CD thermal studies, their appropriate abbreviation and their 
construct sequence of only 15 residues varying only at residue 9 and 13 of the aromatic and 
Met residue represented in bold. 

Peptide Abbreviation Construct Sequence 

Tyr-Met YM YGGSAAEA-Y-AKA-M-AR-NH2 

Tyr-Met (ox) YM (ox) YGGSAAEA-Y-AKA-M (ox)-AR-NH2 

Phe-Met FM YGGSAAEA-F-AKA-M-AR-NH2 

Phe-Met (ox) FM (ox) YGGSAAEA-F-AKA-M (ox)-AR-NH2 

Tyr-Ala YA YGGSAAEA-Y-AKA-A-AR-NH2 

Phe-Ala FA YGGSAAEA-F-AKA-A-AR-NH2 

Ala-Met AM YGGSAAEA-A-AKA-M-AR-NH2 

Ala-Met (ox) AM (ox) YGGSAAEA-A-AKA-M (ox)-AR-NH2 

Ala-Ala AA YGGSAAEA-A-AKA-A-AR-NH2 

	
  



	
  

	
   34	
  

 
Figure 2.2: Combined spectra of one peptide observed from 200 to 260nm at increasing 
temperatures from -2°C to 60°C. Crossing of all spectra at ~202nm indicates isodichroic 
point more clearly indicated in inset plot. 
 

200 210 220 230 240 250 260
-­50

-­40

-­30

-­20

-­10

0

200 201 202 203 204 205
-­60

-­50

-­40

-­30

-­20   

  

Θ
  x
  1
0-­
3   
[d
eg
  c
m
2   
dm
ol
-­1
]

Wavelength  (nm)

-­2οC

60οC

  

  



	
  

	
   35	
  

	
  
Figure 2.3: Overlaid heating and cooling melt curves for YM, YM (ox), FM, and FM (ox) 
peptides. Heating curves represented by black solid line, and cooling curves represented 
by red dashed line. Ellipticity displayed as a fraction of unfolded peptide (α, equation 2.3): 
a. YM heating and cooling melt, b. YM (ox) heating and cooling melt, c. FM heating and 
cooling melt, d. FM (ox) heating and cooling melt. 
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Figure 2.4: Overlaid heating and cooling curves for YA, FA, AM, AM (ox), and AA peptides. 
Heating curves represented by black solid line, and cooling curves represented by red 
dashed line. Ellipticity displayed as a fraction of unfolded peptide (α, equation 2.3): a. YA 
heating and cooling melt, b. FA heating and cooling melt, c. AM heating and cooling melt, d. 
AM (ox) heating and cooling melt, e. AA heating and cooling melt. 
 
Table 2.2: Thermodynamic parameters obtained for the YM and YM (ox) peptides. ΔHTm, CD 
is the enthalpy obtained from fitting the CD denaturation data and ΔHTm, DSC is the enthalpy 
measured through DSC.   

 ΔHTm, CD 
(kcal/mol) 

Tm (°C) ΔCp 
(kcal/mol°C) 

ΔHTm, DSC 
(kcal/mol) 

Tm (°C) ΔCp 
(kcal/mol°C) 

Tyr-Met 17.54 ± 0.01 15.8 ± 0.2 0.17 ± 0.01 16.6 20.5 0.186 

Tyr-Met (ox) 20.9 ± 0.2 13.4 ± 0.6 0.19 ± 0.02 19.7 14.9 0.183 
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Figure 2.5: CD thermal denaturation fit curves for: a. YM as black solid line and YM (ox) 
as red solid line, b. FM as black solid line and FM (ox) as red solid line. The black lines 
at α = 0.5 (equation 2.3) display the melting temperature of all four peptides in both plots a 
and b. 
 
Table 2.3: Determined ΔHTm, CD (kcal/mol), ΔCp (kcal/molK) and Tm (°C) of each YM, YM 
(ox), FM and FM (ox) through thermodynamic analysis of CD thermal denaturation curves.  

 Tyr-Met Tyr-Met (ox) Phe-Met Phe-Met (ox) 

ΔHTm, CD (kcal/mol) 17.54 ± 0.01 20.9 ± 0.2 26.0 ± 0.7 27.1 ± 0.1 

ΔCp (kcal/mol°C) 0.17 ± 0.01 0.19 ± 0.02 0.2 ± 0.2 0.21 ± 0.02 

Tm (°C) 15.8 ± 0.2 13.4 ± 0.6 18.3 ± 0.3 21 ± 1 
 
Table 2.4: Determined ΔHTm, CD (kcal/mol), ΔCp (kcal/molK) and Tm (°C) of each YA, FA, 
AM, AM (ox), AA through thermodynamic analysis of CD thermal denaturation curves. 

 Tyr-Ala Phe-Ala Ala-Met Ala-Met (ox) Ala-Ala 

ΔHTm, CD (kcal/mol) 11.94 ± 0.01 11.92 ± 0.01 24.35 ± 0.00 18.69 ± 0.03 17.20 ± 0.03 

ΔCp (kcal/mol°C) 0.12 ± 0.00 0.15 ± 0.00 0.06 ± 0.02 0.17 ± 0.02 0.24 ± 0.01 

Tm (°C) 12.3 ± 0.8 12.4 ± 0.7 18.0 ± 0.9 18.7 ± 0.8 21.4 ± 0.9 
 
 
 
 
 
 
 

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

B

  

  

α
 =

 (Θ
To
ta
l−

 Θ
Fo
ld
ed
)/(
Θ
U
nf
ol
de
d−

 Θ
Fo
ld
ed
)

Temperature  (οC)

A

  

  

  

Temperature  (οC)



	
  

	
   38	
  

Table 2.5: Determined ΔΔΔGInt for YM, YM (ox), FM and FM (ox) at 0°C where the peptide 
is in the fully ordered or fully folded α-helical state.  

Peptide ΔΔΔGint (kcal/mol) 

Tyr-Met -0.01 

Tyr-Met (ox) 0.41 

Phe-Met 0.62 

Phe-Met (ox) 1.24 
 
 

 
Figure 2.6: Raw DSC data obtained for 100µM of the un-oxidized peptide construct (red 
dots), and 150µM of the oxidized peptide construct (black dots) in a buffer composed of 
10mM KH2PO4 and 100mM KCl at a pH of 7.5 The solid red and black lines represent the 
fits for the un-oxidized and oxidized construct respectively. This data was used to constrain 
the fit values of the CD.  
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Table 3.1: Stability parameters obtained for C2 domains of Syt I and both isoforms of the 
C2A domain in Dys. The top portion of the table includes human Syt I and Dys data 
summarized from previous denaturation studies [18, 19, 20], as well as new measurements 
for cotton Syt I C2A. The parameters reported for the human Syt I C2A domain, in the top 
half of the table, were collected with the construct containing the amino acids 140-265.  The 
lower portion of the table shows the stability parameters for the human Syt I C2A construct 
containing residues 96-265, in the presence of phospholipid bilayers of different 
compositions and size. All ΔG values reported represent free energy of stability at 37°C.  

Previously Studied C2 Domains in Absence of Ligand 
 ΔH(kcal/mol) ΔCp(kcal/mol·K) Tm(°C) ΔG37°C (kcal/mol) ΔS(kcal/mol·K) 
Syt I C2A 58.7±0.3 1.92±0.09 55.99±0.04 2.32±0.05 0.178±0.006 
Syt I C2B 69.6±0.6 2.19±0.04 46.4±0.1 1.74±0.09 0.22±0.01 
Cotton Syt I 
C2A 2.5±0.1 0.37±0.09 39.5±0.1 0.017±0.01 0.008±0.004 

Dys C2A 12.6±0.8 0.97±0.01 42.2±0.6 0.17±0.02 0.040±0.002 
Dys C2Av1 18.3±0.4 1.32±0.01 55.6±0.1 0.33±0.02 0.058±0.001 

Human Syt I C2A (96-265) in Presence of Lipid 
 ΔH(kcal/mol) ΔCp(kcal/mol·K) Tm(°C) ΔG37°C(kcal/mol) ΔS(kcal/mol·K) 
POPC:POPS(
60:40) 59.2±0.2 1.91±0.04 53.32±0.03 2.18±0.02 0.181±0.004 

POPC:POPS(
60:40) and 
Ca2+ 

58.6±0.4 4.50±0.03 68.96±0.06 -1.50±0.01 0.171±0.007 

(POPC:POPS
):cholesterol 
(80:20):30 

67.9±0.2 3.08±0.02 68.04±0.04 1.67±0.01 0.199±0.003 

Membrane 
Domain LUV 
and Ca2+ 

135.7±0.5 3.58±0.01 68.6±0.6 7.09±0.06 0.413±0.02 

Membrane 
Domain SUV 
and Ca2+ 

140.8±0.6 3.60±0.02 75.3±0.6 7.60±0.02 0.429±0.01 

Synaptic 
Mimic and 
Ca2+ 

107.0±0.1 2.75±0.06 67.36±0.01 5.75±0.02 0.315±0.001 
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Table 3.2: Phospholipid components in the membrane domain forming mixture (left 
columns), as well as the phospholipid components of the SV mimic mixture, where FA1 and 
FA2 represent the acyl chains attached to the glycerol backbone. These lipid compositions 
are based off of those presented in [33], and are designed to capture the essence of the 
lipid diversity of the SV outer leaflet.  The percentages listed for each phospholipid species 
represent the mole percent of that species within the total phospholipid mixture, while the 
percent given for cholesterol represents the mole percent found within the total mixture.  

Membrane Domain Forming Mixture Synaptic Vesicle Mimic Mixture 

PE ratio FA1 FA2 % Total 
Phospholipid PE ratio FA1 FA2 % Total 

Phospholipid 
3 16;0 18;1 38 3 16;0 18;1 38 
2 18;0 18;1 25 2 18;0 18;1 25 
1 18;0 22n6 13 1 18;0 22n6 13 

PI ratio FA 1 FA2 % Total 
Phospholipid PI ratio FA 1 FA2 % Total 

Phospholipid 
2 18;0 18;0 1 - - - - 
1 18;1 18;1 0.5 1 18;1 18;1 0.5 
2 16;0 18;1 1 2 16;0 18;1 1 
1 18;0 20;4 0.5 1 18;0 20;4 0.5 

PS ratio FA 1 FA2 % Total 
Phospholipid PS ratio FA 1 FA2 % Total 

Phospholipid 
3 16;0 16;0 7 - - - - 
1 18;0 22n6 2 1 18;0 22n6 12 
2 18;0 18;1 5 2 18;0 18;1 10 
3 16;0 18;1 7 - - - - 

Cholesterol - - 45% Cholesterol - - 45% 
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Figure 3.1: Structures of various C2 domains. The top row of structures correspond to C2A 
domains (from left to right) of human Syt I, cotton Syt I, human canonical Dys, and human 
variant Dys. The bottom row of structures are C2B domains (from left to right) from human 
and cotton Syt I. The calcium binding residues are shown and the putative lipid interacting 
residues are in white balls-and-sticks. Note the high level of structural similarity.  
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Figure 3.2: Upper Panels: The left panel shows the denaturation profile of human Syt. I 
C2A (residues 96-265) at 13μM in the presence of 1mM LUVs composed of POPC:POPS 
(60:40) and with either 1mM EGTA (dashed black line) or 1mM Ca2+ (solid black line). 
Also shown is 11μM C2B in the presence of 490μM LUVs composed of (95:5) POPC:PIP2 
(solid blue line), 13μM C2B in the presence of 0.5 mM EGTA (dashed blue line). The 
large ΔCp differences are highlighted for the C2A domain with brackets (left panel). The 
right panel is the CD spectrum obtained for the C2A domain (residues 96-265) in the 
presence of 700 µM LUVs composed of POPC:POPS (60:40) and 1mM Ca2+. Lower 
Panels: The left panel shows the free energies stabilities of several C2 domains, in the 
absence of ligand, over a range of temperatures. These stabilities were calculated through 
the use of the Gibbs-Helmholtz equation, utilizing the ΔH, ΔCp, and Tm obtained from the 
thermal denaturation profiles of the domains. The orange triangles, red squares, blue 
squares, green circles and black circles represent canonical C2A Dys, C2Av1 Dys, 
human Syt I C2A (residues140-265), cotton Syt I C2A, and human Syt I C2B, respectively. 
The right panel shows the denaturation profile of the cotton C2A domain [Cotton C2A] = 
175μM) with that of the human Syt I C2A domain construct containing the amino acids 140-
265 (blue; [Human C2A] = 13μM) in the presence of 1mM EGTA. The blue and green lines 
under the curves represent the baselines used for integration. 
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Figure 3.4: Left Panel: Thermograms obtained for LUVs of the membrane domain forming 
lipid mixture, at a phospholipid concentration of 3.3mM (solid black line) and the SV mimic 
mixture at a phospholipid concentration of 1mM (dashed black line). The inset in the upper 
right is a close-up of the phase transition. Middle Panel: Denaturation profiles of 13 μM 
human Syt I C2A (residues 96-265) in the presence of 1 mM LUVs (unless stated otherwise) 
of different lipid compositions and 1mM Ca2+. solid black line represents the denaturation 
with POPC:POPS (60:40); blue dashed and dotted line represents the denaturation with 
(POPC:POPS):cholesterol (80:20):30; yellow dashed and dotted line represents 
denaturation with the membrane domain forming lipid mixture from Table 3.1; the red 
dashed line represents the denaturation with the membrane domain forming lipid mixture as 
SUVs; and green dotted line represents the denaturation with the SV mimic from Table 
4.1. All DSC scans were conducted in a buffer composed of 20mM MOPS and 100mM KCl 
at a pH of 7.5. Right Panel: FLT denaturation of C2AB fragment of Syt I in the presence of 
membrane with or without Ca2+. Red: 0.75µM C2AB, 5.1mM Ca2+, 110µM LUVs (60:40, 
POPC:POPS). Orange: 0.9µM C2AB, 600µM Ca2+, 1.2mM LUVs (60:40, POPC:POPS). 
Green: 0.75µM C2AB, 110µM LUVs (60:40, POPC:POPS), 500µM EGTA. Blue: 0.75µM 
C2AB, 210µM LUVs (95:5, POPC:PIP2), 500µM EGTA. Purple: 0.75µM C2AB, 5.1mM 
Ca2+, 210µM LUVs (95:5, POPC:PIP2). Right panel adapted from [18].  
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Figure 3.4: Change in the percent efflux of carboxyfluorescein from 200µM LUVs composed 
of a SV mimic lipid mixture (bottom) and LUVs composed of domain forming lipid mixture 
(top) injected with Ca2+ at 15 min and human Syt C2A domain (residues 96-265)  at 30 min 
to final concentrations of 3mM and 13.33µM respectively. ∆%Efflux was calculated by 
subtracting control titrations in which no protein was added during the second injection. 
Arrows indicate the addition of Ca2+ (1st injection), or protein (2nd injection) during the course 
of equilibration. For titration controls in which Ca2+ or protein were not present the injections 
were made with buffer composed of 20mM MOPS, 100mM KCl, 0.02% NaN3, pH of 7.5. For 
all titrations the temperature was held constant at 20.4C until equilibration of the second 
injection when it was set to increase to 75˚C. The green line represents the temperature 
change over time, while the blue and purple dashed lines represent the temperatures (and 
corresponding titration times) at which the membrane phase transition occurs (purple) and 
the bound-protein denatures (blue). The efflux conditions for both plots were as follows: the 
black solid line represents the ∆%efflux in the presence of both the human Syt I C2A 
(residues 96-265) and Ca2+, and the red solid line represents the ∆%efflux of the domain in 
the absence of Ca2+.  
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Table 4.1: Physiological mimicked mixture of SVs, comprised of PE, PI, PS and cholesterol. 
Percent total phospholipid comprised of PE, PI and PS, where percent cholesterol is a mole 
percentage of total phospholipid (55% total phospholipid, 45% cholesterol). 

Synaptic vesicle mimic mixture 

 FA1 FA2 % Total Phospholipid 

PE Ratio 

3 16:00 18:01 38 

2 18:00 18:01 25 

1 18:00 22:06 13 

PI Ratio 

1 18:01 18:01 0.5 

2 16:00 18:01 1 

1 18:00 20:04 0.5 

PS Ratio 

1 18:00 22:06 12 

2 18:00 18:01 10 

Cholesterol - - 45 

 
Table 4.2: Simplified SV mixture, comprised of PE, PS and cholesterol. Percent total 
phospholipid comprised of PE and PS, where percent cholesterol is a mole percentage of 
total phospholipid (55% total phospholipid, 45% cholesterol). 

Simplified synaptic vesicle mimic mixture 

 FA1 FA2 % Total Phospholipid 

POPE 16:00 18:01 38 

SOPE 18:00 18:01 38 

POPS 16:00 18:01 24 

Cholesterol - - 45 
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Figure 4.1: CF release assay of 200μM CF containing liposomes at 200nm LUV diameter. 
αS containing samples contain 0.8μM peptide and 200μM CF containing liposomes. 
Unbound αS and bound αS containing samples were run from 40°C to 0°C through the 
phospholipid bilayer transition temperature calculated to be approximately 27°C. 38:38:24 
POPE:SOPE:POPS liposomes in the presence (green) and absence (black) of αS (left 
panel); and (38:38:24):45 (POPE:SOPE:POPS):Cholesterol in the presence (green) and 
absence (black) of αS (right panel). Time to temperature conversion is plotted and inset on 
right panel. 
 

 
 
Figure 4.2: Heating thermograms of 38:38:24 POPE:SOPE:POPS LUVs (left) and SUVs 
(right) in the presence (red) and absence (black) of bound αS. All scans were conducted at 
a phospholipid concentration of 10mM, in 20mM MOPS, 100mM KCl, pH 7.5 buffer. Upon 
addition of αS to the LUV mixture, corrections in molar phospholipid concentration were 
accounted for. Scans are normalized to the appropriate phospholipid concentration in each 
case. 
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Table 4.3: Calculated enthalpy (ΔH), melting temperature (Tm) and entropy (ΔS) values for 
38:38:24 POPE:SOPE:POPS LUV-bound and unbound αS, 38:38:24 POPE:SOPE:POPS SUV-
bound and unbound αS endotherms in Figure 4.2. 
 
Lipid Mixture ΔH (kcal/mol) Tm (°C) ΔS (kcal/molK) 

38:38:24 POPE:SOPE:POPS LUV Unbound αS 3.43 19.6 0.0117 

38:38:24 POPE:SOPE:POPS LUV Bound αS 3.63 20.3 0.0124 

38:38:24 POPE:SOPE:POPS SUV Unbound αS 3.43 17.8 0.0118 

38:38:24 POPE:SOPE:POPS SUV Bound αS 3.00 20.1 0.0102 
 

 
Figure 4.3: CD spectra from thermal denaturation of αS in the presence of different 
liposome mixtures and curvature sizes. Thermal denaturation observed from 37°C to 91°C. 
A) 15μM αS in the presence of LUVs (60:40 POPC:POPS) at a 250:1 [L]:[P] ratio, where 
strongest α-helical structure observed at 37°C; B) 15μM αS in the presence of SUVs (60:40 
POPC:POPS) at a 375:1 [L]:[P] ratio, where strongest α-helical structure observed at 37°C; 
C) 5μM αS in the presence of synaptic vesicle mimicked SUVs at a 200:1 [L]:[P] ratio, where 
secondary structure determination is unclear. 
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Figure 4.4: Average of three CD spectra at 37°C, 39°C and 41°C where the strongest 
helical content was observed, of 15μM αS in the presence of LUVs (black) at a 250:1 [L]:[P] 
ratio, and SUVs (red) at a 375:1 [L]:[P] ratio. LUVs and SUVs were of a 60:40 POPC:POPS 
phospholipid mixture. 
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Figure 4.5: Heating thermogram of 20μM αS in the presence of synaptic vesicle mimicked 
SUVs at a 200:1 [L]:[P] ratio from 35-90°C. Raw data represented as black circles, and 
model fit line represented as black solid line. 
 
Table 4.4: Calculated enthalpy (ΔH), heat capacity change (ΔCp), melting temperature (Tm) and 
free energy at body temperature (ΔG37°C) values for 20μM αS in the presence of SV mimicked 
SUVs at a 200:1 [L]:[P] ratio, from Figure 4.6 heating thermogram. 

ΔH 40.1 kcal/mol 

ΔCp 1.5 kcal/mol°C 

Tm 65.04 °C 

ΔG37°C  1.4 kcal/mol 
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Figure 4.6: Free energy stability plot of αS in the presence of SV mimicked SUVs. Stabilities 
were calculated using the Gibbs-Helmholtz equation, utilizing ΔH, ΔCp and Tm obtained 
from the DSC thermal denaturation profile.  
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Thesis Conclusions: 
 
Through peptide and membrane binding studies, various situations have been 
observed indicating the strong influence of internal sequence changes and 
membrane binding, to the secondary structure of proteins. Through a DMC analysis, 
the hypothesis of increased structural stability within a protein’s folded structure due 
to the oxidation of Met in an aromatic-Met interaction is consistent with observed 
experimental results, and the increase in structural stability is strictly due to these 
two side chain interactions. The DMC was a means to clarify that the aromatic-Met 
interaction was the sole contributor to the increase in structural strength. Through 
membrane binding studies of various domains of Syt I, a stronger understanding of 
membrane-protein interplay was observed and more clearly defined. Different 
conformers of Syt I domain were observed through the use of varying lipid mixtures, 
as well as direct informational content changes within the bilayer. This observation of 
membrane composition affecting obtained folded protein conformers was consistent 
also with αS results. It is evident that the binding of αS to various lipid mixtures and 
curvature strengths induces significant changes in the resulting folded conformer of 
αS. These different conformers also have an interplay affect within the membrane to 
cause reordering of phospholipids within the bilayer, suggesting more complex 
interaction that is consistent with the hypothesis of decreased SV rigidity. Although 
rigidity was not directly observed, these studies can be used to direct future 
experiments that test the rigidity of the bilayer upon αS binding.  
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