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Abstract

In this thesis we present the first rigorous study of resolution requirements in camera-

based barcode scanners. The question we wish to address is “What is the resolution

needed in the captured image to unambiguously decode a barcode?” For simplicity,

we consider the UPC barcode, which is widely used in retail and commerce. A UPC

barcode consists of black and white bars of different widths. The widths of these bars

encode a 12-digit number according to a look-up table. We show that the camera model

can be completely determined by a set of parameters defining the width of the bars

and the shift in the image. These parameters can be determined by utilizing features

of the UPC symbology, and the knowledge of these parameters allows us to decode

exactly. We show that these two parameters can be recovered from the image data for

narrowest bars larger than three-fourths a pixel and in some cases, only half a pixel. We

examine two extreme cases and show that unique determination of the digit is possible

in these “worst case scenarios,” even under the presence of noise. Following this rigorous

investigation, we illustrate the procedure from start to finish with a numerical example

and also examine the performance of the algorithm under noise.
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Chapter 1

Introduction

Barcodes are a very familiar technology to most people. We encounter them on nu-

merous products, such as food packaging and shipping boxes, and see them used in a

multitude of applications including retail and advertising. This work seeks to charac-

terize the limits of a camera-based barcode decoding method. The question we wish

to address is “What is the resolution needed and the noise level permitted in the cap-

tured image to unambiguously decode a barcode?” For simplicity, we consider the UPC

barcode which is widely used in retail and commerce. The question amounts to unique

and stable determination of the digits for a fixed ratio of the pixel size to narrowest bar

width. Under some circumstances, we show that the digits are uniquely determined if

the narrowest bar width is no smaller than half the pixel size.

1.1 Brief history

The story of the barcode dates back to the early 1930s with punch card sorting ma-

chines. The motivation for development of barcodes arose from a desire to automate the

checkout process at the grocery store and thus decrease the amount of time and effort

spent by both customers and employees. By the 1960s, several different symbologies

had been proposed by various companies. These symbologies included the bull’s eye,

circular codes and codes designed to be recognizable to the human eye as the characters

they were representing. It was not until the early 1970s that the Universal Product Code

(better known as UPC) was selected as an industry standard. As technology improved,

1
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barcode use spread beyond the grocers to be used by the military, health sector and

various manufacturing industries. By the late 1980s, the United States Postal Service

(USPS) had developed its own symbology of bars with varying heights still seen today

on mail delivered by USPS. [1]

1.2 Barcode usage and symbologies

Barcodes may be one-dimensional (a line of black and white bars) or two-dimensional

(concentric rings or a square of modules) and exist in various shapes and sizes with

various capacities and error-corrections. We define a symbology as the representation of

any ASCII character by a sequence of 0s and 1s. To make this into a barcode image,

“0”s and “1”s are replaced by white and black modules respectively of some fixed size.

As some symbologies lend themselves to certain applications better than others,

there are many different uses for barcodes. Barcodes are used for inventory, health care

applications, sales, manufacturing, postal applications, warehousing, shipping, virtual

tickets, and many other applications. Although there new technologies being devel-

oped that perform similar functions, barcodes remain in high use today due to their

inexpensive cost, flexibility and reliability [1].

As a particular example, we can look at Universal Product Code (UPC). Most people

are familiar with UPC barcodes from their trips the grocery store. The UPC symbology

is a common symbology for retail. Most UPC barcodes consist of 12 digits. Each of

these digits is represented by a sequence of seven black and white bars so that each digit

is “overcoded” and allows for error correction. For this one-dimensional symbology, a

module is a single black or white bar of some fixed width. Every UPC barcode starts and

ends with the same sequence of three bars: black-white-black. Similarly, in the middle

of every UPC barcode, between the sixth and seventh digits is the sequence: white-

black-white-black-white. Thus each UPC barcode is represented by a sequence of 95

black and white bars [1][2]. Figure 1.1 shows this structure on the code ‘814723686393’.

The digits have complementary representations on either side of the middle sequence as

can be seen in Table 1.1.

One interesting structure of the UPC code is the check-digit. In any true UPC

barcode the twelfth digit is a check-digit, which allows for verification of correct decoding
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Figure 1.1: ‘814723686393’ encoded using UPC symbology. Each sequence for start, left
digit, middle, right digit, and end is shown with divisions for identification ease.

Table 1.1: Left and Right Patterns for UPC Symbology

Character Left Symbol (Left) Right Symbol (Right)

0 0001101 1110010

1 0011001 1100110

2 0010011 1101100

3 0111101 1000010

4 0100011 1011100

5 0110001 1001110

6 0101111 1010000

7 0111011 1000100

8 0110111 1001000

9 0001011 1110100

or a request to re-read the barcode. The check-digit is calculated as three times the

sum of all digits in odd-numbered positions, plus the sum of the digits in even-numbered

positions, taking that result modulo ten, and finally ten minus the modulus [1]. For

example, we consider the UPC barcode for a particular hand cream: ‘019045182749’.

We now verify that 9 is the check-digit as outlined above.

3(0 + 9 + 4 + 1 + 2 + 4) + (1 + 0 + 5 + 8 + 7) = 81

10− (81 mod 10) = 9

On the other hand, the barcode shown in Figure (1.1) is just a randomly generated

12-digit number and not an actual UPC barcode. Thus we see that although the last
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digit is 3, we calculate a check digit of 9. For our work, we disregard the check-digit

and thus consider all possible 12-digit combinations of digits zero through nine.

Barcodes are not restricted to one dimension. There are many two-dimensional

barcode symbologies that serve various applications. In these 2D barcodes, the white

and black bars from the 1D barcodes are now white and black modules, most often

squares. The increase in dimension allows for more data to be encoded, but the added

dimension can also require more complex decoding algorithms and increase the effect of

noise on the image.

Figure 1.2: A sample Version 3 (29 by 29) QR Code encoding the link to the Univer-
sity of Minnesota SIAM Student Chapter homepage. This image was generated using
www.qrstuff.com

Recently, there has been a surge in popularity of the QR Code. QR stand for “Quick

Response.” This symbology was developed in 1994 by Denso Wave in Japan in response

to a desire to encode Japanese characters as well as alphanumeric characters. An in-

ternational standard was developed for it in the year 2000, and QR Code is now in the

public domain. QR codes consist of black and white modules. There are forty differ-

ent sizes of the code, varying from Version 1 at 21 × 21 modules up to Version 40 at

177× 177 modules. Version 40 can encode up to 7, 089 numeric or 4, 296 alphanumeric

data [1][3][4]. With two dimensions, barcode orientation becomes increasingly impor-

tant. QR Code has a distinct finder pattern of three fixed orientation targets. These

targets are black squares with a white and black ring located in the both upper and

lower left-hand-side corners as well as the upper right-hand-side corner. In addition to

the finder pattern, as the size of the QR Code increases, additional alignment patterns

are added. Reed-Solomon error correction is used for this symbology and ranges from
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level L, where 7% of characters can be corrected, to level H, where 30% of characters

can be corrected [1]. QR Code is used in many applications including logistics and

manufacturing. This symbology can encode symbols, binary data, control codes and

multimedia data [3][4]. One popular application is advertising. Companies will put a

QR code on a billboard, bench advertisement or magazine page hoping the consumer

will capture the code with his or her camera phone and be taken to a webpage with more

information about the company or product. These mobile versions only use Versions

1-10 because of the limitations of camera phones [3][4].

Figure 1.3: A sample 27 × 27 Aztec barcode encoding the data “An Aztec Bar Code
Example using www.barcode-generator.org”

Another prominent two-dimensional symbology is Aztec. Aztec Code was developed

in 1995 by Andy Longacre at Welch Allyn. Like UPC and QR it is now in the public

domain. As with QR, an Aztec barcode is a square comprised of black and white square

modules. An Aztec code features a central bullseye with either two (compact) or three

(full-range) rings. From this center pattern, data is encoded in layers that spiral out

in a clockwise direction. Each of these layers is two modules thick, and there can be

a maximum of thirty-two data layers. The smallest Aztec codes are 15 × 15 modules

and the largest are 151 × 151 modules. Unlike QR and UPC, which require quiet-

zones not included in the size, Aztec Code does not require any quiet-zone for proper

decoding. The error-correction level of Aztec is adjustable, but the recommendation

is approximately 23% plus three codewords. With this recommended level, the largest

Aztec codes can encode up to 3, 047 alphanumeric characters or 1, 914 bytes of data

[1][5]. The Aztec symbology lends itself particularly useful to online ticket applications.

For example Aztec barcodes may be found of printed tickets that were purchased online

or on electronic boarding passes for many airlines [5].
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1.3 Challenges in barcode decoding

Although barcode technology has been around since the 1960s, camera based decoders

add a new set of challenges to the decoding process. For example, we now must concern

ourselves with the resolution of the image. Although modern cameras have many pixels,

the barcode in the captured image usually is contained in a small subregion of the image

domain. As such, resolution may be limited unless one is deliberate in maximizing

resolution, which is not usually practical. Long-range scanning is another challenge area

where resolution is relevant. This has practical applications in warehouse inventory and

the like. In this work, we study the level of resolution needed to decode.

Additionally, we are concerned with noise from distortion of the barcode image. Such

distortions can result from a variety of environmental conditions including non-uniform

lighting, the angle of the camera at the time of image capture, and the physical surface

e.g. curved or reflective.

Many complications arise in finding the barcode in the image, a problem known as

localization and discussed in further detail in §2.2. In this work, we additionally address

the challenges of identifying the start and end sequences of the barcode in order to have

reference points with which to decode the barcode.

Finally, a practical algorithm must be used. Even in the best image conditions,

there is great demand for fast and efficient algorithms. Practicality and functionality

demand that one must be able to scan and decode within a few milliseconds.

1.4 Outline of this work

Having explained the several symbologies and highlighted some of the challenges of this

problem, we will fine tune the problem and embark on a more detailed examination of

the problem. In Chapter 2, we present a model of barcode image capture and restrict

the focus of this study to one-dimensional UPC barcodes. Chapter 3 outlines the inverse

problem of decoding a barcode from image data. Key to this process is the recovery

of the camera model parameters, the subject of Chapter 4. We explain the parameter

recovery process for both clean and noisy data. In a related study, Chapter 5 examines

the resolution requirements for the unique determination of a barcode element in both

well resolved and poorly resolved images. In order to better understand the process,
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we provide a numerical example in Chapter 6. This chapter demonstrates the process

from image capture to barcode recovery and illustrates the performance of our greedy

algorithm under various noise levels. Finally, Chapter 7 presents a final discussion of

the investigations and key results.



Chapter 2

Camera-Based Barcode Decoding

In retail and non-retail alike, there is a strong movement away from the traditional laser

based scanning and decoding toward camera-based decoding. Instead of running a laser

over the barcode, the barcode is captured by a camera, allowing for potentially more

robust decoding.

2.1 A model of image capture

9   5
7308    

26149   0

Figure 2.1: gij : intensity at the ijth pixel (shown in green) is the average intensity over
the pixel.

Figure 2.1 represents the image capture of one particular pixel of a barcode. Let

�ij denote the exposed region for pixel (ij), meaning the region whose intensity will

be measured by the ijth pixel. The intensity is modeled simply as the “total photon

count” over the pixel region,

gij =

∫
�ij

w(x, y)dxdy, (2.1)

8
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where w(x, y) is the intensity level of the image at (x, y). Thus for a camera with

M ×N pixels, the captured image is a matrix with entries gij . In practice, we capture

black-and-white images, so gij is an integer taking values between 0 and 255. Finally

we note that when a barcode is scanned using a camera, the image captured is not only

that of the barcode, but also the surrounding environment (or clutter). Nevertheless,

the camera model proposed above applies to cluttered images as well.

2.2 Localization problem

The localization problem consists of identifying the barcode in a cluttered image. This is

typically done by identifying a bounding box that contains the barcode. Traditionally

the localization problem is solved by one of two methods: spatial domain based or

frequency domain based method. For one-dimensional barcodes, some algorithms use

the spatial domain based Hough Transform, which utilizes the linear structure of the

barcode [6][7]. Some of the frequency domain based methods, such as Gabor filtering,

depend greatly on training images sets [6][8]. These methods utilize the high gray change

frequency of the barcode. Other strategies aim for efficiency in finding the orientation

of the barcode on a low resolution image before reading in the entire image data [9][10].

For the following work, we assume that the bounding box has been found and the

orientation of the barcodes in question are in alignment with the standard x and y axes.

The latter can be achieved by resampling the barcode image in the xy-oriented pixel

layout. We are keenly aware that by so doing, some information is lost.

2.3 Inverse problem – decoding a word from the image

Of particular interest is the problem of decoding a word from the image. A word is

the information encoded by the black and white bars of the barcode. For example, a

UPC barcode encodes the a 12-digit number. This 12-digit number is the word. The

relationship between the word and the image is given by

g = αTz, (2.2)

where g is the image and α is a scaling factor to reassign pixel values between 0 and

255. The forward operator T incorporates the structure of the symbology and the
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information of what each pixel sees. z is a binary vector picking out the corresponding

characters for each piece of the barcode. A more detailed characterization of T will be

provided below.

2.3.1 From word to barcode

For the moment, we will only consider UPC codes. The word is a 12-digit number

represented as a concatenation of 12 10-vectors interspersed with three entries of “1”.

Each 10-vector has only one nonzero entry, namely a “1” corresponding to the digit it

represents. For example, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]T represents the digit 1, etc.

Let z(i) be the ith digit. Then the word vector is

z =



1

z(1)

z(2)

...

z(6)

1

z(7)

...

z(12)

1



, (2.3)

where the “1” entries correspond to the start, middle, and end sequences which are

always present on UPC codes.

2.3.2 Dictionary

The dictionary maps between the word and the barcode. For UPC, it is a 95 by 123

matrix consisting of only of zeros and ones. Let A represent the UPC dictionary. A has
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the following structure:

A =



S 0 · · · · · · 0

0 L ..
. ...

... L

L

L

L

L

M

R

R

R

R

R
...

... . .
.

R 0

0 · · · · · · 0 E


where S and E are the 3-vector [1, 0, 1]T , and M is the 5-vector [0, 1, 0, 1, 0]T . L and

R are R7×10 binary matrices representing the “look-up” table for the digits in a UPC.

The columns of L and R are given in Table 1.1, and can also be found in [2]. Letting

c ∈ R95 be a binary vector representing the barcode, we have c = Az.

2.3.3 Camera Model

For the moment, we restrict our analysis to the case where the barcode is one-dimensional

and horizontal with respect to the camera aperture. Here, x0 is the shift or offset from

the left edge of the image to the very first bar on the lefthand side; d is the size of the

pixel; and xi are the righthand edges of the bars, which are assumed to have widths h

as illustrated in Figure 2.2. One code element corresponds to a single digit and requires

seven xi. We can reduce the number of parameters in our problem to two by normaliz-

ing the pixel size, d, to be one. Thus the only parameters we need be concerned with

are the horizontal offset or shift of the barcode, x0, and the narrowest bar width, h.
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h

x
0

x
10

x
3

Figure 2.2: Front end of a barcode illustrating camera parameters (x0, h)

We represent the barcode as a binary function w(x) ∈ {0, 1}. To represent this

binary function we introduce χj(x), a characteristic function defined as:

χj(x) =

1 xj−1 < x < xj (jth bar)

0 otherwise
. (2.4)

This function determines whether or not a particular bar is seen by the pixel k. Once

again, c is a binary vector representing the barcode, where c ∈ R95 and cj ∈ {0, 1}.
With this construction, a barcode, represented as a binary function, takes the form

w(x) =
95∑
j=1

cjχj(x). (2.5)

Letting N be the number of pixels, our camera matrix will be denoted D ∈ RN×95. The

kjth element of D is

Dkj =

∫ yk

yk−1

χj(x)dx. (2.6)

Without loss of generality, we can set yk = k, k = 0, 1, 2, . . . , N , and xj = x0 + jh. We

also observe that

Dkj = 0 for (i) yk−1 > xj

and for (ii) yk < xj−1.

This is obvious from Figure 2.3. Pixels that do not overlap with [x0, x95] are assumed to

have zero intensity, such as the first pixel in Figure 2.3. Let bxc denote the integer part

of x. gk = 0 for k < k− , where k− = bx0c, and gk = 0 for k > k+, where k+ = bx95c+1.

Necessarily, Dkj = 0 for k ≤ k− and for k ≥ k+. With this understanding, the observed
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Figure 2.3: Notation illustration for barcode captured by N pixels

image is

g = αDc

= αDAz,

where g ∈ RN are the pixel values, viewed as a vector. For now, we will assume α is

known and study the properties of the forward operator T = DA.

Remark 2.3.1. We note that in practice, zero intensity refers to black and intensity

at 255 refers to white. We have reversed the scale here at no loss of generality.



Chapter 3

Decoding Process

The process of decoding a barcode using the camera model begins with the capture

of an image containing the barcode. As discussed in §2.2, the barcode is localized

and the edges are detected. Features specific to the symbology are identified and used

to determine the camera parameters. Once the camera matrix is known, the code is

recovered by running a greedy algorithm from either end of the localized image.

Image Capture

Localization

Recover Parameters

Build Camera Model

Decode

word

Figure 3.1: Decoding Process
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Given our assumptions of symbology, alignment, and barcode dimension, the input

image can be further simplified to a mere strip of N pixels reading a sequence of values

representing image intensity at the pixels.

3.1 Edge detection

The first step in our problem, regardless of noise, is to detect the edges of the barcode

in our image. At this stage we assume that the barcode has been localized. Let us

define our edges in the following way. The start pixel, with intensity gstart, will be such

that x0 ∈ [start− 1, start), i.e. start := bx0c+ 1, where b·c := floor(·). Once we have

determined start, we modify x0 such that

x0 ← x0 − bx0c.

Thus the new x0 ∈ (0, 1). Similarly we relabel the pixels, ignoring everything before the

start pixel. In this way start ≡ 1, so we call gstart = g1. The last pixel, with intensity

gm will be such that x0 + 95h ∈ (m − 1,m], i.e. m = dx0 + 95he, where d·e := ceil(·).
Thus the barcode is contained in m pixels.

In the noiseless case, edge detection is as simple as finding the first and last nonzero

entries of the signal, i.e. identifying the pixels containing the first (last) bar of the start

(stop) sequence. When we introduce a noisy signal, more sophisticated techniques are

required to locate the edge pixels. For noisy signals, we utilize Canny edge detection,

first presented in [11]. This method of edge detection convolves the signal with the first

derivative of a Gaussian. The edges are thinned using non-maximum suppression in

which each pixel is compared to its neighbors. Finally, some thresholding is applied to

determine the beginning and end of an edge. Since we are considering only 1D barcodes

the edge detection problem is simplified significantly.

3.2 Barcode Parameters

For the purpose of simplifying the discussion, we relabel the origin of the x-axis so that

the left edge of the barcode, x0 lies on the first pixel. Moreover, we truncate the image

to m pixels as described earlier so that the right edge of the barcode, x95, falls on the

mth pixel.
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In order to decode correctly, we must retrieve the parameters that locate the barcode

within the camera window from the data. As is previously mentioned, we assume that

the pixel width d has been normalized to 1. Referring to Figure 3.2, we see the barcode

as it is read from left to right and are able to more clearly define the relationship

between the parameters. The front-end shift x0 and back-end shift x′0 are related via

the narrowest bar width h and the number of pixels m needed to see the barcode:

m− x′0 = x0 + 95h (3.1)

In Chapter 4 we will discuss the process of obtaining these barcode parameters. For

Barcode

Camera

x
0
x
1
x
2

x
95

0 1 2 33 mm-1

x'
0

x
94

Figure 3.2: Reading the barcode from left to right

the time being, let us assume the data has been processed to return (x0, h, x
′
0). Then we

may begin the decoding process as these parameters completely determine the camera.

Furthermore, we will show that these parameters can be recovered from the image.

3.3 Decoding Algorithm

After detecting the edges and determining the camera parameters (discussed in greater

detail in §4) we have enough information to decode the barcode provided that the

narrowest bar in the barcode is sufficiently large in comparison to the pixel size. The

first step of the algorithm is to use the newly generated camera matrix to subtract the

set start, middle and end sequence information from the input data. To determine the

first digit we calculate the minimum energy for each of the ten choices {0, . . . , 9} and

return the minimum, i.e. the correct digit. The intensity corresponding to the first digit

is removed from the data and the algorithm moves to determine the next digit. The
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algorithm ends when all the digits have been determined. Such an algorithm is known

as a greedy algorithm.

3.4 Focus of this study

In this study, we will show that the camera model can be completely determined by a set

of parameters defining the width of the bars and the shift in the image. The parameters

will be determined by utilizing features of the symbology. The knowledge of these

parameters will allow us to decode exactly. Then, we will examine two extreme cases

and show that unique determination of the code element is possible in these “worst case

scenarios,” even under the presence of noise. Following this rigorous investigation, we

illustrate the procedure from start to finish with a numerical example and also examine

the performance of the algorithm under noise.



Chapter 4

Determining the Barcode

Parameters from Edge

Information

In this chapter we explain in detail the process of determining the barcode parameters.

This process is extremely important as these parameters completely determines the

camera matrix and thus knowledge of the parameters allows us to solve the inverse

problem of decoding the barcode from the data. The parameters in question are the

narrowest bar width h, the shift x0 from the edge of the image to the start of the

barcode, and the corresponding shift x′0 from the opposite edge of the image to the end

of the barcode, as seen in Figure 3.2.

4.1 Exploiting start and end sequences

As noted in §1.2, UPC barcodes have a set start and end sequence. In fact, as we can

see from Table 1.1, once the barcode begins, we know the first and last four bars for

every code: (black, white, black, white) and (white, black, white, black) respectively.

Considering the low resolution case, where h < d, we normalize the pixel size d = 1

and examine the region of parameter space where narrowest bar width h ∈ (1
2 , 1) and

shift x0 ∈ (0, 1). If the parameters (x0, h) are known, the barcode can be uniquely

18
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1 95

c
5 91

c

Figure 4.1: Known bars at either end of UPC barcode

determined, as we will explain later. By using the set start (end) sequence and the

intensity information from the first (last) three information containing pixels, we can

recover the parameters (x0, h), allowing information from the barcode to be isolated.

We are interested in the inverse problem of determining these parameters given only

the first (last) three pixel intensities. We narrow the problem down to only three pixels

because of the restrictions imposed by the parameter space under consideration. With
1
2 < h < 1 and x0 ∈ (0, 1), the set three-bar sequence will always appear in three pixels.

4.1.1 Data G and G′

Assuming no noise in the system, we let gi, i = [3], be the intensity seen in pixels one

through three, respectively. That is

gi = D(i,:)(x0, h) ∗A(:,1).

Furthermore, let us define G and G′ as follows

G = (g1, g2, g3)T G′ = (g1′ , g2′ , g3′)
T ,

where G is as above and G′ is the intensity seen in the last three pixels such that g1′ is

the intensity of the last pixel to carry any information from the right end of the barcode.

4.1.2 Classifying different cases based on G and G′

In the region of parameter space under consideration, we find that there are unique

identifying equations corresponding to the various subregions. These subregions are

determined by inequalities relating x0 and h.

Recall that the intensity at a pixel is equal to the length of the black line segment(s)

that fall on the interval defined by the pixel. Thus, in Figure 4.2a, we see if x0 + h < 1,

then g1 = h. On the other hand in Figure 4.2b, if x0 + h > 1, we see that x0 = 1− g1.

Either side of the line x0 + h = 1 is further divided by more characteristic inequalities.
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Figure 4.2: Two start sequence examples

By solving for each parameter successively from g1 to g3, we are able to fully describe

this region of parameter space.

The values of g1 to g3 determine the region in the (x0, h) space in which special

relationships hold so that both parameters can be identified. Consider for example the

situation where x0 and h are such that

x0 + h > 1, x0 + 2h < 2, and x0 + 4h > 3.

Under these circumstances, the first bar (black) falls on the boundary between pixels

1 and 2, and the fourth bar (white) falls on the boundary between pixels 3 and 4.

These inequalities imply that the second bar (white) falls entirely in pixel 2. Therefore,

recalling that the intensity value at each pixel is the amount of black that falls in the

pixel, we have

g1 = 1− x0 (4.1)

g2 = 2− (x0 + 2h) + x0 + h− 1 (4.2)

g3 = x0 + 3h− 2 (4.3)

with gi > 0. From (4.1) and (4.2), we conclude that x0 = 1− g1, and h = 1− g2. The

last equation constrains the gi’s

g1 + 3g2 + g3 = 2

which is the identifying characteristic on the data for this particular region in parameter

space. We have labeled it as region (3) in Figure 4.3.
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The parameter space {x0 ∈ (0, 1), h ∈ (1
2 , 1)} can be divided into seven regions

each with a unique identifying characteristic. Thus given noiseless data [g1, g2, g3]T , one

can identify a region in parameter space and values for (x0, h). Table 4.1 gives each

identifying equation in terms of gi, i ∈ [3], for the corresponding region in Figure 4.3.

1
2

x0

0

h

1

1

(1)

(2)

(3)

(4)

(5)

(6)(7)

Figure 4.3: The seven regions in (x0, h) parameter space for low resolution with h > 1
2 .

Table 4.1: Identifying Equations for Regions of Parameter Space

Region Description Identifying Equation

(1) x0 + 3h > 3 1
2g1 + g2 + 1

2g3 = 1

(2) x0 + 3h < 3 , x0 + 2h > 2 g1 + g2 = g3

(3) x0 + 2h < 2, x0 + 4h > 3 , x0 + h > 1 g1 + 3g2 + g3 = 2

(4) x0 + h < 1 , x0 + 4h > 3 u1 = u2 + u3

(5) x0 + 4h < 3, x0 + 3h > 2, x0 + h < 1 , c5 = 0 g1 = g2 + g3

(5) x0 + 4h < 3, x0 + 3h > 2, x0 + h < 1 , c5 = 1 g3 = 1− g1

(6) x0 + 4h < 3, x0 + h > 1 , c5 = 0 g1 + 3g2 + g3 = 2

(6) x0 + 4h < 3, x0 + h > 1 , c5 = 1 g2 = g3

(7) x0 + 3h < 2 g1 = g2

(7) x0 + 3h < 2 , c5 = 0 g3 = 0

When one of these identifying equations is satisfied, we may then determine the

parameters (x0, h) and uniquely decode the signal, with one exception. Notice in Table

4.1 that regions (1)-(4) all have a single identifying equations, where as regions (5)-(7)

have two such equations. This ambiguity arrises whenever x0 + 4h < 3 as in such a case

g3 includes information from the fifth bar c5, which could be black or white depending on



22

the specific digit the barcode is encoding. A further discussion of this case is presented

in §4.1.4. When x0 + 4h > 3, as in regions (1)-(4), we can immediately determine one

of the parameters from g1 and then solve for the other. For example, regions (1)-(3)

(where x0 +h > 1), x0 = 1− g1. Narrowest bar width h can then be deduced by solving

with g2, g3 and the recently determined x0. When x0 + h < 1, as in region (4), h = g1

and x0 follows. Specific formulas for all regions are found in Table 4.2.

Table 4.2: Parameter Solutions for Identifying Equation Regions

Region Identifying Equation Parameters

1st 2nd c5

(1) 1
2g1 + g2 + 1

2g3 = 1 x0 = 1− g1 h = g3 -

(2) g1 + g2 = g3 x0 = 1− g1 h = 1− g2 -

(3) g1 + 3g2 + g3 = 2 x0 = 1− g1 h = 1− g2 -

(4) g1 = g2 + g3 h = g1 x0 = 2− 2g1 − g2 -

(5) g1 = g2 + g3 h = g1 x0 = 2− 3g1 + g3 0

(5) g3 = 1− g1 h = g1 x0 = 2− 2g1 − g2 1

(6) g1 + 3g2 + g3 = 2 x0 = 1− g1 h = 1− g2 0

(6) g2 = g3 x0 = 1− g1 h = 1− g2 1

(7) g1 = g2 & g3 = 0 h = g1 x0 < 2− 3h 0

(7) g1 = g2 & g3 6= 0 h = g1 x0 = 3− 4g1 − g3 1

Theorem 4.1.1. The pixel intensities in the first three pixels (g1, g2, g3)T uniquely

determine (x0, h) in regions (1) – (4) in Figure 4.3 and in the remainder of the parameter

space if the fifth bar in the barcode is black.

Remark 4.1.2. From the way the parameter space is separated into the seven regions,

we can claim that the parameters (x0, h) are uniquely determined if 0 < x0 < 1 and
3
4 < h < 1. This result is somewhat unsatisfactory because as we shall see later, the

code itself is uniquely determined if h > 1
2 in some circumstances. However, as we shall

see in the next section, there is an obstruction to uniqueness in the determination of

(x0, h).

4.1.3 Determination of parameters using stop sequence

Now let us pay specific attention to the stop sequence. As discussed in the beginning

of §3.2, we know from the symbology that the end of the barcode is a reflection of
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the beginning. Introducing parameter x′0 = m − (x0 + 95h), the distance between

the end of the bars and the end of the last pixel, and relabeling the pixels such that

{m,m− 1,m− 2, . . .} = {0′, 1′, 2′, . . .}, we find ourselves in an identical situation as the

start sequence case (See Figure 4.5).
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(b) New Notation

Figure 4.4: Two notations for stop sequence

In Figure 4.4, we see the stop sequence illustrated with the new notation. Using this

representation, all of the defining characteristic equations are the same as for the start

sequence. Previously we used the line x0 + h = 1 to determine whether or not the first

bar fell entirely into the first pixel. Now, we use the line x′0+h = 1 to determine whether

or not the last bar is entirely contained in the last pixel. For example, if gm = g1′ = h,

then we know x′0 + h < 1.

1
2 x′0

0

h

1

1

(1’)

(2’)

(3’)

(4’)

(5’)

(6’)(7’)

Figure 4.5: The seven regions in (x′0, h) parameter space for low resolution with h > 1
2 .

Observe that these regions perfectly correspond to regions (1)-(7) in Figure 4.3.

Along with matching regions, we obtain matching identifying equations under the
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following substitutions in Table 4.1:

x0 → x′0

g1 → g1′ (≡ gm)

g2 → g2′ (≡ gm−1)

g3 → g3′ (≡ gm−2)

The mapping between the x0 and x′0 is found by equating the two systems. With respect

to the start sequence the end of the barcode is represented as x0 + 95h. With respect

to the end sequence, the end is marked by m− x′0. Thus x′0 = m− (x0 + 95h). As m is

known immediately from the edge detection process, we can treat m as a fixed number,

rather than as the ceiling function m = dx0 + 95he.
Not only does this additional information from the end of the barcode verify pa-

rameters x0 and h, but it also reduces the number of cases of ambiguity in region (7).

Unfortunately the regions (7) and (7’) have a nonempty intersection, so there are still

some instances where both parameters cannot be determined from the start and end

intensities; however outside this region we are guaranteed to uncover the parameters

necessary for decoding.

4.1.4 Non-uniqueness

Ambiguity in parameter space

Regions (1) through (4) can be well described by their identifying equations and the

inverse problem presents straightforward solutions when we find (x0, h) in these regions.

In regions (5) through (7), g3 includes information from the fifth bar c5. In these regions,

when c5 is black (c5 = 1), we have unique identifiers (as can be seen in Tables 4.1 and

4.2). When c5 is white our identifying equations merge regions in parameter space,

although the parameter calculations remain the same. In this way, although each of

these ambiguous regions splits into two cases dependent on c5, when c5 is white, regions

(5) and (6) are identical to (4) and (3), respectively.

The knowledge of c5 may be valuable in some applications. Should we wish to

separate the ambiguity between regions when c5 is white, we need simply determine on
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which side of the line x0 +4h = 3 the parameters (x0, h) fall. If they fall below this line,

then c5 is white. Otherwise, g3 does not include c5.

Region (7) is the most troublesome. The identifying equation for this region is

g1 = g2. When c5 is black, we can determine both parameters and thus the barcode.

The case when c5 is white comes with the additional identifier g3 = 0. An example

can be seen in Figure 4.2a. Although h can still be determined, we are limited in our

information of x0, only knowing an upper bound for this parameter: x0 < 2 − 3h. In

region (7), h ∈ (1
2 ,

2
3). Thus as h→ 2

3 the upper bound on x0 tightens.

Middle sequence counter example

One may hope to gain further information to recover parameters (x0, h, x
′
0) by also

exploiting the set middle sequence, using the same techniques as in the start and end

sequences. The apparent advantages of such exploitation would seem to be profound as

the middle sequence contains a set sequence of five bars: white-black-white-black-white.

Furthermore, since every digit on the left ends in black and every digit on the right

starts with black we end up with an invariant sequence of seven bars alternating black-

white. In order to utilize this information, we examine the intensities of the middle two

or three pixels for m even or odd, respectively. From our constraint 2h > d we know

4h > 2d and 6h > 3d, thus we will not see outside of our seven digit set sequence in

the chosen middle pixels. We then employ the same techniques as we did with the start

and end sequences, identifying relations between gi, x0, and h as well as gi′ , x
′
0, and h,

where i = m
2 ,

m
2 + 1 for m even and i = m−1

2 , m+1
2 , m+3

2 for m odd.

Once again however we have ambiguous cases with the middle sequence where the

right and left sides are mirror images. In fact, we can construct a counter example for

the usefulness of exploitation of the middle sequence. Consider the case (x0, h, x
′
0) =

(.5, .6, .5), as illustrated in Figure 4.6. Here m = 58 so we examine u29 and u30. In this

case g29 = g30 = 0.6. Furthermore, g28 = g31 = 0.5 giving complete symmetry to the

problem and failing to provide any additional information.
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Figure 4.6: Counterexample for helpfulness of utilizing middle sequence in determining
(x0, h, x

′
0)

4.2 Determining parameters from noisy data

When we add noise to the signal, the results from §4.1 no longer hold since a slight

variation from the identifying equations causes the algorithm to fail. The solution to

this problem is to look at the identifying equations themselves as planes in (g1, g2, g3)

space. Then when given noisy data for G, we project to the closest plane and use the

projection point as our new intensity values.

We use Canny edge detection discussed in §3.1 to identify the first and last pixels to

capture intensity from the barcode. Recall our definition of these pixels. The start pixel,

with intensity gstart, will be such that x0 ∈ [start− 1, start), i.e. start = bx0c+ 1. The

last pixel, with intensity gm will be such that x0+95h ∈ (m−1,m], i.e. m = dx0 + 95he.
Thus the barcode is contained in m pixels.

Under our assumptions, each gi can see at most h. Since d = 1 and we are con-

strained to the low-resolution case where h < d, thus our identifying equation planes

are restricted to the unit cube. A visualization of these planes is show in Figure 4.7.

With a noisy signal, the input intensities likely do not lie on one of these planes.

Letting (g1, g2, g3) be the intensity inputs, we calculate the distance to the nearest plane.

Using standard plane notation, each plane can be written as

ag1 + bg2 + cg3 = d.

or equivalently,

nTG = d,

where n = [a, b, c]T is a normal vector to the plane and G = [g1, g2, g3]T . In this way,
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Figure 4.7: Planes in (g1, g2, g3)-coordinates corresponding to the identifying equations
of regions (1)-(7) of (x0, h)-parameter space, restricted to the unit cube [0, 1]3

we calculate the distance to each plane as

D(G) =
|ag1 + bg2 + cg3 − d|√

a2 + b2 + c2
=
|nTG− d|√

nTn
(4.4)

Calculating D(G) for each of the seven planes and taking the minimum distance returns

the closest plane to the noisy data point onto which we project in order to run the

algorithm. Thus let r = arg mini{Di(G)}. Once we detect which plane is closest, we

project the noisy data onto said plane and recover the parameters (x0, h) using the

projected data point

G̃ = G+ nr

(
dr − nT

r G

nT
r nr

)
. (4.5)

Once we have the projected point, we test for satisfaction of an identifying equation

and solve for (x0, h, x
′
0) as in §4.1. It may be the case that there are multiple planes

minimally distant from the noisy data point. In this case, a random choice of plane is

made for the projection.

With the results of the projection for (x0, h, x
′
0) we then perform a constrained

optimization on either set of parameters (x0, h) and (x′0, h
′) subject to the constraints

h = h′ and m− x′0 = x0 + 95h. Letting F be the function that maps parameters (x0, h)

to the corresponding intensity data of the first three pixels (and similarly for the last

three), our optimization problem is as follows:

(x0, h) = arg min
x0,h
‖G− F (x0, h)‖2
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(x′0, h
′) = arg min

x′0,h
′
‖G′ − F (x′0, h

′)‖2,

where in each step we update the parameters and test for satisfaction of the constraints

under some tolerance level. In this way, we leverage each end of the barcode to accurately

determine the camera parameters.



Chapter 5

Unique Determination of a

Barcode Element

We now investigate the issue of decoding a digit in a barcode image. Referring to Table

1.1, we see that each digit is associated with a binary sequence which is translated into

a sequence of black-and-white bars of variable widths. The data given to us are pixel

intensities where the pixels may be larger than the smallest bar width. Moreover, there

is a potential for “cross-talk” between adjacent pixels in the sense that a bar is “seen”

by two pixels.

Our approach will be to consider a set of contiguous pixels whose extent cover the

part of the barcode corresponding to a single digit. We focus on this subproblem and

attempt to give a rigorous characterization of the limiting conditions at which a digit

can still be determined from the data. The analysis will be separated into two cases:

(i) small pixels, (ii) large pixels. Case (i) is the easy case as the narrowest bars are

sufficiently resolved. Case (ii) tests the limits of decoding and requires the use of the

symbology of the UPC.

29
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5.1 Unique determination in the case of well resolved im-

ages

We consider the case of “small” pixels. This is a desirable condition for higher resolutions

as a single bar of the barcode will span multiple pixels. We can see a representation

of this scenario in Figure (5.1). Algebraically, we represent this case as h ≥ 1. In

this section, we show that for small pixels, the transformation matrix T = DA is

block-diagonal so long as any row k ∈ [N ] of the camera matrix D has no more than

two adjacent non-zero entries, where [N ] = {1, . . . , N}. Since D only has entries in a

neighborhood of a diagonal transformation, we can restate the restriction to be “so long

as any row k ∈ [N ] of matrix D has no more than two non-zero entries.”
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Figure 5.1: A high resolution case in which the pixels are smaller than the narrowest
bar width.

Lemma 5.1.1. Any row k ∈ [N ] of the camera matrix D has no more than two adjacent

non-zero entries for “small pixels,” i.e. when h ≥ 1.

Proof. Let us first recall the construction of D in (2.6). D possesses the following

properties (regardless of the relationship between d and h):

N∑
k=1

Dkj = h for every column j ∈ [95] (5.1)

and
95∑
j=1

Dkj =

1 for every row k ∈ {dx0 + 1e, . . . , dx0 + 95e}

0 elsewhere.
(5.2)

Now recall from our model that the pixel width is d = yk − yk−1 = 1, k ∈ [N ] and the

narrowest bar width is h = xj+1 − xj , j ∈ [95]. An arbitrary pixel starts at yk−1 and
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ends at yk. We consider h > 1. We are interested in rows of D with non-zero entries,

i.e. non-empty pixels. Thus we consider only the cases where the kth pixel sees at least

part of the jth bar. There are three such cases.

Dk,j =


xj − yk−1 for xj−1 ≤ yk−1, xj ∈ [yk−1, yk]

1 for xj−1 ≤ yk−1, yk ≤ xj

yk − xj−1 for [xj−1, xj ] 6⊆ [yk−1, yk]

(5.3)

Then the kth pixel sees this much of bar j + 1:

Dk,j+1 =


yk − xj for xj−1 ≤ yk−1, xj ∈ [yk−1, yk]

0 for xj−1 ≤ yk−1, yk ≤ xj

0 for [xj−1, xj ] 6⊆ [yk−1, yk]

(5.4)

Now summing these together we have

Dkj +Dk,j+1 =


xj − yk−1 + yk − xj = 1 for xj−1 ≤ yk−1, xj ∈ [yk−1, yk]

1 + 0 = 1 for xj−1 ≤ yk−1, yk ≤ xj

yk − xj−1 for [xj−1, xj ] 6⊆ [yk−1, yk]

(5.5)

From (5.2), it immediately follows that for the first two condition sets, Dkl = 0 ∀l 6= j,

j+ 1, l ∈ [95], and hence the claim holds. For the third condition set we observe the kth

pixel reads only one bar of {j, j + 1}; however we see in this case Dk,j−1 = xj−1− yk−1.

Thus

Dk,j−1 +Dkj = xj−1 − yk−1 + yk − xj−1 = 1,

and hence the same logic holds. Therefore, for h > 1, each pixel sees at most two

bars.

Now we want to show that T = DA is block-diagonal, A ∈ {0, 1}95×123 and D ∈
RN×95. So by matrix multiplication, the ijth element of M is

Tij =
95∑
k=1

DikAkj .

For example, Ti,1 =
∑95

k=1DikAk1. Since the only nonzero entries in the first column of

A are in rows 1 and 3, we have Ti,1 = Di,1 +Di,3.
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Theorem 5.1.2. For small pixels, i.e. h > 1, T = DA is block-diagonal, where A is

the sparse UPC dictionary matrix and D is the camera matrix.

Proof. Since A is completely block-diagonal by construction, T inherits the column

structure from A and as such, T has no horizontal overlap of blocks. We are concerned

with the transition points of the matrix blocks. Define j′ to be the columns of transition

for A, and hence T , meaning the furthest right column of any one of the blocks of the

left half of A. So j′ ∈ {1, 11, 21, 31, 41, 51, 61, 62}. Note j′ = 62 corresponds to the

transition to the right half of A.

Define i′ to be the row of T containing the last nonzero entry of column j′. Therefore

by definition, Ti′,j′ 6= 0, Ti>i′,j′ = 0 and Ti>i′,j<j′ = 0. We want to show

Ti′,j>j′ = 0. (5.6)

To do so, we first need to make an observation about the structure of the integer blocks

from matrix A. Call the left integer block L and right integer block R. We observe

that for any left integer block, L(i, 1) = 0 ∀i, and correspondingly, R(i, 10) = 0 ∀i. (See

Table 1.1.)

Let us begin by proving (5.6) for j′ = 1. Since the last nonzero entries of column

j′ = 1 correspond to the last digit of the start sequence which lies in row 3 of A,

Di′,k<3 = 0. Also, from Lemma 5.1.1, for Di,k 6= 0, at most one of {Di′,k−1, Di′,k+1} 6= 0.

Thus for k = 3, we have Di′,3 6= 0 and Di′,4 6= 0. Di′,k>k+1 = 0, so

Di′,k = [0, 0, Di′,3, Di′,4, 0, 0, . . . , 0] ∈ R1×95.

Hence Di′,k only picks up A3,j and A4,j . We know that A3,j = [1, 0, . . . , 0] and A4,j = 0

for all j. Therefore (5.6) holds since the only nonzero term in
∑95

k=1Di′,kAk,j is Ti′,1.

Now let us show the separation between integer blocks. For the first two blocks

we have the transition column j′ = 11 and hence i′ is row of the last non-zero entry

in column j′ = 11. Thus Ti′,j′ 6= 0, Ti>i′,j<j′ = 0 and Ti>i′,j′ = 0. We want to show

(5.6) holds for j′ = 11. We observe that Ti′,j′ corresponds to the last entry of the first

integer block which lives in row 10 of A. Thus Di′,k<10 = 0. So by our claim at most

Di′,k=10 6= 0 and Di′,k=11 6= 0. Now from the structure of A and L, we know A11,j = 0

for all j and

A10,j = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . , 0]
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and so it follows that (5.6) holds for j′ = 11. Therefore, (5.6) holds for all left integer

blocks.

We now consider the transition from the last left integer block to the middle se-

quence. Let j′ = 61. Thus i′ is the row of the last non-zero entry in column j′ = 61,

Ti′,j′ 6= 0, and Ti>i′,j′ = 0. Observe that Ti′,j′ corresponds to the last entry of the last

left integer block which lives in row 45 of A. Thus Di′,k<45 = 0. So by the claim, at

most Di′,k=45 6= 0 and Di′,k=46 6= 0. Now from the structure of A, we know A45,j 6= 0

for j ∈ [52, 61] and A46,j = 0 ∀j. Both of these row vectors have zero entries for j > 61,

hence (5.6) is satisfied. Note j′ = 62 corresponds to the transition from the middle se-

quence to the right half of A and can be calculated in the same way despite R(1, j) = 1

∀j, since the last digit of M is 0.

The proof for the right half of A mirrors the one for the left half since the codes for

the right integers are the opposite (exchange “0”s and “1”s) of the left integer codes.

Thus the first row of any right integer block is ten ones and the last row consists of ten

zeros. Hence it follows that T is block-diagonal.1

Since we now know that matrix T is block-diagonal, we can recover the correct z as

in (2.3) for our image by examining each z(i) block of T separately. Since g = αTz, and

z(1) = z(62) = z(123) = 1

are always constant we need only look individually at each z(i), the portion of z corre-

sponding to one of the 12 integers. From the construction of z we know that each of

these z(i)s corresponds to one column of the 10× 10 identity matrix I10.

We want to partition T in such a way that

g|p(i) = T |p(i)z
(i),

where p(i) is the block of T corresponding to integer i. This is possible because of the

block-diagonal structure of T . We need to explicitly determine the indices of the rows

at which we partition T . Recall our definitions:

k− = bx0c
1 The block-diagonality of T comes from the structure of the dictionary A. Not only is A block-

diagonal, but one end of each block transition consists of a row of zeros.
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and

k+ = bx95c+ 1.

Thus yk−+1 is the first pixel containing information from the bar x1. Correspondingly,

x3 marks the end of the start sequence code, and so we define k0 = bx3c + 1such that

pixel yk0 is the last pixel to carry information regarding the start sequence. In a similar

matter, we continue defining ki:

k1 = bx10c+ 1, k2 = bx17c+ 1, . . . kM = bx50c+ 1, k7 = bx57c+ 1,

and so on, ending at k+. Now we define p(i) = {k̇ : ki−1 < k̇ < ki}.2 So for example,

p(1) = {k̇ : k0 < k̇ < k1}.
Now with this partition, we examine the following algorithm:

arg min
k

∥∥∥g|p(i) − αT |p(i)z(i)
k

∥∥∥ (5.7)

for i ∈ [12], k ∈ [10], where z
(i)
k is one column of I10. This algorithm iteratively

determines one barcode digit at a time. There are 12 calculations of kmin and each

calculation of kmin requires 10 calculations of the l1 norm of a vector of length 10. Thus

the runtime complexity is O(10) [2].

Theorem 5.1.3. If g is noiseless, and x0, h, α are given with h > 1, then the algorithm

(5.7) recovers the correct z.

Proof. Let k̄ be the correct column of I10, corresponding the correct ith integer.

Observe ∥∥∥g|p(i) − αT |p(i)z(i)

k̄

∥∥∥ = 0.

Assume to the contrary that for iteration i the arg min of the algorithm returns a k̂ 6= k̄.

So

argmin
k

∥∥∥g|p(i) − αT |p(i)z(i)
k

∥∥∥ = k̂ 6= k̄.

So ∥∥∥g|p(i) − αT |p(i)z(i)

k̂

∥∥∥ ≤ ∥∥∥g|p(i) − αT |p(i)z(i)

k̄

∥∥∥ .
2 Note the slight abuse of notation around the middle sequence: p(M) = {k̇ : k6 < k̇ < kM} and

p(7) = {k̇ : kM < k̇ < k7}.
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Now, observe ∥∥∥g|p(i) − αT |p(i)z(i)

k̂

∥∥∥ =
∥∥∥αTz|p(i) − αT |p(i)z(i)

k̂

∥∥∥
since αTz|p(i) = αT |p(i)z

(i)

k̄
, we have =

∥∥∥αT |p(i)z(i)

k̄
− αT |p(i)z

(i)

k̂

∥∥∥
=
∥∥∥αT |p(i)(z(i)

k̄
− z(i)

k̂
)
∥∥∥

We have z
(i)

k̄
− z(i)

k̂
6= 0 by assumption and αT |p(i) is nonzero, so since ‖f‖ ≥ 0 and

‖f‖ = 0 iff f = 0, thus∥∥∥g|p(i) − αT |p(i)z(i)

k̂

∥∥∥ > 0 =
∥∥∥g|p(i) − αT |p(i)z(i)

k̄

∥∥∥
and we arrive at our contradiction. Therefore the algorithm retrieves the correct z.

Remark 5.1.4. We expect the algorithm to be stable to small noise and small errors

in α and x0. Further examination into this stability will be a future endeavor.

5.2 Unique determination in the case of poorly resolved

images

Now that we have shown successful decoding for “small” pixels, we consider the more

interesting case where we have “large” pixels, meaning that the pixel width is greater

than the narrowest bar width (h < 1). Figure (5.2) shows this low resolution situation.
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Figure 5.2: A low resolution case in which the pixels are larger than the narrowest bar
width.

Although we no longer have block diagonality of the forward operator T in this case,

in this section we will show given certain constraints, the product of the camera matrix

and code element uniquely determines the element, and thus the decoding algorithm

will properly uncover the correct code word.



36

The analysis in this section will be restricted to the “worst” cases where the segment

of the barcode corresponding to a digit is seen only by a minimal number of pixels. We

conjecture that beyond the two extreme cases we study, unique determination holds

because in those regions of the parameter space, more information is available since the

barcode segment in question appears in many more pixels.

The first set of constraints we consider is a low resolution scenario where four pixels

cover an entire code element, including the shift, x0. In this scenario, the last bar of one

element and the first bar of the next element will be seen in the same pixel, but no three

bars will be seen in the same pixel. For preciseness, let us consider 1
2 < h < 1. Since

we assume that x0 and h are known, after a shift of the origin and with a slight abuse

of notation, we let x0 be the left edge of the element in question. Since the element is

from the left half of the barcode, the last bar to the left of x0 is necessarily black.

Lemma 5.2.1. For horizontal shift x0 ∈ (0, 1) and narrowest bar width h ∈ (1/2, 1) s.t.

4 > x0 + 7h, the camera matrix block D is a 4× 7 matrix. It acts on u, a length seven

binary vector corresponding to an element in the UPC barcode. More specifically, each

pixel detects parts of a two- or three-bar sequence.

Proof. Given our assumptions for parameters x0 and h, let Dv(i) denote the ith row of

the product Dv. We will show that Du has the form:

Du =


x0 + [1− (x0 + h)]u2

(x0 + 2h− 1)u2 + hu3 + [2− (x0 + 3h)]u4

(x0 + 4h− 2)u4 + hu5 + [3− (x0 + 5h)]u6

(x0 + 6h− 3)u6 + h

 , (5.8)

corresponding to the alignment in Figure 5.3, where [u1, u2, . . . u7]T represents a UPC

digit. It is worth observing that [Du]1 includes the first element u1 = 0. [Du]4 includes

the knowledge that for any u, u7 = 1 and u8 (i.e.) the first element of the adjacent word

equals zero. Given our initial set of relations between x0 and h we know that the region

of interest is x0 ∈ [0, 1), h ∈ (1/2, 1) and x0 < 4− 7h. For all (x0, h) in this region, we

maintain the same structure as given in (5.8), provided the coefficients multiplying ui
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Figure 5.3: One element of a UPC barcode as in Lemma 5.2.1

are greater than zero, i.e.

1− (x0 + h) > 0

x0 + 2h− 1 > 0

2− (x0 + 3h) > 0

x0 + 4h− 2 > 0

3− (x0 + 5h) > 0

x0 + 6h− 3 > 0

Clearly, the second, fourth, and final inequalities are satisfied by 1/2 < h < 1 and x0

positive. To show our target region fits within the remaining inequalities, we refer to

Figure 5.4 where we see our target region represented in the darkest shade. Therefore,

having satisfied all of our constraints, we may conclude that Du has the same structure

as in (5.8).

We will use the structure of Du given in the preceding lemma to prove the following

theorem.

Theorem 5.2.2. Let u, v be two elements in the left half of a UPC barcode. For a

camera matrix D with parameters x0 < 1 and 1/2 < h < 1, such that 4 > x0 + 7h, then

Du = Dv =⇒ u = v.

Proof. The codewords u, v are 7-vectors where the first and last elements are 0 and 1
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Figure 5.4: The region in the parameter space in which uniqueness is guaranteed for
Lemma 5.2.1

respectively by the structure of UPC. Thus

u =



0

u2

u3

u4

u5

u6

1


, and v =



0

v2

v3

v4

v5

v6

1


, (5.9)

where ui and vi ∈ {0, 1}.
We obtain the structure of Du from Lemma 5.2.1, which holds for any u from the

left-half of UPC, so in particular, it holds for u. Thus given Du = Dv we have:

x0 + [1− (x0 + h)]u2 =x0 + [1− (x0 + h)]v2 (5.10)

(x0 + 2h− 1)u2 + hu3 + [2− (x0 + 3h)]u4 =

(x0 + 2h− 1)v2 + hv3 + [2− (x0 + 3h)]v4 (5.11)

(x0 + 4h− 2)u4 + hu5 + [3− (x0 + 5h)]u6 =

(x0 + 4h− 2)v4 + hv5 + [3− (x0 + 5h)]v6 (5.12)

(x0 + 6h− 3)u6 + h =(x0 + 6h− 3)v6 + h (5.13)
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Since we are using the same parameters (x0, h) for each, it follows immediately from

(5.10) and (5.13) that u2 = v2 and u6 = v6. Substituting this into equations (5.11) and

(5.12) we have:

hv3 + (2− (x0 + 3h))u4 = hu3 + (2− (x0 + 3h))v4,

(x0 + 4h− 2)u4 + hu5 = (x0 + 4h− 2)v4 + hv5,

which is equivalent to

[
h 2− (x0 + 3h) 0

0 x0 + 4h− 2 h

]
u3 − v3

u4 − v4

u5 − v5

 =

[
0

0

]
. (5.14)

We want to show the only solution to (5.14) is ui = vi ∀i. Since ui, vi ∈ {0, 1}∀i, we

know for ui 6= vi, ui − vi = ±1. Setting

Γ =


u3 − v3

u4 − v4

u5 − v5,


we thus examine all possibilities for Γ, desiring to show none satisfy (5.14), save Γ = 0.

Case I: Let us first consider the possibility that vi 6= ui for only one i ∈ {3, 4, 5}. i.e.

Γ =


±1

0

0

 ,Γ =


0

±1

0

 , or Γ =


0

0

±1

 .
For the first or the last (i = 3 or i = 5), the contradiction is obvious. For i = 4, we have[

±(2− (x0 + 3h))

±(x0 + 4h− 2)

]
=

[
0

0

]
;

however, in the proof of the lemma we showed that 2−(x0 +3h) > 0 and x0 +4h−2 > 0,

so equality can never be achieved.

Case II: Let ui = vi for only one i ∈ {3, 4, 5}. We can first eliminate the case for

i = 4, since from above we know Γ = [±1, 0,±1]T will not satisfy (5.8). Our remaining

two cases result in the following:[
±1± (2− (x0 + 3h))

±(x0 + 4h− 2)

]
=

[
0

0

]
, (5.15)
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±(2− (x0 + 3h))

±(x0 + 4h− 2)± 1

]
=

[
0

0

]
. (5.16)

Using the contradictions from Case I, it remains to show ±1 6= ±(2 − (x0 + 3h)) for

(5.15) and ±1 6= ±(x0 + 4h − 2) for (5.16). Since both arguments have been shown to

be positive, we need only show h 6= 2− (x0 + 3h) and h 6= x0 + 4h− 2.

Assume to the contrary that 2− (x0 + 3h) = h ≡ 2− x0 = 4h. Since h ∈ (1/2, 1) we

know 2− x0 = 4h ∈ (2, 4), but 2− x0 ∈ (1, 2). So we have a contradiction.

Assume again to the contrary that x0 +4h−2 = h ≡ x0 +3h = 2, but in the Lemma,

we have shown 2 > x0 + 3h. Thus another contradiction.

Case III: Worst case scenario: Consider ui 6= vi ∀i ∈ {3, 4, 5}. Thus Γ = [±1,±1,±1]T ,

which gives a combination of (5.15) and (5.16), namely:[
±h± (2− (x0 + 3h))

±(x0 + 4h− 2)± h

]
=

[
0

0

]

Thus it follows from Case II that Γ = [±1,±1,±1]T does not satisfy (5.14). Having

eliminated all the alternative configurations of Γ, we conclude ui = vi ∀i.

We now consider a new set of constraints on the parameters x0 and h. In this second

low resolution scenario, five pixels entirely cover a code element as well as the first two

bars of the adjacent element, including the shift, x0. As such, the fifth pixel sees bars

u7, u8, and u9. This case is more challenging since the fifth pixel may include non-zero

information from the next element as well.

Lemma 5.2.3. For narrowest bar width h ∈
(

1
2 , 1
)

s.t. 5 > x0 + 8h and x0 + h > 1,

the camera matrix block D is a 5× 7 matrix. It acts on u, a length seven binary vector

corresponding to an element in the UPC barcode.

Proof. Given our assumptions for parameters x0 and h, let [Du]i denote the ith row of

the product Du. We want to show that Du has the form:

Du =



x0

hu2 + (2− (x0 + 2h))u3

(x0 + 3h− 2)u3 + hu4 + [3− (x0 + 4h)]u5

(x0 + 5h− 3)u5 + hu6 + (4− (x0 + 6h))

(x0 + 7h− 4) + (5− (x0 + 8h))u9


, (5.17)



41

corresponding to the alignment in Figure 5.5, where [u1, . . . , u7]T represents a UPC

digit. It is worth observing that [Du]1 and [Du]2 come from the fact that for any u,
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Figure 5.5: One element of a UPC barcode as in Lemma 5.2.3

u1 = 0. Similarly [Du]4 comes from u7 = 1 and [Du]5 from u7 = 1 and u8[ (i.e. the

first bar of the adjacent digit) equals zero. We draw attention to the presence of u9 in

[Du]5. u9 is the second bar of the next digit in the barcode. It is included here because

the pixel is now also picking up part of the next digit. Given our initial set of relations

between x0 and h we know that the max of h is 1, and the region of interest is further

bounded by x0 + h > 1 and x0 < 5− 8h. For all (x0, h) in this region, we maintain the

same structure as given in (5.17), provided the coefficients of vi are greater than zero,

i.e.

2− (x0 + 2h) > 0

x0 + 3h− 2 > 0

3− (x0 + 4h) > 0

x0 + 5h− 3 > 0

These inequalities hold under the stated conditions. To further show our target region

fits within these inequalities, we refer to Figure 5.6 where we see our target region

shaded. Therefore, having satisfied all of our constraints, we may conclude that Du has

the same structure as in (5.17).

We will use the structure of Du given in Lemma 5.2.3 to prove the following theorem.

Theorem 5.2.4. Let u, v be two elements in the left half of a UPC barcode. For a

camera matrix D with parameters x0, h such that x0+h > 1, h ∈
(

1
2 , 1
)
, and 5 > x0+8h,

then Du = Dv =⇒ u = v.
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Proof. As before, assume Du = Dv. The code elements u, v are 7-vectors where the

first and last elements are 0 and 1 respectively by the structure of UPC, as in (5.9).

Since Lemma 5.2.1 holds for any u from the left-half of UPC, in particular, it holds for

v. Thus given Du = Dv we have

x0 = x0 (5.18)

hu2 + (2− (x0 + 2h))u3 = hv2 + (2− (x0 + 2h))v3 (5.19)

(x0 + 3h− 2)u3 + hu4 + (3− (x0 + 4h))u5 =

(x0 + 3h− 2)v3 + hv4 + (3− (x0 + 4h))v5 (5.20)

(x0 + 5h− 3)u5 + hu6 + (4− (x0 + 6h)) =

(x0 + 5h− 3)v5 + hv6 + (4− (x0 + 6h)) (5.21)

(x0 + 7h− 4) + (5− (x0 + 8h))u9 = (x0 + 7h− 4) + (5− (x0 + 8h))v9 (5.22)

Since Du and Dv use the same parameters (x0, h), (5.18) is trivially satisfied and (5.22)

implies u9 = v9. Subtracting 4− (x0 + 6h) from both sides of (5.21), we can rewrite the
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relevant equations in matrix form:


h 2− (x0 + 2h) 0 0 0

0 x0 + 3h− 2 h 3− (x0 + 4h) 0

0 0 0 x0 + 5h− 3 h




u2 − v2

u3 − v3

u4 − v4

u5 − v5

u6 − v6


=


0

0

0

 (5.23)

We want to show the only solution to (5.23) is ui = vi ∀i. This proof is more involved

than the proof in Theorem 5.2.2 and requires some knowledge about the structure of our

code elements. We know for UPC barcodes, two distinct code elements from the same

side of the barcode (left or right) have a minimum Hamming distance of 2. In other

words, ui − vi 6= 0 for two i’s in 1, . . . , 7. We already know that structure mandates

ui = vi for i = 1, 7. Thus for u 6= v, ui − vi 6= 0 for at least two and at most four

i ∈ {2, 3, 4, 5, 6}.
So, assuming u 6= v we have min |u − v| = 2 and max |u − v| = 4. Thus we have

three cases.

Case I:

|u− v| = 4 =⇒ ∃j ∈ {2, 3, 4, 5, 6} s.t. uj = vj , ui 6= vi ∀i 6= j

Case II:

|u− v| = 3 =⇒ ∃j, k ∈ {2, 3, 4, 5, 6} s.t. uj = vj , uk = vk, j 6= k , ui 6= vi ∀i 6= j, k

Case III:

|u−v| = 2 =⇒ ∃j, k, l ∈ {2, 3, 4, 5, 6} s.t. uj = vj , uk = vk, ul = vl, j 6= k 6= l , ui 6= vi ∀i 6= j, k, l

which can equivalently be written

|u− v| = 2 =⇒ ∃j, k ∈ {2, 3, 4, 5, 6} s.t. uj 6= vj , uk 6= vk, j 6= k , ui = vi ∀i 6= j, k

Let wi = ui − vi. For Case I, wj = 0 for a particular j. Letting Γ = u− v, then Γ is
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one of the following:

Γ =



0

w3

w4

w5

w6


,



w2

0

w4

w5

w6


,



w2

w3

0

w5

w6


,



w2

w3

w4

0

w6


, or



w2

w3

w4

w5

0


where, for any nonzero , wi = ±1.

As we saw in the proof for Theorem 5.2.2, using the resulting target region of Lemma

5.2.3, we need to show all choices of wj do not result in zero equalities. For example,

let us begin in Case I with w3 = 0. Now, let us assume to the contrary that Dw = 0,

for w3 = 0. This looks like


h 2− (x0 + 2h) 0 0 0

0 x0 + 3h− 2 h 3− (x0 + 4h) 0

0 0 0 x0 + 5h− 3 h




w2

0

w4

w5

w6


=


hw2

hw4 + (3− (x0 + 4h))w5

(x0 + 5h− 3)w5 + hw6

 =


0

0

0


(5.24)

So from (5.24), recalling wj 6=3 = ±1, we need to show the following inequalities to

achieve contradiction:

±h 6= 0

±h± (3− (x0 + 4h) 6= 0

±(x0 + 5h− 3)± h 6= 0

We pause for a moment to realize that following the same process for all other choices

of j in Case I and all possible choices in Cases II and III, we can prove Theorem 5.2.4

by proving the following inequalities hold:

±h± (2− (x0 + 2h)) 6= 0

±(x0 + 5h− 3)± h 6= 0

±h± (3− (x0 + 4h)) 6= 0
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±(x0 + 3h− 2)± h 6= 0

±(x0 + 3h− 2)± (3− (x0 + 4h)) 6= 0

±(x0 + 3h− 2)± h± (3− (x0 + 4h)) 6= 0

From Lemma 5.2.3, all same sign versions of the inequalities are obvious. We need only

be concerned with the opposite signs chosen in the first five inequalities and various

signs in the last. Let us begin assuming to the contrary that h = 2− (x0 + 2h) which is

equivalent to x0 + 3h = 2. Now using the constraints x0 +h > 1 and h ∈ (1/2, 1) we see

2 = x0 + 3h = x0 + h+ 2h

> 1 + 2h

> 1 + 2

which leads to a contradiction. Therefore, ±h± (2− (x0 + 2h)) 6= 0.

Using the same constraints we can prove ±h± (3− (x0 + 4h)) 6= 0. Assume to the

contrary, h = 3− (x0 + 4h), or equivalently x0 + 5h = 3.

3 = x0 + 5h = x0 + h+ 4h

> 1 + 4h

> 1 + 4

which leads to a contradiction. Therefore, ±(x0 + 5h − 3) ± h 6= 0. Using the same

argument we can prove ±(x0 + 3h− 2)± h 6= 0.

To show ±(x0 + 3h− 2)± (3− (x0 + 4h)) 6= 0 holds for alternating signs, we assume

2x0 + 7h = 5. Then as before,

5 = 2x0 + 7h = 2(x0 + h) + 5h

> 2 + 5h

which leads to a contradiction.

Finally we want to show ±(x0 + 3h− 2)± h± (3− (x0 + 4h)) 6= 0. First,

x0 + 3h− 2− h+ 3− (x0 + 4h) = 1− 2h < 0.
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Secondly,

x0 + 3h− 2 + h− (3− (x0 + 4h)) = 2x0 + 8h− 5 > 2 + 6h− 5 > 3.

And finally,

−(x0 + 3h− 2) + h+ 3− (x0 + 4h) = −2x0 − 6h+ 5

> −2x0 − 6h+ x0 + 8h

= 2h− x0

> 2− x0 > 0.

By the proof of the inequalities, we have eliminated all alternative configurations of

Γ, and hence we conclude vi = ui ∀i. Therefore we can uniquely determine the code

element in the case of low resolution, i.e. “small pixels.”

Although the forward operator is no longer block-diagonal in the case of low resolu-

tion images, Theorems 5.2.2 and 5.2.4 reveal there is sufficient information in the data

to uniquely determine the barcode.

5.3 Error Analysis

As the real world is full of noise and corruption, it is of extreme interest to know how

much noise ε we can add to the data for the algorithm in (5.7) to still return the correct

barcode. In this study we consider the reduced systems as we did in the uniqueness

results in Theorems 5.2.2 and 5.2.4 for low resolution images.

For scenario I (as in Theorem 5.2.2), we are concerned with determining the third,

fourth and fifth bars of a UPC element (u3, u4, u5), each of which is either 0 or 1. The

data consists of image intensities (g2, g3). We can view the map from (u3, u4, u5) to

(g2, g3) as a mapping from [0, 1]3 to R2. Specifically, we are interested in to where the

corners of the unit cube map. To determine this, we relabel the reduced system in terms

of ξ1, ξ2, where ξ1 = 2− (x0 + 3h) and ξ2 = x0 + 4h− 2. Thus,

[
g2

g3

]
=

[
h ξ1 0

0 ξ2 h

]
u3

u4

u5

 . (5.25)
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Table 5.1: Map from UPC dictionary to pixel intensity

(u3, u4, u5) (g2, g3) Corresponding digit(s)

(0, 0, 0) (0, 0) 4

(1, 0, 0) (h, 0) 2,5

(0, 1, 0) (ξ1, ξ2) 9

(0, 0, 1) (0, h) N/A

(1, 1, 0) (ξ1 + h, ξ2) 1,7

(0, 1, 1) (ξ1, h+ ξ2) 0,6

(1, 0, 1) (h, h) 8

(1, 1, 1) (ξ1 + h, h+ ξ2) 3

Furthermore, as all columns of D(x0, h) must sum to h, we utilize the substitution

ξ2 = h− ξ1, such that for fixed h, we can represent the system with only one parameter

(ξ1).

The digits for a given (x0, h) are mapped to points on R2. When the data is noisy, the

points (g̃1, g̃2) do not necessarily coincide with one of the eight candidate points shown

in Table 5.1. Our approach is to find a candidate point closest to (g̃1, g̃2). As such

we are concerned with the minimum distance between any pair of the eight candidate

points.

g2

g3

h

h

2h

2h

3h

3h

Figure 5.7: Range of mapping from (u3, u4, u5) to (g2, g3).

For h fixed and ξ1 ≤ h, the four candidate points depending on ξ1 move along

parallel lines, which are separated by a distance of h
√

2. Thus, the smallest distance
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between any two points for h ∈ (1
2 , 1) is

dmin = min{ξ1

√
2, (h− ξ1)

√
2}.

These are distances from the fixed points (0, h), (h, 0) to (ξ1, ξ2) or the fixed point (h, h)

to (ξ1 + h, ξ2), (ξ1, h+ ξ2). Thus for noise level such that

‖g̃ − g‖2 < ‖min{ξ1

√
2, (h− ξ1)

√
2}‖2,

the code element is uniquely determined in the scenario with no overlap.

Theorem 5.3.1. Assuming a one-dimensional UPC barcode with narrowest bar width

h ∈ (0.5, 1) and x0 ∈ (0, 1) such that the assumptions of Theorem 5.2.2 are satisfied and

ξ1 = 1− (x0 + h), let g be the image data and g̃ be the noisy data. If

‖g̃ − g‖2 < ‖min{ξ1

√
2, (h− ξ1)

√
2}‖2,

then the code is exact.

In scenario II when we do have overlap (as in Theorem 5.2.4), our map of the simpli-

fied systems maps from [0, 1]5 to R3, takes bars (u2, u3, u4, u5) to intensities (g2, g3, g4).

The images of the digits appear as ten points lying on a line and two parallel planes.

The line is given by (ξ1, 1, 3h − 1 − ξ1), which contains the point corresponding to the

digit 1. The second plane g1 + g2 + g3 = 2h contains points corresponding to the digits

0, 2, 4, 5 and 9. Of particular importance in this plane is the fact that for h known, digits

4 and 9 are fixed points. The third plane g1 + g2 + g3 = 4h contains the corresponding

images of the digits 3, 6, 7 and 8. On this plane there are no fixed points; however, we

observe with fixed h the trajectories of code elements 3 and 8 are parallel as we vary

ξ1. Increasing the dimension from the previous scenario produces parallel planes rather

than lines; the two planes are a distance of 2h√
3

apart. Now we examine the distance

between any two points on the same plane. Since our image is in R3 with two fixed

points, we can easily picture the image of the map in Figure 5.8.
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We use the same approach as in scenario I, this time introducing two more param-

eters to represent our more complex system as shown below.


g2

g3

g4

 =


h ξ1 0 0 0

0 ξ2 h η1 0

0 0 0 η2 h




u2

u3

u4

u5

u6


(5.26)

Table 5.2: Map from UPC dictionary to pixel intensity

0 1 2 3 4 5 6 7 8 9

g1 0 ξ1 ξ1 h+ ξ1 h h+ ξ1 h h+ ξ1 h+ ξ1 0
g2 h+ η1 1 ξ2 1 0 ξ2 h+ η1 ξ2 + h 1− h h
g3 η2 η2 h η2 h 0 η2 + h h η2 + h h

Once again, we can represent everything in terms of h and ξ1

ξ2 = h− ξ1

η1 = 1− 2h+ ξ1

η2 = 3h− 1− ξ1

Now we are mapping from 5D to 3D. The image is shown in Figure 5.8

We can calculate the distance dij between the image of any two digits and in doing

so, we realize that for each fixed h, the minimum distance is

dmin = min{ξ1

√
2, |(1− 2h+ ξ1)|

√
2, (h− ξ1)

√
2}. (5.27)

Furthermore, for any choice of h and x0 we can calculate the minimum distance as a

function of ξ1:

d(ξ1) =


ξ1

√
2 for ξ1 ≤ 2h−1

2

|(1− 2h+ ξ1)|
√

2 for 2h−1
2 < ξ1 ≤ 3h−1

2

(h− ξ1)
√

2 for ξ1 >
3h−1

2

, (5.28)

which can be seen along the bottom of Figure 5.9.
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h
h

2h

2h

2h

4h

4h

4h

g2

g3

g4

Figure 5.8: The line and two planes in (g2, g3, g4)T onto which (u2, u3, u4, u5)T map

Theorem 5.3.2. Assuming a one-dimensional UPC barcode with narrowest bar width

h ∈ (0.5, 1) and x0 ∈ (0, 1) such that the assumptions of Theorem 5.2.4 are satisfied and

ξ1 = 2− x0 + 2h, let g be the image data and g̃ be the noisy data. If

‖g̃ − g‖2 < ‖min{ξ1

√
2, |(1− 2h+ ξ1)|

√
2, (h− ξ1)

√
2}‖2,

then the code is exact.
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ξ
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
is

ta
n
c
e

0

0.5

1

1.5

2

Figure 5.9: Distances between points for h = 0.8 fixed and ξ1 ∈ (0, h)



Chapter 6

Numerical Simulations

6.1 Algorithm Implementation

Now that we have examined the process by which we decode and the rigorous results

we can achieve using our process, we shall demonstrate via example the process from

start to finish. In order to verify our results, we will begin by choosing an (x0, h), which

we will later estimate from data. For the purpose of this example, let

(x0, h) = (25.3, 0.8).

Thus we have a shift of 25 pixels from the edge of the image to the barcode itself. Also,

we know from §4.1.3, for an image of 120 pixels

x′0 = 18.7.

As this study pays no attention to the checksum requirement, we randomly generate a

12 digit sequence and add 5.0% Gaussian noise level. This particular experiment uses

the 12 digit sequence

384815703554

The noisy data appears in Figure 6.1.

Before we can implement our algorithm, we must identify the edges of the barcode

from the noisy data. As mentioned previously, we implement a Canny edge detection

as in [11] to crop our data from all 120 pixels to pixels mstart to mstop.

52



53

Noisy Intensity Data

20 40 60 80 100 120

Figure 6.1: Simulated data with Gaussian noise level of 5.0%

Results of Edge Detection

20 40 60

Figure 6.2: Results of Canny edge detection on our simulated noisy data

With the knowledge of the barcode edges, we now apply our method to the data,

first identifying G and G′:

G =


0.7292

0.2189

0.7152

 G′ =


0.2976

0.4629

0.6871


Projecting these noisy data points onto the planes in Figure 4.7, we are then able

to return estimates for the parameters (x0, h) and (x′0, h
′). With these estimates we

optimize under the constraints

h = h′
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and

mstop − x′0 = x0 + 95h.

The optimization returns our final estimators for the camera parameters,

(x0, h, x
′
0) = (0.2893, 0.8001, .7031).

As seen in Table 6.1, the difference between the true parameters and the estimators is

Table 6.1: Accuracy of estimated parameters in numerical example

Parameter True Value (x∗) Estimated Value (x) ‖(x∗ − x)‖2
x0 25.3000 25.2893 0.0107
h 0.8000 0.8001 7.9296E-5
x′0 18.7000 18.7031 0.0031

small, particularly for h. These values are used in Algorithm 1 to obtain the digits in

Algorithm 1 Left to Right Decoding Algorithm

1: procedure LR Decoding
2: data = g − αD(x0, h)Aζ
3: for each j ∈ [12] do

4: kmin = arg mink∈{0,...,9} ‖data− αD(x0, h)Az
(j)
k ‖

5: data = data− αD(x0, h)Az
(j)
kmin

6: code(j) = kmin

7: end for
8: end procedure

the barcode, where ζ is the vector containing only information about the start, middle,

and end sequences.

In our experiments we found that Algorithm 1 can be improved by decoding from

both ends, estimating two camera matrices each based on (x0, h) and (x′0, h) respectively.

The motivation for this updated algorithm, Algorithm 2, comes from a need to reduce

blow-up of error in h. When decoding left to right, the far right end of the barcode

lies at x0 + 95h. By utilizing the stop sequence notation presented in §4.1.3, we avoid

this blow-up by decoding from either end only up to the middle sequence. Thus, using

Algorithm 2, the 12 digits in the barcode are correctly determined. It is informative to

reconstruct the barcode from the recovered 12 digits which we do in Figure 6.3.
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Algorithm 2 Decoding from Both Ends

1: procedure Both Ends Decoding
2: dataL = g − αD(x0, h)Aζ
3: Aflip = flip(A, 1) %flip rows of A
4: dataR = flip(g)− αD(x′0, h)Aflipζ
5: for each j ∈ [6] do

6: lmin = arg minl∈{0,...,9} ‖dataL − αD(x0, h)Az
(j)
l ‖

7: dataL = dataL − αD(x0, h)Az
(j)
lmin

8: code(j) = lmin

9: rmin = arg minr∈{0,...,9} ‖dataR − αD(x′0, h)Aflipz
(13−j)
r ‖

10: dataR = dataR − αD(x′0, h)Aflipz
(13−j)
rmin

11: code(13− j) = rmin

12: end for
13: end procedure

Reconstructed Barcode

20 40 60 80

Figure 6.3: The reconstruction of the barcode from Algorithm 2

6.2 Performance of algorithm under noise

In this section we present the results of the following experiment: Consider the param-

eter space of (x0, h) where x0 ∈ (0, 1) and h ∈ [3/4, 1). For random 12-digit sequences

and random Gaussian noise, how well does Algorithm 2 perform? In this experiment

we will sample points in the parameter space with a 60 × 15 mesh and generate 100

instances of random 12 digit numbers and their corresponding noisy data. We assume

that the edges have been detected correctly. The experiment is repeated for noise levels

of 2.5%, 5.0%, 10.0%. The figures below illustrate the average success of this experiment
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for each point in the grid at the respective noise level, as well as the accuracy of our pa-

rameter estimates, x = (x0, h), compared to the true camera parameters x∗ = (x∗0, h
∗).

Algorithm success with 2.5% noise

x
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h

0.75

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

Figure 6.4: Average performance of Algorithm 2 post edge detection with 2.5% Gaussian
noise level

||x*-x||
2
 with 2.5% noise

x
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h

0.75

0.8

0.85

0.9

0.95

1

0.02

0.04

0.06

0.08

0.1

Figure 6.5: L2 distance between estimated parameters x = (x0, h) and true parameters
x∗ = (x∗0, h

∗) with 2.5% Gaussian noise level

What we see is that as the noise level is increased, the error in the recovered parame-

ters increases accordingly. However, we also observed that the decoding of the barcode

word is not heavily impacted by the inaccuracies in the parameters. Computing the

total error rate, we find that the success rates are at 98.6%, 98.8%, and 99.3% for noise
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Algorithm success with 5.0% noise

x
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8
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0.9
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1

0

0.2

0.4

0.6

0.8

1

Figure 6.6: Average performance of Algorithm 2 post edge detection with 5.0% Gaussian
noise level

levels of 2.5%, 5%, and 10%. Thus we are seeing near-perfect decoding of the barcodes.

To delve into this issue further, we ran two more experiments, at noise levels of 20%

and 40%. We tabulate the success rates in the table below. The drop-off in the success

Noise Level 2.5% 5% 10% 20% 40%

Success Rate 98.6% 98.8% 99.3% 98.1% 66.8%

rate is now evident. Nevertheless, we note that the algorithm is extremely robust up to

20% noise, but we predict significant drop off beyond this noise level.
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||x*-x||
2
 with 5.0% noise
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.04

0.06
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Figure 6.7: L2 distance between estimated parameters x = (x0, h) and true parameters
x∗ = (x∗0, h

∗) with 5.0% Gaussian noise level

Algorithm success with 10.0% noise
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Figure 6.8: Average performance of Algorithm 2 post edge detection with 5.0% Gaussian
noise level
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||x*-x||
2
 with 10.0% noise
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Figure 6.9: L2 distance between estimated parameters x = (x0, h) and true parameters
x∗ = (x∗0, h

∗) with 5.0% Gaussian noise level
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Conclusion

In camera-based barcode decoding, limitations are imposed on the problem by the

resolution of the captured images. In this study, we found that in some circumstances

recovery is possible even when the narrowest bar is half the pixel size. Restricting to

the one-dimensional UPC symbology, we presented a model for camera-based imaging

utilizing the dictionary method of [2] and investigated the inverse problem of recovering

the 12 digit word from the image data. Key to the solution of this problem is the

camera model, which can be completely determined by the shift from image edge to

barcode and the narrowest bar width. We introduced a method for recovering these

camera parameters (x0, h, x
′
0), with which we can estimate the camera matrix and use

the greedy algorithm Alg. 2 to recover the word. In our analysis of parameter recovery,

we found that for x0 ∈ (0, 1) and h ∈ (3/4, 1) we will always be able to recover the

camera parameters for noiseless data, relying only on the first three and last three pixel

intensities. Additionally, this region of parameter space allows for unique determination

of each digit.

Furthermore, during this investigation we studied two “worst case” examples in

which the minimal number of pixels was used to cover a single code element, while still

satisfying our basic resolution requirements. In these two cases, we showed that the

element is still uniquely determined. In fact, we can even uniquely determine under

some amount of noise.

Further improvements could be made in this problem by incorporating the checksum

requirement, which has been neglected in this work. Using the checksum requirement
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significantly reduces the search space of our problem as only eleven of the twelve digits

are free to move in {0, . . . , 9}.
It is interesting to note that it may be an easier problem to examine the barcode at

an angle. That is, a barcode whose axes are not aligned with the pixels, as in Figure

2.1. Such conditions allow for multiple views of the same bar, providing opportunity to

remove ambiguity otherwise present in the aligned case discussed previously.

Future research directions indicated by this work include

· Rigorous demonstration of unique code word recovery for all values of 0 < x0 < 1,
3
4 < h < 1

· Robustness of the recovery for the above range of parameters

· Exploitation of “multiple views” of the same barcode when the bars are not aligned

with the pixel axes

· An analysis of two-dimensional barcodes
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