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Abstract

I investigate the role of disorder and its impact on the properties of a novel quantum

crystal: solid 4He. The role of a superfluid field associated with edge dislocations on

the properties of 4He crystal is studied at different levels of coarse graining.

Initially, a study of the hydrodynamics of compressible superfluids in confined ge-

ometries as a coarse grained representation of superfluidity confined to complex networks

is presented. The corrections due to finite compressibility to superfluid flow behavior

are, as expected, negligible for liquid He. They are important but amenable to the

perturbative treatment for typical ultracold atomic systems.

Next, a study of the equilibrium properties of an Ising model on a disordered random

network with quenched or annealed disorder is presented. The emphasis is on nonuni-

versal properties and we consider the transition temperature and other equilibrium

thermodynamic properties, including those associated with one dimensional fluctua-

tions arising from the chains. The transition temperature and the entropy associated

with one dimensional fluctuations are always higher for quenched disorder than in the

annealed case. These differences increase with the strength of the disorder up to a

saturating value.

The effect of the superfluid field on dislocation motion as a result of stress applied

on the crystal is also studied. Damping of the dislocation motion, calculated in the

presence of the superfluid field, is related to the shear modulus of the crystal. As the

temperature increases, we find that a sharp drop in the shear modulus will occur at the

temperature where the superfluid field disappears. We relate the drop in shear modulus

of the crystal arising from the temperature dependence of the damping contribution due

to the superfluid field, to the experimental observation of the same phenomena in solid

4He and find good agreement.

The response of the superfluid field to dislocation motion is studied within the

quantum Gross-Pitaevskii formalism. The Dissipative Gross-Pitaevskii equation is used

to investigate the effect of dislocation climb and glide motion on the superfluid field

near it. Asymmetry introduced in the superfluid distribution due to dislocation climb
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is quantified. Unlike climb, glide motion does not affect the asymmetry characteristic

of the superfluid distribution in the vicinity of an edge dislocation.
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Chapter 1

Introduction

1.1 Basics of superfluidity

In 1938, Pyotr Kapitza [1] and independently J.F. Allen and A.D. Misener [2] discovered

superfluidity in 4He. At 2.17K, liquid 4He undergoes a phase transition into a superfluid

state characterized by frictionless flow [1]. Superfluidity is observed in both 4He and

3He whereas the underlying mechanism responsible for superfluidity in both the isotopes

is vastly different owing to their respective bosonic and fermionic nature. Superfluidity

in 4He is characterized by a condensate analogous to Bose-Einstein Condensation (i.e.

the tendency of bosonic particles to occupy the lowest energy single particle state at

low temperatures) in non-interacting systems. However, the density of 4He atoms in

the ground state (ρ0) is not equal to the superfluid density(ρs). In fact, at T∼ 0K, ρ0

is approximately 10% of the total density while ρs
ρ ∼ 1. On the other hand, 3He being

fermionic - owing to an odd number of nucleons - form Cooper pairs in order to turn

superfluid [3].

Superfluidity is a state of matter in which a fluid is characterized by zero viscosity.

Due to the ability of superfluids to flow without friction, a container which seemed

to be leak tight could start to leak helium as the superfluid can now move through a

microscopic hole. When liquid 4He is rotated in a container at some angular velocity,

the superfluid component (ρs) will not rotate with the container because it feels no

friction from the walls of the container. Hess and Fairbanks [4] conducted an experiment

in which liquid 4He in a rotating cylinder was cooled through the superfluid transition
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temperature, referred to as Tλ. They observed that at sufficiently low angular velocities,

superfluid forms in a state of zero angular momentum causing the container to rotate

faster. Also, the temperature dependent moment of inertia, I(T), was understood to

depend on the superfluid density fraction ρs
ρ as:

I(T ) = IClassical[1−
ρs
ρ
]. (1.1)

This unique property of the dependence of moment of inertia on superfluid density is

referred to as Non Classical Rotational Inertia (NCRI).

1.2 From Liquid to Solid 4He

Helium at its own vapor pressure is the only substance known to resist solidification

down to the lowest of temperatures [5]. This property of 4He is due to a quantum

mechanical effect called zero point motion where atoms in a crystal vibrate down to

the lowest of temperatures. Atoms in a crystal with lattice spacing, a, possess kinetic

energy due to vibrational motion

Ekinetic =
~
2

ma2
(1.2)

where ~ is the Planck’s constant and m the atomic mass. Comparing the kinetic energy

to the interaction energy, α, between atoms in the crystal one obtains a dimensionless

parameter (referred to as the de Boer parameter [6]),

Λ = (
Ekinetic

Einteraction
)1/2 =

~√
mαa

. (1.3)

Larger values of Λ imply that kinetic energy of atoms is dominant compared to the

interaction energy. Since kinetic energy is associated with the vibrational motion of the

atoms, the larger the amplitude of vibrations the harder it will be to localize atoms in

the low temperature limit. Values of Λ ≥ 0.2− 0.3 implies that the crystal is unstable

with respect to zero point motion even at T → 0, a phenomenon referred to as quantum

melting[6]. The parameter Λ can therefore be used as a measure of how ‘quantum’ a

crystal is. The solid phase of 4He with Λ ≈ 0.4 is, therefore, an excellent candidate

for a quantum crystal. This property of solid 4He also means that the solid phase is
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Figure 1.1: Phase Diagram of 4Helium below 6K.
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only attained at very high pressures - above 2.5 MPa - and very low temperatures. See

Fig. 1.1 for the phase diagram of 4He [7].

Given the quantum nature of solid 4He, theorists began to ponder about the pos-

sibility of a phenomenon similar to superfluidity in solid 4He where part of the crystal

could ‘flow’ without friction. As early as the 1960s, Chester proposed how a crystal

could undergo Bose-Einstein condensation [8] thereby forming a ‘super’solid. Following

the initial predictions by Chester, Leggett proposed how a NCRI signal could be utilized

in order to experimentally detect supersolidity [9]. However, finding a sensitive probe

to observe the onset of NCRI turned out be particularly challenging partly due to the

difficulties associated with solidifying 4He. Efforts at observing NCRI via measurements

of mobility, heat transfer, and other methods turned out to be futile [10]. Eventually,

Kim and Chan [11], utilizing a torsional oscillator technique that is extremely sensitive

to changes in the moment of inertia claimed to have observed NCRI in solid 4He. This

purported observation of NCRI in solid 4He renewed the experimental and theoretical

interest on topics relating to the quantum nature of 4He crystals.

More recently, however, the validity of the observation of period drop in torsional

oscillator experiments attributed to NCRI in solid 4He has been called into question.

This is because solid 4He was also shown to undergo an anomalous softening of the

shear modulus in the same temperature range as the purported observation of NCRI: a

phenomenon referred to as “quantum plasticity” [12]. Most recent experimental results

suggest that the anomalous drop in shear modulus of 4He crystal rather than the change

in inertial mass set into motion by the oscillator maybe responsible for the observed drop

in the period in torsional oscillator experiments [13, 14]. Other alternative theories have

also been proposed. For instance, it has been argued [15] that some of the experimental

results can be understood in terms of a phenomenological description of glassy response

of the solid. As such, the question of whether or not NCRI effect exists in solid 4He

continues to be a controversial topic. Experimental evidence [16] for superfluidlike mass

transport through solid 4He was initially reported in Ref. [17]. Observation of mass

superflow in solid 4He, using an experimental technique other than the torsion oscillator

method, further added to the controversy on whether or not NCRI exists. Considering

these recent developments, it is clear that even though torsional oscillator experiments

may not provide conclusive evidence for NCRI in solid 4He, other phenomena such
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as superfluidlike transport associated with crystal disorder and quantum plasticity are

equally interesting.

The observed anomalous drop in shear modulus of 4He crystal brought into focus

the role that defects and disorder present within the crystal may play. Given that the

mechanical properties of crystals are largely dictated by dislocation lines and other de-

fects present within the crystal, the observed anomalous shear modulus behavior can

provide fundamental insights into the behavior of defects in quantum crystals such as

solid 4He. Moreover, some of the features associated with the behavior of defects in

solid 4He crystal may be due to quantum crystalline effects and therefore not be ordi-

narily observed in classical crystals. For example, Ref. [18] studied a phenomenological

model coupling superfluidity to the elastic field associated with a dislocation line. It was

observed that the coupling induced a local variation of the superfluid transition temper-

ature: the presence of a dislocation line enhanced the superfluid transition temperature

in its vicinity. Thus, questions involving the nature of the defects and its coupling to

a superfluid field are at the core of the basic physical issues that are addressed in this

thesis.

1.3 Disorder in Solid 4He Crystals

Crystals found in nature contain imperfections which could be categorized as point,

line, surface or volume defects. Examples of point defects are vacancy sites or inter-

stitial atoms while dislocation lines are examples of line defects. The presence of such

defects can significantly alter the properties of crystalline materials. Although we focus

specifically in this thesis on dislocation lines, we note that the various types of defects

present within a crystal could interact with one another and are therefore related.

Dislocation lines are line defects that arise either during crystal growth or due to

mechanical deformation of a crystal. Different types of dislocation lines exist. Two com-

mon types of dislocation lines found in crystals are edge and screw dislocations. These

defects in the crystal structure can also affect properties such as thermal and electrical

conductivity of a material. A characteristic length associated with a dislocation line

is the Burgers vector. The Burgers vector is defined as the vector needed to close a

Burgers circuit which is any atom-to-atom path taken around a dislocation line and
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forms a closed loop [19]. The Burgers vector for an edge dislocation is normal to the

line of the dislocation.

Figure 1.2: An edge dislocation line in a crystal. The extra half plane within an other-
wise ordered crystal arrangement forms an edge dislocation.

Dislocation lines can move within a crystal in response to an applied stress. When

dislocations move along a surface that contains the dislocation line and the Burgers

vector, it is said to execute gliding motion. Glide of dislocations could result in slip

which is a manifestation of plastic deformation in a crystal. Movement of a dislocation

line out of the glide surface, therefore, normal to the Burgers vector is referred to as

climb.

1.3.1 Dislocation Networks, 3He Impurities and Superfluidity

It has been known since the 1980s that 3He impurities pin dislocation lines in 4He

crystals [20]. Pinning and depinning of dislocation lines by 3He impurities is thought

to be evident from its effect on elastic properties of 4He crystals. It was observed that

4He crystals become soft [21] in the absence of pinning due to 3He impurities which
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Figure 1.3: Dislocation lines in a crystal and how 3He binds to dislocation lines.

correspond to a situation whereby dislocation lines are free to move. This is reminiscent

of a technique used in past whereby impurities were introduced into a crystal to act as

pinning centers. These pinning centers would then lock dislocations into place thereby

limiting the motion of dislocation lines. This would result in improving the ability

of materials to resist plastic deformation. Fig. 1.3 gives an illustration of dislocation

lines within a crystal and how an example of a point defect interacts with it [22]. 3He

impurities present within the crystal pin dislocation lines and thereby influence the

elastic properties of a crystal.

Another clue as to the role of defects in solid 4He came from the purported obser-

vation of NCRI in solid 4He and its sensitivity to defects present within the crystal.

It was hypothesized that superfluid 4He wets the area between crystalline grains and

their superflow could result in NCRI [23]. This is an example of an effort to incorporate

crystalline defects and superfluidity into understanding the properties of solid 4He.

The possibility of the transition of the core of dislocations in quantum crystals into

a fluid state and the appearance of one-dimensional superfluidity along dislocation lines

was looked into in Ref. [24]. More recently, computer simulations [25, 26, 27] showed

that superfluidity could occur along dislocation cores. As a result, it became reasonable

to consider the possibility that quantum liquid state of dislocation lines could play an
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important role in quantum plasticity as well as the purported observation of superflu-

idlike mass flow in 4He crystals. Motivated by the fact that in superconductors Tc was

elevated [28] near edge dislocation lines, it was proposed that superfluidity would also

be enhanced [18, 29] near a dislocation line. Considering a quenched edge dislocation

with an associated superfluid field in the context of a Landau theory, it was shown [29]

that superfluid ordering could take place at higher temperatures in the proximity of a

dislocation line. It was observed that local compression or dilation fields associated with

an edge dislocation line could increase the local transition temperature. These results

in essence set the motivation for the work that is discussed in this thesis.

1.4 Theoretical Background

The primary objective of research presented in this thesis is to understand the experi-

mentally observed quantum behavior in solid 4He and the role that superfluidity induced

near the cores of dislocation lines plays in dictating the quantum behavior. Motivation

for our theoretical considerations will be largely based on coarse-grained models of su-

perfluidity, similar to the models proposed by Shevchenko [24] and by Dorsey, Goldbart

and Toner (DGT) [18, 29]. The strain field due to the dislocation lines is coupled to the

superfluid order parameter in these models. Here I introduce the DGT model starting

with a X-Y model Landau free energy of the form:

F =

∫
[
1

2
Cαβ∂αΨ∂βΨ

∗ +
1

2
a(T )|Ψ|2 + 1

4!
w|Ψ|4]d3r (1.4)

where Ψ(r) (a complex scalar field) is the X-Y model order parameter and Cαβ takes into

account the spatial anisotropy of the crystal. Coupling between the X-Y order parameter

and the local displacement field ~u(~r) for the lattice points within a crystal is introduced

by taking the Landau parameters in Eq.[1.4], a(T ) and w, to depend on the local value

of ~u(~r). If the free energy is to be invariant under rotations and translations, it can

only depend on ~u(~r) through the symmetric strain tensor uαβ(~r)[30]. Thus expanding

the Landau parameter a(T ) in terms of the strain tensor(and doing the same for w)

a(T ) → a(0) + a
(2)
αβγλuαβuγλ (1.5)

DGT obtained from these considerations a minimal model of free energy

F =

∫
[
1

2
Cαβ∂αΨ∂βΨ

∗+
1

2
a(0)|Ψ|2+ 1

4!
w|Ψ|4+ 1

2
λαβγδuαβuγδ+

1

2
a
(1)
αβuαβ |Ψ|2]d3r (1.6)
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where λαβγδ are the bare elastic constants and other variables are as defined above. The

last term in Eq.[1.6] above couples the X-Y order parameter to the strain tensor and

therefore allows one to study the effect of the displacement field ~u(~r) on superfluidity

within a crystal.

Strain fields uαβ(~r) in a crystal result from dislocations. In studying the effect of

dislocations on the X-Y order parameter, an appropriate expression for uαβ(~r) arising

from dislocations within a crystal should be considered. Toner [29] considered a straight

edge dislocation with a corresponding strain field of the form

uαα =
4Σ

2Σ + λ

b cos θ

r⊥
(1.7)

where ~b is the Burgers vector along the y-axis (for an edge dislocation running along the

z axis) and Σ, λ are elastic constants. Based on the DGT free energy above, Ref. [29]

looked at the role that strain due to quenched dislocation would play in the superfluid

to normal fluid transition of associated 4He atoms. It was shown that edge dislocations

can enhance the normal to superfluid transition. These models, in general, couple the

strain field(uαβ) of quenched (stationary) dislocations to the X-Y order parameter Ψ(r)

and do not include the dynamics of dislocation lines. The network of dislocation lines is

assumed to be ‘quenched’ (frozen in time). Results presented in this thesis will therefore

delve into studying scenarios when this assumption is relaxed and the dynamics of the

network of dislocation lines is taken to be relevant.

1.5 Dynamics of Defects

In this section, the question of how the dynamics of a coupled system of the superfluid

order parameter and the dislocation lines can be modeled is addressed. As discussed

in detail in subsequent chapters of this thesis, this question will be addressed, both

analytically and numerically, at different levels of coarse-graining. An important issue

in this context is how the motion of dislocation line affects superfluidity in its vicinity.

It has been suggested [22] that a moving dislocation line is less effective compared to a

stationary one in causing the 4He atoms around it to become superfluid. The suggestion

appears reasonable assuming that the strain field of a dislocation increases the “local

transition temperature” for superfluidity. The motion of a dislocation line could then
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“smear out” this effect over a wider region which may suppress the effectiveness of the

dislocation line in enhancing superfluidity in comparison to a stationary dislocation line.

Our results, presented below, tell us whether this actually happens.

Initially, before delving into microscropic models on the role of dynamics of defects,

I studied the hydrodynamics of superfluids confined to complex geometries. This rep-

resents a very coarse-grained view of the behavior of superfluid field associated with

dislocation lines in crystal 4He. Motivated by experimental results associated with su-

perfluidity in solid 4He, the flow behavior of superfluid confined to complex geometries

such as blocked rings, wedges and solids containing grain boundaries was studied in

Ref. [31] in the incompressible limit. Understanding the flow properties of superfluid

constrained to complex geometries could give interesting insights into how superfluidity

associated with defects behave. This study was also partly motivated by the recent

interest in experimental and theoretical studies of superfluidity and other quantum

phenomena in trapped, ultracold atomic systems. We considered the case where the

superfluid confined to complex geometries was characterized by finite compressibility.

Moving toward less coarse-grained models coupling superfluid field and dislocation

lines, we studied analytically and numerically a coupled spin model characterized by a

simplified version of the dynamics of defects. In this model, the system of dislocation

lines is represented by a network of Ising spins. The superfluid order parameter is

modeled by one type of Ising spins and the tendency of dislocation lines to enhance

or suppress superfluidity in its vicinity is represented by a suitably chosen coupled

secondary field. The equilibrium and dynamic behavior of the coupled spin model was

then studied using approximate analytic methods and numerical simulations.

Next the mobility of a dislocation line in bulk crystal 4He was calculated. Mobility

of a dislocation line tells us how easy it is to move a dislocation line in response to an

applied force. It is quite likely that given the quantum nature of solid 4He crystals, dra-

matic effects unique to the quantum nature of the solid could be observed. Considering

that solid 4He has an additional Goldstone mode (in this case superflow) that couples

to the elastic fields of dislocations, interesting effects relating to material properties of

4He crystals may arise. Also, the superfluid velocity field must change when disloca-

tions move which may then feed back into the dynamics of the dislocation motion itself,

thereby changing its mobility. I calculate the dislocation mobility in 4He crystals using



11

the techniques of Ref. [32]. In this approach, a gedanken experiment is performed in

which a constant force FD is applied to a dislocation, causing it to move at a constant

velocity VD. One can then solve the continuum, hydrodynamic equations of motion

for the system under consideration, subject to the condition implied by the dislocation

motion. In our case, these are the well-known [33, 34] hydrodynamic equations for a

quantum solid. One can then obtain the force FD -velocity - VD relation for the dislo-

cation by balancing the energy loss in the time-dependent dislocation fields against the

work done by the external force FD. This first analytic calculation was done for a system

in which the superfluid order can develop without the aid of the dislocations. Based

on the mobility calculation, a model for the temperature dependence of the anomalous

shear modulus and the dissipation associated with dislocation motion was developed.

These results are shown to be in agreement with experiments.

In the next calculation, I determine based on a fully quantum model how dislocation

motion affects the superfluid field around it. In particular, the issue of whether disloca-

tion motion increases or reduces the dislocation’s efficacy at inducing superfluid order is

analyzed. The methodology used in performing this calculation was to extend the tech-

niques of the hydrodynamic calculation so as to include fluctuations in the amplitude of

the superfluid order parameter. These are not included in the hydrodynamic equations

of motion, because this amplitude is a non-hydrodynamic variable (i.e. since it relaxes

quickly at long wavelengths). However, it is obviously essential to include it in order

to understand how moving dislocations can induce a non-zero value of this amplitude

when it is zero far from the dislocation. I extend the hydrodynamic theory [33, 34]

to include such amplitude fluctuations via the Gross-Pitaevskii formalism. This exten-

sion will include excitations due to a moving dislocation line and how these excitations

affect the superfluid order parameter. In this regard, the dissipative Gross-Pitaevskii

formalism is an excellent framework to study how excitations associated with a moving

dislocation line affects the superfluid field. After writing the equations of motion for a

coupled system of superfluid field and the dislocation line, I solve it in the presence of

a moving dislocation line. From this solution the position dependent amplitude of the

superfluid order parameter is obtained, and learn, among other things, whether it is

enhanced or suppressed, compared to the static solution, by the motion of dislocation

line.
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Therefore, through these various approaches, the main objective of studying how

dislocation motion affects the superfluid field in its vicinity for models at different lev-

els of coarse-graining is implemented. Relevant details of the analytic and numerical

calculations performed and the results obtained are presented below in the following

chapters.

• Chapter 2 describes the flow behavior of compressible superfluids confined to com-

plex geometries.

• Chapter 3 presents a study of the coupled field spin model comparing quenched

and annealed dislocation networks.

• In Chapter 4 the mobility calculation and its relation to the shear modulus of

solid 4He crystal is outlined. The good agreement obtained for the shear modulus

and the dissipation associated with dislocation motion in solid 4He in comparison

to experimental results is shown.

• Chapter 5 describes the effect of dislocation motion on the superfluid field near it

within the dissipative Gross-Pitaevskii formalism.

Results presented in Chapter 2, 3 are edited versions of published journal papers

and a paper on Chapter is 4 currently under review. Chapter 5 is to be rewritten in

paper form and submitted.



Chapter 2

Hydrodynamics of compressible

superfluids in confined geometries

2.1 Introduction

The hydrodynamics of superfluids confined in containers or channels of complex geom-

etry is relevant to a variety of experimentally studied systems. Crystalline defects such

as dislocation lines in solid 4He form complex disordered structures. A study of the flow

properties of a superfluid confined in irregular-shaped channels could provide interesting

insights into the behavior of superfluidity associated with disordered structures within

crystal 4He. Moreover, the absence of friction in a superfluid and the irrotational nature

of superfluid flow (in the absence of vortices) lead to a variety of unusual hydrodynamic

effects that depend crucially on the confining geometry.

A large number of experimental investigations into superfluidity in trapped, ultracold

atomic systems [35, 36, 37] have been carried out in recent years. Various signatures

of superfluidity, such as persistent flow, reduction in the moment of inertia due to

the frictionless nature of the superfluid (the so-called non-classical rotational inertia

(NCRI)) and formation of quantized vortices have been observed in both bosonic [38, 39,

40, 41] and fermionic [42] systems. In all these experiments, the superfluid is confined

in a small region by an external trapping potential. While the early experiments on

such systems were carried out for traps with simple geometry, more recent ones have

begun to explore the properties of superfluid condensates in traps with a more complex

13
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structure. Superfluid flow in a toroidal trap has been observed [40], and the effects

of a repulsive optical barrier that tends to block the superflow have been investigated

in recent experiments [43, 44]. Studies of superfluid hydrodynamics in containers with

complex geometry are obviously relevant for understanding the results of experiments

on superfluidity in atomic systems confined in such traps.

Motivation for studies of superfluid hydrodynamics in confined geometries is also

provided by reports [11, 45] of an abrupt change in the resonant period of a torsional

oscillator filled with solid 4He, initially interpreted as NCRI in solid 4He, at sufficiently

low temperatures. While the interpretation is controversial [46], a possible explanation

[25, 26, 18, 47] is that superfluidity occurs in solid 4He along extended crystal defects

such as dislocation lines and grain boundaries which form complex disordered networks.

Studies of the flow properties of a superfluid confined in channels and networks of

irregular geometry are obviously useful for assessing the validity of such theories.

The hydrodynamics of superfluids confined in containers of simple geometries, such

as spherical, cylindrical or rectangular, has been studied extensively [48, 49] in the

past. These studies, all in the incompressible limit, were recently extended [31] to

more complex geometries, such as wedges and blocked rings, both in the case where

there are no vortices (so that the superfluid flow is irrotational) and the case where

a single vortex was present. The study [47] looked into the effects of superfluidity

along grain boundaries in a two-dimensional bosonic system. While the results of these

studies could be applied to experiments involving superfluid 4He, they were not directly

applicable to cold atomic systems because of the incompressibility assumption. This

assumption constrains the local density in equilibrium to be uniform throughout the

system. While this is an extremely good approximation for superfluid 4He, it is not a

good one for cold atomic systems in which the presence of a confining potential causes

the equilibrium density to be substantially inhomogeneous. This inhomogeneity has

significant effects on the superfluid properties of the confined atomic system, as found in

both experimental [35] and theoretical [50, 51] investigations. Therefore, it was doubtful

if the results of these earlier studies [47, 31] would be valid for cold atomic systems. For

example, calculations in Ref. [31] showed that the velocity field for a superfluid confined

in a two-dimensional wedge with opening angle β > π diverges at the tip of the wedge

for any nonzero value of the angular velocity Ω of the wedge about an axis perpendicular



15

to it and passing through its tip. This divergence could be removed by the nucleation

of a single vortex. This implies that either a normal region near the tip of the wedge

or a vortex must be present for any nonzero value of Ω. The size of the region near the

tip where the velocity exceeds the critical velocity was estimated to be too small to be

experimentally observable for liquid 4He, but it was found that it may be observable

in cold atomic systems. However, the validity of the results for cold atomic systems

could not be established because the calculation was carried out for an incompressible

superfluid. In general, firm conclusions for cold atomic systems cannot be drawn from

hydrodynamic calculations performed under the assumption of incompressibility and

uniform equilibrium density. Clearly, a method in which this assumption is removed is

needed for studies of the hydrodynamic of these systems.

To accomplish this purpose, we start, in this chapter, with the hydrodynamic equa-

tions for a compressible superfluid. Although the effect of compressibility in cold atomic

systems has been studied via the Gross-Pitaevskii (GP) equation [51, 52], it is simpler

for our purpose of perturbatively studying the compressibility corrections, to start di-

rectly with the hydrodynamic limit and the associated coarse grained equations based

on conservation of mass and momentum. The hydrodynamic equations we consider

can be obtained [51, 52] from the GP equation if a quantum stress term, known [53]

to be unimportant in the hydrodynamic regime, is neglected. The procedure we use

to solve the hydrodynamic equations is based on an expansion in parameter (v/vs)
2,

the square of the Mach number, where v is some characteristic speed of the problem

and vs is the speed of sound. Such expansions have been previously used [54, 55] in

other quantum fluids problems. Our expansion procedure leads to linear differential

equations, which makes it much easier to find analytic solutions: this is a considerable

advantage of our method. At zeroth order in this small parameter one recovers the

incompressible results, since vs is then formally infinite. Our expansion, as it will be

seen, is particulary convenient to the study of situations where a flow is imposed on

the system by external means. We then proceed to apply this procedure to two specific

situations in this category. Although these have been chosen largely because analytic

solutions in the incompressible limit can either be easily obtained or already exist, both

of these situations have been realized in experiments on cold atomic systems. In the

first case, we assume that external constraints confine the superfluid in such a way as to
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produce a gaussian profile for the local density of the stationary superfluid, a situation

similar to that considered experimentally in Ref. [56] and theoretically in Refs. [50, 57].

The specific force fields required to establish this distribution drop out of the equations:

only the resulting density distribution matters. We then, for this example, assume that

a flow corresponding to one quantum of axial circulation (i.e. a single vortex) is estab-

lished in such a way that it is a solution of the zeroth order hydrodynamic equations,

and evaluate the first order corrections to the velocity field and to the density due to

finite compressibility. In the second problem we consider afresh the obstructed cylinder

situation previously studied [31] in the incompressible limit and again evaluate the first

order corrections to both components of the velocity field, and to the density, due to the

finite compressibility. The geometry considered here is similar to that of recent experi-

ments [43, 44] on Bose-Einstein condensates in a toroidal trap with a repulsive barrier.

In both cases we find, as expected, that the corrections are vanishingly small for liquid

He. On the other hand, we find that for typical cold atomic systems the corrections

due to finite compressibility are often not negligible but that they are sufficiently small

to be amenable to our perturbative solution. The observation that corrections due to

finite compressibility in cold atomic systems in the hydrodynamic regime are amenable

to perturbative solution for the two widely different problems considered here is inter-

esting because it suggests that similar perturbative treatments would be possible for

other problems of interest in studies of superfluidity in cold atomic systems .

The rest of this chapter is organized as follows. In section 2.2, we present the

details of the perturbative method of calculation used here. The results obtained from

application of this method to the problems mentioned above are described in detail in

section 2.3. Section 2.4 contains a summary of the main results.

2.2 Methods

As explained above, our objective in this chapter is to study the effect of compressibil-

ity on superfluid hydrodynamics in confined geometries, starting with the results for

incompressible fluids. The behavior of compressible normal liquids has been studied

as early as 1883 [58]. Starting with the general equations governing inviscid fluid flow
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-the continuity and Euler equations - we use a perturbative method to study the ef-

fect of finite compressibility in the limit where the perturbation parameter, while low, is

nonzero. We will see that this is a realistic limit for cold atomic systems of experimental

interest. Our perturbative method has similarities to that used in Ref. [59]. That study

focuses on the propagation of sound waves, a limit where the perturbation parameter

cannot be assumed to be much smaller than unity. The small dimensionless parameter

associated with the perturbative expansion is the Mach number, the ratio of the char-

acteristic fluid velocity to the sound speed. For quantum systems, such expansions have

been used earlier in Ref. [54, 55] which address a very different problem of the critical

speed for the nucleation of vortices in superfluid flow around a disk as compared to our

present work on flow patterns for superfluids in confined geometries. The procedure will

be illustrated by calculating, for two examples of confined superfluids, the corrections

to the velocity field and the density distribution in the low temperature limit where

viscosity effects can be neglected.

2.2.1 General

As a simpler alternative to deriving the equations of compressible superfluid hydro-

dynamics via the GP equation (the model discussed in Chapter5), we start with the

fundamental hydrodynamic equations governing fluid flow in the steady state i.e. mass

conservation as given by the continuity equation:

∇ · (ρ~v) = (∇ρ) · ~v + ρ(∇ · ~v) = 0 (2.1)

and momentum conservation as given by the Euler equation:

(~v · ∇)~v = −∇p
ρ

+
~f

ρ
(2.2)

where ρ is the mass density, ~v represents the velocity field, p the pressure, and ~f is

the external force per unit volume. The steady state assumption means, as usual,

that we are averaging over microscopic scale time fluctuations. Hydrodynamics can

also be derived by starting from microscopic or quasi microscopic equations of motion

and then coarse graining. When one does that from the GP equations [51, 52, 54, 55]

one obtains in the Euler equation an additional quantum stress term. This term need
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not be included here for two reasons: first, as explained on page 170 of Ref. [52] (see

also Ref. [53]) the order of magnitude of this term (which involves third derivatives of

the density) is down by a factor of (ℓ/L)2 where ℓ is a microscopic quantum length

and L the characteristic length associated with macroscopic pressure variations: it is

hence negligible for the hydrodynamic problems considered here. Secondly, this term

(involving as it does density derivatives) vanishes at κ = 0 and, since it appears in the

same way as the term ~f , it would similarly acquire an explicit factor of κ in Eq. (2.3)

below. It is therefore a second or higher order correction in our small parameter. Short

range fluctuations may exist, just as they do in classical fluids, but they are averaged

over the macroscopic distance L in the hydrodynamic limit. Such a scale clearly exists

in experimental Bose systems: the Thomas-Fermi radius of trapped Bose gases can

be between two or three orders of magnitude larger than the microscopic coherence

length. From experiments on superfluid flow in Bose systems [38, 60, 61] it can be seen

that the characteristic Mach number squared, our dimensionless expansion parameter

(v/vs)
2, is of order 10−2 − 10−4 and hence small in these systems. The Thomas-Fermi

approximation predicts an abrupt drop to zero in the density of the condensate beyond

the Thomas-Fermi radius, but this is an artifact of the Thomas-Fermi method: the

actual variation in density is smoother. This does not affect the validity of our approach

just as the abrupt density drop near a wall does not invalidate classical hydrodynamics

given that a large region over which the parameter (v/vs)
2 is small exists.

We consider ρ to be a function of p only (barotropic limit). This limit applies[62]

in the very low temperature case that we consider, where the pressure can only be a

function of the density. Using the definition of compressibility (κ = 1
ρ
∂ρ
∂p), Eq.(2.2)

becomes:

ρ2κ(~v · ∇)~v = −∇ρ+ ρκ~f. (2.3)

We now start the perturbative calculation by writing:

ρ = ρ0 + ρ1 (2.4)

~v = ~v0 + ~v1 (2.5)

where the zero index denotes quantities in the incompressible (κ = 0) limit and the

index one in v1, ρ1 denotes the changes in velocity field and density distribution due to

the finite compressibility. Substituting Eqs. (2.4) into Eqs (2.1) and (2.2), the Euler
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equation at zeroth order takes the form:

∇ρ0 = ρ0κ~f (2.6)

which reflects the fact that at κ = 0 it would take an infinite force to induce a density

gradient (here and below, we consider the product κf to be finite, of order unity).

For future convenience, let us assume that such a density gradient has somehow been

induced by external means. In that case the zero order continuity equation would take

the form:

(∇ρ0) · ~v0 + ρ0(∇ · ~v0) ≡ D0~v0 = 0, (2.7)

which reduces to the usual form ∇ · ~v0 = 0 in the absence of external forces. Here we

have introduced the operator:

D0 ≡ ρ0(∇) ·+(∇ρ0) · . (2.8)

Proceeding now to first order, the corresponding terms in the continuity equation yield:

−(∇ρ1) · ~v0 = D0~v1 + ρ1(∇ · ~v0) (2.9)

while from those in the Euler equation we have:

ρ20κ(~v0 · ∇)~v0 = −∇ρ1 + ρ1κ~f. (2.10)

Taking the scalar product of Eq. (2.10) with ~v0 and making use of Eqs. (2.9) and (2.7)

one obtains:

D0~v1 = ρ20κ~v0 · (~v0 · ∇)~v0. (2.11)

By this procedure the external force has been eliminated from the equations. The reason

this is possible is that the only role of the force is to impose the zeroth order density

profile, ρ0, which alone has physical meaning. Eqns. (2.7), (2.9) and (2.11) are the basic

set of equations needed. In general, the best course to obtain the first order results,

after getting the zeroth order solution, is to solve first Eq. (2.11) and then obtain the

first order density profile from Eq. (2.9).

We now verify the physical meaning of the dimensionless perturbation parameter

associated with the low compressibility limit, as discussed above. Dividing through
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Eq. (2.10) by ρ0, introducing the average speed of sound vs via ρ0κ = v−2
s and intro-

ducing the dimensionless variable ρ̃ ≡ ρ1/ρ0 (i.e. the dimensionless density correction)

we have:

−∇ρ̃1 + ρ̃1κ~f = (
~v0
vs

· ∇)
~v0
vs
, (2.12)

where we recall that the product κf must be viewed as finite. We see from this result

that the dimensionless perturbation parameter associated with the correction to the

density due to compressibility is indeed of order (v0/vs)
2. Proceeding in a similar way

to evaluate the order of magnitude of the correction to the velocity (~v1) due to the finite

compressibility, it can be seen that the dimensionless perturbation parameter associated

with the correction to velocity field (~v1) is λ ≡ (v0/vs)
2.

2.2.2 Zero applied force

As explained above, the equations obtained from the perturbative analysis are quite

general and can be used when ρ0(r) is uniform, as well as when it takes on a specific

inhomogeneous form due to the application of some external force ~f which need not be

specified. In the case where no external force is imposed on the fluid, the zeroth order

density distribution is of course a constant. This applies to the calculations performed

in Ref. [31], for an obstructed annular cylinder as explained in the Introduction. In this

case it is more convenient to start by simplifying the basic equations from the beginning.

Since ∇ρ0 = 0 and ∇ · ~v0 = 0, one has for the continuity equation at first order:

(∇ρ1) · ~v0 + ρ0(∇ · ~v1) = 0. (2.13)

In this limit the first order Euler equation Eq. (2.10) is:

−∇ρ1 = ρ20κ(~v0 · ∇)~v0 (2.14)

Combining the two equations above, we obtain the following equation for ~v1:

∇ · ~v1 = ρ0κ~v0 · (~v0 · ∇)~v0 (2.15)

with the right side known from the solution of the zeroth order equations. Since one of

these equations is ∇ ·~v0 = 0, similar Green function methods lead to solutions for both



21

~v0 and ~v1. Specializing to the curl free case (absence of vortices) we introduce a scalar

potential, V (~r), such that ~v1(~r) = ∇V (~r). Eq. (2.15) then becomes:

∇2V = ρ0κ~v0 · (~v0 · ∇)~v0, (2.16)

which we solve by finding the appropriate Green function with specified boundary con-

ditions. Once this is done we solve for ~v1 from:

V (~r) =

∫
d~r′G(~r′, ~r)ρ0κ~v0 · (~v0 · ∇)~v0 (2.17)

recalling that ~v1 = ∇V (~r).The correction to the density profile due to nonzero com-

pressibility - ρ1 - is calculated from Eq. (2.14) using the result for ~v0 obtained from

solving the equation ∇ · ~v0 = 0.

We conclude this general discussion with a brief discussion of the relation of our

method to the Thomas-Fermi approximation. Eqn. (2.6) is an equilibrium relation (v =

0) and in that respect it is analogous to neglecting the kinetic terms in the GP equation:

in this sense it resembles the Thomas-Fermi approximation in equilibrium. Corrections

to the equilibrium Thomas-Fermi approximation have been studied previously. For

example, Ref. [63] keeps terms linear in the velocity in the context of studying collective

modes. This is different from our current study where, as explained in the Introduction,

we consider induced flows.

2.3 Results

In this section we present the results of calculations of the corrections to the velocity

field (~v1) and density (ρ1) due to finite compressibility using the perturbative method

described in the section above. We study the effect of nonzero compressibility on the

velocity field and density distribution of confined superfluids in two different situations.

In the first case, an external force imposed on the fluid leads to an equilibrium gaussian

density profile. The other case, in the f = 0 limit, deals with the compressibility

corrections for superfluid flow in an obstructed cylinder, as discussed in Ref. [31]. In

the case of an obstructed cylinder, the fluid is driven by an obstruction and therefore

the Thomas-Fermi approximation is not valid as the kinetic energy term cannot be

neglected.
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2.3.1 Gaussian density profile

We consider first the case of a cylindrical sample where an external force imposed on

the fluid in equilibrium results in a gaussian density profile i.e.

ρ0(r) = ρae
−( r

σ
)2 (2.18)

where σ is the characteristic length scale associated with the density profile and r the

cylindrical radial coordinate. We assume the cylinder is long enough so that we can

neglect edge effects and solve the problem as a quasi two-dimensional one. Density

profiles other than a gaussian can also be considered by the same method: here we

focus on this case as an example. In order to calculate ρ1 and ~v1 we use equations (2.9)

and (2.11) respectively, which requires us to calculate first an appropriate zeroth order

velocity field ~v0 corresponding to the incompressible limit.

To calculate ~v0, we use the zeroth order continuity equation (Eq. (2.7)) with the

gaussian density profile, ρ0, specified above. Calculating ∇ρ0 and defining a velocity

potential such that ~v0 = ∇V0(r), Eq. (2.7) takes the form:

∇2V0 =
2r

σ2
∂V0
∂r

. (2.19)

This equation has a variety of solutions reflecting the many possibilities for the velocity

field. For our example, we restrict ourselves to begin with to the case where ~v0 has no

azimuthal dependence. Assuming then a purely radial solution i.e. V0(r, φ) = F (r) we

obtain D0
rF (r) = 0 where

D0
r ≡ r

∂

∂r
+ r2

∂2

∂r2
− r3

σ2
∂

∂r
. (2.20)

The solution is:

F (r) = C1Ei((r/σ)
2) (2.21)

where Ei is the usual exponential integral function. We obtain from this a purely radial

part of v0 namely:

~v0r =
C1

r
e(

r
σ
)2 r̂ (2.22)

where the integration constant C1 is a quantity with units of circulation. The increase

in the velocity with r appears strange until one recalls that the density decreases (see
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Eq.(2.18)) exponentially so that the current decreases with r. To this particular solution

we add an azimuthal component corresponding to a vortex centered at the origin. This

amounts to adding to the velocity potential a term proportional to φ, which of course

also satisfies the linear Eq. (2.19). This leads to an azimuthal component:

~v0φ =
C2

r
φ̂ (2.23)

Introducing this vortex in the fluid implies that the curl of the zeroth order velocity

field, ∇ × ~v0 = 2πδ(~r)ẑ is non-zero. This does not contradict the definition of ~v0 as a

gradient of a velocity potential since one is dealing with a singular field. The singularity

at the origin requires the imposition of a small r cutoff. At the vortex core radius in

a Bose fluid, the characteristic velocity of fluid flow is of the same order of magnitude

as the sound velocity [51]. The region near the vortex core is also characterized by

faster density variations, making the quantum pressure term important. Therefore,

we introduce a short distance cutoff near the vortex of order few times the vortex

core radius. Outside this region our assumptions of small Mach number squared and

negligible quantum pressure term hold true. The circulation around the origin due

to the azimuthal component of the velocity is 2πC2. Physically, we know that the

circulation must be quantized. It follows that, as opposed to C1, C2 is not a completely

arbitrary constant, but must be an integer number of circulation quanta h/m. To make

an estimate of the order of magnitude of the effect of nonzero compressibility, we assume

in our numerical work that there is one quantum of circulation.

We now proceed to the first order calculation taking as our zeroth order results the

density distribution Eq. (2.18) and the velocity field given by the sum of Eqs. (2.22)

and (2.23). In the results presented in this subsection, we measure lengths in units of

σ, and choose for our illustrative example C1 = C2. This choice of C2 leads to some

formal simplifications.

To evaluate the first order corrections, we now turn to Eq. (2.11) in order to solve

for the correction to the velocity field (~v1). We use the Green function method for this

purpose. It is not hard to see that the azimuthal part of ~v0 does not contribute to the

right side of Eq. (2.11). Hence it is sufficient to find the Green function corresponding

to the operator D0
r introduced in Eq. (2.20):

D0
rG(r, r

′) =
1

r
δ(r − r′) (2.24)
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Solving the second order differential Eq. (2.24), we find this Green function to be:

G(r, r′) =
Ei(

r2>
σ2 )

2
(2.25)

where r> is the larger one of the two radial coordinates r, r′. Introducing then a velocity

potential V1 such that ~v1 = ∇V1(r), Eq. (2.11) leads us to V1:

V1 =

∫
r′dr′G(r, r′)[ρ20κ~v0 · (~v0 · ∇)~v0] (2.26)

Evaluating the expression on the right side of Eq.(2.26) with the Green function given

above and the zeroth order velocity fields, we obtain analytically the potential associated

with the correction to the velocity field (~v1) due to nonzero compressibility. The quantity

~v1 itself can then be evaluated. As already anticipated in our zeroth order results, the

divergence of the azimuthal field at r = 0 requires the introduction of a small r cutoff,

which we denote as b. It is chosen as discussed above, which also ensures that v0 does

not exceed the critical velocity. The result for ~v1 is found to be:

~v1 = ρaκ
es

2

rσ2
[
C3
1

2
(F1(s

2, δ2))− C1C
2
2

2
(F1(−s2,−δ2) +

2(Ei(−δ2)− Ei(−s2)))]r̂ (2.27)

where we have introduced the dimensionless length s ≡ r/σ and the dimensionless cutoff

δ ≡ b/σ. We have also introduced the auxiliary function F1 as:

F1(s
2, δ2) = −e

δ2

δ2
+
es

2

s2
− Ei(δ2) + Ei(s2). (2.28)

Although the zeroth order velocity has both radial and azimuthal components, the

correction is purely radial. Nevertheless, the azimuthal component of ~v0 has a large

effect on the result via the C2
2 dependence of the second term in Eq. (2.27). When

C1 = C2 it is possible to further simplify the result. Expressing in that case ~v1 in the

natural dimensionless form, that is, in units of C1/σ ≡ v we have:

~v1
v

=
1

2
(
v

vs
)2
es

2

s
(H(δ)−H(s))r̂, (2.29)

where v2s ≡ 1/ρaκ and the function H(ξ) is defined as

H(ξ) = −e
ξ2

ξ2
− e−ξ2

ξ2
− Ei(ξ2)− Ei(−ξ2). (2.30)
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Figure 2.1: The dimensionless first order correction to the velocity field due to finite
compressibility, plotted versus s. The quantity plotted, ṽ1, is defined as v1/λv.
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In Eq. (2.29) the dimensionless perturbation parameter λ discussed above can be

clearly identified as the prefactor appearing in the right side. Figure 2.1 shows the

magnitude of the correction to the velocity, ~v1, in units of λv for the case where C1 = C2

as in Eq. (2.29). This quantity is plotted as a function of the dimensionless radial

coordinate s. The value of the cutoff parameter has been set so that δ = 0.1. The

numbers in the vertical scale seem to be large. This can easily be seen (see Eq. (2.29))

to arise from the smallness of our choice for the cutoff parameter δ. We will see that

in actual situations, the parameter λ is small enough so that the first order velocity

correction is indeed much smaller than the zeroth order velocity scale. A similar remark

applies to the density correction discussed below.

We can now study the correction to the density profile (ρ1) and eventually to the

physical current associated with fluid flow. Using Eq. (2.9) we find that a solution

with azimuthal symmetry exists and satisfies the first order inhomogeneous differential

equation:

−∂ρ1
∂r

(v0r) = ρ0
∂v1
∂r

+ ρ1(
∂v0r
∂r

+
v0r
r
) +

∂ρ0
∂r

v1r (2.31)

It is straightforward to solve this differential equation using the method of integrating

factors, and we find the correction ρ1 to the density to be:

ρ1
λρa

=
e−s2

2
(G1(δ)−G1(s)) (2.32)

where the function G1 is defined as

G1(ξ) =
e−ξ2

ξ2
+
eξ

2

ξ2
− 2Γ[0,−ξ2]− 2 log(ξ2)

−Ei(ξ2) + Ei(−ξ2). (2.33)

Here Γ[a, z] represents the incomplete Gamma function. Figure 2.2 shows a plot of the

first order correction to the density. The quantity plotted is the left side of Eq. (2.32) as

a function of the dimensionless radial coordinate s for the same conditions as in Fig. 2.1.

We can now look at the corresponding current ~j that is a characteristic physical

property of the system. The total current is the sum of zeroth and first order terms:

~jtotal = ~j0 +~j1, where ~j0 = ρ0~v0, and ~j1 = ρ0~v1 + ρ1~v0 is the first order correction. In

Figure 2.3 we present a vector plot of ~j1. The conditions, units and parameter values are
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Figure 2.2: Plot of the dimensionless first order correction to the density due to finite
compressibility versus s. The quantity plotted, ρ̃1, is defined as ρ1/λρa.
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as in Figs. 2.1 and 2.2. The calculation described in subsection 2.3.1 is used to obtain

~j1. We see that the magnitude of the physical current arising from finite compressibility

is more pronounced closer to the central region of the cylinder.

Figure 2.3: Vector plot of the first order correction to the current due to finite com-
pressibility.

To check the validity of the perturbative treatment developed here, it is necessary

to examine the order of magnitude of the perturbation parameter λ for typical cold

atomic systems. We assume that C2 corresponds to one quantum of circulation. Thus
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we take, as orders of magnitude, σ ≈ 10−5m [56], C2 ≈ 10−9m2/s and [38, 60, 61, 64]

vs ≈ 10−2m/s. This leads to the estimate λ ≈ 10−4. Thus, for cold atomic systems,

while λ may be quite small, the corrections are far from negligible since the quantities

plotted in Figs. 2.1 and 2.2 can be as large as several hundreds. Thus, corrections up

to the level of ∼ 10% can easily arise. Hence, we conclude that compressibility effects

in the hydrodynamics of cold atomic systems, as seen from the analytic perturbative

method used here, cannot be neglected. For superfluid Helium, however, the circulation

quantum is much larger (a factor of 20 compared to Rb), the speed of sound much

larger [65] and system sizes also larger: thus a similar estimate yields λ ≈ 10−14 and

the corrections are negligible, as expected.

2.3.2 Obstructed Cylinder

We now consider the second problem, which is perhaps of clearer physical relevance: we

calculate the compressibility corrections for the obstructed rotating cylinder geometry

studied in Ref. [31]. This geometry is that of a circular cylinder of radius a with a thin

radial wall extending from the axis to the outer wall of the cylinder. We assume that

the cylinder is long enough for end effects to be negligible. We define an angle φ from

the line of obstruction so that φ = 0 defines the location of the radial wall. In this

case there is no applied force in equilibrium: thus when the cylinder does not rotate the

density is uniform, at a value which we take as our unit of density. When the cylinder

rotates about its axis with angular speed Ω a velocity field is induced in it. In the zero

compressibility limit, this velocity field is known [31]. We will calculate here the correc-

tions to the velocity field and the density profile due to non-zero compressibility within

the perturbative method described in Sec. 2.2. The field ~v0 for the geometry under

consideration was obtained in Ref. [31] via both scalar and vector potential methods.

It can be expressed in series form:

v0r(r, φ) = Ωr sin(2φ)

+
16Ωa

π

∑

n odd

(
r

a
)
n/2−1 1

n2 − 16
cos(nφ/2) (2.34)

v0φ(r, φ) = Ωr cos(2φ)

−16Ωa

π

∑

n odd

(
r

a
)
n/2−1 1

n2 − 16
sin(nφ/2). (2.35)
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To obtain the correction to the zeroth order velocity field (~v1) due to finite compress-

ibility we solve Eq. (2.15) by the Green function method. We introduce a scalar velocity

potential V1 so that ~v1(r) = ∇V1(r), and calculate the Green function associated with

the operator ∇2 (see Eq. (2.16)) for appropriate boundary conditions. We recall [31]

that the boundary condition on the total velocity field, v(r)⊥ = (Ω × r)⊥, where r is

a vector from the center to a point on the boundary, and ⊥ denotes the component

normal to the boundary, is already satisfied by the zeroth order velocity in Eq. (2.34).

Hence, V1(r) satisfies zero Neumann boundary conditions at the cylinder surface. The

Green function in this case is then found by standard procedures [66] with the result:

G(r, φ; r′, φ′) = − 1

π

∞∑

n=2

1

n
r
n/2
<

(
1

r
n/2
>

+
r
n/2
>

an

)
cos(nφ/2) cos(nφ′/2), (2.36)

where r> (r<) is the larger (smaller) one of the two radial coordinates r and r′. One

then gets an expression for the velocity potential in the form of Eq. (2.17), with G(~r, ~r′)

given by Eq. (2.36) and the ~v0.(~v0.∇)~v0 evaluated from Eqns. (2.34) and (2.35). Taking

then the gradient, the correction to the velocity field is calculated. In our subsequent

calculations, we introduce a radial cutoff, which we take to be 0.1a, to exclude the small

r region where [31] the zeroth order velocity has a weak square root singularity.

In principle, this procedure involves no advanced mathematical steps. However, one

can readily see that it is very lengthy and intricate. Since the right side of Eq. (2.17) is

cubic in ~v0, the components of which are in the form of a series, and the Green function

Eq. (2.36) involves an additional sum, the expression has the form of a quadruple sum,

plus integrals over the angle φ′ and the radial coordinate r′. This is done analytically:

the angular integrals are performed first and lead to Kronecker deltas that reduce the

number of sums. The radial integrals are done next and finally, the remaining (con-

vergent) summations are evaluated. The resulting expression, however, is much too

involved to be written here, and it would be truly very difficult even to keep track of

all the terms without the help of a symbolic package (we have used Mathematica). The

results can then be plotted and the plots are much more illuminating than the lengthy

expressions.

One can however see from the basic structure of the equations that overall ~v1 is

proportional to the basic velocity scale of the system, which is Ωa, times a factor of

λ = (Ωa/vs)
2 where v2s = 1/(κρ0). It is rather obvious also from the equations that ~v1
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has both radial and azimuthal components. Results for these components are shown

in the next two figures. There, the dimensionless quantity plotted is a component of

v1, divided by λΩa. These are shown as functions of angle and dimensionless radial

distance r/a.

In Figure 2.4 we present a plot of the radial component (v1r) in the units described

above, at several fixed values of the angle φ. One can see that the radial correction

to the velocity field goes to zero at r/a = 1 satisfying the radial boundary condition

discussed above. The magnitude of the correction to the radial velocity (v1r) peaks at

different values of r/a depending on how far one is from the line of obstruction along

the azimuthal direction. At φ = π/8, the peak in the magnitude of v1r occurs closer to

r/a = 1 than at φ = π/2 where it occurs closer to the lower cut-off. At φ = π, v1r is

identically zero owing to the symmetry of the problem over an angle of 2π.

Figure 2.4: Plot of the radial component of the correction to the velocity field ~v1 for
an obstructed cylinder. The dimensionless quantity shown is ṽ1r ≡ v1r/(λv), plotted
versus r/a at different angles φ.
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The corresponding azimuthal component (v1φ) is presented in Figure 2.5. The quan-

tity v1φ is now plotted in dimensionless units at several values of the dimensionless dis-

tance r/a. It can be seen that oscillations, in which one can discern traces corresponding

to the n = 3 and n = 5 terms of the expression for v0φ in Eq. (2.34), are present in

the azimuthal correction to the velocity. This arises from the cubic (in v0) nature of

the perturbation. Again, the boundary conditions at φ = 0, 2π are satisfied with the

velocity correction being zero at these values of φ.

Figure 2.5: Plot of the azimuthal component of the correction to the velocity field ~v1.
The dimensionless quantity shown is ṽ1φ ≡ v1φ/(λv), plotted versus φ at different values
of r/a.

Having calculated the correction to the velocity field due to finite compressibility,

we can next study the correction to the density profile (ρ1). This turns out to be

computationally much simpler. Starting with Eq. (2.14), a line integral over d~r enables

us to calculate ρ1. Since the right side of Eq. (2.14) can be expressed as the gradient of



33

a scalar quantity, doing an integral over ~r,

∫
∇ρ1 · d~r = −

∫
ρ20κ(~v0 · ∇)~v0 · d~r (2.37)

enables us to calculate ρ1 independent of the path chosen within the obstructed cylinder.

Using this property of ∇ρ1, we calculate ρ1(r, φ) from a line integral over two differ-

ent paths and confirm that our result is indeed path independent. We determine the

arbitrary constant associated with the integration by enforcing the condition that the

total integral of ρ1 over the relevant region be zero i.e.
∫
ρ1rdrdφ = 0. This condition

makes sense physically since the constraint imposed by the container implies that the

total mass change due to the compressibility correction must be zero. This gives us the

full function ρ1(r, φ). Because of the nonlinearities in v0 present in the equations, the

results, although formally analytic in terms of convergent double series, are again quite

intricate and will not be written down explicitly here. Instead, as before, results are

plotted in the next two figures. The quantity plotted is the dimensionless (ρ1/(ρ0λ))

and we plot it at different values of φ in Figure 2.6. One can see that that radial de-

pendence of the density correction is more prominent closer to the line of obstruction

within the cylinder, which makes sense physically. Also, it is positive or close to zero

near the outer boundary, and negative at smaller values of r/a. This could be a di-

rect consequence of the fact that the higher the velocity of fluid flow, the lower is the

condensate density [67]. Similarly, the azimuthal dependence of ρ1(r, φ), is plotted at

different values of r/a in Figure 2.7. The angular dependence of these results reflects

again the nature of the perturbation.

We proceed now to analyze the order of magnitude of these corrections in typical

cold atomic systems. For this problem (as opposed to the gaussian profile situation)

the values of the dimensionless quantities plotted do not exceed unity, so that the

corrections are now smaller and the perturbation theory is valid for larger values of

λ. Our results show that compressibility corrections for fixed Ω are smaller for more

confined geometries. In this case, it is best to phrase the issue in terms of the validity of

the theory (or the need for it) in the upper part of the relevant range of Ω. This range

of Ω values is limited by the requirement that the circulation created by the zeroth

order velocity does not exceed a flux quantum. The velocities involved are roughly [31]

of order 10−1Ωa. Demanding then that this speed, times a, be of order of one flux
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Figure 2.6: Plot of the radial dependence of the dimensionless correction to the density
- ρ̃1 ≡ ρ1/(λρ0) - due to finite compressibility at different values of φ.
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Figure 2.7: Plot of the azimuthal dependence of the dimensionless correction to the
density - ρ̃1 = ρ1/(λρ0) - due to finite compressibility at different values of r/a.
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quantum and using the order of magnitude values discussed previously, we find that the

corresponding λ for cold atomic systems may reach values up to 10−2. Thus, we find

that for these systems finite compressibility corrections are not always negligible but

on the other hand they are, at least for samples that are not too small, amenable to

our perturbation approach. For superfluid helium we find, as expected, that λ is much

smaller and the incompressible limit calculations are perfectly adequate.

2.4 Conclusions

In this chapter, we have studied, by means of an analytic method, the hydrodynamics

of compressible superfluids in confined geometries as a coarse-grained model for the

flow properties of superfluid associated with disorder networks. We have shown that

for practical cases of interest in cold atomic systems confined to complex geometries

the corrections to the zero compressibility results are not negligible, but they can in

many realistic cases be treated in a perturbative manner with the relevant dimensionless

parameter being the square of the ratio of the typical speed to the sound speed (the Mach

number). This method may be used in very general situations. We have illustrated the

procedure by working out two examples. In the first, confining forces that need not be

specified constrict the fluid to having a Gaussian density distribution at zeroth order.

In the second, we have considered the case of a rotating obstructed cylinder filled with

superfluid, with the density being uniform when the cylinder is at rest. The zeroth order

(incompressible limit) solution to the problem is available [31] and the perturbative

method is used to evaluate the corrections, again essentially in an analytic way. The

general usefulness of the method is therefore illustrated by these examples. The general

nature of the perturbative method applied to superfluids in confined geometries makes

it useful for describing the results of relevant experiments on cold atomic systems,

some of which have been mentioned in Section 2.1. One of the main advantages of

our procedure is that, since the resulting equations are linear, it is very amenable to

analytic solution. We expect that this method will complement numerical calculations

based on more microscopic descriptions such as the GP equation studied in Chapter 5.

Starting directly from the hydrodynamic equations is, in the appropriate limit, a good

alternative to using the full GP equations, for situations where a hydrodynamic scale
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flow is imposed on the system.

Compared to the hydrodynamic model presented in this chapter, a less coarse-

grained picture of a dislocation network and superfluidity is presented in Chapter 3.

A dislocation network and the associated superfluid field is modeled using a coupled

field random Ising network.



Chapter 3

Random Network Ising Model

with Quenched or Annealed

Disorder

3.1 Introduction

Spin models on random networks are relevant to many physical phenomena and there-

fore have been studied in a variety of contexts. Early studies of phase transitions in

spin models on random networks were concerned with the critical behavior of randomly

diluted magnetic systems [68, 69]. The system-spanning percolation cluster [70] just

above the percolation threshold has a ramified network structure with fractal dimen-

sion less than the physical dimension of the system: hence it is necessary to work out the

critical behavior of spin models defined on a random network to develop an understand-

ing of phase transitions in dilute magnets near the percolation point. The well-known

“node-link-blob” descriptions of percolation clusters [71, 72] were developed to address

this problem. Spin models on artificially constructed regular fractal networks were also

studied: [73, 74] an advantage of these models is that their equilibrium thermodynamic

properties could be calculated exactly for some of the relevant networks. Also, such

studies were expected to provide some insight on the behavior of spin systems on real

fractal networks.

38
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More recently, there has been an explosion of research activity on random networks

that are believed to describe various systems of interest in physics, biology, engineering

and social sciences [75, 76, 77, 78, 79]. Some of these studies have concentrated on

structural aspects of random networks, [80, 81, 82] while others have investigated the

collective behavior of interacting objects residing on different kinds of random networks

of interest. Models in which spin variables defined on random networks interact with one

another provide examples of systems that exhibit nontrivial collective behavior, such as

phase transitions [83]. For this reason, a variety of models with Ising, [84, 85, 86, 87, 88]

Potts [89, 90] and[91, 92] XY spins, defined on different kinds of random networks, have

been studied in recent years using both analytic and numerical methods. These studies

have revealed many interesting features [93] in the equilibrium and dynamic behavior

of spin systems on random networks.

Disorder is an essential aspect of spin models defined on random networks. Depend-

ing on the network being considered, disorder may appear in different aspects of the spin

model, such as in the number of spins interacting with a particular one (the degree of

connectivity may be different [94, 95] for different nodes at which the spins are located)

and the strength of the interaction between pairs of spins (the interaction strength may

be different for spin pairs in the network that are separated by different distances). The

disorder in such systems, arising from the randomness in the structure of the network,

is generally assumed to be quenched in the sense that for any realization of the model

the thermodynamic degrees of freedom associated with the network structure are fixed,

and therefore the network does not evolve in time. In theoretical treatments of the

equilibrium behavior of such spin systems, the free energy is therefore averaged over

different realizations of the disorder [35]. However, the validity of the assumption of the

disorder being quenched depends crucially on the comparison of relative time scales -

real networks do evolve in time and the assumption of quenched disorder would not be

valid unless the time scale over which the network changes is orders of magnitude larger

than the time scale of the spin fluctuations. If these two time scales are comparable to

each other, or at least not too different, then the disorder should be considered to be

annealed and the partition function of the spin system (not the free energy) should be

thermodynamically averaged over different realizations of the disorder in the network, to

obtain a correct theoretical description of the equilibrium behavior. Thus, the disorder
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in the spin system would change from quenched to annealed if the time scale for the

evolution of the network structure decreases from being much longer than that for spin

fluctuations to values roughly comparable to, or shorter, than the typical relaxation

time of the spin variables. In this chapter, we address, within the context of a simple

specific model, the question of how the equilibrium behavior of a disordered spin system

(specifically, its behavior near a phase transition) would be affected by such a change

in the dynamics of the network on which the spins reside, so that the fluctuations as-

sociated with the disorder would have to be properly included in the thermodynamics

calculations.

The question of how disorder affects the critical behavior near a phase transition

has been extensively studied. Here, we consider spin systems in which the disorder

does not introduce frustration as it might arise, for example, from the presence of

both ferromagnetic and antiferromagnetic interactions. In such systems, the presence

of quenched disorder changes the universality class of the phase transition if the specific

heat exponent for the transition in the system without disorder is positive (the Harris

criterion [96]). The presence of annealed disorder usually does not change the universal-

ity class of the phase transition because one recovers an effective model without disorder

after averaging the expression for the partition function over the disorder variables (in

some cases, the presence of annealed disorder leads to a “Fisher renormalization” [97]

of the critical exponents).

A question that has not received much attention in the recent literature, although

touched upon in some older work [98, 99, 100], is how the transition temperature itself,

and other thermodynamic quantities, are affected as the nature of the disorder is changed

from quenched to annealed, reflecting a difference in the network dynamics. This is

one of the main issues addressed in the present study. The answer to this question

is not universal - it depends on the specifics of the system being considered. Earlier

studies [98, 100] considered disordered spin models in which the distribution of the

interaction parameter is narrow, such as magnetic systems with bond dilution in which

the interaction parameter can have two values, J and 0, and models in which it has a

Gaussian distribution with width much smaller than the average. These studies show

that the thermodynamic behavior and the transition temperatures of quenched and

annealed systems are similar. In contrast, in the model we consider here the distribution
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of the interaction parameter is very broad (log-normal, see below). In such cases the

differences between quenched and annealed properties with this kind of disorder have

not been previously analyzed in any detail. We give below examples of systems for which

this question is relevant – our work was partly motivated by these problems, although

it is quite independent of them.

The possibility of supersolid behavior [101] in 4He arising from superfluidity along

a random network of dislocation lines has been considered [25, 26, 24, 18, 29, 102] re-

cently. An illustration of dislocation lines forming a random network can be seen in

Fig. 1.3. Quantum Monte Carlo simulations [25, 26] have shown that superfluidity can

occur near the core of a dislocation line in solid 4He or along grain boundaries [47].

The transition in a model in which superfluidity occurs near dislocation lines has been

investigated [24, 18, 29] theoretically, assuming a frozen dislocation network (quenched

disorder). However, dislocation line segments do fluctuate in time and it has been sug-

gested [22] that this motion may suppress the local temperature of superfluid ordering.

Since the dislocation motion changes the nature of the disorder in the superfluid prob-

lem (described by a ferromagnetic XY model) from quenched to annealed, a relevant

question is how the nature of the disorder affects the transition temperature. Although

the initial experiments [11] on supersolidity are now believed [13] to reflect an elastic

anomaly (see next Chapter 4 for more details), the question of how the motion of dislo-

cation line segments affects superfluid ordering is important because of the occurrence

of supersolid behavior arising from superfluidity along a network of defects has been

established in numerical studies [25, 26, 47]. The effective ferromagnetic interaction be-

tween superfluid variables located at nearest-neighbor nodes of a disordered dislocation

network falls off exponentially [29] with the length of the network segment that connects

the nodes. If the nodes are distributed randomly in space, then this effective interaction

would be a random variable with a very broad distribution.

More generally, there are other systems of interest [103, 104, 105, 106] where the

effective interaction between neighboring spins is a random variable with a broad dis-

tribution. A system of this kind that has received a lot of attention in recent years is

dilute magnetic semiconductors [103, 104] in which spins of localized holes interact ferro-

magnetically via the spins of magnetic impurities present in the system. The quenched

disorder here arises from the random locations of the holes, with the interaction strength
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falling off exponentially with the distance between two holes. This results in a broad

distribution of interaction strength – an essential feature of the model we study here.

There is no reliable analytic method for calculating the transition temperature and

thermodynamic properties of such quenched systems. A comparison of the properties of

quenched and annealed versions of such models would be very useful: analytic calcula-

tions of the properties with annealed disorder are possible because they can be mapped

exactly [98] to models without disorder. If the properties of quenched and annealed ver-

sions of models with a very broad distribution of the interaction strength were similar,

(as in [98, 100] the case of a narrow distribution of the interaction strength), then an

analytic calculation of the properties of the annealed model would be broadly valid for

the physically relevant quenched model. The spin model we study here provides a simple

example of disordered systems with a broad distribution of the interaction strength.

In this chapter, we present a study of the thermodynamics of a disordered ferromag-

netic spin model defined on a two-dimensional random network, with emphasis on how

the thermodynamics, including the transition temperature, is affected by a change in the

nature (quenched or annealed) of the disorder. For simplicity, we consider Ising spins

(instead of XY spins which would be appropriate for describing superfluid ordering).

The network is assumed to have the same connectivity as the square lattice, i.e. every

node is connected to four other nodes. Ising spins are defined both at these four-fold

coordinated nodes and on the links that connect them. Spins on these one-dimensional

links are placed uniformly so that the number of spins on a link is equal to its length

measured in units of the spacing between nearest-neighbor sites. Each Ising spin (what-

ever its coordination number) interacts ferromagnetically with its nearest neighbors.

The disorder arises from a distribution of the lengths of the one-dimensional links, i.e.

the number of spins in these links. In the dislocation network problem, this distribution

may arise from roughening of dislocation line segments [107]. We assume a Gaussian

distribution for the number of spins in each link, and study the thermodynamic behavior

for different values of the average and standard deviation of this distribution. Since the

effective interaction between two spins at nearest-neighbor nodes falls off exponentially

with the number of spins in the link that joins these nodes (see below), a Gaussian dis-

tribution of the number of spins in a link implies a very broad, log-normal distribution

for the effective interaction. The thermodynamic behavior is studied analytically for
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annealed randomness and via Monte Carlo simulations for quenched randomness. We

find that the transition temperature with quenched disorder is always higher than that

in the case of annealed disorder with the same distribution. This difference initially

increases with the strength of the disorder, and eventually saturates for larger values

of a parameter that characterizes the disorder. For both cases, the specific heat as a

function of temperature exhibits two peaks: a sharp one at the phase transition and

a rounded peak at a higher temperature, reflecting the one-dimensional fluctuations

along the links. The qualitative behavior of the specific heat (and the associated en-

tropy) in both cases is very similar, but there are quantitative differences that become

more pronounced as the strength of the disorder increases.

The rest of the chapter is organized as follows. In section 3.2, we describe in more

detail the model under study and describe the methods we follow both for analytic

calculations and simulations. The results obtained from the study of this model and

its relevance to the problems mentioned above are described in detail in section 3.3.

Section 3.4 contains a summary of the main results and concluding remarks.

3.2 Model and methods

To study the situations described in Section 3.1, we consider a system of two cou-

pled Ising models. It consists of a system of four-fold coordinated Ising spins (a two-

dimensional system) connected by one-dimensional chains of two-fold coordinated Ising

spins. In the chains, each spin interacts with its two nearest neighbors, while spins at

the nodal sites (crossing points of the chains) interact with their four nearest neighbors.

The scheme is illustrated in Fig. 3.1. In this figure, the nodal spins, indicated by red

color, interact with their four nearest neighbors, which belong to four different chains,

while the spins along the one dimensional chains, indicated by blue color, interact with

their two nearest neighbors. In this simple network model, a distribution in the number

of 1D spins in the chains leads to randomness in the effective interaction between 2D

spins.

We will denote the two dimensional spins as Si where i is a two dimensional index

running from 1 to N2 where N is a very large number. The number, nij , of spins in

the chain connecting sites i and j dictates the effective “distance” between nodal spins.
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Figure 3.1: Sketch of part of the coupled Ising system under study. The (red) arrows at
the nodes are four-fold coordinated Ising spins. They are connected by chains of Ising
spins (blue). The chains have variable lengths.
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Selecting the set nij randomly according to some probability distribution (see below)

leads to the realization of a random network of coupled spins. The model Hamiltonian

can then be written as:

H = −J
N2∑

i=1

4∑

α=1

Siσα − J
∑

<ij>

nij−1∑

α=1

σασα+1 (3.1)

where Si = ±1 and σα = ±1 are the 2D and 1D spins respectively. The σα in the first

term on the right are those connected directly to Si, and the first summation in the last

term denotes the sum over all chains, connecting neighboring sites i and j. The quantity

J is the exchange energy, which we will set to unity in most of the calculations below.

The above formula assumes all nij > 1. When one of the nij = 0 the corresponding

Si and Sj are connected directly. If all nij = 0 we recover the standard 2D Ising

model result with a transition temperature of Tc/J = 2.26 (we set kB = 1 throughout

the chapter). When one of the nij = 1 Eq. (3.1) must be modified so that the term

corresponding to the chain connecting Si and Sj is omitted.

The limit in which all chains are of equal length, nij ≡ n, can easily be considered

analytically. To do so, we first calculate the partition function for a finite 1D chain.

Starting with the Hamiltonian

H1D = −J
n−1∑

α=1

σασα+1, (3.2)

it is easily shown from elementary transfer matrix methods that the entire system can

be mapped onto an ordinary square lattice Ising model, with an effective interaction,

J (n), between two four-fold coordinated spins, separated by a “distance” of n spins,

given by:

tanh(
J (n)

T
) = tanhn+1(

J

T
). (3.3)

The free energy for the coupled Ising model at fixed n can then be calculated based

on the standard Onsager result, plus an additional contribution from the chains of 1D

spins linking the nodal 2D spins. Setting henceforth J = 1, the contribution to the free

energy from the chains can easily be shown to be (for one chain):

F1D = −Tn log(2)− T (n+ 1) log(cosh(
1

T
)) + T log(cosh(

J (n)

T
)) (3.4)
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and the contribution from the 2D spins is:

F2D = −T log(2 cosh(
2J (n)

T
))− T

2π

π∫

0

log(
1

2
(1 +

√
1− P 2 sin2 φ))dφ (3.5)

where P is defined as:

P ≡ 2 sinh(2J
(n)

T )

cosh2(2J
(n)

T )
. (3.6)

All thermodynamic quantities can then be calculated from the free energy. We will be

interested in the behavior of thermodynamic quantities such as the specific heat and the

entropy (S) since they are important in understanding how the behavior of the system

near a phase transition is affected by changes in the dynamics of the network. Other

thermodynamic quantities such as the spontaneous magnetization and the magnetic

susceptibility can also be studied, but we will focus in this work on the entropy and its

derivatives.

In general, we are interested in the case where the nij vary from chain to chain.

Accordingly, we generate a random Ising network by choosing nij for each chain from a

gaussian probability distribution:

P (nij) =
e

−(nij−ñ)2

2δ2

√
(2π)δ

(3.7)

where ñ is the average of nij (average number of 1D spins in a chain) and δ the standard

deviation of the gaussian distribution.

Using this probability distribution, we will investigate, as explained in the Introduc-

tion, how the thermodynamic behavior is affected by quenched and annealed disorder

in the network. In the quenched case, the value of nij in each individual 1D chain is

fixed but it varies from one chain to the next according to the gaussian random dis-

tribution. This serves as a proxy for a disordered network in which the characteristic

time scale for changes in the network is much longer than the characteristic time scale

for spin fluctuations. For the annealed case, the values of nij are allowed to thermally

fluctuate and this scenario serves as a proxy for a dynamic network whereby the two

characteristic time scales mentioned above are comparable to each other. In studying

the differences between quenched and annealed disorder, we will focus on features of the

heat capacity such as how the temperatures at which Cv has peaks (corresponding to
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2D and 1D behavior, see below) change between the two scenarios. Changes in the peak

temperatures depending on the type of disorder will allow us to address the question of

the role that the dynamics of the network plays in the ordering of the spins.

When one treats the disorder as annealed, the free energy of our system is:

Fa = −T log〈Z〉, (3.8)

where the angular brackets denote an average over the gaussian probability distribution,

Eq. (3.7). Therefore, 〈Z(nij)〉 needs to be calculated. For a gaussian distribution, this

calculation can be done analytically. By tracing over the 1D spins in the chains, the

model becomes one in which the 2D spins occupying the nodes interact according to J (n)

given in Eq. (3.3). Evaluating then the average of the partition function over the gaus-

sian distribution, the annealed Ising model is mapped onto an effective ferromagnetic

square lattice Ising model with equal interactions J
(ñ,δ)
a , given by:

tanh(
J
(ñ,δ)
a

T
) =

〈sinh(J(n)

T )〉
〈cosh(J(n)

T )〉
, (3.9)

where the average over the discrete gaussian probability distribution indicated by the

angular brackets can be easily performed. Thus, the effective interaction for the annealed

model is simply a function of ñ and δ. The annealed free energy can then be calculated

based on a procedure similar to the case where n is fixed in each link (no disorder) as

presented in Eqs. (3.4-3.5).

For a system with quenched disorder, the randomness is frozen in each realization

of the network. We generate realizations of the network whereby the couplings J (nij),

satisfying Eq. (3.3), vary from node to node according to the probability distribution

in Eq. (3.7) for nij . This corresponds to a model on a regular lattice with a random

distribution of couplings J (nij). The free energy in the quenched case takes the form:

Fq = −T 〈logZ〉, (3.10)

where the angular brackets still represent an average over the distribution of chain

lengths. Since such a calculation is analytically intractable, we use Monte Carlo (MC)

simulations to study the thermodynamic behavior of the model with quenched disorder.

A standard MC procedure with Metropolis algorithm is used in our study. In each run
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in the simulation, the heat capacity of the spin system can be obtained either from

the fluctuations of the internal energy or by taking the derivative of Ē, (the overbar

denote MC averaging) the average energy per spin, with respect to the temperature. By

subsequently averaging the heat capacity over a sufficiently large number of realizations

of the chain length configurations (over twelve realizations in this study) of nij , we

obtain the heat capacity for the random Ising model with frozen disorder. Each of the

12 realizations is characterized by a unique random set of the effective interaction (J (n))

between 2D spins.

For the study of any random network, it is important to be able to tune the level

of disorder. For the current model, the randomness of the network can be controlled

by adjusting the values of ñ and δ, with the limit δ → 0 recovering the fixed n coupled

Ising model discussed above. Since the number of 1D spins in the chains cannot be

negative, we use values of δ and ñ such that δ/ñ ≤ 0.5. With this choice, there is only

a very small probability of obtaining negative values for nij . In such rare cases, in the

MC simulation, we set the number of 1D spins in those chains to be two.

The quantity δ/ñ can be used as a measure of the amount of disorder present in the

network. A convenient and more physical alternative way to characterize the disorder

in this random coupled field model, is via the standard deviation of J (n). Thus, we

define a parameter

kδ =

√
〈[J (n)]2〉 − 〈J (n)〉2

〈J (n)〉 . (3.11)

The quantity kδ (which depends also on ñ) quantifies the level of disorder in the random

Ising model in terms of the spread in the effective interaction between 2D spins. The

differences between the properties of quenched and annealed networks can be analyzed

in terms of either δ/ñ or kδ with a wide range of values considered for both ñ and δ.

3.3 Results

In this section we present the results of our study on the random Ising model. We start

by briefly discussing the fixed n model (δ = 0, i.e. no disorder) and then proceed to

the random model with δ 6= 0. For the random model, we analyze differences between

quenched and annealed disorder for both components of the coupled field - 1D and

2D - by studying the behavior of the heat capacity and entropy. For the numerical
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(quenched) results, we have simulated samples with the number of 2D spins (N × N)

from 16× 16 to 30× 30, with periodic boundary conditions. Even though the values of

N used in our simulation are relatively small, the total number of spins, including the

1D ones is much larger: for e.g. a sample network with N = 20 and ñ = 19 the number

of spins is approximately N × N + 2 × N × N × ñ = 15600. Finite size effects in the

numerical simulation are also analyzed in order to estimate the error margin associated

with our results. These are indicated by error bars where warranted.

3.3.1 No Disorder

For fixed n, the energy and heat capacity can be calculated analytically starting from

the free energy expressions in the previous Section, Eqs. (3.4)-(3.5). Typical results for

the temperature dependence of the energy and heat capacity per spin are plotted in

Fig. 3.2. Since, when considering the disordered (δ > 0) case below we will have to take

recourse, in part, to numerical methods, we have also computed the same quantities

numerically, to test the same numerical procedures that will be employed later. These

results are also plotted in Fig. 3.2. As mentioned above, the units of temperature

throughout this discussion are such that J = 1. The numerical results shown there are

based on obtaining the average Ē over a sufficiently large number of MC steps per spin:

typically about 16,000 turn out to be needed, and then numerically taking the derivative

of this average with respect to temperature to obtain the heat capacity. Despite the

modest size of N chosen for this display, it is clear that the numerical results agree

sufficiently well with the analytic results, thereby validating our numerical procedures.

In the heat capacity, features associated with both 2D and 1D spin fields can be

seen - the sharp peak in Cv at T ≈ 0.5 is associated with the 2D spin field (and the

peak position will be henceforth referred to as T 2D
c ) while the broad feature in the

heat capacity above T ≈ 0.6 is associated with the 1D spin field. The heat capacity

eventually approaches zero at higher temperatures.

For this δ = 0 case, we should recover the standard 2D Ising model results with an

effective interaction J (n) and this provides an additional check. Thus, in Fig. 3.3, we

plot T 2D
c vs n based on both the analytic calculation (that is, on the Onsager result

for J (n)) and the numerical simulation. Again, the numerical results agree with theory

and the continous curve is scaling result from Eq. (3.12). At n = 0 we recover the
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Figure 3.2: Comparison of analytic and MC results. (a) Plot of the average energy per
spin Ē vs temperature, for fixed chain length. The numerical results are for N = 16
and n = 19. (b) Plot of the corresponding heat capacity per spin vs temperature. The
parameters are the same as in part (a).
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result.
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well known 2D Ising model transition temperature value, as expected. As n increases,

T 2D
c decreases indicating that ordering occurs at lower temperatures as the effective

coupling between 2D spins decreases or, viewing it in a different way, as the 1D part of

the coupled fields becomes more prominent. The relation between T 2D
c and n can also

be obtained (as an alternative to the J (n) calculation) via a simple scaling argument:

the ratio of n + 1 (the number of 1D links between the nodal spins in the network) to

the 1D Ising correlation length - exp( 2
T ) (at T << 1)- should remain a constant for all

n at the 2D critical temperature. From this scaling argument, we obtain the following

relation:

T 2D
c (n) =

T 2D
c (n = 0)

1 + 0.5T 2D
c (n = 0) log(n+ 1)

, (3.12)

where T 2D
c (n = 0) is the 2D transition temperature at n = 0. This result is plotted as

the continuous curve in Fig. 3.3.

While comparing the analytic results (which are in the thermodynamic limit) to the

numerical ones, for T 2D
c , as in Fig. 3.3, finite size corrections are inevitably present. It

is shown in Ref. [97] that for a 2D Ising model, the difference in Tc between a finite

size system (Tc for a finite system is defined to be the temperature at which the heat

capacity peaks) and one in the thermodynamic limit is always positive and given by:

Tc(N)− Tc(∞)

Tc(∞)
=

a

N
(3.13)

where a = 0.3603, Tc(N) and Tc(∞) are the critical temperatures for an N × N 2D

Ising model and in the thermodynamic limit respectively. For the random coupled field

model, the result above is modified due to the presence of n 1D spins. The modification

to Eq. (3.13) due to n can be calculated by rewriting the equation above in terms of

the network model with effective interaction given in Eq. (3.3):

J (n)(∞)/T − J (n)(N)/T

J (n)(N)/T
=

a

N
, (3.14)

where J (n)(N) denotes J (n)(Tc(N,n)), with Tc(N,n) being the 2D transition tempera-

ture for an N ×N system with n spins in each link. It then follows that:

Tc(N,n)− Tc(n)

Tc(n)
=
a[1− tanh2(J (n)/Tc(n))]J

(n) tanh(1/Tc(n))

Nn tanh(J (n)/Tc(n))[1− tanh2(1/Tc(n))]
(3.15)
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where Tc(n) ≡ Tc(∞, n) and J (n) ≡ J (n)(∞) are the 2D transition temperature and

effective interaction in the thermodynamic limit. The n dependence in the equation

above also enters through the effective interaction J (n). The finite size corrections to

T 2D
c obtained for our numerical model agree well with the prediction in Eq. (3.15) above.
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Figure 3.4: Plot of kδ vs δ/ñ for three different values of ñ.

3.3.2 Disorder

After having validated our procedures through the fixed n version of our model, we now

turn to the random coupled field case. We tune the level of disorder in the random

network by adjusting the values ñ and δ of the gaussian distribution, Eq. (3.7). Larger

values of δ imply a broader gaussian distribution. As mentioned above, a useful approach

to characterize the level of disorder in terms of the effective interaction between 2D spins

is the parameter kδ as defined in Eq. (3.11). Since the effective interaction between the

2D spins depends on nij , randomness in nij is reflected on J (n) as well. In Fig. 3.4,

we present a plot of kδ vs δ/ñ. The parameter kδ(see Eq. (3.11)) which is simply the
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standard deviation of the effective interaction between 2D spins, increases with δ/ñ as

would be expected, and it is roughly proportional to it. Note that kδ is also temperature

dependent. This dependence is weak: in Fig. 3.4 we have set the temperature to the

average annealed value of T 2D
c for each ñ.
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Figure 3.5: Plot of heat capacity vs temperature for ñ = 29 and δ = 7. Dashed lines
indicate T1 and T2. T1 is the lower temperature limit and T2 the upper temperature
limit.

Results for 1D fluctuations

In quantifying differences between quenched and annealed disorder we first look at the

1D field. In each case, we calculate the entropy associated with the 1D fluctuations

(S1D) from:

S1D =

T2∫

T1

Cv

T
dT (3.16)
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where the temperature limits T1 and T2 are set, in order to take into account the 1D

contribution to the total heat capacity, as follows: the lower limit T1(in Eq. (3.16))

is that of the minimum occurring between the sharp 2D peak and the broad 1D peak

(see Fig. 3.5), while the upper limit T2 is taken to be sufficiently high so that there is

no longer any difference between the quenched and annealed specific heats (one may

therefore think of T2 as being infinite). In Fig. 3.6, we plot this difference in the

entropies for the quenched and annealed systems, associated with 1D fluctuations, for

several values of N , ñ and δ as calculated from Eq. (3.16). The weak dependence on

N is due to finite size effects in the numerical calculation for quenched disorder. The

variation with δ/ñ illustrates the actual dependence of this difference on the disorder.

We observe that the quenched entropy S1D
q is always greater than, S1D

a , the annealed

entropy.As the level of disorder in the 1D chains in the network increases, the entropy

difference between the quenched and annealed cases increases and then saturates at

δ/ñ ≈ 0.25.

The heat capacity due to the 1D chains alone (in the absence of any 2D spins) can be

calculated analytically for both quenched and annealed disorder from Eq. (3.4) and the

rest of the discussion in Sec. 3.2. The temperature dependence of this 1D heat capacity,

evaluated for both types of disorder, is shown in Fig. 3.7. For the example plotted there

we see that beginning at T ≈ 0.6, the quenched disorder heat capacity takes on a higher

value than the annealed disorder heat capacity. This mostly accounts for the difference

in the 1D contribution to the entropy of the coupled system, as evaluated above from

Eq. (3.16) and plotted in Fig. 3.6.

Results for 2D fluctuations

We concentrate here on the differences between quenched and annealed heat capacity

due to 2D fluctuations. Since the chain contribution to the heat capacity can be calcu-

lated analytically for both quenched and annealed disorder (see discussion in connection

with Fig. 3.7), we isolate the 2D contribution to the specific heat by subtracting the

chain contribution from the total heat capacity. The total Cv is evaluated analytically

in the annealed case and numerically for quenched disorder. The heat capacity due

to 2D fluctuations, as obtained in this manner, is shown in the two panels of Fig. 3.8,

which correspond to two different sets of values of ñ and δ. We see that the results
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differ for quenched and annealed disorder. An important feature of this difference is

that the 2D transition temperature (T 2D
c ) for a frozen (quenched) random network is al-

ways higher than that obtained for the annealed network. In the context of our random

network of Ising spins, these results imply that magnetic ordering always takes place

at higher temperatures for frozen disorder than if the disorder is allowed to anneal. In

other words, as the time scale associated with the dynamics of the network on which

Ising spins reside changes from being much larger than the time scale of spin fluctu-

ations (quenched disorder) to a scenario whereby the two time scales are comparable

(annealed disorder), the phase transition of the spin system is suppressed. In terms of

the dislocation network problem described in the Introduction, our results based on a

simplified Ising model suggest that as the dynamics of the dislocation network become

important (i.e. when motion of dislocation line segments takes place over time scales

comparable to those of fluctuations in the superfluid field), the associated phase tran-

sition (in this case superfluid ordering) would be suppressed. Even though superfluid

ordering is described by the ferromagnetic XY model, the simplified Ising model we

have considered captures the underlying physical principle: the additional fluctuations

present in the annealed case will lower the transition temperature.

In Fig. 3.9, we plot the difference in T 2D
c between networks with quenched and

annealed disorder. The error bars arise solely from numerical uncertainties in the

(quenched disorder) numerical results: for each point in Fig. (3.9), the quenched 2D

transition temperature, T 2D
c,q , was obtained by averaging over twelve realizations of nij

in the 1D chains in the network. The error bar associated with each data point is the

standard deviation of the difference in T 2D
c . It turns out to be more illuminating to

plot the results for this difference in terms of the parameter kδ (see Eq. (3.11)) which

characterizes the width of the distribution of effective couplings, rather than in terms

of the gaussian width, δ, and average ñ, of the distribution of nij . At kδ → 0 we recover

the ordered results: the difference would be zero in the thermodynamic limit and the

small nonzero results arise from finite size effects in the numerical calculation: they are

described by Eq. (3.15). The uncertainties due to finite size effects at higher values of

kδ remain the same as in the δ → 0 limit. Earlier studies [98, 99, 100] on the difference

between annealed and quenched disorder, consider the case where the distribution of
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spin interaction strengths is narrow, and speculate (without any explicit quenched re-

sults) that the difference between transition temperatures is small in that limit. Unlike

these earlier studies, our model takes into account a broad distribution of effective in-

teraction strengths and we obtain explicitly transition temperatures for both quenched

and annealed models. Our results, as seen in the region where kδ → 0 (corresponding

to a narrow distribution of interaction strengths) of Fig. (3.9), show that difference in

transition temperature is small in this limit. However, we find that as the level of dis-

order increases, i.e. for higher values of kδ, the difference in T 2D
c between the quenched

and annealed networks increases rapidly, until it saturates at kδ ≈ 0.1. Beyond this

value of kδ all the points, regardless of the varying values of ñ and δ which were used

in the calculation, lie within a narrow band of values. Thus, it seems indeed that kδ is

sufficient to characterize the phenomena associated with 2D fluctuations, rather than

ñ and δ separately. Interpreting this result in the physical context of a network of dis-

location lines, an increase in kδ reflects an increase in the randomness of a network of

dislocation lines due to increasing fluctuation in dislocation line lengths making up the

network. Our results suggest that, as the randomness in the network increases, the role

of the difference in network dynamics (quenched vs annealed) becomes more important.

3.4 Conclusions

In this chapter, we have studied the role that the type of disorder - quenched or annealed

- plays in the thermodynamic behavior of an Ising model defined on a random network.

This network consists of four-fold coordinated Ising spins connected by spin chains.

The strength of the disorder can be tuned by varying the average value of the chain

length and its standard deviation. We have emphasized both the transition temperature

and the specific heat in the region dominated by one dimensional fluctuations. We have

shown that the transition temperature for our Ising model on a random network in which

the disorder is quenched (frozen) is always higher than the transition temperature for

annealed disorder with the same distribution. The magnitude of the difference between

the two transition temperatures is quantified by our study. We also show that the

entropy associated with the one dimensional fluctuations is larger for the quenched

case.
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Our study quantifies the difference between the properties of quenched and annealed

versions of disordered systems. The quenched assumption applies when the time scale

over which the disorder changes is much longer than that for the spin fluctuations. In

our model the strength of the effective interaction between neighboring sites has a very

broad distribution. Its general interest is that it relates to a variety of experimentally

studied systems in which the strength of the effective interaction between neighboring

spins has a very broad distribution. An example is dilute magnetic semiconductors. Our

results indicate that the transition temperature and other thermodynamic properties

of dilute magnetic semiconductors might be approximated from an analytic calculation

for the annealed model with the same distribution of interaction strengths. Our model

may be relevant also to the renewed interest on dislocation networks in solid 4He. It

presents a simplified version of how the dynamics of a dislocation network may influence

a superfluid field in its vicinity. Our results indicate that in the annealed scenario, when

fluctuations of dislocation line segments within a network become important i.e. when

the time scale for dislocation line fluctuations becomes comparable to or smaller than

the time scale associated with fluctuations of the superfluid field, the associated phase

transition is suppressed. On the other hand, superfluid ordering would be enhanced in

the vicinity of a dislocation if the dislocation network can be considered to be frozen.

While our results have been obtained for a simplified Ising version of the superfluid

transition, we expect that the general conclusion about the transition being suppressed

by fluctuations in the dislocation network will remain valid when the proper symmetry

of the superfluid order parameter (XY model) is taken into account. Quantum effects,

considered in Ref. [22], but not taken into account in this chapter, are expected to

enhance the suppression of the superfluid transition due to the motion of dislocation

lines. In Chapter 5, however, a quantum model for the interplay between dislocation

line and superfluidity is considered. The effect of dislocation motion on superfluidity is

studied at the microscopic level.

Prior to studying a quantum model, in Chapter 4, we focus on the elastic properties

of crystal 4He and explore the influence of the superfluid field on the motion of a

dislocation line within the crystal.



Chapter 4

Dislocation Mobility and

Anomalous Shear Modulus Effect

in 4He Crystals

4.1 Introduction

Solid 4He is the archetype of a quantum crystal. Quantum effects in solid 4He were

pointed out as early as 1960s [108, 33], and extensive work on this and many other

aspects of its properties [109] has been subsequently performed. Among the quantum

mechanical effects it exhibits are those associated with crystalline defects some of which

were discussed in Section 1.3.1 earlier. More recently, the observation of a marked

period drop with temperature in torsional oscillator experiments [11, 110] in solid 4He,

originally interpreted as evidence for a “supersolid” state, renewed both theoretical and

experimental interest on topics related to quantum crystals. Subsequently, solid 4He was

also shown to undergo an anomalous softening of the shear modulus [111, 112]. This

drop in the shear modulus was observed at the same temperature range as the drop in

period seen in torsional oscillator experiments. As noted in Section 1.2 of Chapter 1,

these results suggest that the anomalous shear modulus effect, rather than the change

in the inertial mass dragged by the oscillator, was responsible for the observed drop

in torsional oscillator period [13, 14]. Nevertheless, the discovery of anomalous shear

63
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modulus softening has led to new and important questions being posed on the elastic

properties of solid 4He and in particular on the role of dislocation lines in this material.

Given that the mechanical properties of crystals are largely dictated by dislocation lines,

the observed anomalous shear modulus behavior can provide important insights into the

elastic properties of quantum crystals.

Indeed, as to the question of what is responsible for the anomalous shear modulus

behavior in solid 4He, and the role that quantum phenomena may play in it, a definitive

answer is still lacking. One interpretation is that dislocation lines are pinned by 3He im-

purities at low temperatures but become mobile (able to glide) at higher temperatures

when impurities are no longer able to pin the dislocation network [111]. Other pro-

posals [14, 113, 114] model dislocation lines as vibrating strings unable to execute free

glide motion. String-like bowing of such dislocation lines in response to stress is taken

into account in explaining the shear modulus behavior. Yet another proposal [115, 116]

attempts to model the shear modulus behavior by taking into account the interactions

between dislocation lines as well as the Peierls barrier contribution to the damping of

the dislocation motion. Here, we propose that a superfluid field associated with the

dislocation line cores may play an important role in pinning the dislocation motion and

therefore affect the shear modulus behavior. Besides calculating the contribution to

dislocation motion damping arising from the superfluid field surrounding a dislocation

line, we will also address how our results are consistent with the experimental results

on the temperature dependence of the shear modulus.

The role that a putative quantum field associated with the dislocation line could

play in the anomalous shear modulus behavior has been recently explored in the lit-

erature [117]. At low temperatures we expect quantum effects other than impurity

pinning and thermal phonon scattering to be important in terms of damping of dislo-

cation line motion and the associated anomalous shear modulus behavior, particularly

in the absence of 3He impurities: experimental studies of ultra pure solid 4He samples

with negligible concentration of 3He impurities also exhibit anomalous shear modulus

behavior [118, 119]. Even for 4He crystals essentially free of any 3He impurities and char-

acterized by distances between impurity atoms larger than the cell size in which 4He is

contained, anomalous shear softening is observed [21]. These experimental observations
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inevitably point out, as noted in Ref. [119], that dislocation pinning by impurities can-

not be the only mechanism responsible for anomalous shear modulus behavior. High

quality 4He crystals presumably with low dislocation density and low impurity concen-

tration, also exhibit anomalous shear modulus behavior [122]. Therefore, we consider it

pertinent to study the effect of superfluid field on dislocation motion within crystalline

4He. Assuming a coupling [29] (see theoretical background in Section 1.4) between the

dislocation line strain and the superfluid field, it is possible either that the superfluid

field makes it easier for the dislocation line to move or that it contributes to the pinning

of the dislocation line thereby making it harder for it to move. The study presented

in Chapter 3 investigating the effect of dislocation network dynamics on the superfluid

field showed that a quenched dislocation network enhances superfluidity near it while

dynamic networks suppress superfluidity [120].

In this chapter, our main objective is to show that one can understand the the

sharp decrease of the shear modulus with temperature observed in experimental stud-

ies [114, 121, 122] via the existence of a superfluid field associated with the dislocation

lines. This requires as a preliminary step to study the effect of superfluid field on dislo-

cation motion, i.e. to investigate the damping of dislocation line motion. To do so, we

calculate the mobility of a gliding dislocation line, which in a conventional crystal corre-

sponds to an inverse viscosity, in a quantum crystal. Our calculation of the dislocation

motion mobility is performed by extending a method developed in earlier work on qua-

sicrystals [32]. We extend this method to quantum crystals utilizing a hydrodynamic

approach: the hydrodynamic equations for 4He crystals as developed in Refs. [33, 34].

Based on earlier studies [123, 124] on the role that dislocation lines play in determin-

ing the elastic properties of solid 4He crystal, we relate the dislocation mobility to the

shear modulus of the crystal. We will then model existing shear modulus experimental

data [114, 121, 122], and show that the drop in shear modulus with increasing temper-

ature is consistent with the existence of an underlying rapid increase of the superfluid

order parameter as the temperature decreases. Based on our model, we find that the

damping of dislocation motion due to superfluid field is more important, in the low tem-

perature limit, than that arising from other sources of damping such as 3He impurities

and thermal phonon scattering. The experiments [114, 121, 122] on the shear modulus

behavior of solid 4He use a procedure where a shear strain is applied on the crystal at
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a set frequency, ω. At the lower frequencies utilized in experimental studies (as low as

2 Hz for the applied strain), the experiments are best analyzed, in agreement with the

arguments presented in Ref. [125], in the limit, where the inertial mass of the dislocation

line can be ignored and one can, moreover, focus on the quasi-static limit [126] for the

strain due to dislocation motion. At higher frequencies the possibility arises of a phase

shift between the applied strain and the resultant displacement of the dislocation line.

Although for the purposes of our study, we focus mainly on understanding the mecha-

nism behind the sharp drop in shear modulus as a function of temperature for a gliding

dislocation line, we note that our model is amenable also to a higher frequency scenario

where the dislocation executes some combination of gliding and string-like vibration,

out of phase with the applied strain. Our procedure enables us, by making use of our

results on dislocation pinning due to the superfluid field present within crystal 4He, to

model the low frequency shear modulus temperature behavior seen [111, 112, 127, 114]

in strain experiments as well as that [114, 127] of the Q factor at higher frequencies.

The organization of the rest of the chapter is as follows. In section 4.2 we present

the hydrodynamic method used to calculate the mobility of a dislocation in a quantum

solid, and show how the mobility can be related to the shear modulus. In section 4.3 we

illustrate how our results can be used to model the experimental data on shear modulus

softening in response to increasing temperature. Two figures illustrate the comparison

between theory and experiment: very satisfactory agreement is found. Finally, section

4.4 contains a summary of the main results and concluding remarks.

4.2 Methods

4.2.1 Dislocation Mobility

We begin here by describing the method we use to calculate the dislocation mobility

in a quantum crystal. This is based on an extension of the procedure [32] previously

employed to compute the dislocation mobility in quasicrystals, combined with the usual

hydrodynamic equations [33, 34] for quantum crystals.

Consider an edge dislocation with Burgers vector of length b in a crystal subjected

to a shear stress σ. The shear stress will result in a force per unit length on the

dislocation line, ~FD, which will cause the dislocation line to move. The velocity(~VD) of
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the dislocation line [32] is then proportional to ~FD:

~VD =M ~FD (4.1)

where M is, by definition, the mobility coefficient and, for simplicity, we consider the

vectors ~FD and ~VD to be parallel to each other. The general approach seen in [32]

and [128] to the calculation of the mobility involves equating the rate of work done by

a force applied on the dislocation line, which causes the line to move with a constant

speed VD, to the energy dissipation rate due to the fields associated with the dislocation

line motion. Thus, one has,

FDVD = − d

dt

∫
d2rEel, (4.2)

where the right hand side is the rate at which energy is dissipated in the elastic fields,

as mentioned above, and the integral is over a two dimensional plane orthogonal to a

straight edge dislocation. The left hand side is the rate at which energy is transferred

onto the dislocation line due to the applied force FD.

To calculate the mobility, one isolates the terms in the right side of Eq. (4.2) that

are proportional to V 2
D. Then one extracts M from the relation:

FDVD =M−1V 2
D, (4.3)

where we have made use of Eq. (4.1). The left side of Eq. (4.3) is evaluated from the

right side of Eq. (4.2) using hydrodynamic methods described below. Then, the constant

of proportionality between the dissipation and the square of VD is the inverse mobility

of the dislocation line.

The contribution to the mobility of the dislocation line that we wish to calculate

arises from physical phenomena at length scales much larger than the dislocation core

size. Hence, as in Ref. [32], we can use hydrodynamic methods, which are valid at

such length scales. The proper hydrodynamic approach in our case is as developed in

Refs. [33, 34]. We particularly follow the notation of the latter.

We have for elastic energy density Eel and its differential, dEel, the expressions:

dEel = Tds+ λikdwik + φdρ+ ~vn.d~g +~js.d~vs,

Eel = −P + Ts+ λikwik + φρ+ ~vn.~g +~js.~vs,
(4.4)
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with the associated Gibbs-Duhem equation:

0 = −dP + sdT + wikdλik + ρdφ+ ~g.d~vn + ~vs.d~js. (4.5)

In these expressions, T is the temperature, s is the entropy density, P the pressure, λik

the elastic tensor density, φ the chemical potential, ρ the mass density, ~vn the normal

fluid velocity, ~g the momentum density, ~js is the superfluid momentum density, and wik

is the strain tensor defined as,

wik = ∂iuk, (4.6)

associated with the lattice displacement ~u. The subscripts n, s denote normal and

superfluid components respectively while i, j, k are coordinate indices. Here and in the

rest of the chapter summation over repeated coordinate indices is implied.

The linearized hydrodynamic equations of motion [34] are:

∂tρ+ ∂igi = 0,

∂tgi + ∂kΠik = 0,

∂ts+ ∂ifi = − qi
T 2
∂iT,

∂tvsi + ∂iφ = 0,

∂tui = vni.

(4.7)

where
gi = ρsik(vsk − vnk) + ρvni,

Πik = −ηiklm∂mvnl − ζik∂ljsl + Pδik − λki,

fi = svni +
qi
T
,

φ = −vskvnk + ζik∂kvni + χ∂kjsk.

(4.8)

These expressions can be found, with one minor [129] difference in Ref. [34]. In the

expression for the momentum flux tensor (Πik) above, the tensor with components ηiklm

is a shear viscosity arising from the normal component. On the other hand, the tensor

ζik and the scalar χ are “second viscosity” coefficients arising from coupling between

normal and superfluid components. Also, fi is the entropy flux and qi is the thermal

current.

Having established a framework for calculating the energy dissipation associated

with dislocation motion, we now turn to the evaluation of the strain term contribution

to the mobility.
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4.2.2 Contribution of the strain term to the mobility

We now explain the procedure used to calculate the dislocation mobility. We illustrate

the details by considering first the contribution toM arising from the energy dissipation

Estrain associated with the strain field (wik) of the dislocation line. Other contributions

will be discussed later. The expression for this source of energy dissipation is obtained

by making use of Eqns. (4.4), (4.6) and (4.8):

Ėstrain = λikẇik

= (−ηkilm∂mvnl − ζki∂ljsl + Pδki −Πki)∂iu̇k,
(4.9)

where the overdot denotes the time derivative. Following Ref. [32], ~u is the displacement

field of the crystal lattice sites from their equilibrium positions due to a dislocation line

moving with constant velocity ~VD. Thus, we assume the space and time dependence of

~u to be of the form

~u(~r, t) = ~u(~r − ~VDt), (4.10)

which implies

∂t~u = −(~VD · ~∇)~u (4.11)

corresponding to the velocity of atoms moving with the dislocation line. Also, ~vs =

∂t~us(~r − ~VDt), is the velocity of superfluid atoms due to the moving dislocation line.

Keeping the relevant dissipative terms in Ėstrain, which lead to a V 2
D dependence (for

example in the term ηkilm∂mvnl∂iu̇k both vnl and u̇k depend on VD), we have:

λikẇik = (−ηkilm∂mvnl − ζki∂ljsl)∂iu̇k (4.12)

where, jsl = ρslkvsk and vn are the supercurrent and the normal fluid velocity. Mak-

ing then use of Eq. (4.2), we have for the energy dissipated in the strain field of the

dislocation line:

FDVD|η,ζ = −
∫
Ėstraind

2r,

=

∫
(ηkilm∂mvnl∂iu̇k + ζki∂ljsl∂iu̇k)d

2r,

(4.13)

where the notation in the left side denotes the contribution from the η and ζ tensors,

under examination. We now establish a coordinate system with the z axis directed
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along the dislocation line and the x axis along the velocity. We then perform a two

dimensional Fourier transform for the displacement field in the transverse directions:

~u(~r) =

∫
~u(~q)ei~q.~rd2q. (4.14)

We illustrate below the steps involved in evaluating the inverse dislocation mobility

contribution due to the shear viscosity term ηkilm in Eq. (4.13) above. The inverse

mobility contribution from the term ζ is evaluated in a very similar way. The next

steps, then, involve collecting the contributions from different dissipative coefficients in

Eqs. (4.4) and (4.8). Inserting the Fourier transform of the displacement field as in

Eq.(4.14) into Eq.(4.13) (also using the last of Eq.(4.7)) we obtain

FDVD|η =

∫
(ηkilm∂mvnl∂iu̇k)d

2r

=

∫
[ηkilm∂m(~VD · ~∇)

∫
ul(~q1)e

i ~q1·~rd2q1∂i(~VD · ~∇)

∫
uk(~q2)e

i ~q2·~rd2q2]d
2r

= ηkilm

∫ ∫
iq1m(i~VD · ~q1)ul(~q1)ei ~q1·~rd2q1

∫
iq2i(i~VD · ~q2)uk(~q2)ei ~q2·~rd2q2d2r.

(4.15)

Noting that the integral over the 2D plane leads to a two-dimensional δ(~q1 + ~q2) and

using this delta function to integrate over ~q2 one then obtains

FDVD|η = ηkilm

∫
q1mq1iul(~q1)uk(−~q1)(V 2

Dq
2
1x)d

2q1. (4.16)

To estimate this contribution to the mobility it is sufficient to consider the diagonal

component of the viscosity, the ordinary η ≡ ηiiii. Then, the rate of energy loss in the

strain field of a dislocation line simplifies to:

FDVD|η = η

∫
q1iq1iui(~q1)ui(−~q1)(V 2

Dq
2
1x)d

2q1. (4.17)

By simplifying the equation above and finding the inverse mobility of the dislocation

line as explained after Eq.(4.3) we obtain for this contribution to M−1:

M−1|η = η

∫ qmax

qmin

q21i|ui(~q1)|2q21xd2q1 (4.18)

where qmin = 1/L, L being a cutoff of order of the size of the crystal, or the distance

between dislocations, and qmax = 1/b with b (the magnitude of Burgers vector) approx-

imately comparable to the interatomic spacing. To obtain ~u(~q), (the Fourier transform
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of the elastic displacement field) we note that the gradient of the elastic displacement

field is roughly constant in magnitude over a circular path of radius r centered on the

dislocation line [32] i.e.

(∇u)r ≈ b. (4.19)

Fourier transforming the elastic displacement field then leads to:

u(~q) ≈ b

q2
. (4.20)

Substituting Eq. (4.20) into Eq. (4.18) we finally have:

M−1|η =
η

2
(1− b2

L2
),

∼ η

2
.

(4.21)

since obviously b≪ L.

As mentioned above, in addition to this term arising from η, which we have dis-

cussed in detail, and the corresponding contribution from the ζ tensor, written down

in Eq. (4.13) and computed in the same way as the η term, there are several additional

contributions to the dissipation all arising from terms in Eq. (4.4). We can ignore the

contribution from the T Ṡ because we are interested in the limit where T → 0. Also,

since we are interested in the limit where VD is small compared to the speed of sound

(in solid 4He) the inertial contribution to energy dissipation, ~vn ·~̇g, can be neglected [32].

There are additional contributions to the mobility of the dislocation line arising from

the φρ̇ +~js · ~̇vs terms in Eq. (4.4). These involve again the tensor ζ, this time via the

last of Eqs. (4.8) and also, via the same equation, the scalar χ. These contributions

can be calculated following similar procedures to those discussed above and there is no

need to repeat the details. Finally, putting together all of these contributions, the total

inverse mobility of the dislocation line in a quantum crystal can be written as

M−1 ≈ η

2
+
ρs
ρ
(ζρ+ χρ2). (4.22)

This is our basic result for the mobility.

4.2.3 Relation between shear modulus and mobility

We will now proceed further to relate the observed shear modulus of a quantum crystal

to the mobility of a dislocation line. This will enable us to discuss the experimental
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results of Ref. [114].

When a stress σ is applied to a crystal, the dislocation line feels a force per unit

length, FD = bσ. As the dislocation line glides in response to the applied force, the

displacement of the dislocation line results of course in a strain ǫD in addition to the

strain ǫel. Here the elastic strain ǫel is the response of the crystal in the absence of

dislocation lines. Therefore, the effective shear modulus µ i.e. the ratio of applied stress

to total strain is given by [114] µ = σ/(ǫD + ǫel). This can also be written as

µ =
µel

1 + ǫD
ǫel

, (4.23)

where µel = σ/ǫel is the elastic shear modulus. The strain due to the motion of the

dislocation line is known to be [130, 131]

ǫD = ρDbxa, (4.24)

where ρD is the dislocation number density and xa is the average displacement of the

dislocation line through the crystal. In order to determine the average displacement,

we look to the applicable equation of motion [132] of the dislocation line

M−1ẋ = bσ (4.25)

where x is the dislocation displacement as a function of time. We can then relate the

average displacement of the dislocation to its velocity and to the mobility mobility via

xa = VDτ (where τ is the characteristic time scale associated with the movement of the

dislocation line) and Eq. (4.1) to obtain ǫD = FDτρDbM , which agrees with Eq. (4.25)

and FD = bσ. For the purposes of estimating the the average displacement xa, we will,

working as in Ref. [126] in the quasistatic limit, replace τ by the inverse of the slowest

range of frequencies for the strain ǫ applied to the crystal in the experimental [114]

situation.

Putting together these considerations, the shear modulus of the crystal as a function

of the mobility of the dislocation line is found to be

µ =
µel

1 + FDτρDbM
ǫel

. (4.26)

We will now be able to use this result, combined with that for the mobility in the

previous subsection (Eq. (4.22)) to discuss the behavior of the elastic coefficient in solid

Helium.
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The expressions derived above for the amplitude of displacement and ǫD are valid

under the standard [125, 126] quasistatic limit assumptions. This is applicable in the

usual experimental situation since the dislocation acceleration time is small compared to

the time over which strain is applied to the crystal [133]. However, we can also consider

the higher-frequency limit (the “ac” limit) when the dislocation line executes elastic

string motion out of phase with the applied strain. Considering then, x(t) = x0e
−iωt

and σ(t) = σ0e
−iωt one obtains from Eq.(4.25):

x0 =
ibσ0
M−1ω

. (4.27)

Following then the same steps as in the previous case we can easily find µ(ω) in this

“ac” limit. The quantity of interest here is the Q factor
∣∣Q−1

∣∣ = |Im[µ]/Re[µ]| = ǫR.

Defining ǫR(ω) ≡ ρDbFDM∗(1/ω)
ǫel

as a ratio involving strains, one finds that Im[µ] =

−ǫRRe[µ], leading to the expression for the Q factor,
∣∣Q−1

∣∣ = |Im[µ]/Re[µ]| = ǫR(ω).

4.3 Results - Modeling of Experimental Shear Modulus

Data

Having derived the mobility of the dislocation line and its relation to the shear modulus

of a quantum crystal, we now discuss how to connect our theory to the experimentally

observed large and sudden softening of the shear modulus seen [114] in solid 4He as the

temperature is increased. Thus, we will seek to model the temperature dependence of

the shear modulus data. Results in Ref. [114] show that at the higher temperatures

studied, (up to 1K), the crystal is softer, with µ being independent of temperature.

As the temperature is lowered, it is seen that between T = 0.05K and 0.1K µ rises

sharply, and then, at lower temperatures, it saturates to a value identified with the

intrinsic value µel. It is evident from earlier studies [123, 124] that dislocation lines

play an important role in determining the elastic properties such as shear modulus of a

crystal. Pinning due to impurity atoms and collision with thermal phonons have been

considered to be the dominant source for damping of dislocation line motion in recent

experiments [121, 122]: hence we have to compare these sources of damping with the

superfluid contribution in order to ascertain their relative importance. In 4He crystals,

dislocation lines can glide almost freely along the basal planes of the hexagonal crystal
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structure [121]. As a consequence, the effect of the shear viscosity (i.e. the dissipation

due to η, arising from interactions between the dislocation line and the surrounding

atoms) can be neglected. It follows from the above argument that the expression for

the dislocation mobility, Eq. (4.22) then simplifies to:

M−1 ≈ ρs
ρ
(ζρ+ χρ2). (4.28)

An important consequence of this result is that a superfluid field makes it harder for

the dislocation line to move. Since the inverse mobility is directly proportional to

the superfluid fraction, at lower temperatures (as T → 0) when we expect ρs/ρ to be

larger, it is harder for the dislocation line to move. Even though this appears to be

counterintuitive, it can be understood by recalling that Couette viscometer [134] and

vibrating wire [135] experiments show that liquid 4He is characterized by a very small

viscosity of order 10−5 kg/ms below 1K. This is relevant because the small viscosity

contribution from the superfluid field could be the dominant source of dissipation for a

dislocation line in a quantum solid.

We can now numerically estimate the inverse mobility of the dislocation line. To

do so, we will use the values of the second viscosity coefficients ρζ ∼ 10−5 kg/ms and

ρ2χ ∼ 7 ∗ 10−5 kg/ms for liquid 4He [136, 137]. These coefficients are not known for

solid 4He. We will then obtain corresponding estimates for the dislocation mobility

both above and below the assumed superfluid transition temperature (or crossover) in

solid 4He crystals. For the purposes of estimating the temperature at which a superfluid

field associated with dislocations may arise in solid 4He crystals, we consider a scenario

where a loosely intersecting grid of dislocations forms. According to Refs. [24, 138]

dislocation network superfluidity is characterized by two temperature scales - T0 ∼ 1K

(comparable to the bulk λ temperature for liquid 4He) and Tc ∼ T0a/Lf , where a is

the interatomic distance along a dislocation core and Lf is the free segment length of

dislocation line. Within such a model for superfluidity associated with dislocation lines,

the onset temperatures are roughly consistent with the experimentally [114, 139, 11]

found range 0.1K to 0.075K where the onset of anomalous behavior is observed. As to

the numerical value of the putative superfluid fraction ρs/ρ we look to quantum Monte

Carlo calculations involving solid 4He. For solid 4He with hcp lattice configuration, the

superfluid fraction (ρs/ρ) was calculated to have an upper limit in the range of 0.3 to
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0.9 [34]. Monte Carlo simulations with dislocations characterized by core superfluidity

find that nearly all atoms in the core of a dislocation line are in the superfluid state [26].

We will conservatively take the value ρs/ρ ∼ 0.1 in the T → 0 limit.

Using these order of magnitude values we can obtain, via Eq. (4.28), an approximate

value for the inverse mobility (M−1) at low T namely ∼ 10−5 kg/ms. In some of the

previous work [140], damping of dislocation motion was thought to be mainly due to

phonon collisions and pinning effect due to the presence of 3He impurities, resulting in

inverse mobilities of order 10−9kg/ms and 10−8kg/ms, respectively, at 1K. Hence, our

results indicate that quenching of dislocation motion due to superfluid field may be the

dominant source of damping for dislocation motion in the low temperature limit. In

this limit, the superfluid contribution to dislocation damping is larger by at two or three

orders of magnitude compared to the other sources of damping.

In order to estimate the magnitude of the shear modulus using Eq. (4.26), (with

Eq. (4.28)), we need also the relevant values of the other parameters entering that equa-

tion. From experimental results [121, 114], we have FD ∼ 10−11N/m, ρD ∼ 106m−2,

b ∼ 10−10m and ǫel ∼ 10−8. As mentioned above, we use the inverse of the applied

frequency, in the low range, ω ∼ 1 Hz - 50 Hz, to estimate τ . This should be better

at lower frequencies. Inserting the values of the various parameters into Eq. (4.26) and

taking M−1 ∼ 10−5 kg/ms in the low T limit as mentioned above, we obtain the ratio

in the denominator of that equation to be

FDρDbMτ

ǫel
∼ 10−3 − 10−5. (4.29)

It can then be easily seen from Eq. (4.26) that µ ≈ µel in the low T regime. Thus, at low

temperatures (below T ∼ 0.03K), we find that the shear modulus becomes independent

of T at µ ≈ µel, a result that should not depend on frequency at low ω. In comparing

the experimental results for the shear modulus with our model (see Fig.4.1), we note

that the low temperature behavior of this shear modulus is well accounted for in our

theory.

Examining now the behavior of the dislocation mobility above the temperature where

the assumed superfluid behavior disappears, we note that the contribution to the inverse

mobility due to the superfluid field approaches zero as ρs/ρ→ 0. Then, other damping

effects such as phonon scattering and pinning due to impurities are likely to become
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Figure 4.1: Experimental results for the shear modulus vs temperature at different
frequencies, ω, of applied strain (see legend) are compared with theoretical results. See
text for discussion.
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more important. The experimental range of temperatures where the sharp change in

shear modulus is found in solid 4He (as mentioned above), is accounted for in our

theory. In order to estimate the order of magnitude of the shear modulus in the higher

temperature range (T ≥ 0.03K) we first note [114, 121] that M−1 ∼ 10−8 kg/ms at

T = 0.06K. This implies that the ratio on Eq. (4.29) is of order unity and µ ≈ 0.5µel.

At the intermediate value T = 0.05K we interpolateM−1 ∼ 5∗10−7 kg/ms. At lower T

the precise value of M−1 becomes irrelevant. The results thus obtained are displayed in

Fig. 4.1 in comparison to experimental results from Ref. [114]. Other parameter values

used there are, except of course for ρs, the same as in the low temperature range. As

shown there, the drop in shear modulus is modeled quite well by Eq. (4.26) and the

above considerations, specially at the lowest frequencies. In the higher frequency range

considered the quasistatic approximations might start to break down. We also note that

at a given temperature, as the frequency ω is lowered the value of the shear modulus

decreases in agreement with experimental data.

Considering now the higher frequency “ac” limit, we focus, as mentioned above,

on the Q factor. In Fig. 4.2, we plot the dissipation associated with dislocation line

vibration, Q−1 (i.e. arising from the phase difference between σ and ǫ) as obtained

from
∣∣Q−1

∣∣ = ǫR (see discussion at the end of Sec. 4.2.3). Dissipation is small at low

temperatures and increases with T. The numerical values of the parameters used in

calculating Q−1 are the same as for the shear modulus. The experimental results [114,

122] for Q−1 in the low T limit are again consistent with theory: the disagreement

is now greater at very low frequencies, as one would expect. At temperatures near

the superfluid onset temperature, we note that experimentally the dissipation decreases

with larger values of ω.

Next, we discuss some of the limitations of our model. First, the calculated disloca-

tion mobility in the hydrodynamic limit provides probably a lower limit to this quantity

since we do not take into account the core strain effects of the dislocation line. Also,

as noted above, the second viscosity coefficients used in calculating the mobility are

for liquid 4He rather than for solid 4He, due to the lack of experimental data in the

solid phase. Since one might reasonably expect the second viscosity coefficients for solid

4He to be somewhat larger than in the liquid, it is possible that even for smaller ratios

of ρs/ρ than the value ρs/ρ ∼ 0.1 considered here the superfluid contribution to the
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dislocation mobility could still be significant compared to the contribution from phonon

scattering or pinning effects due to impurities. These reasons, then, might account for

the remaining differences in the magnitude of the temperature dependence of the shear

modulus and dissipation as shown in Figs. 4.1 and 4.2. More detailed knowledge of the

phonon and impurity effects is thus, we believe, likely to lead to a more quantitative

agreement in the higher T limit.

4.4 Summary

We have begun, in section 4.2.1 of this chapter, by presenting a calculation of the dis-

location mobility in solid 4He. This calculation is based on well known hydrodynamic

results [34] and follows a procedure developed in Ref. [32]. The result is expressed

in terms of the bulk “second viscosities” of the superfluid crystal hydrodynamics, and

the value of ρs. Numerical estimates of the mobility, although rather uncertain, in-

dicate that an assumed superfluid field associated with dislocation lines, may play an

important role in dislocation mobility and therefore in the stiffness of the crystal. An

important consequence of this is that superfluid damping of dislocation motion can

model the large and sudden increase in shear modulus observed experimentally in solid

4He as the temperature is decreased, as seen in Fig. 4.1. At low temperatures, below

200mK, solid 4He crystals stiffen considerably. This is thought to be due to pinning

of dislocation network by 3He impurities and damping of dislocation motion due to

phonon collisions. However, we find that as the superfluid fraction increases at lower

temperatures the dislocation mobility decreases resulting in the stiffening of the crystal.

Numerical estimates of the change in shear modulus and the Q factor based on this

effect model experimental behavior quite well, as can be seen from the figures. The

quantitative agreement might be even better when it is taken into account that bulk

viscosities of solid 4He are likely be larger than the values for liquid 4He used in the

mobility estimates. We have used the known values of these quantities for the liquid,

as information for their values in the solid is lacking.

Our results then show that quenching of dislocation motion due to a superfluid field

could be the dominant source of damping for dislocation motion in the low temperature
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limit. In this limit (i.e. T ≤ 0.04K), we find that the superfluid contribution to disloca-

tion damping is considerably larger than that due to other sources of damping (phonons

and impurity pinning). The superfluid contribution dominates because, experimentally,

it is seen that limitation of dislocation motion in conventional crystals due to Peierls

barrier is absent in solid 4He. The onset temperature of this unusual elastic behavior in

solid 4He is in the same temperature range as the onset of superfluid behavior in [24, 138]

dislocation networks. As noted above, the superfluid contribution to dislocation mobil-

ity scales with the superfluid fraction i.e. ρs/ρ. The onset temperature of the superfluid

fraction is reflected, in our model, in the temperature dependence of the shear modulus

effect. This enables us to model both the magnitude and the temperature dependence

of the change in shear modulus of solid 4He crystal. At higher temperatures, the factor

ρs/ρ becomes smaller and eventually approaches zero. In this limit, other contributions

to damping (such as due to phonon collisions and 3He impurities) become more im-

portant. Therefore, we believe that the interplay of these effects - superfluid field, 3He

impurities and phonon collisions - should be considered in understanding the anomalous

softening of the 4He crystal.

Given how the superfluid field influences dislocation mobility, the movement of the

dislocation line could also have an effect on the associated superfluid field. For a dislo-

cation line moving with constant velocity VD, a study of how the associated superfluid

field reacts forms the subject matter of the next chapter.



Chapter 5

Edge Dislocation Dynamics and

Its Effect on the Superfluid Field

5.1 Introduction

Research on topics associated with NCRI and quantum crystals were given a new im-

petus after Kim and Chan claimed [11] to have observed a period drop in torsional

oscillator (TO) experiments with solid 4He. Evidence that disorder present in the crys-

tal 4He could play an important role became apparent early on (see Section 1.3.1 for

details). It was observed that annealing the solid 4He samples eliminated the purported

drop in TO period attributed to NCRI at the time. TO results were also found to be

strongly dependent on sample preparation methods and quality of samples [141]. Re-

cently, the emerging consensus seems to be that defects present in the crystal, such as

dislocation lines, could have an important role [45] to play in understanding a variety

of experimental results associated with solid 4He. The role that dislocation lines play

in determining the elastic properties of solid 4He crystals has been well known [111].

An example of this is the anomalous shear modulus effect in solid 4He and subsequent

explanation of it based on dislocation motion damping [114]. This effect was studied in

detail in Chapter 4.

A quantum liquid state associated with disorder present in crystal 4He was expected

to lead to novel quantum phenomena. The possibility that a superfluid field present

81
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within solid 4He could be behind the ‘torsion oscillator anomaly’ was investigated im-

mediately afterwards. Superfluid grain boundaries were proposed as a candidate to

explain the torsion oscillator results [142]. Earlier work by Shevchenko [24] raised the

possibility that superfluidity could be present along network of defects such as screw

and edge dislocations. Recent theoretical work on quantum Monte Carlo calculations

involving dislocation lines showed [25, 26] that cores of dislocation lines can be super-

fluid. As an example of a novel quantum effect, coupling between the superfluid field

and the elastic strain field due to a dislocation line in the context of phenomenological

Landau theories [29, 143] showed that a stationary edge dislocation line can enhance

superfluidity in its vicinity. However, previous studies focused on the case where the

dislocation line is quenched or stationary. The importance of considering the dynamics

of dislocation lines was motivated previously in Section 3.1 in the context of annealed vs

quenched dislocation network. In reality, dislocation lines are dynamic objects that ex-

ecute a variety of motions. Dislocation line segments can undergo roughening [107] and

in response to an applied stress can execute two basic types of motion: climb or glide

motion. These two different types of motion are illustrated in Figs. 5.1 and 5.2. When

a dislocation moves along the surface that contains both its line and Burgers vector it

executes glide motion. Movement out of the glide surface perpendicular to the Burgers

vector is referred to as climb. Glide and superclimb i.e. climb assisted by superfluidity

associated with dislocation cores in solid 4He were studied previously [138] in the con-

text of elastic effects such as dislocation line tension and compressibility. Dislocation

lines are known to glide freely along basal planes in solid 4He at relatively higher speeds

compared to other crystals. This is thought to be a quantum effect which causes the

Peierls barrier to dislocation motion to be negligible [122].

Considering the quantum nature of dislocation lines and the prevalent experimen-

tal methods involved in solidifying 4He confined to small cells at high pressures, it is

important to study the effect of dynamics of the dislocation line. High stresses present

will induce dislocation motion and this motion may significantly affect the superfluid

field in its vicinity. In particular, I am interested in learning whether the motion of the

dislocation line enhances or suppresses the associated superfluid field. Previously (see

Chapter 3), I simulated a dislocation network using a coupled field Ising model in order

to study the effect of the dynamics of the dislocation line on the associated superfluid
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Figure 5.1: An edge dislocation is illustrated executing climb motion. Motion in the
direction of the arrow indicates climb.

Figure 5.2: An edge dislocation is shown gliding.

field. Preliminary results based on mapping a dislocation network to a random Ising

model showed that dynamics of the dislocation line can indeed have a measurable effect

on the superfluid field in its vicinity. Further research into the motion of dislocation

lines in solid 4He showed that the superfluid field makes it harder for dislocation lines to

move. This provided an alternative superfluid field based explanation for the anomalous

shear modulus effect (see Chapter 4 for details). Given these results, studying a fully

quantum model coupling superfluid field to the dislocation line forms the subject matter

of this chapter.

I am interested here in studying the effect of the dynamics of a dislocation line on

the superfluid field at the microscropic level i.e. at the quantum level. The response

of the superfluid field due to an edge dislocation line assumed to be driven at constant

velocity ~VD for both climb and glide will be analyzed. Focusing on smaller length and

time scales, fluctuations in the amplitude and phase of the superfluid order parameter

are studied computationally. The fluctuation in amplitude was not included in the
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coarse-grained models studied before, because this amplitude is a non-hydrodynamic

variable (i.e. it relaxes quickly at long wavelengths). A mathematical model that is

successful in describing superfluidity in 4He is the Gross-Pitaevskii equation [144, 145].

The Gross-Pitaevskii equation (GPE), also referred to as the nonlinear Schrödinger

equation (NLSE), describes the equilibrium state and dynamics of low-temperature

superflow and Bose-Einstein condensates (BEC) [36] well. However, the GP formalism

does not contain a description of damping and can only be used to study dissipationless

fields. As I am interested in exploring what quantum models predict on how superfluid

field near a dislocation is damped due to the motion of a dislocation line, a method to

include dissipation in GPE is necessary. Dislocation motion is expected to smear the

superfluid field over a wider region thereby counteracting the ability of the dislocation

line to support superfluidity near it [22]. With this purpose in mind, an approach

similar to Ref. [146] in order to study damping of superfluidity near the λ point is

used. A required modification is introduced into the GPE, as in Ref. [146], in order

to capture the effects associated with damping. This is referred to as the Dissipative

Gross-Pitaevskii equation (DGPE) [147]. Based on the DGPE formalism, I present in

this chapter a study of how the excitations associated with a moving dislocation line in

solid 4He affects the superfluid field near it.

The rest of the chapter is organized as follows. Introduction of the equations and

details of the parameter values used are presented in Section 5.2. By coupling the

elastic strain field due to the dislocation to the superfluid order parameter, I study

within the DGPE formalism what effect the motion of a single edge dislocation line has

on the superfluid field. Results from this study are presented in Section 5.3. I conclude

this chapter by noting that the motion of the dislocation line plays an important role

in determining the superfluid field distribution near it. During climb motion, part of

the superfluid field associated with a stationary dislocation line is “left behind.” Climb

induces more asymmetry in the distribution of superfluidity near the dislocation line.

No effect on the symmetry properties of the superfluid wavefunction is observed for

glide. Decay of the superfluid field amplitude during climb and glide, although very

small for experimentally realistic dissipation parameter, is observed.
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5.2 Methods

Dissipative Gross-Pitaevskii equation

A single long, straight edge dislocation line running along the z axis is considered in

this study (see Fig. 1.2). The Burgers vector for the edge dislocation is taken to be in

the x-direction. The dislocation line is assumed to be long and straight so as to neglect

edge effects and define the problem in the 2D x−y plane orthogonal to it. The standard

GPE which describes the motion of a field, ψ, is of the form (in 2D)

i~
∂ψ

∂t
=

−~
2

2m
∇2

x,yψ + v(x, y; t)ψ + g|ψ|2ψ (5.1)

where ∇2
x,y = ∂2

∂x2 + ∂2

∂y2
, m is the mass of an atom, v(x, y) is the potential and g is

the superfluid interaction parameter. On the right hand side, the first two terms are

the kinetic and potential energy and the third nonlinear term describes the interaction

energy between superfluid atoms. The repulsive interaction between superfluid atoms

implies that g > 0 and is given by [152, 153]

g =
4π~2asN

mL
. (5.2)

Here as is the microscopic s-wave scattering length, N is the number of superfluid atoms

and L is the size of the trap.

In the problem under study, the complex field ψ is the superfluid wavefunction and

the coupling between ψ and the dislocation strain potential is introduced via the term

v(x, y; t)ψ [29]. For an edge dislocation along the z-axis (see Eq. (1.7)), the strain

potential is of the form [29]

v(x, y) =
A√

x2 + y2
cosφ, (5.3)

where φ = arctan(x/y) is an azimuthal angle defined in the x− y plane with respect to

the y axis. The parameter A, a positive quantity, denotes the strength of the dislocation

potential and depends on the lattice and elastic constants of the solid. For A > 0,

this potential is attractive for y < 0 thereby allowing for bound states. For y > 0

the potential is repulsive. The potential is symmetric along the x axis (i.e. along

the direction of the Burgers vector). These characteristics of the potential should be

reflected on the wavefunction ψ as well.
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The solution of the non-linear equation noted above is complicated due to the non-

central nature of the potential [155]. The equilibrium steady state of the superfluid field

at very low temperatures, T → 0, is described by the time independent GPE

− ~
2

2m
∇2

x,yψ + v(x, y)ψ + g|ψ|2ψ = µψ, (5.4)

where µ is the chemical potential. For the equilibrium solution, the wavefunction is

normalized according to

N =

∫ +∞

−∞

∫ +∞

−∞

|ψ|2 dxdy = 1. (5.5)

The standard GPE (Eq. (5.1) above) contain no dissipative terms. The motion of

the dislocation line is dissipative as a result of the various damping mechanisms within

the crystal as discussed in Chapter 4. An overview of how dissipation is introduced

into the GP formalism is provided here. Dissipation is introduced into the GPE via a

dimensionless damping factor γ as in Ref. [147]. The dissipative GPE is of the form

i~
∂ψ

∂t
= (1− iγ)[− ~

2

2m
∇2

x,yψ + v(x, y)ψ + g|ψ|2ψ − µψ], (5.6)

where the damping factor γ which must be positive is phenomenologically introduced

in a manner similar to Ref. [146]. The terms in the square bracket in the right hand

side represent the change from the equilibrium state of the superfluid wavefunction due

to dynamics, in our case the moving dislocation line. The damping factor γ is inversely

proportional to a relaxation time and due to it neither energy nor N is conserved in

Eq. (5.6). In the original study by Pitaevskii [146], the parameter γ was expressed in

terms of the second viscosity coefficients of superfluid Helium. The dynamics of the ψ

field including its damping due to elementary excitations from a moving dislocation line

can now be described within the framework of Eq.( 5.6). A similar equation with the

factor (1− iγ) has been used in the study of soliton decay and damping of vortices [149,

150].

By numerically solving the two-dimensional (2D) time dependent DGPE with a

moving dislocation potential (for either climb or glide motion), the response of the

superfluid order parameter ψ can now be evaluated. As in Section 4.2.1 of Chapter 4,

we consider a scenario where the dislocation line moves at a constant velocity ~VD due

to external forces.
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Prior to presenting the details of the numerical simulation, an overview of the co-

ordinate system and units used is presented here. It is convenient to rescale the length

and time in terms of natural units. We choose for our unit of length the elastic corre-

lation length ξel defined by equating the kinetic energy of the superfluid atoms to the

potential energy due to the dislocation line ~
2

2mξ2
el

= A
ξel

. Similarly, we rescale time by

the characteristic frequency ωel ≡ ~

2mξ2
el

. Rescaling the wave function, the co-ordinates

(using the standard cartesian x, y co-ordinate system) and time via t̄ = ωelt, ψ̄ = ψξel,

x̄ = x/ξel (similarly for ȳ), v̄ = v/~ωel, ḡ|ψ̄|2 = ḡ|ψ̄|2/~ωel and µ̄ = µ/~ωel one obtains

i
∂ψ̄

∂t̄
= (1− iγ)[−∇̄2

x,y + v̄(x, y; t) + ḡ|ψ̄|2 − µ̄]ψ̄. (5.7)

The coefficient of the non-linear term is ḡ ≡ 2mg
~2

and the strength of the dislocation

potential, A, is rescaled such that Ā = A/~ωelξel = 1 because of the definition of ξel

and ωel.

Numerical parameters and initial condition

The numerical values of the parameters used in solving Eq. (5.7) are explained here.

The time dependent strain potential v(x, y; t) in the DGPE depends upon whether the

dislocation line is climbing or gliding. For motion along the positive y-axis (perpen-

dicular to the Burgers vector), the dislocation potential depends on the velocity VD as

v(x, y; t) =
A√

x2 + (y − VDt)2
cosφ. (5.8)

Movement of the dislocation perpendicular to the Burgers vector (along the y > 0

direction) is called climb. When the dislocation is moved in the direction of the Burgers

vector along the x axis, i.e. with the corresponding potential being

v(x, y; t) =
A√

(x− VDt)2 + y2
cosφ (5.9)

it executes glide motion. Climb and glide motion of the dislocation line are considered

separately in this study.

The magnitude of the climb and glide velocity in classical crystals is expected to be

small especially at low temperatures. In a quantum crystal such as solid 4He, however,

the possibility of superclimb and glide assisted by superfluidity [138] enables one to
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consider larger values of velocity. Glide velocities up to 0.01 m/s are considered in an

experimental study [140] of dislocation velocities in solid 4He. We take VD near its

upper range to be better able to observe its effects. To estimate the order of magnitude

of ξel, the strength of the dislocation potential A (see Eq.(5.3)) with dimensions of

energy*length has to be known. The magnitude of the parameter A depends on the

energy per unit length of an edge dislocation line Eel = Gb2 where G is the shear

modulus of a solid and b the magnitude of the Burgers vector [156]. Defining the

parameter A = Eel ∗ b ∗ ξel, one obtains ξel ∼ 10−9m. ωel is, then, approximately

1010Hz and ξelωel ∼ 10 m/s. The magnitude of the quantities ξel and ωel sets the scale

for length and time dimensions in the simulation respectively. The units for VD are

ξelωel. Dimensionless values of VD ranging from 5 × 10−4 to 1.5 × 10−3 (i.e. between

0.005 m/s and 0.015 m/s) are used for both climb and glide motion in this simulation.

The strength of the interaction coefficient can be re-written as ḡ ≡ 8πasρ2Dξel

based on its definition and Eq. (5.2). The number density of superfluid atoms in 2D

is ρ2D = N/ξ2el. According to Ref. [154], the atomic number density of solid 4He is

ρ3D = 1028/m3. For the spacing between atomic planes at ∼ 3 × 10−10m [157], the

number density in 2D (i.e. per atomic plane) is 3× 1018/m2. The scattering length as

for 4He atoms is ≃ 10−10m [52]. The strength of the nonlinear interaction parameter

is then ḡ ∼ 7.5. Since this study is focused on the superfluid condensate density near

a dislocation line, the above value for ρ2D would greatly overestimate the condensate

density. Assuming that a small percentage of atoms of order 1% condense into the

superfluid state [26, 34] near the dislocations, a smaller value for ḡ ∼ 0.075 is obtained.

This is the value of ḡ we have used.

In order to solve Eq. (5.7), the value of the chemical potential µ̄ is needed. The

steady state GPE (see Eq. (5.4)) is numerically solved using a relaxation method under

the condition that ψ satisfies Eq. (5.5) to obtain µ̄. The accuracy of this method

was tested using the two dimensional Coulomb potential, the solutions of which are

well known [155]. Thus, the value for µ̄ = −0.13 was obtained consistent with other

calculations [155] of the same parameter for a two dimensional Schrödinger equation

with a non-moving dislocation line potential.

The value of the dimensionless damping parameter γ is also needed in order to

solve the DGPE. In Ref. [147], the magnitude of γ depended on the rate at which
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thermal particles above Bose-Einstein condensate band enters the condensate. This

rate compared to the relevant trap frequency sets the order of magnitude of γ. Using a

similar approach, comparing the energy dissipated by a moving dislocation line to the

energy scale ~ωel, an estimate for γ appropriate for the problem under consideration

can be obtained. The energy dissipated during dislocation motion is roughly FD ∗L ∗ b
where FD is the force per unit length applied on a dislocation, L is the typical length

of a dislocation line and b the magnitude of Burgers vector. The order of magnitude of

these quantities for a dislocation line in solid 4He were obtained from Ref. [114]. The

value of the parameter γ thus obtained is ∼ 10−3.

An overview of initial condition and the numerical method used in the simulation

is presented here. The equilibrium solution obtained from the time independent GPE

(Eq. (5.4)) is set as the initial condition for ψ in the time dependent Eq. (5.7). At, t̄ = 0,

the dislocation line is stationary and the superfluid distribution around it corresponds

to the equilibrium case. As the dislocation line starts to move, the superfluid field ψ

near it reacts. The response of the superfluid field is then studied for both glide and

climb motion separately. Eq. (5.7) is solved using a split-step Crank-Nicolson method

presented in Ref. [151]. For the simulation, a 1200 × 1200 square grid system with the

size of each grid being 0.05 ξel is used. A time step of δt̄ = 0.01 turns out to be adequate.

A small cutoff is used in order to avoid the singularity associated with the dislocation

potential at the origin. The results have been verified to be cutoff independent.

In relating the scenarios considered here to experiments, applying a stress on 4He

crystal causes the dislocation lines to move. Contribution of factors such as the su-

perfluid field, thermal phonons or other impurities present within the crystal toward

damping of dislocation motion was discussed in Chapter 4. The parameter γ takes into

account the effect on the superfluid field due to the excitations that are induced by the

dissipative motion of a dislocation line. In the results presented below, I investigate

how climb and glide motion affects the superfluid field in its vicinity.

5.3 Results

In this section, I present the results of the DGPE simulation coupling a moving edge

dislocation line to superfluidity. The effect of the movement of a dislocation line on
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superfluidity near it is analyzed. The first part of this section deals with climb and the

latter with glide motion of the dislocation line.

To obtain the initial condition, the time independent GPE (Eq. (5.4)) is solved

to get the equilibrium solution for the superfluid field |ψ̄| near an edge dislocation

line. The stationary potential Eq.(5.3) is used in solving Eq.(5.4). All lengths are in

units of ξel, time in units of ωel and velocity in terms of ξelωel. The absolute value of

the dimensionless wave function, |ψ̄| is plotted. 3D plots of the equilibrium superfluid

distribution near an edge dislocation line at two different viewing orientations are shown

in Fig. 5.3. Views along the ȳ axis and x̄ axis are presented in the top and bottom panel

respectively. It can be seen that the bound state of the superfluid field forms in the

attractive part of the dislocation potential (in the ȳ < 0 region). The dislocation

potential is symmetric along the x̄ axis with respect to the origin and asymmetric

along the ȳ axis. The symmetry characteristics of the potential can be seen in |ψ̄|: an

asymmetric accumulation of the superfluid field in the region ȳ < 0 can be observed.

We present now results for the climb case where Eq. (5.7) is solved with the dis-

location potential in Eq. (5.8). Given that a stationary dislocation line enhances su-

perfluidity near it, one naively expects that the motion of the dislocation line could

then ‘smear’ this effect over a larger region. This could perhaps suppress the effective-

ness of the dislocation line in enhancing superfluidity compared to the stationary case.

The dislocation line is moved along the positive y direction at three different velocities

VD = 5 × 10−4, 7.5 × 10−4 and 1.5 × 10−3. The movement of the superfluid field due

to the spatial displacement of the dislocation line is illustrated in Fig. 5.4 through a

plot of |ψ̄(x̄ = 0, ȳ; t̄)| at different times. At time t̄, the dislocation line is displaced in

the positive y direction by a distance of VD t̄. The top panel of Fig. 5.4 shows a plot of

|ψ̄(x̄ = 0, ȳ; t̄)| at t̄ = 0, 6000 and 14000 for VD = 5 × 10−4. The bottom panel shows

the same quantity for VD = 1.5× 10−3 at three different values of t̄. For t̄ = 6000 and

VD = 1.5× 10−3, the dislocation line has moved a distance of ∼ 9 ξel. The shift in the

superfluid distribution as a result of dislocation motion at other values of t̄ and VD can

be clearly observed. The plot of |ψ̄(x̄ = 0, ȳ; t̄)| has a maximum at ȳ = ȳmax. At t̄ = 0,

ȳmax is at −1.3.

As the dislocation line executes climb motion, it appears from the figures that the
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Figure 5.3: 2D equilibrium absolute value |ψ̄(x̄, ȳ)| of the superfluid field in the attractive
part of the dislocation strain potential is shown at two different orientations. This is
obtained by solving the time independent GPE.
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panel VD = 1.5× 10−3.
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superfluid distribution becomes more asymmetric in the y direction. Some of the su-

perfluid amplitude is ‘left behind.’ In order to make this more evident, and to quantify

it I define an asymmetry parameter B. The B parameter is defined in terms of the

integrated norm of superfluid field in the region ȳ < ȳmax vs in the region ȳ > ȳmax

over the 2D x− y plane. Thus:

B =

∫ +∞

−∞

∫ ȳmax

−∞
|ψ̄|2 dx̄dȳ −

∫ +∞

−∞

∫ +∞

ȳmax
|ψ̄|2 dx̄dȳ

∫ +∞

−∞

∫ ȳmax

−∞
|ψ̄|2 dx̄dȳ +

∫ +∞

−∞

∫ +∞

ȳmax
|ψ̄|2 dx̄dȳ

. (5.10)

If the superfluid field is ‘left behind’ due to the motion of the dislocation line, the

distribution of |ψ̄| in the region ȳ < ȳmax will tend to increase while decreasing in the

region ȳ > ȳmax. The parameter B can therefore be used as a measure of asymmetry

associated with the distribution of the superfluid field due to dislocation movement.

The equilibrium solution shown in Fig. 5.4 i.e. |ψ̄(x̄ = 0, ȳ; t̄ = 0)| is asymmetric along

the y direction and has a non zero value of the asymmetry parameter, B(t̄ = 0) = B0.

To study the change in asymmetry due to climb motion, we look at B−B0 as a function

of t̄. Fig. 5.5 presents a plot of B − B0 vs t̄. The asymmetry of the superfluid field

near the dislocation line and along the direction of motion increases due to climb. It

is also seen that the rate of increment of parameter B slows as the dislocation line

evolves for longer times. For higher climb velocities, more of the superfluid field tends

to be ‘left behind’ compared to the slower velocities: faster moving dislocations are

more efficient in leaving behind the superfluid field. The wavefunction at ȳ = ȳmax

i.e. |ψ̄(x̄, ȳ = ȳmax; t̄)| shows that climb has no effect on the shape in the x direction.

No change in superfluid field distribution is observed perpendicular to the direction of

climb motion.

Next, glide motion of the dislocation line and the response of the superfluid field is

considered. Eq. (5.7) is solved with the dislocation potential in Eq. (5.9) for glide along

the positive x direction. The top panel of Fig. 5.6 shows |ψ̄(x̄, ȳ = ȳmax; t̄)| at t̄ = 0, 2196

and 6590 for VD = 5 × 10−4. The superfluid field is carried along with the dislocation

line. The maximum of |ψ̄| at ȳ = ȳmax shifts from x̄ = 0 to a value corresponding to

VD t̄ referred to as x̄max. At t̄ = 6590, the maximum is expected to shift by VD t̄ = 3.3

matching the results from the simulation. We look for evidence of asymmetry developing

in the superfluid distribution due to glide motion. Glide evolution of |ψ̄| along x direction

does not alter its symmetry characteristic: as can be seen in the bottom panel of Fig. 5.6.
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Figure 5.6: Plot of the wave function |ψ̄(x̄, ȳ = ȳmax; t̄)| for t̄ = 0, 2196 and 6590 during
glide. VD = 5× 10−4 is used. In the bottom panel, the equilibrium |ψ̄(x̄ = x̄max, ȳ; t̄ =
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The ȳ = ȳmax cross section of the equilibrium solution is shifted by x̄ = 3.308 in order

to compare it to the time evolved |ψ̄(x̄, ȳ = ȳmax; t̄ = 6590)|. This confirms that |ψ̄|
along ȳ = ȳmax remains symmetric. The plot of |ψ̄| along the perpendicular direction

at x̄ = x̄max is presented in Fig. 5.7 for glide motion. We compare |ψ̄(x̄ = x̄max, ȳ; t̄)|
at t̄ = 0 and 6590. No change in the asymmetry is observed.
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Figure 5.7: Plot of |ψ̄(x̄ = x̄max, ȳ; t̄)| at t̄ = 0 and t̄ = 6590 during glide for VD =
5× 10−4. No change in the asymmetry for |ψ̄| along x̄ = x̄max is observed.

The time dependence of the total normalization of the wavefunction(N ) is also

studied. As noted earlier, the damping factor γ in the DGPE implies that N is not

conserved. N for the superfluid field is observed to decrease for both climb and glide

motion. Fig. 5.8 presents a plot of N vs t̄ for climb and glide motion at different values

of γ. The decay in N as a result of glide motion at VD = 5 × 10−4 for γ = 10−3 is

too small to be seen and unimportant. An artificially larger value of γ = 10−1 is used

to amplify any possible decay effect. This results in a ∼ 5% decay in N over a time

interval of 800. Climb motion also results in the damping of superfluidity near an edge
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dislocation line. At γ = 10−3, again, the decay in N is minute. Using larger values for

both γ = 10−1 and VD = 0.0015 the decay effect is much more visible. Approximately

a 30% decay in N can now be observed over a time interval of 800. The physical origin

of the decay in N can be roughly understood from the following arguments. Rewriting

the DGPE in Eq. (5.6) as

i~
∂ψ

∂t
= (1− iγ)[H − µ]ψ, (5.11)

where H = − ~
2

2m∇2
x,y+v(x, y)+g|ψ|2 it can be seen from Eq. (5.4) that Hψ = µ(t)ψ. By

rescaling t in the equation above to t′ = (1− iγ)t a solution of the form ψ = ψ0e
−i∆µ(t)t′

is obtained where ∆µ(t) = µ(t) − µ is the change in the effective chemical potential.

This implies that

ψ = ψ0e
−i(µ(t)−µ)te−γ(µ(t)−µ)t, (5.12)

where the damping contribution to ψ can be seen to depend on γ and µ(t) − µ. The

motion of the dislocation line introduces excitations into the system thereby raising the

µ(t). The quantity µ(t)− µ in dimensionless units turns out to be roughly of order VD.

This is then responsible for the decay in the superfluid field amplitude.

5.4 Conclusion

In this chapter, the problem of an edge dislocation line moving at a constant velocity VD

and the response of an associated superfluid field is studied. Two types of dislocation

motion are analyzed: climb and glide. Damping of the superfluid field due to dislocation

motion is taken into account via the damping factor γ in the dissipative GPE as seen

in Eq. (5.7). The split-step Crank-Nicolson method [151] is used to solve DGPE. The

results give insight into how dislocation dynamics influences the superfluid distribution

and its damping.

Initially, the equilibrium GPE with a stationary dislocation line was computed. En-

hancement of superfluidity near a dislocation line is observed. The dislocation strain

potential acts as a trap for the superfluid field and the equilibrium wave function

|ψ̄(x̄, ȳ; t̄ = 0)| reflects the symmetry characteristics of the strain potential: it is sym-

metric along ȳ = ȳmax and asymmetric along x̄ = 0. The superfluid field response to

climb shows evidence of superfluidity being ‘left behind’ with the superfluid distribution
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becoming more asymmetric along the direction of climb. An asymmetry parameter B

is used to quantify the superfluid field being ‘left behind.’ The parameter B increases

as a function of time: it rises quickly at shorter times and flatten as the dislocation line

evolves over longer time. Study of different climb velocities led to the conclusion that

the magnitude of the asymmetry parameter B is proportional to how fast the dislocation

line moves. For glide motion, the symmetry characteristics of the wave function along

x̄ = x̄max and ȳ = ȳmax are analyzed. No change in superfluid distribution symmetry

characteristics are noted along the direction of motion unlike climb motion.

Both dislocation climb and glide lead to a small decay in N for the physical value

of γ = 10−3 considered in this study. Using a larger value of γ = 10−1, an amplified

decay effect can be observed. The asymmetry induced in the superfluid distribution

due to climb is the most prominent physical effect observed in this study. During glide,

however, no change in the superfluid field asymmetry characteristics is observed.



Chapter 6

Conclusion

In this thesis, a study of the interplay of dislocation line and superfluid field is presented

at different levels of coarse-graining. In Chapter 2, a coarse-grained model of the be-

havior of superfluid field associated with dislocation lines in crystal 4He was studied by

looking at the hydrodynamics of superfluids confined to complex geometries. In Chap-

ter 5, a quantum model for the effect of dislocation dynamics on the superfluid field

within the Gross-Pitaevskii formalism was considered. Other models spanning differ-

ent levels of coarse-graining in between the hydrodynamic model and the quantum GP

model were also brought to bear on the problem of how dislocation dynamics affects the

superfluid field near it.

To study the hydrodynamics of compressible superfluids in confined geometries, an

analytic method is implemented in a perturbative manner in Chapter 2 with the relevant

dimensionless parameter being the square of the ratio of the typical speed to the sound

speed. This method is expected to complement numerical calculations based on more

microscopic descriptions such as the GP equation and will be particularly useful in the

study of cold atomic systems. It was shown that starting directly from the hydrodynamic

equations, in the appropriate limit, is a good alternative to using the full GP equations.

While compressibility corrections for superfluid 4He were negligible, for practical cases

of interest in cold atomic systems confined to complex geometries the corrections to the

zero compressibility results are relevant.

A coupled field random Ising model with either quenched or annealed disorder is

used in Chapter 3 to compare the shift in the superfluid transition temperature due to

100
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the dynamics of a dislocation network. This network consists of four-fold coordinated

Ising spins connected by spin chains. Real networks do evolve in time and the assump-

tion of quenched disorder would be valid when the time scale over which the network

changes is orders of magnitude larger than the time scale of the spin fluctuations. If

these two time scales are comparable to each other, or at least not too different, then

the disorder should be considered to be annealed. Based on this model, it is shown that

the transition temperature for the Ising model on a random network in which the disor-

der is quenched (frozen) is always higher than the transition temperature for annealed

disorder with the same distribution. The magnitude of the difference between the two

transition temperatures is quantified by our study. The entropy associated with the

one dimensional fluctuations is shown to be larger for the quenched case. Our model

may be relevant also to the renewed interest on dislocation networks in solid 4He. It

presents a simplified version of the effect that dynamics of a dislocation network may

have on the superfluid field in its vicinity. Our results indicate that in the annealed

scenario when the time scale for dislocation line fluctuations becomes comparable to or

smaller than the time scale associated with fluctuations of the superfluid field i.e. when

fluctuations of dislocation line segments within a dislocation network become important

the associated phase transition is subdued. On the other hand, superfluid ordering is

observed to be enhanced in the vicinity of a dislocation if the dislocation network is

considered to be frozen.

Moving towards less coarse-grained models of superfluidity associated with a dislo-

cation line, I looked at the relation between the anomalous shear modulus effect in solid

4He and the presence of a superfluid field in Chapter 4. Insight into how the motion of

a dislocation line is affected by superfluidity in its vicinity was gained based on the su-

perfluid contribution to the mobility co-efficient of a dislocation line. Based on general

approach seen in [32] and [128] to calculate the mobility, the rate of work done by a force

applied on the dislocation line, which causes the line to move with a constant speed VD,

was equated to the energy dissipation rate due to the fields associated with the dislo-

cation line motion. The procedure [32] previously employed to compute the dislocation

mobility in quasicrystals was extended, combined with the usual hydrodynamic equa-

tions [33, 34] for quantum crystals, to calculate the mobility of an edge dislocation line
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in the presence of a surrounding superfluid field. The result for the mobility of the dislo-

cation line is expressed in terms of the bulk “second viscosities” of the superfluid crystal

hydrodynamics, and the value of ρs (the superfluid density). Numerical estimates of

the mobility, although rather uncertain, indicate that an assumed superfluid field in

the vicinity of dislocation lines, may play an important role in dislocation mobility and

therefore in the stiffness of the crystal. An important consequence of this observation is

that superfluid damping of dislocation motion can model the large and sudden increase

in shear modulus observed experimentally in solid 4He as the temperature is lowered.

Our results also show that quenching of dislocation motion due to a superfluid field

could be the dominant source of damping for dislocation motion in the low temperature

limit. Numerical estimates of the change in shear modulus and the Q factor based on

this effect models experimental behavior quite well.

The response of the superfluid field to the dynamics of the dislocation line was

examined using a quantummodel in Chapter 5. Based on the Gross-Pitaevskii formalism

and the Dissipative Gross-Pitaevskii Equation (DGPE), how the superfluid field reacts

to glide and climb motion of an edge dislocation was considered. Climb motion of the

dislocaton line led to superfluidity being ‘smeared’ over a wider region: the superfluid

field distribution tended to be more asymmetric as the dislocation line moved over

longer times and distances. The higher the climb velocity of the dislocation line, the

more pronounced the smearing of the associated superfluid field. Only a very small

decay of superfluid amplitude was observed for both climb and glide motion. Higher

dislocation glide velocities led to stronger damping of the associated superfluid field. A

marked difference between climb and glide motion in how they affect the asymmetry

properties of the superfluid distribution was observed.

Given the broad interest on the physics of dislocations within solids, effect of dis-

location dynamics on superfluidity within solid 4He is examined at different levels of

coarse-graining. The hydrodynamics of compressible superfluid confined to complex ge-

ometries was studied in order to understand the flow behavior of superfluidity associated

with dislocation networks. A perturbative analytic method was implemented for this

purpose and the effect of compressibility on flow properties was documented. A study

on the effect of the dynamics of the network of dislocation line was implemented via

a coupled field random Ising model. The difference induced by quenched vs annealed
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network of dislocation lines on the associated superfluid ordering led to the conclusion

that dynamics of the dislocation line can indeed play an important role. Next, the effect

of the superfluid field on the motion of the dislocation line was analyzed: with the evi-

dence pointing to superfluid field making it harder for the dislocation line to move. This

result was shown to be in good agreement with the experimentally observed anomalous

shear modulus effect and dissipation at low temperatures. The effect of the dynamics

of a dislocation line on the superfluid field was studied at the quantum level i.e. short

time and length scales. The expected ‘smearing’ response of the superfluid field due to

the movement of the dislocation line is quantified via an asymmetry parameter B.

In conclusion, the interplay of the superfluid field and edge dislocation lines within

a quantum crystal was studied at different levels of coarse-graining. Results show that

the dynamics of dislocation lines can have important consequences: it influences the

elastic properties of solid 4He, affects the superfluid transition temperature and dictates

the presence and spatial distribution of the superfluid field.
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