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Bacterial diseases cause dysfunction, pain and even death in pigs of all ages. The use 

of antimicrobial agents is one of the most cost-effective tools in the efficient 

production of pork by reducing the distress and speeding the recovery in infected 

animals (Friendship, 2000). Antimicrobials are widely used in swine especially during 

treatment of respiratory and enteric diseases (De Briyne et al., 2014). In addition to 

treatment of sick animals, antimicrobials are used for control and prevention in 

healthy animals, specifically when periodic outbreaks of bacterial infections happen 

and the probability that most animals become infected is high (Barton, 2014). 

However, the recent emergence of antibiotic resistant bacteria in humans is putting 

into question the antibiotic practices in food animals.  (Aarestrup et al., 2008; 

Wallinga and Bursch, 2013; Anonymous, 2015). Therefore, there is a need to promote 

responsible use of antimicrobials in swine.  

 

Glasser’s disease is an important source of economic losses in current swine 

production systems. Glasser’s disease is caused by Haemophilus parasuis, a Gram-

negative bacterium that affects pigs, and is characterized by polyserositis, arthritis, 

meningitis, pneumonia and sudden death. H. parasuis also colonizes the upper 

respiratory tract (URT) of healthy pigs and colonization may be an important event in 

the development of immunity. For instance, inoculation of young piglets with 

pathogenic H. parasuis has been shown to reduce nursery mortality (Oliveira et al., 

2001a; 2003a). It was hypothesized that a protective immune response to H. parasuis 

was activated when pathogenic H. parasuis strains colonize the URT of pigs (Pijoan 

et al., 1997). Therefore, factors that can disrupt H. parasuis colonization, such as 

antimicrobial treatment, could affect the pig’s ability to develop a protective immune 

response against Glasser’s disease. 
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Antimicrobials have been widely used to treat and control Glasser’s disease (Aragon 

et al., 2012). Antimicrobials have also been shown to reduce H. parasuis colonization 

in weaned pigs (Vilalta et al., 2012) and anecdotal field observations suggest that 

mass treatment with antibiotics in pigs at weaning may render them more susceptible 

to Glasser’s disease later on. One hypothesis that would explain this observation is 

that early elimination (or lack of colonization) of H. parasuis may interfere with the 

development of immune responses. This mechanism has been previously 

demonstrated for other pathogens (North, et al., 1981; Su et al., 1999; Griffin et al., 

2009; Sjolund et al., 1009). Therefore, evaluating the impact of antimicrobial 

treatment on immune responses to H. parasuis should enable us to develop better 

treatment programs that will prevent reinfections. Towards this end, the goal of this 

PhD dissertation is to investigate the influence of antimicrobial treatment on H. 

parasuis colonization and infection, and its effect on the development of immune 

responses against H. parasuis in swine. The central hypothesis of this Ph.D. 

dissertation is that antimicrobial interfere with H. parasuis colonization and infection 

and, as a result, they affect the protective immune responses against Glasser’s disease. 

 

Little is known about how the pig immune system responds to H. parasuis 

colonization and infection. A serological test is needed to study the immune response 

to H. parasuis. However, most attempts to measure pig immune responses to H. 

parasuis used whole cell-based serological assays to measure serum IgG responses 

(Martin de la Fuente et al., 2009a; Cerda-Cuellar et al., 2010). Such serological 

methods lack sensitivity (do not detect responses against all H. parasuis strains) and 

specificity (may cross-react with responses against other Gram-negative bacteria). 

Therefore, a consistent and accurate serological test to characterize the development 
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of specific antibodies against H. parasuis in pigs is lacking. The first research chapter 

(chapter 2) describes the identification of a novel immunogenic and species-specific 

protein in H. parasuis, the oligopeptide permease A (OppA) protein. OppA is a 

transmembrane protein in Gram-negative bacteria responsible for capturing substrates 

from the environment (Monet, 2003). In chapter 2, the OppA protein is used to 

develop a serological test that detects antibodies against a wide range of H. parasuis 

strains. OppA immunogenicity was evidenced by the fact that only convalescent pigs 

or pigs vaccinated with recombinant OppA (rOppA) developed antibodies specifically 

against it.  

 

Another tool that is needed to study the complex relationship between H. parasuis 

infection, immune response and antibiotics is an experimental model for H. parasuis 

colonization. URT colonization by H. parasuis is considered a first step for H. 

parasuis infection. Numerous experimental inoculation models have been described 

for H. parasuis. However, those models were mainly designed to reproduce Glasser’s 

disease, and not H. parasuis colonization. In addition, they used colostrum deprived 

pigs, which do not fully represent the conventional pig in terms of the immune 

response they develop or the interactions that exist with the nasal microbiota. 

Therefore, there is a need for an infection model that simulates an asymptomatic 

colonization of the URT of pigs by pathogenic H. parasuis strains. In chapter 3, an 

experimental model that mimics nasal colonization in conventional pigs is proposed. 

We document that conventional pigs naturally carrying H. parasuis in their noses can 

be experimentally colonized by a pathogenic H. parasuis strain without developing 

Glasser’s disease. Absence of disease was evidenced by absence of clinical signs, and 

lesions, and lack of H. parasuis isolation and H. parasuis DNA detection in blood and 
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systemic tissues. The development of a pig model that mimics upper respiratory tract 

colonization in conventional pigs is a valuable tool to study H. parasuis colonization 

and infection. 

 

Alterations of H. parasuis URT colonization at a young age have been associated with 

occurrence of Glasser’s disease. Antimicrobials are commonly used to treat 

respiratory diseases in pigs. Specifically, enrofloxacin is used to control Glasser’s 

disease at weaning, a time when pigs are being exposed to different H. parasuis 

strains. We hypothesize that the administration of enrofloxacin can interfere with the 

colonization of the URT with H. parasuis. However, there is no information on the 

effect of enrofloxacin on H. parasuis colonization. Chapter 4 documents the reduction 

of both, the number of pigs positive to H. parasuis and the levels of H. parasuis in 

tonsils and nasal cavity of conventional pigs during the first week after treatment with 

enrofloxacin.  

  

Antimicrobials help the immune system to fight off disease by rapidly reducing or 

eliminating the bacterial challenge. However, early antimicrobial treatment can also 

interfere with the ability to mount an effective immune response by eliminating the 

pathogen before the immune system is activated. Chapter 5 describes the pig immune 

responses to pathogenic H. parasuis when pigs are treated with enrofloxacin before or 

after H. parasuis inoculation, and evaluates subsequent effects on protection against 

reinfection. Increase of serum IgG antibodies was observed after H. parasuis 

inoculation only when pigs were treated with enrofloxacin before inoculation and not 

when pigs were treated after inoculation. Such seroconversion was associated with 

protection against reinfection, and the effect of antibiotic treatment on the 
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development of such protection depended on the timing of infection and antibiotic 

administration.    

 

The final chapter (chapter 6) of this dissertation summarizes the findings and 

conclusions of this thesis, discusses limitations of the studies, and addresses future 

research needs. 
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1.1  Haemophilus parasuis  

Haemophilus parasuis is a Gram-negative bacterium member of the family 

Pasteurellaceae. Bacteria from the family Pasteurellaceae infect humans and a broad 

range of animals, often with marked host specificity, and are the cause of various 

diseases with different pathological features. The family Pasteurellaceae includes the 

genera Haemophilus, Pasteurella, and Actinobacillus, with pathogenic and 

commensal bacteria among them (Nicolet, 1990).  Moller and Kilian (1990) 

performed a systematic examination of the variety and ecology of members of the 

family Pasteurellaceae in the porcine upper respiratory tract (URT) demonstrating 

that healthy pigs of all ages harbor a wide spectrum of Pasteurellaceae species in 

their URT. 

 

H. parasuis is one of the most important disease causing bacteria affecting pigs. H. 

parasuis causes the syndrome known as Glasser's Disease, which is characterized by 

polyserositis and arthritis. H. parasuis is considered to be present in all major swine-

rearing countries and remains a significant disease in modern production systems. In 

the USA Glasser's disease is considered one of the main infectious problems in the 

nursery, but it can also affect growing pigs and sows (Aragon et al., 2012).  

 

Several models and routes of infection have been tested to study virulence, 

pathogenesis and immunity to H. parasuis (Morozumi et al., 1981, 1982; Nielsen, 

1993; Amano et al., 1994; Vahle et al., 1995; Oliveira et al., 2003a). Porcine 

polyserositis and arthritis due to H. parasuis infection are typically observed after 

weaning in affected herds (Oliveira et al., 2002). The clinical syndrome is typically 

acute with anorexia, nervous signs, and lameness with one or more joints affected. 
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Pigs often develop fever. Pigs that survive the acute disease have rough hair coats, 

poor weight gain and chronic lameness (Menard and Moore, 1990). Macroscopic 

lesions at necropsy reveal variable amounts of fibrinous to fibrinopurulent exudate 

present on multiple serosal surfaces including pleura, pericardium and peritoneum. 

Joints and meninges can also be affected with purulent arthritis and meningitis, 

respectively (Menard and Moore, 1990; Amano et al., 1994). Microscopically, these 

inflammatory lesions consist of deposition and infiltration of fibrin, neutrophils and 

occasionally macrophages (Hoefling, 1991; Vahle et al., 1995). Less commonly, H. 

parasuis infection can cause acute septicemia in which cyanosis, sub-cutaneous and 

pulmonary edema, and acute death can occur without the typical serosal inflammation 

(Peet et al., 1983). In the field, factors believed to be involved in Glasser's disease 

occurrence are stress related conditions, co-infection with viral pathogens, levels of 

maternal immunity, strain variability and differences in virulence (Aragon et al., 

2012). 

 

The existence of 15 distinct serovars was described by Kielstein and Rapp-Gabrielson 

(1992). They also demonstrated differences in virulence among the serovars after 

intraperitoneal inoculation of specific-pathogen-free (SPF) pigs. Studies also revealed 

the existence of high genetic heterogeneity among H. parasuis isolates, including 

genetic differences within serovar groups and among nontypeable isolates (Oliveira et 

al., 2003b; Olvera et al., 2006). Several studies indicate that H. parasuis strains differ 

in their ability to cause systemic disease in swine (Oliveira et al., 2003b; Olvera et al., 

2006). Recently, the complete genome of a virulent Chinese H. parasuis isolate was 

sequenced (Yue et al., 2009).  The genome size was about 2.3 Mb in a single circular 

chromosome composed of 2,292 predicted coding sequences. Several putative 
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virulence-associated genes were detected in the genome sequenced. Identification of 

novel putative H. parasuis virulence factors and mechanisms of virulence has been an 

active area of investigation (Zhou et al., 2009; Hong et al., 2011; Yuan et al., 2011; Fu 

et al., 2013). Some of the traditional virulence factors described for H. parasuis 

include fimbriae (Munch et al., 1992), capsule (Morozumi and Nicolet, 1986a), and 

lipooligosaccharide (LOS) (Biberstein, 1990).  

 

Fimbriation has been described for H. parasuis, and fimbriae may play a role in the 

colonization of the porcine URT (Munch et al., 1992).  H. parasuis colonizes the 

nasopharyngeal mucosal epithelium of pigs by attaching to the mucosal surface 

(Vahle et al., 1997). H. parasuis has also been consistently isolated from nasal cavity, 

tonsil, and trachea of pigs experimentally inoculated (Amano et al., 1994; Segales et 

al., 1997; Vahle et al., 1997; Kirkwood et al., 2001). For H. parasuis, the expression 

of fimbriae is dependent on cultivation and growth conditions. Fimbriae could not be 

identified when H. parasuis was grown using conventional cultivation methods, but 

rather when it was in contact with living tissue. Embryonated hen eggs have been 

used as a model to reproduce in vivo conditions. H. parasuis grown under these 

conditions have filamentous structures on the surface, which have been identified as 

fimbriae by electronic microscopy (Munch et al., 1992). However, the role of fimbriae 

for adhesion and as a virulence factor for H. parasuis needs to be clarified. 

 

The presence of polysaccharide capsule is recognized as an important virulence 

attribute in preventing phagocytosis and bactericidal serum activity by complement. 

Encapsulated strains are potentially more virulent. However, the presence of capsule 

does not always correlate with virulence (Sandal et al., 2010). The presence of a 
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polysaccharide capsule on H. parasuis has been confirmed (Morozumi and Nicolet, 

1986a), but it has not been purified or chemically characterized. Encapsulated and 

non-capsulated H. parasuis clones can be induced by in vivo or in vitro passages, 

respectively (Oliveira and Pijoan, 2002). Most of H. parasuis isolates from the upper 

respiratory tract of healthy pigs have been found to be encapsulated, whereas the 

majority of isolates from systemic sites of diseased pigs have been non-capsulated 

(Morozumi and Nicolet, 1986a). Different results were observed by Olvera et al. 

(2009), where H. parasuis strains isolated from polyserositis lesions had a prominent 

capsule and resisted phagocytosis, while capsule was not detected in strains isolated 

from the nose of healthy pigs. Therefore, the association of capsule with virulence is 

still controversial. 

 

Lipopolysaccharide (LPS) is a prominent surface component of all Gram-negative 

bacteria. The term lipooligosaccharide (LOS) has become standard when referring to 

the LPS of bacteria from the genus Haemophilus because they lack polymerized O-

antigen side chains (Sandal et al., 2010). Zucker et al. (1996) examined LOS 

production by H. parasuis, and found that virulent and avirulent strains shared similar 

patterns, which suggests that LOS might not be a good indicator of virulence. 

 

Outer membrane proteins (OMPs) have been associated with virulence among H. 

parasuis strains. Potentially pathogenic H. parasuis isolates analyzed by 

polyacrylamide gel electrophoresis (PAGE) shared a 37 kDa major protein and were 

classified as PAGE type II, whereas isolates lacking this protein were classified as 

PAGE type I (Morozumi and Nicolet, 1986b; Ruiz et al., 2001).  Pigs that survive H. 

parasuis challenge developed antibodies to OMPs but not to capsule or LOS, which 
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may suggest that antibodies against OMPs could be related to protection (Miniats et 

al., 1991). However, the role of H. parasuis OMPs as virulence factors or 

immunogens remains to be defined. 

 

Hitherto, vaccination and antibiotics are the standard methods to prevent and control 

H. parasuis outbreaks. Seronegative pigs of all ages are extremely susceptible to 

Glasser's disease (Riising, 1981). Pigs acquire protective immunity against H. 

parasuis after recovery from systemic infection (Riising, 1981; Smart and Miniats, 

1989; Miniats et al., 1991; Solano-Aguilar et al., 1999; Cerda-Cuellar et al., 2010). 

Moreover, there are numerous reports of successful control by vaccination with 

commercial or herd-specific (autogenous) bacterins (Smart and Miniats, 1989; 

Miniats et al., 1991; Kirkwood et al., 2001; Takahashi et al., 2001). There are also 

instances where bacterins are not efficacious. Lack of vaccine efficacy may be due to 

lack of cross-protection for the strain or serovar involved in the disease process or to 

inappropriate vaccination timing (Miniats et al., 1991; Rapp-Gabrielson et al., 1997). 

 

Additionally, when vaccinating piglets against H. parasuis, it is important to consider 

interference of maternal antibodies with the development of active immunity by 

vaccinated pigs (Bak and Riising, 2002). Solano-Aguilar et al. (1999) demonstrated 

that vaccinated piglets born to vaccinated gilts were not affected by Glasser's disease 

after challenge with H. parasuis, while vaccinated pigs born to non-vaccinated gilts 

developed severe polyserositis. Additionally, Cerda-Cuellar et al. (2010) showed that 

maternal antibodies could help explain the absence of H. parasuis disease during the 

first weeks of life, even though most of the pigs are colonized shortly after birth. 

Vaccination of sows resulted in higher IgG levels in serum of pigs, with consequent 
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delay of H. parasuis colonization and reduction of heterogeneity of strains, compared 

with pigs born to non-vaccinated sows (Cerda-Cuellar et al., 2010). 

 

According to Robinson (2004), colonization implies that the patient has a sufficiently 

high concentration of organisms at the site that they can be detected, without causing 

any clinical signs or symptoms. Colonization can persist for days to years, with 

resolution influenced by the immune response to the organism, competition at the site 

from other organisms and, sometimes, use of antimicrobials. The most important 

factor in determining if a patient is colonized or infected with an organism is the 

clinical presentation (Robinson et al., 2004). Smart et al. (1988, 1989) found that pigs 

from SPF herds could carry H. parasuis in the nose. However, Glasser's disease only 

affected SPF animals when they were mixed with apparently healthy conventional 

pigs carrying distinct H. parasuis strains. Introduction of H. parasuis into non-

immune populations may result in high morbidity and mortality with spread of 

infection to swine of all ages without necessarily being associated with stress factors 

(Riising 1981). Vahle et al. (1995) reported that H. parasuis colonizes the nasal cavity 

as an initial event in the pathogenesis of H. parasuis infection of cesarean-derived 

colostrum-deprived (CDCD) swine. Nasal discharge and rhinitis after H. parasuis 

inoculation was followed by lesions of polyserositis and recover of the bacterium 

from nasal mucosa and systemic sites. Therefore, to determine the significance of H. 

parasuis isolates, one must consider the site of isolation and, most importantly, the 

clinical picture.  

 

 Controlled exposure has been adopted by some herds as an alternative method to 

control H. parasuis in the nursery. This method consist of identifying the prevalent H. 
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parasuis strains causing disease in a farm and exposing 3 to 5-day old piglets to a low 

dose of these live pathogenic strains. Field studies have demonstrated that this method 

may reduce nursery mortality by 50% (Oliveira et al., 2001a). The mechanism behind 

such protection was not determined but it was hypothesized that controlled exposure 

results in H. parasuis colonization and, in the presence of maternal immunity, may 

elicit a protective immune response without causing disease (Pijoan et al., 1997). This 

method was also effective at reducing nursery mortality compared to vaccination 

(Oliveira et al., 2004).   

 

Appropriate use of antibiotics is considered an important component of Glasser’s 

disease management either to treat disease or prevent it (Desrosiers et al., 1986). Pigs 

receiving antibiotic treatment early during infection with H. parasuis are usually able 

to survive systemic infection with this bacterium. Most H. parasuis strains are 

sensitive in vitro to antibiotics used in the swine industry (Aarestrup et al., 2004). The 

main antimicrobial agents used to treat swine respiratory infections include 

trimethoprim-sulfa, tetracycline, penicillin, ceftiofur, tulathromycin, ampicillin, 

lincomycin, tylosin, tiamulin and enrofloxacin. However, therapeutic options 

approved to treat H. parasuis are limited to enrofloxacin, ceftiofur, penicillin and 

tulathromycin (Papich and Riviere, 2009). Oral antibiotics have also been 

recommended as a preventive medication program for herds in which H. parasuis is a 

problem. Antibiotics may be effective at controlling H. parasuis infection by reducing 

morbidity and mortality, and improving clinical scores and growth parameters in 

treated pigs.  

 

1.2 Protective Immunity 
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There has been a great expansion on knowledge in regards to the pig immune system 

and its effect in disease and vaccination. Immune response starts when 

microorganisms enter the host and engage the immune system. The innate immune 

system is the first line of defense, typically activated shortly after infection. Pattern-

recognition receptors (PRRs), including the toll-like receptors (TLRs), monitor 

pathogen-associated molecular patterns (PAMPs) and induce different signaling 

pathways to activate the immune system against infection. The phagocytic cells of the 

innate immune system and production of various cytokines provide antimicrobial 

protection, recruit cells through the inflammatory process and assist in the activation 

of acquired immunity. The acquired immune response activation results in cytokine 

production, T-cell and B-cell activation, and antibody production. The acquired 

immune response also provides pathogen-specific memory for protection against 

subsequent infections with the same pathogen (Chase and Lunney, 2012). 

 

Most information present in the literature describes the antibody-mediated immune 

response to H. parasuis (Riising, 1981; Miniats et al., 1991; Nielsen, 1993; Rapp-

Gabrielson et al., 1997, Solano-Aguilar et al., 1999; Martin de la Fuente et al., 2009a), 

whereas little information is available for cell-mediated responses (Martin de la 

Fuente et al., 2009b; Frandoloso et al., 2012a).  

 

1.2.1 Innate Defense Mechanisms 

Innate immunity may be sufficient to protect a host against an invading agent or to 

prevent disease from occurring since it does not require previous exposure to antigen 

(Kindt et al., 2007). Innate immunity enables the pig to respond almost immediately 

to an infectious agent, controlling infection until activation of the adaptive immune 
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system (Roth, 2005). Intact skin and mucous membranes participate in the innate 

immune response by providing physical barriers to infection. The anatomical defenses 

are also associated with chemical barriers (lysozyme) and commensal microbiota that 

prevents colonization of body surfaces by pathogenic bacteria (Roth, 2005).  

PRRs are a key component of the innate immune system. PRRs are receptors present 

in mammalian cells that are able to distinguish between PAMPs, which are conserved 

molecules present on microorganisms, such as LPS and peptidoglycans, and harmless 

antigens. TLRs are an example of these molecules (Uenishi and Shinkai, 2009). TLRs 

are present on cells belonging to the innate immune system, such as macrophages, 

neutrophils and dendritic cells. Innate immune responses are initiated by the contact 

between bacterial PAMPs and host TLRs followed by activation of NfκB signaling 

pathway. This activation leads to the activation of a transcription factor that turns on 

cytokine genes such as those for tumor necrosis factor-alpha (TNF-α), IL-1, and 

chemotactic attractants. The subsequent inflammatory response helps to activate other 

aspects of innate immunity and to initiate the acquired immune response (Akira and 

Hemmi, 2003).  

 

Bacterial invasion will also be challenged by the activation of complement in blood 

and tissues and the stimulation of an inflammatory process that attracts both the innate 

and adaptive immune defenses to the site of invasion (Kindt et al., 2007; Ryan and 

Ray, 2010). The complement system participates in several innate immune reactions 

such as inflammation, phagocytosis and bacterial killing; however, it is also capable 

of causing serious damage to the host, if it is activated in an unregulated fashion. 

Complement is an enzymatic system composed of at least 20 serum proteins that are 

sequentially activated through one of two pathways, the classical and the alternative 
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pathways, involving the membrane attack complex and regulatory proteins. The 

classical pathway is activated by antigen-antibody complexes consisting of 

immunoglobulins IgG and IgM. The reaction between immunoglobulins and antigen 

activates the complement and initiates a cascade reaction on the surface of the 

microbe. The result of this reaction is the formation of pores in the cell wall that will 

lead to bacterial death. The alternative pathway of complement activation is mediated 

by certain bacterial products such as endotoxins (including bacterial LPS, 

peptidoglycan and teichoic acids). This allows antibody-independent activation of the 

complement cascade that is considered important in initial (pre-antibody) defense 

against various types of infections caused by bacteria (Kindt et al., 2007). Activation 

of any of the complement pathways cause vasodilatation and increased vascular 

permeability resulting in serum components (including antibodies and complement) 

entering the tissues to help control infection. Complement components produced 

during activation are chemotactic and attract phagocytic cells to the site of infection. 

They also coat or opsonize infectious agents to increase their uptake by phagocytic 

cells. Complement components also destroy pig cell membranes and some bacterial 

cell membranes (Chase and Lunney, 2012). Therefore, the complement system is 

important for mediating inflammation and controlling bacterial infections. 

 

Little information is currently available for innate immune response to H. parasuis. 

Immunohistochemistry and in situ hybridization methods have demonstrated that 

following infection, H. parasuis is phagocytosed by neutrophils and macrophages and 

can be found as degenerated bacteria in dilated phagosomes (Amano et al., 1994; 

Segales et al., 1997). Moreover, a recent study showed that H. parasuis susceptibility 

to phagocytosis by porcine alveolar macrophages (PAMs) correlates with the clinical 
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origin of the strain (Olvera et al., 2009). H. parasuis strains isolated from systemic 

lesions (virulent) were resistant to phagocytosis, while nasal strains (non-virulent) 

were efficiently phagocytosed by PAMs in vitro, followed by subsequent bacterial 

death within the macrophage. Phagocytosis resistance by H. parasuis virulent strains 

is likely associated with presence of capsule (Olvera et al., 2009), which can interfere 

with complement deposition (Sandal et al., 2010).  

 

Also playing an important regulatory role in modulating the immune responses, 

cytokines are proteins and glycoproteins that are secreted by cells and serve as 

intercellular signaling molecules. All cells of the immune system are capable of 

secreting and being influenced by cytokines. Cytokine secretion is usually transient, 

occurs in response to specific stimuli, and typically cytokines act locally in low 

concentrations. A cytokine will only act in a cell that has specific receptors for it. 

Regulation of cytokine receptor expression is an important mechanism for controlling 

the response to cytokines (Kindt et al., 2007). Most porcine cytokines that have been 

studied are similar to their orthologs in humans or mice (Chase and Lunney, 2012). 

Some cytokines are important in mediating innate immunity. This includes the type I 

interferons (IFN-α/β) and the pro-inflammatory cytokines that include IL-1, IL-6, and 

TNF-α. Type I IFN production occurs in response to viral infection by many cell 

types. Type I IFN make cells resistant to viral infection, increase natural killer cell 

(NK) activity, and increase major histocompatibility complex (MHC) molecule 

expression on cell surfaces, thus increasing antigen presentation to T cells (Roth, 

2005). The proinflammatory cytokines (IL-1, IL-6, and TNF-α) are produced 

primarily by macrophages in response to bacterial infection and require no previous 

exposure. They may also be produced in response to viral, protozoal, fungal 
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infections, or tissue damage. The proinflammatory cytokines stimulate the liver to 

produce acute-phase proteins. In addition, they induce fever, loss of appetite, and 

fatigue if present in high enough concentrations (Roth et al, 1997; Murtaugh and Foss, 

2002; Chase and Lunney, 2012).  

 

While the presence of cytokines is required for effective stimulation of immune 

responses, in large quantities they can induce hypovolemic shock and death (Kindt et 

al., 2007). Therefore, the adequate modulation of cytokine production is essential for 

control and elimination of bacterial infections. An infection model was created to 

study the expression of inflammatory cytokines during acute respiratory disease 

caused by A. pleuropneumoniae in swine. IL-1, IL-8, TNF and IL-6 mRNA were 

detected within 2 to 4 hours after bacterial infection by in situ hybridization and 

Northern blotting in all inoculated pigs (Baarsch et al., 1995; 2000). IL-1 might 

contribute to increased severity of disease, but elevated IL-6 levels were consistent 

with a protective acute phase response. The low TNF levels observed in this study 

were surprising, since TNF was hypothesized to be triggering the inflammatory 

cascade (Murtaugh et al., 1996). Another study demonstrated that macrophage 

activation involving high production of IL-1 and TNF was associated with severe lung 

injury in cases of A. pleuropneumoniae infection (Morrison et al., 2000). Increase of 

pro-inflammatory cytokines after infection with A. pleuropneumoniae indicated that 

cytokines were associated with the development of pleuropneumonia disease and 

contributed to disease injury (Morrison et al., 2000).  

 

Similarly, H. parasuis was able to stimulate the production of proinflammatory 

cytokines IL-8 and IL-6 by pig tracheal cells and endothelial cells in an in vitro model 
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(Bouchet et al., 2008; 2009; Aragon et al., 2010). Acute phase response stimulated by 

IL-6 production and chemoattraction of leucocytes stimulated by IL-8 represent 

essential roles of these cytokines in inflammatory response to H. parasuis. Increased 

IL-1α expression in lung has been reported in pigs undergoing severe disease 

following experimental infection, whereas IL-4, IL-10, tumor necrosis factor-alpha 

(TNF-α), and (IFN-γ) were expressed in significantly higher levels in spleen, 

pharyngeal lymph nodes, lung and brain of survivors, which suggests that these 

cytokines might contribute to protection against H. parasuis (Martin de la Fuente et 

al., 2009c). 

 

1.2.2 Acquired Immunity  

While the porcine innate immune system confers initial protection, the acquired 

immune system provides a second, more specific and long lasting, line of defense 

against infectious organisms (Lunney, 2005). In non-immune animals, precursor T 

cells exist as "resting T cells", bearing T-cell receptors (TCRs) for specific antigens. 

Various innate signals, such as TLR signaling and cytokines, attract immune cells to 

the local tissues where they undergo activation. These immune cells then use their 

surface molecules to signal each other's activation (Lunney, 2005). Foreign antigens 

must be processed by antigen presenting cells (APCs) to stimulate adaptive immunity. 

The induction of clonal expansion of the immune response requires complex 

interactions of macrophages, T, and B-lymphocytes (Kindt et al., 2007). 

 

Following antigen stimulation, CD4+ T cells differentiate into T helper (Th) cells 

with a characteristic cytokine secretion profile. The mice Th-1 patterns of cytokine 

production include IL-2 and IFN-γ, whereas Th-2 cells produce IL-4, IL-5, IL-6, IL-9, 
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IL-10 and IL-13. Some cytokines are secreted by both Th-1 and Th-2, including IL-3, 

TNF-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) (Mosmann 

and Sad, 1996). The functions of Th-1 and Th-2 cells correlate with the production of 

their cytokines. Th-1 cytokines are involved in cell-mediated inflammatory functions, 

while Th-2 cytokines encourage antibody production, and also enhance eosinophil 

proliferation and function (Mosmann and Sad, 1996). 

 

The number of studies conducted on porcine cellular immune responses to infectious 

microorganisms has increased in recent years, but it is still limited, in comparison 

with work performed on other species. Specific reagents, improved technology and a 

more detailed knowledge of the porcine immune cell populations now enables better 

association of the interactions between pathogens and the porcine immune system, 

and detailed analyses of the antigen-specific T-cell response (Saalmuller, 1998). 

Although protective immunity against extracellular bacteria is mainly dependent on 

antibodies, T cell responses are often required for full expression of immunity (Chase 

and Lunney, 2012).   

 

In order to stimulate the adaptive immune response, the foreign antigen must be 

processed by an APC. APCs internalize bacterial agents and then present antigenic 

fragments bound to MHC II molecules on the surface of the cell.  This antigen-MHC 

II complex is presented to a Th-2 cell, which can only efficiently recognize foreign 

antigens that are on the cell surface bound to MHC class II molecules. In addition to 

antigen-MHC II complex, the Th cell requires the presence of cytokines released by 

APCs and other T cells, and contact with co-stimulatory molecules on the surface of 

the APC for complete activation. Following antigen presentation, the macrophage will 
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secrete IL-1, which will activate Th-2 cells to secrete IL-2. IL-2 will induce Th-2 cells 

to proliferate. This process continues with stimulated Th-2 cells secreting a variety of 

other cytokines including IL-2, IL-4, IL-6, and IFN-γ. IL-4 causes B cells to 

proliferate and differentiate into antibody-secreting plasma cells and memory B cells 

(Lunney, 2005; Kindt et al., 2007; Chase, 2012). In pigs, however, IL-4 seems to play 

a different role than in mice. Porcine IL-4 was not able to stimulate porcine B cell and 

it blocked antibody production. Porcine IL-4 did have a stimulatory effect on 

lymphoblast's cell growth (Murtaugh et al., 2009). Therefore, the role of IL-4 in 

porcine immunology needs further investigation. Appleyard et al. (2002) evaluated 

possible correlates of protection in blood lymphocyte subset phenotypes of pigs 

receiving either a commercial A. pleuropneumoniae bacterin, low dose (LD) of 

aerosol infection with the same bacteria, or control group. All pigs were subsequently 

challenged with a high dose of A. pleuropneumoniae. B-cells increased following 

vaccination. CD4+ lymphocytes increased significantly in both vaccinated and LD 

groups after challenge, while CD8+ cells decreased in the LD-group (Appleyard et al., 

2002).  

 

Specific changes in peripheral blood mononuclear cells (PBMC) were found in 

colostrum-deprived pigs after challenge with virulent H. parasuis strain, but not after 

immunizations (Martin de la Fuente et al., 2009b; Frandoloso et al., 2012a). These 

changes consisted mainly of increase in the relative proportions of T and B-

lymphocytes in immunized pigs that survived challenge (Martin de la Fuente et al., 

2009; Frandoloso et al., 2012a). As extracellular pathogens, A. pleuropneumoniae and 

H. parasuis would be expected to require a dominantly Th-2 response to mediate host 

resistance. Several studies show that bactericidal antibody production appears to 
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correlate with protection (Ryan and Ray, 2010). Yet, the appearance of the different 

subsets of T lymphocytes during infection with these two bacteria might also be 

relevant to protection.  

 

Helper lymphocytes are also critical in initiating B-cell responses, which result in 

antibody production. B cells contact antigen through antibodies bound to their 

surface, which act as B-cell receptors (BCRs). Contrary to T-cells, B-cells can react 

with soluble antigens, without having to be presented on MHC class II molecules by 

APCs. However, optimal B-cell response to antigen requires Th-cell release of 

cytokines. When a B-cell is bound to antigen, and simultaneously is stimulated by IL-

4 produced by a nearby Th-2 cell, the B cell undergoes mitosis and clonal expansion. 

At the same time, B cells differentiate into plasma cells or memory cells and 

experience class switching of antibody production from IgM to IgG, IgA, or IgE. The 

antibodies secreted by plasma cells react specifically with the homologous antigen 

that induced their formation. Even though they produce large amounts of antibodies, 

plasma cells are relatively short-lived (about one week). Therefore, B-cells also 

differentiate into memory cells, which are relatively long-lived and upon subsequent 

exposure to antigen, they become quickly transformed into antibody-producing 

plasma cells (Kindt et al., 2007). 

 

Development of antibodies against H. parasuis has been demonstrated in 

convalescent and vaccinated pigs by complement fixation, western blot analysis, and 

ELISA testing (Miniats et al., 1991; Nielsen, 1993; Solano-Aguilar et al., 1999). Pigs 

exposed to H. parasuis live cultures or vaccinated with killed bacterins generate a 

transient immunoglobulin M (IgM) response followed by a solid and progressively 
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increasing IgG antibody response. Pigs with high titers are protected against challenge 

(Martin de la Fuente et al., 2009a), while Glasser's disease has been associated with 

absence or low titers of serum antibodies (Riising, 1981; Rapp-Gabrielson et al., 

1997). Moreover, passive immunization of pigs with serum containing specific 

antibodies against H. parasuis was demonstrated to have protective effects against 

lethal challenge (Nedbalcova et al., 2011). In vitro studies suggested that antibodies 

play an important role in opsonization of virulent H. parasuis strains to facilitate 

phagocytosis (Olvera al., 2009). Virulent H. parasuis strains required prior 

opsonization with specific antibodies in order to be phagocytosed by PAMs and, if 

internalized, they were killed by PAMs (Olvera et al., 2009).  

 

Maternal antibodies are a critical factor protecting pigs against the development of 

systemic infection and, apparently, there is no interference with the pig’s active 

immunity (Solano-Aguilar et al., 1999). Additionally, pigs lacking maternal immunity 

were susceptible to Glasser's disease upon inoculation with a virulent H. parasuis 

strain, whereas pigs that received maternal immunity were protected (Blanco et al., 

2004). Cerda-Cuellar et al. (2010) further demonstrated the importance of a good 

balance between colonization and immunity to avoid systemic disease caused by H. 

parasuis. Piglets from vaccinated sows had significantly higher levels of antibodies 

earlier after birth, and were colonized later and to a lower degree than piglets from 

non-vaccinated sows. The peak of H. parasuis nasal colonization for both groups was 

at 60 days of age, when H. parasuis was isolated from the nose of 100% of piglets 

from non-vaccinated sows and 85.7% of pigs from vaccinated sows. Furthermore, the 

increase in colonization rate was associated with a decrease in H. parasuis serum 
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antibodies in piglets, which indicates that the level of maternal antibodies in piglets 

might be able to modulate the timing and level of colonization by H. parasuis. 

 

Besides causing systemic disease, H. parasuis is also commonly isolated from the 

upper respiratory tract of healthy pigs. Consequently, H. parasuis might interact with 

the mucosal immune system, possibly resulting in priming of the immune response. 

Indeed, pigs exposed to aerosol containing live non-pathogenic H. parasuis cells 

developed serum antibodies and resisted challenge with virulent H. parasuis strains 

(Nielsen, 1993). Moreover, oral exposure of 5-day-old pigs to a low dose of a live H. 

parasuis strain significantly reduced mortality compared to vaccination (Oliveira et 

al., 2004).  

 

In addition to serum antibodies, secretory IgA (sIgA) serves as an important 

protective mucosal element. The B cells that produce IgA preferentially migrate to 

submucosal tissues where they differentiate into plasma cells that secrete IgA. SIgA 

antibodies bind to the poly-Ig receptor on the basolateral surface of respiratory 

epithelial cells, and are transported to the mucosal surface of the epithelial cell. The 

cleavage product is called the secretory component and remains bound to the dimeric 

IgA (Snoeck, et al., 2006). Contrary to serum IgA antibodies, sIgA is not able to 

trigger phagocytosis, which is presumably due to blockage of Fc part of the IgA 

heavy chain by the secretory component. However, sIgA antibodies contribute to the 

protection of the mucosal epithelial barrier through other mechanisms. SIgA 

antibodies help clear pathogens by preventing adherence of microorganisms to 

epithelial cells. Dimeric sIgA is still more efficient than IgA because it can cross-link 

large antigens with multiple epitopes. Complexes of sIgA and antigen are easily 



26 

 

entrapped in mucus and then eliminated by the ciliated epithelial cells (Snoeck, et al., 

2006).  

 

Little is known about the mucosal immune response to H. parasuis in the respiratory 

tract of pigs. Levels of IgA increased in nasal secretions and bronchoalveolar lavage 

(BAL) fluid from pigs vaccinated intranasally with a subunit vaccine containing 

recombinant virulence associated trimeric autotransporter (VtaA) and it was 

associated with partial protection against H. parasuis challenge (Olvera et al., 2011). 

In a different study, specific IgA against H. parasuis was detected in serum of pigs 

immunized with a subunit vaccine when the vaccine was delivered intratracheally, but 

not when it was delivered intramuscularly. However, the presence of IgA in the 

respiratory tract was not evaluated (Martinez-Martinez 2012).   

 

1.3 Effects of antimicrobials on the immune response 

Antimicrobials have been widely used in the swine industry since they were 

discovered over 50 years ago. The use of antimicrobial agents during all phases of 

pig's growth is one of the most cost-effective tools in the efficient production of pork. 

Increase in disease challenge due to the decline of small farms and increase in the 

larger ones, particularly in the USA, is associated with an increase of the use of 

antimicrobials in pork production (Friendship, 2000). The emergence and re-

emergence of viral diseases, particularly porcine reproductive and respiratory 

syndrome (PRRS) virus and porcine influenza virus which are often found interacting 

with bacterial agents has also been associated with an increased use of antimicrobials 

to control swine respiratory disease (VanAlstine, 2012).  
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Antimicrobials are mainly used in the swine industry for growth promotion, disease 

prevention and treatment (Cromwell, 2002). Antimicrobials in swine have also been 

used as part of disease elimination programs for pathogens such as Mycoplasma 

hyopneumoniae (Dee, 1994, Rautiainen et al., 2001) and A. pleuropneumoniae 

(Andersen and Gram, 2004). However, pathogen elimination has not always been 

successful, in particular for pathogens such as H. parasuis and Streptococcus suis, 

considered part of the commensal flora of the pig (Clark, 1994). The majority of 

antimicrobial drugs used in swine farms are incorporated into feed for growth 

promotion (subtherapeutic use) (Friendship, 2000).  

 

The present review will deal primarily with antimicrobial drugs as therapeutic agents. 

The in vivo response of a host and bacteria to an antimicrobial agent is a product of 

the interaction of many factors including susceptibility of the bacteria to the agent, 

age and immune status of the host, existing disorder, and route of antimicrobial 

administration (Ngwai et al., 2011). Therefore, selection of the adequate antimicrobial 

agent depends on the antimicrobial sensitivity pattern of the pathogenic organism, the 

established MICs of the antimicrobials being considered, the legislation concerning its 

use, and the drug's cost (Friendship, 2000).  

 

According to data from the National Animal Health Monitoring System (NAHMS) 

Swine 2006 study collected from 514 swine production sites, the most common 

antimicrobials given by injection to nursery-age pigs for disease treatment or 

prevention were ceftiofur and procaine penicillin G (43 and 43.9 percent of sites, 

respectively). About half of sites with nursery-age pigs (48.6 percent) used injectable 
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antimicrobial to treat respiratory disease and the most common actions taken for pigs 

with clinical respiratory disease were to administer antimicrobials to all pigs in the 

entire room with clinically ill pigs (39.6 percent of sites). Therefore, the use of 

antibiotics in swine is widespread, not only as growth promoters in the feed, but also 

to control and treat disease by intramuscular administration. While it is clear that the 

use of antimicrobials is an important tool to control disease in pigs, its potential effect 

on the immune response is less understood.   

 

1.3.1 Effect of antimicrobials on bacterial infection and immune response  

The widely known activity of antimicrobial agents is the direct (bacteriostatic or 

bactericidal) effect against microorganisms. Antimicrobials decrease the bacterial 

load and thereby permit the host to activate immune defenses and eliminate the 

pathogen without excessive inflammation (Walker, 2000; Labro, 2000). At the same 

time, early elimination of the pathogen by antibiotics may hinder the development of 

a protective immune response necessary to overcome future infections (Su et al., 

1999; Griffin et al., 2009). Additionally, antimicrobial use in swine may affect the 

commensal microbiota with unpredictable effects on disease dynamics (Macedo et al., 

2012; Vilalta et al., 2012).  

 

In regards to the effect that antimicrobials may have on the development of an 

immune response, early elimination of bacterial infection has been reported to have an 

effect on the immune response activation (North et al., 1981; Su et al., 1999; Griffin 

et al, 2009; Sjolund et al., 2009; Johanns et al, 2011). An undesirable effect of 

antimicrobial-induced elimination is the substantial reduction in the generation of 

immunologic cell-mediated memory. In the case of Listeria monocytogenes infection 



29 

 

in mice, when ampicillin was employed to rapidly eliminate infection at any time 

during the first 5 days post infection, there was a great reduction in the capacity of 

antibiotic-treated mice to resist a subsequent challenge. The earlier the primary 

infection was eliminated, the lower the level of immunologic memory generated. 

Additionally, when ampicillin was used to eliminate remaining bacteria at the time of 

peak response (day 6 after infection), the rate of decay of immunity, as measured by 

the rate of loss of protective T cells from the spleen, was greatly increased. Therefore, 

the magnitude and duration of the T cell-mediated anti-Listeria immune response 

were determined by the level and duration of infection with live, replicating antigen 

(North et al., 1981). 

 

Similarly, other studies have shown that early antibiotic treatment can prevent the 

development of protective immunity against reinfection with Chlamydia trachomatis 

and Salmonella sp. (Su et al., 1999; Griffin et al, 2009). Mice that can spontaneously 

resolve primary infection with C. trachomatis exhibit significant resistance to 

reinfection and that correlates with the production of local IgA and IgG, and with a 

chlamydial-specific CD4+ Th1 cell–mediated immune response (CMI) (Williams et 

al., 1997). In contrast, treatment with doxycycline at the time of infection (day 0) and 

at days 3, 7, and 10 post infection, resulted in a significant reduction in chlamydial-

specific antibody, CMI responses and protection against secondary chlamydial genital 

infection (Su et al., 1999).  

 

Antimicrobials used to eliminate primary Salmonella sp. infection also rendered mice 

susceptible to secondary infection against Salmonella sp. Protection from Salmonella 

sp. requires Salmonella-specific Th1 cells. The optimal development of that protective 
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immunity requires at least two weeks of exposure to the live attenuated Salmonella sp. 

strain (Griffin and MacSorley, 2011).Antibiotic treatment in the water with 

enrofloxacin for 5 weeks beginning 2 days post infection not only prevented the 

development of an effective immune response but also rendered the animals 

susceptible to challenge infection. Even though the specific immune response was 

activated rapidly in antibiotic-treated mice, it was not sustained after successful 

antibiotic treatment (Griffin et al., 2009). In contrast, a different murine model of 

persistent Salmonella infection demonstrated that water treatment with enrofloxacin 

starting as early as 5 days post infection eliminated primary infection without 

rendering mice susceptible to the secondary infection. Interestingly, in this case 

protection was not mediated by CD4+ or CD8+ T cells because depletion of these 

cells either alone or in combination prior to the second challenge did not abrogate 

protection. Instead, robust levels of Salmonella-specific antibody were primed and 

were shown to be protected when transferred to naïve mice (Johanns et al, 2011).  

 

One study has been performed on the effect of antibiotic treatment on the immune 

response in swine. In the case of A. pleuropneumoniae, Sjolund et al. (2009) 

investigated the susceptibility to an initial challenge and re-challenge with 

Actinobacillus pleuropneumoniae in SPF pigs that were treated with antimicrobials 

(penicillin, enrofloxacin or tetracycline) at the onset of clinical signs. After initial 

exposure to A. pleuropneumoniae, the inoculated control and the penicillin-treated 

groups developed severe disease, but the groups treated with enrofloxacin and 

tetracycline recovered rapidly. All the inoculated pigs, except those treated with 

enrofloxacin, developed serum antibodies to A. pleuropneumoniae, which protected 

them against the second challenge (Sjolund et al., 2009). Therefore, in this case the 
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development of a protective immune response was impeded by treatment with 

enrofloxacin but not by treatment with penicillin or tetracycline.  

 

There is no specific information available on the role of antibiotics on the immune 

response to H. parasuis.  However, fluoroquinolones have been associated with 

potential interference with the dynamics of respiratory colonization of bacterial 

pathogens including H. parasuis, in pigs (Le Carrou et al., 2006; Macedo et al., 2012; 

Vilalta et al., 2012). Fluoroquinolones are used to treat respiratory diseases (Papich 

and Riviere, 2009). These drugs are known for their high efficiency and very low 

levels of resistance. In the case of H. parasuis, intramuscular administration of 

marbofloxacin was able to reduce the nasal carriage of H. parasuis in weaned pigs 

(Vilalta et al., 2012). In another study, enrofloxacin reduced the numbers of H. 

parasuis in the tonsil and nasal cavity of pigs and decreased the number of positive 

pigs during the first week after treatment (Macedo et al., 2012). Both, marbofloxacin 

and enrofloxacin, showed a similar effectiveness after treatment, being able to reduce 

the amount of H. parasuis in the upper respiratory tract of pigs but not to eliminate it. 

As mentioned in a previous section of this manuscript, reduction in H. parasuis 

colonization at a young age has been associated with the development of Glasser’s 

disease during the post-weaning period (Pijoan et al., 1997, 2003; Oliveira et al., 

2001a, 2004). Therefore, antibiotic treatments that interfere with H. parasuis 

colonization in young pigs could result in increased disease susceptibility at an older 

age. However, no studies have been performed on this topic.    
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1.3.2 Antimicrobial Immunomodulation 

In addition, some antimicrobials can directly modulate innate and adaptive immune 

responses. Antimicrobial agents such as beta-lactams, quinolones, and macrolides, are 

commonly used in the treatment of respiratory tract infections in swine. In addition to 

their potent direct antibacterial activity, some of these antimicrobials, especially 

macrolides and fluoroquinolones, have immunomodulatory effects. 

Immunomodulation refers to the action undertaken by medication on processes that 

guide the immunological defense system. The immunomodulatory capabilities of 

antimicrobial agents have been demonstrated in human cells and, to a lesser extent, in 

animal experiments, especially mice (Zimmermann et al., 2009). 

 

For the purpose of this review, the immunomodulatory effects of quinolones will be 

addressed.   Quinolones have been demonstrated to beneficially interact with the 

immune system in vitro and in animal models (Riesbeck, 2002). Specifically, the 

effects of quinolones on porcine phagocytic activity and cytokine production are 

presented below.  

 

Fluoroquinolones are actively accumulated in phagocytes. At clinically achievable 

concentrations, quinolones might affect granulocyte functions (e.g., phagocytosis or 

chemotaxis). Bacteria pre-incubated with quinolones are also more easily 

phagocytized compared to untreated controls (Riesbeck, 2002). Enrofloxacin is a 

fluoroquinolone routinely used for the treatment of respiratory bacterial infections in 

pigs and other livestock species and poultry. In a study evaluating the effects of 

enrofloxacin on porcine phagocytic function, this antimicrobial was shown to 

accumulate in porcine polymorphonuclear leukocytes (PMNs) and alveolar 
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macrophages (AMs) when clinically relevant concentrations of enrofloxacin were 

used (Matera et al., 1996; Garcia et al., 1992). In addition, intraphagocytic killing of 

A. pleuropneumoniae was significantly enhanced by enrofloxacin in both PMNs and 

AMs (Schoevers et al., 1999). More research is needed to investigate whether these 

effects would also apply to other swine bacteria such as H. parasuis.   

 

Fluoroquinolones have also been shown to have modulatory effects on cytokine 

release. Cytokines are essential elements of the effective immune response against 

infections in general. However, prolonged production of cytokines may result in 

exacerbation of inflammatory reactions and tissue damage (Williams, 2005). As 

explained before, cytokine production represents one immunological factor that 

directs the particular type of immune response by controlling the differentiation of 

precursor T helper (Th0) cells into Th1 or Th2 cells. As a result, antimicrobials that 

affect cytokine production may alter the Th response induced by microbial infection. 

Williams et al. (2005) have shown that the quinolone agents, moxifloxacin and 

ciprofloxacin, have pronounced effects on Th1 and Th2 cytokine expression in human 

mononuclear cells. Both quinolones decreased the number of cells expressing IL-4 

and IFN-γ in stimulated cells compared to control cells without antimicrobials. 

Despite the changes in the number of cells expressing IFN- γ and IL-4, there was no 

significant change in the ratio of the number of INF-γ-positive to IL-4-positive cells 

(Th1/Th2 ratio) in cells exposed to moxifloxacin or ciprofloxacin. These results have 

shown that both quinolones can have effects on Th cell cytokines, with potential 

implications for immune response and recovery after severe infection, but the 

mechanisms of such effects need further investigation. 
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Additional control of cytokine production by fluoroquinolones may have a significant 

role during septic shock. Septic shock that results from Gram-negative bacterial 

infections including H. parasuis has been reported in pigs (Post, 2012). Two 

important mediators of septic shock are tumor necrosis factor (TNF) and interleukin-1 

(IL-1); inducing changes that are similar to those induced by endotoxin (Khan et al., 

2000). Although concentrations of cytokines fluctuate during sepsis, TNF, IL-1, IL-6, 

and IL-10 are frequently elevated in individuals in septic shock (Khan et al., 2000). In 

vitro studies have shown that the fluoroquinolone trovafloxacin reduces cytokine 

production by lipopolysaccharide (LPS)-treated human monocytes, especially IL-1, 

IL-6, IL-10 and TNF-α (Khan et al., 1998). Moreover, the fluoroquinolones 

ciprofloxacin, trovafloxacin and tosufloxacin have been shown to significantly reduce 

the IL-6 and TNF-α serum concentration in quinolone-treated mice injected with LPS, 

and increase the survival of mice receiving lethal dosages of LPS (Khan et al., 2000). 

The mechanisms by which these antimicrobials contribute to protection in LPS-

injected mice are not clear (Khan et al., 2000). 

 

1.4 Summary 

H. parasuis is considered one of the most important bacterial pathogens affecting 

pigs. Vaccines and other management strategies have not always been successful in 

controlling the losses associated to H. parasuis. The success of H. parasuis controlled 

exposure in preventing mortality during the nursery stage suggests that early 

colonization with virulent H. parasuis protects pigs from developing disease. We 

speculate that colonization primes a protective immune response. Therefore, factors 

that may interfere with colonization may interfere with the development of an 

effective immune response. Furthermore, the use of antibiotics has been shown to 
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alter H. parasuis colonization patterns. We hypothesize that disruption of H. parasuis 

colonization by antibiotics might hinder the development of priming immunity by 

rapidly eliminating the source of bacterial antigens. 

 

We reviewed information to determine whether disruption of colonization could be 

important in Glasser's disease. Recent publications show that antibiotics can prevent 

the development of protective immune response against infection with agents, such as 

A. pleuropneumoniae, C. trachomatis and Salmonella sp. Because antibiotic use is 

widespread in the swine industry and it is used as an option to control H. parasuis 

disease, we speculate that selected antibiotic schemes may result in subsequent H. 

parasuis associated disease. Moreover, serum antibody response is important for 

protection against H. parasuis, even though little is known about immune response to 

H. parasuis colonization. Furthermore, although there are studies showing that 

antibiotics reduce nasal colonization with H. parasuis, there is no information on the 

effect of antibiotics on H. parasuis immunity. An improved understanding of whether 

H. parasuis colonization may prime an immune response that will be protective and 

whether this response may be impaired by the use of antibiotics will contribute to the 

development of better control programs for H. parasuis in the field and will help 

develop judicious antibiotic treatment practices. 
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CHAPTER 2  

ROLE OF OLIGOPEPTIDE PERMEASE A (OPPA) PROTEIN IN 

HUMORAL IMMUNE RESPONSE TO HAEMOPHILUS PARASUIS IN PIGS 

 

 

The work has been submitted to: 

Macedo N, Oliveira S, Torremorell M, Rovira A. Role of Oligopeptide permease A 

(OppA) protein in humoral immune response to Haemophilus parasuis in pigs. 
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Abstract 

Haemophilus parasuis is an important swine pathogen that causes Glasser's disease, 

characterized by pneumonia, polyserositis and meningitis. Protection against H. 

parasuis infection is associated with the presence of homologous antibodies in serum. 

However, a H. parasuis antigen that can elicit a protective immune response against 

all H. parasuis strains has yet to be found. A novel immunogenic and species-specific 

H. parasuis protein was identified by screening H. parasuis whole cell proteins using 

swine convalescent sera. One protein of 52 KDa was clearly immunodominant and 

conserved among different H. parasuis strains. This protein was further identified as 

an oligopeptide permease A (OppA). Because OppA elicited a specific antibody 

response in pigs that recovered from H. parasuis infection, we investigated its 

potential role in diagnostics and protective immunity. An ELISA test using 

recombinant OppA as its coating antigen was further developed and tested. H. 

parasuis specific antibodies to rOppA were detected in serum from convalescent pigs 

but not in serum from specific pathogen free (SPF) or conventional pigs. Pigs 

immunized with rOppA protein had –antibody in serum against rOppA. However, 

challenged pigs were not protected against challenge with pathogenic H. parasuis. We 

conclude that OppA is a universal species-specific H. parasuis immunogen, and a 

good marker for previous systemic infection with H. parasuis. 
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Introduction 

Haemophilus parasuis is an important swine pathogen that causes Glasser's disease, a 

systemic disease characterized by pneumonia, polyserositis and meningitis (Oliveira 

and Pijoan, 2004). High mortality and morbidity caused by H. parasuis infections are 

common, often in association with viral infections, such as porcine reproductive and 

respiratory syndrome virus (PRRSV) and influenza A virus (IAV) (Solano et al., 

1998; Oliveira and Pijoan, 2004). Control of Glasser's disease is complicated by the 

lack of cross protection between the multiple genetically distinct strains, and the 

limited knowledge on virulence factors and protective antigens (Costa-Hurtado and 

Aragon, 2013). The lack of a consistent and accurate serological test to characterize 

the development of protective antibodies in sows and piglets also makes the control of 

H. parasuis a permanent challenge. 

 

Protection against H. parasuis infection is associated with the presence of 

homologous antibodies against this pathogen (Martin de la Fuente et al., 2009a; 

Nedbalcova et al., 2011). Current commercial vaccines are usually based on bacterin 

extracts of a few strains that do not provide complete cross-protection against all the 

different strains (Bak and Rising, 2002; Hoffman and Bilkei, 2002). Recently, subunit 

vaccines based on immunogenic proteins have gained interest. Specifically, antibodies 

to outer membrane proteins, but not to LPS or capsule, have been associated with 

protection (Miniats et al., 1991). Vaccination of mice or pigs with vaccines containing 

newly identified immunogens such as PalA, Omp2, D15 and HPS-06257 (Zhou et al., 

2009), recombinant transferrin-binding protein (rTbp) (Frandoloso et al., 2011), VtaA 

(Olvera et al., 2011), rSmpA, rYgiW and rFOG (Yuan et al., 2011), rGAPDH, rOapA 

and rHPS0675 (Fu et al., 2013), resulted in partial protection only. Therefore, the 



39 

 

identification of novel H. parasuis immunogens is still needed for the development of 

efficacious control methods for H. parasuis.  

 

Oligopeptide-biding proteins belong to the ATP-biding cassette (ABC) family of 

transporters (Monnet, 2003). Oligopeptide permease A (OppA) protein, one of several 

subunits of ABC transporters, is a transmembrane protein in Gram-negative bacteria. 

Previous studies have reported the ability of OppA to elicit immune responses against 

a variety of bacteria, including Yersinia pestis (Tanabe et al., 2006) and Borrelia 

burgdorferi (Nowalk et al., 2006). Specifically for H. parasuis, OppA has been shown 

to induce an immune response in immunized mice (Hong et al., 2011). However, the 

immune response against H. parasuis OppA in the natural host, the pig, has not been 

investigated. Furthermore, the ability of such an immune response to protect pigs 

from H. parasuis disease remains unknown. In this study, we identified the immune 

response against H. parasuis OppA in pigs after they survived a systemic infection 

under field conditions. We also evaluated the potential of OppA as an ELISA antigen 

candidate and its capacity to confer protection to pigs against H. parasuis lethal 

challenge. 

 

Material and Methods 

Farm and pig selection, sample collection and H. parasuis isolation 

A North American swine herd experiencing high nursery mortality (>5%) was 

selected. Clinical signs in affected nursery pigs included fever, respiratory distress, 

lameness, and central nervous system signs. Lesions included mostly fibrinous 

polyserositis. Glasser’s disease was confirmed by culture of H. parasuis from affected 

organs.  Mortality was mainly observed between 5-6 weeks of age. 
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During a first farm visit, 20 pigs presenting clinical signs of H. parasuis disease were 

selected. Pig selection was based on clinical signs characteristic of H. parasuis 

infection (described above) and rectal temperature higher than 105° F. Ten pigs were 

euthanized and necropsied, and the other 10 pigs were bled and treated with ceftiofur 

crystalline free acid (Excede® for swine, Zoetis, Florham Park, New Jersey, USA), at 

5 mg/kg of body weight, intramuscularly. Samples for H. parasuis isolation included 

swabs from heart, brain, pleura, lung, joint and pericardium. In a follow up visit three 

weeks later to the same farm, convalescent sera were collected from the pigs treated 

with ceftiofur.  

  

After collection, swabs were placed in Stuart medium and transported under 

refrigeration to the laboratory, where they were cultured onto 5% sheep blood agar 

plates with a nurse Staphylococcus aureus streak. All plates were incubated at 37°C in 

a 5% CO2 atmosphere.  Plates were checked for the presence of H. parasuis suspect 

colonies at 24 and 48 hours. Suspect colonies showing satellitism to the S. aureus 

nurse streak were isolated onto a new blood agar plate, incubated in similar conditions 

for 24 additional hours, and characterized through biochemical testing. DNA from 

pure cultures was extracted using PrepManTM Ultra Sample Reagent following the 

manufacturer’s instructions and tested by Polymerase Chain Reaction (PCR) as 

described by Oliveira et al. (2001b) to confirm the identity of the pathogen isolated. 

Cultures were harvested and kept frozen at -80°C until use. 
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Genotyping and serotyping  

To evaluate the genetic and phenotypic H. parasuis variability in this herd, and to 

identify the prevalent H. parasuis strain,  H. parasuis isolates were genotyped using 

Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR (Oliveira et al., 2003b) 

and serotyped by immunodiffusion test using heat stable cell extracts (Raffie and 

Blackall, 2000). Upon completion of ERIC-PCR genotyping, a representative isolate 

from each strain group was selected to be included in sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis for 

protein identification.  

 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

Whole cell protein profiles of H. parasuis field isolates representative of each strain 

group and H. parasuis reference strains were evaluated using SDS-PAGE (Kawai et 

al., 2004). All H. parasuis isolates were grown under the same conditions described 

above. Overnight cultures were suspended in 1 ml of PBS and vortexed vigorously for 

1 minute. Each suspension was diluted in PBS to achieve a final concentration of 1 

µg/µl, measured by spectrophotometer. Fifty microliter of this suspension was added 

to 50µl of sample buffer containing 47.5µl of Laemmli Sample Buffer (Bio Rad 

Laboratories, Hercules, CA) and 2.5µl of 2-Mercaptoethanol (Bio Rad Laboratories, 

Hercules, CA).  The final solution was boiled for 3 minutes for complete dissociation. 

For SDS-PAGE, 40 µl of the boiled solution was loaded per lane of a gel containing 

4% stacking gel and 10% separating gel (Protean Ready Precast Gel, Jule, Inc, 

Milford, CT). Electrophoresis was carried out in a Protean® II xi Cell equipment (Bio 

Rad Laboratories, Hercules, CA) with a current of 25mA for 30 minutes and 35mA 

for 4 hours. The proteins were visualized by staining with Coomassie Brilliant Blue 
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R-250 1x solution and then destained with Comassie R-250 Destaining solution 1x 

(Bio Rad Laboratories, Hercules, CA).  

 

Western blot analysis using convalescent sera  

Identification of whole cell proteins recognized by the immune system of pigs that 

survived the H. parasuis outbreak was evaluated using Western blot analysis 

according to Towbin et al. (1979). Briefly, following SDS-PAGE analysis, proteins of 

H. parasuis field isolates and reference strains were transferred to PVDF membranes. 

PVDF membranes were blocked with 5% non-fat dried milk (NFDM) (Bio Rad 

Laboratories, Hercules, CA) in Tris-buffered saline (TBS) (Bio Rad Laboratories, 

Hercules, CA) for 2 hours. Sera collected from convalescent pigs were used as 

primary antibodies at 1:50 dilution and incubated with the membrane for 1 hour. The 

membrane was subsequently incubated for 1 hour with anti-Pig IgG-Peroxidase 

antibody (Sigma-Aldrich, St. Louis, MO) diluted 1:1000 as secondary antibody. The 

membranes were stained using the Immun-Blot® Opti-4CNTM Colorimetric Kit (Bio 

Rad Laboratories, Hercules, CA Bio-Rad) following the manufacturer’s instructions. 

After staining the membranes, pictures were taken with a digital camera and the 

membranes were let dry completely. All membranes were stored refrigerated. Serum 

from 1-day-old piglets collected prior to suckling was used as negative control for 

non-specific binding. Western Blot using whole cell proteins extracted from bacterial 

pathogens commonly isolated from swine was performed for specificity. Specificity 

testing included Pasteurela multocida, Bordetella bronchiseptica, Actinobacillus 

pleuropneumoniae, Actinobacillus idolicus, Actinobacillus minus, Actinobacillus suis, 

Actinobacillus porcinus, Escherichia coli, Salmonella choleraesuis, and 

Streptococcus suis. 
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Protein identification, cloning and expression  

An immunodominant protein recognized by convalescent antibodies from naturally 

infected pigs was identified and sequenced. N-amino-terminal sequencing was 

performed directly from this membrane-bound protein utilizing Edman degradative 

chemistry (Oligonucleotide and Peptide Synthesis Facility, BioMedical Genomics 

Center, University of Minnesota). Analysis of protein sequences within GenBank and 

BLAST (Altschul et al., 1990) searches were conducted using NCBI website 

(http://www.ncbi.nlm.nih.gov/BLAST/). 

  

After protein sequencing and identification, the gene encoding for the immunogenic 

protein specific for H. parasuis was purified, cloned and expressed in E. coli. 

(GenScript Corp., Piscataway, New Jersey). Briefly, a synthetic codon-optimized 

version of the immunogenic protein gene was prepared using the OptimumGene™ - 

Codon Optimization technology. A pET-derived vector that attaches an N-terminal 

polyhistidine tag to the protein was used and optimized for expression in Escherichia 

coli. Expression was then induced using IPTG and soluble proteins were isolated by 

Ni–NTA metal-affinity chromatography (Burgess-Brown et al., 2008). The N-

terminal region and tag were then removed by cleavage to obtain high-purified 

protein. The recombinant protein was then analyzed by SDS-PAGE, Western blot and 

sequencing to confirm its identity. 

 

ELISA test development   

After expression of the identified protein specific for H. parasuis, this recombinant 

antigen was used to develop an indirect ELISA test to detect antibodies against this 
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protein. A checkerboard titration was performed to determine the optimal working 

dilution of the coating antigen, serum and anti-pig IgG-Peroxidase conjugate (Sigma-

Aldrich) (HRP-IgG) (Sigma) using a 96-well ELISA plate (Costar 3590 High biding 

96 well EIA/ RIA Plate, flat bottom, Corning Incorporated). The dilutions that gave 

the maximum difference between positive and negative sera by absorbance at 450 nm 

were selected for testing of serum samples.  

  

After optimization, indirect ELISA was performed using the following procedure. 

One hundred nanograms of antigen were diluted in carbonate buffer and each of the 

plate wells were coated with 100 μl. Plates were washed with solution of phosphate 

buffer saline and tween 20 (TPBS) pH 7.4 at room temperature using a microplate 

washer (ELx405TM Biotek) after each incubation step.  The plates were then incubated 

with 300 µl/well of 5% non-fat dried milk (NFDM) in TPBS and allowed to stand for 

2 hours at room temperature. Serum samples were diluted 1:50 in 5% NFDM in PBST 

and 100 μl was added to each well and then incubated for 1 hour. Anti-pig IgG-

peroxidase conjugate (Sigma-Aldrich) was diluted 1:100000 in 5% NFDM in PBST 

and 100 μl were added to each well and incubated for 1 h. Equal volumes of TMB 

peroxidase substrate and peroxidase H2O2 (KPL, Gaithersburg, MD) were mixed 

together and 100 μl were added to each well. The reaction was quenched by adding 

100 μl of 1 M phosphoric acid to each well. The plates were read at 450 nm using a 

microplate reader (ThermoMax Molecular Devices, Sunnyvale, CA).  

 

Sera obtained from convalescent pigs were used as reference positive serum. Sera 

from a 1-day-old colostrum-deprived piglet, and 11 specific pathogen free (SPF) pigs 

were used as reference negative sera. The specificity of this ELISA was examined 
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using sera from 60 healthy pigs that were naturally colonized with H. parasuis in the 

tonsils and had been experimentally infected with A. pleuropneumoniae. 

 

Immunization and challenge of pigs  

All animal experiments were carried out according to the guidelines of the 

Institutional Animal Care and Committee, University of Minnesota. The protective 

efficacy of a vaccine based on recombinant H. parasuis protein was evaluated by 

immunizing 11 weaned pigs by intramuscular injection of recombinant protein (200 

µg) emulsified in oil-in-water adjuvant on day 0. Subsequent booster injections were 

administered on day 14 (Figure 2.1). Another group of 11 pigs was not vaccinated and 

served as positive control. The pigs were housed at the University of Minnesota 

animal research isolation units and were fed ad libitum and with free access to water. 

 

Challenge was performed with the H. parasuis serotype 5 reference strain (Nagasaki), 

passed onto embryonated chicken eggs prior to challenge to increase the expression of 

capsule, a known virulent factor of Gram-negative bacteria (Oliveira and Pijoan, 

2002). Vaccinated and non-vaccinated pigs were inoculated on day 34 of the 

experiment (20 days after the second dose of vaccine) with 1 ml of inoculum 

containing 1010 CFU H. parasuis administered intranasally. Pigs were observed daily 

for clinical signs of disease, such as fever (temperature ≥ 104ºF), respiratory distress, 

lameness, and/or CNS signs, and euthanized on day 41 of the experiment or when 

showing severe clinical signs of disease. 

  

Vaccinated pigs were bled before vaccination and before challenge. Sera were 

separated by centrifugation and stored at -20°C. Sera were tested for antibodies 
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against recombinant H. parasuis protein using a commercially available H. parasuis 

antibody ELISA test kit (Biocheck, Scarborough, ME, USA) developed based on the 

recombinant protein ELISA previously described. 

 

Statistical analysis   

Serology data (OD values) were statistically analyzed for differences between A. 

pleuropneumoniae infected, SPF and convalescent pigs by Kruskal-Wallis test 

followed by Mann-Whitney pairwise comparison and Bonferroni correction 

(p<0.016). Fisher’s exact test was used to compare mortality data and proportion of 

affected pigs between vaccinated and unvaccinated groups in the challenge 

experiment. Mann-Whitney U test was used to compare distribution of ELISA 

sample-to-positive (SP) ratio values between vaccinated and unvaccinated groups 

(p<0.05). ELISA SP values and body temperatures were compared within groups 

throughout the course of infection by repeated measures Friedman’s ANOVA Test, 

followed by multiple pairwise comparisons using Wilcoxon signed rank test with 

Bonferroni correction, p<0.016 for SP values and P<0.007 for body temperatures.    

 

Results 

Bacterial strains, genotyping and serotyping analysis  

All pigs treated with ceftiofur for Glasser’s disease survived the infection. The 

diseased pigs that were necropsied presented lesions characteristic of H. parasuis 

infection, such as polyserositis and arthritis. Twenty-two H. parasuis isolates were 

obtained from eight of the 10 necropsied pigs. ERIC-PCR genomic fingerprints 

revealed seven different genotypes among the 20 isolates. Serotyping analysis 
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revealed that two out of the seven strains belonged to serovar 4 and the remaining 

strains were nontypeable. These seven strains were further analyzed by Western blot. 

 

Detection and identification of a highly immunogenic species-specific protein in H. 

parasuis   

Western blots performed with H. parasuis whole-cell lysate and convalescent sera 

from pigs in the H. parasuis field outbreak resulted in multiple bands ranging from 27 

kDa to 77 kDa. One single band with an estimated molecular weight of 52 kDa, was 

consistently detected and clearly immunodominant in all Western blots using 

convalescent sera from each of the 10 pigs tested against each of the 7 genotypically 

distinct H. parasuis field outbreak strains (Figure 2.2) and 13 distinct H. parasuis 

reference strains (Figure 2.3). No bands were observed in Western blots that used the 

serum of piglets prior to suckling colostrum, indicating lack of non-specific reactions 

with porcine serum (Figure 2.4). Additionally, convalescent sera did not recognize 

this 52 KDa protein in any protein preparations from P. multocida, B. bronchiseptica, 

A. pleuropneumoniae, A. idolicus, A. minus, A. suis, A. porcinus, E. coli, S. 

cholerasuis and S. suis (Figure 2.5).   

   

The 52-kDa protein from all seven outbreak strains and two reference strains 

(serotype 3, a non-virulent strain and serotype 5, a highly virulent strain) was 

subjected to N-terminal amino acid sequence analysis. The partial sequences obtained 

were blasted using NCBI database and the complete sequence was deduced by 

comparison with H. parasuis serovar 5 SH0165 genomic sequence (Yue et al., 2009). 

This protein was consistently identified as oligopeptide permease A (OppA) in the 

GenBank. The OppA gene codes for this protein, which is a transmembrane protein 
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responsible for transporting and internalizing 3-5 amino acid molecules in bacteria 

(Higgins and Hardie, 1983). The complete nucleotide and amino acid sequences for 

OppA had approximately 1584 base pairs and 527 amino acids, respectively. BLAST 

searching on GenBank for nucleotide sequences producing significant alignments 

matched H. parasuis SH0165 (CP001321.1) with 100% identity, and H. parasuis 

ZJ0906 (CP005384.1) with 99% identity. The subsequent closest match was A. 

pleuropneumoniae serovar 7 str.AP76 (CP001091.1) with 69% identity. BLAST 

searching of GenBank for non-redundant protein sequences revealed the highest 

amino acid sequence identity of 99% with H. parasuis OppA protein, followed by 

51% identity with Mannheimia granulomatis (WP027074235.1), and by 49% identity 

with A. pleuropneumoniae (WP005608218.1).  

 

In house ELISA analysis  

The OppA ELISA was able to detect antibodies against H. parasuis OppA in sera 

from the 10 convalescent pigs with OD values ranging from 0.21 to 1.20. Levels of 

specific IgG antibodies against H. parasuis rOppA protein were statistically higher in 

convalescent pigs (mean OD 0.59) than in healthy pigs nasally colonized with H. 

parasuis (mean OD 0.07) or SPF pigs (mean OD 0.02) (p<0.016) (Figure 2.6). The 

colostrum-deprived piglet also had a very low antibody level (OD 0.02). 

 

Recombinant OppA confers no protective immunity in a pig model  

Piglets harbored H. parasuis in their noses at the beginning of the study, but tested 

negative for antibodies against OppA in serum by ELISA prior to inoculation. All 

pigs vaccinated with rOppA protein seroconverted two weeks after the second dose of 
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vaccine (SP ratio > 0.5) (Figure 2.7). Non-vaccinated pigs did not have antibodies 

against rOppA protein. 

  

Challenged pigs had fever and mean rectal temperature reached the highest point for 

non-vaccinated and vaccinated pigs at 2 and 4 days post-infection (DPI), respectively 

(Figure 2.8). On 2 DPI, one pig from the vaccinated group was lethargic and 

hypothermic and it was euthanized. No gross lesions were observed. On 4 DPI, one 

non-vaccinated pig presented nervous clinical signs and two vaccinated pigs presented 

swollen joints and respiratory distress and were euthanized. Moderate amounts of 

turbid fluid and fibrin within pleural, pericardial and peritoneal cavities and joints 

were observed in these pigs. The remaining 18 pigs did not show severe clinical signs. 

They were euthanized 7 days post-challenge. The main lesion found in these pigs was 

pneumonia, observed in 5 out of 18 pigs (4 control and 1 vaccinated pigs). Only pigs 

that presented clinical signs and/or lesions at necropsy (four control and five 

vaccinated) tested positive for H. parasuis by PCR from swabs collected from 

systemic sites at necropsy. Nevertheless, there were no differences between 

vaccinated and non-vaccinated groups on clinical signs, lesions or mortality (Table 

2.1, p>0.05).  

 

Discussion  

In this study, the OppA, a 52-kDa protein, was identified in H. parasuis by screening 

whole cell proteins from virulent strains using convalescent sera from pigs. This 

protein was highly immunogenic, specific to H. parasuis and found in multiple 

serotypes. Antibodies against OppA were found only in pigs infected systemically, 

and not in healthy pigs colonized with H. parasuis in the upper respiratory tract. 



50 

 

Therefore, detection of OppA antibodies can be used as a diagnostic marker of 

systemic infection.  

  

The OppA protein, with a total length of 1584 bp, belongs to the ATP-binding 

cassette (ABC) transporter systems. These oligopeptide transport systems are 

composed of five subunits: OppA, OppB, OppC, OppD and OppF, OppA being the 

extracellular biding subunit, responsible for capturing substrates from the 

environment (Monet, 2003). Even though the exact localization of H. parasuis OppA 

protein is unknown, oligopeptide-binding proteins are usually localized in the 

periplasm of Gram-negative bacteria, the region between the plasma membrane and 

the outer membrane of the bacterial cell. These proteins utilize energy from ATP 

hydrolysis to transport a variety of substances across the membrane (Monnet, 2003). 

The role of OppA in the development of protective immunity is unclear since most 

immunogenic proteins in Gram-negative bacteria are associated with the outer 

membrane. However, immunization of mice with OppA resulted in a protective 

immune response against Yersinia pestis (Tanabe et al., 2006). Anti-OppA antibodies 

are also present in convalescent sera of human patients that have recovered from 

systemic infections with Y. pestis (Tanabe et al., 2006) and Borrelia burgdorferi 

(Nowalk et al., 2006). Specifically for H. parasuis, Hong et al (2011) identified OppA 

as a potentially immunogenic protein through an approach different than the one 

described in the present study. In that study, OppA was identified through reverse 

vaccinology and its immunogenicity was demonstrated in mice. In our study we 

confirmed the immunogenicity of this protein in the pig, H. parasuis natural host 

species. However, a strong anti-OppA immune response was not able to protect pigs 

against a challenge with virulent H. parasuis.  
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The purified, rOppA protein was further used to track anti-H. parasuis OppA 

antibodies in serum by ELISA. All convalescent pigs had antibodies against the H. 

parasuis rOppA antigen, while sera from a colostrum-deprived piglet, SPF pigs and 

from A. pleuropneumoniae infected, H. parasuis colonized pigs had undetectable to 

very low levels of antibody against rOppA (Figure 2.6). Specific binding of pig IgG 

antibodies against H. parasuis rOppA and lack of cross-reaction with IgG against A. 

pleuropneumoniae was clearly demonstrated. Interestingly, the A. pleuropneumoniae 

infected pigs used in this study were colonized with H. parasuis in the tonsils. 

Therefore, these results are indicative that pigs colonized with H. parasuis, and have 

not gone through a systemic infection, do not develop anti-OppA antibodies. In 

contrast, pigs that have survived a systemic infection are consistently positive for 

OppA antibodies. For that reason, H. parasuis OppA ELISA can be useful to track 

systemic infection against different serotypes and strains of H. parasuis. H. parasuis 

serologic profiles were recently assessed using the commercial H. parasuis OppA 

ELISA. The commercial H. parasuis OppA ELISA kit detected maternally derived 

antibodies following either H. parasuis vaccination with a live H. parasuis vaccine or 

autogenous killed vaccine (Galina Pantoja et al., 2014). In this study, healthy pigs 

colonized with H. parasuis but not infected, did not have antibodies against OppA, 

which is in agreement with our results.  

 

Universal antigens such as OppA are highly desirable for vaccine development, 

especially regarding H. parasuis, a highly heterogeneous species (Oliveira et al., 

2003b; Mullins et al., 2012; Boerlin et al., 2013).The robust antibody response to 

rOppA protein immunization shows that it is highly immunogenic in swine. However, 

OppA protein seroconversion did not translate to protection against H. parasuis 
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infection in the vaccine trial. Protective immunity to H. parasuis infection has been 

established to be mediated by antibodies (Martin de la Fuente et al., 2009a; 

Nedbalcova et al., 2011), but a H. parasuis antigen that is able to elicit complete 

protective immunity against all H. parasuis strains still has not been identified. In 

order to develop a more efficient subunit vaccine, a combination of antigens, each 

antigen inducing protection against a fraction of isolates, might be needed.  

 

In summary, a highly immunogenic and species-specific protein in H. parasuis was 

identified by screening pig’s convalescent sera for antibodies against H. parasuis 

specific proteins. OppA was further characterized by sequencing, cloning and 

purifying the immunogenic protein. We also demonstrated the diagnostic potential of 

H. parasuis OppA through the development of a species-specific serological test that 

can be used to characterize antibody profiles against H. parasuis. However, OppA did 

not show potential as a vaccine antigen since it was unable to elicit a protective 

immune response. 
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Table 2.1. Serological status and clinical outcome of intranasally inoculated pigs with 

Haemophilus parasuis with and without previous vaccination with OppA vaccine.  

 

Group 

Mean IgG SP 

ratioa 

Number of pigs 

euthanizedb  

Number of pigs 

with gross lesionsc 

Non-vaccinated 0.00 1/11 4/11 

Vaccinated 5.94 3/11 4/11 

aMean antibody response (SP ratio) of pigs on day 28 of the experiment 

bRefers to pigs that had to be euthanized because of severe clinical signs. Pigs 

showing no severe clinical signs were euthanized at the scheduled necropsy day, day 

41.  

cGross lesions observed at necropsy 
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Figure 2.1. Vaccination with recombinant recombinant OppA protein, challenge with 

Haemophilus parasuis and necropsy schedule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

Figure 2.2. Demonstration of immunogenic proteins in 7 Haemophilus parasuis field 

strains obtained from brain (BR), pleura (PL), and pericardium (PC) and 1 swine 

related bacterium species Actinobacillus indolicus (AI) by Western blot with 

convalescent serum from a pig that survived a H. parasuis systemic infection. 
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Figure 2.3. Detection of an immunogenic protein in 13 Haemophilus parasuis 

reference strains by Western blot with convalescent serum from a pig that survived a 

H. parasuis systemic infection. Serotypes are indicated in each lane.  
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Figure 2.4. No non-specific detections by Western blot were observed. Haemophilus 

parasuis field strains obtained from brain (BR), pleura (PL), and pericardium (PC) 

and 3 reference strains (serotypes 3, 5, and 12). 
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Figure 2.5. Specificity testing by Western blot using serum from a convalescent pig 

that survived a Haemophilus parasuis infection. An immunogenic protein was 

detected in a H. parasuis strain isolated from brain (BR7) and in the reference strain 

for serotype 5 (Ser 5). No immunogenic proteins were detected in Actinobacillus 

porcinus (AP), Actinobacillus indolicus (AI), Actinobacillus minor (AM), 

Actinobacillus pleuropneumoniae (APP), Actinobacillus suis (AS), Streptococcus suis 

(SS), Bordetella bronchiseptica (BB),  Pasteurella multocida (PM), Escherichia coli 

(EC), Salmonella choleraesuis (SC).  
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Figure 2.6. Mean OD ELISA values against Haemophilus parasuis recombinant 

OppA in serum (Mean ± 1 SE). Actinobaciluus pleuropneumoniae (App) infected 

pigs, positive for H. parasuis in nasal cavity (colonized) (group 1, n=80), SPF pigs 

(group 2, n=11) and H. parasuis convalescent pigs (Group 3, n=10). Different letters 

represent statistical differences between groups (p<0.01).  
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Figure 2.7. Recombinant OppA-specific antibodies measured by ELISA in weaned 

pigs. Pigs were vaccinated with rOppA subunit vaccine on days 0 and 14 of the study. 

Results show average SP ratio +/- 1 standard error (SE). *Indicates significant 

differences between groups (P<0.01). 
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Figure 2.8. Body temperature (mean ± standard error) measured every day after 

challenge for group 1 (non-vaccinated) and group 2 (vaccinated). *Indicates 

significant differences within groups compared to baseline (day 34) (P<0.007). 
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Abstract 

Glasser’s disease is a swine illness caused by the bacterium Haemophilus parasuis. 

Pathogenic strains of H. parasuis colonize the upper respiratory tract (URT) of 

healthy pigs and, under certain conditions, can spread systemically and cause 

Glasser’s disease. Experimental inoculation models described for H. parasuis are 

designed to develop the disease and not to create an asymptomatic colonization of the 

URT. Therefore, the primary objective of this study was to develop an experimental 

model of pathogenic H. parasuis infection that mimics URT colonization in 

conventional pigs. Sixteen conventional weaned pigs were divided into 3 groups. At 

day 0 of the study, pigs in groups 1 and 2 (n=6 each) received 104 or 106 CFU of 

highly virulent H. parasuis strain Nagasaki intranasally, and group 3 (n=4) received 

saline.  Clinical evaluations and bacterial isolation from nasal swabs were performed 

daily and all H. parasuis isolates obtained were characterized by ERIC-PCR 

genotyping. ERIC-PCR genotyping demonstrated that pigs carried a commensal H. 

parasuis strain. This strain was frequently isolated before and after inoculation from 

the nose of all the pigs throughout the study. The Nagasaki strain, also identified by 

ERIC-PCR, was recovered from the nose of five pigs after inoculation and from 

tracheal swabs from ten pigs collected at necropsy. Overall, the Nagasaki strain was 

isolated at least once from the URT of all 12 inoculated pigs, but was never recovered 

from systemic sites, nor control pigs or before inoculation. There were no differences 

in isolation of the Nagasaki strain based on inoculation dose. No fever or clinical 

signs were observed in any of the pigs throughout the study. The absence of fever, 

clinical signs, lesions and bacteremia demonstrated that there was no systemic 

infection. In summary, the inoculation model described reproduced URT colonization 

with a pathogenic H. parasuis strain without causing systemic disease. This model 
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should prove useful to study factors that mediate H. parasuis colonization and 

expression of Glasser’s disease.  

 

Introduction  

Glasser’s disease is a serious swine illness caused by the Gram-negative bacterium 

Haemophilus parasuis. Glasser’s disease is characterized by fibrinous polyserositis, 

arthritis and meningitis (Oliveira and Pijoan, 2004). Numerous strains of H. parasuis 

have been described through genotypic and phenotypic methods, some of which are 

pathogenic, while others are not (Oliveira et al., 2003, Olvera et al., 2006). Most 

conventional pigs harbor non-pathogenic H. parasuis in their noses (Amano et al., 

1994; Vahle et al., 1997), tonsils (Macedo et al., 2014) and trachea (Segales et al., 

1997). However, pathogenic strains also colonize the upper respiratory tract (URT) of 

healthy pigs (Oliveira et al., 2003a) and, under certain conditions, can spread 

systemically and cause Glasser’s disease. The conditions that favor the development 

of disease are currently unknown. Several hypotheses have been suggested such as 

infection with a new strain when maternal antibodies wane or are no longer present 

(Pijoan et al., 1997, Blanco et al., 2004), co-infection with other pathogens (Yu et al., 

2012), and certain uses of antibiotics (Macedo et al., 2014). Because of the complex 

nature of this problem, these hypotheses can only be tested by using an experimental 

model that can reproduce colonization of the URT with pathogenic H. parasuis under 

controlled conditions. 

 

Numerous experimental inoculation models have been described for H. parasuis. 

However, they are all designed to develop the disease and not to create an 

asymptomatic colonization of the URT. In addition, most of these models use 



65 

 

cesarean-derived colostrum-deprived (CDCD) (Vahle et al., 1995; 1997), naturally-

farrowed artificially-reared (Oliveira et al., 2003a) or specific pathogen free (Nielsen, 

1993; Amano et al., 1996; 1997) pigs, which may not fully represent the conventional 

pig in terms of the immune response and the bacteriological nasal flora. Therefore, the 

primary objective of this study was to develop an experimental model of pathogenic 

H. parasuis that mimics nasal colonization in conventional pigs. The development of 

a pig model that preserves the status of conventional pigs will be a valuable tool to 

study H. parasuis colonization and development of disease. 

 

Materials and Methods 

Experimental animals 

Sixteen 3-week-old conventional pigs were selected from a commercial swine herd.  

This herd was free from significant swine pathogens, including influenza virus, 

porcine reproductive and respiratory syndrome virus and Mycoplasma 

hyopneumoniae, and had no history of Glasser’s disease. The pigs were housed at the 

University of Minnesota animal isolation facility (Saint Paul, MN, USA) with each 

group placed in a separate isolation room. The pigs were identified and assigned to 

three groups of six or four pigs each. Pigs received feed and water ad libitum 

throughout the study. All pigs were monitored daily and cared for according to the 

University of Minnesota approved IACUC (Institutional Animal Care and Use 

Committee) protocols.  

 

Bacterial strain 

The H. parasuis Nagasaki strain was selected for the inoculation of piglets because of 

its known virulent properties. This strain has been extensively described in the 
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literature as highly virulent for its ability to cause polyserositis and sudden death in 

pigs (Amano et al., 1997; Martin de la Fuente et al., 2009a; Frandoloso et al., 2011; 

Olvera et al., 2011), invade endothelial (Vanier et al., 2006; Aragon et al., 2010; 

Frandoloso et al., 2013) and epithelial (Frandoloso et al., 2012b) cells in vitro,  

survive phagocytosis (Olvera et al., 2009), be resistant to serum (Cerda-Cuellar et al., 

2008) and possess the virulent group 1 vtaA gene (Olvera et al., 2010).  

 

Before inoculation, Nagasaki strain was passaged in chicken eggs according to 

Oliveira and Pijoan (2002). Briefly, Nagasaki strain was grown on chocolate agar and 

incubated at 37°C in a 5% CO2
 atmosphere for 18 hours. Bacterial growth was 

harvested from plates and suspended in sterile PBS. Ten-day old embryonated 

chicken eggs were inoculated through the chorio-allantoid membrane (CAM) using 

0.2 ml of a bacterial suspension containing 109 colony-forming units (CFU)/ml of 

bacteria. Inoculated eggs were incubated at 37°C for 72 hours. Following the 

incubation period, eggs were opened and swabs were taken from the CAM. Swabs 

were cultured on blood agar with a Staphylococcus aureus streak in order to check the 

purity of the inoculum and then on chocolate agar. Bacterial growth was harvested 

from chocolate agar plates and frozen at -80°C until use. One tube from each culture 

was thawed and a standard bacterial count was performed. Original cultures were 

diluted to produce inocula containing 104 and 106 CFU/ml.  

  

Inoculation of piglets 

Pigs were inoculated with 1 mL of 104 CFU/ml of Nagasaki strain inoculum (low dose 

group (LD), n=6), 1.0 mL of 106 CFU/ml of Nagasaki strain inoculum (high dose 

group (HD), n=6), or 1 mL of sterile saline (control group, n=4) at day 0 of the study 
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(Figure 3.1). Inoculum was administered intranasally (0.5 mL in each nostril). Before 

the inoculation, all pigs were sedated by an intramuscular injection in the cervical 

muscles of a dissociative anesthetic at the recommended dose of 6.6 mg/kg (0.06 

ml/kg) (Telazol®, Fort Dodge Animal Health, Fort Dodge, IA). Once sedation was 

achieved (1-2 minutes), pigs were held upright and the inoculum was instilled slowly 

into each nostril using a 1 mL syringe.  

 

Clinical-pathological evaluation and sample collection 

Rectal temperature and clinical signs compatible with Glässer’s disease (cough, 

lethargy, abdominal breath, lameness and nervous signs) were recorded daily after 

bacterial inoculation (day 0). Blood samples were collected at 1, 3 and 4 days post-

inoculation (dpi) to monitor bacteremia by bacterial isolation and PCR. Half of the 

pigs in each group were randomly selected and euthanized at 4 dpi. The remaining 

pigs were euthanized at 7 dpi (Figure 3.1). All pigs were necropsied for evaluation of 

gross lesions with special focus on those potentially attributable to H. parasuis 

infection (Oliveira and Pijoan, 2004). Samples of lung, liver, spleen and kidney were 

collected at necropsy and evaluated for histological lesions.  

 

Nasal swabs were taken before inoculation and daily post-inoculation and assayed for 

the presence of H. parasuis by bacterial isolation. Swabs of nasal cavity, tonsil, 

trachea and serosas (same swab was rubbed on pleura, pericardium, peritoneum and 

joint) were collected postmortem and assayed for the presence of H. parasuis by 

bacterial isolation and PCR (Oliveira et al., 2001b). Additionally, H. parasuis 

isolation was attempted from lung, liver, spleen and kidney samples collected at 

necropsy.  
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Serum samples collected before inoculation and at necropsy were tested for H. 

parasuis antibodies using the BioChek Haemophilus parasuis Oligopeptide permease 

A (OppA) Antibody Test Kit (BioChek, Scarborough, ME), which is based on the H. 

parasuis species-specific protein OppA (chapter 2). Samples with sample to positive 

ratios (S/P) > 0.5 were considered positive. 

 

Isolation and identification of H. parasuis 

For isolation of H. parasuis, swabs were plated onto sheep blood agar streaked with a 

nurse Staphylococcus aureus, cultured and incubated at 37°C in a 5% carbon dioxide 

(CO2) atmosphere for 24 to 48 hours. H. parasuis-like colonies were selected for 

biochemical identification performed as previously described (Oliveira et al., 2001b). 

 

In order to differentiate strain Nagasaki from any other H. parasuis strains that the 

pigs naturally carried, H. parasuis isolates were genotyped by ERIC-PCR (Rafiee et 

al., 2000). H. parasuis isolates were also tested using a multiplex PCR to detect H. 

parasuis group 1 virulence associated trimeric autotransporter (vtaA) gene (Olvera et 

al., 2012). 

 

Statistical analysis 

The proportion of pigs positive based on Nagasaki strain isolation from nose and 

trachea and the proportion of pigs presenting clinical signs of disease including fever 

(rectal temperature above 40°C) were compared by Fisher’s exact test.  
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Results  

H. parasuis colonization 

Prior to inoculation of the Nagasaki strain, nasal swab cultures yielded H. parasuis 

isolates from 14 out of 16 pigs (Table 3.1). These 14 isolates had identical ERIC-PCR 

fingerprint, and were therefore considered one strain, denominated “farm” strain 

henceforward (Figure 3.2A). There were 53 additional isolations of the H. parasuis 

farm strain throughout the study (Table 3.1). After inoculation, the Nagasaki strain 

was first isolated from three different pigs belonging to the LD group at 1, 3 and 5 dpi 

and from one pig from the HD group at 3 dpi (Table 3.1). Nagasaki strain was not 

isolated from control pigs. At necropsy, the Nagasaki strain was recovered from 

tracheal swabs from 11 inoculated pigs, while tonsillar swabs yielded only one isolate 

(Table 3.1). The number of pigs colonized by the Nagasaki strain was significantly 

higher in LD and HD groups when compared to the control group (p=0.005). All pigs 

tested positive by PCR for detection of H. parasuis at the species levels in the nose at 

necropsy, while 15 out of 16 tested positive in the tonsils and half of the pigs tested 

positive in the trachea (Table 3.2). 

 

Absence of H. parasuis systemic infection 

After inoculation, pigs did not have any clinical signs of disease. At necropsy, no 

gross or microscopic lesions were observed. H. parasuis was not isolated from blood 

collected at 1, 3 and 4 dpi or from tissues (liver, spleen, kidney and lung) or serosal 

swabs collected at necropsy from any of the pigs. Serosal swabs also tested negative 

for H. parasuis by PCR (Table 3.2).  Antibodies against H. parasuis antigen OppA 

were not detected before inoculation, or at 4 and 7 dpi. 
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Discussion 

This study showed that conventional pigs can be used as a model to study mucosal 

colonization with a H. parasuis pathogenic strain. H. parasuis frequently colonizes 

the surface of the mucosa of the swine respiratory tract and colonization is considered 

an important pre-requisite for subsequent invasion of host tissues and progression to 

Glasser’s disease (Vahle et al., 1995). However, better understanding of H. parasuis 

disease mechanisms and host immune responses is required. To this end, we have 

established a model of H. parasuis colonization by a pathogenic strain in the absence 

of systemic disease in conventional pigs. 

 

Successful nasal colonization was demonstrated by isolation of the Nagasaki strain at 

least once from the URT of all 12 inoculated pigs between days 1 and 7 post-

inoculation. On the other hand, the absence of systemic spread was evidenced by lack 

of clinical signs, lack of recovery of Nagasaki strain from blood or systemic tissues, 

and lack of gross or microscopic lesions at necropsy.   

 

Because the ideal inoculation dose was previously unknown, two different doses were 

used. There were no significant differences on the number of Nagasaki isolates 

obtained based on inoculation dose. Nagasaki strain has been used before to inoculate 

CDCD pigs at a low dose of 5 x 104 CFU/mL without causing disease, however 

evidence of colonization was not provided in that study (Martin de la Fuente et al., 

2009a). In a different study, inoculation of pigs fed bovine colostrum and milk 

replacer with Nagasaki strain at 104 and 106 CFU resulted in systemic disease 

(Oliveira et al., 2003a). This is the first study to report the use of low dose Nagasaki 

strain to colonize conventional pigs.  
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Therefore, under the conditions of the present study, doses between 104 and 106 

CFU/mL were low enough not to cause systemic infection as well as high enough for 

nasal and tracheal colonization of conventional weaned pigs.  

 

H. parasuis isolation from tonsils was not common in this study, which is in 

agreement with other studies showing that the nasal cavity might be the primary site 

for H. parasuis respiratory mucosal colonization (Vahle et al., 1995; 1997). However, 

when tonsil swabs were tested by PCR, H. parasuis DNA detection was common 

(Table 3.2). Tracheal swabs yielded higher numbers of Nagasaki isolates than the 

nasal swabs. Previous reports have described the recovery of H. parasuis from trachea 

of CDCD pigs intranasally inoculated, even though H. parasuis was isolated more 

frequently from nasal cavity (Vahle et al., 1995; 1997). In this study, the H. parasuis 

farm and Nagasaki strains seemed to have a predilection for nasal and tracheal 

mucosa, respectively. Alternatively, the farm strain found naturally in the nose may 

have prevented the Nagasaki strain from stablishing itself in the same environment. 

Additionally, in conventional pigs, trachea might represent a less competitive niche 

for H. parasuis colonization, which may explain why tracheal swabs yielded higher 

number of Nagasaki isolates compared to nasal swabs. 

 

No rise on antibody levels was detected in inoculated or control pigs during the study 

period. This supports the conclusion that pigs were not systemically infected. The H. 

parasuis OppA ELISA test detects IgG antibodies in serum usually 7 to 14 days after 

pigs are systemically infected or vaccinated (chapter 2). Therefore, 7 days may have 

not been enough time to observe seroconversion. However, euthanasia times of 4 and 

7 dpi were selected to maximize the chances of isolating H. parasuis from systemic 
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samples and observing lesions in systemic tissues. Further investigations on other 

immune parameters, such as IgA antibodies and cellular responses, are needed since 

they might play a role on limiting systemic infection.  

 

In summary, in contrast to H. parasuis-free pig models, the colonization model using 

conventional pigs mimics the status of commercial animals. Pathogenic strains of H. 

parasuis can colonize the nose and trachea of conventional pigs for at least 7 days. 

Mechanisms by which pathogenic H. parasuis strains compete with many other 

microorganisms for colonization sites in the URT and invade systemic tissues are not 

well understood. This model should prove useful to study factors that mediate H. 

parasuis colonization and expression of Glasser’s disease.  
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Table 3.1. Summary of type of Haemophilus parasuis isolates obtained from weaned 

pigs throughout the study.  

 

1 Farm strain  

2 H. parasuis isolate recovered from nasal swab unless otherwise specified 

3 No H. parasuis isolation  

4 NAG: Nagasaki strain  

5 Bold specifies isolate recovered at necropsy 

6 Pig euthanized on 4 dpi. 

 

 

 

 

  Days post-inoculation 

Group 

(inoculum 

dose) 

Pig # Pre-inoc. 1 2 3 4 5 6 7 

104 

CFU/mL 

986 Farm1,2 -3  -  - 
NAG5 

NAG/Trachea 
†6 † † 

976 Farm NAG4 Farm Farm NAG/Trachea † † † 

979 Farm - Farm - 
Farm 

 NAG/Trachea 
† † † 

980 Farm Farm Farm NAG Farm Farm Farm NAG/Trachea

975 -  -  Farm -  Farm NAG Farm NAG/Trachea

987 Farm Farm Farm Farm   Farm NAG/Trachea

106 

CFU/mL 

974  -  Farm Farm -   
Farm 

NAG/Trachea 
† † † 

978 Farm Farm Farm Farm 
Farm 

NAG/Trachea 
† † † 

989 Farm Farm - Farm 
Farm 

NAG/Trachea 
† † † 

983 Farm - Farm NAG Farm 
Farm 

 
Farm  

NAG/Trachea

984 Farm -  -  Farm Farm  NAG/Tonsil

988 Farm Farm Farm - Farm Farm Farm 
Farm 

NAG/Trachea

Control 

(PBS) 

977 Farm -  Farm Farm - † † † 

985 Farm - - - - † † † 

981 Farm - Farm Farm Farm Farm Farm -  

982 Farm Farm Farm Farm Farm Farm Farm -  
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Table 3.2. Haemophilus parasuis PCR results from swabs collected from pigs at 

necropsy 4 or 7 days after inoculation with H. parasuis.  

   Swabs collected at necropsy 

Group 

(inoculum dose) 

Necropsy 

day Pig # Nose Tonsil Trachea Serosas 

Lower dose 

 (104 CFU/mL) 

4 

986 + + + - 

976 + + + - 

979 + + - - 

7 

980 + + - - 

975 + - - - 

987 + + + - 

Higher dose (106 

CFU/mL) 

 

4 

974 + + + - 

978 + + - - 

989 + + + - 

7 

983 + + - - 

984 + + + - 

988 + + + - 

Control 

 (PBS) 

4 

977 + + - - 

985 + + - - 

7 

981 + + - - 

982 + + + - 
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Figure 3.1. Haemophilus parasuis colonization model: Experimental design and 

sampling times. aPigs were inoculated with 1.0 mL of 104 CFU/ml or 106 CFU/ml of 

Nagasaki strain or 1.0 mL of sterile saline intranasally at day 0 of the study.  
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Figure 3.2. ERIC-PCR fingerprint profiles of H. parasuis strains in this study (A), 

and results of vtaA Multiplex PCR (B).  MW: Molecular weight marker. Farm: farm 

strain. Nag: Nagasaki strain. Neg: Negative control. 
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CHAPTER 4 

EFFECT OF ENROFLOXACIN ON THE CARRIER STAGE OF 

HAEMOPHILUS PARASUIS IN NATURALLY COLONIZED PIGS 

 

 

This work has been published in: 

Macedo N, Rovira A, Oliveira S, Holtcamp A, Torremorell M. 2014. Effect of 

enrofloxacin on the carrier stage of Haemophilus parasuis in naturally colonized pigs. 

Can J Vet Res 78, 17-22. 
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Abstract 

The purpose of this study was to determine the effect of enrofloxacin in the carrier 

stage of Haemophilus parasuis in naturally colonized weaned pigs. Twenty-three pigs 

colonized by H. parasuis received either 7.5 mg/Kg of enrofloxacin or saline solution 

intramuscularly at weaning. Nasal and tonsillar swab samples were collected daily 

throughout the study and at necropsy and tested by quantitative PCR (qPCR). The H. 

parasuis isolates obtained from samples collected at necropsy were subjected to 

genotyping by enterobacterial repetitive intergenic consensus (ERIC)-PCR, and a 

multiplex PCR for the detection of the vtaA virulence associated trimeric 

autotransporter genes. H. parasuis was detected in the nasal cavity and tonsils of pigs 

in the control group throughout the study. Antibiotic treated pigs tested H. parasuis 

negative at 1 day post treatment (DPT),  and the proportion of nasal samples that 

tested positive was statistically higher for control pigs compared with treated pigs at 

1, 2, 3, 4, 5, 6 and 7 DPT, and at 2, 4 and 5 DPT for tonsil samples (p value < 0.003). 

Genotyping by ERIC-PCR demonstrated that pigs were colonized with a common H. 

parasuis strain at the end of the study. Isolates were negative for the vtaA gene, which 

indicated that they did not have the vtaA virulence factor. In conclusion, enrofloxacin 

significantly reduced the H. parasuis load in naturally colonized pigs, but was unable 

to eliminate the organism. 
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Introduction 

Haemophilus parasuis is an economically significant Gram-negative organism, which 

colonizes the upper respiratory tract of pigs soon after birth (Smart et al., 1988; 

Oliveira et al., 2001a). The presence of humoral immunity generally prevents pigs 

from developing systemic disease (Solano-Aguilar et al., 1999; Cerda-Cuellar et al., 

2010), which is commonly characterized by fibrinous polyserositis, arthritis and 

meningitis (Amano et al, 1994). Stress conditions coinciding with decay of maternal 

immunity, such as weaning and transport (Kirkwood et al., 2001), and co-infections 

with immunosuppressive agents, such as porcine reproductive and respiratory 

syndrome (PRRS) virus (Solano et al., 1998), have been suggested as risk factors for 

systemic invasion of H. parasuis.  

 

Alterations in the carrier stage of H. parasuis at a young age have also been 

associated with the development of Glasser’s disease during the post-weaning period 

(Pijoan et al., 1997). Most of the studies have focused on the effect of early weaning 

in the disruption of the colonization patterns under the presence of maternal 

immunity. In these studies, H. parasuis disease was exacerbated when pigs were 

colonized late when maternal immunity was waning (Oliveira et al., 2001; Cerda-

Cuellar et al., 2010; Blanco et al., 2004). However, there is limited information on 

what other factors may alter the carrier state of H. parasuis.  

 

Antibiotics are commonly used to mitigate the effects of bacterial disease in pigs in 

order to limit bacterial challenge. A recent study has reported that marbofloxacin 

treatment was able to reduce the nasal carriage of H. parasuis in weaned pigs (Vilalta 

et al., 2012). Another fluoroquinolone, enrofloxacin, is a common antimicrobial used 
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in farms to treat Glasser’s disease in North America. Enrofloxacin is among the 

approved products by the US Food and Drug Administration Center of Veterinary 

Medicine for treatment and control of disease associated with H. parasuis. There is no 

information on what effect enrofloxacin may have specifically on the carrier state of 

H. parasuis in naturally colonized pigs and whether the carrier state is affected at all. 

Thus, the purpose of this study was to evaluate the effect of enrofloxacin in reducing 

H. parasuis colonization in weaned pigs. 

 

Material and Methods 

Animals and animal housing 

Forty five, 1-week-old pigs with a history of Glasser’s disease, porcine reproductive 

and respiratory syndrome (PRRS) virus, porcine circovirus type 2 (PCV2), and 

Mycoplasma hyopneumoniae were identified on a conventional North American farm 

and screened for the presence of H. parasuis in the upper respiratory tract using 

16S ribosomal ribonucleic acid (rRNA) gene polymerase chain reaction (PCR) 

(Oliveira et al., 2001b). The pigs received PCV2 vaccine at 4 days of age and at 

weaning and M. hyopneumoniae vaccine at weaning. Of those 45 pigs, twenty-four 3-

week-old weaned pigs that tested positive for H. parasuis were selected and moved to 

the University of Minnesota research isolation facility. Pigs were randomly divided 

into treatment (n = 12 pigs) and control groups (n = 12 pigs) and housed in two 

separated isolation rooms (1 pig in the control group died shortly after arrival due to 

an unrelated H. parasuis cause). The pigs were fed ad libitum and had free access to 

water. Pigs were cared for according to the guidelines of the Institutional Animal Care 

and Use Committee of the University of Minnesota. 
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Experimental design 

On the day of arrival at the research facility, blood samples and nasal and tonsil swabs 

were collected from all pigs and tested by 16S rRNA gene PCR (Oliveira et al., 

2001b) and qPCR as described in the next section. Pigs in the treatment group were 

treated with a single dose of injectable enrofloxacin (7.5 mg/kg BW Baytril; Bayer 

Animal Health, Shawnee, Kansas, USA) at 24 h post-arrival and those in the control 

group received saline solution intramuscularly. Tonsillar and nasal swabs were 

collected daily. At 3, 7, and 14 d post-treatment, four pigs from each group were 

randomly chosen and euthanized. At necropsy, blood samples and swabs from the 

nasal cavity, interior of the tonsil, trachea, lung, and peritoneal and pleural serosa 

were collected in duplicate. One swab from each organ was used for bacterial 

isolation and the other swab was tested by quantitative PCR (qPCR) as outlined in the 

next section. H. parasuis isolates were further characterized by ERIC-PCR (Rafiee et 

al., 2000) and virulence-associated trimeric autotransporter polymerase chain reaction 

(vtaA-PCR) (Olvera et al., 2012).  

 

Quantitative PCR 

Deoxyribonucleic acid (DNA) from swabs was extracted using DNeasy Blood & 

Tissue Kit (QIAGEN, Hilden, Germany) and then tested individually by qPCR (Turni 

et al., 2010), with modifications. Briefly, primers forward (59-

CGACTTACTTGAAGCCATTCTTCTT-39) and reverse (59-

CCGCTTGCCATACCCTCTT-39) were based on the infB gene of H. parasuis, 

which is also considered to be a genetic marker for phylogenetic studies of species, 

separating H. parasuis from other closely related species. The FAM-labelled TaqMan 

probe with a TAMRA quencher (59-6FAM-
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ATCGGAAGTATTAGAATTAAGTGCTAMRA-39) was supplied by Applied 

Biosystems (Carlsbad, California, USA). The 25-mL reaction mix consisted of 7 mL 

of H2O, 10 mL of master mix, 100 nmol/L of CTinfF1, 400 nmol/L of reverse primer, 

100 nmol/L of forward primer, and 5 mL of template. A standard curve was 

established by a 10-fold serial dilution of known quantities of the H. parasuis 

reference strain Nagasaki extracted DNA. The 7500 Fast System SDS software 

(Applied Biosystems) was used to calculate the quantity of unknown target sequences 

from the standard curve for the detector of that target. The reaction was run with the 

following cycling conditions: first cycle at 95°C for 2 min, followed by 30 cycles of 

95°C for 20 s and 58°C for 60 s, followed by 1 cycle at 28°C for 1 min. All reactions, 

including the standard curve, were run in duplicate. Results are shown in 

CFU/reaction. 

 

H. parasuis isolation and characterization 

For isolation of H. parasuis, samples were plated onto sheep blood agar streaked with 

a nurse Staphylococcus sp. strain, cultured and incubated at 37ºC in a 5% carbon 

dioxide (CO2) atmosphere for 24 - 48 hours. Up to 5 H. parasuis-like colonies per 

agar plate were selected for further identification (Oliveira et al., 2001b). 

Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) (Rafiee et al., 2000) 

was used to better characterize H. parasuis isolates. 

 

A multiplex PCR based on vtaA genes (Olvera et al., 2012) was used to differentiate 

the non-virulent from potentially virulent H. parasuis isolates. H. parasuis possesses 

virulence associated trimeric autotransporters (vtaA): group 1 vtaA has been 
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associated with virulent strains; while group 3 vtaA gene is highly conserved among 

H., parasuis strains (Pina et al., 2009).   

 

Enzyme-linked immunosorbent assay (ELISA) 

Blood samples were tested for H. parasuis antibodies using an enzyme-linked 

immunosorbent assay (ELISA) based on the H. parasuis species-specific protein 

OppA (chapter 2), using the Swine SK104 Haemophilus parasuis (OppA) Antibody 

Test Kit (BioChek, Scarborough, Maine). Samples testing sample to positive ratio 

(S/P) > 0.5 were considered positive.  

 

Statistical analysis  

Differences between the proportions of H. parasuis-positive pigs in treated versus 

control groups at each sampling time point were calculated using Fisher’s exact 

probability test. The Bonferroni correction was used to address multiple comparisons 

(α = 0.003). 

 

Results  

Polymerase chain reaction (PCR) targeting the 16S rRNA PCR was used to screen 

naturally colonized pigs at the farm of origin and to confirm their H. parasuis 

colonization status when the pigs arrived at the research facility. Tonsil and nasal 

swabs from all pigs tested positive for H. parasuis by 16 rRNA PCR on the day of 

arrival at the research facilities. No clinical signs of H. parasuis disease (fever, 

anorexia, lameness, thumping) were observed during the experiment.  
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Quantitative PCR was used to detect and quantify H. parasuis in the tonsil and nasal 

cavity during the study period. Before treatment, 22 out of 23 pigs (95.7%) tested 

positive by qPCR from tonsil swabs, while only 11 pigs (48%) tested positive from 

nasal swabs (Figures 4.1 and 4.2). Among the pigs that tested positive before 

treatment, the average H. parasuis load detected in tonsils and nasal cavities was 2.8 x 

105 and 2.3 x 104 colony-forming units (CFUs)/reaction, respectively. Pigs in the 

control group tested positive throughout most of the study, while all treated pigs 

tested H. parasuis negative by qPCR at 1 day post-treatment (DPT) (Figures 4.1 and 

4.2, Table 4.1). The proportion of nasal samples that tested positive was statistically 

higher for control pigs compared with treated pigs at 1, 2, 3, 4, 5, 6 and 7 DPT, and at 

2, 4 and 5 DPT for tonsil samples (p value < 0.003) (Figures 4.1 and 4.2).  

 

At necropsy, no gross lesions were observed and H. parasuis was detected by qPCR 

in 9 out of 11 control pigs in at least 1 of the 5 samples tested (Table 4.2). In contrast, 

only 4 out of 12 pigs in the treatment group tested positive. Interestingly, all 4 H. 

parasuis isolates obtained were recovered from samples collected at necropsy at 15 

DPT, but not in the necropsies prior to that. ERIC-PCR profiles were obtained from 

the four isolates. One single cluster could be distinguished for the four isolates based 

on coverage of 90% agreement (Oliveira et al., 2003b). 

 

The putative virulence factor, the group 1 vtaA gene, was not detected in any of the 

four isolates obtained, while the group 3 vtaA, highly conserved among H. parasuis 

strains, was detected in all isolates. 
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All anti-OppA serum antibody levels, as measured by ELISA S/P on arrival (mean 

S/P = 0.01) and at necropsy (mean S/P control pigs 0.001 versus mean S/P treated 

pigs 0.03) were very low and under the cut-off value of 0.5.  All values were 

considered negative. 

 

Discussion  

In this study, we demonstrated that enrofloxacin reduced the number of H. parasuis in 

the tonsil and nasal cavity of pigs and decreased the number of pigs that were positive 

for H. parasuis by qPCR during the first week after treatment.  

 

The presence of H. parasuis was demonstrated by gel-based PCR in samples from 

tonsils and nasal cavity in all pigs before treatment, while qPCR detected 95.7% 

positives on tonsils but only 48% positives in nasal cavity. Differences in results 

might be due to the lower sensitivity of the qPCR (4 x 103 CFU/mL) compared with 

the gel-based PCR (1 x 102 CFU/mL) (Oliveira et al., 2001b). However, qPCR was 

preferred in order to quantify the effect of the antibiotic on bacterial load. The fact 

that the pigs tested negative after treatment and that some pigs then became positive 

again suggests that the treatment decreased the level of H. parasuis below the 

threshold of qPCR detection, but did not completely eliminate H. parasuis. 

 

These results are in agreement with a study investigating the effect of marbofloxacin 

in the H. parasuis carrier state in pigs at the farm level (Vilalta et al., 2012). Both 

marbofloxacin as well as enrofloxacin in the present study showed a similar 

effectiveness after treatment, reducing the amount of H. parasuis in the nasal cavity 

of pigs, but not eliminating it. 
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The rapid and relatively long effect of enrofloxacin on H. parasuis in the nasal cavity 

and tonsil of pigs can be attributed to enrofloxacin’s tissue penetration, extended half-

life, and rapid bactericidal effect in a concentration-dependent manner and prolonged 

post-antibiotic effect (Walker et al., 2006). Possible explanations for the antibiotic’s 

inability to fully eliminate H. parasuis are that the dose of antibiotic may have not 

reached an adequate concentration at the colonization sites or that enrofloxacin 

induced the emergence of resistant strains. Even though the concentration of 

enrofloxacin in the nasal cavity or tonsil was not assessed in this study, the 

concentration of enrofloxacin in nasal secretions of pigs is considered nearly equal to 

plasma concentrations, suggesting that it was not a dose-effect issue (Bimazubute et 

al., 2009). Additionally, at necropsy, even when cutting the tonsils and collecting 

swabs from inside the tonsils, pigs treated with enrofloxacin tested negative for H. 

parasuis at 4 and 8 d post-infection, which demonstrates that bacteria was not 

concentrated deep in the tonsils soon after treatment. Furthermore, antibiotic 

resistance was not likely since 3 of the 4 H. parasuis isolates recovered at necropsy 

were tested for antimicrobial susceptibility and all 3 isolates were susceptible to 

enrofloxacin. The fourth isolate would not grow in the test medium. 

 

All pigs remained clinically healthy throughout the study and, as expected, most of 

the control pigs tested positive in samples from the upper respiratory tract. 

Furthermore, at necropsy, 5 pigs tested positive in the trachea and 2 pigs tested 

positive in the lung, which confirms that H. parasuis can be detected in the trachea 

and lung of healthy pigs, as reported elsewhere (Oliveira, 2004). In contrast, swabs 
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collected at necropsy from pigs treated with antibiotics only tested positive when 

collected on day 15 of the study. 

 

Pigs in both groups remained serologically negative. The OppA ELISA kit was used 

to monitor H. parasuis systemic infection during the study, since it measures the 

amount of antibodies to the H. parasuis species-specific antigen OppA in pigs 

systemically infected by all H. parasuis serotypes or vaccinated with H. parasuis. 

Healthy (colonized) pigs are not expected to have anti-OppA antibodies. While 

outside the scope of this study, further investigation is required to determine whether 

H. parasuis strains colonizing the upper respiratory tract are able to trigger an 

immune response. 

 

Characterization of all H. parasuis isolates recovered at necropsy indicated that both 

groups were colonized with the same H. parasuis strain. In addition, the isolates were 

negative by the vtaA group 1 PCR, which indicates that these isolates did not have the 

vtaA virulence factor. This result was expected since H. parasuis is a commensal 

organism of the upper respiratory tract and most of the isolates recovered from the 

nose are considered non-pathogenic (Oliveira et al., 2003a). One isolate that was vtaA 

negative was obtained from systemic sites (serosas) in a clinically healthy control pig, 

however, which requires further investigation. 

 

In conclusion, the results of this study indicate that enrofloxacin can reduce the levels 

of H. parasuis in naturally colonized pigs. Reduction of H. parasuis in the upper 

respiratory tract of pigs may help to control the disease during susceptible stages such 

as the weaning period, possibly delaying the infection to a point when the pigs are 
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able to develop their own active immunity against this organism. Further research is 

needed, however, to evaluate the lasting effect of enrofloxacin in the colonization 

patterns and disease dynamics of H. parasuis. 
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Table 4.1. Daily average colony-forming units (CFUs)/reaction and standard 

deviation (SD) from pigs in treated and control groups. 

 Average CFU/reaction ± (SD) 

 Tonsil Nasal 

Days 

after 

treatment 

Control Treatment Control Treatment 

0 1.8 x 105 (1.5 x 105)a 3.5 x 105 (4.3 x 105) 1.0 x 104 (1.9 x 104) 1.1 x 104 (2.7 x 104) 

1 4.0 x 104 (8.0 x 104) 0c 6.4 x 103 (8.2 x 103) 0 

2 2.0 x 105 (3.8 x 105) 0 1.2 x 104 (1.1 x 104) 0 

3 1.5 x 105 (3.3 x 105) 6.8 x 105b 6.4 x 104 (1.5 x 105) 0 

4 2.3 x 103 (1.7 x 103) 0 3.8 x 104 (2.2 x 104) 0 

5 4.6 x 103 (2.8 x 103) 0 4.0 x 104 (3.3 x 104) 0 

6 8.0 x 103 (1.3 x 104) 0 7.6 x 103 (1.0 x 104) 0 

7 1.8 x 103 (1.8 x 103) 3.9 x 104 1.1 x 104 (1.6 x 104) 0 

8 1.8 x 103b 0 1.2 x 105 (9.3 x 103) 0 

9 7.0 x 103 3.0 x 105 5.1 x 104 (4.2 x 104) 0 

10 2.7 x 104 (2.7 x 104) 0 2.0 x 105 (1.2 x 105) 0 

11 4.6 x 104 (3.5 x 104) 0 2.3 x 105 (8.8 x 104) 1.8 x 104 

12 1.9 x 103 (2.5 x 103) 0 2.9 x 105 (2.7 x 105) 0 

13 3.7 x 103 (3.2 x 103) 2.6 x 103 (3.1 x 103) 4.0 x 105 (1.5 x 105) 3.7 x 104 

14 2.2 x 103 (1.9 x 103) 2.1 x 103 (1.0 x 103) 2.6 x 105 (3.5 x 104) 9.3 x 104 

a Average ± standard deviation. 

b Only one pigs positive in the group. 

c No positive pigs in the group. 
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Table 4.2. Number of pigs detected Haemophilus parasuis positive by qPCR and 

bacterial culture at necropsy.  

Groups Control  Treatment 

Day post-

treatment 

4 

(n=4) 

8 

(n=4) 

14 

(n=3) 

 4 

(n=4) 

8 

(n=4) 

14 

(n=4) 

Nasal 2a (0b) 4 (0) 3 (2)  0 (0) 0 (0) 1 (1) 

Tonsil 2 (0) 3 (0) 2 (0)  0 (0) 0 (0) 3 (0) 

Trachea 1 (0) 1 (0) 3 (0)  0 (0) 0 (0) 1 (0) 

Lung 1 (0) 0 (0) 1 (0)  0 (0) 0 (0) 0 (0) 

Serosae 0 (0) 0 (0) 0 (1)  0 (0) 0 (0) 0 (0) 

a qPCR 

b Bacterial culture 
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Figure 4.1. Percentage of positive pigs by nasal swabs qPCR from control (n=11) and 

treatment (n=12) groups by day. a Differences (p<0.003) between treatment and 

control. 
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Figure 4.2. Percentage of positive pigs by tonsil swabs qPCR from control (n=11) 

and treatment (n=12) groups by day. a Differences (p<0.003) between treatment and 

control. 
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CHAPTER 5 

EFFECT OF ENROFLOXACIN ON HAEMOPHILUS PARASUIS 

INFECTION, DISEASE AND IMMUNE RESPONSE 

 

 

Macedo N, Cheeran M, Rovira A, Torremorell M. Effect of enrofloxacin on 
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Abstract 

Haemophilus parasuis is a pathogen that colonizes the upper respiratory tract (URT) 

of pigs and, through mechanisms not well understood, invades the bloodstream and 

causes polyserositis. This syndrome is known as Glasser’s disease. Antimicrobial 

treatment is widely used to treat Glasser’s disease, but the effects of early elimination 

of H. parasuis before immunity is activated are not known. We characterized the 

antibody and IFN-γ responses to H. parasuis in pigs treated with enrofloxacin before 

or after low dose inoculation with a pathogenic H. parasuis strain to better understand 

the effect of enrofloxacin on immune response to H. parasuis. Pigs that were 

inoculated only (EXP group) and pigs that were treated with enrofloxacin and then 

inoculated (ABT/EXP group) developed signs of disease starting at 4 days post 

inoculation (DPI). Pigs from these groups also presented a significant increase on 

levels of serum IgG. This seroconversion was associated with protection against 

challenge. In contrast, pigs treated after inoculation (EXP/ABT group) did not have 

signs of disease or seroconverted after inoculation. EXP/ABT pigs as well as naïve 

control pigs [enrofloxacin only (ABT) and challenge only (CHA)] were susceptible to 

challenge. Variable levels of serum IgA antibodies, IgG and IgA in bronchioalveolar 

fluid (BALF) and IFN-γ responses were observed after H. parasuis inoculation in the 

different groups, but the values were not associated with protection. After low dose 

inoculation, the virulent H. parasuis strain was isolated from most of inoculated pigs. 

However, enrofloxacin given after H. parasuis inoculation eliminated H. parasuis 

from the noses and larynges of treated pigs. In summary, enrofloxacin treatment 3 

days before H. parasuis inoculation did not interfere with H. parasuis infection and 

subsequent seroconversion and protection against challenge. However, pigs treated 
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with enrofloxacin after H. parasuis inoculation did not seroconvert and were 

susceptible to challenge.  

 

Introduction 

Haemophilus parasuis is a Gram-negative bacterium that causes Glasser’s disease in 

pigs. The disease is characterized by fibrino-purulent polyserositis, arthritis and 

meningitis leading to high mortality and morbidity, which results in significant 

economic losses to pig producers. Pathogenic and non-pathogenic H. parasuis strains 

can be isolated from the upper respiratory tract of healthy pigs (chapters 3 and 4). 

Stress conditions such as weaning and transport have been suggested as risk factors 

for H. parasuis systemic dissemination (Aragon et al., 2012).  However, the 

mechanisms involved in the systemic invasion of H. parasuis are largely unknown. 

 

Vaccines against H. parasuis are available and can be used for prevention. However, 

control of Glasser’s disease through vaccination can be difficult, especially because 

there are many strains and subtypes, and cross-protection among isolates is limited. In 

contrast, field studies demonstrated that inoculating piglets with a low dose of a live 

pathogenic H. parasuis strain reduced nursery mortality due to Glasser’s disease 

(Oliveira et al., 2001; Oliveira et al., 2004). The mechanism behind such protection 

was not determined, but it was hypothesized that such exposure results in H. parasuis 

colonization, which may elicit a protective immune response without causing disease 

(Pijoan et al., 1997).   

 

Antimicrobials have been widely used in the swine industry to control bacterial 

respiratory diseases (Cromwell, 2002). About half of farms in the US with nursery-
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age pigs use injectable antimicrobials to treat respiratory diseases. The most common 

action for pigs with clinical respiratory disease is to administer antimicrobials to all 

pigs in the entire room, according to data from the National Animal Health 

Monitoring System Swine 2006 study (Anonymous, 2006). Antimicrobials exert a 

direct deleterious effect over bacterial infections by decreasing the bacterial load and 

permitting the host to activate immune defenses and eliminate the pathogen without 

excessive inflammation (Cromwell, 2002). Specifically for H. parasuis, 

antimicrobials are extremely useful in the control and treatment of Glasser’s disease 

(Aragon et al., 2012).   On the other hand, there are few reports indicating that 

antimicrobials can have unintended consequences by preventing the development of 

immunity, as described below. Antimicrobial treatment in the early stages of disease 

prevented the development of protective immunity against reinfection with Listeria 

sp. in mice, Chlamydia trachomatis in mice, Actinobacillus pleuropneumoniae in pigs 

and Salmonella typhimuium in mice (North et al., 1981; Su et al., 1999; Sjolund et al., 

2009; Griffin et al., 2009). In contrast, a recent study demonstrated that early 

antibiotic treatment with enrofloxacin against S. typhimurium infection in mice 

primed a specific antibody response, which protected against secondary challenge 

(Johanns et al, 2011). Antimicrobial treatment can also affect H. parasuis colonization 

(chapter 4, Vilalta et al., 2012). However, the effect of antimicrobials on the 

development of an effective immune response against H. parasuis requires further 

investigation.  

 

To better study the relationship between H. parasuis infection, immunity, protection 

and use of antibiotics, we used an animal model where conventional pigs were 

inoculated with a low dose of a pathogenic H. parasuis strain at weaning and were 
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treated with enrofloxacin, followed by homologous challenge. To our knowledge, 

there is no information available on how antimicrobials affect protection against H. 

parasuis in pigs experimentally colonized with a pathogenic H. parasuis strain. Our 

hypothesis is that enrofloxacin treatment will affect H. parasuis infection and 

subsequent development of a protective immune response against H. parasuis.  

 

Material and Methods 

Experimental design 

Sixty 3-week-old conventional pigs from seven different litters were selected from a 

specific pathogen free herd without history of Glasser’s disease. Pigs were 

individually identified, assigned to 6 groups of 10 pigs each, and equally distributed 

as far as possible in terms of sex, weight and litter of origin. Each group was kept in a 

separate isolation room and pigs were cared according to University of Minnesota 

approved Institutional Animal Care and Use Committee (IACUC) protocols.   

 

A summary of the experimental procedures for each group is shown in Figure 5.1 and 

Table 5.1. Three groups of pigs (EXP, EXP/ABT, ABT/EXP) were inoculated with a 

low dose of pathogenic H. parasuis (exposure) on day 0. Group ABT/EXP was also 

treated with enrofloxacin before inoculation on day -3 of the study. Group EXP/ABT 

was treated with enrofloxacin 3 days after inoculation. Group ABT was also treated 

with enrofloxacin on day 3 but was not exposed to low dose of pathogenic H. 

parasuis, and served as a control for the effect of the antibiotic treatment alone. Pigs 

in group CHA were only inoculated with a high dose of H. parasuis (challenge) on 

day 21 and served as positive controls. Groups EXP, EXP/ABT, ABT/EXP and ABT 
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were also challenged on day 21. Pigs in the negative control group (NEG) were 

untreated, non-exposed and non-challenged.  

 

At the termination of the study, at 25 or 35 DPI, pigs were euthanized and necropsied 

for pathological evaluation. Pigs showing severe clinical signs of disease including 

lethargy, respiratory distress, lameness or lateral recumbency were euthanized and 

necropsied as soon as severe clinical signs were identified. 

 

Haemophilus parasuis inoculation 

H. parasuis Nagasaki strain was selected for inoculation of piglets. This is a highly 

pathogenic reference strain extensively described in the literature (Cerda-Cuellar and 

Aragon, 2008; Aragon et al., 2009; Olvera et al., 2009; 2012; Frandoloso et al., 2012; 

2013). The Nagasaki strain had an in vivo passage using chicken eggs to increase its 

virulence (Oliveira and Pijoan (2002). Bacterial growth was harvested from chocolate 

agar plates, quantified, aliquoted and frozen at -80°C.  Prior to inoculation, cultures 

were diluted to produce an inoculum containing 106 (exposure at day 0) or 108 

(challenge at day 21) colony forming units (CFU)/ml of Nagasaki strain.  

 

Inoculation was performed as described in chapter 4. Pigs inoculated at the beginning 

of the study received 1.0 mL of inoculum containing 106 CFU/ml of Nagasaki strain 

intranasally (0.5 mL in each nostril) at day 0. Non-inoculated pigs received 1.0 mL of 

sterile saline intranasally. Before inoculation, pigs were sedated by an intramuscular 

injection in the cervical muscles of a dissociative anesthetic at recommended dose of 

6.6 mg/kg (0.06 ml/kg) (Telazol®, Fort Dodge Animal Health, Fort Dodge, IA). Once 

sedation was achieved (1-2 minutes), pigs were held upright and the inoculum was 
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instilled slowly into each nostril using a 1 mL syringe. Inoculation with high 

challenge dose was similarly performed on day 21 of the study, using an inoculum 

containing 108 CFU/mL of Nagasaki strain. 

 

Antimicrobial treatment 

Pigs treated with antimicrobial received a single dose of injectable enrofloxacin (7.5 

mg/kg of body weight, Baytril, Bayer Animal Health, Shawnee, Kansas, USA), 

subcutaneously, either 3 days prior (ABT/EXP) or post (EXP/ABT) low dose  

inoculation (Table 5.1). Pigs not treated received 1 mL of saline solution. 

Pigs that had clinical signs of Glasser’s disease, including body temperature above 

40° C, lethargy, respiratory distress, lameness or lateral recumbency were treated 

therapeutically with enrofloxacin following manufacturer specifications as described 

above.  

   

Sample collection 

Nasal swabs for bacterial isolation were collected at -3, 2, 7 and 17 DPI from all pigs 

in all groups and at  3 and  5 DPI from pigs in groups EXP, EXP/ABT and ABT/EXP. 

Laryngeal swabs were collected from groups EXP, EXP/ABT and ABT/EXP only at 

2, 3, 6, 7 and 18 DPI.  Swabs of nasal cavity, trachea, brain, pleura, pericardium, 

peritoneum and joints were collected at necropsy for H. parasuis isolation. H. 

parasuis isolation was also attempted from lung and liver tissues. Blood samples were 

collected at 2 and 23 DPI from exposed pigs to monitor for bacteremia through 

bacterial isolation and PCR (Oliveira et al., 2001b). Serum samples were collected at -

3, 17, 25 and 35 DPI for serological testing. Blood samples were also collected in 

EDTA tubes (BD VacutainerTM Glass Blood Collection tubes with K3 EDTA; 
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Franklin Lakes, NJ, USA) on days 0, 7, 15, 25 and 35 to evaluate the number of 

peripheral blood mononuclear cells (PBMCs) producing IFN-γ upon H. parasuis 

stimulation by Enzyme-Linked ImmunoSpot (ELISPOT).   

 

Clinico-pathological evaluation 

Body temperature and clinical signs compatible with Glässer’s disease (cough, 

lethargy, abdominal breath, lameness and lateral recumbency) were recorded daily 

after H. parasuis inoculation on day 0. Pigs showing signs of advanced Glasser’s 

disease were euthanized by a pentobarbital overdose (100 mg/kg, Fatal-Plus 

Solution®, Vortech Pharmaceuticals, Dearborn, MI, USA). At the termination of the 

study, at 25 or 35 DPI, pigs were euthanized and necropsied for evaluation of gross 

and microscopic lesions.  Lesions of pulmonary consolidation, presence of fibrin in 

abdomen, thorax and joints were recorded. Mortality associated to H. parasuis was 

confirmed by bacterial isolation from the lesions followed by genotyping by 

enterobacterial repetitive intergenic consensus (ERIC-PCR). 

 

H. parasuis isolation and characterization 

For isolation of H. parasuis, samples were plated onto sheep blood agar streaked with 

a nurse Staphylococcus aureus strain, and incubated at 37°C in a 5% carbon dioxide 

(CO2) atmosphere for 24 to 48 hours. Suspect colonies showing satellitism to the S. 

aureus nurse streak were isolated onto a new blood agar plate, incubated in similar 

conditions for 24 additional hours, and characterized through biochemical testing 

(Oliveira et al., 2003).  
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H. parasuis isolates were genotyped by ERIC-PCR (Rafiee et al., 2000) in order to 

distinguish between the Nagasaki strain and naturally colonizing commensal H. 

parasuis. Additionally, a multiplex PCR based on detection of the gene encoding 

virulence factor vtaA was used to differentiate non-pathogenic from potentially 

pathogenic H. parasuis isolates (Olvera et al, 2011).  

 

Detection of H. parasuis-specific IgG and IgA by ELISA 

To study antibody responses to H. parasuis, H. parasuis recombinant oligopeptide 

permease A (rOppA) protein was obtained as described previously (chapter 2) from 

GenScript Corp., Piscataway, New Jersey. The OppA protein is highly immunogenic, 

species-specific, conserved among H. parasuis strains, and is recognized by serum 

from pigs systemically infected with a wide variety of H. parasuis strains and 

serotypes (chapter 2).  

 

An in house ELISA to detect antibodies against the OppA was developed as described 

in chapter 2. Briefly, high binding plates were coated with 100 nanograms/well of 

recombinant OppA (Genscript) and blocked with 5% skim milk. Sera were diluted 

1:50 for IgG and IgA detection. Bronquioalveolar lavage fluid (BALF) was diluted 

1:8. Rabbit anti-porcine IgG HRP (Sigma-Aldrich, St. Louis, MO, USA) was diluted 

1:50000 and goat anti-porcine IgA HRP (Bethyl Laboratories, Montgomery, TX, 

USA) was diluted 1:3200. Antibodies were detected with peroxidase substrate (KPL, 

Gaithersburg, MD, USA). The plates were read at 450 nm using a microplate reader 

(ThermoMax Molecular Devices, Sunnyvale, CA).  
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Isolation, freezing and thawing of porcine PBMCs 

Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient 

centrifugation of blood diluted 1:2 with sterile phosphate buffered saline (PBS) (Cell 

Signaling Technology, Danvers, MA, USA) on lymphocyte separation medium 

(Mediatech, Manassas, VA, USA). PBMCs were washed with PBS, and freed of red 

blood cells by ammonium-chloride-potassium (ACK) lysis buffer (Lonza, Alpharetta, 

GA, USA). Cells were resuspended in RPMI complete medium containing 1mM 

sodium pyruvate (Life Technologies, Grand Island, NY, USA), penicillin (100 U) and 

streptomycin (100 µg/mL) (Sigma-Aldrich, St. Louis, MO, USA). Cell viability was 

confirmed by trypan blue exclusion, and cells were counted using the Cellometer® 

Auto Counter T4 (Nexcelom Bioscience LLC, Lawrence, MA, USA). Cells were 

resuspended to 107 cell/mL with freezing solution containing 70% FBS, 20% cRPMI, 

10% Dimethyl Sulfoxide (Sigma-Aldrich, St. Louis, MO, USA) and kept on liquid 

nitrogen until use. Cells were thawed in 37°C water bath and washed with RPMI 

containing 5% FBS and 50 U/mL of benzonase nuclease (Sigma-Aldrich, St. Louis, 

MO, USA). Cells were resuspended with 1 mL of RPMI containing 10% FBS, 1mM 

sodium pyruvate (Life Technologies, Grand Island, NY, USA), penicillin (100 U) and 

streptomycin (100 µg/mL) (Sigma-Aldrich, St. Louis, MO, USA) and added to plates 

at specified concentration. 

 

ELISPOT assay for IFN-γ response 

As a measure of cell-mediated immune response to H. parasuis, IFN-γ production 

responses were assessed by in vitro stimulation of PBMCs with H. parasuis outer 

membrane proteins (OMPs) and mitogens for 24 hours, followed by measuring 

antigen-specific, actively secreting IFN-γ producing cells. 
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The method used for detergent-insoluble OMP extraction from H. parasuis has been 

described by Ruiz et al. (2001). Briefly, an overnight culture of H. parasuis Nagasaki 

strain in PPLO medium supplemented with 5% horse serum and 40 µg of NAD/mL 

was centrifuged for 10 minutes at 5,000 x g. The pellet was resuspended in 10 mM 

HEPES buffer (pH 7.4), and the suspension was subjected to sonication for 2 minutes 

at 22 µm amplitude (sonicator) in ice. Sonication was repeated until solution changed 

color from cloudy, turbid to translucent. Cellular debris was removed by 

centrifugation at 20,000 x g for 3 minutes at 4°C. The supernatant was then removed 

and centrifuged at 20,000 x g for 40 minutes at 4°C. The pellet containing the cell 

membrane material was resuspended in HEPES buffer and sodium lauryl sarcosinate 

(Sigma-Aldrich, St. Louis, MO, USA) (2% in HEPES buffer) for 30 minutes with 

intermittent mixing. After that, each preparation was centrifuged at 20,000 x g for 40 

minutes at 4°C. The membrane pellet was then resuspended in HEPES buffer to a 

concentration of 100 µg/mL and stored at -80°C.  

 

Microtiter PVDF plates (Millipore MultiScreenTM, EMD Millipore Corporation, 

Billerica, MA, USA) were coated with 100 µL/well of 1:60 dilution of anti-porcine 

IFN-γ  capture antibody (R&D Systems, Inc., Minneapolis, MN, USA) in PBS 

overnight at 4°C and blocked by adding 200 µL/well of  1% bovine serum albumin 

(BSA) in PBS. Cells were diluted in RPMI 1640 to a density of 500,000 cells per well 

in a volume of 50 µL/well. H. parasuis OMPs recall antigen (25 µg/well), 10 µg/mL 

of Concanavalin A (ConA) (positive control) (Sigma-Aldrich, St. Louis, MO, USA) 

or 25 µg/well of Hemocyanin from Megathura crenulata (keyhole limpet) KLH 

(Sigma-Aldrich, St. Louis, MO, USA) (negative control) was added to each well. 

Plates were incubated for 24 hours at 36°C in a CO2 incubator. Medium was removed, 
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and plates were washed six times with phosphate buffered saline with Tween-20 

(PBST) (Cell Signaling Technology, Danvers, MA, USA). One hundred mL/well of a 

1:100 dilution of anti-porcine IFN-γ detection antibody (R&D Systems, Inc., 

Minneapolis, MN, USA) were added in PBS with 1% BSA and incubated for 2 hours 

at room temperature (RT). Plates were washed again six times with PBST, and 100 

µL of 1:100 dilution of streptavidin-alkaline phosphatase in 1% BSA was added for 2 

hours at RT. After 4 washes, 100 µL/well of BCIP/NBT chromogen (R&D Systems, 

Inc., Minneapolis, MN, USA) was added and incubated in the dark for 30 minutes at 

RT, then rinsed with water and let dry at RT. Spots were quantified automatically by 

using a specialized automated ELISPOT reader (ImmunoSpot® 5.1 software, C.T.L. 

Analyzers, LLC, Cleveland, OH, USA). Data are presented as the mean numbers of 

H. parasuis-specific IFN-γ producing cells per 106 PBMCs from duplicate wells of 

each sample minus the number of cells on wells simulated by KLH. 

 

Statistical analysis 

The presence of clinical signs and lesions at necropsy were analyzed for significant 

differences between groups using Fisher’s exact test (p<0.05). Serology and 

ELISPOT data were statistically analyzed for differences between groups using 

Kruskal-Wallis test followed by Mann-Whitney pairwise comparison (p<0.05). 

Serology and ELISPOT data were also compared within groups by repeated measures 

Friedman’s ANOVA test, followed with multiple pairwise comparisons performed 

using Wilcoxon signed rank test (p<05). Survival analysis was used to compare the 

time of Nagasaki isolation from URT and the onset of clinical signs after H. parasuis 

inoculation. Differences between groups were analyzed by Cox Regression (P<0.05). 
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Results 

Clinico-pathological outcomes to H. parasuis inoculation 

After low dose inoculation, clinical signs were observed in 6/10 pigs from the EXP 

group and 5/10 pigs from the ABT/EXP group. These proportions of pigs with clinical 

signs were not statistically different from each other (Table 5.2), but were different 

from the EXP/ABT and the non-exposed groups (ABT, CHA and NEG) (p<0.05). 

Pigs in the other four groups did not show clinical signs.   

 

Four pigs from the EXP group had fever above 40°C at 4 DPI. Two of the affected 

pigs were euthanized and the other two were treated therapeutically with enrofloxacin 

as previously described. At 8 DPI, two other pigs from the EXP group presented fever 

and were immediately treated therapeutically (Table 5.2). The body temperatures of 

the therapeutically treated pigs returned to normal after 24 hours and they were kept 

in the study.  

 

Four pigs from the ABT/EXP group had temperature above 40°C after low dose 

inoculation, starting at 7 DPI. These pigs were similarly treated with enrofloxacin and 

their body temperature normalized 24 hours post treatment. However, one of the 

therapeutically treated pigs was found dead at 16 DPI. In addition, another pig from 

the same group was found in distress (lethargy and hypothermia) and was therefore 

euthanized at 7 DPI (Table 5.2). Although onset of clinical signs was observed sooner 

in group EXP (4- 8 days) compared to group ABT/EXP (7-8 days) (Table 5.2), no 

significant differences in the onset of clinical signs were found by Cox regression. 
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Necropsy of the two pigs from group EXP euthanized at 4 DPI revealed moderate 

arthritis in the hock joints of both posterior legs in pigs. The pig from group 

ABT/EXP euthanized on day 7 had mild peritonitis while the pig found dead on day 

16 did not have any lesions at necropsy. Nevertheless, H. parasuis was isolated from 

systemic sites from all necropsied pigs and confirmed as Nagasaki strain according to 

the ERIC-PCR pattern. 

 

Results on clinical outcomes after high dose challenge inoculation can be seen in 

Table 5.3. Pigs from the NEG, EXP and ABT/EXP groups did not show any signs of 

disease. In contrast, 4 out of 10 pigs in the EXP/ABT and CHA groups and 8 out 10 

pigs in the ABT group had clinical signs of disease after challenge, including fever, 

lethargy, coughing, respiratory distress, lameness and lateral recumbency. The 

proportion of affected pigs in groups EXP/ABT, ABT and CHA was statistically 

higher when compared to non-affected pigs (EXP, ABT/EXP and NEG groups) 

(p<0.05) (Table 5.3). Five pigs (4 from ATB and 1 from CHA groups) were 

euthanized before the first endpoint of the study (day 25 DPI) due to severe clinical 

signs (Table 5.3). At first necropsy day (25 DPI or earlier), 14 pigs (6 ABT, 4 CHA 

and 4 EXP/ABT) had lesions characteristic of Glasser’s disease, including 

fibrinopurulent pericarditis, pleuritis, peritonitis, arthritis, and pneumonia. Nagasaki 

strain was recovered from all 14 pigs from trachea, lung, liver or serosal sites (Table 

5.4 and Table 5.5). In addition, Nagasaki strain was recovered from the nose of only 

four affected pigs (1 EXP/ABT, 2 ABT and 2 CHA) (Table 5.4 and Table 5.5).  

 

Nasal, tracheal and serosal swabs collected at necropsy from the pigs from groups that 

did not show disease (NEG, EXP, ABT/EXP) tested negative for the Nagasaki strain. 
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Pigs that were not euthanized on 25 DPI remained healthy until day 35 DPI, and no 

lesion was observed during the second necropsy on 35 DPI. The only Nagasaki isolate 

recovered on 35 DPI was from the nose of two pigs from CHA group. 

 

H. parasuis isolation from the URT  

H. parasuis was isolated from nasal and laryngeal swabs of 54/60 pigs (90%) yielding 

142 isolates before challenge. Of those, 34 isolates were identified by ERIC-PCR as 

the pathogenic H. parasuis Nagasaki strain, which had been inoculated into the pigs. 

Overall, there were 28 Nagasaki H. parasuis isolates recovered from nasal swabs and 

6 from laryngeal swabs. The other 108 isolates were identified as a different strain 

that all pigs carried in the nasal cavity, and is referred to as “farm strain” hereafter. 

Nagasaki strain was differentiated from the farm strain by its unique ERIC-PCR 

fingerprint (chapter 2). Additionally, the Nagasaki strain was positive for the virulent 

vtaA gene (chapter 2), while the farm strain was not.  

 

The Nagasaki strain was cultured from nasal or laryngeal swabs from 8/10 pigs in 

group EXP, 9/10 pigs in group ABT/EXP and 5/10 pigs in group EXP/ABT before 

challenge. These differences in the proportion of pigs with positive URT cultures 

were not significantly different (Table 5.6). The time of first isolation ranged from 2 

to 7 DPI for pigs in group EXP, 2 to 7 in group ABT/EXP and 2 to 3 in group 

EXP/ABT. Although there was a delay in pigs yielding Nagasaki isolates in 

ABT/EXP group compared to EXP and EXP/ABT groups (Table 5.6), there were no 

significant differences in time to Nagasaki isolation by Cox regression (p>0.05). 
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The farm strain was isolated from 48/60 (80%) pigs, resulting in 108 isolates 

recovered before challenge (Table 5.7). The rate of isolation of the H. parasuis farm 

strain at the beginning of the study (-3 DPI) ranged between 40% and 80% in the 

different experimental groups (Table 5.7). These differences were not significantly 

different. The H. parasuis farm strain continued to be isolated throughout the study 

from the URT of pigs that were not treated with antibiotics (EXP, NEG and CHA). In 

contrast, H. parasuis farm strain was not isolated from pigs in groups EXP/ABT, 

ABT/EXP and ABT after enrofloxacin administration.  

 

Serological immune response 

To test whether inoculation with a low dose of pathogenic H. parasuis induced IgG 

and IgA antibodies against H. parasuis immunogen OppA, serum samples were 

analyzed by an in house H. parasuis ELISA. After low dose inoculation, serum IgG 

antibodies increased in pigs from groups EXP (average  OD of 1.13) and ABT/EXP 

(average OD of 0.99) on day 17 compared with day -3 (average OD of 0.17 and 0.18, 

respectively) (p<0.05) (Figure 5.2). Additionally, levels of serum IgG antibodies were 

higher for groups EXP and EXP/ATB on day 17, when compared to group EXP/ABT 

and non-inoculated groups (p<0.05). No significant increases in serum IgG antibodies 

were observed among the pigs from EXP/ABT group and control groups before 

challenge.  

 

Levels of serum IgA antibodies were significantly higher on day 17 for all groups, 

compared to day -3 DPI (p<0.05). A significant difference on IgA levels in serum was 

not observed between groups on day 0 or day 17 (p>0.05) (Figure 5.3).  
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After challenge (25 and 35 DPI), levels of serum IgG remained high for groups EXP 

and ABT/EXP (Figure 5.2). The levels of serum IgG antibodies significantly 

increased in pigs from groups EXP/ABT, ABT and CHA 14 days after challenge (35 

DPI) when compared to 25 DPI (p<0.05). Levels of serum IgG remained low in the 

NEG group throughout the study and significantly lower than the other groups on 35 

DPI (Figure 5.2).  Levels of serum IgA were statistically higher for all groups 

compared to NEG group on 35 DPI (p<0.05) (Figure 5.3).  

 

There were no differences between groups on IgG or IGA levels in BALF on day 25 

DPI. Levels of IgG in BALF were statistically higher in pigs from all challenged 

groups on day 35 when compared to NEG group (p<0.05) (Figure 5.4). However, no 

significant differences were observed among groups on the levels of IgA antibodies in 

BALF at 35 DPI (Figure 5.5).  

 

IFN-γ immune response  

The H. parasuis-specific cell-mediated immune response was assessed using an 

enzyme-linked immunosorbent spot assay (ELISPOT) designed to detect IFN-γ 

producing PBMCs. No differences on the number of IFN-γ producing cells were 

observed between groups on day -3. Pigs in EXP and ABT/EXP groups showed a 

statistically higher number of H. parasuis-specific IFN-γ producing cells at 7 and 15 

DPI, respectively, compared to day -3 (p<0.05) (Figures 5.6). In addition, on day 7, 

EXP group had significantly higher IFN-γ response compared to NEG group, while 

ABT/EXP group had a higher IFN-γ on day 15 DPI, when compared to other groups 

(P<0.05). A significant IFN- γ response was not observed in EXP/ABT and non-

exposed groups (ABT, CHA and NEG) after low dose inoculation. 
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After challenge, on 25 DPI, levels of H. parasuis-specific IFN-γ producing cells were 

statistically higher for all groups when compared with NEG group (p<0.05), (Figure 

5.6). By 35 DPI, no differences on IFN- γ responses were observed between groups. 

 

Discussion 

There is limited information on how antimicrobials modify the susceptibility of pigs 

to H. parasuis infection. In this study, we evaluated the use of enrofloxacin in relation 

to the timing of H. parasuis infection and the predisposition to Glasser’s disease. Our 

results indicated that enrofloxacin given 3 days after pigs were exposed controlled 

infection before pigs were able to activate a protective immune response. In contrast, 

enrofloxacin given 3 days before inoculation did not interfere with the development of 

an immune response, resulting in pigs being protected against challenge.  

 

Inoculation of pigs with a low dose of pathogenic H. parasuis resulted in most pigs 

being colonized by the pathogenic strain and having an increase on levels of IgG 

antibodies in serum. In addition, all pigs from EXP group were protected against 

challenge. Protection against Glasser’s disease after exposure to low dose of 

pathogenic H. parasuis is, to some extent, discordant in the literature. A different 

study reported that exposure to H. parasuis pathogenic strain at a young age resulted 

in protection from clinical disease in a farm setting (Oliveira et al., 2004). In contrast, 

when pigs were inoculated with a low dose of pathogenic H. parasuis in another 

study, only partial protection (3 out of 5 pigs) was reported after challenge with a high 

dose of the same strain (Martin de la Fuente et al., 2009a). Whether a subclinical or 

systemic infection by H. parasuis is needed to activate a protective immune response 
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or whether only colonization by a pathogenic H. parasuis strain would be enough to 

prime the immune system still needs further investigation. 

 

The protection observed by a low dose inoculation with H. parasuis was not affected 

by enrofloxacin given 3 days before Nagasaki inoculation. Similar to EXP group, 

most pigs from ABT/EXP group were colonized with the pathogenic strain and had 

increased levels of serum IgG antibodies.  Enrofloxacin is a fluoroquinolone that acts 

by inhibiting DNA gyrase, an enzyme responsible for bacterial replication, which 

leads to cell death. Enrofloxacin concentration peaks in plasma and nasal secretions of 

pigs between 1 and 2 hours after administration with terminal half-life of about 9 and 

12 hours in plasma and nasal secretions respectively (Bimazubute et al., 2009). Even 

though the duration of effective concentration of enrofloxacin in plasma and nasal 

secretions of swine is not known, data from this study suggests that the concentration 

of enrofloxacin 3 days after administration must have been low enough to allow the 

establishment of H. parasuis infection in pigs.  

 

On the contrary, enrofloxacin given 3 days after inoculation with the pathogenic strain 

interfered with protection against challenge. Neither the farm nor the Nagasaki H. 

parasuis strains were isolated from the URT of EXP/ABT group after enrofloxacin 

treatment. In addition, these pigs did not develop disease after colonization and an 

increase of IgG antibodies was not observed at 17 DPI. Finally, 40% of those pigs 

were susceptible to challenge on 21 DPI. Based on lack of H. parasuis isolation after 

enrofloxacin treatment, it appears that the antibiotic quickly prevented the immune 

response by inactivating and removing H. parasuis. In fact, besides its broad 

distribution on plasma and tissues, enrofloxacin also actively accumulates in 
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phagocytes and quickly eliminates susceptible bacteria by enhancing intraphagocytic 

killing (Schoevers et al., 1999). Alternatively, the enrofloxacin treatment may have 

had a direct immunosuppressant effect on the immune system of injected pigs. 

Fluoroquinolones are known to have modulating effects on the immune response, by 

decreasing the synthesis of pro-inflammatory cytokines, such as IL-1 and TNF (Khan 

et al., 2000), which could have contributed to the absence of immune response in 

group EXP/ABT.  More research is needed, however, to investigate whether such 

immunomodulatory effects would affect the immune response to H. parasuis. 

 

Groups EXP and ABT/EXP had significantly higher levels of IgG antibodies in serum 

at 17 DPI and were protected against challenge at 21 DPI. The groups that were 

seronegative at 17 DPI (EXP/ABT, ABT and CHA), showed an increase of IgG 

antibodies in serum at 31 DPI. In addition, all challenged groups had higher levels of 

IgG antibodies in serum and BALF than non-challenged NEG group (p<0.05). 

Therefore, pigs systemically infected by a pathogenic H. parasuis strain develop 

serum IgG antibodies, which are the main immune correlate of protection from 

Glasser’s disease in this study. This finding is in agreement with several previous 

reports (Solano-Aguilar et al., 1999; Martin de la Fuente et al., 2009; Nedbalcova et 

al., 2011). 

 

On the other hand, an increase on serum IgA was observed for all groups at 17 DPI 

compared to day -3. The cause of this increase in IgA remains unknown. No 

differences were observed between groups until 35 DPI, when all challenged groups 

had higher levels of serum IgA compared to the NEG group. In BALF, no differences 

on IgA levels were observed between groups on 25 and 35 DPI. In other studies, pigs 
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vaccinated with a killed H. parasuis vaccine were protected against challenge, and 

serum IgG immunity developed without a robust serum IgA antibody response 

(Olvera et al., 2013; Martinez-Martinez et al., 2013). Apparently, serum IgA response 

is activated after H. parasuis systemic infection or vaccination, but does not seem to 

play a significant role on protection against disease. 

 

Moreover, an average increase of IFN-γ producing cells was observed on EXP group 

at 7 DPI when compared to NEG group, and on ABT/EXP group at 15 DPI when 

compared to all the other groups (Figure 5.6). The higher levels of IFN-γ producing-

cells are apparently associated with onset of clinical signs in those two groups. In a 

different study, an increase of IFN-γ concentrations was also described in the sera of 

piglets after vaccination (Hu et al., 2013). In the present study, no increase of IFN-γ 

producing cells was observed in EXP/ABT after low dose inoculation, probably 

because the infection was eliminated before an immune response could be developed. 

Furthermore, quinolones antimicrobials have been shown to decrease IFN-γ 

expression in human T lymphocytes under in vitro conditions (William et al., 2005), 

with potential implications for immune response and recovery after severe infection, 

but the mechanisms of such effects need further investigation in vivo. After challenge, 

all groups had a significantly higher IFN-γ response at 25 DPI when compared to 

NEG group. The number of IFN-γ producing cells was not different from background 

on day 35, apparently because IFN-γ response seems to be transient in blood and it is 

dissipated after peak of infection from days 22 to 25 (1 to 4 days after challenge).  

 

In summary, in this study we demonstrated that antibiotic treatment can alter the 

development of a protective immune response for H. parasuis and that this effect is 
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dependent on the timing of antibiotic administration relative to infection. In addition, 

it is possible to speculate on the relative role of the different immune responses in the 

observed protection against H. parasuis challenge: serum IgA and IFN-γ producing-

cells did not appear to play a significant role. In contrast, serum IgG levels were 

associated with protection. Protection against re-infection is highly desirable in 

commercial herds, where repeated exposures to H. parasuis are common. Controlling 

disease with potent antimicrobials such as enrofloxacin before pigs had time to 

develop a protective immune response might result in clinical disease if pigs become 

reinfected. On the other hand, treating pigs when clinical signs of disease are evident 

does not seem to interfere with protection against re-infection because the immune 

response may already have been activated. Overall more work on understanding the 

immune response against H. parasuis infection is needed to understand the protective 

immune mechanisms against H. parasuis infection. In addition, studies including 

different antimicrobials would provide valuable information to better assess 

appropriate timing and judicious use of antimicrobial treatment in pigs.  
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Table 5.1. Experimental design summary. 

  Days of the study 

Groups 

Number 

of pigsa -3 0 3 21 25/35 

EXP 10  Exposurec  Challenged Necropsy 

ABT/EXP 10 Enrofloxacinb Exposure  Challenge Necropsy 

EXP/ABT 10  Exposure Enrofloxacin Challenge Necropsy 

ABT 10   Enrofloxacin Challenge Necropsy 

CHA 10    Challenge Necropsy 

NEG 10     Necropsy 

a 3-week-old, high-health pigs 

b One dose of 7.5 mg/kg injectable enrofloxacin (Baytril® 100)  

c Inoculation with H. parasuis Nagasaki strain at a low dose of 106 CFU/ml 

d Inoculation with H. parasuis Nagasaki strain at a high dose of 108 CFU/ml 
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Table 5.2. Clinical outcome after low dose Haemophilus parasuis Nagasaki strain 

inoculation. 

Group 

Number of 

inoculated pigs 

Number of clinically 

afftected pigs1 

Days from inoculation 

to clinical signs 

EXP 10 6a 4,4,4,4,8,8 

ABT/EXP 10 5 a 7,7,8,8,8 

EXP/ABT 10 0 b - 

ABT 0 0 b - 

CHA 0 0 b - 

NEG 0 0 b - 

 a Clinical signs included fever > 40°C, prostration, swollen joints, respiratory distress, 

and lateral recumbency. 
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Table 5.3. Proportion of pigs positive for Haemophilus parasuis Nagasaki strain 

isolation after challenge (23 to 35 DPI). 

Group Nose Trachea Lung Serosa 

EXP 0/8 0/8a 0/8 0/8 a 

ABT/EXP 0/8 0/8a 0/8 0/8 a 

EXP/ABT 1/10 4/10b 0/10 2/10 a 

ABT 2/10 5/10b 5/10 5/10 b 

CHA 2/10 6/10b 3/10 2/10 a 

NEG 0/10 0/10 a 0/10 0/10 a 

Different letters indicate significant differences between groups (p<0.05). 
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Table 5.4. Clinical outcome after challenge by inoculation with a high dose of 

Haemophilus parasuis Nagasaki strain. 

Group 

Number of clinically 

afftected pigs1 

Days from challenge 

to clinical signs 

Presence of lesions at 

necropsy 

EXP 0/8a - 0/8 a 

ABT/EXP 0/8a - 0/8 a 

EXP/ABT 4/10a 3,3,3,3 4/10 b 

ABT 8/10b 2,2,3,3,3,3,3,4 6/10 b 

CHA 4/10a 2,2,3,3, 4/10 b 

NEG 0/10a - 0/10 a 

1Clinical signs included fever > 40°C, prostration, swollen joints, respiratory distress, 

and lateral recumbency. 

Different letters indicate significant differences between groups (p<0.05). 
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Table 5.5. Isolation of Haemophilus parasuis Nagasaki strain from pigs with lesions 

at necropsy (23 to 35 DPI).* 

   Necropsy specimens† 

Groups 

Pig 

no. 

Days post-

challenge 

Ns Tr Pl Lu Pc Lv Pt Jt 

EXP/ABT 57 4 - + + - + - - - 

23 4 + + - - - - - - 

56 4 - + + - - - - - 

9 4 - + - - - - - - 

ABT 19 2 + + + + + + + - 

37 2 - + + + + + + - 

40 3 + + + + - + + + 

32 3 - - + - + + + + 

5 4 - + + + + - - - 

54 4 - + - + - - - - 

CHA 39 3 + + + + + + + - 

11 4 + + - + + + - - 

59 4 - + - + - - - - 

24 4 - + - - - - - - 

*(+) = Isolation of Nagasaki strain; (-) = Negative culture for Nagasaki strain 

†Ns: nasal swab, Tr: traqueal swab, Pl: pleural swab, Lu: lung, Pc: pericardial swab, 

Lv: liver, Pt: peritoneal swab, Jt: joint swab. 
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Table 5.6. Number of pigs with positive cultures for Haemophilus parasuis Nagasaki 

strain from nasal or laryngeal swabs after inoculation with a low dose. 

 Days of the study  

Groups -3 2 3 5 7 18 Total6 

EXP1 0/10 5/10 2/10 1/84 3/8 0/8 8/10a 

ABT2/EXP 0/10 1/10 1/10 4/10 8/10 0/85 9/10 a 

EXP/ABT3 0/10 2/10 5/10 0/10 0/10 0/10 5/10 a 

ABT 0/10 0/10 0/10 0/10 0/10 0/10 0/10 b 

CHA 0/10 0/10 0/10 0/10 0/10 0/10 0/10 b 

NEG 0/10 0/10 0/10 0/10 0/10 0/10 0/10 b 

1 Low dose inoculation on day 0.  

2 Enrofloxacin treatment was given on day -3. 

3 Enrofloxacin treatment was given on day 3. 

4 Two pigs were euthanized on day 4 of the study. 

5 Two pigs were euthanized on day 7 and 16 of the study. 

6Total number of pigs with at least one positive culture for Nagasaki strain. 

Different letters indicate significant differences between groups (p<0.05). 
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Table 5.7. Number of pigs with positive cultures for Haemophilus parasuis farm 

strain from nasal and laryngeal swabs.  

 Days of the study  

Groups -3 2 3 5 7 18 Totale 

EXPa 8/10 3/10 3/10 4/8 1/8 3/8 10/10 

ABT/EXPb 5/10 0/10 0/10 0/10 0/9 0/8 5/10 

EXP/ABTc 6/10 6/10 1/10 0/10 0/10 0/10 10/10 

ABTb 4/10 5/10 NSd NS 0/10 0/10 5/10 

CHA 4/10 3/10 NS NS 6/10 5/10 9/10 

NEG 5/10 6/10 NS NS 3/10 6/10 9/10 

a Low dose inoculation took place on day 0. 

b Enrofloxacin treatment was given on day -3.  

c Enrofloxacin treatment was given on day 3. 

d Not sampled. 

e Total number of pigs tested positive for the Nagasaki isolate. 
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Figure 5.1. Experimental design timeline. 
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Figure 5.2. Average levels of serum IgG antibodies optical density (OD) prior to start 

the study (day -3), prior to challenge (day 17) and at necropsy (days 25 or 35). 

Different letters indicate significant differences between groups (p<0.05). 
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Figure 5.3. Average levels of IgA antibodies optical density (OD) in serum prior to 

start the study (day -3), prior to challenge (day 17) and at necropsy (days 25 or 35).  

 Different letters indicate significant differences between groups (p<0.05). 
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Figure 5.4. Average levels of IgG antibodies optical density (OD) against 

Haemophilus parasuis in BALF at necropsy (days 25 or 35). Different letters indicate 

significant differences between groups (p<0.05). 
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Figure 5.5. Average levels of IgA antibodies optical density (OD) against 

Haemophilus parasuis in BALF at necropsy (days 25 or 35). Different letters indicate 

significant differences between groups (p<0.05). 
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Figure 5.6. Average number of Haemophilus parasuis-specific interferon gamma 

(IFN-γ) spot forming units (SFU) per 106 cells by day Different letters indicate 

significant differences between groups (p<0.05). 
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSION 
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Glasser’s disease is an important source of economic losses in commercial swine 

production systems. The success of controlled exposure in the field suggests that early 

exposure (colonization) with pathogenic H. parasuis protects pigs from Glasser’s 

disease (Oliveira et al., 2004a). However, little is known about the immune response 

that is generated during colonization rather than during systemic infection. 

Understanding H. parasuis colonization and the associated immune response will 

contribute to the development of better control programs.   

 

There is also a need to understand the factors that can modulate the immune response 

to H. parasuis, such as the use of antibiotic treatments. Over the past few years, use of 

antimicrobials has become more common in young pigs. Increase of H. parasuis 

disease has been observed in selected herds with an increase in use of antibiotics. It is 

possible that alteration of colonization patterns of H. parasuis at a young age has 

resulted in an increase in H. parasuis problems as the pigs get older. While the use of 

antibiotic medication helps pigs recover from H. parasuis infection, it may also affect 

H. parasuis colonization and alter the development of an effective immune response. 

Therefore, the effect of antibiotics on the development of an effective immune 

response requires further investigation. Towards this end, the goal of this PhD 

dissertation was to investigate the influence of antimicrobial treatment on H. parasuis 

colonization and infection, and its effect on the development of immune responses 

against H. parasuis in swine. 

 

To investigate the serological immune response against H. parasuis, an ELISA assay 

was developed. The ELISA assay was based on a newly identified H. parasuis 
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antigen (chapter 2). The immunogenic and species-specific H. parasuis protein was 

detected by screening H. parasuis whole cell proteins using swine convalescent sera. 

This protein was identified as an oligopeptide permease A (OppA). This ELISA test 

proved to be valuable to detect specific antibodies against H. parasuis in infected or 

vaccinated animals.  Therefore, the OppA ELISA provides a method for surveillance 

of H. parasuis infections. This test was useful for the subsequent chapters of this 

thesis and should be an important new tool for the study of H. parasuis pathogenesis 

and immune response in both experimental and field studies.     

 

The immunogenicity of OppA was evidenced by the fact that only convalescent pigs 

or pigs vaccinated with recombinant OppA (rOppA) developed antibodies against it. 

Healthy pigs colonized by H. parasuis did not possess antibodies against OppA. The 

specificity of OppA was evidenced by absence of anti-OppA antibodies in colostrum-

deprived pigs, SPF pigs and pigs infected with A. pleuropneumoniae or other common 

swine bacterial species. The robust antibody response to rOppA protein after 

vaccination further showed that OppA is highly immunogenic in swine. However, 

OppA protein seroconversion did not translate to protection against H. parasuis 

infection.  

 

A major limitation of chapter 2 is that few serum samples of a limited number of 

farms were used to validate the OppA ELISA test. Future studies should use 

additional samples especially from pigs known to be free of H. parasuis and pigs 

experimentally inoculated with different H. parasuis strains. Evaluation of OppA 

ELISA under field conditions is also important. Specifically, the evaluation of 

antibody responses to OppA on farms with and without episodes of Glasser’s disease 



131 

 

and, whether the OppA ELISA is a reliable tool to monitor the transfer of maternal 

immunity against H. parasuis to piglets need further investigation.    

 

In chapter 3, the goal was to develop an experimental model of pathogenic H. 

parasuis that mimics asymptomatic colonization in conventional pigs. Such a model 

was necessary to study factors that affect colonization of H. parasuis in conventional 

pigs. In our model, pigs were experimentally inoculated with pathogenic H. parasuis 

and we showed that all pigs carried pathogenic H. parasuis on their URT mucosa for 

up to seven days post inoculation without developing Glasser’s disease. Absence of 

disease was evidenced by lack of clinical signs and lesions, and lack of H. parasuis 

isolation and H. parasuis DNA detection in blood and systemic tissues. The 

colonization model developed as part of this thesis provides a new tool to study the 

pathogenesis and immune response to H. parasuis in conventional pigs.  

 

While swine are the ideal model to study H. parasuis pathogenesis, there are negative 

aspects to using conventional swine. In general, pigs are naturally colonized with H. 

parasuis strains shortly after birth. The pigs used in this study were known to be H. 

parasuis positive and carried a genetically distinct strain of H. parasuis as part of the 

URT commensal bacteria. Although the commensal H. parasuis strain was identified 

and differentiated from the inoculated strain Nagasaki, it is possible that interactions 

between the 2 strains may exist. We did not account for possible interactions in this 

study as only pigs from a single source were used. Furthermore, we could not 

differentiate whether some of the responses observed were due to the presence of 

commensal strains, the pathogenic strain or the interaction among them. The H. 
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parasuis strain naturally established on the nasal mucosa is a complicating factor for 

the reproducibility of this model and further validation is needed.  

 

In chapter 4, we evaluated the effect of the antimicrobial enrofloxacin on the 

colonization of H. parasuis in conventional pigs. We did this to evaluate whether 

enrofloxacin had an effect on H. parasuis found in the URT. We documented the 

reduction of the number of pigs testing positive to H. parasuis and the reduction of 

levels of H. parasuis in tonsils and nasal cavity of conventional pigs during the first 

week after enrofloxacin treatment. However, results also showed that enrofloxacin at 

the approved dose did not eliminate H. parasuis from nose and tonsils of the pigs. In 

this study, we could not differentiate between complete elimination and re-exposure 

from environmental sources, or presence of low grade persistence and recrudescence 

after the antibiotic effect was gone. This study was important to show that 

colonization of H. parasuis in healthy pigs can be altered by antimicrobial treatment 

and further supported the general hypothesis of this thesis. Prior to initiate this study, 

a minimum number of piglets was chosen based on estimated standard deviations and 

means, since a power analysis was not feasible. There was no preliminary data 

available to educate sample size selection, yet significant differences in number of 

pigs colonized by H. parasuis were detected. 

 

The study in chapter 4 did not address whether the reduction on H. parasuis load by 

enrofloxacin can compromise the ability of pigs to develop an immune response when 

pigs are infected with a pathogenic H. parasuis strain.  The study in chapter 5 was 

conducted to determine the effect of enrofloxacin on the development of immune 

responses to H. parasuis and its impact on protection from challenge. The inoculation 
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of pigs with a low dose of pathogenic H. parasuis protected pigs against challenge. In 

addition, we showed that timing of enrofloxacin administration in relation to H. 

parasuis exposure was important to develop protection to a subsequent H. parasuis 

challenge. The protection observed after H. parasuis inoculation was not affected by 

enrofloxacin given 3 days before inoculation. In contrast, enrofloxacin given 3 days 

after inoculation with H. parasuis interfered with protection against challenge. Based 

on the lack of H. parasuis isolation after enrofloxacin treatment, it appeared that the 

antibiotic quickly inactivated and removed H. parasuis. Alternatively, 

fluoroquinolones are known to have modulating effects on the immune response, by 

decreasing the synthesis of pro-inflammatory cytokines, such as IL-1 and TNF (Khan 

et al., 2000), which could have contributed to the absence of immune response.  More 

research is needed, however, to investigate how enrofloxacin would affect the 

immune response to H. parasuis. 

 

The serological assay used to measure IgG antibodies in this study was the OppA 

ELISA described in chapter 2. In chapter 5, we showed that pigs protected against 

challenge had an increase of OppA antibodies in serum after inoculation with a low 

dose of H. parasuis. In this study, anti-OppA antibodies were the main immune 

correlate of protection from Glasser’s disease. In contrast, no differences were 

observed on levels of serum IgA antibodies and levels of IgG and IgA in BALF 

between inoculated groups. The IFN-γ response appeared to be associated with the 

onset of clinical disease after H. parasuis inoculation, but a clear association of IFN-γ 

response to protection was not evident. Therefore, more research is needed to evaluate 

the role of IFN-γ responses on protection against H. parasuis infection. 
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Results from chapter 5 also suggest that the use of potent antimicrobials, such as 

enrofloxacin, to control bacterial disease before pigs have time to activate a protective 

immune response may result in clinical disease when pigs become reinfected. On the 

other hand, treating pigs when clinical signs of disease are evident does not seem to 

interfere with protection against re-infection because the immune response may 

already have been activated. Overall more work to understand the immune response 

against H. parasuis infection is needed to evaluate the protective immune mechanisms 

against H. parasuis infection.  

 

Taken together, the information generated in this thesis provides essential information 

on proper timing of antimicrobial treatment in the face of H. parasuis infection and 

immune response development. Data presented here showed that, for the given 

infectious dose of pathogenic H. parasuis used, more than 3 days of live bacteria 

exposure is necessary for pigs to seroconvert and be protected against reinfection. 

Enrofloxacin-induced abridgement of infection on day 3 post inoculation resulted in 

the absence of serum IgG response and protection.  

 

The conclusions drawn from the data presented in chapter 5 may not be extendable to 

other pathogens or antimicrobials. Future studies should focus on investigating 

whether these conditions would change based on dose of H. parasuis inoculum, time 

of antimicrobial treatment and H. parasuis strains used. A complementary line of 

research would focus on the field application of the concepts presented in this thesis. 

Clinical trials can be developed that use the data provided in this thesis to compare 

different protocols of enrofloxacin administration in the face of a Glasser’s disease 

outbreak.  
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Moreover, new efforts to understand the mucosal immune response to H. parasuis are 

needed, since serum IgA results in this study were inconclusive. The fact that secreted 

antibodies in the URT were not measured in piglets is a limitation since the pigs were 

naturally colonized. Future studies need to differentiate immune responses to the 

naturally colonizing farm strains from the immune responses to the inoculated strains 

to clarify how the pig’s immune system responds to H. parasuis.   
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