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Abstract 

 

 The growth of food, fuel, feed, and fiber crops on agricultural land requires 

additions of nitrogen fertilizer to bolster crop yields.  The portion of applied nitrogen that 

is not utilized by the crops is highly susceptible to transport to nearby streams.  Elevated 

nitrogen concentrations in streams can lead to water quality concerns such as ecosystem 

degradation or drinking water contamination.  Identification of geospatial, environmental, 

and watershed characteristics (variables) that are correlated with nitrogen concentration 

in streams will provide a greater understanding of the influence that certain variables 

have on nitrogen transport to streams.  The route through which water travels from the 

landscape to streams (flowpath) is one of these variables.  Movement of many forms of 

nitrogen is linked to the movement of water, therefore, understanding the fluxes of water 

to streams will help to expand the understanding of nitrogen transport and the affect that 

landscape management changes will have on the concentrations of nitrogen in streams.   

 In some areas, groundwater is an important flowpath for delivering water and 

nitrogen to streams.  Hydrograph separation can be used to estimate the amount of total 

streamflow that is attributable to slowflow sources (flowpaths through which water 

moves slowly) such as groundwater, and fastflow sources (flowpaths through which 

water moves quickly) such as overland flow.  Because flowpaths have an impact on water 

and nitrogen transport to streams, testing and improving hydrograph separation 

techniques is needed.  Two independent methods of hydrograph separation, the graphical-

based BFI program and chemical tracer-based end-member mixing analysis (EMMA), 

were used to estimate slowflow contributions to the same streams.  The estimates of 

slowflow from the two separate methods of hydrograph separation were not identical, 

highlighting the differences in how each method works and the difficulty of accurately 

estimating slowflow.  

A modified method of EMMA, referred to as a ratio-based EMMA, was created 

and tested using synthetic and real stream data.  The ratio-based EMMA represents a new 

method of hydrograph separation, as it produced reasonably accurate slowflow estimates 

when tested against synthetic and real stream data.   
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The importance of flowpath was then tested in six highly modified streams in 

agricultural watersheds that had extensive data sets and well understood hydrology. The 

importance of flowpath on stream nitrogen concentrations in these streams aligned with 

expectations based on what is currently known.    

Finally, this study was expanded to a large number of small streams where 

statistical methods were used to gain broader understanding of the controls on water and 

nitrogen movement to streams, and to allow for extrapolation of this information to 

unstudied streams.  

   In addition to flowpath, a small number of geospatial, environmental, and 

watershed variables were shown to be important for estimating total nitrogen loads and 

concentrations in a large number of small streams.  These variables were used in the 

development of several multiple linear regression models, many of which performed well 

when applied to a set of validation streams, having reasonable high R
2
 values and low 

normalized root mean squared errors.    

 Determination of the important flowpath(s) as well as other important variables 

which increase nitrogen movement to streams will allow watershed managers to more 

accurately implement beneficial land management practices in an effort to reduce 

nitrogen movement to streams.  This knowledge will become increasingly important in an 

effort to maintain or reduce the amount of nitrogen in streams while increasing crop 

production to support the rising global population.   
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Chapter 1: Introduction 

 

 1. Introduction 

 Application of reactive forms of nitrogen to cropland (either through application 

of manure or industrially created forms) allowed for the dramatic increases in food 

production seen throughout a majority of the last century (USDA-NASS, 2015), and 

helps sustain the current global population of more than seven billion people (USCB, 

2015).  The use of nitrogen fertilizers to increase crop yields is not without its drawbacks.  

Water quality and environmental concerns relating to elevated nitrogen in water bodies 

are varied and include effects such as drinking water contamination and ecosystem 

degradation (see Appendix A for additional details).  The amount and rate of nitrogen 

moved from the landscape to nearby streams is affected by a number of geospatial, 

environmental, and watershed characteristics (variables).  The route through which water 

travels from the landscape to the stream (flowpath) is one of these variables.  Common 

flowpaths include groundwater flow, overland flow, and subsurface drain flow.  

Important flowpaths in a watershed can play a large role in moving nitrogen to streams 

(Green, 2007) because many forms of nitrogen are highly soluble in water or travel with 

the water as particulates.  The flowpath through which water travels to a stream affects 

the degree of interaction between the water and the soil, often resulting in water from 

different flowpaths having different nitrogen concentrations.  Water from slow flowpaths 

(slowflow), such as groundwater flow, can have high nitrogen concentrations in areas 

where the groundwater is contaminated (Puckett et al., 2008).  Water from fast flowpaths 

(fastflow), such as overland flow, can have low concentrations of nitrogen due to the 

short interaction between soil and water (Wang and Zhu, 2011).  Estimating the fluxes of 

water to the stream from the respective flowpaths will help expand our understanding of 

nitrogen transport.  In addition to flowpath, a number of other geospatial, environmental, 

and watershed variables play an important role in determining the amount of nitrogen that 

is moved with the water on its way to the stream.  Although studies have attempted to 

determine the variables that have the greatest affect on the amount of nitrogen in streams, 
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those studies often examine a relatively small number of streams, or investigate streams 

that are within a single hydrologic setting.  

 In order to improve our understanding of the processes which govern nitrogen 

movement to streams, and thus, affect the amount of nitrogen measured in streams, four 

related studies were conducted.  The first study compared two commonly used methods 

of hydrograph separation, a technique used for estimating the contributions of two or 

more flowpaths to total streamflow.  Graphical hydrograph separation via the BFI 

program (Wahl and Wahl, 1995) and specific conductance-based end-member mixing 

analysis (SC-EMMA) were compared.  An improvement upon the existing method of 

SC-EMMA for hydrograph separation was then proposed and examined with synthetic 

data as well as data from two real streams.  To confirm and expand upon our current 

understanding of nitrogen dynamics in actual streams, a third study was conducted in 

which field observations from six hydrologically complex and anthropogenically 

modified agricultural watersheds were analyzed and interpreted.  Finally, annual total 

nitrogen loads, flow-weighted average concentrations, and annual watershed yields, as 

well as data for 90 geospatial, environmental, and watershed variables, were collected 

from 636 small (<585 km
2
) watersheds across the United States in an effort to determine 

which of the variables are fundamentally important for determining levels of nitrogen in 

wide variety of streams.   

 

 2. Research objectives 

 The important flowpath(s) that delivers water to a stream has a large effect on the 

amount of nitrogen that is delivered from the landscape (Hooper et al., 1990, Molénat et 

al., 2002, Peters, 1994, Rice and Bricker, 1995, Ross et al., 1994), as many forms of 

nitrogen are highly soluble in water or travel with the water in particulate form.  

Groundwater discharge to streams is an important flowpath for delivering nitrogen to 

streams in some hydrologic setting.  Thus, it is important to gain a more complete 

understanding of the quantities and processes of groundwater discharge to streams.  

 Several methods of hydrograph separation are available to estimate the amount of 

water in the stream that is from each of the contributing flowpaths.  Chapter 2 presents 
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the comparison of two very different methods of hydrograph separation when applied to 

four hydrologically-challenging agricultural streams.  The BFI program (Wahl and Wahl, 

1995) is a graphical method of hydrograph separation which relies on variability in the 

stream hydrograph to separate the relatively stable baseflow portion of total streamflow 

from the short term spikes in streamflow that result from non-baseflow additions.  

Specific conductance-based end-member mixing analysis (SC-EMMA) is a chemical 

tracer-based method of hydrograph separation which relies not only on streamflow 

measurements, but also measurements of specific conductance.  The specific conductance 

measurements from the stream and from each end-member (synonymous with flowpath) 

are used to mathematically separate the total streamflow into contributions from 

slowflow and fastflow sources.   

 Each method of hydrograph separation examined relies on certain assumptions.  

Although SC-EMMA was able to produce estimates of slowflow when applied to four 

diverse agricultural streams, it relied on several assumptions, some of which are known 

to be violated occasionally.  As a result, a modified SC-EMMA method was created in an 

effort to eliminate the assumption of a constant chemical tracer concentration in the 

fastflow end-member.  This new method introduces the constraint that two chemical mass 

budgets and a water volume budget must be met simultaneously at a daily time step, as 

opposed to a single chemical mass budget a water volume budget as used with the 

standard SC-EMMA.  The new, ratio-based EMMA was tested in Chapter 3.  Synthetic 

data were created to simulate seven scenarios of the timing of the streamflow peak to the 

minimum concentrations of the two chemicals within two hypothetical streams.  One 

synthetic stream had large inputs of slowflow (ex. groundwater) and the other had large 

inputs of fastflow (ex. overland flow water).  The new method was then applied to two 

real streams, one stream that had important groundwater inputs and one stream where 

overland flow inputs were important, to establish if the new method could perform under 

real world conditions.   

 The importance and influence of flowpath in determining stream nitrogen 

concentration was examined in Chapter 4 among six diverse streams in agricultural 

watersheds.  The steams were located in different hydrologic settings, where various 
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flowpaths were import.  A majority of the water in two of the streams was from overland 

flow contributions, two other streams were dominated by additions of water from 

subsurface drainage, and groundwater additions to the stream were important in the last 

two streams.  The observed spatial magnitude and temporal variability in nitrate loads, 

yields, and concentrations were interpreted from the perspective of the influence of 

flowpaths in these highly modified watersheds.  High temporal resolution (15-minute 

interval) concentration data was also obtained from an additional three streams.  These 

three streams were in similar geographic locations and had similar important flowpath 

additions as the previously mentioned streams (overland flow, subsurface drain flow, and 

groundwater flow), so the results were relatable.  This high resolution data was examined 

to compare and contrast the timing of nitrate delivery to streams in relation to the 

streamflow peak, and to compare the results from the three hydrologically complex 

streams to current knowledge.   

 Finally, an extensive data set of small streams throughout the contiguous United 

States (636 stream) were analyzed in an effort to find the spatial variables (landscape, soil 

land use, climate, chemical use, and so forth) that strongly affect the amount of nitrogen 

that is measured in streams.  In Chapter 5, recursive partitioning and random forest 

regression were applied to determine which of 90 variables are the most important for 

determining the amount of total nitrogen in streams.  Variables extracted from each 

method were then used to create a series of multiple linear regression models, which were 

then applied to a set of validation watersheds.  The models served as a test to determine if 

the extracted variables were significant for determining nitrogen in streams, and how 

applicable those variables could be when applied to unstudied streams.    
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Chapter 2: A comparison of high-resolution specific conductance-based end-

member mixing analysis and a graphical method for baseflow separation of four 

streams in hydrologically challenging agricultural watersheds 
 

Published in Hydrologic Processes:  

 

Kronholm, S.C. and P.D. Capel. 2014. A comparison of high‐resolution specific 

conductance‐based end‐member mixing analysis and a graphical method for 

baseflow separation of four streams in hydrologically challenging agricultural 

watersheds. Hydrological Processes. 

 

Abstract 
 

 Quantifying the relative contributions of different sources of water to a stream 

hydrograph is important for understanding the hydrology and water quality dynamics of a 

given watershed.  To compare the performance of two methods of hydrograph separation, 

a graphical program (BFI) and an end-member mixing analysis that used high-resolution 

specific conductance measurements (SC-EMMA) were used to estimate daily and 

average long-term slowflow additions of water to four small, primarily agricultural 

streams with different dominant sources of water (natural groundwater, overland flow, 

subsurface drain outflow, and groundwater from irrigation). Because the result of 

hydrograph separation by SC-EMMA is strongly related to the choice of slowflow and 

fastflow end-member values, a sensitivity analysis was conducted based on the various 

approaches reported in the literature to inform the selection of end-members.  There were 

substantial discrepancies among the BFI and SC-EMMA, and neither method produced 

reasonable results for all four streams.  Streams that had a small difference in the SC of 

slowflow compared to fastflow, or did not have a monotonic relationship between 

streamflow and stream SC posed a challenge to the SC-EMMA method. The utility of the 

graphical BFI program was limited in the stream that had only gradual changes in 

streamflow. The results of this comparison suggest that the two methods may be 

quantifying different sources of water.  Even though both methods are easy to apply, they 

should be applied with consideration of the streamflow and/or SC characteristics of a 

stream, especially where anthropogenic water sources (irrigation and subsurface 

drainage) are present. 
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 1. Introduction 

 Agricultural management alters the way in which water and agricultural 

chemicals travel through and across the landscape (Dubrovsky et al., 2010), oftentimes 

increasing the amounts of water and chemicals that are transported to surface water and 

groundwater.  Nitrogen fertilizer is commonly applied to agricultural fields to bolster 

crop yield, but frequently not all of the applied nitrogen is incorporated into the crops 

(Bijeriego et al., 1979, Meisinger et al., 1985, Olson, 1980, Reddy and Reddy, 1993, 

Townsend and Howarth, 2010).  The unused nitrogen (often as nitrate) is exported from 

the field with the excess water that is moving through the landscape.  Nitrate can travel 

from the field to the stream through many different water flowpaths including surface 

runoff, subsurface drains, shallow subsurface flow, and groundwater flow.  Elevated 

nitrate concentrations are an issue in streams in agricultural areas across the Nation 

(Dubrovsky et al., 2010), potentially leading to eutrophication and hypoxia in waters 

nearby and downstream of the site of application (Ribaudoa et al., 2005). Determining 

the important flowpath(s) of water to a stream is important in the management of nitrogen 

in agricultural watersheds.     

 Estimating the baseflow of a stream is one way of separating sources of water to 

that stream.  Baseflow is the portion of total streamflow that is not a result of direct 

surface runoff or storm interflow, and is often largely due to groundwater discharge to the 

stream.  There are numerous methods for separating baseflow from total streamflow.  

Graphical methods such as the U.S. Geological Survey HYSEP program (Sloto and 

Crouse, 1996) and the U.S. Bureau of Reclamation Base-Flow Index (BFI) program 

(Wahl and Wahl, 1995) use daily streamflow measurements to separate baseflow from 

non-baseflow.  The BFI program, for example, mathematically evaluates the hydrograph 

and separates the slowly varying component of the hydrograph (baseflow) from the more 

rapidly changing and elevated streamflow events (non-baseflow).  Chemical tracer-based 

methods such as end-member mixing analysis (EMMA) are also frequently used to 

separate baseflow from total streamflow (Hooper and Shoemaker, 1986, McNamara et 

al., 1997, Pellerin et al., 2008, Pilgrim et al., 1979, Robson and Neal, 1990, Sanford et 

al., 2012, Stewart et al., 2007).  EMMA relies on continuous streamflow data plus 
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concentration data of one or more chemical constituents in the stream.  As a result of the 

use of chemical data, EMMA may not specifically separate baseflow from non-baseflow, 

but instead may separate water that is moving slowly through the hydrologic system 

(slowflow) from water that is traveling quickly through the hydrologic system (fastflow) 

(Hooper and Shoemaker, 1986).  As a portion of total streamflow, slowflow may be the 

same as baseflow under certain conditions, but it can also be a combination of baseflow 

water and other water that travels slowly to the stream from other sources (ponds, 

wetlands, subsurface drains, etc.).  Therefore, EMMA identifies the water that has 

travelled slowly to the stream, whether that water is from groundwater discharge or from 

other sources.  Each method of hydrograph separation can provide valuable information 

regarding the sources of water to a stream.  However, each has a distinctly different way 

of estimating the sources, which can produce different results for the same stream.   

 Specific conductance (SC) has been demonstrated to be a useful basis for an 

EMMA for hydrograph separation into flowpath components (Ali et al., 2010, McCarthy 

and Johnson, 2009, McNamara et al., 1997, Pellerin et al., 2008, Sanford et al., 2012, 

Smith 2012, Stewart et al., 2007).  Stream SC data must be measured across a range of 

flow conditions to accurately characterize the stream and its end-members.  SC 

characterizes the extent of interaction between water and the soil and provides a chemical 

signature of the source of the water. Precipitation has a characteristic SC of about 10 

μS/cm (NADP, 2013). Precipitation that falls on the landscape interacts with soil, 

resulting in an increase of SC (Pilgrim et al., 1979). Water that has had very little 

interaction with the soil will have a measured SC of less than 100 μS/cm, whereas 

groundwater will have SC values typically greater than 500 μS/cm (Hem, 1985). The 

outcome (distribution between fastflow and slowflow) of a specific conductance-based 

EMMA (SC-EMMA) is strongly influenced by the SC values of the slowflow and 

fastflow end-members chosen by the model user (McNamara et al., 1997, Pellerin et al., 

2008, Robson and Neal, 1990).  

Streams in four, small agricultural watersheds with different dominant flowpaths 

(Morgan Creek, MD – natural groundwater; Tommie Bayou, MS – overland flow; South 

Fork Iowa River, IA – subsurface drain outflow; and Granger Drain, WA – groundwater 
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from irrigation) were chosen as test examples for comparing the results of two different 

methods of hydrograph separation: graphical-based (using the Baseflow Index program, 

BFI) and end-member mixing analysis using high-resolution specific conductance 

measurements (SC-EMMA).  Before any comparison of the two methods was conducted, 

the sensitivity of the SC-EMMA results were analyzed for the choice of the slowflow and 

fastflow end-members (using both fixed and time-varying values) following various 

approaches reported in the literature.  

 The use of high-resolution SC data, in conjunction with EMMA, for hydrograph 

separation has not been widely used, especially for agricultural watersheds and for time 

periods of a year or longer. The traditional collection of discrete stream samples for 

chemical analysis is expensive, time consuming, and provides limited information 

regarding the temporal nature of stream chemistry. High-resolution (daily, hourly, or less) 

chemical parameters, however, have the potential to provide high-resolution hydrograph 

separation when used in an EMMA model (Sanford et al., 2012) and could greatly 

improve the understanding of the sources and timing of water delivered to the stream. 

The two methods of hydrograph separation (BFI and SC-EMMA), although aimed at 

similar outcomes, are based on different assumptions and potentially characterize 

different parcels of water.  Estimated slowflow from the two methods, as well as the 

deviation between the results from the two methods, provide insight into the sources of 

water to the four streams (slowflow/fastflow or baseflow/non-baseflow, respectively). Of 

the two methods of hydrograph separation examined, the more appropriate method of 

hydrograph separation can be chosen based on a priori knowledge regarding the dominant 

runoff processes in the watersheds. 

 

 2. Methods 

 2.1  Site descriptions 

 Four hydrologically different watersheds were chosen for this study. The Morgan 

Creek watershed (32.9 km
2
) is located in Maryland.  Agriculture comprises 85% of the 

land within the Morgan Creek watershed, most of which is non-irrigated.  Mean annual 

precipitation within the watershed is 112 cm.  Streamflow in Morgan Creek (Figure 
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2.1A) is supported by natural groundwater throughout the year with additions of storm 

event flow common (Hancock and Brayton, 2006).  Annual streamflow within Morgan 

Creek has a mean of 0.3 m
3
/s.  The streamflow and SC from October 1, 2002, to 

September 30, 2004, were used in this study.    

 The Tommie Bayou, MS, watershed (15.3 km
2
) is also primarily dedicated to 

agriculture with 86% of the land area planted with agricultural crops (McCarthy et al., 

2012).  Tommie Bayou is a heavily irrigated watershed during the summer growing 

season, which supports much of the streamflow during that time (Figure 2.1B).  Irrigation 

water is derived primarily from groundwater.  One such irrigation well had a median SC 

of 1190 μS/cm (USGS Station identification (STAID) 334804090500801) during 2010.  

Most of the flow in the stream during the non-growing season is derived from storm 

events or shallow subsurface flow, as there is little connection with the deeper 

groundwater (McCarthy et al., 2012).  Mean annual precipitation within the watershed is 

137 cm, with typically less than 30% of that falling during the growing season.  Tommie 

Bayou has an annual average discharge of 0.2 m
3
/s, but has occasional, short-term dry 

periods. The streamflow and SC from October 1, 2006, to September 30, 2008, were used 

in this analysis.     

 The South Fork Iowa River (SFIR) watershed (31.1 km
2
) is located in central 

Iowa.  Agriculture is the primary land use in the SFIR watershed with 96% of the land 

primarily in corn and soybeans (McCarthy et al., 2012).  The watershed receives an 

annual mean of 83 cm of precipitation. It is mostly non-irrigated and underlain with 

extensive networks of subsurface drainage to remove excess water from the shallow 

subsurface.  The water from these drains is the primary source of water to the stream 

(Figure 2.1C), as there is little to no connection to the deeper groundwater system 

(McCarthy et al., 2012, Thornburg, 2009).  Average annual discharge in the stream is 0.5 

m
3
/s.  The streamflow and SC from October 1, 2006, to September 30, 2008, were used.   

 Granger Drain watershed (161 km
2
) is located in the Yakima Valley of 

Washington.  Land use in the watershed is primarily agriculture (96%), >95% of which is 

irrigated from approximately mid-March through mid-October (Payne et al., 2007).  An 

annual average of 18.5 cm of precipitation falls within the watershed.  Irrigation water in 
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the Granger Drain watershed is derived from irrigation canals, one of which had a median 

SC of 99 μS/cm (USGS STAID 12504508) during 2003 and 2004. Over a period of many 

decades of irrigation, the water table within the Granger Drain watershed has been 

elevated to the point where subsurface drainage systems have become necessary to 

remove excess water from the shallow subsurface.  The source of streamflow is primarily 

this shallow groundwater during the non-irrigation season and a combination of 

groundwater and irrigation runoff during the irrigation season (Figure 2.1D), with much 

of the irrigation runoff travelling through subsurface drains (Payne et al., 2007).  Annual 

mean streamflow within Granger Drain is 1.0 m
3
/s.  The streamflow and SC from 

October 1, 2002, to September 30, 2004, were used.   

  Field studies in the four watersheds were carried out between 2002 and 2008 

(Capel et al., 2008), however, not all areas were sampled during the same time period.  

Continuous streamflow and SC were measured in the four streams at 15-minute intervals.  

SC measured in groundwater samples were collected from wells during the growing 

season. The annual median SC of precipitation was obtained from National Atmospheric 

Deposition Program sites that were nearest to each of the study watersheds (WA24, 2004; 

MD13, 2004; IA08, 2008; MS30, 2008; (NADP, 2013)).  The SC was measured in 

overland flow samples (Washington and Iowa only) that were collected from a surface 

weir (Iowa, USGS STAID 423135093373301) and from the end of a culvert 

(Washington, USGS STAID 462023120075242) during the growing season (Capel et al., 

2008).  These samples were collected sporadically, when there was sufficient 

rainfall/irrigation to produce overland flow.     

 2.2 SC-EMMA Hydrograph Separation 

 Streamflow (QS) is a combination of various sources of water from individual 

flowpaths.  Specific conductance was used as a chemical tracer in the creation of a simple 

end-member mixing analysis (SC-EMMA) to separate streamflow into two end-

members: water from slowflow (subscript SF) and water from fastflow (subscript FF).  

This separation can be represented by the following equations: 

 

QS = QSF + QFF         Eq. 1 
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and, therefore: 

 

QSSCS = QSFSCSF + QFFSCFF        Eq. 2 

 

where Q is the water discharge (m
3
/s) and SC is specific conductance (μS/cm).  By 

combining equations 1 and 2, the slowflow and fastflow contributions to overall 

streamflow can be calculated. 

 

QSF = (QSSCS - QSSCFF) / (SCSF - SCFF)       Eq. 3 

 

QFF = (QSSCS - QSSCSF) / (SCFF - SCSF)       Eq. 4 

 

 2.3 Data analysis 

   

 2.3.1 Slowflow and Baseflow Indices 

 

   For a given length of time, the water volume (V) is the product of streamflow (Q) 

and time (t).  The slowflow index (SFI, in percent), for any length of time, was calculated 

as     

 

SFI = (ΣVSF / ΣVS) * 100        Eq. 5 

 

 The BFI program (Wahl and Wahl, 2007) was also used to separate total 

streamflow within each of the watersheds into two components: baseflow and non-

baseflow.  The baseflow index (BFI, in percent), for any given length of time, was 

calculated as  

 

BFI = (ΣVBF / ΣVS) * 100        Eq. 6 

 

The BFI program has two input parameters (N and f) that are defined by the user. The 

method that was used for choosing these parameters is described in Wahl and Wahl 

(1995).  The time increment variable (N) was selected as the value where any subsequent 

increase in N led to a less pronounced and more linear decrease in estimated baseflow 

index (BFI) calculated by the BFI program.  For this study, N was determined to be 3 for 
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all four watersheds.  The f value was set at 0.9 as recommended by the model developers. 

The SFI and BFI were calculated for a 2-year period.   

 Daily values of slowflow were also calculated with SC-EMMA (as percent 

slowflow, Eq. 7) and the BFI program (as percent baseflow, Eq. 8) to determine the 

similarities and differences of the two methods for separating streamflow into two 

components.   

 

% SF = (VSF / VS) * 100        Eq. 7 

 

% BF = (VSF / VS) * 100        Eq. 8 

 

 2.3.2 Sensitivity analysis of SC-EMMA 

 

 In an effort to minimize the quantity of data required for an SC-EMMA, the 

sensitivity of the method to the interval between high-resolution data measurements was 

analyzed.  It was determined that data collected at a daily interval is sufficient to 

represent the variability within streamflow and stream SC.  The details of this analysis 

are in Appendix B.   

 The sensitivity of SC-EMMA to the user-defined static values for SCFF and SCSF 

(equations 3 and 4) was determined by systematically varying these inputs for each site to 

show how the choice of static end-member can affect the results of the SC-EMMA and to 

provide information regarding the choice of constant end-member values.  The potential 

values considered for the SCFF input were the median SC of annual precipitation, SC 

observed during the highest streamflow, lowest SC observed in the stream excluding 

outliers, median SC of overland flow, and median SC of irrigation water (Table 2.1).  The 

potential values considered for the static SCSF input were the highest SC observed in the 

stream excluding outliers, median SC of shallow groundwater, and SC observed during 

the lowest streamflow (Table 2.1).  The SC values observed in the four streams are 

shown in Figures 2.2A-D.  Outliers were removed to prevent the results from being 

influenced by one or a few anomalous measurements of SC. Outliers were defined as 

values greater than the 75
th

 percentile + 1.5 x IQR (interquartile range) and/or less than 
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the 25
th

 percentile – 1.5 x IQR.   A time-variable SC based on stream measurements was 

also created as a potential SCSF.   

 Continuous, time-variable SCSF values were calculated for each stream following 

the method used by Sanford et al. (2012).  The daily, time-variable SCSF values for input 

into the EMMA were generated by interpolating between the stream SC values from the 

first day of each month.  For times when the stream SC profile over the month was 

concave down, a surrogate stream SC value was used such that the interpolated SCSF 

values were always greater than the stream SC values. The resultant values closely 

followed the trend and magnitude of the stream SC while remaining greater than the 

stream SC. Figures showing the time-variable SCSF can be seen in Appendix B (Figures 

B2.2A-D).   

 

 3. Results 

 3.1 Effect of input values on SC-EMMA results 

 The results of the hydrograph separations with SC-EMMA are presented in 

Figures 2.1A-D, based on the chosen values for the SCFF and SCSF end-members (Figures 

2.2A-D, Table 2.1). The range of potential SCFF and SCSF input values for SC-EMMA in 

Table 2.1 represent the chemical conditions in the various potential end-members.  The 

values chosen as SCFF and SCSF greatly affected the bi-annual slow-flow index (SFI).     

 Figures 2.3A-D show surface plots of the variability of the SFI over ranges of 

potential SCFF and SCSF values.  When the SCFF input value was varied between 10 and 

150 μS/cm, the change in the SFI for a given SCSF input ranged from 5 to 63% among the 

four watersheds.  This change in the SFI corresponds to the black line parallel to the y-

axis on Figures 2.3A-D.  When SCSF input values were varied between the minimum and 

maximum, the change in the SFI for a given SCFF input in each watershed ranged from 16 

to 55% among the four watersheds.  This change in SFI corresponds to the black line 

parallel to the x-axis on Figures 2.3A-D. The rate of change in SFI increased as the 

difference between the chosen SCFF and SCSF values decreased. Table 2.1 reports the 

average change in the calculated SFI per unit change in input SC over the range of SC 
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values examined.  Morgan Creek, MD, had a much greater change in the SFI per unit 

change of input SC than the other streams.   

 3.2 Comparison of hydrograph separations by SC-EMMA and BFI 

 Constant input values for SCSF and SCFF for each stream were used with the SC-

EMMA (Table 2.1) for comparison with the results of the BFI program.  The SCSF was 

chosen to be the highest SC observed in the stream excluding outliers.  The SCFF value 

was selected as the value halfway between the measured precipitation SC (the driver of 

most fastflow) and the lowest SC measured in the stream. Based on the available data, the 

input for SCFF was unknown and likely varied with time within fastflow events.  The true 

value for SCFF is expected to be greater than the precipitation SC and less than the lowest 

SC in the stream, however, in these four watersheds there was not a good rationale for 

choosing one SC value over the other.  Although the SC of precipitation and the lowest 

SC in the stream are values that can be easily obtained, neither is likely to equal SCFF, 

especially over an extended period of time.  

 The bi-annual SFI (from SC-EMMA) and bi-annual BFI (from the BFI program) 

differed by 5% in Morgan Creek, MD (natural groundwater).  The SFI and BFI differed 

by almost 20% in Tommie Bayou, MS (the overland flow site) and SFIR, IA (subsurface 

drain outflow) and differed by 55% in Granger Drain, WA (groundwater from irrigation).  

The SFI was greater than the BFI for all watersheds except Granger Drain, WA (Table 

2.1).     

 There were substantial differences in the daily slowflow (m
3
/s) calculated by SC-

EMMA and daily baseflow (m
3
/s) from the BFI program (Figures 2.4A-D).  Figures 

2.4A-D compare 2 years of calculated daily slowflow and baseflow relative to 2:1, 1:1, 

and 1:2 lines of agreement.  For both Morgan Creek, MD (Figure 2.4A) and Granger 

Drain, WA (Figure 2.4D), the slowflow from SC-EMMA was consistently less than 

baseflow from the BFI program (66% and 99% of the time, respectively).  The two 

distinct groupings of points that appear on Figure 2.4D correspond to the irrigation 

season (mid-March through mid-October) and non-irrigation season within the Granger 

Drain, WA watershed, with the BFI program overestimating SC-EMMA to a greater 

extent during the irrigation season.  For Tommie Bayou, MS (Figure 2.4B), 52% of the 
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time the estimated slowflow was greater than the estimated baseflow, but the results were 

highly scattered.  For SFIR, IA (Figure 2.4C), slowflow from SC-EMMA was greater 

than baseflow from the BFI program 57% of the time, but the values fell much closer to 

the 1:1 line compared to Tommie Bayou.   

 A direct comparison of the daily percent of streamflow resulting from slowflow 

calculated using SC-EMMA (% slowflow) and daily percent of streamflow resulting 

from baseflow calculated using the BFI program (% baseflow) also showed substantial 

differences for the 2 years of record (Figures 2.5A-D).  For Morgan Creek, MD (Figure 

2.5A) and SFIR, IA (Figure 2.5C), the % slowflow showed less variability than the % 

baseflow.  The standard deviation for % slowflow was 16%, but was 28% for % baseflow 

in Morgan Creek.  In SFIR the standard deviation was 14% for % slowflow and 28% for 

% baseflow.  In SFIR, IA, the % slowflow ranged from 60 - 100% for 89% of the days, 

but the % baseflow had a much larger range of between 20 and 100% for 94% of the 

days.  For Tommie Bayou, MS (Figure 2.5B), the two methods produced widely scattered 

estimates of % slowflow and % baseflow.  The mean and standard deviation of % 

baseflow was 51(+ 36%), whereas % slowflow had a mean and standard deviation of 

46(+ 25%) over the same period.  For Granger Drain (Figure 2.5D), the % slowflow had 

greater variability than the % baseflow.  The BFI program estimated that the % baseflow 

was 97 + 6% of the total streamflow throughout the entire length of the data record.  In 

contrast, the % slowflow was much less, averaging 51 + 24% over the 2-year period with 

two distinct clusters centered on 30% and 80%, corresponding to the irrigation and non-

irrigation seasons.     

 The SC-EMMA and the BFI program generated hydrographs of slowflow and 

baseflow that were quite different (Figure 2.1A-D).  In all four watersheds, two slowflow 

hydrographs were calculated from SC-EMMA using different assumptions (a constant 

SCSF and a time-variable SCSF).  The SC-EMMA slowflow hydrographs calculated with 

both assumptions were much flashier than the baseflow hydrograph from the BFI 

program.  In Morgan Creek, MD, Tommie Bayou, MS, and SFIR, IA, both of the 

slowflow hydrographs from SC-EMMA increased dramatically with the streamflow 

hydrographs during streamflow events greater than 1.0 m
3
/s, whereas the baseflow 
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hydrograph from the BFI remained comparatively stable throughout many of these events 

(Figures 2.1A-C).  (For example, see SFIR, IA between the dates of April 1 and July 1, 

2007 Figure 2.1C).  It should also be noted that in each watershed, the slowflow 

hydrograph using a time-variable SCSF resulted in an overall increase in estimated 

slowflow compared to the hydrograph produced with a constant SCSF (Figures 2.1A-D, 

Table 2.1).   

 For Granger Drain, both the SC-EMMA and BFI methods estimated that most of 

the streamflow was a result of slowflow/baseflow during the non-irrigation season (78 + 

12% from SC-EMMA and 98 + 5.0% from BFI).  During the irrigation season, the BFI 

program still calculated almost all of the water in the stream as baseflow contributions 

(97+ 4.5 %), however, the SC-EMMA utilizing a constant SCSF calculated that the 

percent slowflow decreased to about one-third of total streamflow (32 + 4.7%). This 

finding suggests that much of the water in the stream during the irrigation season 

travelled through fast flowpaths to the stream.  The SC-EMMA utilizing a time-variable 

SCSF fell between the BFI results and the results from the constant SCSF SC-EMMA, but 

more closely matched the BFI results suggesting that a majority of the water in the stream 

during the irrigation season travelled through slow flowpaths (Figure 2.1D).     

 

 4. Discussion 

 4.1 SC-EMMA as a tool for hydrograph separation – choice of fastflow 

end-member 

 As a technique for hydrograph separation, the success of EMMA depends heavily 

on the input parameters chosen by the user.  The multiple choices for both SCFF and SCSF 

contribute to the uncertainty of the results from the SC-EMMA method for many streams, 

since there are numerous options (Table 2.1). The selection of the SCFF value had a 

greater influence on the SC-EMMA results than did the selection of the SCSF value. 

Given their relative magnitudes, a unit change in SCFF has greater effect on SFI than did 

the same change in SCSF (Table 2.1 and Figure 2.3).   

 The SCFF end-member value was chosen as the average of precipitation SC and 

the lowest stream SC in an attempt to aggregate the various fastflow inputs.  The true 
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SCFF is expected to be between those two values.  SCFF input values for SC-EMMA used 

by others include SC of rainfall (Pellerin et al., 2008 and Sanford et al., 2012), overland 

flow (McNamara et al., 1997), or the average stream SC during the highest 1% of stream 

flow (Miller et al., 2014). Precipitation, in the range of 5-20 S/cm for the watersheds of 

this study, is usually the driver of fastflow and offers a baseline for the potential 

magnitude of SCFF.  However, a choice of SCFF equal to precipitation would generally 

underestimate the actual SCFF value, and thus, overestimate slowflow.  SC increases 

rapidly after precipitation reaches the ground and begins to interact with the soil (Pilgrim 

et al. 1979, McNamara et al. 1997), resulting in fastflow components that have elevated 

SC in comparison to pure rainfall (Table 2.1).  Irrigation can also be a driver of fastflow 

in a watershed and can be a potential candidate for SCFF. Irrigation water that is derived 

from snowmelt and channeled to agricultural areas has a low SC.  Granger Drain, WA, is 

an example of this situation (Figure 2.2D).  In contrast, irrigation water can also be 

derived from high SC groundwater and would not be appropriate as the basis for the SCFF 

value because it cannot be differentiated from the SCSF. Tommie Bayou, MS, is an 

example of this situation (Figure 2.2B) and is not a good candidate for hydrograph 

separation by SC-EMMA.   

Furthermore, using SC values observed in the stream as the basis for SCFF can be 

problematic.  At any time during a high flow event, the water in the stream is not solely 

fastflow water, but a combination of water from slow and fast flowpaths (Stewart et al., 

2007).  Pinder and Jones (1969) and Sklash and Farvolden (1979) showed that even 

during times of very high discharge in their study streams, groundwater inputs were not 

insignificant.  Therefore, the SC in the stream during high flow events is often greater 

than the true SCFF due to mixing with the higher SC water from slowflow sources, 

causing SC-EMMA to underestimate the contributions of slowflow.  This effect was seen 

in the Granger Drain, WA, watershed.  When the SCFF input value was set equal to the 

lowest stream SC value, SC-EMMA indicated that there was almost no slowflow water 

contributed to the stream during the elevated flows corresponding with the irrigation 

season (see Appendix B, Figure B2.3).  There is however, a substantial input of slowflow 

water to the stream, even during the irrigation season.  McCarthy and Johnson (2009) and 
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Payne et al. (2007) explained that during the irrigation season in Granger Drain, WA, and 

in a sub-watershed within the Granger Drain watershed, the water in the stream is 

composed of considerable inputs from both slowflow and fastflow water.   

 All of the choices above rely on the assumption that SCFF can be represented with 

a constant value, which is not realistic and can introduce substantial error in the 

estimation of slowflow.  Another approach is the creation of a time-varying SCFF over the 

course of the year, however, this approach would require knowledge (based on field 

observations), in both time and space, of all fastflow sources within the watershed – an 

undertaking that is not possible in most places.  Therefore, for practical reasons, a 

constant representative value of SCFF will be chosen in most situations.   

 4.2 SC-EMMA as a tool for hydrograph separation – choice of slowflow 

end-member   

 Slowflow sources to the stream are most commonly groundwater, but can include 

water from wetlands, ponds, subsurface drains, and other point sources (for time periods 

distant from rain or irrigation events).  The potential SCSF input values for SC-EMMA 

can have a much greater magnitude and higher variability compared to SCFF.  The SCSF 

values used by other researchers as the input into a SC-EMMA include groundwater 

(Ogunkoya and Jenkins, 1993), SC in the stream at the lowest streamflow (Hooper and 

Shoemaker, 1986 and McNamara et al., 1997), average SC in the stream during the 

lowest 1% of flows (Miller et al., 2014), and a time-variable value based on measured 

stream SC (Sanford et al., 2012). For these four streams, these options yielded a wide 

range of potential SCSF values (Table 2.1).   

 Each of the approaches to choosing the SCSF value has its limitations. The use of 

the groundwater SC as the basis of SCSF can be problematic due to the variability of 

groundwater chemistry.  Groundwater well samples are point samples from a specific 

portion of an aquifer, and may not be representative of all groundwater moving into the 

streambed.  McCarthy and Johnson (2009) and Stewart et al. (2007) found that the 

chemistry of groundwater sampled from wells varied substantially, even when the wells 

were separated by short distances. This difference in chemistry was also observed for the 

four watersheds included in this study. The approach of defining SCSF as equal to the SC 
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measured during the lowest (or near lowest) streamflow has been successfully used in 

many streams, but can have limitations in some streams.  In some cases, the stream SC, 

across a range of flows, can be greater than the SC during the lowest flow.  Figure 2.2 

shows that the lowest streamflows are not always associated with the highest stream SC.  

In SFIR, IA, the maximum stream SC did not occur at the lowest streamflow, but instead 

coincided with flows that were roughly two orders of magnitude greater.  If the stream 

SC values during the lowest streamflow were used for the SCSF in these streams, the SC-

EMMA would overestimate slowflow (in some cases greater than 100%).   

 In this study, the highest measured SC in each stream (minus outliers) was chosen 

as the constant SCSF value.  This choice as SCSF, while similar in magnitude compared 

with the other choices, prevented the SC-EMMA calculation from producing unrealistic 

results since the stream SC is never greater than the chosen SCSF. According to 

Christophersen and Hooper (1992), the values chosen for end-member inputs should be 

extreme values, potentially outside of the values typically observed, in order to explain 

the mixture of waters (fastflow/slowflow) seen in the stream.   

 A time-variable SCSF value was also tested as the slowflow input (SCSF).  The 

time-variable SCSF produced slowflow estimates that were generally greater than the 

constant SCSF approach (Figure 2.1A-D and Figure B2.4A-D in Appendix B).  The time-

variable SCSF approach in effect broadens the interpretation of slowflow to include more, 

faster flowpath contributions to the stream and (or) multiple types of aquifer 

contributions to the stream.  By varying SCSF and holding it near the measured SC in the 

stream, the EMMA calculated a higher slowflow compared to using a constant SCSF 

where the stream SC can diverge from SCSF at times.    

 4.3 Comparison of the BFI program and SC-EMMA 

  One important aspect of exploring these two methods of hydrograph separation is 

to understand the differences and to recognize the unique information and insight that 

each method can provide about how water travels from the landscape to the stream.  

Neither method should be applied to a watershed without considering the limitations of 

the method with respect to the physical characteristics of the watershed.  The differences 

in outcome between the two methods could represent the distinction between baseflow – 
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slowly varying flow (estimated by the BFI program) and slowflow - the aggregation of 

multiple slow flowpaths - estimated by SC-EMMA. 

 Generally, SC-EMMA estimated a greater portion of slowflow water during high 

flow events than did the BFI program.  The BFI program, on the other hand, often 

estimated more baseflow than SC-EMMA during low flow events, frequently estimating 

100% baseflow.  Unlike the BFI program, SC-EMMA never estimated that 100% of 

streamflow was from slowflow (Figure 2.5A-D).  The different mechanisms of the 

models account for these observations. The BFI program mathematically establishes a 

series of points on the streamflow hydrograph between peaks in streamflow when 

creating a baseflow hydrograph.  The interpolation between these points, each 

corresponding to an estimation of 100% baseflow, produces a baseflow hydrograph.  As a 

result, the baseflow hydrograph is relatively flat in comparison to the SC-EMMA 

slowflow hydrograph (Figure 2.1A-D).  The "flashier" SC-EMMA slowflow hydrograph 

is a result of the variability of SC in the stream.  

 Under certain hydrological settings, one of the methods may be better suited for 

hydrograph separation than the other.  The BFI was designed to be applied in streams 

where there is a strong, continual groundwater component, plus streamflow fluctuations 

resulting from storm event water (Wahl and Wahl, 1995).  Streams with different 

hydrologic regimes can pose challenges to the BFI program. The BFI program did not 

work well when applied to Granger Drain, WA (Figure 2.1D).  The annual hydrograph in 

the Granger Drain watershed exhibited a high-flow period that corresponded to the 

irrigation season and a low-flow period that corresponded to the non-irrigation season.  

Intra- and inter-daily variation in flow within either period was relatively small. The 

stability of the seasonal streamflow and the absence of high flow peaks caused the BFI 

program to incorrectly calculate that nearly 100% of the streamflow throughout the year 

was from baseflow (Figure 2.5D).  McCarthy and Johnson (2009) showed that the 

irrigation water (moving to the stream as fastflow) had a distinctly different SC signature 

than the slowflow water derived from groundwater.  The SC-EMMA method using a 

constant SCSF responded to the dramatic fluctuation of SC in Granger Drain between the 

irrigation season and the non-irrigation season, showing that there were two major 
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sources of water to the stream during the irrigation season – a result not produced with 

the BFI program.  As a result of the stability of the hydrograph, the BFI program is not an 

appropriate method for hydrograph separation in the Granger Drain watershed.  

Interestingly, the SC-EMMA method that utilized a time-varying SCSF produced results 

more similar to those of the BFI program (Figure 2.1D), suggesting a time-variable SCSF 

should also be carefully applied.   

 The SC-EMMA works best where there is a strong, monotonic relation between 

stream SC and streamflow.  Though this condition is not found in any of the four streams 

in this study, it is best approximated in SFIR, IA, and Granger Drain, WA (Figures 2.2C 

and D).  In contrast, Tommie Bayou, MS, (Figure 2.2B) shows no relation between 

stream SC and streamflow, and is therefore a very poor candidate for the use of SC-

EMMA.  The lack of relation is largely due to the use of groundwater for irrigation in the 

basin during a portion of the year (McCarthy et al., 2012).  This irrigation water, 

although travelling through relatively fast flowpaths, already had a high SC due to its 

residence time in the aquifer, and is contrary to the assumption that fastflow water has 

lower SC than slowflow water.     

 The utility of the SC-EMMA approach is limited in streams where there is not a 

substantial difference in the stream SC between low flow and high flow events (that is, 

there is not a large difference between SCSF and SCFF).  As an example, the use of SC-

EMMA is tenuous in Morgan Creek, MD, where there is comparatively little difference 

in stream SC during the lowest 5% of flows (181 + 9.3 μS/cm) and the highest 5% of 

flows (111 + 28 μS/cm, Figure 2.2A).  The addition of low SC fastflow water does not 

result in a substantial decrease in stream SC, limiting the ability of the SC-EMMA to be 

used to perform a hydrograph separation.  This was also observed by Sanford et al. 

(2012) in their studies, which were conducted in Virginia.  In streams where the 

difference in SCSF and SCFF is small, small changes in the chosen input values will 

produce large changes in the estimated SFI (Figure 2.3A).  The BFI program does not 

consider SC measurements, and therefore, could be the approach that is favored in 

streams where the difference between SCSF and SCFF is low.    
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 Somewhat surprisingly, the SC-EMMA and the BFI program give similar results 

for SFIR, IA – the stream influenced by subsurface drains (Figure 2.4C).  Streamflow in 

the SFIR during low-flow periods largely comes from artificial subsurface drainage, not 

groundwater (Thornburg, 2009), and streamflow during high-flow periods comes from a 

combination of discharge from surface ditches and subsurface drains.  Although the BFI 

program is meant to estimate groundwater additions to the stream, not drainage source 

additions, the program is able to clearly differentiate and separate elevated flows in the 

stream hydrograph resulting from precipitation events (Figure 2.1C) because BFI works 

by filtering out the peaks in streamflow, no matter their source.  The SC-EMMA is also 

able to effectively separate elevated streamflows.  Much of the precipitation that falls 

within the Iowa watershed moves quickly through the landscape both through runoff 

flowpaths to surface ditches and through the soil to the subsurface drains.  This fast 

movement through the landscape results in little interaction between the water and soil.  

Water that remained in the subsurface for longer periods of time substantially increased 

in SC (Smith, 2012).  This water slowly drains to the stream and appears as 

baseflow/slowflow to both the BFI program and the SC-EMMA.   

 The two methods compared here are easy to apply and have long histories of use 

in the literature for the separation of stream hydrographs into component sources. The 

opportunities to utilize high-resolution SC data for an SC-EMMA hydrograph separation 

will continue to increase as the number of high-resolution water quality monitors 

increases. The SC-EMMA has the potential to allow for responsive, high-resolution 

hydrograph separation, but has substantial limitations in streams that have only a small 

difference in the SC in slowflow compared to fastflow, do not have monotonic 

relationships between streamflow and stream SC, or are located in areas where 

groundwater-derived irrigation is the driver of fastflow. The uncertainty and somewhat 

subjective choice of SCFF and SCSF for the SC-EMMA also adds to the uncertainty of its 

results. Graphical methods, like the BFI program, have limitations in streams that have 

only gradual changes in streamflow and are not recommended for the examination of 

short-term events.  Neither method produced reasonable results for all four streams that 

were studied, although it should be noted that the four streams were chosen such that they 
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would present a challenge and test the limitations of both methods.  Both methods should 

be applied to hydrograph separation with consideration of the flow and SC characteristics 

of the stream.  

Differentiating baseflow or slowflow from total streamflow benefits water quality 

monitoring, modeling, and management because it aids our understanding of the 

movement of water and waterborne chemicals through the groundwater system and other 

slowflow pathways to the stream. The two methods, although aimed at similar outcomes, 

are based on different assumptions. The comparison of values of the Baseflow Index 

(BFI) from the graphical program and the analogous slowflow index (SFI) from SC-

EMMA showed substantial difference in both the daily and the average long-term results 

for all four streams. The results, together with the previous knowledge of the hydrology 

of these well-studied watersheds, strongly suggest that the BFI and the SC-EMMA 

methods quantify different parcels of water; that is, baseflow is not always the same as 

slowflow.  
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Table 2.1:  Possible SC-EMMA input values (SCFF and SCSF) for the four study watersheds.  The bi-annual SFI and BFI as 

calculated by SC-EMMA (using the specified input values) and the BFI program, respectively, along with the change in SC-

EMMA SFI resulting from a one unit change in SCFF or SCSF input.   

 
1 Range 33 to 395 μS/cm   

2 Range 118 to 641 μS/cm   

3 Range 79 to 126 μS/cm 

4 Ranges of SFI for all possible input combinations can be seen in Table B2.1 in Appendix B 

* median of all SC values if there were multiple SC measurements during times of equal flow 

# highest SC value if there were multiple SC measurements during times of equal flow 

NA: not applicable 

Morgan Creek, 

MD

Tommie Bayou, 

MS

South Fork Iowa 

River (SFIR), IA

Granger Drain, 

WA

SCFF (values used in this study) 41 35 67 149

Median rainfall SC 21 10.3 10.6 5.4

SC during highest flow 80 156 129 335

Lowest stream SC 61 60 123 293

Median overland flow SC No data No data 81 
1

339 
2

Irrigation water SC NA 1190 NA 99 
3

SCSF (Highest stream SC, 

values used in this study)
236 904 836 842

Median groundwater SC 168 1098 793 727

SC during lowest flow 184*(185#) 392*(672#) 541*(574#) 674*(688#)

2-year BFI (%) 46 7.6 45 97

2-year SFI (%) 
4 51 28 64 42

2-year SFI (%) w/ variable SCSF 70 44 73 86

Δ 2-year SFI per SCFF μS/cm 0.55 0.11 0.05 0.08

Δ 2-year SFI per SCSF μS/cm 0.33 0.04 0.07 0.07

Potential input 

values for SCFF 

(μS/cm)

Potential input 

values for SCSF 

(μS/cm)
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 (A) Morgan Creek, MD      (B) Tommie Bayou, MS 

   
 (C) South Fork Iowa River (SFIR), IA    (D) Granger Drain, WA

    
Figure 2.1: Total streamflow hydrographs compared to the slowflow/baseflow hydrographs calculated by SC-EMMA and the BFI 

program for the four agricultural streams (only one water year displayed).  Input values (SCFF and SCSF) for SC-EMMA are 

provided in Table 2.1.  Gaps in the hydrograph represent no data.   
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 (A) Morgan Creek, MD     (B) Tommie Bayou, MS 

  
(C) South Fork Iowa River (SFIR), IA   (D) Granger Drain, WA 

  
Figure 2.2: Hourly specific conductance (SC) in relation to discharge values over 2 years for four agricultural streams.  Horizontal 

lines represent SC of potential input values for SC-EMMA (Table 2.1).  Dotted lines are potential SCFF inputs, dashed lines are 

potential SCSF inputs (time-variable SCSF not included), and solid lines are the chosen input values.  Note the difference in y-axis 

range values. 
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 (A) Morgan Creek, MD     (B) Tommie Bayou, MS 

 
(C) South Fork Iowa River (SFIR), IA   (D) Granger Drain, WA 

 
Figure 2.3: Surface plot of the slowflow index (SFI, in percent) for a 2-year period within four agricultural watersheds using a 

range of input values for SCSF and SCFF. The black dot on each graph is at SCSF and SCFF chosen in this study.   The black lines and 

corresponding percentages represent the maximum change in SFI when holding one input constant and varying the other input 

between its minimum and maximum values.  SFI was calculated using a 1-day time interval between SC values. Note the differing 

values on the x-axes, y-axes, and z-axes.   
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 (A) Morgan Creek, MD     (B) Tommie Bayou, MS 

  
(C) South Fork Iowa River (SFIR), IA   (D) Granger Drain, WA 

  
Figure 2.4: Daily SC-EMMA slowflow (m

3
/s) compared to the BFI program baseflow (m

3
/s) for a 2-year period for four 

agricultural steams.  1:1 line represents identical values calculated by SC-EMMA and BFI program.  2:1 line represents SC-EMMA 

over-estimating the BFI program by a factor of 2.  1:2 line represents the BFI program over-estimating SC-EMMA by a factor of 2.  

Input values (SCFF and SCSF) for SC-EMMA are in Table 2.1.    
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 (A) Morgan Creek, MD      (B) Tommie Bayou, MS 

  
(C) South Fork Iowa River (SFIR), IA    (D) Granger Drain, WA 

  
Figure 2.5: Daily SC-EMMA slowflow (%) compared to the BFI program baseflow (%) for a 2-year period for four agricultural 

streams.  1:1 line represents identical values calculated by SC-EMMA and BFI program.  Input values (SCFF and SCSF) for SC-

EMMA can be seen in Table 2.1.   
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Chapter 3: Estimation of time-variable fast flowpath end-member concentrations 

for application in chemical hydrograph separation analyses 

 

Abstract   

 

 End-member mixing analysis (EMMA) is a commonly used method for 

hydrograph separation, but can be hindered by the subjective choice of end-member 

chemical concentrations.  This work tests a new method of EMMA which relies on high 

frequency (continuous) measures of two chemicals and streamflow to separate total 

streamflow into water from slowflow and fastflow sources.  The ratio between the 

concentrations of the two chemicals is used to create a time-variable estimate of the 

concentration of each chemical in the fastflow end-member.  Multiple synthetic data sets 

and data from two hydrologically diverse streams were used to test the performance and 

limitations of the new model (ratio-EMMA).  When applied to the synthetic streams 

under many different scenarios, the ratio-EMMA produced results that were reasonable 

approximations of the actual values of fastflow discharge (+0.20 m
3
/s 3.4%) and fastflow 

concentration (+0.19 mg/L (24%) and +25 μS/cm (41%) for the two chemical 

respectively).  With real stream data, the ratio-EMMA produced continuous estimates of 

slowflow and fastflow discharge that aligned with expectations for each stream based on 

their respective hydrological settings.  The use of two chemicals with the ratio-EMMA 

provides an innovative and objective approach for estimating continuous fastflow 

concentration and contributions of fastflow water to the stream.  This provides useful 

information for continuous tracking of chemical movement to streams, allowing for better 

selection and implementation of water quality management strategies. 

 

 1. Introduction 

 Waterborne chemicals and nutrients travel from the landscape to streams through 

many different hydrologic pathways (flowpaths).  Excess nutrients transported from the 

landscape can lead to eutrophication and hypoxia when the nutrients enter the stream 

(Poor and McDonnell, 2007, David et al., 2010, Goodridge and Melack, 2012).  

Streamflow is a combination of water from multiple flowpaths, and changes in 
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contributions from the various flowpaths has been shown to dramatically alter nutrient 

concentration within a stream (Hooper et al., 1990, Molénat et al., 2002, Peters, 1994, 

Rice and Bricker, 1995, Ross et al., 1994, Goodridge and Melack, 2012, Baron et al., 

2013) resulting in fluctuations in the chemical load delivered to the stream under various 

hydrologic conditions.  This makes it difficult for watershed managers to estimate and 

mitigate inputs from chemical loadings.     

 The time required for water and chemicals to travel to the stream depends on the 

flowpath through which they move, affecting the degree of interaction between the water 

and the soil.  During this water-soil contact time, chemicals dissolve and their 

concentrations increase in the water.  Fastflow water is water that is transported rapidly to 

the stream.  It is a combination of water from many sources including direct precipitation, 

overland flow, shallow subsurface flow, and subsurface drain outflow after irrigation or 

recent rain events.  These flowpaths result in minimal soil/water interaction and usually 

have water with low specific conductance and low concentrations of soluble chemicals 

except in areas where soluble chemicals are applied to the land surface (Woodward et al., 

2013, Raymond et al., 2012).  Slowflow water, on the other hand, is composed of water 

that travels slowly to the stream through other flowpaths (subsurface drain flow distant 

from rain events or groundwater discharge) which results in greater soil/water 

interactions and often contains water with higher specific conductance and chemical 

concentrations (Woodward et al., 2013).   

 Hydrograph separation techniques can be used to estimate the contributions of 

water to the stream from two or more flowpaths.  There are several methods of 

hydrograph separation.  Graphical methods utilize a streamflow record to define the 

points where slowflow intersects the rising and falling limbs of the hydrograph, 

effectively separating the relatively stable slowflow from short-term elevated flows 

resulting from direct runoff (Sloto and Crouse, 1996, Wahl and Wahl, 1995).  Recursive 

digital filters also utilize a record of streamflow, mathematically removing the high-

amplitude runoff signal in the hydrograph, resulting in an estimate of the low-amplitude 

slowflow (Eckhardt, 2005, Rimmer and Hartmann, 2014). End-member mixing analysis 

(EMMA) incorporates additional information about the concentration of a chemical(s) to 
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mathematically separate the mixture of waters in the stream into their individual 

flowpaths (Hooper, 2013).  Each method is not without its limitations.  Results from 

graphical methods are often not reproducible from one person to the next (Sloto and 

Crouse, 1996), as some of the methods rely on subjective decisions.  Some recursive 

digital filters require extensive calibration and produce results that have little 

hydrological basis (Schwartz, 2007).  And, results from EMMA are sensitive to the end-

member input parameters (Kronholm and Capel, 2014). 

 EMMA is often an attractive choice for hydrograph separation because it 

produces results that are based on known physical, chemical, and hydrological processes.  

An EMMA relies on measurements of streamflow and the concentration of a conservative 

(non-reactive and non-sorptive) chemical in the stream.  Assumptions about the 

concentrations of the chemical in the slow flowpath and fast flowpath end-members are 

needed for the separation of total streamflow into the fraction of water from each end-

member.  Slowflow end-member concentration is often assumed to be equal to the 

measured concentration in the stream during lowflow conditions (Miller et al. 2014, 

Sanford et al. 2012), when most or all of the water in the stream is from slowflow 

sources.  The slowflow end-member concentration is often assumed to be constant over 

short time periods because it responds slowly to changes within the watershed (Miller et 

al. 2014).  One of the more difficult and debated aspects of an EMMA is the choice of an 

appropriate fastflow end-member concentration.  A measured value of a chemical in the 

stream during the highest flows was used by Miller et al. (2014) as an estimate of the 

fastflow concentration.  However, using the stream concentration during the highest 

flows may not accurately approximate the concentration of the chemical in fastflow, as 

there can still be significant inputs of slowflow water to the stream at the highest flows 

(Stewart et al., 2007), resulting in an elevated approximation of fastflow concentration.  

McNamara et al., (1997) utilized the concentrations of the chemical in overland flow 

water, but those were point samples which can vary greatly through time and space.  

Pellerin et al. (2008) and Sanford et al. (2012) utilized the concentration of a chemical in 

rainfall as the value for fastflow concentration, as rainfall is frequently a driver of 

fastflow water.  However, due to the rapid interaction between rainwater and soil, and the 
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subsequent increase in chemical concentration in the water (Pilgrim et al., 1979), rainfall 

concentration underestimates the concentration of the chemical in fastflow.  Kronholm 

and Capel, (2014) approximated the fastflow concentration as a value halfway between 

the concentration of a chemical in rainfall and the lowest measured concentration in the 

stream.  These approaches are all valid and are based on easily obtained measurements, 

but rely on the rarely true assumption of a static value for fastflow concentration (Smith, 

2012).  By using a static fastflow concentration, the results can underestimate fastflow 

discharge at the beginning of a storm event (when the estimated fastflow concentration is 

too high) and overestimate fastflow discharge later in the storm (when the estimated 

fastflow concentration is too low) or vice versa.   

 In response to the difficulty of selecting an appropriate fastflow concentration for 

use with an EMMA model, a ratio-based EMMA (ratio-EMMA) has been created which 

utilizes high-frequency measurements of streamflow and the concentrations of two 

chemicals in the stream rather than one, as in the standard EMMA for hydrograph 

separation.  By using the ratio of the concentration of one chemical to the other, a time-

variable estimate of the concentrations of each chemical in fastflow is generated, which 

can then be used as part of an EMMA model to estimate a continuous record of slowflow 

and fastflow water entering the stream.  Synthetic data were used to test the sensitivity of 

the ratio-EMMA model to various conditions of streamflow and chemical concentration.  

The sensitivity analysis provides understanding of the relationship between the inputs and 

outputs of the model while providing insights to its practicality and limitations.  Data 

from two real streams were also used to test the model under real world conditions.  

Although concentration data for any two conservative chemicals can be used, specific 

conductance and nitrate were used as the two “chemicals” for this application of the ratio-

EMMA.  Nitrate is used in this work as an informative example, even though it is not 

ideal for the ratio-EMMA due to its reactive nature.  As the number and variety of 

chemical sensors increases, the ratio-EMMA will be available to take advantage of the 

high frequency data to produce accurate continuous estimates of fastflow and slowflow 

water added to a stream.  The ratio-EMMA eliminates a major assumption of an EMMA 

by not relying on a static input value for the fastflow end-member and allows for the 
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continuous separation of total streamflow and the continuous estimation of chemical 

concentrations in fastflow water without the use of subjectively defined fastflow end 

member concentration. 

 

 2. Methods 

 2.1 Standard EMMA 

 The total volume of water in a stream (S) is a combination of inputs of water from 

various flowpaths.  The concentration of a chemical ([A]) is used in the creation of a 

standard end-member mixing analysis (EMMA) to separate streamflow into two end-

members: water from fast flowpaths (FF) and water from slow flowpaths (SF).  This 

separation is represented by the following equations: 

 

QS = QSF + QFF         Eq. 1 

 

and, therefore: 

 

QS[A]S = QSF[A]SF + QFF[A]FF       Eq. 2 

 

where Q is the water discharge (m
3
/s).  Equation 1 represents a water budget and equation 

2 is the corresponding chemical mass budget.  By combining equations 1 and 2, the 

slowflow contributions to overall streamflow are calculated using equation 3. 

 

QSF = (QS[A]S - QS[A]FF) / ([A]SF – [A]FF)       Eq. 3 

 

QFF is then calculated using equation 1.   

 For a given length of time (t), the volume (V) is 

 

 V = Q * t.            Eq. 4 

 

The slowflow index (SFI, slowflow volume as a percent of total stream volume) for a 

given length of t, is     

 

SFI = (ΣVSF / ΣVS) * 100        Eq. 5 
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When using Equation 3 for hydrograph separation, QS and [A]S are measured values, 

whereas [A]SF and [A]FF are subjective estimates of the [A] in each end-member.  [A]SF is 

approximated as the measured concentration in the stream during lowflow conditions, 

however [A]FF is much more subjective and more variable through time.   

 2.2 Ratio-based EMMA 

 The ratio-based EMMA approaches hydrograph separation in the same manner as 

above.  However, two simultaneous chemical mass budgets are used instead of one.  

Subscripts A and B represent values relating to chemicals A and B, respectively.  

 

QS,A = QSF,A + QFF,A         Eq. 1,A 

 

QS,B = QSF,B + QFF,B         Eq. 1,B 

 

and, therefore: 

 

QS,A [A]S = QSF,A [A]SF + QFF,A [A]FF       Eq. 2,A 

 

QS,B [B]S = QSF,B [B]SF + QFF,B [B]FF       Eq. 2,B 

 

and the assumptions that: 

 

QS,A = QS,B          Eq. 6 

 

QSF,A = QSF,B          Eq. 7 

 

QFF,A = QFF,B          Eq. 8 

 

Each set of chemical data could be used on its own to accomplish separate EMMA 

analyses, but each would rely on static and subjective fastflow input concentrations.  By 

combining both strings of unique chemical data into a single EMMA, the ratio between 

the concentrations of the chemicals in fastflow is used to more objectively define the 

fastflow end-member concentrations.  This is accomplished by making the assumptions 

that both chemicals (A and B) are conservative (non-reactive and non-sorptive), that 

[A]SF and [B]SF are constant, and that A and B in fastflow travel in the same parcel of 

water to the stream.  A finite range of ratios which encompasses the actual ratio of [A]FF 

to [B]FF  is used to mathematically estimate time variable concentrations of the two 
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chemicals in the fastflow.  In most applications of the ratio-EMMA, an iterative approach 

to ratio selection is recommended and will be discussed in detail.  The iterative approach 

can be applied without prior knowledge of the fastflow conditions within a watershed and 

allows for application of the ratio-EMMA in a larger number of streams.  The iterative 

approach removes the uncertainty of selecting a fixed upper and lower bound to the range 

of ratios, and is used exclusively in the remainder of the study.  However, the range of 

possible ratios of [A]FF to [B]FF can be specified by the user based on knowledge of [A]FF 

and [B]FF.  The full sensitivity analysis of the ratio-EMMA results to a user defined 

fastflow ratio is found in Appendix C.   

 The time-varying [A]FF and [B]FF are calculated for each time interval (2-hours, in 

this case) according to the procedure presented in Figure 3.1.  The data are entered into a 

macro enabled Microsoft Excel spreadsheet with a Visual Basic code to run the logical 

algorithm of the model (Visual Basic code presented in Appendix D).  The estimated 

range of ratios of [A]FF to [B]FF is defined by the user based on the iterative approach or 

knowledge of the concentrations of [A]FF and [B]FF.  These are entered into the 

spreadsheet, and the model is run.   

 During each 2-hour time interval, the model enters the measured stream data (QS 

and [A]S) and assumed chemical data ([A]SF) from a single time interval (Figure 3.1-A), 

into Equation 3.  Nitrate (mg N/L) is used as the example chemical A for the real stream 

examples. 

 Using a standard EMMA equation (Eq. 3), the model calculates 1000 individual 

estimates of QSF by inputting the measured values for QS, [A]S, and [A]SF, and 1000 

possible values for [A]FF.  This produces 1000 different estimates for slowflow based on 

chemical A (QSF,A) (Figure 3.1-B).  Possible values for [A]FF were chosen to range from 

0.00 to 10 mg N/L in increasing increments of 0.01 mg N/L. The range of possible values 

of [A]FF can be altered in cases where the expected [A]FF is >10 mg N/L, and fewer (or 

more) than 1000 estimates can be calculated if desired.  Although unrealistic, negative 

QSF,A estimates, and QSF,A estimates that are >QS are possible as the model balances 

Equation 3 based on the input values.  In the event that the estimated QSF,A <0.0 m
3
/s or 

>QS, the ratio-EMMA sets QSF,A equal to 0.0 m
3
/s.   
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 The model then enters the measured stream data (QS and [B]S) and assumed, 

constant [B]SF for the same 2-hour time interval (Figure 3.1-C) into Equation 3.  Specific 

conductance (in units of μS/cm) is used as the example chemical B for the real stream 

examples. 

  Using a standard EMMA equation (Eq. 3), the model calculates 1000 individual 

estimates of QSF by inputting the measured values for QS, [B]S, and [B]SF, and 1000 

possible values for [B]FF into Equation 3.  This produces 1000 different estimates for 

slowflow based on the EMMA calculations from Equation 3 using chemical B (QSF,B) 

(Figure 3.1-D).  Possible values for [B]FF were chosen to range from 0.0 to 1000 μS/cm 

in increasing increments of 1.0 μS/cm. The range of possible values of [B]FF can be 

altered in cases where the expected [B]FF is >1000 μS/cm.  In the event that the estimated 

QSF,B <0.0 m
3
/s or >QS, the ratio-EMMA sets QSF,B equal to 0.0 m

3
/s.   

  The model identifies the QSF,A produced by the first [A]FF (Figure 3.1-E) and then 

searches for an equal value within the 1000 estimates of QSF,B (Figure 3.1-F).   

  In Figure 3.1-G, the model searches for equivalent values of QSF,A and QSF,B.  If 

QSF,B produces no match to the value of QSF,A held in step E, the model reverts to step E 

and uses the next [A]FF.  If an equivalent value to QSF,A is found, the program then refers 

back to the [A]FF used to produce QSF,A and the [B]FF used to produce the QSF,B.   

  The model compares the ratio of [A]FF to [B]FF against a pre-defined range of 

ratios (Figure 3.1-H).  Approaches to select the range of ratios are discussed below.  If 

the ratio of [A]FF to [B]FF falls outside of the defined range, the model reverts to step E 

and uses the next [A]FF value (Figure 3.1-I).  If the ratio of [A]FF to [B]FF falls within the 

range of ratios, these concentration values are set as possible values of [A]FF and [B]FF for 

the time interval.  The model reverts to step A and begins calculating values for the next 

2-hour time interval.  If no solutions meet both criteria, the values for [A]FF and [B]FF are 

left blank and no solution is reached for the time interval.  The model reverts to step A 

and begins calculating values for the next 2-hour time interval.  At times, the estimated 

[A]FF can equal 0.0 mg/L, but [B]FF cannot be equal to zero due to mathematical 

constraints of the model.   
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 There is the possibility of multiple solutions within each 2-hour time interval as a 

result of the range of concentration ratios necessary for the model to operate.  This is 

especially (but not exclusively) true when not using the iterative method due to the 

likelihood of a wider range of ratios.  Because of this, the model is then run a second time 

in reverse at each time interval.  During the second run, the values of [A]FF and [B]FF 

used to create the QSF,A and QSF,B are reversed (10 to 0.00 mg N/L decreasing by 

increments of 0.01 mg N/L and 1000 to 0.0 μS/cm decreasing by increments of 1.0 

μS/cm).  The mean of the estimated [A]FF by running the model forward and the [A]FF by 

running the model in reverse is taken as the “true” [A]FF for the time interval.  The same 

is done for chemical B.  For both chemicals, there is a linear change in concentration 

between all of the possible fastflow solutions for a single 2-hour time interval.  Since all 

possible values fall along a straight line and are bracketed by the first (forward) and last 

(reverse) solutions from the model, the mean is used as the measure of the central 

tendency (Figure 3.2).  When using the iterative approach, the concentrations of each 

chemical from running the model forward and in reverse are only averaged after the last 

iteration.  By running the model twice during each time interval, this model also 

quantifies variability in the estimated fastflow concentrations based on the range of 

selected ratios.   

 An iterative approach to ratio selection is the preferred method to objectively 

select the range of ratios necessary for the ratio-EMMA model, especially when little is 

known about [A]FF and [B]FF.  With the iterative method, the defined range of ratios is 

initially set from 0 to 1000 and the model is run (forward and in reverse).  With possible 

ratios that are essentially unbounded on the upper and lower ends, the model finds the 

highest and lowest concentrations of [A]FF and [B]FF and ratios of [A]FF to [B]FF that can 

produce values during each 2 hour time interval.  The resulting ratios for each 2 hour 

interval are used to define the range of ratios for the next iteration.  The range is then 

narrowed (the lowest ratio is increased 10% and the highest ratio is decreased 10%), and 

the resulting values are input back into model as the defined range of ratios for the second 

iteration.  As the selected range of ratios gets smaller, the likelihood that the model will 

not be able to find a solution that meets all necessary criteria gets larger.  In the event that 
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the generated range of ratios is not able to produce results during a given iteration, or the 

range of ratios becomes narrower than 0.0020 (an arbitrary value used in this study), the 

previous range of ratios is selected for that time period.  This process is repeated until the 

change in SFI for the entire period of record is less than 0.1% (an arbitrary value).  The 

range of ratios (and fastflow concentrations) can likely be further narrowed during some 

time intervals, but the change in SFI will be minimal.  This iterative approach produces a 

time-varying range of ratios which allows the ratio-EMMA to be applied in many 

hydrologically diverse streams.  

   Once the model has been run, [A]FF, along with QS, [A]S, and [A]SF, are input 

into Equation 3 for the first 2-hour time interval (Figure 3.1-J), resulting in the estimated 

QSF for that time interval.  The QS and estimated QSF are entered into Equation 1 to 

determine QFF.  This process is then repeated for each time interval over the entire period 

of modeling, creating continuous estimates of QSF and QFF based on the time-variable 

[A]FF.  Using [A]FF or [B]FF along with the corresponding QS, [A]S, and [A]SF or QS, [B]S, 

and [B]SF will result in the same estimates of QSF and QFF, so QSF and QFF do not need to 

be calculated with both [A]FF and [B]FF separately.   

 2.3 Data for Model Characterization 

 To test the validity of this new model, synthesized and real stream data were 

utilized.  Synthetic data were designed to test the precision and bias of the model against 

actual values.  The model was also applied to real data from two hydrologically different 

streams.  The analysis of the synthetic data provided information regarding the 

performance of the model, which aided in the interpretation of the results from the real 

data.     

The measurements of streamflow and stream chemistry in the real stream sites 

were aggregated to 2-hour intervals for modeling purposes.  The synthetic data were 

made at the same temporal resolution as the real measured data. 

 For this initial test, the model was run for a single storm event, or for a short time 

period containing multiple storm events (rather than an annual period) for the both 

synthetic data and real data.  Certain assumptions are minimized when handling shorter 

data records that would not be possible to ignore when examining an annual or longer 
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time scale.  Seasonal changes in the physical environment can be ignored, and the 

concentration of each chemical in slowflow water can be assumed to be relatively 

constant.  

 2.3.1 Synthetic data creation 

 Two separate synthetic watersheds were created in an effort to test the model 

under different hydrologic conditions.  One synthetic stream was created to mimic a 

stream that has large inputs of groundwater to the stream (large slowflow inputs).  The 

other synthetic stream is meant to mimic a stream that is dominated by overland flow 

additions of water (small slowflow inputs).  Each data set was created to have balances of 

chemical mass and water volume.  Synthetic data sets include values, at each 2-hour time 

interval, for total streamflow (m
3
/s), fastflow (m

3
/s), slowflow (m

3
/s), and [A]S, [B]S, 

[A]SF, [B]SF, [A]FF, and [B]FF.  Chemicals A and B are meant to represent nitrate (mg 

N/L) and specific conductance (μS/cm), respectively.  The concentrations of both 

chemicals were held constant in slowflow water, whereas chemical concentrations in 

fastflow were varied through time.   

 Seven scenarios were created for each of the two synthetic streams to assess the 

sensitivity of the ratio-EMMA to the temporal alignment of the streamflow peak and the 

minimum (or maximum) [A]FF and [B]FF. Scenarios include situations where (1) the 

streamflow peak occurs at the same time as the minimum [A]FF and [B]FF 

(tQmax=t[A]min=t[B]min),(2)  streamflow peak occurs but the minimum [A]FF and [B]FF both 

occur before streamflow peak (tQmax>t[A]min=t[B]min), (3) streamflow peak occurs but the 

minimum [A]FF and [B]FF both occur after streamflow peak (tQmax<t[A]min=t[B]min), (4) 

streamflow peak and the lowest [A]FF occur at the same time but the lowest [B]FF occurs 

before the streamflow peak (tQmax=t[A]min>t[B]min), (5) streamflow peak and the lowest 

[A]FF occur at the same time but the lowest [B]FF occurs after the streamflow peak 

(tQmax=t[A]min<t[B]min), and (6) the streamflow peak occurs but the minimum [A]FF occurs 

before streamflow peak and the minimum [B]FF occurs after the streamflow peak 

(t[A]min<tQmin<t[B]min).  Concentration minima in fastflow occurring before or after the 

streamflow peak were offset 12 time intervals (the equivalent of 24 hours when using 2-
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hour data) from the streamflow peak.  In the 7
th

 scenario [A]FF increased with flow while 

at the same time [B]FF decreased with flow (tQmax=t[A]max=t[B]min).   

 2.3.2 Site descriptions  

 The ratio-EMMA was applied to two real streams to test the model in real world 

situations.  Both streams have a gage to measure streamflow and are equipped with 

continuous (high-frequency) chemical sensors for measuring specific conductance and 

nitrate concentrations. 

 Chesterville Branch (15.9 km
2
) is located in Maryland (USGS Station 

identification (STAID) 01493112).  Agriculture comprises >90% of the land within the 

watershed, most of which is non-irrigated (Senus et al., 2005).  Streamflow is supported 

by natural groundwater throughout the year with additions of overland flow during 

rainfall events being common (Ator et al., 2005).  Mean annual precipitation is 112 cm.  

Annual streamflow in 2013 for within Chesterville Branch averaged 0.27 m
3
/s (USGS, 

2013b).  Groundwater in the Chesterville Branch watershed is characterized by high 

nitrate concentration which is observed during times of lowflow (<0.30 m
3
/s) in the 

stream (typically 4.5 to 8.5 mg N/L).  Streamflow was measured using WaterLog H-3611 

Radar Water Level Sensor (Design Analysis Associates, Inc., Logan UT).  Nitrate in the 

stream was measured continuously with a SUNA V2 with a 5 millimeter optical window 

and an integrated wiper (Satlantic LP, Halifax, Nova Scotia, Canada).  SC was measured 

with a YSI 6920 V2 (YSI Inc., Yellow Springs, Ohio).  Streamflow, SC, and nitrate from 

June 10, 2013 to June 24, 2013 were used in this study.  Linear interpolation was used to 

fill in any small gaps in the data record.  Values for [nitrate]SF and [SC]SF used with all 

EMMA models were assumed to be constant over the study period and were set at 8.64 

mg N/L and 203 μS/cm respectively, which represent the highest measured values in the 

stream. 

 Indian Creek (166 km
2
) is located in eastern Kansas (STAID 06893390).  

Urbanized land comprises >75% of the area within the watershed with nearly 20% of the 

watershed having impervious land cover.  Greater than 95% of the water in the stream 

during lowflow conditions comes from waste water treatment plant discharge (Lee et al., 

2005), which will be considered slowflow by the model.  Mean annual precipitation 
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within the watershed is 99 cm (Rasmussen et al., 2008).  Annual average streamflow in 

2013 for Indian Creek was 2.6 m
3
/s (USGS, 2013c).  Streamflow was measured using a 

Sutron Accubar Bubbler 5600-0131 (Sutron Corporation, Sterling, Virginia).  Nitrate and 

SC measurements in the stream were measured continuously with a Nitratax plus SC 

sensor using a 5mm path length (HACH Inc., Loveland, Colorado) and a YSI 6560 (YSI 

Inc., Yellow Springs, Ohio) respectively.  Streamflow, SC, and nitrate from April 6, 2013 

to April 20, 2013 were used in this study.  Values for [nitrate]SF and [SC]SF used with all 

EMMA models were assumed to be constant over the study period and were set at 8.36 

mg N/L and 1480 μS/cm respectively, which represent the highest measured values in the 

stream. 

   

 3. Results 

 3.1 Use of the ratio-EMMA in real streams 

 The ratio-EMMA model was used to estimate slowflow (QSF), fastflow (QFF), 

[nitrate]FF, and [SC]FF for two-week periods in the two real streams. The ratio-EMMA 

was compared to the standard EMMA models, one of which made use of specific 

conductance (SC-EMMA) and the other which used nitrate (nitrate-EMMA).  The 

iterative approach to ratio selection was used with the ratio-EMMA for both streams.   

 The ratio-EMMA estimated large inputs of fastflow (~90% fastflow) to 

Chesterville Branch during storm events and smaller additions of fastflow (~20% 

fastflow) during the non-storm events, which is expected since it is a groundwater 

dominated stream (Figure 3.3A).  The results from the ratio-EMMA were similar, but not 

identical to the results from the SC-EMMA and nitrate-EMMA models (Figure 3.3A).  

During 39% of the 14 day period of record, the ratio-EMMA produced a fastflow 

hydrograph that was between the SC-EMMA and nitrate-EMMA fastflow hydrographs 

(as seen during 6/23/2013 on Figure 3.3A).  The ratio-EMMA produced fastflow 

discharge estimates that were nearly equivalent (+0.1 m
3
/s) to the nitrate-EMMA during 

virtually all of the 14-day period of modeling, deviating mostly during periods of 

lowflow in the stream.  The times when the ratio-EMMA hydrograph fell outside of the 

other two EMMA hydrographs (Figure 3.3A between 6-10-2013 and 6-13-2013) 
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demonstrate that the ratio-EMMA is not limited in its range relative to the results that the 

individual nitrate-EMMA and SC-EMMA yield.  Figure 3.3B shows that the ratio of 

[nitrate]S to [SC]S decreased as flow increased, which indicates that water from fastflow 

has a smaller ratio of [nitrate] to [SC].  The smaller ratio may be a result of little available 

nitrate at the soil surface or less/slower uptake of nitrate than of other dissolvable ions 

which contribute to elevated [SC]FF.   

 The ratio-EMMA estimated large inputs of fastflow (~90% fastflow) to Indian 

Creek during storm events, but larger fastflow inputs to the stream (~50% fastflow) 

during non-storm events than Chesterville Branch, as would be expected in an overland 

flow dominated stream (Figure 3.3C).  The ratio-EMMA fastflow hydrograph fell 

between those produced by the individual SC-EMMA and nitrate-EMMA models only 

12% of the time during the 14 day period of record (Figure 3.3C).  The ratio-EMMA 

fastflow hydrograph was similar (+0.1 m
3
/s) to the nitrate-EMMA hydrograph during a 

majority of the 14 days, but deviated periodically during both lowflow and highflow 

events in the stream.   

 Continuous fastflow estimated by the ratio-EMMA was different than that of the 

nitrate-EMMA and the SC-EMMA models (Figures 3.3A and C), but the results were 

more closely related to the nitrate-EMMA in both real streams.  The close relationship 

between the results from the ratio-EMMA and the nitrate-EMMA may be explained by 

the greater difference between the minimum and maximum normalized concentration 

(normalized to the highest concentration) of nitrate in the stream relative to the difference 

for specific conductance.  And, the relationship between flow and nitrate concentration 

was more tightly and linearly monotonic than for specific conductance.  A comparison of 

a plot of the ratio of [nitrate]S to [SC]S (Figure 3.3B and D) and a plot of streamflow 

(Figure 3.3A and C) provides insight into the ratio of the chemicals in fastflow.  In 

Chesterville Branch and Indian Creek, as flow increased, the ratio of [nitrate]S to [SC]S 

decreased, suggesting that the ratio of [nitrate]FF to [SC]FF is less than the ratio measured 

in the stream.  The ratio of [nitrate]FF to [SC]FF produced by the ratio-EMMA was less 

than the ratio of [nitrate]S to [SC]S in both streams, which fits expectations. 
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 3.2 Sensitivity analysis of the results to the streamflow peak and max/min 

concentrations in fastflow 

 The temporal variability of flow and chemical concentration in the stream and in 

fastflow pose a challenge to the successful application of the ratio-EMMA model. To test 

the limitations of the model, seven different scenarios of the timing of the streamflow 

peak to the minimum [A]FF and [B]FF were tested in both of the synthetic streams.  

Chemicals A and B are assumed to travel to the stream in the same parcels of slowflow 

and fastflow water.     

 3.2.1 Scenarios in which the timing of the minimum [A]FF occurred 

concurrently with that of [B]FF 

 For both synthetic streams, when the lowest measured [A]FF and [B]FF occurred 

simultaneously, whether that be before (tQmax>t[A]min=t[B]min), during (tQmax=t[A]min=t[B]min), 

or after peak streamflow (tQmax<t[A]min=t[B]min), the ratio-EMMA model estimates of 

fastflow (QFF) were nearly identical to the actual results.  Bi-hourly fastflow estimates 

differed by a median absolute deviation of +0.02 m
3
/s (1.6%) in the groundwater 

dominated synthetic stream and +0.40 m
3
/s (5.0%) in the overland flow dominated 

synthetic stream with the largest deviations occurring during peakflow in both streams 

(Figures 3.4A, 3.5A, and Appendix C).  The difference between actual and estimated QFF 

during lowflow conditions in the stream was nearly always <0.05 m
3
/s (4.4%) in both 

synthetic streams.  Total fastflow volume had an average percent error of +0.6% in the 

groundwater dominated synthetic stream and +0.7% in the overland flow dominated 

stream among the three scenarios (Table 3.1).  Whether [A]FF and [B]FF reached their 

lowest values before, during, or after the streamflow peak, deviation from the actual SFI 

averaged 0.2% in the groundwater dominated stream and 0.9% in the overland flow 

dominated stream (Table 3.1).   

 The fastflow concentration estimates produced by the ratio-EMMA were nearly 

identical to the actual concentration values of the synthetic data (Figures 3.4A, 3.5A, and 

Appendix C).  The bi-hourly estimates had a median absolute deviation of +0.10 mg/L 

(12%) for chemical A and +13 μS/cm (20%) for chemical B in the groundwater 

dominated synthetic stream; and +0.27 mg/L (33%) for chemical A and +34 μS/cm 



49 
 

(57%) for chemical B in the overland flow dominated synthetic stream over the entire 14 

day period of modeling for the three scenarios.  Estimated [A]FF and [B]FF were nearly 

identical to the actual values during times of highflow and deviated to a greater extent 

during lowflow (Figures 3.4A, 3.5A, and Appendix C).  Over the 14 day period, the 

overestimates and underestimates of fastflow concentrations nearly negated each other, 

particularly in the groundwater dominated stream where the median deviations were -

0.04 mg/L and -5.5 μS/cm for chemicals A and B, respectively.  A more detailed 

explanation of this and subsequent scenario testing results is found in Appendix C.   

 Chemical A loads in fastflow were also estimated for the entire length of record.  

The percent error for load estimates had a mean of +12% among the scenarios in the 

groundwater dominated synthetic stream and +26% in the overland flow dominated 

synthetic stream for the three scenarios (Table 3.1).  Chemical B loads (calculated by 

converting SC (μS/cm) to total dissolved solids (TDS in mg/L); TDS ~ 0.64*SC by 

combining the Russell Equation and Langlier approximation) in fastflow were also 

estimated for the entire length of record.  The percent error for load estimates had a mean 

of +19% among the scenarios in the groundwater dominated synthetic stream and +41% 

in the overland flow dominated synthetic stream for the three scenarios (Table 3.1).     

 3.2.2 Scenarios in which the timing of the minimum [A]FF diverged from that 

of [B]FF 

 When the minimum [A]FF and [B]FF were offset in time (tQmax=t[A]min>t[B]min, 

tQmax=t[A]min<t[B]min, or t[A]min<tQmax<t[B]min), the fastflow volume, SFI, concentration, and 

chemical load estimates produced by the ratio-EMMA deviated from the actual values to 

a similar extent as the scenarios where the concentration minima occurred at the same 

time, particularly for the groundwater dominated synthetic stream (Figures 3.4B, 3.5B, 

and Appendix C).  A few outliers in the estimated fastflow concentrations (an average of 

five 2-hour time intervals in each scenario) had a large effect on the estimated flows and 

loads in the groundwater dominated synthetic stream.  These outliers were a result of the 

iterative ratio selection producing possible concentrations of both [A]FF and [B]FF that 

were highly varied (from running the method forward and in reverse), but the resulting 

range of ratios of [A]FF to [B]FF were very small.  Because the iterative approach was not 
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able to narrow the range of ratios any further, the concentration estimates were averaged, 

which led to elevated concentration estimates relative to the surrounding time intervals.  

For the analysis of these scenarios, the outliers were removed and linear interpolation was 

used to replace the values. 

 The estimates of fastflow discharge (QFF) were accurately predicted.  Fastflow 

estimates differed by a median absolute deviation of +0.04 m
3
/s (3.0%) in the 

groundwater dominated synthetic stream and +0.33 m
3
/s (3.9%) in the overland flow 

dominated synthetic stream with the largest deviations occurring during peakflow in both 

streams (Figures 3.4B, 3.5B, and Appendix C).  The difference between actual and 

estimated QFF during lowflow in the stream was nearly always <0.05 m
3
/s (6.8%) in the 

groundwater dominated synthetic stream and <0.5 m
3
/s (7.6%) in the overland flow 

dominated synthetic stream.  Total fastflow volume deviated from actual results by an 

average percent error of +0.8% in the groundwater dominated stream and +0.8% in the 

overland flow dominated stream among the three scenarios (Table 3.1).  In these 

scenarios where [A]FF reached a minimum at the same time as the streamflow peak, but 

[B]FF reached a minimum either before or after the streamflow peak, the ratio-EMMA 

SFI deviated from the actual results by +1.5% in the groundwater dominated synthetic 

stream and by +0.7% in the overland flow dominated synthetic stream (Table 3.1).   

 The bi-hourly concentration estimates over the 14-day period had a median 

absolute deviation of +0.18 mg/L (23%) for chemical A and +22 μS/cm (38%) for 

chemical B in the groundwater dominated synthetic stream; and +0.23 mg/L (28%) for 

chemical A and +29 μS/cm (48%) for chemical B in the overland flow dominated 

synthetic stream.  In both synthetic streams, when [B]min occurred before [A]min and Qmax, 

the greatest deviation occurred during lowflow and during the recession limb of the 

hydrograph (Figures 3.4B and 3.5B).  When [B]min occurred after [A]min and Qmax, the 

greatest deviation occurred during lowflow and during the rising limb of the hydrograph 

in both synthetic streams (Appendix C).  And, when [A]min occurred before Qmax and 

[B]min occurred after Qmax, the largest deviations were observed exclusively during 

lowflow in the synthetic streams (Appendix C).  In spite of the temporal disconnect 

between the streamflow peak and [A]FF and [B]FF minimums, the estimated fastflow peak 
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aligned in time with the peak in streamflow in all scenarios in both synthetic streams 

(Figures 3.4B, 3.5B, and Appendix C).   

 The percent error for chemical A load estimates in fastflow had a mean of +15% 

among the scenarios in the groundwater dominated synthetic stream and +20% in the 

overland flow dominated synthetic stream (Table 3.1).  The percent error for chemical B 

load estimates in fastflow had a mean of +14% among the scenarios in the groundwater 

dominated synthetic stream and +23% in the overland flow dominated synthetic stream 

(Table 3.1).   

 3.2.3 Scenarios in which the timing of the maximum [A]FF and minimum 

[B]FF occurred concurrently 

 In the third set of scenarios, [B]FF decreased as flow increased (as the 

concentration has done in all other scenarios), but [A]FF increased as flow increased 

(tQmax=t[A]max=t[B]min).  This is the case for streams where the concentration of a chemical 

is lower in slowflow (groundwater) and higher in fastflow (runoff) water (Figure 3.6).   

 Fastflow (QFF) estimates differed by a median absolute deviation of +0.35 m
3
/s 

(42%) in the groundwater dominated synthetic stream and +0.31 m
3
/s (2.4%) in the 

overland flow dominated synthetic stream with the largest deviations occurring during 

peakflow in both streams (Figure 3.6A and B).  Total fastflow volume for the 14-day 

period of record had a percent error of +9.0% in the groundwater dominated stream and 

+1.4% in the overland flow dominated stream (Table 3.1).  Despite the difference in the 

behavior of the chemicals in the stream, the SFI from both synthetic streams differed 

from the actual values by an average of 2.3% (Table 3.1).   

 In these scenarios the concentration differences between the ratio-EMMA 

estimates and the actual values were the largest compared to the other scenarios that were 

tested.  The bi-hourly concentration estimates had a median absolute deviation of +1.2 

mg/L (24%) for chemical A and +228 μS/cm (290%) for chemical B in the groundwater 

dominated synthetic stream (Figure 3.6A); and +0.15 mg/L (2.0%) for chemical A and 

+18 μS/cm (71%) for chemical B in the overland flow dominated synthetic stream 

(Figure 3.6B) over the entire 14 day period.  The largest deviations were observed during 

times of lowflow in the stream.   
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 Chemical A load estimates in fastflow were nearly equivalent to actual values in 

the groundwater dominated synthetic stream (1.1% error) and in the overland flow 

dominated synthetic stream (0.2% error) (Table 3.1).  Chemical B load estimates in 

fastflow diverged from the actual values to a greater extent than for chemical A.  Load 

estimates from the ratio-EMMA for chemical B were 637% greater than actual in the 

groundwater dominated stream, and in the overland flow dominated synthetic stream the 

estimates for chemical B load were 88% greater than actual (Table 3.1).   

 

 4. Discussion 

 4.1 Accuracy and limitations of the ratio-EMMA model 

 The synthetic streams were created to represent two hydrologically different 

streams. Many scenarios of the chemical conditions within those streams were tested and 

showed that the ratio-EMMA was able to produce accurate estimates of fastflow volume 

(mean percent error of 0.7%), slowflow index (SFI) (2.1%), chemical concentrations 

(13% for chemical A and 23% for chemical B), and loads (18% for chemical A and 24% 

for chemical B) in nearly all of the scenarios.  The accuracy of these values is important 

for understanding a stream and the watershed that is drained by that stream.   

High-temporal resolution hydrograph separation provides a detailed estimate of 

the influence of both slow and fast flowpaths on stream discharge. Because the physical, 

chemical, and biological processes that occur in slow and fast flowpaths, as well as the 

residence time and discharge volume from each flowpath are so different, separating and 

understanding the influence of these distinct flowpaths is key to understanding current 

stream conditions, as well as future behavior of the stream under natural and/or 

anthropogenic pressures.   

 The ratio-EMMA provides hydrograph separation with a high degree of accuracy 

and at any temporal resolution that the data allow.  In the tested scenarios within the 

synthetic streams, estimates of total fastflow volume were within 1.5% of the actual value 

in all but one scenario.  The accuracy of this, as well as the estimated fastflow volume 

during each time interval and the time-varying fastflow concentration estimates from the 

ratio-EMMA will aid in the identification of conditions within the watersheds that may 
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lead to elevated inputs of water soluble, non-point source pollutants to the stream from 

slow and fast flowpaths.   

 SFI defines an important characteristic of the stream and the watershed it drains.  

Streams with a similar SFI will often behave in a similar manner (Johnes, 2007), and will 

respond to natural and anthropogenic stimuli similarly (Holman, 2011).  Many currently 

used methods of hydrograph separation result in different estimates of SFI when applied 

to the same stream.  In a one of their study watersheds, Kronholm and Capel (2014) 

showed that two commonly used methods of hydrograph separation produced SFI 

estimates that were significantly different; with one method resulting in an SFI of 42% 

(for the SC-based EMMA method) and the other a SFI estimate of 97% (for the BFI 

program method), highlighting the importance of a subjective and accurate method such 

as the ratio-EMMA.  The ratio-EMMA objectively produced accurate estimates of SFI in 

all of the tested scenarios, providing the ability to apply the ratio-EMMA in a wide 

variety of real world watersheds.   

 For the most part, the ratio-EMMA also estimated chemical concentrations with a 

high degree of accuracy.  Generally in the synthetic streams, the largest deviations of the 

estimated [A]FF and [B]FF compared to the actual occurred during lowflow conditions.  

During lowflow in the stream, when additions of water from fastflow sources are 

minimal, large fluctuations in [A]FF and/or [B]FF result in only slight changes in the 

concentrations of the chemicals in the stream.  The smaller the fastflow volume, the 

smaller the effect [A]FF and [B]FF will have on the stream concentration, making it more 

difficult for the ratio-EMMA to find the actual [A]FF and [B]FF during lowflow 

conditions.  Although this is an issue with the ratio-EMMA, variations in [A]FF and [B]FF 

during lowflow have less of an effect on the estimated QSF and QFF and, therefore, 

minimally affect the calculated SFI.  Estimation of [A]FF and [B]FF during lowflow still 

pose a challenge to the ratio-EMMA model, but is a minor issue when estimating 

QSF,QFF, or SFI.   

 The ratio-EMMA produced accurate estimates of total fastflow volume, SFI, and 

chemical concentrations and loads whether the minimum concentration of each chemical 

in fastflow occurred before, during, or after the streamflow peak.  In the seven different 
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scenarios tested in both of the synthetic streams, the largest percent error (although often 

still quite small) was generally produced by the ratio-EMMA when the concentrations of 

the two chemicals in the stream behaved in an opposite manner (tQmax=t[A]max=t[B]min).  

The estimates of chemical B load had the largest deviations in the groundwater 

dominated synthetic stream, while the estimates for the load of chemical A in both 

synthetic streams were very accurate.  It appears that chemical A loads were estimated 

more accurately in the groundwater dominated synthetic stream due to the greater 

difference between the minimum and maximum normalized concentrations (normalized 

against the highest concentration) of chemical A in the stream compared to those of 

chemical B.  The larger normalized difference between end-member chemical 

concentrations made it easier for the ratio-EMMA to produce accurate values for 

chemical A.   

 Because the ratio-EMMA was able to accurately estimate values from the 

synthetic streams, the results from the synthetic streams provide insight when applying 

the ratio-EMMA to real streams.  However there are still considerations that must be 

taken before the model is applied to any real stream.  A cursory evaluation of the stream 

data must be completed to determine if the ratio-EMMA is an appropriate model to use.  

The relationship between streamflow and the concentrations of each chemical in the 

stream should be monotonic and have a relatively large difference between the minimum 

and maximum concentrations.  If either of these criteria is violated the model will not be 

able to properly explain the mixture of fastflow and slowflow water in the stream 

(Christophersen et al., 1990).  As a result, care must be taken when interpreting the 

results.   

 4.2 Overall benefits of ratio-EMMA  

 The application of a ratio-EMMA can aid in the understanding of water and 

chemical movement from the landscape to a stream, eliminating the subjectivity of the 

choice of the fastflow end-member concentration and eliminating the assumption of a 

static fastflow end-member concentration, both of which are common to standard 

EMMA’s.  The model still assumes a constant concentration of the chemicals in 

slowflow, but over the short time periods tested, this assumption may not have introduced 
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substantial error.  For longer periods of time (e.g., annual), this assumption could 

introduce error as the slowflow end-member concentration fluctuates.  The elimination of 

this assumption will be a future challenge in the development of the ratio-EMMA 

method. 

The ratio-EMMA also provides estimated fastflow concentrations which are a 

representation of the aggregation of all fastflow contributions to the stream (direct 

rainfall, overland flow, etc.).  The aggregated fastflow concentrations are not easily 

obtained by field-based observations since these measurements are always spatially and 

temporally limited, expensive, time consuming, and uncertain because the data are a 

collection of point samples which must be volume, spatially, and temporally weighted. 

The model-produced aggregated concentrations of chemicals in fastflow might provide a 

better estimate than is generally available from field measurements.  Also, the ratio-

EMMA time-variable fastflow concentrations provide a more realistic portrayal of the 

natural system than is provided by the static fastflow concentration of a standard, non-

ratio based EMMA.    

The ratio-EMMA model is developed for any two chemicals that can be measured 

with continuous sensors and are minimally sorptive and minimally reactive.  Specific 

conductance fulfills these requirements. In some locations, but not all, nitrate may also 

fulfill these criteria. Nitrate is used in this work solely as an informative example.  As 

new sensors are developed and deployed for other chemicals that are better suited for an 

EMMA, the ratio-EMMA will be available to take advantage of the data.    

The ratio-EMMA can provide useful, time-varying estimates of slowflow and 

fastflow as well as the concentrations of selected chemicals in fastflow water. It can also 

serve as a check for other hydrograph separation models (standard-EMMA, graphical, 

etc.) for the sites where data are available.  This information has great value to water 

science and to watershed managers, and will allow for loads of chemicals to be traced 

from the stream back to their source from fastflow and slowflow with great accuracy and 

high temporal resolution.  This can help to determine appropriate management strategies 

for reducing the transport of those chemicals to the stream. 
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Table 3.1: Comparison of the actual and ratio-EMMA estimates of fastflow volume, slowflow index (SFI), and chemical A and B 

loads under various scenarios of the timing of peak streamflow relative to the minimum (or maximum) [A]FF and [B]FF.   

 
† Total fastflow over the 14 day period of record 

‡ Percent error between actual and estimated fastflow values over the 14 day period of record 

* SFI is the Slowflow index (Equation 5) 

# Difference between actual SFI and estimated SFI 

+ Some outliers removed.  Linear interpolation used to replace values. 

" Converted from specific conductance to total dissolved solids 

Fastflow 

(x10
6
 m

3
)
†

% 

Error
‡ SFI

*
 (%)

Difference 

in SFI
#
 (%)

% 

Error
‡

% 

Error
‡

Actual Fastflow 20.2 68.3

tQmax=t[A]min=t[B]min 20.3 0.2 68.3 0.0 3.4 3.6 6.8 170 185 8.9

tQmax>t[A]min=t[B]min 20.2 -0.3 68.4 0.1 4.1 3.9 -4.5 204 187 -8.0

tQmax<t[A]min=t[B]min 19.9 -1.4 68.8 0.5 7.9 5.9 -26 397 233 -41.3

tQmax=t[A]min>t[B]min
+ 20.2 1.5 66.2 -2.1 3.4 3.0 -11 204 172.5 -15.2

tQmax=t[A]min<t[B]min
+ 20.2 0.2 67.4 -0.9 3.4 3.5 3.3 397 405.9 2.2

t[A]min<tQmax<t[B]min
+ 20.4 0.8 67.7 -0.6 4.1 5.3 30 397 489.9 23.4

tQmax=t[A]max=t[B]min 22.2 9.0 65.2 -3.1 180 182 1.1 170 1252 637

Actual Fastflow 49.1 23.1

tQmax=t[A]min=t[B]min 48.8 -0.6 23.5 0.4 11 9.6 -17 574 425 -26

tQmax>t[A]min=t[B]min 48.5 -0.7 24.0 0.9 15 11 -28 749 423 -43

tQmax<t[A]min=t[B]min 48.2 -0.8 24.6 1.5 20 13 -34 982 458 -53

tQmax=t[A]min>t[B]min
+ 48.4 0.6 23.7 0.6 11 6.7 -42 749 377.2 -50

tQmax=t[A]min<t[B]min
+ 49.0 1.2 22.9 -0.2 11 11 -6.4 982 926 -5.7

t[A]min<tQmax<t[B]min
+ 49.4 0.7 22.6 -0.5 15 17 11 982 1105 13

tQmax=t[A]max=t[B]min 50.1 1.4 21.6 -1.5 449 450 0.2 574 1078 88

Groundwater dominated synthetic stream

Overland flow dominated synthetic stream

Chemical A load           

(x10
3
 kg)                         

Actual Estimated

Chemical B" load            

(x10
6
 kg)                            

Actual Estimated
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Figure 3.1: Ratio-EMMA logic flowchart for the selection of the time-variable fastflow 

concentrations of the chosen chemicals.  Q is water discharge (m
3
/s), [A] and [B] are the 

concentrations of chemical A (mg/L) and B (μS/cm), respectively.  Subscripts: S = 

stream; SF = slowflow; FF = fastflow; SF,A = estimate of slowflow obtained using 

chemical A; SF,B = estimate of slowflow obtained using chemical B.   
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Figure 3.2: An example of all possible values of [A]FF and [B]FF for a single time 

interval when running the ratio-EMMA model forward and in reverse.  The box encloses 

the values that are selected by the model as the estimated values for the time period.   
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(A)       (B)  

 
(C)         (D) 

 
Figure 3.3: (A) Streamflow hydrograph, estimated fastflow hydrographs using a standard nitrate-EMMA, a standard SC-EMMA, 

and ratio-EMMA, and percent fastflow (as a percent of total streamflow) for Chesterville Branch, MD.  (B) Actual ratio of [nitrate] 

to [SC] in the stream based on field measurements, and the ratio-EMMA estimated ratio of [nitrate]FF to [SC]FF, together with 

[nitrate]FF and [SC]FF. Similar figures are also shown for Indian Creek, KS (C and D).  Large spikes in fastflow ratio (as seen in B 

and D) were a result of the ratio-EMMA producing possible concentrations of both [A]FF and [B]FF that were highly varied, but the 

resulting range of ratios of [A]FF to [B]FF was very small.    
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(A) 

 
(B)  

 
Figure 3.4: Ratio-EMMA estimated slowflow, [A]FF, and [B]FF compared to actual 

values in the groundwater dominated synthetic stream where (A) the streamflow peak, 

minimum [A]FF, and minimum [B]FF occurred concurrently (tQmax=t[A]min=t[B]min) and 

when (B) the streamflow peak and the minimum [A]FF occur concurrently, but minimum 

[B]FF occurred 24 hours earlier (tQmax=t[A]min>t[B]min).  The slight fluctuations of estimated 

[A]FF and [B]FF for any given line are a result of the model needing to find a 

concentration of [A]FF and [B]FF that meet both necessary criteria (QSF:A = QSF:B and 

[A]FF/[B]FF between the defined range of ratios).  Other figures showing the other 

temporal scenarios of streamflow, [A]FF, and [B]FF minima can be seen in Appendix C.   
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(A) 

 
(B) 

  

Figure 3.5: Ratio-EMMA estimated slowflow, [A]FF, and [B]FF compared to actual 

values in the overland flow dominated synthetic stream where (A) the streamflow peak, 

minimum [A]FF, and minimum [B]FF occurred concurrently (tQmax=t[A]min=t[B]min) and 

when (B) the streamflow peak and the minimum [A]FF occur concurrently, but minimum 

[B]FF occurred 24 hours earlier (tQmax=t[A]min>t[B]min).  The slight fluctuations of estimated 

[A]FF and [B]FF for any given line are a result of the model needing to find a 

concentration of [A]FF and [B]FF that meet both necessary criteria (QSF:A = QSF:B and 

[A]FF/[B]FF between the defined range of ratios).  Other figures showing the other 

temporal scenarios of streamflow, [A]FF, and [B]FF minima can be seen in Appendix C.   
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(A) 

 
(B) 

 

Figure 3.6: Ratio-EMMA estimated slowflow, [A]FF, and [B]FF compared to known 

values in (A) the groundwater dominated synthetic stream and (B) the overland flow 

dominated stream when the streamflow peak, maximum [A]FF, and minimum [B]FF 

occurred concurrently (tQmax=t[A]max=t[B]min).  
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Chapter 4: A comparison of nitrate concentrations, loads, and yields in six streams 

in different hydrologic settings 

 

Abstract 

 

 Nitrate is a common contaminant in streams draining agricultural watersheds. The 

spatial magnitude and temporal variability of nitrate concentrations, loads, watershed 

yields, and loads as percent of nitrogen use (LAPU) were examined in six small, gaged 

streams in six different hydrologic settings. The sources of water to the six streams were 

determined based on hydrograph separation and prior knowledge of the hydrology, 

irrigation, and subsurface drainage. For two streams, overland flow was the most import 

source of water. Two others had substantial subsurface drainage in their watersheds, and 

two others had large groundwater contributions from aquifers that were contaminated 

with nitrate (~50% of total streamflow was from baseflow). The subsurface drain-fed 

streams had the highest concentrations of nitrate, and also had the greatest loads, 

watershed yields, and LAPUs. Streams where overland flow was the major water 

flowpath had the lowest concentrations, loads, and yields. The two groundwater-fed 

streams had intermediate nitrate concentrations that were inversely related to streamflow. 

The highest concentrations occurred during periods of low flow due to the high inputs 

from contaminated groundwater. For a single, typical storm even, high-resolution (15 

minute interval) nitrate concentration and streamflow were compared for three different 

streams draining agricultural watersheds which have substantial contributions of 

subsurface drain flow, overland flow, or groundwater flow. The maximum nitrate 

concentration preceded the maximum streamflow for the overland flow watershed.  The 

two maxima were concurrent in the subsurface drain watershed, but in the groundwater 

watershed, the peak nitrate was concurrent with the minimum streamflow. The observed 

differences in the nitrate concentrations, loads, and yields in the six watersheds are 

attributed, in part, to differences in the flowpaths of water to the stream, providing insight 

into the hydrologic process controlling the movement of nitrate.  
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 1. Introduction 

 Nitrogen fertilizers are used to provide an essential nutrient to agricultural crops, 

but not all of the supplied nitrogen is utilized by the plants.  Several studies (Bijeriego et 

al., 1979, Meisinger et al., 1985, Olson, 1980, Reddy and Reddy, 1993) have shown that 

when growing corn, for example, 43 to 76 percent of the applied nitrogen is not used by 

the plants during the first season after the fertilizer is applied. Some portion of the 

“surplus” nitrogen can be lost from the field through volatilization, runoff, or leaching. 

Nitrate is very mobile in the environment and is commonly a contaminant in streams and 

groundwater (Dubrovsky et al., 2010).  Streams that drain predominantly agricultural 

land have higher nitrogen concentration when compared to streams draining land 

dedicated to other uses (Dubrovsky and Hamilton, 2010).   

 Excess nitrate within agricultural streams can negatively impact the overall health 

of the stream ecosystem by reducing the number and variety of algae, macroinvertebrates, 

and fish growing within the stream (Dubrovsky and Hamilton, 2010).  Agriculturally 

applied nitrogen has also been identified as the key nutrient that supports the enlargement 

of the annual hypoxic region in the Gulf of Mexico (Ribaudoa et al., 2005); with a 

majority of that nitrogen coming from the Midwestern United States (Blann et al., 2009, 

Kladviko et al., 1991, Sauer et al., 2008).  The excess nitrogen promotes extensive algae 

growth which leads to hypoxia as the algae decompose.   

 Nitrate concentration within agricultural streams can vary over short time periods 

such as storm events, and over longer, seasonal periods.  Changes occur in response to 

past and current land management practices as well as physical, chemical, and (or) 

biological interactions between nitrogen and the surrounding environment (Poor and 

McDonnell, 2007 and Ruiz et al., 2002).  Land management can change the quantity, 

form, and timing of nitrogen entering the field, and can alter the way in which water and 

waterborne chemicals move across and through the soil.  Properties of the soil and soil 

environment, including biota, can also greatly alter the amount and species of nitrogen 

that are present in streams (Tesoriero et al., 2009).   

 The complex and interconnected system of routes (flowpaths) through which 

water moves regulates the movement of water and waterborne chemicals/nutrients from 
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the landscape to a stream (Green, 2007).  Flowpaths such as overland flow, subsurface 

drainage, and groundwater discharge all convey water and nitrate to streams at different 

rates and in different quantities.   The temporal nature of each flowpath determines how 

quickly nitrate will travel from the land surface to the stream and in what quantity.  The 

measured stream nitrate concentration is a combination of individual contributions of 

nitrate from each water flowpath (Cassell and Clausen, 1993).  Fluctuations in water 

contributions from a given flowpath has been observed in many studies and has been 

shown to dramatically alter nutrient concentration within a stream over the course of a 

year (Hooper et al., 1990, Molénat et al., 2002, Peters, 1994, Rice and Bricker, 1995, 

Ross et al., 1994). The current understanding of nitrate loads and concentrations is largely 

based on discrete water samples collected over many years.  In recent years, nitrate 

sensors with high temporal resolution (usually 15 to 60 minutes) have been developed 

and begun to be deployed to better define the changes in the time-variable nitrate 

concentrations and loads, and to better understand the processes that transport nitrate to 

and through the stream (USGS, 2013a).   

 The nitrate concentrations and loads observed in a stream are controlled, in part, 

by the hydrologic setting of the stream—the characteristic sources of water to that stream.  

Temporal nitrate concentration patterns and the magnitudes of concentrations, loads, 

watershed yields, and loads as a percent of nitrogen use (LAPU) were compared for six, 

small, well-studied streams in distinctly different, but common hydrologic settings. From 

previous studies, the flowpaths of water to the streams and the use of nitrogen fertilizer in 

the watersheds were known.  Streamflow and concentrations and loads of nitrate were 

also known. The hydrologic settings for the six streams were characterized as perennial 

overland flow-fed, ephemeral overland flow-fed, irrigation-derived groundwater-fed, 

natural groundwater-fed, subsurface drain-fed with a shallow subsurface confining layer, 

and subsurface drain-fed without a shallow subsurface confining layer. High-resolution 

(15 minute interval) nitrate concentration and streamflow were also compared in streams 

in three of the hydrologic settings for a single storm event. These comparisons of time-

variable nitrate concentrations in the stream, as a function of hydrologic setting, provide 
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insight into the controlling hydrologic processes and help set expectations for the changes 

of nitrate in the stream relative to changes in management practices in the watershed. 

 

 2. Methods 

 2.1 Characterization of water flowpath 

 The characteristic water flowpath to streams was used as the basis for analyzing 

variations in the magnitude and temporal patterns of nitrate concentration in six small, 

agricultural watersheds in different hydrologic settings (Table 4.1).  The hydrology of 

these watersheds has been previously characterized (Capel et al., 2008, Gronberg and 

Kratzer, 2006, Hancock and Brayton, 2006, Lathrop, 2006, McCarthy et al., 2012, Payne 

et al., 2007).  

 The characteristic flowpaths contributing water to the streams were determined by 

previous studies of the hydrology of the watersheds and by hydrograph separation based 

on daily streamflow using the US Bureau of Reclamation BFI program (Wahl and Wahl, 

1995, 2007).  Within the BFI program there are two variables—length of the time 

increment chosen to divide the water year and percentage of the increment minimum 

streamflow that is used in the determination of turning points (default value used). The 

time increment variable was selected as the value at which baseflow index (BFI) became 

nearly constant.  The six streams were characterized based on the streamflow, the 

calculated BFI, and knowledge of irrigation and(or) subsurface drainage practices in the 

watershed (Table 4.1).   

 2.2 Sampling and nitrate analysis 

 Streamflow was measured at a USGS gage (Table 4.1).  Water samples for nitrate 

analysis were collected over a period of 2 years. The sampling years varied among the 

watersheds.  Sampling, measurements, and analytical procedures were conducted 

according to U.S. Geological Survey standards (Capel et al., 2008, Shelton, 1994, Wilde 

et al., 1999).  Water samples were collected approximately bi-weekly during the growing 

season and less frequently during the non-growing months. Manual stream water samples 

were collected using an isokinetic, equal-width-increment, depth-integrated, cumulative 

method. All individual vertical samples were combined, homogenized, and sub-sampled. 
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Auto-samplers also were used to collect hourly or bi-hourly stream water samples in 

response to increased flow due to precipitation events at all of the sites except for the 

watersheds in Washington and California.  

 Samples for nitrate analysis were filtered in the field through a 0.45-μm Supor 

hydrophilic polyethersulfone membrane filter (Pall Corporation, Port Washington, NY).  

Samples were stored in clean plastic bottles, and shipped overnight on ice in insulated 

coolers to the laboratory for analysis (USGS, 2006). Nitrate concentration was calculated 

mathematically by subtracting nitrite concentration from the combined concentration of 

nitrate and nitrite (USEPA Parameter Codes 00613 and 00631). Concentrations of nitrite 

and combined nitrate and nitrite were measured using an Alpkem rapid flow analyzer (OI 

Analytical, College Station, TX).  

Nitrate concentration was assumed to be 0.0 mg N/L when the measured concentration 

was below the minimum analytical reporting limit.  Quality-control samples were 

collected in the field.  For every 20 water samples collected, one blank and one replicate 

were collected.  Blank samples were composed of deionized water that was known to not 

contain the analyte of interest above the minimum reporting limit of the analytical 

method. Additional quality control measures were taken in the laboratory where the water 

samples were analyzed (Capel et al., 2008). Additional details of sample collection and 

processing can be found in Capel et al. (2008).  

 2.3 Calculation of loads and yields 

 Calculation of annual measurements (mean and median streamflow, annual water 

discharge, annual baseflow discharge, annual water yield, mean and median nitrate 

concentration, annual stream nitrate load, and annual watershed yield) was based on a 

water year (October 1 through September 30). The software program LOADEST, which 

uses seasonally defined relationships between the discrete nitrate concentration and 

streamflow measurements (Runkel et al., 2004), was used for estimating nitrate loads for 

the streams (Morgan Creek, MD, South Fork Iowa River, Blairsburg, IA, Leary Weber 

Ditch, IN, and Tommie Bayou, MS). The LOADEST program could not be used with the 

ephemeral overland flow-fed stream (Mustang Creek, CA) or the irrigation-derived 

groundwater-fed stream (Granger Drain, WA). In the ephemeral Mustang Creek, 
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continuous streamflow was recorded at 10 minute intervals and discrete measurements of 

nitrate concentration were collected during the few streamflow events.  Linear 

interpolation was used to estimate nitrate concentration during the unmeasured periods.  

Total discharge during each 10 minute period was multiplied by the nitrate concentration 

during that time period to estimate the load during each 10 minute period.  Annual load 

was calculated as the sum of all 10 minute loads within a given water year.  In Granger 

Drain, linear interpolation was used to estimate daily nitrate concentrations between 

measured values. Loads were calculated in a similar manner as in Mustang Creek, with 

daily streamflow values used for calculations in Granger Drain. 

 The nitrate load in each of the streams was divided by the annual mass of nitrogen 

fertilizer that was used within the watershed and reported as the load as a percent of use 

(LAPU). There are definite limitations on the calculations and use of the LAPU value for 

comparative purposes.  To do this calculation, the load in the stream for each year was 

assumed to be a direct result of the fertilizer use for that year. Given that the nitrogen 

residence time in soil and groundwater can be much longer than one year, this 

assumption is violated in the six watersheds to varying degrees. Nevertheless, it is a 

useful comparison tool. 

 2.4 Measurement of continuous nitrate concentration 

 Continuous nitrate and streamflow data were obtained for three additional 

watersheds.  Two of these watersheds are the South Fork Iowa River, New Providence, 

IA (580 km
2
, USGS Site 05451210) and Bogue Phalia, Leland, MS (1,250 km

2
, USGS 

Site 07288650). The small watersheds in Iowa and Mississippi discussed earlier are sub-

basins of these larger watersheds.  The third watershed is the Chesterville Branch, 

Crumpton, MD (15.9 km2, USGS Site 01493112) which is an adjacent watershed to 

Morgan Creek, MD.  The data from these additional streams is used because the six 

streams mentioned previously do not have high-temporal resolution nitrate data available.  

The high-temporal resolution nitrate concentrations were measured with a YSI EXO 

(YSI, Yellow Springs, OH) in Maryland and Mississippi, and with a Hydrolab Series 5 

(Hach Hydromet, Loveland, CO) in Iowa.  The instruments were calibrated with 

standards. The data was quality assured by comparing the nitrate concentration in discrete 
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water samples with the sensor data. Only a single storm event is reported here, but longer 

records are available (USGS, 2013d). 

 

 3. Results   

 3.1 Overview of watershed characteristics 

 The hydrologic setting, watershed characteristics, nitrogen use, streamflow, and 

the concentrations, loads, and yields of nitrate are summarized for the six streams in 

Table 4.1.  The characteristic water flowpaths to the streams are characterized by the 

baseflow index (BFI) and prior knowledge of subsurface drainage (South Fork Iowa 

River, Blairsburg and Leary Weber Ditch) and irrigation (Granger Drain and Mustang 

Creek) in each watershed. The average BFI ranged from 14% for Tommie Bayou to 97% 

for Granger Drain and helped characterize the important flowpath to the stream (overland 

flow-fed and groundwater-fed, respectively).  The precipitation was near normal for both 

years in the six watersheds except for 2008 in South Fork Iowa River at Blairsburg, IA. 

In April-June of 2008, precipitation in Iowa was much greater than normal.  This caused 

flooding throughout much of Iowa including the South Fork Iowa River, Blairsburg 

watershed.  The transport of chemicals was much greater that year compared to years 

with normal precipitation (Hubbard et al., 2011).  Median streamflow ranged from <0.1 

to 1 m
3
/s, excluding the ephemeral Mustang Creek, which had no streamflow the 

majority of the days.   

 The nitrogen fertilizer application rate is the mass of nitrogen in fertilizer divided 

by the total area of the watershed, not the application rate on a cropped field.   These 

values are displayed in Table 4.1 along with the total mass of applied nitrogen.  

Application rates ranged by nearly a factor of 12, from 12 to 139 kg N/ha.  The watershed 

yields of nitrate ranged from 0.1 to 77 kg N/ha/yr for all watersheds (Table 4.1), and the 

LAPU values ranged from 0.1 to 93%.  

 There was a 35-fold difference between the highest and lowest median nitrate 

concentration in the six small streams.  The median annual concentration and distribution 

of nitrate concentrations is given in Figure 4.1 for each of the streams.  The two overland 

flow-fed streams had the lowest median concentrations and small distributions of 
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concentrations.  The two groundwater-fed streams generally had somewhat greater 

median concentrations and larger distributions. The subsurface-drain-fed streams had the 

greatest median concentrations and largest distributions of nitrate concentrations. 

Streamflow and nitrate concentrations for one year are shown in Figure 4.2.  Nitrate 

concentration as a function of streamflow is shown in Figure 4.3.  

 3.2 Overland flow-fed streams 

 The perennial Tommie Bayou, MS watershed is characterized as humid, but there 

is still a need for irrigation to provide adequate water to the crops during portions of the 

year. Much of the stream water within Tommie Bayou comes from runoff or overland 

flow as a result of precipitation, irrigation, or release of water from rice fields within the 

watershed (Table 4.1), as there is little connection between the stream and the shallow 

groundwater (McCarthy et al., 2012).  Median streamflow was less than 0.2 m
3
/s. The 

maximum streamflow was over 20 m
3
/s during the two study years.  Nitrate 

concentrations within Tommie Bayou were low when compared to the other streams.  

The maximum concentration during the two sampled years was 7.5 mg N/L with a 

median concentration of 0.38 mg N/L (Figure 4.1).  Nitrate concentrations within 

Tommie Bayou reached maximum levels during the last part of April, decreased through 

the summer months, and remained low through the winter months during both years 

(Figure 4.2A).  There was not a discernible trend in nitrate concentration relative to 

streamflow (Figure 4.3A). 

 The ephemeral Mustang Creek, CA watershed is naturally arid and requires 

irrigation to provide adequate water to the crops.  All of the water in Mustang Creek 

comes from runoff, overland flow from irrigation, or, infrequently, from precipitation.  

This results in the stream flowing just a few times each year (Gronberg and Kratzer, 

2006).  Streamflow was only >1.0 m
3
/s during the occasional storm flow peak.  In 

Mustang Creek, the nitrate concentration was quite low, similar to Tommie Bayou 

(Figure 4.1).  Due to the sporadic nature of flow within Mustang Creek, nitrate 

concentration in the stream came in the form of short duration pulses when the stream 

was flowing (Figure 4.2B). There was not a discernible trend in nitrate concentration 

relative to streamflow (Figure 4.3B). 
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 3.3 Subsurface drain-fed streams 

 The South Fork Iowa River, Blairsburg, IA watershed is characterized by 

moderate temperatures and rainfall that is often adequate to meet the requirements of the 

crops.  A substantial portion of the watershed is drained through subsurface drainage.  At 

a depth of 1-3 m below land surface, there is a clay confining layer throughout much of 

the watershed.  This prevents a majority of the soil water from reaching groundwater and 

limits the connection between the stream and the shallow groundwater (McCarthy et al., 

2012).  The drainage network efficiently moves excess soil water to the stream.  During 

periods of low flow in the stream, the water discharging from the subsurface drains can 

account for almost all streamflow (Thornburg, 2009), whereas water at higher flows 

comes from a combination of subsurface drainage, surface drain networks, and overland 

flow.  In 2008, which was an abnormally wet year, streamflow within the South Fork 

Iowa River, Blairsburg, IA reached a maximum of >15 m
3
/s—over three times greater 

than the maximum streamflow during the 2007 water year.  The South Fork Iowa River, 

Blairsburg, IA had the highest overall median concentration and range of nitrate 

concentrations of the six small streams (Figure 4.1).  The median concentration was 

about five times greater than the groundwater-fed streams and 16 times greater than the 

overland flow-fed streams.  The nitrate concentrations in the stream water remained 

elevated throughout the year (Figure 4.2C). The temporal pattern in nitrate concentration 

in the South Fork Iowa River, Blairsburg, IA saw an increase with increasing streamflow 

during the early spring through early summer, which was followed a rapid decrease in 

concentration during the late summer.  Before and after the growing season, the 

concentrations were less than during the growing season (Figure 4.2C).  Nitrate 

concentrations showed a general trend of increasing concentration with increasing 

streamflow, except at high flows (>1 m
3
/s), where the concentration decreased (Figure 

4.3C).  

 Leary Weber Ditch, Indiana is characterized by moderate temperatures and 

rainfall that is often adequate to meet the requirements of the crops.  Nearly the entire 

watershed is drained by a network of subsurface drainage.  During drier periods within 

the watershed, Leary Weber Ditch occasionally stopped flowing.  This occurred several 
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times during the study period, totaling 97 days without flow during 2003 and 49 days 

without flow during 2004.  Throughout the year, a majority of the streamflow is a result 

of subsurface drain discharge because there is very little input from overland flow or 

groundwater (Lathrop, 2006).  The stream is generally disconnected from the 

groundwater, although there are small sand lenses in the subsurface throughout the 

watershed. Median streamflow was <0.1 m
3
/s with maximum flows slightly >3.0 m

3
/s.  

Median nitrate concentration in Leary Weber Ditch was elevated, second only to the 

other subsurface drain-fed stream (South Fork Iowa River, Blairsburg, IA).  During both 

years, nitrate concentration peaked in early to mid-June (one higher concentration 

recorded in July 2003) and decreased over the remainder of the water year (Figure 4.2D).  

However, very few concentrations were recorded outside of the growing season.  Nitrate 

concentration showed a weak to moderate positive relationship with streamflow (Figure 

4.3D).   

 3.4 Groundwater-fed streams where groundwater is contaminated with 

nitrate 

 The Morgan Creek, MD watershed receives enough rain so that most farmers do 

not use irrigation.  During much of the year a majority of the streamflow in Morgan 

Creek is from groundwater.  About 51% of the annual streamflow was due to fastflow 

processes such as overland flow, in response to precipitation (Hancock and Brayton, 

2006).  In 2003, maximum streamflow was 6.0 m
3
/s, but streamflow was <0.5 m

3
/s for 

about 300 days during that water year. The magnitude and distribution of nitrate 

concentration in Morgan Creek was less than the subsurface drain-fed streams, but 

greater than the overland flow-fed streams (Figure 4.1).  Groundwater underlying the 

Morgan Creek watershed is generally oxic.  The stream had nitrate concentrations that 

were high during low-flow periods (from contaminated groundwater inputs) and 

decreased with increasing flow (Figure 4.3E).  This trend was stronger in 2004 (R
2
 = 

0.72) than in 2003 (R
2
 = 0.26, Figure 4.3E). 

 The Granger Drain, WA watershed requires irrigation to provide adequate water 

to the crops. Abundant irrigation water comes from snowmelt runoff channeled to the 

watershed. The long-term use of abundant irrigation water has increased the level of the 
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water table within the watershed.  Engineered surface ditches, such as Granger Drain, 

keep the level of the shallow water table from rising to the soil surface (Payne et al., 

2007). Throughout the non-irrigation season, streamflow within Granger Drain is a result 

of the ditch (stream) intercepting the water table.  During the irrigation season, increased 

streamflow came from irrigation water that went unutilized by the crops, which flowed 

overland or travelled in the shallow groundwater to the stream.  Streamflow was 

relatively constant, but substantially different in the irrigation season (1.4 + 0.2 m
3
/s) 

compared to the non-irrigation season (0.6 + 0.1 m
3
/s).  Annual median nitrate 

concentrations were also relatively constant, but substantially different in the irrigation 

season (2.5 mg/L as N) compared to the non-irrigation season (6.6 mg/L as N).  The 

temporal patterns of streamflow and nitrate concentration approximated the form of two 

opposite square waves (Figure 4.2F).  During both years the nitrate concentration in the 

stream was high during the fall and winter (non-irrigation season, low flow period) 

resulting from older (>1 year), generally oxic groundwater with high nitrate 

concentrations.  The stream nitrate concentration declined rapidly during the spring and 

was constant during the spring and summer as the irrigation water increased overall 

streamflow and diluted the groundwater.  There was a very strong inverse relationship 

between stream nitrate concentration and streamflow (Figure 4.3F). 

 3.5 Summary of nitrate loads in the streams 

 Daily estimates of nitrate load were summed to equal annual loads (Table 4.1).  

Annual loads of nitrate in the streams were highly tied to watershed area, which made 

useful comparisons regarding flowpath difficult between watersheds.  As a result, the 

cumulative percent of daily nitrate load and stream volume are presented as a function of 

sorted streamflow (Figure 4.4).  Cumulative load plots show the percent of annual nitrate 

load that occurred under various streamflow conditions, and relate the load in the stream 

to the important flowpaths which transport nitrate.  These figures will be discussed in 

greater detail in the Discussion section. 

 3.6 Continuous nitrate concentrations in the streams 

 Nitrate concentration and streamflow collected at 15 minute intervals over single 

storm events in three watersheds are plotted in Figure 4.5.  Each watershed where 15-
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minute data were collected is closely related (spatially and hydrologically) to previously 

mentioned watersheds.  The natural groundwater-fed Morgan Creek is adjacent to, and is 

about twice as large as the Chesterville Branch.  The perennial overland flow-fed 

Tommie Bayou is a sub-basin, comprising 1.2% of the Bogue Phalia watershed. The 

subsurface drain-fed South Fork Iowa River, Blairsburg is a sub-basin, comprising 5.4% 

of South Fork Iowa River, New Providence watershed. The same flowpaths are important 

in each of the related watersheds. 

 In the Bogue Phalia, MS (Figure 4.5A), the increase in streamflow is from a 2-day 

rain that occurred three days before the peak of streamflow.  The nitrate concentration 

increased abruptly with an increase in streamflow and reached a maximum concentration 

before peak streamflow.  In the South Fork Iowa River, New Providence, IA (Figure 

4.5B), the increase in streamflow is from rain that started two days prior to the peak of 

streamflow.  Much of the water moved off of the landscape within a few days, but some 

water took more than a week to get to the stream through the network of surface and 

subsurface drains.  The nitrate concentration decreased with the initial increase in 

streamflow, then increased and peaked one day after the streamflow peak, and finally 

declined but at a slower rate than the decline in streamflow.  In the Chesterville Branch, 

MD (Figure 4.5C), the increase in streamflow is from rain that occurred the day of the 

peak of streamflow. Streamflow prior to and after the peak is baseflow from groundwater 

which is contaminated with nitrate (Böhlke and Denver, 1995).  The nitrate concentration 

decreased with an increase in streamflow and reached a minimum concentration just after 

peak streamflow, then increased again as the streamflow decreased.  

 

 4. Discussion  

 4.1 Comparisons among the six watersheds 

  The concentration of nitrate in a small stream draining an agricultural watershed 

is influenced by many factors.  The fraction of total nitrogen in soil which exists as 

nitrate is the balance between its formation (nitrification) and loss (denitrification and 

uptake). The nitrate in the soil that comes in contact with moving water is generally the 

major source to streams and groundwater.  Olarewaju et al. (2009) showed that most of 
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the soil nitrate is in the upper 0.45m of the soil column. Water that moves only across the 

surface comes in less contact with the soil compared to water which infiltrates the soil 

and moves downward.  Domagalski et al. (2008) and Wang and Zhu (2011) have shown 

that the movement of nitrate from the landscape to the stream is small where overland 

flow is the major water flowpath.  Infiltrated water can move through the soil column and 

recharge the groundwater or, if subsurface drainage is present, water can move to the 

drain and discharge to the stream.  Subsurface drains are purposed to remove excess 

water from the soil and control the level of the water table.  Dubrovsky et al. (2010) and 

others have shown that streams fed by subsurface drains generally have higher 

concentrations of nitrate than streams without subsurface drainage.  Puckett et al. (2008) 

discussed that nitrate contaminated, oxic, shallow groundwater can be a very long-term 

source of nitrate to streams.  However, if the groundwater is anoxic, then a portion of the 

nitrate is removed through denitrification.  These differences in hydrologies produce the 

variability in nitrate concentrations, loads, and yields that were observed.   

 The water flowpaths, streamflow, nitrate concentrations, and nitrogen fertilizer 

inputs are known for the six streams in different hydrologic settings.  These data and 

characterizations of the hydrologies provide the opportunity to compare and contrast the 

concentrations, loads, and yields of nitrate and provide insight into the important 

processes for water and nitrate movement. 

 The comparison of the six streams and their watersheds can be summarized as: 

 

 Nitrogen use:   OF(p) ~ SD(w/o cl) < OF(e) < SD(cl) ~ GW(n) < GW(i) 

 Median streamflow:        OF(e) ~ SD(w/o cl) < OF(p) < SD(cl) < GW(n) < GW(i)  

 Annual water discharge: OF(e) < SD(w/o cl) < OF(p) < SD(cl) ~ GW(n) < GW(i) 

 Median nitrate concentration: OF(p) < OF(e) < GW(n) < GW(i) << SD(w/o cl) < SD(cl) 

 Nitrate load:   OF(e) < OF(p) < SD(w/o cl) < GW(n) < GW(i) << SD(cl) 

 Nitrate yield:    OF(e) < OF(p) <  GW(i) < GW(n) < SD(w/o cl) << SD(cl) 

 Nitrate LAPU:   OF(e) < GW(i) < GW(n) < OF(p) < SD(w/o cl) < SD(cl) 
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where OF(e) is the ephemeral overland flow-fed stream (Mustang Creek, based on data 

collected in water year 2004), OF(p) is the perennial overland flow-fed stream (Tommie 

Bayou, 2008), GW(i) is the irrigated groundwater-fed stream (Granger Drain, 2003), 

GW(n) is the natural groundwater-fed stream (Morgan Creek, 2003), SD(cl) is the 

subsurface drain-fed stream whose watershed is underlain by a shallow confining layer 

(South Fork Iowa River, Blairsburg, 2007), and SD(w/o cl) is the subsurface drain-fed 

stream whose watershed is not underlain by a shallow confining layer (Leary-Weber 

Ditch, 2003).  LAPU is the load of nitrate as a percentage of annual nitrate fertilizer use.    

 The first three comparisons (nitrogen use, median streamflow, and annual water 

discharge) are descriptors of the streams that are largely based on the physical (area, 

amount of precipitation and(or) irrigation) and agricultural (nitrogen) characteristics of 

the watersheds. As would be expected, the order in the comparison above for the physical 

and agricultural characteristics does not have a relation to water flowpath.  Nitrate 

concentration and nitrate yield from the watershed, on the other hand, are grouped 

according to flowpath. 

 4.2 Overland flow-fed streams 

 The variability in the magnitude of nitrate concentration was considerable among 

these six streams in the different hydrologic settings.  The lowest median concentrations 

and smallest concentration distributions were found in the overland flow-fed streams 

(Figure 4.1).  Measured concentrations varied randomly through the year within these 

streams and showed no relation to streamflow (Figures 4.2 and 4.3).  The temporal 

patterns of nitrate concentration observed in the two overland flow-fed streams were also 

much more episodic compared to the other streams.   

 The relations between nitrate concentration and streamflow differed greatly 

among the six watersheds (Figure 4.3).  Nitrate concentrations in the overland flow-fed 

streams were quite low at high or low flow, but very briefly spiked with increases in 

streamflow.  This led to essentially no relation between nitrate concentration and 

streamflow for the two overland flow-fed streams.  The episodic nature of rainfall, 

increased streamflow, and nitrogen application in these watersheds likely contributed to 

this lack of relation.  Vidon et al. (2012) also found very little relationship between 
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streamflow and nitrate concentration in a stream within a watershed in which overland 

flow was an important flowpath.   

 The smallest annual nitrate loads were in the overland flow-fed streams.  In the 

perennial Tommie Bayou, the annual load was 7,000 kg N/yr, whereas loads in the 

ephemeral Mustang Creek were only 230 kg N/yr.  Much of the nitrate load in the 

overland flow-fed streams travelled during or immediately after highflow events.  Almost 

80% of the annual load in Mustang Creek occurred during one large rain event.  Other 

times of the year had little or no nitrate moving to the stream.  In Tommie Bayou, the 

percent of the cumulative load (Figure 4.4A) increased in a relatively even fashion across 

nearly all streamflow conditions due to the comparatively consistent nitrate 

concentration.  Even so, only ~12% of the total annual load was transported under 

baseflow conditions. 

 The ephemeral, overland flow-fed Mustang Creek had the lowest nitrate yield and 

the perennial, overland flow-fed Tommie Bayou had the second lowest yield.  Low yields 

from these overland flow dominated watersheds were likely a result of the minimal 

interactions between the run-off water and the soil, thus preventing extensive subsurface 

nitrate movement to the streams.     

 The perennial, overland flow-fed Tommie Bayou had a high LAPU of 36% in 

2008 (Table 4.1), partially explained by the relatively small amount of nitrogen fertilizer 

applied compared to the other watersheds.  The LAPU in Mustang Creek was very small 

(0.1%) which would be expected given the lack of flow to, and in the stream.  

 Figure 4.5 illustrates the substantial differences in the nitrate concentration 

responses for a single storm event for the three larger streams examined. Although each 

stream and each event are different, important generalities can be observed (particularly 

with this high-temporal resolution data) that provide insight into the important processes 

controlling the rate and amount of water and nitrate which move to the stream after a rain 

event.  The continuous nitrate concentrations in Bogue Phalia, the large, overland flow-

fed Mississippi stream, had an abrupt increase and rapid decrease in nitrate concentration 

preceding the increase in streamflow (Figure 4.5), suggesting that a small mass of nitrate 

on the soil surface is readily available for transport to the stream.  As the runoff water 
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moves over the land surface and through the shallow soil, the available nitrate in this 

surface layer is quickly transported to the stream.  The later, smaller nitrate peak suggests 

that there are additional flowpaths which transport nitrate to the stream more slowly. 

 4.3 Subsurface drain-fed streams 

 By far, the subsurface drain-fed streams had the highest concentrations and largest 

range of concentrations (Figure 4.1).  The rapid movement of water through the soil to 

the drains and then to the stream allowed for ample interaction between the water and 

soil, but little time for denitrification to occur (Green et al., 2008).  The concentration of 

nitrate remained elevated (usually >5 mg N/L) throughout most of the year and through 

all flow conditions in the subsurface drain-fed streams.  Nitrate concentration decreased 

rapidly between the months of June and September in both streams.  This was a result of 

a higher percentage of the water in the drains coming from the nitrate depleted deeper 

soils beneath the drains due to less water percolating vertically to the drains (Smith and 

Kellman, 2011), as well as plant uptake of nitrate (Tufekcioglu et al., 2003) in the upper 

soil layers.   

 The subsurface drain-fed streams had a general inverted "U-shaped" relationship 

between streamflow and nitrate concentration (Figure 4.3).  Low nitrate concentrations 

occurred at low flows, largely during the fall and winter months. The highest nitrate 

concentrations occurred at intermediate streamflows.  At the high streamflows the nitrate 

concentrations generally decreased, suggesting that the reservoir of nitrate stored in the 

soil was being washed-out during the large rainfall events (Thornburg, 2009) or the 

volume of low nitrate precipitation and overland flow was great enough to decrease the 

concentration in the stream. 

 The subsurface drain-fed South Fork Iowa River, Blairsburg, Iowa had the 

greatest loads of the six small watersheds.  The Leary Weber Ditch had loads that were 

an order of magnitude smaller than the Iowa stream, but Leary Weber Ditch was the 

smallest watershed examined.  When examining the cumulative load plots for the 

subsurface drain-fed streams, the steep slope between 20 and 80% of the cumulative load 

illustrates that most of the annual load in the streams occurred during intermediate 

streamflow conditions.  The leveling off of the plot at the highest streamflows suggests 
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that the very high flow events were less important.  About 50 and 8% of the total annual 

nitrate load was transported under BFI-calculated baseflow conditions in the South Fork 

Iowa River, Blairsburg and Leary Weber Ditch, respectively.   

 The average watershed yields, just as with concentrations, from the subsurface 

drain-fed streams were the highest yields among the six watersheds.  These yields were 

substantially greater compared to the other watersheds (Table 4.1). The movement of 

water through the nitrate rich layer of top soil, in concert with the efficient removal of 

water from the landscape via surface and subsurface drains enhances the transport of 

nitrate to the stream.   

 The calculated LAPUs for the subsurface drain-fed watersheds were extremely 

high.  In the South Fork Iowa River, Blairsburg during 2007, a year which the rainfall 

was close to normal, the LAPU was calculated as 66%, meaning the equivalent of 66% of 

the applied nitrogen fertilizer moved out of the watershed through the stream.  In 2008 

within the South Fork Iowa River, Blairsburg, a year of unusually heavy rainfall 

throughout the spring and early summer, the calculated LAPU was extremely high at 

93%.  The 2008 LAPU likely has a contribution from the nitrogen applied in 2008 and 

contributions from nitrogen used in previous years that was flushed from the soil through 

the drainage network with the large volume of water from precipitation. Thornburg 

(2009) found that the concentration in water discharging from the drains after these large 

rains was consistently depleted in nitrogen suggesting that large masses of nitrate had 

been removed during times of elevated drain flow.   

 In the large, subsurface drain-fed South Fork Iowa River, New Providence, the 

peak in nitrate concentration coincided with the peak in streamflow.  The recession of 

streamflow and nitrate concentration after the peak had long, slowly decreasing tails 

compared to the overland flow-fed and groundwater-fed streams (Figure 4.5), but there 

was not a second peak in nitrate concentration as there was in the overland flow-fed 

Bogue Phalia, MS. In the South Fork Iowa River, New Providence basin, water moves 

through a combination of subsurface drain flow, overland flow, and to a lesser extent, 

groundwater.  Both types of flowpaths transport water and nitrate quickly to the stream. 

The combination of these two flowpaths exposes the nitrate at the soil surface and the 
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nitrate in the shallow soil column (above the depth of the drain) to the moving water.  

Water that infiltrates into the soil is engineered to drain quickly through the subsurface 

drain network.  The soils nearest the drains lose their water quickly to the subsurface 

network.  Water from soils progressively further from the subsurface drain network is 

removed from the soil over longer periods of time. This is reflected in the long-tail 

recession curves for both nitrate and water.  Consistent with the observations over two 

years in the smaller subsurface drain-fed streams, South Fork Iowa River, New 

Providence, IA had high nitrate concentrations. 

 4.4 Groundwater fed-streams where groundwater is contaminated with 

nitrate 

 The two groundwater-fed streams had similar distributions of nitrate 

concentration.  The highest concentrations at both sites were during periods of low-flow 

where the nitrate-contaminated groundwater comprised all or most of the flow.  Since the 

nitrate concentration in these streams is a reflection of the nitrate concentration in 

groundwater, the variability in median annual concentration among groundwater-fed 

stream is expected to be large.  Where the nitrate concentration in groundwater is 

relatively low (either not contaminated or with denitrifying conditions), the 

concentrations of nitrate in the stream is expected to be systematically low. Where the 

nitrate concentration in groundwater is relatively high (contaminated and oxic 

conditions), the concentrations of nitrate in the stream is expected to be systematically 

high.  However, if substantial denitrification is occurring at the groundwater-surface 

water interface, it is possible to have a stream with low nitrate concentration at low flows, 

even if the groundwater has a high nitrate concentration (Bachman et al., 2002 and 

Böhlke and Denver, 1995).  

 The two groundwater-fed streams generally had lower nitrate concentrations with 

higher streamflow.  The strong inverse relation between nitrate concentration and 

streamflow in Morgan Creek, MD (in 2004) and Granger Drain (in 2003 and 2004) had 

an R
2
 > 0.7.  This relation is quite striking in Granger Drain where the data from the 

irrigated season forms a distinct cluster away from the non-irrigated season.  The two 

distinct data clusters in Granger Drain may artificially increase the R
2
 value, but the 



85 
 

relationship is strong nonetheless.  In both cases, the highest stream concentrations were 

during low flow periods when the high-nitrate groundwater discharging to the stream 

comprised a very large fraction of streamflow. Water entering the streams at higher flows 

had less nitrate and acted to dilute the nitrate in the stream from groundwater. 

 The two groundwater-fed streams had intermediate annual nitrate loads, compared 

to the other streams.  The slope of the cumulative load curve for Morgan Creek became 

almost linear above the baseflow line (Figure 4.4E), which straddles the transition from 

the BFI-calculated baseflow to non-baseflow (0.6 m
3
/s).  This is in agreement with the 

conclusions reached from the concentration data; there are distinct differences in nitrate 

transport to the stream by overland flow compared to groundwater.  The relation between 

percent cumulative load and sorted discharge is quite different in Granger Drain 

compared to the other streams. The plot for Granger Drain shows the very different water 

and nitrate movement during the irrigation and non-irrigation seasons (Figure 4.4F).  

When the BFI program calculated value for baseflow is used, the total annual nitrate load 

transported under baseflow conditions is estimated to be ~100%, but also assumes that 

98% of the annual discharge in from baseflow.  The cumulative load figure suggests that 

during the non-irrigation season (streamflows <~1.0 m
3
/s) approximately 28% of the 

annual water discharge occurred, but roughly 52% of the annual nitrate load was carried 

in the stream.  If the groundwater nitrate concentration and discharge to the stream during 

the non-irrigation season are assumed to be constant throughout the entire year, then the 

excess irrigation water that travels to the stream during the irrigation season must have a 

very small nitrate load.  McCarthy and Johnson (2009) used an inverse end-member 

mixing model to estimate the concentration of nitrate in the excess irrigation water in the 

DR2 Drain (a sub-basin of Granger Drain).  Their estimate suggests that the 

concentration of nitrate in the excess irrigation water was about 70% lower than the 

groundwater nitrate concentration, which could lead to small nitrate loads in the excess 

irrigation water.    

 The two groundwater-fed streams had intermediate annual nitrate yields, 

compared to the other streams.  The irrigated, groundwater-fed Granger Drain had a 

similar nitrate yield to the overland flow-fed Tommie Bayou, but lower than might be 
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expected from the concentration data.  Although the median nitrate concentration in 

Granger Drain was higher than in Tommie Bayou, the average water yield from Granger 

Drain was three times less than from Tommie Bayou, resulting in much less water per 

hectare for transporting nitrate to Granger Drain.  The natural, groundwater-fed Morgan 

Creek watershed had nitrate and water yields that were about double that of the irrigated, 

groundwater-fed Granger Drain partially due to greater annual precipitation on the 

Morgan Creek watershed.  The high water yield from Morgan Creek, coupled with the 

slow rate of denitrification in the groundwater within the watershed (Green et al., 2008) 

has allowed the accumulation of nitrate in groundwater, which is constantly delivered to 

the stream throughout the year in baseflow. 

 In the natural groundwater-fed Morgan Creek, where the stream nitrate 

concentration is sustained by contaminated groundwater, the calculated annual LAPUs 

were 12 and 17%.  However, some of the nitrate load observed in Morgan Creek was 

from nitrogen that was applied during previous years. The travel times of water from 

rainfall on the landscape to baseflow discharge in the stream range from months to years 

to decades (Sanford and Pope, 2013).  The high concentrations of nitrate observed in the 

stream during baseflow were from nitrogen that was applied years to decades ago.  This 

would give an overestimation of these LAPUs, which are based on only nitrogen use 

during the study years.   

 The high resolution streamflow and nitrate concentration data for the Chesterville 

Branch, MD stream (natural groundwater-fed) produced a very different nitrate response 

to a storm event than the two other watersheds with continuous data.  Streamflow prior to 

and after the peak is a result of baseflow from groundwater.  The nitrate concentration 

was highest when the stream was comprised largely of baseflow as a result of the nitrate-

contaminated, oxic groundwater (Böhlke and Denver, 1995).  After the onset of the 

precipitation event, the nitrate concentration in the stream decreased with the increase in 

streamflow, reached a minimum concentration just after peak streamflow, then increased 

again as the streamflow decreased. The increased flow in the stream was a result of water 

that had quickly found its way to the stream after the rainfall. Because the storm water 
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was moved very quickly off of the landscape in this watershed (Figure 4.5C), it contained 

relatively little nitrate, thus diluting the nitrate in the stream.   

 5. Conclusions 

 The magnitude and temporal patterns of nitrate concentrations, loads, and 

watershed yields varied widely for the six streams, and their watersheds. The streams, 

located in six different hydrologic settings, showed very different responses of nitrate. 

The high-temporal resolution streamflow and nitrate concentration data over a single 

storm event showed the very different nitrate responses in larger streams in three of the 

hydrologic settings. Based on these characteristic streams examined here, subsurface 

drain-fed streams could be expected to have the highest concentrations, largest 

distribution of concentrations, and highest nitrate loads when comparing similar sized 

watersheds.  These watersheds will probably also have the greatest yields of nitrate. 

Streams where overland flow is the major water flowpath could be expected to receive 

less nitrate from the watershed, and generally have lower concentrations, loads, and 

watershed yields of nitrate. Groundwater-fed streams, depending on the degree of 

contamination of the groundwater, could have widely varying concentrations, loads, and 

yields. The two groundwater-fed streams included in this study had the highest stream 

nitrate concentrations during periods of low flow because both aquifers were 

contaminated with nitrate. The observed differences in nitrate between these watersheds 

are attributed, in part, to differences in flowpaths of water to the stream, which provides 

insight into the hydrologic process controlling the movement of nitrate. 
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Table 4.1: Watershed information with annual water and nitrate concentration, load, and yield data for six agricultural streams 

during the sampled years.  Included are data for three additional streams with high temporal resolution streamflow and 

concentration data.  The table was split into two sections to decrease overall table width.    

 
# South Fork Iowa River northeast of New Providence, IA  + South Fork Iowa River near Blairsburg, IA   

“ Calendar year used for nitrate load calculation    1 McCarthy et al. (2012)      

2 Gronberg and Kratzer (2006)     3 Lathrop (2006)       

4 Hancock and Brayton (2006)     5 Payne et al. (2007)

State                 

(USGS Site ID) Study area

Watershed 

area (km
2
) Hydrologic setting Water year

Percent in 

agriculture

Precipitation 

(cm)

Nitrogen 

fertilizer use 

(kg N)

Nitrogen 

fertilizer 

application 

rate (kg N/ha)

Mississippi Tommie Bayou1 15.3 2007" 86 130 28,243 18

(07288636) Tommie Bayou1 2008" 86 145 18,440 12

California Mustang Creek2 17.5 2003 97 No data 209,078 120

(373112120382901) Mustang Creek2 2004 97 27 209,078 120

Iowa SFIR, BB+1 31.1 2007 96 114 264,000 85

(05451080) SFIR, BB+1 2008 96 124 229,000 74

Indiana Leary Weber Ditch3 7.23 2003" 93 133 48,000 66

(03361638) Leary Weber Ditch3 2004 93 124 48,000 66

Maryland Morgan Creek4 32.9 2003 85 162 265,000 81

(01493500) Morgan Creek4 2004 85 100 226,000 69

Washington Granger Drain5 161 2003 96 No data 2,248,110 140

(12505450) Granger Drain5 2004 96 22 2,248,110 140

Mississippi 

(07288650)
Bogue Phalia1 1250

Overland flow 

(perennial)

Iowa             

(05451210)
SFIR, NP#1 580

Subsurface drainage 

(Wo/confining layer)

Maryland        

(01493112)
Chesterville Branch 15.9 Groundwater (natural)

Study area

Mean streamflow 

(m
3
/s)

Median 

streamflow 

(m
3
/s)

Annual water 

discharge (m
3
/yr)

Annual 

baseflow 

discharge 

(m
3
/yr)

Percent of 

annual 

discharge from 

baseflow (%)

Annual 

water yield 

(m
3
/ha/yr)

Mean 

concentration 

(mg N/L)

Median 

concentration 

(mg N/L)

# of 

samples

Annual 

stream load 

(kg N)

Nitrate load 

as a 

percentage of 

fertilizer use 

(LAPU)

Annual 

watershed 

yield (kg 

N/ha/yr)

Tommie Bayou1 0.2 0.1 6,654,120 998,118 15 4,340 1.2 0.52 14 No data No data No data

Tommie Bayou1 0.4 0.1 13,644,870 1,773,833 13 8,900 0.6 0.35 39 6,600 36 4.3

Mustang Creek2 < 0.1 < 0.1 29,835 No data No data 17 0.7 0.67 3.0 No data No data No data

Mustang Creek2 < 0.1 < 0.1 200,371 No data No data 114 1.6 1.7 6.0 230 0.11 0.13

SFIR, BB+1 0.5 0.2 15,252,466 6,939,872 46 4,910 14.9 14 35 240,000 66 77

SFIR, BB+1 0.6 0.2 18,430,626 8,699,255 47 5,930 10.5 11 18 213,000 93 68

Leary Weber Ditch3 0.1 < 0.1 3,670,000 367,000 10 5,080 7.6 7.8 16 25,000 53 35

Leary Weber Ditch3 0.1 < 0.1 2,700,000 604,000 22 3,730 4.7 4.5 23 11,000 24 16

Morgan Creek4 0.5 0.3 16,409,885 6,875,742 42 4,990 2.1 2.1 27 32,000 12 10

Morgan Creek4 0.5 0.3 14,238,881 8,059,206 57 4,330 2.5 2.5 22 39,000 17 12

Granger Drain5 1.0 1.0 30,587,087 29,210,669 96 1,910 3.5 2.4 22 100,000 4.4 6.2

Granger Drain5 1.0 1.0 31,091,082 30,375,987 98 1,940 3.5 2.7 22 No data No data No data

Bogue Phalia1 21

SFIR, NP#1 5.2

Chesterville Branch 0.21

Watershed information

Groundwater (natural)

Groundwater (irrigated)

Concentration Load and Yield

Overland flow 

(perennial)

Overland flow 

(ephemeral)

Subsurface drainage 

(w/confining layer)

Subsurface drainage 

(wo/confining layer)

Water
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Figure 4.1: Boxplots of two years of nitrate concentrations in stream water for the six 

watersheds. Black bars to the right of boxplots represent annual nitrate yield from the 

watershed.  Outliers were removed and were defined as data points greater than 1.5 times 

the inter quartile range above the 75th percentile or data points less than 1.5 times the 

inter quartile range below the 25th percentile.  SFIR BB, IA is South Fork Iowa River, 

Blairsburg, IA
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(A) Perennial, overland flow-fed   (B) Ephemeral, overland flow-fed 

      Tommie Bayou, MS          Mustang Creek, CA 

 
(C) Subsurface drain-fed        (D) Subsurface drain-fed 

       South Fork Iowa River, Blairsburg, IA         Leary Weber Ditch, IN        

  
(E) Natural groundwater-fed    (F) Irrigated groundwater-fed    

      Morgan Creek, MD          Granger Drain, WA   

  
          

Figure 4.2: Nitrate concentration and streamflow through the 2003 or 2007 water year 

(2004 in Mustang Creek, CA and 2008 in Tommie Bayou, MS).  Day 0 corresponds to 

October 1, which is the first day of the water year.  Note the differences in Y-axis scales.  
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(A) Perennial, overland flow-fed   (B) Ephemeral, overland flow-fed 

       Tommie Bayou, MS            Mustang Creek, CA 

 
(C) Subsurface drain-fed         (D) Subsurface drain-fed 

      South Fork Iowa River, Blairsburg, IA              Leary Weber Ditch, IN 

  
(E) Natural groundwater-fed     (F) Irrigated, groundwater-fed 

      Morgan Creek, MD           Granger Drain, WA   

 
 

Figure 4.3: Relationship between nitrate concentration and streamflow through the 2003 

or 2007 water year (2004 in Mustang Creek, CA and 2008 in Tommie Bayou, MS).  Note 

the differences in X-axis and Y-axis scales. 
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(A) Perennial, overland flow-fed   (B) Ephemeral, overland flow-fed 

      Tommie Bayou, MS           Mustang Creek, CA 

 
(C) Subsurface drainage-fed    (D) Subsurface drain-fed 

      South Fork Iowa River, Blairsburg, IA        Leary Weber Ditch, IN        

  
(E) Natural groundwater-fed     (F) Irrigated, groundwater-fed 

      Morgan Creek, MD          Granger Drain, WA        

 
 

Figure 4.4: Cumulative load of nitrate in relation to streamflow through the 2003 or 2007 

water year (2008 in Tommie Bayou, MS).  The horizontal line represents the percentage 

of total annual streamflow that is from baseflow.  The intersection of the horizontal 

baseflow line and the cumulative load curve is the transition from baseflow to non-

baseflow as the source nitrate and water to the stream.  Mustang Creek was excluded 

because streamflow occurred on a small number of days, such that a calculation of 

cumulative load was not appropriate. 
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(A) Perennial, overland flow-fed Bogue Phalia, MS 

 
(B) Subsurface drainage-fed South Fork Iowa River, New Providence, IA 

 
(C) Natural groundwater-fed Chesterville Branch, MD 

 
Figure 4.5:  Nitrate concentration and streamflow for a single storm event in the three 

larger streams. The perennial overland flow-fed Tommie Bayou is a tributary to Bogue 

Phalia, the subsurface drain-fed South Fork Iowa River, Blairsburg is a tributary to South 

Fork Iowa River, New Providence, and the natural groundwater-fed Morgan Creek is 

adjacent to Chesterville Branch. 



99 
 

Chapter 5: Fundamental watershed factors influencing the transport of nitrogen to 

streams 

 

Abstract 

 

 Accurate estimation of total nitrogen loads, yields, and concentrations is essential 

for evaluating conditions in the aquatic environment.  The ability to estimate those values 

within unstudied watersheds is greatly beneficial.  Recursive partitioning and random 

forest regression were used to assess 85 geospatial, environmental, and watershed 

variables across 636 small (<585 km
2
) watersheds to determine which variables have an 

important influence on the annual load and flow-weighted mean concentration in streams, 

and annual watershed yield of total nitrogen.  Initial analysis led to the splitting of 

watersheds into three groups based on dominant land use (agricultural, developed, and 

undeveloped).  Nitrogen application, agricultural land area, forested canopy area, and 

impervious buffer area were some of the most frequently extracted variables by both 

recursive partitioning and random forest regression.  A series of multiple linear 

regression equations utilizing the extracted variables were developed and applied to the 

watersheds.  As few as three variables explained as much as 76% of the variability in 

total nitrogen loads for watersheds with predominantly agricultural land use.  Estimates 

of nitrogen in agricultural streams were the most accurate when compared against stream 

measurements, whereas estimates for undeveloped streams were often the least accurate.  

Gaining as much information with the fewest number of variables will allow for total 

nitrogen in streams to be estimated without extensive knowledge of a watershed or use of 

more complex modeling techniques.  The estimates provided by models which use 

fundamentally important variables can inform and isolate areas where more in-depth 

research may be beneficial. 

 

 1. Introduction 

 The movement of nitrogen from the landscape to streams plays a large role in the 

global nitrogen cycle (Howarth et al., 1996, Vitousek et al., 1997).  This waterborne 

nitrogen comes from natural and anthropogenic sources.  Plant senescence and 

abscission, atmospheric deposition, and fertilizer and manure application all provide 
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reactive forms of nitrogen to the landscape surface and eventually to water resources.  

Nitrogen is a necessary macronutrient that is essential for all life.  However, elevated 

nitrogen concentrations have wide ranging consequences, particularly in water bodies.  

Elevated nitrogen concentration can cause surface water contamination (Dubrovsky et al., 

2010) as well as hypoxia and ecosystem degradation at, or near the source of the nitrogen 

addition, as well as in downstream ecosystems (Alexander et al., 2000, Ribaudoa et al., 

2005).   

 Nitrogen is present in many forms in water.  Movement of organic nitrogen, 

nitrate, nitrite, and ammonia - collectively referred to as total nitrogen - is strongly linked 

to the movement of water.  Nitrate is particularly soluble and typically makes up >50% of 

total nitrogen (Johnes, 1996).  Because these forms of nitrogen are easily dissolved or 

transported by water, natural or anthropogenic changes to the amount of water that 

reaches the land surface, or changes to the pathways through which that water travels can 

alter the flux of total nitrogen to streams.   

 Determining the environmental and watershed variables that influence the amount 

of nitrogen that has moved to streams has been the focus of research for decades 

(Benning, 2013, Billy et al., 2013, Hively et al., 2011, Mueller et al., 1997, Oehler et al. 

2011, Onderka et al., 2012, Peterson and Preston et al., 2011, Reynolds and Edwards, 

1995, Schilling and Libra, 2000, Stålnacke et al., 2009).  Most studies, however, include 

comparatively few watersheds or examine watersheds from a small region or of a specific 

land use type.  The particular variables determined to be important for estimating 

nitrogen in streams by one study often only apply to the watersheds within that study 

(Billy et al., 2013, Onderka et al., 2012, Stålnacke et al., 2009).   

 This study examines 636 streams with reported annual total nitrogen loads that are 

distributed widely across the contiguous United States in an effort to identify 

fundamental geospatial, environmental, and watershed variables that influence the 

amount of nitrogen in streams.  The associated watersheds (<585 km
2
) encompass a wide 

range of physical, climate, and land use characteristics.  Data mining was accomplished 

with the use of recursive partitioning and random forest regression.  Ninety different 

variables were tested as possible factors that play a role in controlling annual total 
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nitrogen loads and flow-weighted mean concentrations in the streams, as well as annual 

total nitrogen yields from the watersheds (henceforth referred to as loads, concentrations, 

or yields).  Particular attention was paid to the importance of flowpath related variables, 

those variables that directly relate to the route through which water travels to the stream 

(baseflow, runoff, artificial drainage, etc.).  Because nitrogen movement is largely driven 

by water movement, the important water flowpath(s) should play a large role in 

determining loads, concentrations, and yields.  This research highlights the key variables 

that are applicable across a wide variety of watersheds and provides a better 

understanding of the variables that have a disproportionately large effect on nitrogen 

transport, influencing nitrogen loads, yields, and concentrations to a much greater extent 

than other variables.  One of the outcomes of the study is a series of multiple linear 

regression models which utilize the variables extracted by recursive partitioning and 

random forest regression.   These models were used for estimating the annual amount of 

nitrogen in streams and served as a test for the application of a small number of 

important, highly influential variables across a wide variety of watersheds.   

 

 2. Methods 

 2.1 Watersheds and their characteristics 

 This study focused on small streams with watersheds that range in size from 5 to 

585 km
2
.  Larger streams were excluded in an effort to reduce the heterogeneity of 

variables within the watersheds.  Data for 85 geospatial, environmental, and watershed 

variables were collected for 834 watersheds across the contiguous United States for 

which there were estimates of annual loads.  Watersheds were removed from the analyses 

if data were missing for any of the ninety variables.  Of the 834 starting watersheds, 509 

met all criteria (Figure 5.1).  Although missing some data, an additional 127 watersheds 

had all necessary data to be used as validation watershed later in the research.  A full list 

of watersheds and their descriptions is available in Appendix E Table E5.1.   

 The nitrogen data used for this study was processed in support of seven 

SPARROW (SPAtially Referenced Regressions On Watershed attributes) models (Brown 

et al., 2011, Hoos and McMahon, 2009, Moore et al., 2011, Rebich et al., 2011, 
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Robertson and Saad, 2011, Saleh and Domagalski, 2012, Wise and Johnson, 2011).  

Many years (~30 years) of streamflow data and stream concentration data were assessed 

to create nitrogen load estimates for each stream.  All load estimates were then 

temporally de-trended within each watershed and standardized to a single year centered 

around 2002.  De-trending in this manner applies the physical state of the environment 

during 2002 to each watershed, allowing for equal comparison of watersheds where data 

may have been collected during different time periods (Schwarz et al., 2006).  This form 

of standardization makes the load estimates well-suited for spatial comparisons across a 

wide area (Schwarz et al., 2006).  Annual yield was calculated by dividing the load by 

watershed area.  Annual, flow-weighted mean concentration was calculated as the annual 

load divided by annual stream discharge.   

 Physical and hydrological watershed variables, land use information, soil and 

climate data, background nitrogen concentrations, and anthropogenic chemical use data 

were obtained from a variety of sources (Table 5.1 and Appendix E Table E5.1).  These 

variables were separated into variable groups (chemical, land use, hydrologic, 

geographic, soil, flowpath, climate, and complex) based on the type of information 

provided by the variable.  Some variables incorporate multiple factors into a single 

variable, such as nutrient ecoregion and hydrologic landscape region.  These are termed 

complex variables.  For example, nutrient ecoregion is considered a complex variable 

because it incorporates a large amount of intrinsic information (geology, physiography, 

vegetation, climate, soils, land use, wildlife, and hydrology) within a single classifier.  

Data for most of the 85 variables were long term-average values, which worked well with 

the long-term, standardized load estimates.  For some, lack of data availability prevented 

the use of long-term averages for all variables, such as the application rate of agricultural 

chemicals and fertilizers.  Data for these variables were from a single year as close to 

2002 as possible (Table 5.1 and Appendix E Table E5.1).  Watersheds were assumed to 

be in a steady state based on conditions in 2002, but the technique used in this study can 

be applied to other, or updated data sets.     

 Land use in each watershed was classified according to the area of agriculture 

(based on the national land cover database - NLCD 81 and 82) or developed (NLCD 21, 
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22, 23, and 24) land present in the watershed.  Watersheds with >25% developed land 

were classified as developed and watersheds with >25% agricultural land were classified 

as agricultural.  If watersheds had both >25% developed and >25% agricultural land, they 

were classified as the land use that had the greater percent.  All watersheds that were not 

classified as agricultural or developed were classified as undeveloped.  Classifying 

watersheds this way led to three groups which each contained >100 watersheds.  The 

largest group (undeveloped) contained 221 watersheds and the smallest group 

(developed) contained 114 watersheds.  Groups were determined to have statistically 

different mean loads, yields, and concentrations by the rank sum test.  The specific rank 

sum test used was based on the White modification to the Wilcoxon rank sum test and 

can be found in Ambrose et al. (2002).  Two other methods of grouping watersheds were 

also tested and are explained in Appendix E.   

 Baseflow index estimates were obtained by two methods: the BFI program (Wahl 

and Wahl, 1995) (BFI-WAHL), and the National Hydrography Dataset (USGS, 2014) 

(BFI-NHD).  Due to differences in how each method estimated baseflow index, results 

from the BFI program and the NHD were often different, although were positively 

correlated (r = 0.83).  Both estimates were used in the analysis to determine if either 

estimate of baseflow index is an important, influential variable when estimating nitrogen 

in streams.   

 2.2 Statistical methods 

 2.2.1 Important variable extraction  

 The “rpart” (Therneau et al., 2013) and “randomForest” (Liaw and Wiener, 2012) 

packages in the statistical software program R (Version 3.0.2) (R Core Team, 2009) were 

used in the determination of the important variables for estimating the loads, yields, and 

concentrations.  These techniques do not require data to be normalized prior to use which 

makes them well suited for analysis of these watershed data.  The rpart package uses 

recursive partitioning (henceforth referred to as RPART) to generate a single regression 

tree, and uses a complexity parameter to prune the tree in an effort to reduce over-fitting 

of the data (Therneau et al., 2013).  The randomForest package performs random forest 

regression (henceforth referred to as RFR) by using an ensemble learning method which 



104 
 

generates a series of bootstrapped regression trees, with each tree generated using a 

random subset of variables.  Results based on RFR are produced by averaging the results 

of all generated trees (Liaw and Wiener, 2012).  RFR has the tendency to select 

categorical variables with a greater number of categories and also to select variables that 

are highly correlated (Strobl et al., 2008).  The two methods chosen for variable selection, 

RPART and RFR, analyzed the same data and the results were compared.  Each method 

operates differently, but each method is a valid way of selecting important variables.  The 

comparison of the results helps to reinforce the importance of variables that appear in 

both analyses.   

 For the analysis of watersheds using RPART within R, the method was set to 

“anova” to produce a regression tree.  The complexity parameter was set at 0.01 as 

suggested by the model developers.  All other arguments were left as default.  The 

variables that appeared in the regression tree were considered important.  An example of 

one of the regression trees is available in the Appendix E Figure E5.2.  For RFR within 

R, 1000 regression trees were generated for each analysis.  To ensure reproducibility 

when using R, set.seed(1) was used when generating all results with RFR.  Variable 

importance is quantified with RFR by comparing the percent increase in mean squared 

error (%IncMSE) of dependant variable predictions before and after randomly permuting 

all of the values within each independent variable.  A large %IncMSE after permuting the 

data of an independent variable suggested that the variable was important for estimating 

dependant variable values.  Independent variables were ordered based on %IncMSE 

values, and were plotted from greatest increase to least.  An example of one of these 

figures is available in the Appendix E Figure E5.3.  Important variables were selected 

from the greatest %IncMSE to a visual cutoff point on the plot.  The cutoff point 

occurred where the change in %IncMSE became relatively small and fairly constant from 

one variable to the next on the ranked order plot, signified by a noticeable or abrupt 

change in slope.  The remaining variables were eliminated as not important.   

 Separate analyses were conducted for each of the three dependent variables (load, 

yield, and concentration) for each group of watersheds based on dominant land use type 

(undeveloped, developed, and agricultural).  This resulted in 9 analyses for both RPART 
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and RFR, for a total of 18 separate calculations (Figure 5.2).  Analyses of loads, yields, 

and concentrations were conducted using the same set of variables.  However, all area 

dependent variables that were used during the load analyses were converted to area 

normalized variables for use in the yield and concentration analyses by dividing the 

values by watershed area (or buffer area for variables relating to the 100 m buffer) to get 

values that were independent of area (per km
2
) (Table 5.1 and Appendix E Table E5.1).  

Yields and concentrations (dependent variables) were assumed independent of watershed 

area due to low Pearson’s correlation (r) between watershed areas and yields (-0.03) and 

between watershed areas and concentrations (0.07).   

 2.2.2 Multiple linear regression equations 

 The final important variables obtained by RPART and RFR from the 18 analyses 

were used to create a series of multiple linear regression models.  These multiple linear 

regression models were used to test the ability of the variables for estimating annual 

loads, yields, and concentrations.  Although RPART and RFR do not require the 

assumption that data are normally distributed, multiple linear regression does.  Data were 

tested for normality by measuring the skewness of the data for each variable.  Log10-

transformation was used if variables had a skewness >1.0 as suggested by Bulmer (2012).  

If the logarithmic transformation decreased the skewness of the variable data, the 

transformed data were used in the creation of the multiple linear regression equations, 

otherwise the non-transformed data were used.  The dependent variables (load, yield, and 

concentration) were also log10-transformed.  Variables were removed from the multiple 

linear regression models if they had a variance inflation factor (VIF) >5 as suggested by 

Rogerson (2001).  This eliminated major collinearity among the explanatory variables 

within each linear model.  R
2
 was calculated for each model to gain insight into how 

much variability in the dependent variable could be explained when the variables 

extracted by RPART or RFR were applied to linear regression models.  Root mean 

squared error normalized to the mean of the measured loads, yields, or concentrations 

(often referred to as the coefficient of variation of the root mean squared error) were also 

calculated between the measured values and those estimated by the multiple linear 

regression equations.  Models that resulted in a normalized root mean squared error 
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(NRMSE) <0.4 were classified as good fitting models, those models with a NRMSE 

between 0.4 and 0.9 were classified as satisfactory models, and models with NRMSE > 

0.9 were classified as poorly fit models as suggested by Escurra et al. (2014).  Plots of the 

residual values are presented as Figures E5.4-E5.6 in Appendix E. 

 After the important variables were extracted from the 509 watersheds, an 

additional 127 watersheds had data for all of the extracted important variables.  The 509 

watersheds used for the determination of important variables were then used as the 

calibration watersheds for the linear regression models, and the 127 additional watersheds 

were then able to be used for model validation.  These validation watersheds were 

distributed proportionally among each land use group, resulting in approximately 80% of 

the watersheds in each group for model calibration and 20% for model validation.   

 

 3. Results 

 3.1 Formation of watershed groups based on land use  

 Prior to splitting watersheds into dominant land use groups, initial analyses for 

finding important variables that influence loads, yields, and concentrations were 

completed using all 509 calibration watersheds.  One or more of the NLCD land use 

codes appeared as the root node of all decision trees created by RPART (for loads, yields, 

and concentrations) and was always the most important or second most important 

variable when using RFR.  This made it evident that the predominant land use is very 

important in determining annual loads, yields, and concentrations.  These preliminary 

results suggested that splitting the watersheds into separate groups based on dominant 

land use type would help to pull out the other important variables in each subset of 

watersheds.   

 The three groups of watersheds (undeveloped, developed, and agricultural) had 

significantly different mean values (rank sum test, α = 0.05) from one another with 

respect to loads, yields, and concentrations.  In general, the agricultural watersheds had 

the highest loads, yields, and concentrations, while the undeveloped watersheds had the 

lowest (Figure 5.3A-C).  A median of 52% of the land area in the agricultural watersheds 

was devoted to agriculture, a median of 61% of the land area was developed in the 
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predominantly developed watersheds, and a median of 87% of the land in undeveloped 

watersheds was undeveloped.  This suggests that developed lands and agricultural lands 

have a disproportionate affect on loads, yields, and concentrations, influencing nitrogen 

in streams to a larger extent than other variables.   

 3.2 Total nitrogen loads 

 There were some important variables for estimating loads that were extracted for 

undeveloped, developed, and agricultural streams.  Nitrogen application and many of the 

predominant land use variables were extracted (Table 5.2), indicating their general 

importance across all streams.  The mass of nitrogen applied to agricultural land within 

the watershed was important in agricultural and undeveloped watersheds when using 

either RPART or RFR.  This implies that even if <25% of the land area within the 

watershed is agricultural; the nitrogen applied to that land has a disproportionately large 

effect on the loads of nitrogen in the stream.  The relative area of agricultural and/or 

developed land present in the watershed remained an important variable for determining 

loads even though watersheds were grouped according to dominant land use.  In 

particular, the amount of developed land in developed watersheds, and the amount of 

agricultural land in agricultural watersheds were important.  Both agricultural and 

developed land use were also extracted with RFR as important in undeveloped 

watersheds, reinforcing the idea that agricultural and developed land have a 

disproportionate affect on loads.   

 3.2.1 Agricultural watersheds 

 The agricultural watersheds resulted in the fewest important variables extracted 

by RPART or RFR when compared to the developed and undeveloped watersheds (Table 

5.2).  Each method resulted in four important variables.  All but one important variable 

from both the RPART and RFR methods was either a chemical variable or land use 

variable.  Nitrogen application on agricultural land and agricultural land area were 

extracted as important variables by both methods.  As nitrogen application and total area 

of agriculture increase, loads tended to increase.   
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 3.2.2 Developed watersheds 

 RPART and RFR extracted five and six important variables, respectively, when 

analyzing the developed watersheds.  Each method had multiple land use variables, but 

results from RPART also included three flowpath related variables as being important 

when estimating loads (Table 5.2).  Total developed area and impervious area within the 

100 meter buffer around streams were listed as important variables by both RPART and 

RFR.  Although the watersheds were already classified as developed, the total developed 

area in the watershed continued to be an important variable in determining the loads in 

the streams.  And, in these watersheds, the percent of imperviousness within the buffer is 

likely a surrogate or indicator of developed land within the watersheds.  Developed 

watersheds in this study had an average of 12.3 (+9.4)% impervious buffer area, whereas 

undeveloped and agricultural watersheds had a combined average of 1.2 (+1.4)%.    

 3.2.3 Undeveloped watersheds 

 The undeveloped watersheds had a greater number of variables extracted by 

RPART and RFR, as compared to developed and agricultural watersheds (Table 5.2).  

Chemical, land use, and hydrologic variables were common between RPART and RFR, 

with RPART including two soil variables as well.  Both methods suggest that nitrogen 

applied on the agricultural lands of the predominantly undeveloped watersheds played an 

important role in determining loads.  Forested canopy area and average streamflow also 

were extracted as important variables by both RPART and RFR.  Greater areas of 

forested canopy possibly lead to large inputs of organic nitrogen to the stream.  Forested 

canopy cover often has a high amount of herbaceous litter (Asner et al., 2003) which has 

a high nitrogen concentration (Reich et al., 2001), leading to higher levels of organic 

nitrogen that could have been delivered to streams, as compared to non-forested, 

undeveloped areas.  Higher streamflows likely resulted in larger loads due to the greater 

potential for nitrogen movement to the streams (Craig et al., 2008).  

 3.3 Total nitrogen yields 

 Many variables relating to yields were important across land use groups, such as 

nitrogen application rate, water yield from the watershed, and developed and impervious 

land area.  Nitrogen applied to agricultural land was important in the agricultural 
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watersheds as well as the undeveloped watersheds, indicating the effect that small 

agricultural areas can have on yields in mainly undeveloped watersheds (Table 5.2).  

Water yields from watersheds were an important variable in undeveloped and developed 

watersheds.  Larger volumes of water travelling to a stream provide an opportunity for a 

greater amount of nitrogen to be moved to the stream.  The percent of impervious land 

and the percent of developed land within the 100 meter buffer surrounding streams 

appeared as important variables in undeveloped watersheds.  Both variables have a 

positive relationship with the amount of developed land within the predominantly 

undeveloped watersheds (r = 0.62 and 0.59, respectively).  Many of these important 

variables again indicate a disproportionate effect that developed and agricultural land can 

have on the amount of nitrogen in streams.   

 3.3.1 Agricultural watersheds 

 Analysis of yields in the agricultural watersheds resulted in equal or fewer 

variables than were extracted for the developed watersheds and consistently fewer 

variables than were extracted for the undeveloped watersheds (Table 5.2).  RPART and 

RFR extracted multiple types of variables, however variables extracted by RPART 

included variables from three additional variable types (hydrologic, geographic, and 

flowpath variables).  Both methods did extract at least one chemical and one land use 

variable.  Nitrogen application rate on agricultural land was the only variable shared 

among the two methods in the agricultural watersheds.  Higher rates of nitrogen 

application lead to greater amounts of nitrogen that could be moved from the landscape to 

streams, which can increase nitrogen yields.   

 3.3.2 Developed watersheds 

 Variables that were extracted as important for determining yields in developed 

watersheds ranged widely across many types of variables.  Overlap between variable 

types extracted by RPART and RFR occurred and included land use, complex, and soil 

related variables (Table 5.2).  Percent forested canopy cover in the watershed and the soil 

K-factor (soil erodibility from the revised universal soil loss equation) were two of the 

variables that were extracted as being important by both RPART and RFR.  As opposed 

to load analyses, forested canopy had a negative correlation with respect to yields.  This 
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mitigating effect could be due to nitrogen uptake by the trees, or simply because an 

increase in forested area results in a smaller area of developed land, which is likely a 

greater contributor of nitrogen to streams as evident by the greater mean yield (Figure 

5.3B).  K-factor, as well as the other important soil variables that were extracted, relate to 

the texture and permeability of the soil.  These variables could be serving as surrogates 

for the amount of interaction between the soil and water, however this is speculation.   

 3.3.3 Undeveloped watersheds 

 Undeveloped watersheds had the greatest number of variables extracted by the 

RPART and RFR analyses, as compared to developed and agricultural watersheds when 

analyzing yields (Table 5.2).  The important variables were distributed across many 

variable types.  Variable types that contained important variables extracted by both 

RPART and RFR were chemical, land use, and hydrologic.  Agricultural and developed 

land use variables were particularly prevalent.  Nitrogen application rate, percent 

imperviousness in the 100 meter buffer, and percent developed land within the buffer 

(both related to development), and water yields were extracted as important variables by 

both RPART and RFR.  These variables show, as with the analyses of loads, that the area 

of agricultural or developed land in predominantly undeveloped watersheds plays a large 

role in determining the amount of nitrogen in streams.   

 3.4 Total nitrogen concentrations 

 Several variables were commonly extracted as important when analyzing 

concentrations across the three watershed groups, such as population density, forested 

canopy, and ecoregion.  Nitrogen application on agricultural land was important in the 

predominantly agricultural watersheds (Table 5.2).  The increase in source strength of 

nitrogen caused by applications of nitrogen can cause higher concentrations in the stream.  

Population density was important in the undeveloped and agricultural watersheds, as it is 

related to the amount of developed land within the watershed.  Population density had a 

Pearson’s r of 0.85 against the percent of developed land in the undeveloped watersheds 

and 0.83 in the agricultural watersheds.  Forested canopy area was extracted as an 

important variable in all watershed groups by both RPART and RFR methods.  The 

greater amount of forested canopy area equated to less agricultural and developed land in 
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the three watershed groups.  And, because agricultural and developed land uses seem to 

have a disproportionate affect on the amount of nitrogen in streams, the increased canopy 

cover prevented the increases in nitrogen concentrations associated with agricultural and 

developed land uses.  Forested canopy may also act as a “cover crop”, resulting in a 

mitigating effect on nitrogen concentration in the stream as the trees and other plants 

sequester nitrogen before it reaches the streams (Swank et al., 2014).  The nutrient 

ecoregion classification was also important across all watershed groups.  Watersheds 

within a single nutrient ecoregion share similar geographic, physical, climate, and land 

use factors (Omernik, 1987) which may have led to similarities in nitrogen 

concentrations.    

 3.4.1 Agricultural watersheds 

 The RPART and RFR methods had 6 and 5 variables, respectively, for the 

agricultural watersheds.  Those variables covered many different variable types with 

overlap of chemical, land use, and complex variables (Table 5.2).  However, both 

RPART and RFR extracted nitrogen application rate on agricultural land, predominant 

nutrient ecoregion, and percent forested canopy cover within the watershed as important 

variables.  The interactions between these variables and concentrations have been 

explained previously.   

 3.4.2 Developed watersheds 

 In general, the fewest number of important variables were extracted by RPART 

and RFR for concentration estimation in the developed watersheds (Table 5.2).  Both 

methods resulted in land use variables and soil variables being classified as important.  

Percent canopy cover and soil K-factor were the important variables that appear in the 

results from both RPART and RFR.  These are two variables that were also important for 

determining yields in developed watersheds, and likely relate to nitrogen concentrations 

for similar reasons.   

 3.4.3 Undeveloped watersheds 

 The undeveloped watersheds had the greatest average number of extracted 

variables by RPART and by RFR, as compared to developed and agricultural watersheds 

(Table 5.2).  This was true when examining loads and yields in undeveloped watersheds 
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as well.  Land use, hydrologic, and geographic variables were extracted as important by 

both RPART and RFR analyses, with multiple other variable types not shared by the two 

methods.  Percent forested canopy in the watershed, annual water yield, and population 

density were important variables extracted by both RPART and RFR.  Canopy cover (an 

indicator of undeveloped land) was negatively correlated with concentrations, and 

population density (an indicator of developed land) was positively correlated with 

concentrations.  Both relate to land use, which has been an important driver of nitrogen in 

all other analyses.  This may imply that canopy cover, which was also extracted as 

important in agricultural and developed watersheds, may be a disproportionately 

important land use variable in undeveloped watersheds, acting to reduce or prevent the 

increase of concentration in streams.   

 

 3.5 Application of important factors 

 A series of multiple linear regression equations (models) were created using the 

variables that RPART and RFR extracted as the most important for determining loads, 

yields, and concentrations (Table 5.3).  The nine models created from the variables 

extracted by the RPART and the nine models created from the variables extracted by 

RFR, although different, often produce similar R
2
 values (Table 5.3).  However, the 

models generated from RFR variables used an average of one fewer variable per model 

and had normalized root mean squared errors (NRMSE) that were nearly equivalent or 

smaller than those from models using RPART variables (Table 5.4).    

 3.5.1 Total nitrogen load estimation  

 The six models generated using variables extracted by RPART and RFR for 

estimating loads among the three watershed groups (Table 5.3) have the highest mean 

adjusted R
2
 when compared to the models generated for estimating nitrogen yields or 

concentrations.  Among the models for estimating loads, the models for undeveloped 

watersheds had the highest average R
2
 values when compared to the models for the 

developed or agricultural watersheds.   

 The regression models for agricultural and undeveloped watersheds performed 

well when comparing model estimated loads to the loads based on actual stream 



113 
 

measurements.  Precision of estimates was measured by the NRMSE.  NRMSE for the 

agricultural and undeveloped calibration and validation watersheds suggest satisfactory 

fitting of the data (Table 5.4), although the model applied to the calibration set of 

agricultural watersheds using RPART variables was classified as poorly fitting due to the 

elevated NRMSE (Escurra et al. 2014).  Figures 5.4A-C show the model estimated loads 

against the measured loads with a 1:1 reference line.  Load estimates for the calibration 

watersheds in all three land use groups cluster around the 1:1 line.  Strength and direction 

of bias was measured as the percent of overestimated values.  Loads were overestimated 

and underestimated with roughly the same frequency (Table 5.4).  For the validation 

analyses, the models had a greater tendency to overestimate loads.  However, NRMSE 

remained satisfactory in the undeveloped watersheds and decreased in the agricultural 

watersheds.  This suggests that the models for estimating loads in agricultural and 

undeveloped watersheds (and the important variables associated with the models) are 

able to be applied to a wide range of unstudied watersheds.  Although both RPART and 

RFR based models tended toward a higher frequency of overestimating the measured 

values in the validation set of undeveloped watersheds (Table 5.4), the results remained 

satisfactory based on the classification of NRMSE suggested by Escurra et al. (2014).  

The models for the developed watersheds performed poorly based on the same 

classification.  Although R
2
 values were quite high for the developed watersheds models, 

the NRMSE suggest poorly fitting models for both the calibration and validation 

watersheds.  Plots of the residuals for estimates of loads for calibration and validation 

watersheds (as well as for the yield and concentration estimates) are in Appendix E.  

Residual plots for load estimates show no clear bias or heteroscedasticity (Figures E5.4A-

C).   

 3.5.2 Total nitrogen yield estimation 

 The models for estimating yields among the three watersheds groups had 

systematically lower R
2
 values than the models for estimating loads (Table 5.3).  The 

RPART based model for estimating yields in agricultural watersheds had a higher R
2
 

values than the similar RFR model. 
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 Although the R
2
 values from the RFR based models for agricultural and 

developed watersheds were smaller, the RFR models had equivalent or lower NRMSE 

than the RPART based models for the calibration watersheds (Table 5.4).  For the 

validation watersheds, the NRMSE from the RFR based models for agricultural and 

undeveloped watersheds were considerably smaller than from the RPART models.  These 

two RFR models produced satisfactorily fitting models for the validation watersheds.  As 

with the models for estimating loads, results from applying the models for yield 

estimation to the calibration and validation data sets among the three watershed groups 

produced similar outcomes when plotted (Figures 5.5A-C), with nearly all values 

clustering around the 1:1 line.  Estimates by RPART and RFR based models applied to 

the calibration data overestimated and underestimated with approximately the same 

frequency across all watershed groups, except the regression model that used the 

variables from RPART in the model for undeveloped watersheds, in which case the 

measured values were overestimated 71% of the time.  For the validation analyses, the 

agricultural models had the greatest increase in frequency of overestimates (Table 5.4) 

compared to the developed and undeveloped watersheds, but the model which used the 

RFR extracted variables had a satisfactory NRMSE.  The RPART based models for 

estimating yields, when applied to the validation watersheds in each of the land use 

groups, fit the data poorly based on the elevated NRMSE values, which may reduce their 

utility in unstudied watersheds.  Residual plots for yield estimates show no clear bias or 

heteroscedasticity (Appendix E Figures E5.5A-C). 

 3.5.3 Total nitrogen concentration estimation 

 Models for estimating concentrations most often had lower R
2
 values compared to 

models for estimating loads and yields (Table 5.3).  Although the R
2
 values tended to be 

the lowest, the concentration models for agricultural watersheds had higher R
2
 values 

than the models for estimating yields in the agricultural watersheds.   

 The R
2
 values from the RFR based models were approximately equivalent or 

smaller than those from the RPART based models.  However, the RFR based models fit 

the data more accurately than the models which used variables extracted by RPART, 

based on the NRMSE. NRMSE from the RFR based models in all watershed groups 
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suggest satisfactory fitting of the models to the measured values, and were equivalent or 

smaller than those from the RPART based models for the calibration and validation data 

sets (Table 5.4).  Figures 5.6A and B show modeled concentration estimates clustering 

around the 1:1 line when RPART and RFR based models were applied to the agricultural 

and developed watersheds, but show deviation from the line in the undeveloped 

watersheds (Figure 5.6C) when the RPART based model was applied.  Calibration 

estimates by RPART and RFR based models overestimated and underestimated the 

measured concentrations with similar frequency across all watershed groups except when 

using the variables from RPART in the undeveloped watersheds, in which case the 

concentrations were overestimated 86% of the time (Table 5.4).  The RPART based 

model applied to the undeveloped watersheds performed poorly, particularly when 

applied to the set of validation watersheds.  This implies that the variables from RPART 

do not extend well to undeveloped watersheds outside of the calibration watersheds.  An 

unidentified variable, either not extracted by RPART or not included in the list of 

possible variables for this research, may be the cause of this consistent bias.  Or, the 

watersheds of the validation set were systematically different than those in the calibration 

set (Figure 5.1).  Any difference among the two sets of watersheds did not appear to be 

based on location though, as the watersheds with the greatest discrepancy (>2mg N/L) 

were scattered across the United States.  RPART models did, however, perform 

satisfactorily in the agricultural and developed watersheds, and the residual plots for 

these watersheds show no clear bias or heteroscedasticity (Appendix E Figure E5.6A-C).     

 

 4. Discussion 

 4.1 Importance of a few variables  

 A main goal of this research was to gain a better understanding of the factors that 

affect the amount of nitrogen in streams.  This was accomplished by finding the physical 

variables that are strongly related to nitrogen loads, yields, and concentrations.  Dominant 

land use was an important factor when estimating nitrogen in streams, as evidenced by 

the ubiquitous extraction by RPART and RFR during the initial analyses which used all 

509 calibration watersheds.  After watersheds were divided into three groups based on 
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land use, the important variables from each group of watersheds were compared to 

determine widely applicable important variables.  The variables listed in Table 5.2, along 

with the results presented in Tables 5.3 and 5.4 and Figures 5.4-5.6 provide evidence that 

informative models can be created and applied to a wide range of watersheds with the use 

of relatively few variables.  The linear regression models were able to explain a large 

portion of variability in loads, yields, and concentrations with satisfactory accuracy based 

on the NRMSE as suggested by Escurra et al. (2014).   

 A few variables had wide ranging importance across the land use groups and 

across load, yield, and concentration analyses.  Nitrogen application (application mass for 

load analyses; application rate for yield and concentration analyses) was extracted from 

RPART and RFR in nearly two thirds of all analyses, and in every analysis involving 

agricultural watersheds.  The use of nitrogen fertilizer, particularly in agricultural 

watersheds has a tremendous affect on the source strength of nitrogen within the 

watersheds, and thus, determines the amount of nitrogen that is able to be moved across 

the landscape.  The positive correlation between nitrogen application and loads, yields, 

and concentrations implies that reductions in nitrogen use in agriculture will help 

decrease the amount of nitrogen that could move to a stream. 

 Agricultural and developed land uses were shown to have a strong influence on 

nitrogen in streams.  The same land use variables that were used to split the watersheds 

into the three groups (agricultural, developed, and undeveloped) were frequently 

extracted by RPART and RFR as important variables within those watershed groups.  

Agricultural and developed land areas (or surrogate variables such as nitrogen application 

or impervious buffer, respectively) were important variables extracted for the 

undeveloped watersheds.  The exaggerated influence of agricultural and developed land 

use was evident within the undeveloped watersheds where those land use types were 

limited in area (<25% of total).  Within the agricultural watersheds, the land area used for 

agriculture remained an important variable extracted by RPART, RFR, or both when 

analyzing loads, yields, and concentrations.  And, within the developed watersheds, the 

total area of developed land, or surrogates of the amount of undeveloped land (forested 

canopy area), were commonly important variables.  Agricultural and developed lands 
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frequently require water flowpath modification (additions of roads, culverts, ditches, 

storm drains, subsurface drains, etc.) to a greater degree than most undeveloped 

watersheds.  These flowpath modifications can move larger amounts of water and 

nitrogen to streams than in undeveloped watersheds (Craig et al., 2008).  Therefore, 

greater agricultural or developed land is equated with greater flowpath modification, 

which then can lead to increases in nitrogen in streams (Craig et al., 2008, Lindsey et al., 

1998).   

 4.2 Ease and challenges of variables applied to linear regression models 

 The important variables extracted by RPART and RFR were used to develop 

regression models to estimate loads, yields, and concentrations in unstudied areas.  Linear 

models for estimating total nitrogen loads were often the simplest models, frequently 

using the fewest number of variables while producing the highest R
2
 and satisfactorily 

low NRMSE when compared to estimates of yields or concentrations, particularly in 

agricultural and undeveloped watersheds.  Nitrogen loads are strongly dependent on 

streamflow (Tu, 2009), and streamflow is often governed by the variables used in this 

study (Brooks et al., 2012).  These relations between the load, streamflow, and the other 

independent variables likely link the loads strongly with the independent variables.   

 Agricultural watersheds were well modeled when compared to developed and 

undeveloped watersheds, often requiring the fewest number of variables while resulting 

in the highest mean R
2
 values and satisfactory NRMSE for both the calibration and 

validation watersheds.  The landscape and management modifications that agricultural 

areas undergo to make the land suitable for agriculture alter the importance of a select 

few variables (nitrogen application, for example) in the watershed, and can lead to 

reductions in landscape heterogeneity.    

 The watersheds that were classified as undeveloped consistently resulted in more 

extracted variables in the regression trees created by RPART and resulted in more 

important variables to be extracted by RFR than for the developed or agricultural 

watersheds.  This suggests that undeveloped watersheds are more heterogeneous than 

agricultural or developed watersheds, and/or individual processes (controls on nitrogen 

movement to streams) are not as dominant as they are in the agricultural and developed 
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watersheds.  Without the landscape alteration associated with agriculture or development, 

all factors on the landscape retain their natural level of importance, with no single 

variable importance being anthropogenically increased or decreased to create a greater 

effect on the amount of nitrogen in streams.   

 4.3 Relative importance of the flowpath variables 

 Flowpath variables relate directly to how water and nitrogen move to streams, and 

have been shown in previous research to have a great effect on the amount of nitrogen in 

streams (Bernhardt et al., 2008, Frank et al., 2000, Goodridge and Melack, 2012, Molenat 

et al., 2002, Schilling and Zhang, 2004, Sebestyen et al., 2000, Tesoriero et al., 2009).  

Flowpath variables were expected to be extracted as important variables by RPART and 

RFR with a higher frequency than they were.  However, flowpath related variables were 

only extracted sporadically throughout all analyses in each of the different watershed 

groups, appearing in five of the 18 analyses.  There are a few possible reasons why the 

flowpath variables were not extracted by RPART and RFR more frequently.  The 

flowpath variables may have been obscured by other variables.  For instance, land use 

was shown to play a large role in the estimation of loads, yields, and concentrations 

through the analyses of this study.  Although land use is not a flowpath variable as 

defined by this study, land use does have a large effect on water movement through and 

across the landscape, and thus, is indirectly related to the flowpath variables (Bernhardt et 

al., 2008).  The relevant information regarding flowpaths may be contained within the 

land use variables.  Or, due to the difficulty of estimating many flowpath variables, their 

values may have been incorrectly estimated.  The difficulty of estimating flowpath 

variables could also prevent those variables from being extracted by RPART or RFR.  

Two measures of baseflow index were included in the analysis because both are widely 

accepted methods, but each is based on different assumptions.  There were differences in 

estimates of baseflow by the two different methods, highlighting the difficulty of 

confidently estimating or measuring some flowpath variables.      

 4.4 Implication of this research for modeling purposes 

 An additional benefit of this research, aside from identifying the important 

variables for estimating total nitrogen in streams, was the confirmation that these 
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variables can produce reasonable predictions when applied to unstudied watersheds.  

Using all 85 variables from this study to produce multiple linear regression models led to 

models with high adjusted R
2
 values.  However, the likelihood that data regarding those 

variables are available in unstudied watersheds is very small, making those models 

impractical.  Many of the models that were created by this research fit the data from 

calibration and validation watersheds satisfactorily (high R
2
 and low NRMSE) (Tables 

5.3 and 5.4) using a comparatively small number of variables.  Because the NRMSE from 

the application of the models to the validation watersheds was often similar to those of 

the calibration watersheds, these models could be quickly applied to any watershed with 

reasonable confidence and will be much less restricted by data availability.   

 The important variables extracted by RPART and RFR, and applied to multiple 

linear regression models produced satisfactory estimates of the amount of nitrogen in 

streams as quantified by the R
2
 and NRMSE.  Although RPART and RFR were used 

separately, each method often extracted the same important variables (or same variable 

type), which suggests that the extracted variables do play an important role in 

determining the amount of nitrogen in streams.  This should not, however, discount the 

variables that were only extracted by one of the methods.  Differences in how RPART 

and RFR operate naturally led to different results.  But, the results from one method 

reinforced the results from the other method.  RPART did often extracted more variables 

and frequently produced results (NRMSE) that were of poorer quality than results from 

RFR based models.  This makes extrapolation to unstudied watersheds less certain when 

using the RPART based models, particularly when estimating nitrogen concentrations in 

undeveloped watersheds.  Satisfactory application to calibration and validation 

watersheds, coupled with the requirement of fewer variables for model creation suggests 

that the combination of variables extracted by RFR provide more inherent information 

about the amount of nitrogen in streams than the combination of variables extracted by 

RPART.  RFR does have the tendency to extract highly correlated variables (Strobl et al., 

2008), which can be seen in Table 5.3 as a greater tendency to produce variables that 

result in a variance inflation factor (VIF) >5.  The collinearity of these variables is a 

problem when creating linear regression models and must be dealt with by either 
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removing those variables, or by choosing a method which allows for collinearity among 

independent variables.   

 Although the physical movement of nitrogen to streams is exceedingly complex, a 

few, well selected variables can provide a good approximation of the amount of nitrogen 

that enters the streams.  A small set of widely applicable variables that could be quickly 

and easily applied to, or used in the creation of, simple models will be useful in the 

prediction of total nitrogen loads, yields, and concentrations across a wide variety of 

streams and their watersheds.  The predictions provided by the models from this research, 

or new models based on this research can inform and isolate areas where more in-depth 

research, the use of more complex modeling techniques, or alterations to watershed 

management measures may be beneficial. 
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Table 5.1:  List of important variables that were extracted by recursive partition (RPART) and random forest regression (RFR) 

analyses.  Variables are long term average values unless otherwise noted in the description.  A full list of all variables from this 

research is located in Appendix E Table E5.2.  
Dependent variable 

name 
Variable description 

Data 

source 

TNLoad Total nitrogen load (kg N/yr) 1 

TNYield Total nitrogen yield (kg N/km
2
/yr) Calculated 

TNConc Flow-weighted mean nitrogen concentration (mg N/L) Calculated 

Independent variable 

name (area-

normalized, if 

applicable) 

Variable description 
Data 

source 

BGTNLoad Total nitrogen background load (kg N/yr) 2 

NMass (NRate
‡
) Mean nitrogen applied to cultivated and pasture agricultural land in 1997 (kg N) 4 

Canopy (CanopyPer
#
) Mean canopy cover within the watershed (km

2
)  5 

ImpBuff (ImpBuffPer
+
) Mean impervious land area within 100m Buffer (km

2
)  5 

NLCDAg 

(NLCDAgPer
#
) Total area of 2006 national land cover dataset (NLCD) agricultural land use classes 81 and 82 (km

2
)  5 

NLCDDev 

(NLCDDevPer
#
) Total area of 2006 national land cover dataset (NLCD) developed land use classes 21, 22, 23, and 24 (km

2
)  5 

NLCDDevI 

(NLCDDevIPer
#
) Total area of 2006 national land cover dataset (NLCD) developed land use classes 22, 23, and 24 (km

2
)  5 

NLCDAgBuff 

(NLCDAgBuffPer
+
) 

Total area of 2006 national land cover dataset (NLCD) agricultural land use classes 81 and 82 in the 100m buffer 

(km
2
)  5 

NLCDDevBuff 

(NLCDDevBuffPer
+
) 

Total area of 2006 national land cover dataset (NLCD) developed land use classes 21, 22, 23, and 24 in the 100m 

buffer (km
2
)  5 

NLCDDevIBuff 

(NLCDDevIBuffPer
+
) 

Total area of 2006 national land cover dataset (NLCD) developed land use classes 22, 23, and 24 in the 100m 

buffer (km
2
)  5 

HLR Predominant hydrologic landscape region (HLR) category 6 



Independent variable 

name (area-normalized, if 

applicable) 

Variable description 
Data 

source 
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MaxEcoReg Predominant level III nutrient ecoregion category within the watershed 5 

Streamflow Mean annual streamflow (m
3
/s) 1 

H2OVolume (H2OYield
#
) Annual stream volume (m

3
) Calculated 

Irrigated (IrrigatedPer) Irrigated land within the watershed (km
2
) 5 

Area Total watershed area (km
2
) 4 

MRB SPARROW major river basin identifier 1 

Pop2000 2000 Population density (people/km
2
) 7 

AWC Mean soil available water capacity (cm/cm) within the watershed 6 

HSGBD Mean percent of soil within the watershed as hydrologic soil group HGBD 6 

HSGC Mean percent of soil within the watershed as hydrologic soil group HGC 6 

Kfactor Mean soil K-factor within the watershed 6 

PercOM Mean percent organic matter in soil within the watershed 6 

PercSilt Mean percent silt in soil within the watershed 6 

SRL55 Percent of soil restrictive layer above 55cm within the watershed 4 

SubDrain Land subject to subsurface drainage within the watershed in 1992 (km
2
) 4 

ArtDrain Artificially drained land within the watershed in 1992 (km
2
) 4 

BFI-WAHL Baseflow index: from Wahl and Wahl (1995) BFI program 8 

BFI-NHD Baseflow index: from national hydrology dataset 6 

Runoff Mean estimated runoff  (mm/yr) 9 

SatOF Mean estimated saturation overland flow (% of total streamflow) 6 

AnnualPdays Mean number of days with precipitation per year (days) 10 

MayPdays Mean number of days of precipitation in May (days) 10 



Independent variable 

name (area-normalized, if 

applicable) 

Variable description 
Data 

source 
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JulPdays Mean number of days of precipitation in July (days) 10 

NovPdays Mean number of days of precipitation in November (days) 10 

‡ Application rate (kg/km
2
) 

# Percent of watershed area 

+ Percent of 100m buffer area 

1 Moore et al., 2011, Hoos and McMahon, 2009, Robertson and Saad, 2011, Brown et al., 2011, Rebich et al., 2011, Wise and 

Johnson, 2011, Saleh and Domagalski, 2012 

2 Smith et al. 2003 

3 Personal communications with Mike Wieczorek and Naomi Nakagaki, January 15, 2015 

4 Personal communications with Mike Wieczorek, January 15, 2015 

5 Personal communications with Mike Wieczorek and Andrew LaMotte, January 15, 2015 

6 Personal communications with Mike Wieczorek and Dave Wolock, January 15, 2015 

7 Personal communications with Mike Wieczorek and Curtis Price, January 15, 2015 

8 Wahl and Wahl, 1995 

9 Personal communications with Mike Wieczorek, Dave Wolock, and Gregory McCabe, January 15, 2015 

10 Personal communications with Mike Wieczorek, James Falcone, and Ryan Hill, January 15, 2015 
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Table 5.2:  Important variables from recursive partitioning (RPART) and random forest regression (RFR) for total nitrogen load, 

yield, and concentration analyses.  Shaded cells represent important variables extracted from RPART or RFR and correspond to the 

listed Pearson correlation coefficient (r) between that variable and the dependent variable (total nitrogen load, yield, or 

concentration).  Complex variables are those variables which contain intrinsic information relating to geology, physiography, 

vegetation, climate, soils, land use, wildlife, or hydrology, but are presented as a single classification.  See Table 5.1 for variable 

descriptions. 

 
* Total value when analyzing total nitrogen load, area-normalized value when analyzing total nitrogen yield and concentration 

# Log10-transformed for use in linear regression equations  NA – Not applicable

Variable group Variable name r RPART RFR r RPART RFR r RPART RFR r RPART RFR r RPART RFR r RPART RFR r RPART RFR r RPART RFR r RPART RFR

BGTNLoad 
#

0.69

NMass* 
#

0.82 0.58 0.54 0.63 0.36 0.68

Canopy* 0.70 -0.43 0.26 -0.64 -0.48 -0.38

ImpBuff* 
#

0.56 0.72 0.38 0.21 0.37

NLCDAg* 
#

0.80 0.59 0.63 0.38 0.67

NLCDDev* 
#

0.77 0.69 0.35

NLCDDevI* 
#

0.72 0.33 0.35

NLCDAgBuff* 0.52 0.66

NLCDDevBuff* 
#

0.73 0.29 0.39

NLCDDevIBuff* 
#

0.71 0.35 0.36 0.31

HLR NA NA

MaxEcoReg NA NA NA NA

Streamflow 
#

0.81

H2OVolume* 
#

0.81 0.39 0.59 -0.40

Irrigated* 
#

-0.17

Area 0.20

MRB NA

Pop2000* 
#

0.12 -0.07 0.27

AWC 0.46

HSGBD 
#

-0.05

HSGC 0.05

Kfactor 0.36 0.47

PercOM 
#

-0.21

PercSilt 0.07 0.26

SRL55 
#

0.06 0.32

SubDrain
#

0.40

ArtDrain* 
#

0.21

BFI-WAHL -0.08 -0.12

BFI-NHD -0.28

Runoff 0.14 0.29 -0.01

SatOF -0.27

AnnualPdays 
#

-0.01

JulPdays -0.27

MayPdays 0.36

NovPdays 0.12

Climate

Soil

Geographic

Complex

Hydologic

Flowpath

Chemical

Land use

Total nitrogen load
#

Total nitrogen yield
#

Total nitrogen concentration
#

Undeveloped watershedsDeveloped watershedsAgricultural watersheds Undeveloped watershedsDeveloped watershedsAgricultural watersheds Undeveloped watershedsDeveloped watershedsAgricultural watersheds
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Table 5.3: Multiple linear regression equations produced with variables extracted by 

recursive partitioning (RPART) and random forest regression (RFR) analyses with 

corresponding R
2
 for equations.  Variables with a variance inflation factor (VIF) >5 were 

removed from multiple linear regression equations (italicized).  

 
# Variable is Log10-transformed 

‡ Categorical variable; coefficients values for insertion into multiple linear regression 

equations are in Table E5.3 of Appendix E. 

Dependent 

variable

Watershed 

group

Variable 

extraction 

method Multiple linear regression model equation R
2

RPART 0.862 + 0.748 (NMass
#
) + NLCD8X  + 0.197 (ImpBuff

#
) + 0.0394 (NovPdays) 0.76

RFR 0.780 + 0.797 (NMass
#
) + NLCD8X  + 0.022 (SubDrain

#
) 0.68

RPART
3.72 + 0.680 (NLCDDev

#
) + 0.423 (ImpBuff

#
) - 0.0209 (ArtDrain

#
) + 0.0127 (BFI-WAHL) -          

0.0134 (BFI-NHD)
0.69

RFR
3.19 + ImpBuff  + NLCDDevBuff  + 0.726 (NLCDDev

#
) + 0.297 (NLCDDevIBuff

#
) + 

NLCDDevI  + 0.093 (Nmass
#
)

0.69

RPART
1.80 + 0.703 (Canopy

#
) + 0.093 (NLCDDevIBuff

#
) + 0.079 (NMass

#
) + Streamflow  +            

0.242 (BGTNLoad
#
) - 0.006 (SRL55

#
) + 0.006 (PercSilt)

0.76

RFR
3.53 + NLCDAg  + 0.049 (NLCDDev

#
) + 0.050 (NMass

#
) + H2OVolume  +                         

0.428 (Streamflow
#
) + 0.380 (Canopy

#
) + 0.044 (NLCDDevIBuff

#
) + 0.149 (DevBuff

#
)

0.78

RPART
-0.285 + 0.756 (NRate

#
) - 0.045 (Pop2000

#
) + 0.001 (Runoff) +                                              

0.336 (NLCDDevBuffPer
#
) + 0.008 (Irrigated

#
) + 0.004 (PercSilt)

0.57

RFR
-0.246 + 539 (NRate

#
) + 0.772 (NLCDAgPer

#
) + 0.006 (PercSilt) -                                                

0.004 (NLCDAgBuffPer)  
0.48

RPART
3.16 - 0.009 (CanopyPer) + 0.371 (H2OYield

#
) + HLR

‡
 + 0.642 (Kfactor) -                                          

1.08 (AnnualPdays
#
) + 0.065 (SRL55

#
)

0.51

RFR 2.57 + 0.229 (Kfactor) + 1.64 (AWC) - 0.011 (CanopyPer) + MaxEcoReg
‡
 + HLR

‡ 0.50

RPART

-0.607 - 0.081 (NLCDDevBuffPer
#
) + 0.077 (NRate

#
) + 0.024 (MayPdays) +                       

0.487 (H2OYield
#
) + 0.0002 (CanopyPer) + 0.0004 (Runoff ) + 0.219 ( ImpBuffPer

#
) +             

0.009 (HSGBD
#
)

0.51

RFR

-0.831 + ImpBuffPer  + 0.075 (NRate
#
) + 0.170 (NLCDDevBuffPer

#
) + NLCDAgPer  +           

0.052 (NLCDDevIBuffPer
#
) + 0.125 (NLCDDevIPer

#
) + 0.566 (H2OYield

#
) -                       

0.177 (NLCDDevPer
#
)

0.52

RPART
-1.60 + MaxEcoReg

‡
 + 0.671 (NRate

#
) + 0.287 (ImpBuffPer

#
) - 0.044 (JulPdays) -                                 

0.096 (Pop2000
#
) - 0.001 (CanopyPer)

0.63

RFR
-1.78 + 0.428 (NRate

#
) + MaxEcoReg

‡
 + 0.534 (NLCDAgPer

#
) + NLCDAgBuffPer  -                                 

0.003 (CanopyPer)
0.60

RPART
0.493 - 0.009 (CanopyPer) + 1.36 (Kfactor) - 0.002 (HSGC) - 0.195 (PercOM

#
) -                             

0.029 (SatOF)
0.34

RFR -0.076 - 0.009 (CanopyPer) + 1.51 (Kfactor) + MaxEcoReg
‡ 0.35

RPART

3.50 + 0.095 (Pop2000
#
) - 0.005 (CanopyPer) - 0.532 (H2OYield

#
) + MRB

‡
 +                        

0.089 (ImpBuffPer
#
) + HLR

‡
 - 0.002 (BFI-WAHL) + 0.001 (Runoff) -                                           

0.00001 (Area) + MaxEcoReg
‡

0.44

RFR
1.93 - 0.370 (H2OYield

#
) - 0.002 (CanopyPer) + 0.063 (Pop2000

#
) +                                       

0.052 (NLCDDevIPerc
#
) + 0.085 (NLCDDevIBuffPer

#
)

0.31

Total nitrogen 

concentration
# 

(mg N/L)

Agricultural 

watersheds

Developed 

watersheds

Undeveloped 

watersheds

Total nitrogen 

load
#
 (kg/yr)

Agricultural 

watersheds

Developed 

watersheds

Undeveloped 

watersheds

Total nitrogen 

yield
#
 (kg/km

2
/yr)

Agricultural 

watersheds

Developed 

watersheds

Undeveloped 

watersheds
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Table 5.4:  Percentage of overestimated values from the application of each model to the 

various sets of watersheds.  Root mean squared error of estimates normalized to the mean 

measured value (NRMSE) is presented for the calibration and validation data sets. 

Dependent 

variable

Watershed 

group

Variable 

extraction 

method NRMSE % overestimate NRMSE % overestimate

RPART 0.92 50 0.62 71

RFR 0.88 49 0.59 64

RPART 1.0 48 1.6 62

RFR 1.1 53 1.5 65

RPART 0.66 47 0.79 36

RFR 0.67 52 0.84 53

RPART 0.65 51 0.98 67

RFR 0.65 51 0.78 67

RPART 0.63 51 1.1 46

RFR 0.58 49 1.8 58

RPART 1.0 71 1.7 69

RFR 0.67 48 0.65 51

RPART 0.61 45 0.87 52

RFR 0.61 47 0.91 52

RPART 0.85 53 0.67 65

RFR 0.73 48 0.60 35

RPART 0.75 86 6.3 93

RFR 0.65 49 0.54 51

Total nitrogen 

concentration

Agricultural 

Developed 

Undeveloped

Total nitrogen 

yield

Agricultural 

Developed 

Undeveloped

Total nitrogen 

load

Agricultural 

Developed 

Undeveloped

ValidationCalibration
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Figure 5.1:  Distribution and land use classification of study watersheds 
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Figure 5.2: Breakdown of important variable extraction analyses conducted for total 

nitrogen loads, yields, and concentrations. 
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(A) 

     
(B) 

      
(C) 

      
 

Figure 5.3: Boxplots of annual total nitrogen (A) loads, (B) yields, and (C) 

concentrations for calibration and validation streams and their watersheds.  Outliers were 

removed from the figures to increase detail.  Outliers were defined as values greater than 

the 75
th

 percentile plus 1.5 times the interquartile range, or values less than the 25
th

 

percentile minus 1.5 times the interquartile range.  For calibration, n = 509.  For 

validation, n = 127. 
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(A) 

  
(B) 

  
(C) 

 
Figure 5.4: Total annual nitrogen load (log10-transformed) estimates from multiple 

linear regression equations for calibration and validation data sets compared to stream 

loads based on measurements for (A) agricultural, (B) developed, and (C) undeveloped 

watersheds using important variables from recursive partitioning and random forest 

regression.  Solid black line represents a 1:1 relationship.  

2 

3 

4 

5 

6 

7 

2 3 4 5 6 7 

Es
ti

m
at

e
d

 t
o

ta
l n

it
ro

ge
n

 lo
ad

 

Actual total nitrogen load 

RPART - calibration 
RFR - calibration 
RPART - validation 
RFR - validation 

2 

3 

4 

5 

6 

7 

2 3 4 5 6 7 

Es
ti

m
at

e
d

 t
o

ta
l n

it
ro

ge
n

 lo
ad

 

Actual total nitrogen load 

RPART - calibration 
RFR - calibration 
RPART - validation 
RFR - validation 

2 

3 

4 

5 

6 

7 

2 3 4 5 6 7 

Es
ti

m
at

e
d

 t
o

ta
l n

it
ro

ge
n

 lo
ad

 

Actual total nitrogen load 

RPART - calibration 
RFR - calibration 
RPART - validation 
RFR - validation 



 

136 
 

(A) 

  
(B) 

  
(C) 

 
Figure 5.5: Total annual nitrogen yield (log10-transformed) estimates from multiple 

linear regression equations for calibration and validation data sets compared to watershed 

yields based on measurements for (A) agricultural, (B) developed, and (C) undeveloped 

watersheds using important variables from recursive partitioning and random forest 

regression.  Solid black line represents a 1:1 relationship. 
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(A)  

  
(B) 

 
(C) 

 
Figure 5.6: Total annual nitrogen concentration (log10-transformed) estimates from 

multiple linear regression equations for calibration and validation data sets compared to 

stream concentrations based on measurements for (A) agricultural, (B) developed, and 

(C) undeveloped watersheds using important variables from recursive partitioning and 

random forest regression.  Solid black line represents a 1:1 relationship. 
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Chapter 6: Summary 

 

 1. Benefits of this research 

 This research advances the understanding of hydrograph separation techniques 

and improves upon a widely used method of hydrograph separation.  Understanding the 

strengths and shortcomings of each method of hydrograph separation allows for a more 

informed choice of method when applied to a stream.  This study also reinforces the 

understanding of the effects that flowpath can have on nitrogen movement to streams, by 

confirming expected results of nitrogen concentrations in streams of highly modified, 

agricultural watersheds.  Finally, this research provides additional evidence which 

suggests that a small number of carefully selected variables can provide significant 

information about the long term annual total nitrogen loads and concentrations in 

streams, and the yields from their watersheds.   

 Both graphical and chemical tracer-based hydrograph separation (BFI program 

from Wahl and Wahl (1995) and end-member mixing analysis, respectively) can be used 

for hydrograph separation, if the data are available.  Due to current data availability, 

graphical methods of hydrograph separation are more widely applicable because they 

require less data.  However, as technology advances and the number and type of high 

temporal resolution water quality sensors increase, the number of streams where ratio-

EMMA can be applied will increase and become more diverse.  The more process 

oriented ratio-EMMA could be used to identify the conditions under which graphical 

methods may falter.  This will lead to a great increase in our understanding of a process 

that affects the amount of nitrogen in streams.  

 Distillation of a large number of watershed variables into a small subset which 

explain a large amount of variability in total nitrogen levels in streams will be a benefit to 

watershed management and future research.  Prioritization of limited resources is a 

constant concern for watershed managers and researchers alike.  The application of the 

important variables extracted from this research could inform decisions regarding the 

allocation of resources, and provide a defensible course of action.   
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 2. Future research possibilities 

 The results from this research have provided insight into the processes that move 

water and nitrogen from the landscape to streams.  However, many questions have been 

left unanswered, and many new questions have arisen.  The streams and watersheds 

examined in this research were all relatively small, which is a positive characteristic for a 

watershed study, as the heterogeneity within the watershed can be limited.  However, at 

larger stream sizes, heterogeneity will likely be greater.   

A research idea that came from this research was to test the effectiveness of 

graphical hydrograph separation at larger stream sizes.  It is theorized that at some point 

within a river network, the hydrograph will become attenuated to a level that would 

hinder the graphical methods from accurately estimating slowflow.  It will be beneficial 

to quantify the accuracy of multiple methods of hydrograph separation at various spatial 

scales to determine thresholds of reliability for each method.     

 Although the ratio-EMMA method tested in this research succeeded as a proof of 

concept, improvements to the current method can still be made.  Nitrate concentration, as 

used alongside specific conductance in this ratio-EMMA research, is not ideally suited 

for use with EMMA because it can undergo substantial transformations as it is 

transported across the landscape, and after it enters the stream.  However, as new 

continuous sensors are created which are able to measure additional water parameters that 

are well suited for EMMA, such as oxygen-18 (Munksgaard et al., 2012), the data can be 

applied to the ratio-EMMA.  Furthermore, an additional assumption that remains within 

the ratio-EMMA is that of a constant chemical concentration in the slowflow end-

member.  Information from new field studies and/or a literature review to determine the 

magnitude and timescale of changes in slowflow chemical concentration will further 

increase the accuracy of the ratio-EMMA method.   

 Additional variables could also be examined for their importance in estimating 

total nitrogen in streams.  Although 90 variables were examined for their wide ranging 

importance in determining nitrogen levels in streams, the selected variables do not 

represent an exhaustive list.  Studies have shown that variables such as topography 

(Onderka et al., 2012) and stream sinuosity (Peterson and Benning, 2013) may be 
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important drivers of nitrogen levels in streams.  These data were not available to be 

collected for all watersheds at the time of this research, but could prove useful for 

estimating nitrogen in streams.  Along the same lines, determining how to best apply the 

important variables to models could allow for higher prediction accuracy when 

estimating total nitrogen loads, yields, and concentrations.  When using multiple linear 

regression, important variables were occasionally removed from an equation due to an 

elevated variance inflation factor.  The removal of variables from the multiple linear 

regression models represents a loss of important information.  Retention of all important 

variables through the use of an alternative method, such as partial least squares 

regression, could allow for more accurate estimates of total nitrogen loads, yields, and 

concentrations in unstudied streams.    

 Although this study provides a small number of variables that are highly 

correlated with nitrogen in streams, establishing causal links between each variable and 

nitrogen movement to streams is incomplete.  Much research is still needed to determine 

these links in an effort to reduce nitrogen leaching to groundwater, runoff to streams, and 

export to coastal areas.    
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Appendix A: Nitrogen: a summary of environmental transformations and 

environmental concerns 

 

 This appendix contains a summary of the environmental transformation of 

nitrogen between many of its chemical forms, as well as the environmental concerns 

relating to each form of nitrogen presented.   

 

 Nitrogen: a summary of environmental transformations and environmental 

concerns 
 

 Nitrogen is an essential nutrient for plant growth and development.  In modern 

agriculture, nitrogen is often applied, oftentimes in the form of ammonia, urea, nitrate, or 

organic nitrogen (manure), to maintain high-yielding crops and soil fertility. The applied 

forms are transformed through natural processes into other forms with changes in the 

environmental conditions and the passage of time.  Each of these forms of nitrogen is a 

different chemical, but the nitrogen element is always the same.  Together, these 

processes allow nitrogen to cycle among its various forms and guarantees that no single 

form becomes a "dead end" product that accumulates in the environment.  

 Figure A1.1 illustrates the cycle of nitrogen, showing the transformations between 

its various chemical forms.  The transformations are induced by chemical reactions, 

microbiological reactions, plant metabolism, combustion, and/or industrial reactions.  

Industrial processes are used to accelerate natural transformation processes to produce the 

desired nitrogen forms.  Ammonia is produced in large quantities from atmospheric 

nitrogen gas for use as fertilizer through the Haber-Bosch process (Kramer, 2000).  Some 

forms of nitrogen are temporarily formed during a transformation reaction, while others 

have a longer lifetime in the environment.  These non-transient forms are distributed 

between the air, water, and biomass, depending upon their chemical properties and the 

environmental conditions.  Figure A1.1 indicates the environmental compartment that 

each form of nitrogen is commonly observed in its highest concentrations. 

 Not all of the nitrogen that is applied to an agricultural field as fertilizer is used by 

the crop.  The unused nitrogen, in one of its many forms, can leave the agricultural field 

and can cause environmental concerns when it enters areas of the environment where it 
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was not initially applied.  Figure A1.2 connects the different forms of nitrogen to a wide 

range of environmental concerns, with each stable form of nitrogen having its own set of 

environmental concerns.  Most forms of nitrogen are connected to many different 

environmental concerns. Some of these are direct connections. For example, nitrate is 

toxic to infants younger than six months of age, in which it can cause 

methemoglobinemia, or "blue-baby" syndrome (USGS, 2012), and to some livestock — 

since they are not able to metabolize it.  Other connections between nitrogen forms and 

environmental concerns are indirect.  Nitrate, when introduced to a stream at 

concentrations exceeding the ability of the stream to assimilate it, acts as a fertilizer and 

increases the growth of aquatic plants (USGS, 2011).  This process, known as 

eutrophication, creates a number of negative cascading effects, some representing 

permanent changes to the ecosystem and species composition.  Because many streams 

and rivers flow into lakes, estuaries, and oceans, the excess nitrogen carried into these 

water bodies may cause them to undergo eutrophication far from the original source of 

the nutrient. 
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Figure A1.1: The cycle of nitrogen in the agricultural environment showing the 

transformations between its various chemical forms (boxes) and the transformation 

pathways that connect them (arrows). The chemical forms of nitrogen are arranged in 

rows by their oxidation state. 

 

  



 

162 
 

 
Figure A1.2: The complex connections among nitrogen from fertilizer and various water 

quality and other environmental concerns. The lines show the many potential pathways 

that connect the sources of nitrogen used in agriculture with the many different concerns. 

A realized concern has an adverse effect on economic or agricultural sustainability, 

aesthetics and recreation, human and ecosystem health, or climate change. The nitrogen 

which is applied as fertilizer, both chemical and manure, undergoes transformation 

through chemical and biological reactions to different forms of nitrogen. Each of these 

forms of nitrogen interacts with the environment in a different way and through different 

processes. Some forms of nitrogen can cause direct adverse effects on the environment. 

(Shown by direct lines from a nitrogen form to an environmental concern.) Some of the 

nitrogen forms can cause environmental perturbations (changes in the condition of the 

environment), which then can then produce adverse effects on the environment. 
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Appendix B: Supplemental information for Chapter 2: A comparison of high-

resolution specific conductance-based end-member mixing analysis and a graphical 

method for baseflow separation of four streams in hydrologically challenging 

agricultural watersheds  
 

 This supplemental information provides the analysis of the effects of time interval 

between continuous SC measurements on the estimated long term average slowflow 

volume.  Eleven different data collection time intervals (15 minutes, 30 minutes, 1 hour, 

2 hours, 4 hours, 6 hours, 12 hours, 1 day, 2 days, 7 days, and 28 days) were tested using 

data records of three different lengths (1-week, 1-month, and 2-years).  Results are 

displayed in Figure B2.1. 

 Also included are supplemental figures and tables (Figures B2.2 through B2.4 and 

Table B2.1).  Streamflow and stream SC data for the four streams, along with the time-

variable plots of SCSF are shown in Figure B2.2.  Figure B2.3 presents the comparison of 

the baseflow hydrograph from the BFI program to multiple slowflow hydrographs (each 

using different SCFF input values) from SC-EMMA in Granger Drain, WA.  Plots of daily 

slowflow estimates from SC-EMMA using a constant SCSF against those using a time-

variable SCSF are presented in Figure B2.4 for all four streams.  Table B2.1 shows the 

range of slowflow index (SFI) estimates resulting from all combinations of commonly 

used SCFF and SCSF values in each of the four streams.   

 

 Effect of time intervals between SC measurements on SC-EMMA results 

 

 The temporal resolution (interval between observations) of the SC input data was 

examined to determine its effect on the calculated SFI for the 2 years of available data at 

each watershed.  To test the impact of lower resolution continuous data, separate 

calculations of SFI were made after systematically removing specific data points, 

representing a more coarsely sampled continuous data set.  Beginning with the 15-minute 

data (highest resolution), every other data point was removed to represent 30-minute 

continuous data.  This method of systematic removal of data points was done to produce 

11 separate data sets for each stream with data intervals of 15 minutes, 30 minutes, 1 

hour, 2 hours, 4 hours, 6 hours, 12 hours, 1 day, 2 days, 7 days, and 28 days. Values for 

SCSF and SCFF (Table B2.1) were input into equations 3 and 4 to calculate the slowflow 
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volume and SFI during the 2 years of data for each of the 11 data sets.  The length of the 

data record was also varied for each watershed to determine the effect of data resolution 

on SFI at differing lengths of record.  Three lengths of data record were examined: the 

entire record (2 years, bi-annual), a 1-month period (the first June – mid-growing season), 

and a 1-week period (beginning on June 5 during the first year of record at each site).  

Each length of record was examined separately, but treated similarly by creating separate 

data sets of progressively greater data collection intervals, as described above.   

 The time interval between measurements of SC data had essentially no effect on 

the bi-annual SFI for intervals of 1 day or less.  As shown in Figure B2.1A, the calculated 

SFI for the 2 years for each watershed remained nearly constant (+ 1%) for intervals 

ranging from 15 minutes through 720 minutes (12 hours).  For an interval of 1 day, the 

variation was < + 5% for all watersheds.  For data intervals greater than 1 day, the bi-

annual SFI diverged substantially from the bi-annual SFIs calculated using the shorter 

data intervals in all watersheds except for Granger Drain, WA.   

 The variability in the calculated SFI values for periods of 1 month and 1 week 

followed a similar pattern as a 2-year period.  For a 1-month period, the calculated SFI 

remained constant in all watersheds (+ 1%) at SC measurement intervals of < 720 

minutes (12 hours, Figure B2.1B).  When the period was shortened to 1 week for 

calculating SFI, the same results were obtained (Figure B2.1C).     

 Based on the four streams, a daily interval for SC measurements in the stream is 

sufficient to calculate bi-annual SFI by SC-EMMA.  In the streams studied, there was 

little added value in using 15-minute SC intervals compared to 1-day SC intervals when 

calculating a bi-annual SFI.  As a result, the amount of data that is necessary can be 

reduced, assuming that the goal is to determine the SFI of a stream.  However, at time 

intervals greater than one observation per day, the calculated bi-annual SFI shows 

increased variability.  Using coarser data also may result in loss of extreme data points, 

which could alter the values chosen for SCFF and SCSF, and change the calculated SFI.  

When calculating the SFI for a shorter time period (1 month and 1 week in this case), 

using a 12-hour data collection interval was as effective as the 15-minute data in the 

watersheds of this study, even in a flashy stream such as Tommie Bayou, MS. 
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Table B2.1: The range of potential SFI values from SC-EMMA based on all common combinations of input values (SCFF and 

SCSF) for four agricultural watersheds.   

 
1 Range 33 to 395 μS/cm 

2 Range 118 to 641 μS/cm 

3 Range 79 to 126 μS/cm 

* median of all SC values if there were multiple SC measurements during times of equal flow 

# highest SC value if there were multiple SC measurements during times of equal flow 

NA: not applicable  

Potential input values             

for SCFF (μS/cm)
SCFF input

SFI % (lowest to 

highest SCSF input)
SCFF input

SFI % (lowest to 

highest SCSF input)
SCFF input

SFI % (lowest to 

highest SCSF input)
SCFF input

SFI % (lowest to 

highest SCSF input)

SCFF (values used in this study) 41 78 to 51 35 69 to 23 67 104 to 64 149 58 to 42

Median rainfall SC 21 81 to 55 10.3 71 to 25 10.6 103 to 66 5.4 68 to 52

SC during highest flow 80 88 to 38 156 53 to 13 129 104 to 61 335 33 to 20

Lowest stream SC 61 74 to 45 60 66 to 21 123 104 to 61 293 41 to 27

Median overland flow SC No data NA No data NA 81 
1 104 to 63 339 

2 32 to 20

Irrigation water SC NA NA 1190 114 to 988 NA NA 99 
3 62 to 46

Potential input values             

for SCSF (μS/cm)
SCSF input

SFI % (lowest to 

highest SCFF input)
SCSF input

SFI % (lowest to 

highest SCFF input)
SCSF input

SFI % (lowest to 

highest SCFF input)
SCSF input

SFI % (lowest to 

highest SCFF input)

SCSF (Highest stream SC, values 

used in this study)
236 55 to 38 904 30 to 318 836 66 to 61 842 52 to 20

Median groundwater SC 168 81 to 68 1098 25 to 988 793 70 to 65 727 60 to 26

SC during lowest flow 184*(185#) 73 to 58 (73 to 57) 392*(672#)
71 to 114 (41 to 

176)
541*(574#)

103 to 104 (97 to 

97)
674*(688#) 65 to 30 (63 to 29)

Morgan Creek, MD Tommie Bayou, MS South Fork Iowa River (SFIR), IA Granger Drain, WA
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 (A) 2-year SFI         

 
(B) 1-month SFI  

 
(C) 1-week SFI        

 

Figure B2.1: Slowflow index (SFI, in percent) for four agricultural streams for (A) a 2-

year, (B) a 1-month, and (C) a 1-week time period calculated using various time intervals 

between the SC inputs values for SC-EMMA.  The vertical line represents the calculated 

SFI based on data resolution of one data point per day.  Input values (SCFF and SCSF) for 

SC-EMMA are shown in Table 2.1 of the main text.   
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 (A) Morgan Creek, MD      (B) Tommie Bayou, MS 

 
(C) South Fork Iowa River (SFIR), IA    (D) Granger Drain, WA 

 
Figure B2.2: Streamflow and specific conductance records from four agricultural streams with the time-variable SCSF values. 
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Figure B2.3:  Total streamflow hydrograph compared to the baseflow/slowflow 

hydrographs calculated by the BFI program and SC-EMMA (using multiple potential 

inputs) for Granger Drain, WA (only one water year displayed).  Gaps in the hydrograph 

represent no data.   
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 (A) Morgan Creek, MD      (B) Tommie Bayou, MS 

 
(C) South Fork Iowa River (SFIR), IA    (D) Granger Drain, WA 

 
Figure B2.4: SC-EMMA slowflow (m

3
/s) calculated using a constant SCSF and a variable SCSF. 
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Appendix C: Supplemental information for Chapter 3: Estimation of time-variable 

fast flowpath end-member concentrations for application in chemical hydrograph 

separation analyses 
 

 This supplemental information section contains additional results from the 

sensitivity analysis of the ratio-EMMA to the temporal relation between streamflow peak 

and minimum or maximum concentrations in fastflow (Figures C3.1 and C3.2), 

sensitivity analysis to a user defined range of ratios (Table C3.1), and a discussion 

regarding the choice of a range of ratios. 

 
 Sensitivity analysis of the results to the streamflow peak and max/min 

 concentrations in fastflow 

 

 Figures C3.1A-D and C3.2A-D show the ratio-EMMA results compared to the 

actual concentration and flow values under the conditions where the streamflow peak and 

minimum [A]FF occurred concurrently, but minimum [B]FF occurred 24 hours later 

(tQmax=t[A]min<t[B]min); the streamflow peak occurred, but and the minimum [A]FF and 

[B]FF occurred 24 hours earlier (tQmax>t[A]min=t[B]min); streamflow peak occurred, but and 

the minimum [A]FF and [B]FF occurred 24 hours later (tQmax<t[A]min=t[B]min); and minimum 

[A]FF occurred, then streamflow peak occurred 24 hours later, then the minimum [B]FF 

occurred 24 hours after that (t[A]min< tQmax<t[B]min). 

 

 Scenarios in which the timing of the minimum [A]FF occurred concurrently 

with that  of [B]FF 

 

 In all of the scenarios where chemicals A and B reached simultaneous minimum 

concentrations in fastflow, during peakflow (>100 m
3
/s) the ratio-EMMA results were in 

close agreement with the known concentrations.  The combined median absolute 

deviation from actual fastflow concentrations during peakflow in both streams was +0.04 

mg N/L (18%) for chemical A and +4.0 μS/cm (29%) for chemical B.  There was slightly 

more discrepancy among the concentrations at low flows (<15 m
3
/s), with median 

absolute deviation from actual concentrations of +0.25 mg N/L (15%) for chemical A and 

+29 μS/cm (24%) for chemical B.  Percent error was greater among concentration 
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estimates during peakflow as a result of the actual concentration being low during peak 

flow.   

 

 Scenarios in which the timing of the minimum [A]FF diverged from that of 

[B]FF 

 

 In all of the scenarios where chemicals A and B reached minimum concentrations 

in fastflow at different times, the ratio-EMMA results were in closest agreement with the 

actual concentrations at peakflow, having a median absolute deviation of +0.05 mg/L 

(30%) for chemical A and +5.3 μS/cm (43%) for chemical B.  There was more 

discrepancy at lower flows, with median absolute deviation from actual concentrations of 

+0.32 mg N/L (19%) for chemical A and +43 μS/cm (37%) for chemical B.  As with the 

scenarios in which the timing of the minimum [A]FF occurred concurrently with that of 

[B]FF, percent error was larger during peakflow than in lowflow due to the smaller actual 

concentrations during peakflow. 

 

 Scenarios in which the timing of the maximum [A]FF and minimum [B]FF 

occurred concurrently 

 

 During peakflow in the streams, the median absolute deviation from actual 

fastflow concentrations was 0.38 mg/L (4.0%) for chemical A and 37 μS/cm (340%) for 

chemical B, whereas during lowflow in the streams, the median absolute deviation was 

1.3 mg/L (30%) for chemical A and 283 μS/cm (230%) for chemical B.   

 

 Sensitivity analysis of the results to a use defined fastflow ratio of [A]FF to 

[B]FF 
 

 When defining the range of ratios of [A]FF to [B]FF based on knowledge of the 

watershed where the ratio-EMMA is applied, and not using the iterative approach to ratio 

selection, the choice of the range of ratios affects the results of the model.  Therefore, the 

sensitivity of the model to a user defined range of ratios was examined using a wide 

variety of possible ratios.  The sensitivity, as a function of the magnitude and range of the 

defined ratio of [A]FF to [B]FF was evaluated using the synthetic stream data that were 
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meant to represent a stream with important additions of groundwater and a stream with 

important additions of overland flow water.  The scenario chosen for both streams was 

one in which the streamflow peak occurred concurrently with the minimum [A]FF and 

[B]FF (tQmax=t[A]min=t[B]min).   

 When the model was run forward (Figure 3.1A-I of the main text), the results 

were bounded by the upper (larger) extent of the defined ratio, and the model commonly 

found the lowest fastflow concentrations that fell near that ratio.  When the model was 

run in reverse, the lower (smaller) end of the defined ratio limited the results and 

commonly led to the highest possible fastflow concentration estimates.  Numerous ranges 

of ratios were tested, some of which did not restrict the limits of the range (unbounded) 

while others set limits on one or both ends of the range of ratios (bounded).   

 

Unbounded/Unbounded 

 

 When the model was run (forward and reverse, taking the mean of the results) 

with a range of ratios in fastflow that is essentially unbounded on either end (0.0000 to 

1000), the model found the lowest and the highest possible fastflow concentration 

estimates during each two-hour time interval, and therefore defined the limits of all 

possible fastflow concentrations that could be produced by the model.  Those extreme 

values were then averaged during each two hour time interval to produce the 

concentration estimates for that interval.   

 For both synthetic streams, when the ratio was unbounded on both ends, the ratio-

EMMA model estimates of fastflow (QFF) diverged from the actual results to a large 

extent (Table C3.1).  Bi-hourly fastflow estimates differed by a median absolute 

deviation of +0.70 m
3
/s (62%) in the groundwater dominated synthetic stream and +2.4 

m
3
/s (25%) in the overland flow dominated synthetic stream.  Total fastflow volume had 

a percent error of 40% in the groundwater dominated synthetic stream and 7.9% in the 

overland flow dominated stream (Table C3.1).  With an unbounded range of ratios, the 

model produced estimates of slowflow index (SFI, Equation 5 in the main text) that were 

less than the actual values for both synthetic streams (Table C3.1).  The difference 
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between the actual SFI values and the ratio-EMMA estimated values was -13% for the 

groundwater dominated synthetic stream and was -6.1% when used with the overland 

flow dominated synthetic stream.   

 The median absolute deviation between the ratio-EMMA estimated fastflow 

concentration and the actual values in the groundwater dominated synthetic stream was 

+2.1 mg/L (240%) for chemical A and +280 μS/cm (400%) for chemical B and was +1.2 

mg/L (120%) for chemical A and +150 μS/cm (190%) for chemical B in the overland 

flow dominated synthetic stream.   

 Chemical A loads in fastflow were estimated for the entire length of record.  The 

percent error for the total load estimate was 1700% in the groundwater dominated 

synthetic stream and 240% in the overland flow dominated synthetic stream (Table C3.1).  

Chemical B loads (calculated by converting SC (μS/cm) to total dissolved solids (TDS in 

mg/L); TDS ~ 0.64*SC by combining the Russell Equation and Langlier approximation) 

in fastflow were also estimated for the entire length of record.  The percent error for the 

load estimate was 2600% in the groundwater dominated synthetic stream and 370% in 

the overland flow dominated synthetic stream (Table C3.1).   

 The deviation between the actual and estimated values in each of these synthetic 

streams suggest that the high concentration estimates that result from the lower limit of 

the pre-defined ratio skew the results.  In this case, the model does not produce 

meaningful results.   

 

Bounded/Unbounded 

 

 Fastflow estimates produced by running the model with ranges of ratios that were 

bounded on the low end (0.0121, 0.0128, and 0.0135) and unbounded on the high end 

(1000) were much more similar to the actual values than when the range of ratios was left 

unbounded on both ends (Table C3.1).  Bi-hourly fastflow estimates differed by a median 

absolute deviation of +0.04 m
3
/s (5.0%) in the groundwater dominated synthetic stream 

and +0.45 m
3
/s (4.9%) in the overland flow dominated synthetic stream.  Total fastflow 

volume had an average percent error of 0.70% in the groundwater dominated synthetic 
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stream and 1.0% in the overland flow dominated stream (Table C3.1).  The model 

produced SFI estimates that were less than, but nearly equal to the actual values for both 

synthetic streams.  The difference between the actual SFI values and the ratio-EMMA 

estimated values was <0.50% for the groundwater dominated synthetic stream and was 

<1.0% when used with the overland flow dominated synthetic stream (Table C3.1).     

 The median absolute deviation between the ratio-EMMA estimated fastflow 

concentration and the actual values in the groundwater dominated synthetic stream was 

+0.33 mg/L (32%) for chemical A and +40 μS/cm (49%) for chemical B, and was +0.31 

mg/L (30%) for chemical A and +39 μS/cm (48%) for chemical B in the overland flow 

dominated synthetic stream.   

 The percent error for load estimates of chemical A had a mean of -30% in the 

groundwater dominated synthetic stream and -31% in the overland flow dominated 

synthetic stream.  The percent error for chemical B load estimates had a mean of -43% 

among the scenarios in the groundwater dominated synthetic stream and -45% in the 

overland flow dominated synthetic stream for the three scenarios (Table C3.1).   

 

Unbounded/Bounded 

 

 The results produced by running the model with a range of ratios that were 

unbounded on the lower end (0.0000), but were bounded on the high end (0.0121, 0.0128, 

and 0.0135) diverged substantially from the actual fastflow values (Table C3.1).  Bi-

hourly fastflow estimates differed by a median absolute deviation of +0.91 m
3
/s (93%) in 

the groundwater dominated synthetic stream and +3.3 m
3
/s (35%) in the overland flow 

dominated synthetic stream.  Total fastflow volume had an average percent error of 42% 

in the groundwater dominated synthetic stream and 9.5% in the overland flow dominated 

stream (Table C3.1).  Considering all of the tested ranges of ratios that were 

unbounded/bounded, the difference between the actual SFI values and the ratio-EMMA 

estimated values was -13% for the groundwater dominated synthetic stream and -7% in 

the overland flow dominated synthetic stream (Table C3.1).      
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 The median absolute deviation between the ratio-EMMA estimated fastflow 

concentration and the actual values in the groundwater dominated synthetic stream was 

+2.7 mg/L (280%) for chemical A and +360 μS/cm (450%) for chemical B and was +1.5 

mg/L (150%) for chemical A and +200 μS/cm (240%) for chemical B in the overland 

flow dominated synthetic stream. 

 The percent error for chemical A load estimates had a mean of 1800% in the 

groundwater dominated synthetic stream and 290% in the overland flow dominated 

synthetic stream.  Chemical B load estimates had a mean percent error of 2700% among 

the scenarios in the groundwater dominated synthetic stream and 440% in the overland 

flow dominated synthetic stream for the three scenarios (Table C3.1). 

 The deviation, as with the results from the unbounded/unbounded analysis, was 

caused by the high concentration estimates of [A]FF and [B]FF due to the lower limit of 

the ratio, which skewed the results.  The bounds placed on the high end of the ratio 

resulted in fastflow concentration estimates that were elevated in comparison to the 

results produced with an unbounded upper end of the range of ratios.  When limiting the 

upper end of the ratio to a value of 0.0128, for example (the known ratio measured from 

the synthetic data), running the model forward produces concentration estimates that are 

equal to, or very nearly equal to the actual concentrations from the synthetic data.  

However, those estimates are then averaged with the estimates produced by running the 

model in reverse.  Running the model in reverse produces the highest possible 

concentration estimates because the lower end of the ratio was unbounded.  This results 

in an averaged concentration that is too high, producing fastflow concentration estimates 

which are much greater than the actual values.   

 

Bounded/Bounded 

 

 Estimates of fastflow produced by running the model with ranges of ratios that 

were bounded on the low end (0.0121, 0.0114, 0.0100, and 0.0086), on the high end 

(0.0135, 0.0142, 0.0156, and 0.0170), and centered on the actual value were in good 

agreement with the actual values (Table C3.1).  Bi-hourly fastflow estimates differed by a 
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median absolute deviation of +0.02 m
3
/s (2.6%) in the groundwater dominated synthetic 

stream and +0.20 m
3
/s (2.3%) in the overland flow dominated synthetic stream.  Total 

fastflow volume had a mean percent error of 0.60% in the groundwater dominated 

synthetic stream and 0.70% in the overland flow dominated stream (Table C3.1).  In both 

synthetic streams, the departure from the actual SFI was minimal (< 0.1%) in the case 

where the range of ratios was defined as 0.0121 to 0.0135 (Table C3.1).  These ratio 

values bracket the actual ratio of the chemicals in fastflow (0.0128).  As the chosen range 

of ratios was widened (0.0114 to 0.0142) and then (0.0100 to 0.0156), the results again 

diverged only slightly, with a maximum discrepancy in SFI of 1.2% seen in the overland 

flow dominated synthetic stream.  As the range of ratios widened more (0.0086 to 

0.0170), the divergence between estimated and actual SFI values increased.  In the 

groundwater dominated synthetic stream, the difference between the estimated and actual 

SFI increased slightly (-3.1%), while in the overland flow dominated synthetic stream the 

difference increased to a larger extent (-6.5%).  At this range of ratios, the lower limit of 

the range (0.0086) was nearly equal to the actual ratio of [A]S to [B]S (0.0083) which was 

the lowest ratio that produced estimated values (when the ratio is left unbounded).  Ratios 

of [A]FF to [B]FF less than [A]S to [B]S cannot characterize the mixture of waters in the 

stream and therefore the model does not produce results.   

 The median absolute deviation between the ratio-EMMA estimated fastflow 

concentration and the actual values in the groundwater dominated synthetic stream was 

+0.14 mg/L (15%) for chemical A and +18 μS/cm (23%) for chemical B, and was +0.13 

mg/L (12%) for chemical A and +16 μS/cm (20%) for chemical B in the overland flow 

dominated synthetic stream. 

 The percent error for chemical A load estimates had a mean of 22% in the 

groundwater dominated synthetic stream and 19% in the overland flow dominated 

synthetic stream.  Total load estimates for chemical B had a mean percent error of 32% 

among the scenarios in the groundwater dominated synthetic stream and 28% in the 

overland flow dominated synthetic stream for the three scenarios (Table C3.1). 
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 Ranges of ratios that were bounded on both ends, but not centered on the actual 

ratio value were also tested.  These “lopsided” ranges produced fastflow estimates that 

were in good agreement with actual values (Table C3.1).  Bi-hourly fastflow estimates 

differed by a median absolute deviation of +0.01 m
3
/s (1.0%) in the groundwater 

dominated synthetic stream and +0.07 m
3
/s (0.88%) in the overland flow dominated 

synthetic stream.  Total fastflow volume had a mean percent error of 0.20% in both the 

groundwater dominated synthetic stream and the overland flow dominated stream.  SFI 

estimates were <0.3% different than the actual SFI in both synthetic streams (Table 

C3.1).  The difference was greatest when the chosen range of ratios were smaller (0.0114 

to 0.0135), resulting in elevated estimates of [A]FF and [B]FF.        

 The median absolute deviation between the ratio-EMMA estimated fastflow 

concentration and the actual values in the groundwater dominated synthetic stream was 

+0.06 mg/L (6.8%) for chemical A and +6.7 μS/cm (10%) for chemical B, and was +0.05 

mg/L (5.1%) for chemical A and +6.8 μS/cm (8.3%) for chemical B in the overland flow 

dominated synthetic stream. 

 Chemical A loads in fastflow had a mean percent error of 7.0% in both the 

groundwater dominated synthetic stream and the overland flow dominated synthetic 

stream.  The percent error for total load estimates of chemical B had a mean of 10% 

among the scenarios in both the groundwater dominated synthetic stream and the 

overland flow dominated synthetic stream for the three scenarios (Table C3.1). 

 

 Choosing a primary ratio when applying a user defined range of ratios 

 

 The ratio-EMMA can be a more subjective model with opting for a user defined 

range of ratios.  The choice of range is very important and will establish the accuracy and 

bias of the results.  Although the full optimization of a user defined range of ratios is 

outside of the scope of this paper, general information is gained from the analyses 

performed.   

 A range of ratios could be generated based on known characteristics of the 

watershed, such as the ratio of the two chemicals in overland flow water.  The model 
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could then be run and the estimated fastflow concentrations could be referenced against 

any known information about fastflow concentrations in the watershed.  The 

concentrations estimated by the ratio-EMMA should likely be between the lowest 

measured concentrations in the stream and the chemical concentrations in precipitation 

(assuming an inverse relationship between the concentration of the chemicals in the 

stream and streamflow).  This is in best agreement with expectations of fastflow 

concentration for many situations, as the true concentration of the chemicals is expected 

to be between those two values.  The resulting fastflow estimates may not match point 

samples from within the watershed however, as the estimates produced by the ratio-

EMMA model represent the aggregated concentration of the chemicals in fastflow across 

the entire watershed.   

 The chosen range of ratios is also a balance between precision/narrowness of the 

range and the number of values that the ratio-EMMA will not be able to produce.  As the 

selected range of ratios gets smaller, the likelihood that the model will not be able to find 

a solution that meets all necessary criteria gets larger.  A very narrow range of ratios is 

likely to result in many time intervals where the model cannot find a solution.  A wider 

ratio will result in fewer or no non-values.  If the model is unable to produce results (at 

peak flows for instance), this suggests that the selected ratio may not be representative of 

the ratio of [A]FF to [B]FF.  At peak flow, the stream will have large additions of water 

from fastflow sources.  Because of this, the ratio of [A]FF to [B]FF will become more 

important and could drive the ratio in the stream.  This could suggest that altering the 

ratio by selecting values that are more extreme than those measured in the stream could 

produce more realistic results for the ratio-EMMA during highflow.   
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Table C3.1: Comparison of the actual and ratio-EMMA estimates of fastflow volume, slowflow index (SFI), and chemical A and 

B loads resulting from the selection of different ranges of ratios.  Selected ranges of ratios of [A]FF to [B]FF are shown in 

parentheses.  Values were calculated assuming that streamflow peak and minimum [A]FF and [B]FF occur concurrently.   
 

Fastflow 

(x10
7
 m

3
)†

% Error
‡ SFI

* 

(%)

Difference
# 

(%)

Chemical 

A load 

(x10
3
 kg)

% Error
‡

Chemical 

B load 

(x10
3
 kg)"

% Error
‡

Fastflow 

(x10
7
 m

3
)†

% Error
‡

SFI
*
 (%)

Difference
# 

(%)

Chemical 

A load 

(x10
3
 kg)

% Error
‡

Chemical 

B load 

(x10
3
 kg)"

% Error
‡

Actual values 2.0 68.3 3.4 170 4.9 23.1 11 574

Unbounded (0) Unbounded (1000) 2.8 40 55.6 -19 61 1678 4578 2595 5.3 7.9 17.0 -26 39 236 2673 366

Bounded (.0121) Unbounded (1000) 2.0 -0.6 68.5 0.3 2.6 -25 111 -35 4.9 -0.8 23.7 2.8 9 -26 359 -37

Bounded (.0128) Unbounded (1000) 2.0 -0.7 68.6 0.3 2.4 -30 96 -43 4.9 -1.0 23.9 3.4 8 -31 311 -46

Bounded (.0135) Unbounded (1000) 2.0 -0.8 68.6 0.4 2.2 -34 85 -50 4.9 -1.2 24.0 3.9 7 -36 272 -53

Unbounded (0) Bounded (.0121) 2.9 42 54.9 -20 64 1768 4805 2728 5.4 9.8 15.6 -33 45 294 3165 451

Unbounded (0) Bounded (.0128) 2.9 42 55.0 -20 63 1753 4765 2704 5.4 9.5 15.8 -32 44 284 3081 437

Unbounded (0) Bounded (.0135) 2.9 42 55.1 -19 63 1742 4736 2688 5.4 9.3 16.0 -31 43 278 3023 427

Bounded (.0121) Bounded (.0135) 2.0 -0.1 68.4 0.0 3.3 -3.1 166 -2.5 4.9 0.0 23.1 0.1 11 -1.6 569 -0.8

Bounded (.0114) Bounded (.0142) 2.0 0.3 68.3 -0.1 3.8 11 197 16 4.9 0.3 22.9 -0.9 12 8.3 646 12

Bounded (.0100) Bounded (.0156) 2.0 1.3 67.9 -0.6 5.2 52 305 79 5.0 1.5 21.9 -5.1 17 46 978 70

Bounded (.0086) Bounded (.0170) 2.2 9.7 65.3 -4.5 17 404 1228 623 5.3 8.5 16.6 -28 41 255 2822 392

Bounded (.0121) Bounded (.0142) - 

lopsided on the high side of the actual ratio
2.0 0.0 68.3 0.0 3.4 0.1 169 -0.8 4.9 0.0 23.1 0.2 11 -1.4 560 -2.5

Bounded (.0114) Bounded (.0135) - 

lopsided on the low side of the actual ratio
2.0 0.3 68.2 -0.2 3.9 14 204 20 4.9 0.4 22.8 -1.3 13 12 675 18

Overland flow dominated synthetic stream

Range of 

ratios

Groundwater dominated synthetic stream
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Figure C3.1: Ratio-EMMA estimated slowflow, [A]FF, and [B]FF compared to actual 

values in the groundwater dominated synthetic stream where (A) the streamflow peak and 

minimum [A]FF occurred concurrently, but minimum [B]FF occurred 24 hours later 

(tQmax=t[A]min<t[B]min); (B) the streamflow peak occurred, but and the minimum [A]FF and 

[B]FF occurred 24 hours earlier (tQmax>t[A]min=t[B]min); (C) streamflow peak occurred, but 

and the minimum [A]FF and [B]FF occurred 24 hours later (tQmax<t[A]min=t[B]min); and (D) 

minimum [A]FF occurred, then streamflow peak occurred 24 hours later, then the 

minimum [B]FF occurred 24 hours after that (t[A]min< tQmax<t[B]min). 
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Figure C3.2: Ratio-EMMA estimated slowflow, [A]FF, and [B]FF compared to actual 

values in the overland flow dominated synthetic stream where (A) the streamflow peak 

and minimum [A]FF occurred concurrently, but minimum [B]FF occurred 24 hours later 

(tQmax=t[A]min<t[B]min); (B) the streamflow peak occurred, but and the minimum [A]FF and 

[B]FF occurred 24 hours earlier (tQmax>t[A]min=t[B]min); (C) streamflow peak occurred, but 

and the minimum [A]FF and [B]FF occurred 24 hours later (tQmax<t[A]min=t[B]min); and (D) 

minimum [A]FF occurred, then streamflow peak occurred 24 hours later, then the 

minimum [B]FF occurred 24 hours after that (t[A]min< tQmax<t[B]min). 
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Appendix D: Visual Basic code for the ratio-EMMA 

 

 This appendix contains the Visual Basic code which runs the logical algorithm 

behind the ratio-EMMA model. 

 

 Visual basic code for Ratio-EMMA 

 

Option Explicit 

Public Function FastflowForwardAndReverse() 

 

    Dim wks1 As Worksheet 

    Set wks1 = ActiveWorkbook.Sheets("Ratio EMMA") 

    Dim wks2 As Worksheet 

    Set wks2 = ActiveWorkbook.Sheets("Intermediate calc sheet") 

 

    Dim time As Double  'This starts off the examination of the first row of data and 

then     'continues to the second row, third row,...and so on 

 

For time = 1 To 168   'the number rows in the original data 

             

‘measured or assumed stream and end-member values 

        Dim Qs As Double   'streamflow 

        Dim ConcAs As Double  'concentration of chemical A in stream 

        Dim ConcBs As Double  'concentration of chemical B in stream 

        Dim ConcAsf As Double 'concentration of chemical A in baseflow 

        Dim ConcBsf As Double 'concentration of chemical B in baseflow 

         

    Qs = wks1.Cells(time + 1, 2) 

    ConcAs = wks1.Cells(time + 1, 3) 

    ConcBs = wks1.Cells(time + 1, 4) 

    ConcAsf = wks1.Cells(time + 1, 5) 

    ConcBsf = wks1.Cells(time + 1, 6) 

                     

    If ConcAs = ConcAsf Then wks1.Cells(time + 1, 7) = 0   

'sets ConcAff as 0 if stream concentration is equal to slowflow concentration 

    If ConcAs = ConcAsf Then wks1.Cells(time + 1, 8) = 0   

'sets ConcBff as 0 if stream concentration is equal to slowflow concentration 

    If ConcAs = ConcAsf Then GoTo LastLine2 

         

 

'loop for generating the TempQsfA and TempQsfB based on CxyF. This has to generate 

all 1000 'values 

 



 

 

183 
 

        Dim ConcAffBffTest As Double   

 

    For ConcAffBffTest = 1 To 1001 

            Dim TempConcAff As Double  

'temporary concentration of chemical A in fastflow 

 

        TempConcAff = wks2.Cells(ConcAffBffTest + 1, 1) 

            Dim TempQsfA As Double   

'slowflow discharge estimate based on TempConcAff 

 

        If (ConcAsf - TempConcAff) = 0 Then TempConcAff = TempConcAff + 0.00001 

        TempQsfA = (Qs * (ConcAs - TempConcAff)) / (ConcAsf - TempConcAff) 

        TempQsfA = Round(TempQsfA, 2) 

        If TempQsfA < 0 Then TempQsfA = 0 

    If TempQsfA > wks1.Cells(time + 1, 2) Then TempQsfA = 0 

        wks2.Cells(ConcAffBffTest + 1, 2) = TempQsfA 

            Dim TempConcBff As Double  

'temporary concentration of chemical B in fastflow 

 

        TempConcBff = wks2.Cells(ConcAffBffTest + 1, 3) 

            Dim TempQsfB As Double   

'slowflow discharge estimate based on TempConcBff 

 

        If (ConcBsf - TempConcBff) = 0 Then TempConcBff = TempConcBff + 0.00001 

        TempQsfB = (Qs * (ConcBs - TempConcBff)) / (ConcBsf - TempConcBff) 

        TempQsfB = Round(TempQsfB, 2) 

        If TempQsfB < 0 Then TempQsfB = 0 

    If TempQsfB > wks1.Cells(time + 1, 2) Then TempQsfB = 0 

        wks2.Cells(ConcAffBffTest + 1, 4) = TempQsfB 

 

    Next ConcAffBffTest 

                 

 

'loop to find equal pairings of TempQsfA and TempQsfB 

 

        Dim QsfAQsfBcheck As Double   

    For QsfAQsfBcheck = 1 To 1001 

 

            Dim QsfAHold As Double  

'temporary slowflow discharge estimate based on chemical A held for comparison against 

‘the temporary slowflow discharge estimate based on chemical B 

 

            Dim ConcAff As Double 'concentration of chemical A in fastflow 

            Dim ConcBff As Double 'concentration of chemical B in fastflow 
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        QsfAHold = wks2.Cells(QsfAQsfBcheck + 1, 2)  

        ConcAff = wks2.Cells(QsfAQsfBcheck + 1, 1)   

        If ConcAff = 0 Then ConcAff = 0.00001 

     

            Dim QsfBcheck As Double  

'sub-loop within QsfAQsfBcheck loop to compare TempQsfB against QsfAHold 

 

        For QsfBcheck = 1 To 1001 

         

If QsfAHold = 0 Then GoTo LastLine1  

If wks2.Cells(QsfBcheck, 4) = 0 Then GoTo LastLineA 

         

        If wks2.Cells(QsfBcheck, 4) <= QsfAHold And wks2.Cells(QsfBcheck + 2, 4) >= 

QsfAHold And QsfAHold <> 0 And wks2.Cells(QsfBcheck, 4) <> 0 And 

wks2.Cells(QsfBcheck + 2, 4) <> 0 Or wks2.Cells(QsfBcheck, 4) >= QsfAHold And 

wks2.Cells(QsfBcheck + 2, 4) <= QsfAHold And QsfAHold <> 0 And 

wks2.Cells(QsfBcheck, 4) <> 0 And wks2.Cells(QsfBcheck + 2, 4) <> 0 Then GoTo 

LastLine1 

        

LastLineA: 

         

        Next QsfBcheck  

     

LastLine1: 

 

        ConcBff = wks2.Cells(QsfBcheck + 2, 3)  

     

        If ConcBff = 0 Then ConcBff = 0.00001 

 

        If ConcAff / ConcBff >= wks1.Cells(time + 1, 18) And ConcAff / ConcBff <= 

wks1.Cells(time + 1, 19) And wks2.Cells(QsfBcheck, 4) <= QsfAHold And 

wks2.Cells(QsfBcheck + 2, 4) >= QsfAHold And QsfAHold <> 0 And 

wks2.Cells(QsfBcheck, 4) <> 0 And wks2.Cells(QsfBcheck + 2, 4) <> 0 And 

((wks1.Cells(time + 1, 2) * wks1.Cells(time + 1, 4)) - (wks1.Cells(time + 1, 2) * 

ConcBff)) / (wks1.Cells(time + 1, 6) - ConcBff) < wks1.Cells(time + 1, 2) Or ConcAff / 

ConcBff >= wks1.Cells(time + 1, 18) And ConcAff / ConcBff <= wks1.Cells(time + 1, 

19) And wks2.Cells(QsfBcheck, 4) >= QsfAHold And wks2.Cells(QsfBcheck + 2, 4) <= 

QsfAHold And QsfAHold <> 0 And wks2.Cells(QsfBcheck, 4) <> 0 And 

wks2.Cells(QsfBcheck + 2, 4) <> 0 And ((wks1.Cells(time + 1, 2) * wks1.Cells(time + 1, 

4)) - (wks1.Cells(time + 1, 2) * ConcBff)) / (wks1.Cells(time + 1, 6) - ConcBff) < 

wks1.Cells(time + 1, 2) Then wks1.Cells(time + 1, 7) = ConcAff 

 

        If ConcAff / ConcBff >= wks1.Cells(time + 1, 18) And ConcAff / ConcBff <= 

wks1.Cells(time + 1, 19) And wks2.Cells(QsfBcheck, 4) <= QsfAHold And 



 

 

185 
 

wks2.Cells(QsfBcheck + 2, 4) >= QsfAHold And QsfAHold <> 0 And 

wks2.Cells(QsfBcheck, 4) <> 0 And wks2.Cells(QsfBcheck + 2, 4) <> 0 And 

((wks1.Cells(time + 1, 2) * wks1.Cells(time + 1, 4)) - (wks1.Cells(time + 1, 2) * 

ConcBff)) / (wks1.Cells(time + 1, 6) - ConcBff) < wks1.Cells(time + 1, 2) Or ConcAff / 

ConcBff >= wks1.Cells(time + 1, 18) And ConcAff / ConcBff <= wks1.Cells(time + 1, 

19) And wks2.Cells(QsfBcheck, 4) >= QsfAHold And wks2.Cells(QsfBcheck + 2, 4) <= 

QsfAHold And QsfAHold <> 0 And wks2.Cells(QsfBcheck, 4) <> 0 And 

wks2.Cells(QsfBcheck + 2, 4) <> 0 And ((wks1.Cells(time + 1, 2) * wks1.Cells(time + 1, 

4)) - (wks1.Cells(time + 1, 2) * ConcBff)) / (wks1.Cells(time + 1, 6) - ConcBff) < 

wks1.Cells(time + 1, 2) Then wks1.Cells(time + 1, 8) = ConcBff 

 

        If ConcAff / ConcBff >= wks1.Cells(time + 1, 18) And ConcAff / ConcBff <= 

wks1.Cells(time + 1, 19) And wks2.Cells(QsfBcheck, 4) <= QsfAHold And 

wks2.Cells(QsfBcheck + 2, 4) >= QsfAHold And QsfAHold <> 0 And 

wks2.Cells(QsfBcheck, 4) <> 0 And wks2.Cells(QsfBcheck + 2, 4) <> 0 And 

((wks1.Cells(time + 1, 2) * wks1.Cells(time + 1, 4)) - (wks1.Cells(time + 1, 2) * 

ConcBff)) / (wks1.Cells(time + 1, 6) - ConcBff) < wks1.Cells(time + 1, 2) Or ConcAff / 

ConcBff >= wks1.Cells(time + 1, 18) And ConcAff / ConcBff <= wks1.Cells(time + 1, 

19) And wks2.Cells(QsfBcheck, 4) >= QsfAHold And wks2.Cells(QsfBcheck + 2, 4) <= 

QsfAHold And QsfAHold <> 0 And wks2.Cells(QsfBcheck, 4) <> 0 And 

wks2.Cells(QsfBcheck + 2, 4) <> 0 And ((wks1.Cells(time + 1, 2) * wks1.Cells(time + 1, 

4)) - (wks1.Cells(time + 1, 2) * ConcBff)) / (wks1.Cells(time + 1, 6) - ConcBff) < 

wks1.Cells(time + 1, 2) Then GoTo Reverse 

 

    Next QsfAQsfBcheck 

 

 

 

'The same process is now completed with the values of TempConcAff and TempConcBff 

'reversed 

 

Reverse: 

 

        Dim QsRev As Double 

        Dim ConcAsRev As Double 

        Dim ConcBsRev As Double 

        Dim ConcAsfRev As Double 

        Dim ConcBsfRev As Double     

 

    QsRev = wks1.Cells(time + 1, 2) 

    ConcAsRev = wks1.Cells(time + 1, 3) 

    ConcBsRev = wks1.Cells(time + 1, 4) 

    ConcAsfRev = wks1.Cells(time + 1, 5) 

    ConcBsfRev = wks1.Cells(time + 1, 6) 
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    If ConcAsRev = ConcAsfRev Then wks1.Cells(time + 1, 9) = 0  

    If ConcAsRev = ConcAsfRev Then wks1.Cells(time + 1, 10) = 0  

 

        Dim ConcAffBffTestRev As Double 

    For ConcAffBffTestRev = 1 To 1001 

            Dim TempConcAffRev As Double 

        TempConcAffRev = wks2.Cells(ConcAffBffTestRev + 1, 5) 

            Dim TempQsfARev As Double 

        If (ConcAsfRev - TempConcAffRev) = 0 Then TempConcAffRev = 

TempConcAffRev + 0.00001 

        TempQsfARev = (QsRev * (ConcAsRev - TempConcAffRev)) / (ConcAsfRev - 

TempConcAffRev) 

        TempQsfARev = Round(TempQsfARev, 2) 

        If TempQsfARev < 0 Then TempQsfARev = 0 

    If TempQsfARev > wks1.Cells(time + 1, 2) Then TempQsfARev = 0 

        wks2.Cells(ConcAffBffTestRev + 1, 6) = TempQsfARev 

            Dim TempConcBffRev As Double 

        TempConcBffRev = wks2.Cells(ConcAffBffTestRev + 1, 7) 

            Dim TempQsfBRev As Double 

        If (ConcBsfRev - TempConcBffRev) = 0 Then TempConcBffRev = 

TempConcBffRev + 0.00001 

        TempQsfBRev = (QsRev * (ConcBsRev - TempConcBffRev)) / (ConcBsfRev - 

TempConcBffRev) 

        TempQsfBRev = Round(TempQsfBRev, 2) 

        If TempQsfBRev < 0 Then TempQsfBRev = 0 

    If TempQsfBRev > wks1.Cells(time + 1, 2) Then TempQsfBRev = 0 

        wks2.Cells(ConcAffBffTestRev + 1, 8) = TempQsfBRev 

 

    Next ConcAffBffTestRev 

 

        Dim QsfAQsfBcheckRev As Double  

    For QsfAQsfBcheckRev = 1 To 1001 

 

            Dim QsfAHoldRev As Double 

            Dim ConcAffRev As Double 

            Dim ConcBffRev As Double 

        QsfAHoldRev = wks2.Cells(QsfAQsfBcheckRev + 1, 6)  

        ConcAffRev = wks2.Cells(QsfAQsfBcheckRev + 1, 5)  

        If ConcAffRev = 0 Then ConcAffRev = 0.00001 

     

            Dim QsfBcheckRev As Double 

        For QsfBcheckRev = 1 To 1001 
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If QsfAHoldRev = 0 Then GoTo LastLine1Rev 

If wks2.Cells(QsfBcheckRev, 8) = 0 Then GoTo LastLineARev 

         

        If wks2.Cells(QsfBcheckRev, 8) <= QsfAHoldRev And wks2.Cells(QsfBcheckRev 

+ 2, 8) >= QsfAHoldRev And QsfAHoldRev <> 0 And wks2.Cells(QsfBcheckRev, 8) <> 

0 And wks2.Cells(QsfBcheckRev + 2, 8) <> 0 Or wks2.Cells(QsfBcheckRev, 8) >= 

QsfAHoldRev And wks2.Cells(QsfBcheckRev + 2, 8) <= QsfAHoldRev And 

QsfAHoldRev <> 0 And wks2.Cells(QsfBcheckRev, 8) <> 0 And 

wks2.Cells(QsfBcheckRev + 2, 8) <> 0 Then GoTo LastLine1Rev 

        

LastLineARev: 

         

        Next QsfBcheckRev 

 

LastLine1Rev: 

 

        ConcBffRev = wks2.Cells(QsfBcheckRev + 2, 7)  

     

        If ConcBffRev = 0 Then ConcBffRev = 0.00001 

        If ConcAffRev / ConcBffRev >= wks1.Cells(time + 1, 18) And ConcAffRev / 

ConcBffRev <= wks1.Cells(time + 1, 19) And wks2.Cells(QsfBcheckRev, 8) <= 

QsfAHoldRev And wks2.Cells(QsfBcheckRev + 2, 8) >= QsfAHoldRev And 

QsfAHoldRev <> 0 And wks2.Cells(QsfBcheckRev, 8) <> 0 And 

wks2.Cells(QsfBcheckRev + 2, 8) <> 0 And ((wks1.Cells(time + 1, 2) * wks1.Cells(time 

+ 1, 4)) - (wks1.Cells(time + 1, 2) * ConcBffRev)) / (wks1.Cells(time + 1, 6) - 

ConcBffRev) < wks1.Cells(time + 1, 2) Or ConcAffRev / ConcBffRev >= 

wks1.Cells(time + 1, 18) And ConcAffRev / ConcBffRev <= wks1.Cells(time + 1, 19) 

And wks2.Cells(QsfBcheckRev, 8) >= QsfAHoldRev And wks2.Cells(QsfBcheckRev + 
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1, 6) - ConcBffRev) < wks1.Cells(time + 1, 2) Then wks1.Cells(time + 1, 9) = 

Round(ConcAffRev, 2) 

        If ConcAffRev / ConcBffRev >= wks1.Cells(time + 1, 18) And ConcAffRev / 

ConcBffRev <= wks1.Cells(time + 1, 19) And wks2.Cells(QsfBcheckRev, 8) <= 

QsfAHoldRev And wks2.Cells(QsfBcheckRev + 2, 8) >= QsfAHoldRev And 
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wks1.Cells(time + 1, 4)) - (wks1.Cells(time + 1, 2) * ConcBffRev)) / (wks1.Cells(time + 
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ConcBffRev) < wks1.Cells(time + 1, 2) Or ConcAffRev / ConcBffRev >= 

wks1.Cells(time + 1, 18) And ConcAffRev / ConcBffRev <= wks1.Cells(time + 1, 19) 

And wks2.Cells(QsfBcheckRev, 8) >= QsfAHoldRev And wks2.Cells(QsfBcheckRev + 
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And wks2.Cells(QsfBcheckRev + 2, 8) <> 0 And ((wks1.Cells(time + 1, 2) * 

wks1.Cells(time + 1, 4)) - (wks1.Cells(time + 1, 2) * ConcBffRev)) / (wks1.Cells(time + 

1, 6) - ConcBffRev) < wks1.Cells(time + 1, 2) Then GoTo LastLine2 

 

    Next QsfAQsfBcheckRev 

 

LastLine2: 

 

Next time 

End Function
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Appendix E: Supplemental information for Chapter 5: Fundamental watershed 

factors influencing the transport of nitrogen to streams 

 

 This supplemental information section contains additional information regarding 

the formation of watershed groups, a complete list of validation and calibration 

watersheds (Table E5.1), a complete list of variables included in the analyses of 

watersheds (Table E5.2), categorical variable coefficients for inclusion into multiple 

linear regression equations (Table E5.3), cluster analysis plots (Figure E5.1), an example 

regression tree (Figure E5.2) and output from random forest regression (Figure E5.3), and 

plots of residual from the application of the multiple linear regression equations to the 

various watershed groups when estimating total nitrogen loads, yields, and concentrations 

(Figures E5.4-E5.6).   

 

 Formation of watershed groups based on land use 

 

 Many of the land use variables were extracted by both recursive partitioning 

(RPART) and random forest regression (RFR) during an initial round of analyses.  The 

land use variables were then used to separate the watersheds into groups in an effort to 

pull out more information from the data in the form of additional extracted (important) 

variables.  Three separate methods were tested for separating the watersheds into groups.  

Cluster analysis was performed as the first method to separate the watersheds.  The 

second method of separation involved splitting watersheds into agricultural, developed, 

and undeveloped based on the dominant national land cover dataset (NLCD) land use 

within the watershed.  And a third method of separation split watersheds into agricultural, 

developed, and undeveloped groups based on NLCD land use, but incorporated the 

assumption that agricultural and developed land use more heavily influenced nitrogen in 

streams.  The third method was used in the final research and specific details regarding 

that method can be found in the Methods section of the main text.   

 Cluster analysis was performed using the “clara” function in the “cluster” package 

(Maechler et al. 2015) within R.  The random number generator function built into R was 

used in place of the random number generator included within the clara function.  In this 
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way, the analyses could be reproduced using the set.seed(1) function in R.  Three clusters 

were generated to ensure a large number of watersheds (>100) in each group (Figure 

E5.1A and B).  Because of the ability RFR to determine the amount of variability in the 

dependent variable explained by the independent variables within each cluster, RFR was 

used to analyze the resulting clusters.  A mean of 55% of the variability in the dependant 

variables (total nitrogen load, yield, and concentration) was explained when RFR was 

used to examine the three clusters against each of the three dependent variables.  

Watersheds in each of the clusters, however, were not related to each other based on a 

single independent variable, which prevents similar clustering among watersheds not 

used in this study.  Because the clustering in this manner did not prove useful for 

application to unstudied watersheds, it was not used any further.   

 Instead, watersheds were grouped based on NLCD land use.  Two methods were 

tested. For each of the methods, land use was classified as agricultural (NLCD land use 

codes 81 and 82), developed (NLCD land use codes 21, 22, 23, and 24), or undeveloped 

(NLCD land use codes 11, 12, 31, 41, 42, 43, 51, 52, 71, 72, 73, 74, 90, and 95).  

Separation of the watersheds into three groups (agricultural, developed, and undeveloped) 

was completed in two ways: solely on the majority NLCD land use type (Approach 1), 

and separately by the technique explained in the Methods section of the main text 

(Approach 2).  Both methods resulted in groups of watersheds that were significantly 

different (rank sum test, α = 0.05) from one another with respect to the mean total 

nitrogen loads, yields, and concentrations.   

 RFR was used to determine the degree of variability in the data that could be 

explained within each of the groups of watersheds with respect to total nitrogen loads, 

yields, and concentrations.  Dependent variables applied to the watershed groups created 

solely based on the majority NLCD land use type explained 45% of the variability in the 

three dependent variables (Approach 1).  Grouping the watersheds as agricultural, 

developed, or undeveloped (Approach 2) explained an average of 49% of the variability 

in the data across all load, yield, and concentration analyses.  The greater percentage of 

variability explained when the watersheds were split up into agricultural, developed, or 
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undeveloped as explained by Approach 2 led to the grouping of watersheds in that 

manner for the rest of the analyses. 
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Table E5.1: Calibration and validation streams within the seven major river basins, including stream gage location and total 

watershed area.   

 

Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 

New England and Mid-Atlantic (Calibration watersheds) 

   1054200 WILD RIVER AT GILEAD, ME 44.391 -70.979 181.3 

1073000 OYSTER RIVER NEAR DURHAM, NH 43.131 -70.919 32.1 

1073500 LAMPREY RIVER NEAR NEWMARKET, NH 43.082 -70.935 471.8 

1101500 IPSWICH RIVER AT SOUTH MIDDLETON, MA 42.569 -71.027 121.0 

1103500 CHARLES RIVER AT DOVER, MA 42.256 -71.260 476.8 

1105000 NEPONSET RIVER AT NORWOOD, MA 42.178 -71.201 97.4 

1109000 WADING RIVER NEAR NORTON, MA 41.948 -71.177 115.1 

1111500 BRANCH RIVER AT FORESTDALE, RI 41.996 -71.563 241.0 

1119384 WILLIMANTIC R AT MERROW, CT 41.835 -72.310 259.0 

1124000 QUINEBAUG RIVER AT QUINEBAUG, CT. 42.022 -71.956 392.2 

1124151 QUINEBAUG R AT WEST THOMPSON, CONN. 41.943 -71.900 433.9 

1134500 MOOSE RIVER AT VICTORY, VT 44.512 -71.837 209.5 

1137500 BEAVER BROOK 3M SE BETHLEHEM,NH 44.260 -71.633 238.3 

1142500 AYERS BROOK AT RANDOLPH, VT 43.935 -72.658 79.9 

1163200 OTTER RIVER AT OTTER RIVER, MA 42.588 -72.041 88.0 

1169000 NORTH RIVER AT SHATTUCKVILLE, MA 42.638 -72.725 233.9 

1169900 SOUTH RIVER NEAR CONWAY, MA 42.542 -72.694 68.1 

1170100 GREEN RIVER NEAR COLRAIN, MA 42.703 -72.671 109.3 

1171500 MILL RIVER AT NORTHAMPTON, MA 42.319 -72.665 137.0 

1184490 BROAD BROOK AT BROAD BROOK, CT. 41.914 -72.550 40.9 

1187800 NEPAUG R NR NEPAUG, CT. 41.821 -72.970 62.0 



Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 

 

194 
 

1189000 PEQUABUCK R AT FARMINGTON, CT 41.717 -72.840 128.1 

1192500 HOCKANUM RIVER NEAR EAST HARTFORD, CT 41.783 -72.587 191.2 

1193500 SALMON RIVER NEAR EAST HAMPTON, CT. 41.552 -72.449 263.3 

1196500 QUINNIPIAC RIVER AT WALLINGFORD, CT. 41.450 -72.841 288.7 

1206900 NAUGATUCK RIVER NR WATERVILLE,CT. 41.615 -73.058 261.6 

1302500 GLEN COVE CREEK AT GLEN COVE NY 40.863 -73.634 30.4 

1303000 MILL NECK CREEK AT MILL NECK NY 40.888 -73.564 27.4 

1304000 NISSEQUOGUE RIVER NEAR SMITHTOWN NY 40.849 -73.224 72.9 

1304500 PECONIC RIVER AT RIVERHEAD NY 40.914 -72.687 213.1 

1305000 CARMANS RIVER AT YAPHANK NY 40.830 -72.906 193.2 

1306500 CONNETQUOT RIVER NEAR NORTH GREAT RIV 40.748 -73.150 72.2 

1308500 CARLLS RIVER AT BABYLON NY 40.709 -73.329 100.8 

1309500 MASSAPEQUA CREEK AT MASSAPEQUA NY 40.689 -73.455 97.0 

1310000 BELLMORE CREEK NEAR BELLMORE NY 40.679 -73.516 39.5 

1310500 EAST MEADOW BROOK AT FREEPORT NY 40.666 -73.570 78.1 

1311000 PINES BROOK AT MALVERNE NY 40.666 -73.659 26.4 

1349900 BATAVIA KILL AT RED FALLS NEAR PRATTS 42.308 -74.390 140.1 

1362200 ESOPUS CR AT SHANDAKEN NY 42.117 -74.388 165.4 

1377000 HACKENSACK RIVER AT RIVERVALE NJ 40.999 -73.989 149.7 

1380500 ROCKAWAY RIVER ABOVE RESERVOIR AT BOO 40.903 -74.410 305.4 

1381000 ROCKAWAY RIVER AT PINE BROOK NJ 40.858 -74.348 317.1 

1382500 PEQUANNOCK R AT MACOPIN INTAKE DAM NJ 41.018 -74.402 239.2 

1391500 SADDLE RIVER AT LODI NJ 40.890 -74.080 160.1 

1393450 ELIZABETH R AT URSINO LAKE AT ELIZABE 40.675 -74.222 50.1 



Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 
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1394500 RAHWAY R NR SPRINGFIELD NJ 40.687 -74.312 66.1 

1395000 RAHWAY RIVER AT RAHWAY NJ 40.619 -74.283 109.7 

1396500 SB RARITAN R ARCH ST AT HIGH BRIDGE N 40.664 -74.897 171.9 

1396580 SPRUCE RUN AT NEWPORT NJ 40.725 -74.909 34.6 

1396660 MULHOCKAWAY CREEK AT VAN SYCKEL NJ 40.648 -74.969 30.6 

1397000 SOUTH BR RARITAN R AT STANTON STATION 40.572 -74.869 389.8 

1398000 NESHANIC RIVER AT REAVILLE NJ 40.472 -74.828 67.5 

1399500 LAMINGTON (BLACK) RIVER NEAR POTTERSV 40.728 -74.730 81.2 

1400000 NB RARITAN R AT NORTH BRANCH NJ 40.600 -74.674 498.9 

1401000 STONY BROOK AT PRINCETON NJ 40.333 -74.682 120.5 

1407760 JUMPING BROOK NEAR NEPTUNE CITY NJ 40.204 -74.066 17.2 

1408000 MANASQUAN RIVER AT SQUANKUM NJ 40.163 -74.155 113.8 

1408500 TOMS RIVER NEAR TOMS RIVER NJ 39.986 -74.223 330.2 

1409500 BATSTO RIVER AT BATSTO NJ 39.642 -74.650 178.3 

1409810 WB WADING RIVER AT MAXWELL NJ 39.675 -74.541 219.8 

1410000 OSWEGO RIVER AT HARRISVILLE NJ 39.663 -74.524 185.5 

1410150 EAST BRANCH BASS RIVER NEAR NEW GRETN 39.623 -74.441 22.9 

1411000 GREAT EGG HARBOR RIVER AT FOLSOM NJ 39.595 -74.851 150.8 

1411500 MAURICE R NR MILLVILLE NJ 39.448 -75.073 295.3 

1429500 DYBERRY CREEK AT TANNERS FALLS NEAR D 41.653 -75.282 167.7 

1439500 BUSHKILL CREEK 41.088 -75.038 305.6 

1440000 FLAT BROOK NEAR FLATBROOKVILLE NJ 41.107 -74.952 171.6 

1443500 PAULINS KILL AT BLAIRSTOWN NJ 40.979 -74.954 330.2 

1445500 PEQUEST RIVER AT PEQUEST NJ 40.831 -74.978 276.5 



Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 
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1447500 LEHIGH RIVER 41.130 -75.626 234.2 

1447720 TOBYHANNA CREEK 41.085 -75.606 308.4 

1451800 JORDAN CREEK NEAR SCHNECKSVILLE, PA 40.662 -75.627 149.1 

1457000 DELAWARE R AT RIEGELSVILLE NJ 40.593 -75.188 402.7 

1463620 ASSUNPINK CREEK NEAR CLARKSVILLE NJ 40.270 -74.672 94.5 

1464000 ASSUNPINK CREEK AT TRENTON NJ 40.224 -74.749 236.7 

1464500 CROSSWICKS CREEK AT EXTONVILLE NJ 40.137 -74.600 201.6 

1465500 NESHAMINY CREEK NEAR LANGHORNE, PA 40.174 -74.957 541.4 

1465798 POQUESSING CREEK AT STATE RD,PHILADEL 40.054 -74.984 55.0 

1466500 MCDONALDS BRANCH IN BYRNE STATE FORES 39.885 -74.505 5.7 

1467000 NORTH BRANCH RANCOCAS CREEK AT PEMBER 39.970 -74.684 317.6 

1467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHER 39.942 -75.001 23.1 

1467150 COOPER R AT LAWNSIDE NJ 39.871 -75.016 45.4 

1470779 TULPEHOCKEN CREEK NEAR BERNVILLE, PA 40.413 -76.172 182.0 

1471000 TULPEHOCKEN CREEK 40.363 -75.968 561.1 

1472157 FRENCH CRK-.25MI UPSTRM FR WILSON COR 40.151 -75.602 157.4 

1473169 VALLEY CREEK AT WILSON ROAD NEAR VALL 40.081 -75.457 54.7 

1476480 RIDLY CREEK AT ROUTE 291,RIDLY,PAPA 39.854 -75.348 91.5 

1477800 SHELLPOT CR AT US RT 13 BRDG (GOV PRI 39.753 -75.517 23.1 

1478000 CHRISTINA RIVER AT RD 346 BRIDGE 39.638 -75.681 63.1 

1479000 WHITE CLAY CREEK, AT DE RT 7 BRIDGE, 39.707 -75.653 234.3 

1479820 RED CLAY CREEK, ROAD 252 IN YORKLYN 39.806 -75.681 77.2 

1483700 ST JONES RIVER AT DOVER, DE 39.164 -75.519 86.6 

1484000 MURDERKILL RIVER, KILLENS POND AT ROA 38.981 -75.530 33.6 



Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 
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1485000 POCOMOKE RIVER NEAR WILLARDS, MD 38.389 -75.324 126.9 

1485500 NASSAWANGO CREEK NEAR SNOW HILL, MD 38.229 -75.471 113.0 

1487000 NANTICOKE RIVER NEAR BRIDGEVILLE, DE 38.728 -75.562 187.2 

1488500 MARSHYHOPE CREEK NEAR ADAMSVILLE, DE 38.850 -75.673 124.9 

1491000 CHOPTANK RIVER NEAR GREENSBORO, MD 38.997 -75.786 291.8 

1493112 CHESTERVILLE BR NR CRUMPTON MD 39.257 -75.940 15.9 

1493500 MORGAN CREEK NEAR KENNEDYVILLE, MD 39.280 -76.015 32.7 

1495000 BIG ELK CREEK 39.730 -75.848 147.5 

1523500 CANACADEA CREEK IN HORNELL (C) @ USGS 42.335 -77.683 153.5 

1545600 YOUNG WOMANS CR NR RENOVO PA 41.389 -77.691 123.6 

1546500 SPRING CREEK 40.890 -77.794 227.5 

1550000 LYCOMING CREEK 41.418 -77.033 456.3 

1552500 MUNCY CREEK NEAR SONESTOWN, PA 41.357 -76.535 62.1 

1558000 LITTLE JUNIATA RIVER 40.609 -78.137 579.4 

1569800 LETORT SPRING RUN AT BONNY BROOK NEAR 40.178 -77.186 59.6 

1571500 YELLOW BREECHES CREEK AT NEW CUMBERLA 40.224 -76.860 565.2 

1572025 SWATARA CREEK NEAR PINE GROVE, PA 40.533 -76.402 303.8 

1576085 LITTLE CONESTOGA CREEK NEAR CHURCHTOW 40.145 -75.989 15.1 

1576787 PEQUEA CREEK AT MARTIC FORGE, PA 39.906 -76.328 396.8 

1580520 DEER CREEK BRIDGE ON STAFFORD BRIDGE RD. 39.623 -76.164 435.1 

1581810 GUNPOWDER FALLS BRID.AT GUNPOWDER ROAD 39.689 -76.781 69.9 

1582500 GUNPOWDER FALLS 4 END OF GLENCO RD. O 39.550 -76.636 415.1 

1586000 NORTH BRANCH PATAPSCO BRI.AT.MD RT.91 39.504 -76.886 145.8 

1589300 GWYNNS FALLS AT BR. ON ESSEX RD.IN VA 39.347 -76.734 88.4 



Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 
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1589440 JONES FALLS NEAR BRIDGE FALLS RD. RT. 39.392 -76.662 68.1 

1589478 JANES FALLS 39.328 -76.640 144.8 

1591000 PATUXENT RIVER NEAR UNITY, MD 39.238 -77.056 91.5 

1592500 PAT.R.AT GAG.STN. BELOW THE ROCKY GOR 39.117 -76.875 345.1 

1594000 LITTLE PATUXENT RIVER AT SAVAGE, MD 39.134 -76.816 255.3 

1594526 WESTERN BRANCH AT UPPER MARLBORO, MD 38.814 -76.749 238.5 

1594670 HUNTING CREEK NEAR HUNTINGTOWN, MD 38.584 -76.605 24.1 

1594710 KILLPECK CREEK AT HUNTERSVILLE, MD 38.477 -76.735 12.6 

1595200 STONEY RIVER BELOW MOUNT STORM DAM 39.216 -79.282 127.3 

1597500 SAVAGE RIVER AT MD RT. 135 39.480 -79.069 277.6 

1599000 GEORGES CREEK AT FRANK.1 M.NORTH OF W 39.494 -79.045 193.0 

1601000 WILLS CREEK 39.718 -78.771 378.5 

1609000 TOWNS CR. AT GAGE NEAR BR.-OLDTOWN RD 39.554 -78.554 386.7 

1610155 SIDELING HILL CREEK 39.700 -78.317 269.8 

1610400 WAITES RUN NEAR WARDENSVILLE, VA 39.043 -78.598 38.9 

1615000 OPEQUON CREEK NEAR BERRYVILLE, VA 39.174 -78.078 148.4 

1616000 APPROX 0.2 MILES ABOVE RT.7 BRIDGE 39.179 -78.086 44.8 

1621050 MUDDY CREEK AT MOUNT CLINTON, VA 38.486 -78.961 43.1 

1626000 ROUTE 664 BRIDGE - CITY OF WAYNESBORO 38.057 -78.908 329.0 

1627500 SOUTH RIVER AT RT. 778 AT HARRISTON 38.219 -78.836 549.1 

1632000 ROUTE 259 BRIDGE 38.637 -78.853 547.3 

1632082 DOWNSTREAM OF RT. 257 BRIDGE 38.618 -78.799 119.2 

1632900 RT. 620 BRIDGE 38.694 -78.643 249.2 

1634500 ROUTE 628 BRIDGE 39.078 -78.326 264.5 



Flow station 

ID (STAID) Major river basin/Stream name Latitude Longitude 

Flow station drainage 

area (km
2
) 
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1635500 RT. 55 BRIDGE 38.959 -78.267 227.1 

1636690 PINEY RUN AT RT. # 671 39.311 -77.719 35.5 

1637500 CATOCTIN CR NR BR ON MD RT 17 AT GAG 39.428 -77.556 175.2 

1638480 ROUTE 663 39.255 -77.577 233.8 

1639000 MONOCACY RIVER AT BRIDGEPORT, MD 39.679 -77.234 449.6 

1639500 BIG PIPE BRIDGE ON BIGGS FORD RD 39.612 -77.237 267.2 

1643590 LIMESTONE BRANCH AT RT. # 15 BRIDGE 39.167 -77.536 20.4 

1643700 GOOSE CREEK AT RT. # 611 38.986 -77.795 318.6 

1643805 NORTH FORK GOOSE CREEK AT RT. # 722 BRIDGE 39.076 -77.697 98.9 

1643880 BEAVERDAM CREEK AT RT. # 734 39.037 -77.723 122.2 

1644280 BROAD RUN AT RT. 7 BRIDGE 39.047 -77.433 197.1 

1645000 SENECA CR. BRIDGE ON MD. ROUTE 112 39.079 -77.340 268.2 

1646000 ROUTE 193 BRIDGE 38.976 -77.246 150.8 

1648000 D. C. LINE, MILE 101-9.1, D. C. 38.986 -77.064 170.7 

1649500 ANACOSTIA RIVER BRIDGE ON BLADENSBURG 38.939 -76.944 194.4 

1651000 ON ANACOSTIA RIVER AT BLANDESBURG MD. 38.943 -76.968 135.1 

1652500 GEORGE WASHIGTON PARKWAY BRIDGE 38.841 -77.048 37.1 

1653000 BACKLICK RUN AT VAN DORN STREET 38.803 -77.134 87.3 

1653600 PISCATAWAY CREEK 38.706 -76.966 101.9 

1654000 ACCOTINK CREEK NEAR ANNANDALE  VA 38.813 -77.229 60.9 

1656000 RT. 806 BRIDGE 38.637 -77.626 243.0 

1656100 ROUTE 646 BRIDGE 38.641 -77.512 401.7 

1658000 MATTAWOMAN CREEK NEAR POMONKEY, MD 38.596 -77.056 143.8 

1658500 SOUTH FORK QUANTICO CR NEAR INDEPENDE 38.587 -77.429 23.7 
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1659000 NORTH BRANCH CHOPAWAMSIC CREEK NEAR J 38.566 -77.430 16.4 

1660400 RT. 641 BRIDGE 38.491 -77.434 93.2 

1660500 BEAVERDAM RUN NEAR GARRISONVILLE, VA 38.507 -77.429 34.2 

1661050 ST CLEMENT CREEK NEAR CLEMENTS, MD 38.333 -76.725 47.8 

1665000 RT. 522 BRIDGE ABOVE CULPEPER 38.477 -77.999 46.3 

1665500 RAPIDAN RIVER AT RT.29 BR. AT GAGIN STATION ( 38.280 -78.341 295.3 

1666500 ROUTE 614 BRIDGE 38.325 -78.096 466.2 

1669000 20 M UPSTREAM FROM RT 691 BRIDGE (ESS 37.877 -76.901 75.3 

1669520 RT. 17 BRIDGE 37.585 -76.604 277.7 

1670180 ROUTE 651 - ORANGE COUNTY 38.155 -77.951 111.2 

1671100 RT. 685 BRIDGE 37.873 -77.514 279.1 

1673550 TOTOPOTOKOY CREEK 37.663 -77.258 67.9 

1673800 RT. 208 BRIDGE 38.171 -77.596 201.5 

1677000 WARE CREEK NEAR TOANO, VA 37.438 -76.786 18.4 

2011400 ROUTE 603 AT GAGING STATION - BATH CO 38.042 -79.882 409.9 

2011500 RT. 39 AT GAGING STATION 38.069 -79.897 348.1 

2014000 RT. 18 BRIDGE 37.752 -79.997 397.2 

2015700 RT. 614 BRIDGE 38.195 -79.571 286.3 

2020500 CALFPASTURE RIVER AT DOWNSTREAM OF RT. 42 BRI 37.988 -79.494 373.0 

2027000 TYE RIVER AT RT 56/158 BRIDGE 37.715 -78.982 240.4 

2027500 RT. 151 BRIDGE AT GAGING STATION NELS 37.703 -79.028 127.9 

2027800 RT. 657 AT GAGING STATION 37.610 -78.923 377.9 

2030000 HARDWARE RIVER AT RT. 637 BRIDGE 37.813 -78.455 300.4 

2031000 RT. 614 BRIDGE, W OF CHARLOTTESVILLE 38.103 -78.593 257.4 
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2032680 RT. 649 BRIDGE 38.088 -78.413 457.7 

2036500 RT. 711 BRIDGE 37.598 -77.820 58.7 

2038850 HOLIDAY CR NR ANDERSONVILLE VA 37.415 -78.636 23.8 

2039000 BUFFALO CREEK AT BUS. RT. 460 BRIDGE-PRINCE E 37.303 -78.407 180.5 

2041000 RT. 153 BRIDGE 37.284 -77.869 411.7 

2042287 RT. 360 BRIDGE 37.595 -77.382 161.4 

2042426 RT. 1 BRIDGE (BROOK ROAD) 37.615 -77.441 98.3 

4271815 LITTLE CHAZY RIVER 44.900 -73.410 130.8 

4276842 PUTNAM CREEK 43.950 -73.430 145.7 

4282650 LITTLE OTTER CR AB MIDDLE BRK RD NR F 44.199 -73.212 151.9 

4282795 LAPLATTE RIVER 44.370 -73.210 137.2 

4296000 BLACK RIVER AT COVENTRY, VT 44.869 -72.270 301.1 

      

New England and Mid-Atlantic (Validation watersheds) 

   1208500 NAUGATUCK R BELOW FULLING MILLS BK AT 41.502 -73.048 674.1 

1208990 SAUGATUCK RIVER NEAR REDDING, CT. 41.295 -73.395 55.1 

1209700 NORWALK RIVER AT WINNIPAUK,CT. 41.135 -73.426 77.3 

1382500 PEQUANNOCK R AT MACOPIN INTAKE 41.017 -74.396 239.2 

1396500 SB RARITAN R AT MIDDLE VALLEY NJ 40.761 -74.821 171.9 

1396580 SPRUCE RUN NR GLEN GARDNER NJ 40.678 -74.918 34.6 

1445500 PEQUEST RIVER (FIXED) 40.834 -75.061 276.5 

1464500 CROSSWICKS C AT GROVEVILLE RD AT GROV 40.167 -74.678 201.6 

1467000 N BR RANCOCAS CREEK MOUNT HOLLY 39.989 -74.785 317.6 
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1473169 STATION 437 AT VALLEY CREEK AT ROUTE 40.100 -75.463 54.7 

1478000 CHRISTINA RIVER AT SMALLEYS DAM SPILL 39.655 -75.669 63.1 

1483700 ST. JONES RIVER AT DELAWARE RT 10 NEA 39.125 -75.494 86.6 

1576085 LITTLE CONESTOGA CREEK, SITE 3A, NEAR 40.147 -75.927 15.1 

1589300 GWYNNS FALLS 39.271 -76.648 88.4 

1589440 JONES FALLS 39.378 -76.644 68.1 

1610155 SIDELING HILL CREEK 39.650 -78.344 269.8 

1615000 OPEQUON CREEK AT RT. 655 BRIDGE (FREDERICK CO 39.148 -78.090 148.4 

1615000 OPEQUON CREEK AT RT. 672 BRIDGE 39.245 -78.040 148.4 

1621050 MUDDY CREEK AT RT 726 BRIDGE AT GAGING STATIO 38.487 -78.961 36.8 

1634500 CEDAR CREEK AT RT. 55 BRIDGE (FREDERICK/SHENA 39.081 -78.425 266.8 

1637500 CATOCTIN CR NR MOUTH AT BR ON MD RT 4 39.332 -77.579 175.2 

1643700 RT. 734 BRIDGE 39.013 -77.700 317.6 

1649500 HICKEY HILL, D.C. 38.909 -76.956 194.4 

1653600 PISCATAWAY CREEK AT PISCATAWAY, MD 38.706 -76.966 102.3 

1654000 RT. 790 38.729 -77.203 62.3 

1654000 POHICK CREEK AT RT. # 1 BRIDGE 38.700 -77.210 60.9 

1656000 LICKING RUN AT RT. # 616 38.619 -77.658 241.9 

1664000 MARSH RUN AT RT. # 651 BRIDGE 38.475 -77.773 1605.8 

2042287 APPOMATTOX RIVER AT RT.15 BRIDGE W OF FARMVIL 37.340 -78.472 161.1 

2042500 CHICKAHOMINY RIVER AT RT. 625 BRIDGE 37.700 -77.514 652.7 

     South Atlantic-Gulf and Tennessee (Calibration watersheds) 

   2053200 POTECASI CRK AT NC 11 NR UNION 36.371 -77.026 583.0 
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2068500 DAN RIV AT NC 704 NR FRANCISCO 36.515 -80.303 334.0 

2069700 GAGE NEAR NETTLE RIDGE, RT 700 BRIDGE 36.571 -80.130 220.0 

2070000 NORTH MAYO AT GAGE NEAR SPENCER RT. 629 BRIDGE 36.568 -79.987 280.0 

2071530 RT. 708 BRIDGE 36.779 -80.248 70.0 

2081500 TAR RIV AT NC 96 NR TAR RIV 36.195 -78.583 433.0 

2083800 CONETOE CRK AT SR 1409 NR BETHEL 35.774 -77.464 202.0 

2085000 ENO RIVER AT HILLSBOROUGH, NC 36.071 -79.096 169.0 

2085070 ENO RIV AT SR 1004 NR DURHAM 36.073 -78.863 365.0 

2085500 FLAT RIVER AT BAHAMA, NC 36.183 -78.879 382.0 

2090380 CONTENTNEA CREEK NEAR LUCAMA, NC 35.691 -78.110 413.0 

2091000 NAHUNTA SWAMP NEAR SHINE, NC 35.489 -77.806 206.0 

2092500 TRENT RIV AT SR 1129 NR TRENTON 35.064 -77.461 435.0 

2093000 NEW RIV AT SR 1314 NR GUM BRANCH 34.849 -77.520 243.0 

2095000 S BUFFALO CRK AT SR 2821 AT MCLEANSVILLE 36.113 -79.672 88.0 

2095500 N BUFFALO CRK AT SR 2832 NR GREENSBORO 36.120 -79.708 96.0 

2096846 CANE CREEK NEAR ORANGE GROVE, NC 35.987 -79.206 19.0 

2097314 NEW HOPE CRK AT SR 1107 NR BLANDS 35.885 -78.966 197.0 

2097464 MORGAN CREEK NEAR WHITE CROSS, NC 35.924 -79.115 21.0 

2097517 MORGAN CRK AT SR 1726 NR FARRINGTON 35.861 -79.010 106.0 

2099000 E FORK DEEP RIV AT SR 1541 NR HIGH POINT 36.037 -79.946 39.0 

2099500 DEEP RIV AT SR 1921 NR RANDLEMAN 35.904 -79.854 324.0 

2111180 ELK CRK AT NC 268 AT ELKVILLE 36.070 -81.402 124.0 

2121500 ABBOTTS CRK AT SR 1243 AT LEXINGTON 35.806 -80.235 451.0 

2128000 LITTLE RIV AT SR 1340 NR STAR 35.387 -79.832 275.0 
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2133500 DROWNING CRK AT US 1 NR HOFFMAN 35.061 -79.494 474.0 

2135300 SCAPE ORE SWAMP AT S-31-108 34.108 -80.281 249.0 

2137727 CATAWBA RIV AT SR 1221 NR PLEASANT GARDENS 35.686 -82.061 326.0 

2138500 LINVILLE RIV AT NC 126 NR NEBO 35.795 -81.890 174.0 

2143040 JACOB FORK AT SR 1924 AT RAMSEY 35.591 -81.567 67.0 

2143500 INDIAN CREEK NEAR LABORATORY, NC 35.421 -81.265 177.0 

2144000 LONG CRK AT SR 1456 NR BESSEMER CITY 35.305 -81.233 83.0 

2146381 SUGAR CRK AT NC 51 AT PINEVILLE 35.091 -80.900 168.0 

2146530 LITTLE SUGAR CRK AT NC 51 AT PINEVILLE 35.085 -80.882 127.0 

2146600 MCALPINE CRK AT SR 3356 SARDIS RD NR CHARLOTTE 35.137 -80.768 104.0 

2146750 MC ALPINE CREEK AT U.S. ROUTE 521 IN N.C. 35.063 -80.878 238.0 

2146900 TWELVE MILE CRK AT NC 16 NR WAXHAW 34.952 -80.756 199.0 

2150495 SECOND BROAD RIV AT SR 1538 NR LOGAN 35.404 -81.872 223.0 

2154500 PACOLET RVR RD 978 1.5 MI SE OF FINGERVILLE 35.123 -81.990 300.0 

2155500 PACOLET RVR AT S-42-55 35.110 -81.959 549.0 

2164000 REEDY RVR AT S-23-30 SE GREENVILLE 34.799 -82.365 127.0 

2164110 REEDY RVR ON HWY 418 AT FORK SHOALS 34.653 -82.298 269.0 

2165200 S RABON CK ON DIRT RD BETWEEN SC 101 & S-30-76 34.539 -82.176 78.0 

2167582 BRDG OVER BUSH RVR ON RD NO. 56 34.153 -81.615 298.0 

2169570 GILLS CREEK AT COLUMBIA, SC 33.990 -80.974 153.0 

2172300 MCTIER CREEK (RD 209) NEAR MONETTA, SC 33.754 -81.602 39.0 

2177000 CHATTOOGA RIVER NEAR CLAYTON, GA 34.814 -83.306 531.0 

2186000 TWELVE MI CK AT S-39-51 N OF NORRIS 34.780 -82.758 275.0 

2186645 CONEROSS CK AT SC-59 34.636 -82.970 168.0 
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2187910 ROCKY RIVER AT S-04-244 34.383 -82.577 287.0 

2197315 UPPER THREE RUNS CK AT ROAD A AT SRP 33.239 -81.744 526.0 

2197342 FOUR MILE CK AT ROAD A-7 AT SRP 33.235 -81.698 34.0 

2197400 LOWER THREE RUNS CK AT S-06-20 7.5 MI SW BRNWELL 33.176 -81.481 153.0 

2198690 EBENEZER CREEK - HALF MOON LANDING 32.375 -81.222 469.0 

2215100 TUCSAWHATCHEE CREEK NEAR HAWKINSVILLE, GA 32.239 -83.502 418.0 

2229000 MIDDLE PRONG ST MARYS RI AT TAYLOR FL 30.436 -82.287 320.0 

2246000 NORTH FORK OF BLACK CREEK AT SR 21 30.067 -81.864 458.0 

2295420 PAYNE CREEK NEAR BOWLING GREEN FL 27.621 -81.826 310.0 

2297100 JOSHUA CREEK AT NOCATEE FL 27.167 -81.879 338.0 

2297310 HORSE CREEK NEAR ARCADIA FL 27.200 -81.988 559.0 

2298608 MYAKKA RIVER AT MYAKKA CITY FL 27.344 -82.157 320.0 

2299950 MANATEE RIVER NEAR MYAKKA HEAD FL 27.474 -82.211 167.0 

2300500 LITTLE MANATEE RIVER NEAR WIMAUMA FL 27.671 -82.353 382.0 

2300700 BULLFROG CREEK NEAR WIMAUMA FL 27.792 -82.352 75.0 

2301000 NORTH PRONG ALAFIA RIVER AT KEYSVILLE FL 27.884 -82.100 346.0 

2301300 SOUTH PRONG ALAFIA RIVER NEAR LITHIA FL 27.797 -82.118 274.0 

2301990 HILLSBOROUGH R AB CRYSTAL SPR NEAR ZEPHYRHILLS FL 28.186 -82.184 210.0 

2302500 BLACKWATER CREEK NEAR KNIGHTS FL 28.141 -82.150 282.0 

2303000 HILLSBOROUGH RIVER NEAR ZEPHYRHILLS FL 28.150 -82.232 564.0 

2306774 ROCKY CREEK AT ST HWY 587 AT CITRUS PARK FL 28.066 -82.566 46.0 

2321000 NEW RIVER NEAR LAKE BUTLER 29.998 -82.274 495.0 

2326000 ECONFINA RIVER AT US-27 30.238 -83.703 513.0 

2330100 TELOGIA CREEK AT S.R. 20 30.427 -84.922 326.0 
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2334885 SUWANEE CREEK AT SUWANEE, GA 34.032 -84.089 120.0 

2336300 PEACHTREE CREEK AT ATLANTA, GA 33.819 -84.408 222.0 

2337500 SNAKE CREEK NEAR WHITESBURG, GA 33.530 -84.928 91.0 

2342933 SOUTH FORK COWIKEE CREEK AT BARBOUR CO. RD. 79 32.019 -85.296 290.0 

2350080 LIME CREEK NEAR COBB, GA 32.034 -83.996 157.0 

2366996 ALAQUA CREEK AT NELSON ROAD 30.670 -86.187 101.0 

2370000 BLACKWATER RIVER AT HWY 4 NW OF BAKER 30.834 -86.734 531.0 

2399200 LITTLE RIVER AT AL. HIGHWAY 273 34.282 -85.673 515.0 

2401000 BIG WILLS CREEK AT STATE RD. 227 NEAR REECE CITY 34.098 -86.038 471.0 

2401390 BIG CANOE CREEK AT U.S. HIGHWAY 231 33.840 -86.263 365.0 

2405500 KELLY CREEK AT U.S. HIGHWAY 231 33.447 -86.387 500.0 

2423380 CAHABA RIVER NEAR MOUNTAIN BROOK AL 33.482 -86.713 359.0 

2444490 BOGUE CHITTO CREEK NEAR MEMPHIS, ALABAMA 33.092 -88.299 135.0 

2453000 BLACKWATER CREEK AT AL. HIGHWAY 257 33.908 -87.257 469.0 

2457670 FIVEMILE CREEK AT ABANDONED BRIDGE DOWNSTREAM OF U 33.662 -86.974 238.0 

2465493 ELLIOTS CREEK AT AL. HIGHWAY 69 AT MOUNDVILLE  32.997 -87.622 83.0 

2467200 SUCARNOOCHEE RIVER NEAR PORTERVILLE AT HWY 45 32.699 -88.485 350.0 

2471013 THREEMILE CR AT ZEIGLER BLVD AT SPRING HILL, ALA. 30.706 -88.151 27.0 

2479945 BIG CREEK AT COUNTY RD 63 NEAR WILMER, AL. 30.856 -88.334 81.0 

2481000 BILOXI RIVER NEAR WORTHAM 30.570 -89.136 249.0 

3439000 FRENCH BROAD RIV AT NC 178 AT ROSMAN 35.142 -82.824 176.0 

3456991 PIGEON RIV AT NC 215 NR CANTON 35.522 -82.848 337.0 

3460000 CATALOOCHEE CRK AT SR 1395 NR CATALOOCHEE 35.667 -83.073 127.0 

3463300 S TOE RIV AT SR 1168 NR CELO 35.831 -82.184 111.0 
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3471500 RT 660 AT RIVERSIDE CHURCH, 50 YDS DOWNST RT 645 36.761 -81.631 197.0 

3478400 BELOW DAIRYMAN OFF RT. 11 ABOVE BRISTOL 36.632 -82.128 73.0 

3479000 WATAUGA RIV AT SR 1121 NR SUGAR GROVE 36.239 -81.823 238.0 

3488000 ON RT 633 BR, 0.5 MI OFF RT 91, 1 MILE UPSTREAM 36.908 -81.702 575.0 

3539778 CLEAR CREEK AT LILLY BRIDGE NEAR LANCING, TN 36.103 -84.718 436.0 

3550000 VALLEY RIV AT US 74/19/129 AT TOMOTLA 35.137 -83.980 269.0 

3573182 SCARHAM CREEK NEAR MCVILLE, ALABAMA 34.298 -86.117 128.0 

3598250 NORTH FORK CREEK NEAR POPLINS CROSSROADS, TN 35.584 -86.596 184.0 

208524090 MOUNTAIN CREEK AT SR1617 NR BAHAMA, NC 36.150 -78.897 21.0 

208524975 LITTLE R BL LITTLE R TRIB AT FAIRNTOSH, NC 36.113 -78.859 253.0 

208726005 CRABTREE CRK AT SR 1649 NR RALEIGH 35.845 -78.724 197.0 

208925200 BEAR CREEK AT MAYS STORE, NC 35.275 -77.794 148.0 

209741955 NORTHEAST CRK AT SR 1100 NR NELSON 35.872 -78.913 54.0 

242354750 CAHABA VALLEY CREEK AT CROSS CR RD AT PELHAM, AL. 33.313 -86.806 66.0 

     South Atlantic-Gulf and Tennessee (Validation watersheds) 

   2121500 ABBOTTS CRK AT NC 47 NR COTTON GROVE 35.748 -80.241 451.0 

2186000 12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL 34.743 -82.802 275.0 

3456991 PIGEON RIV AT SR 1642 AT CLYDE 35.535 -82.911 337.0 

3478400 BEAVER CREEK 36.594 -82.187 73.0 

21677037 LITTLE SALUDA RVR AT 378 E SALUDA 34.008 -81.742 233.0 

21677037 LITTLE SALUDA RVR AT S-41-39 NE SALUDA 34.044 -81.698 233.0 

     Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (Calibration watersheds) 
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3050000 TYGART VALLEY RIVER NEAR DAILEY, WV 38.809 -79.882 479.1 

3075500 YOUGH. R. N OF RT 20 BR.DOWNST.FR. LT. YOUGH. 39.425 -79.421 347.1 

3076600 LIT. YOUGH. R. OLD FOOT BR. 0.4M. AB. MOUTH 39.418 -79.419 126.7 

3078000 CASSELMAN R. CROS. BY RIVER RD. AT USGS STA. 39.704 -79.140 161.9 

3111548 STILLWATER CREEK ABOVE POOL 40.102 -81.146 253.0 

3118000 L. CUYAHOGA R. AT AKRON - OTTO ST GAGE (RM 1.85) 41.094 -81.522 111.6 

3118500 NIMISHILLEN CRK DST N. INDUSTRY - HOWENSTINE RD. 40.717 -81.347 453.3 

3136500 KOKOSING R AT TILDEN AVE GAGE - MT. VERNON 40.406 -82.500 523.2 

3157000 CLEAR CREEK NEAR ROCKBRIDGE OH 39.588 -82.578 230.5 

3161000 S FORK NEW RIV AT NC 16 AND 88 NR JEFFERSON 36.395 -81.407 531.0 

3165000 WILSON CREEK, RT 721 BRIDGE OFF RT 56/16, APPROX 36.600 -81.355 102.0 

3175500 WOLF CREEK AT PRIVATELY OWNED LOW WATER BR OFF RT 37.256 -81.014 577.6 

3187500 RIGHT FK HOLLY RIVER WV 38.636 -80.466 208.2 

3191500 MUDDLETY CREEK OF GAULEY RIVER 38.327 -80.833 104.1 

3198350 CLEAR FORK AT WHITESVILLE, WV 37.966 -81.524 162.7 

3202750 CLEAR FORK OF GUYANDOT RIVER 37.609 -81.724 326.3 

3206600 KIAH CREEK 38.061 -82.266 99.7 

3208950 CRANES NEST R OF POUND RIVER VA 37.124 -82.439 172.2 

3209000 POUND RIVER VA 37.237 -82.343 572.4 

3213500 SLATE CREEK RT. 460 BRIDGE IN GRUNDY 37.279 -82.099 80.3 

3220000 MILL CREEK OFF WALDO ROAD - MARYSVILLE (RM 16.8) 40.256 -83.345 461.0 

3228805 ALUM CREEK AT COLUMBUS OH 39.945 -82.941 316.0 

3230450 HELLBRANCH RUN NEAR HARRISBURG OH 39.831 -83.160 95.8 

3237280 UPPER TWIN CREEK AT MCGAW OH 38.644 -83.215 31.6 
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3240000 LITTLE MIAMI RIVER NEAR OLDTOWN OH 39.748 -83.931 334.1 

3241500 E FK TODD FORK AT CLARKSVILLE - SR 133/132 39.399 -83.983 163.7 

3274750 BIG BLUE RIVER 39.874 -85.439 152.0 

3275600 EAST FORK WHITEWATER RIVER AT ABINGTON, IND. 39.733 -84.960 518.0 

3282040 HORSE LICK CREEK NEAR LAMERO 37.320 -84.139 200.2 

3289300 SOUTH ELKHORN CREEK NEAR MIDWAY 38.141 -84.645 271.9 

3295400 SALT RIVER NEAR GLENSBORO 38.002 -85.060 445.5 

3302000 POND CREEK NEAR LOUISVILLE 38.120 -85.796 165.8 

3325500 MISSISSINEWA RIVER NEAR RIDGEVILLE, IND. 40.280 -84.996 344.5 

3327520 PIPE CR 40.722 -86.198 411.8 

3340800 BIG RACCOON CR 39.790 -86.959 360.0 

3347500 W FK WHITE RIVER 40.182 -84.969 91.9 

3351500 FALL CREEK NEAR FORTVILLE, IND. 39.955 -85.868 437.7 

3353500 EAGLE CR 39.778 -86.251 450.7 

3353700 MILL CR 39.637 -86.641 74.6 

3361650 SUGAR CREEK AT CO RD 400 S AT NEW PALESTINE, IN 39.728 -85.879 243.2 

3364500 CLIFTY CREEK AT CO RD 1150 E NEAR HARTSVILLE, IN 39.292 -85.696 236.7 

3369500 VERNON FK MUSCATATUCK RIV 38.976 -85.620 512.8 

3382100 BANKSTON FORK NEAR DORRIS HEIGHTS, IL 37.768 -88.540 380.7 

3384450 LUSK CREEK NEAR EDDYVILLE, IL 37.473 -88.548 111.1 

4015330 KNIFE RIVER UPSTREAM OF US-61 AT KNIFE RIVER 46.947 -91.795 216.5 

4025500 BOIS BRULE RIVER 46.679 -91.595 305.6 

4063700 POPPLE RIVER NEAR FENCE, WI 45.763 -88.463 360.0 

4072150 DUCK CREEK NEAR HOWARD, WI 44.534 -88.129 279.7 
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4077630 RED RIVER AT MORGAN ROAD NEAR MORGAN, WI 44.898 -88.844 295.3 

4085200 KEWAUNEE RIVER NEAR KEWAUNEE, WI 44.457 -87.556 328.9 

4086500 CEDAR CREEK NEAR CEDARBURG, WI 43.323 -87.979 310.8 

4087240 ROOT RIVER 42.785 -87.830 492.1 

4093000 CROOKED CR 41.282 -87.026 321.2 

4094000 E BR LITTLE CALUMET RIVER 41.617 -87.126 171.5 

4170000 HURON RIVER AT MILFORD, MI 42.579 -83.628 341.9 

4170500 HURON RIVER NEAR NEW HUDSON, MI 42.513 -83.676 383.3 

4175340 SALINE R AT MAPLE RD BRIDGE; SALINE TWP, SEC 13 42.130 -83.776 176.1 

4175600 RIVER RAISIN NEAR MANCHESTER, MI 42.168 -84.076 341.9 

4177720 FISH CR 41.559 -84.836 97.1 

4197100 HONEY CREEK AT MELMORE OH 41.022 -83.110 385.9 

4202000 CUYAHOGA R AT SHALERSVILLE - DIAGONAL RD-SR 303 41.238 -81.303 391.1 

4214500 BUFFALO CREEK AT GARDENVILLE NY 42.855 -78.755 367.8 

4229500 HONEOYE CREEK AT HONEOYE FALLS NY 42.957 -77.589 507.6 

4230500 OATKA CREEK AT GARBUTT NY 43.010 -77.791 518.0 

5064900 BEAVER CREEK NR FINLEY, ND 47.595 -97.709 414.4 

5099400 LITTLE SOUTH PEMBINA RIVER NR WALHALLA, ND 48.865 -98.007 471.4 

5287890 ELM CREEK NR CHAMPLIN, MN 45.163 -93.436 222.7 

5320270 LITTLE COBB RIVER NEAR BEAUFORD, MN 43.996 -93.909 336.7 

5345000 PRAIRIE CR AT 310TH ST .2 MI UPSTM OF L BYLLESBY 44.501 -92.993 334.1 

5378183 JOOS VALLEY CREEK NEAR FOUNTAIN CITY, WI 44.215 -91.665 15.3 

5401050 TENMILE CREEK NEAR NEKOOSA, WI 44.263 -89.811 189.8 

5406500 BLACK EARTH CREEK AT BLACK EARTH, WI 43.134 -89.733 118.1 
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5427965 GARFOOT CREEK NEAR CROSS PLAINS, WI 43.110 -89.679 8.5 

5430150 SUGAR RIVER AT STH 69 DWNSTM BRIDGE 42.949 -89.545 213.9 

5431486 TURTLE CREEK AT CARVERS ROCK ROAD NEAR CLINTON, WI 42.598 -88.829 515.4 

5451210 SOUTH FORK IOWA RIVER NE OF NEW PROVIDENCE, IA 42.315 -93.152 580.2 

5455100 OLD MANS CREEK NEAR IOWA CITY, IA 41.606 -91.616 520.6 

5517890 SALT CR 41.499 -87.142 78.5 

5527800 DES PLAINES RIVER AT RUSSELL, IL 42.488 -87.925 318.6 

5531500 SALT CREEK AT WESTERN SPRINGS, IL 41.826 -87.900 297.9 

5536195 LITTLE CALUMET RIVER AT MUNSTER, IND. 41.577 -87.522 233.1 

5540095 EAST BRANCH DU PAGE RIVER AT ROUTE 34 AT LISLE, IL 41.801 -88.081 234.1 

5543830 FOX (IL) R. BELOW WAUKESHA 42.934 -88.293 326.3 

5548280 NIPPERSINK CREEK NEAR SPRING GROVE, IL 42.444 -88.247 497.3 

5551700 BLACKBERRY CREEK NEAR YORKVILLE, IL 41.671 -88.446 181.8 

5568800 INDIAN CREEK NEAR WYOMING, IL 41.018 -89.836 162.4 

5591550 JONATHAN CREEK NEAR SULLIVAN, IL 39.601 -88.546 89.6 

5591700 WEST OKAW RIVER NEAR LOVINGTON, IL 39.731 -88.662 290.1 

5592575 NORTH FORK KASKASKIA RIVER NEAR PATOKA, IL 38.774 -89.086 114.5 

5592800 HURRICANE CREEK NEAR MULBERRY GROVE, IL 38.919 -89.243 393.7 

5592900 CROOKED CREEK NEAR ODIN, IL 38.564 -89.050 292.7 

5595730 RAYSE CREEK NEAR WALTONVILLE, IL 38.254 -89.040 227.9 

5595820 BIG MUDDY RIVER NEAR MT. VERNON, IL 38.309 -88.989 199.2 

407809265 TOMORROW RIVER NEAR NELSONVILLE, WI 44.524 -89.338 197.6 

423205010 IRONDEQUOIT CR ABV BLOSSOM RD NR ROCHESTER NY 43.145 -77.512 367.8 

423205025 IRONDEQUOIT CREEK AT EMPIRE BLVD, ROCHESTER NY 43.176 -77.527 391.1 
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     Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (Validation watersheds) 

  3111548 STILLWATER CREEK 40.103 -81.131 253.0 

3157000 HOCKING R. DST LANCASTER - 1ST U.S. RT 33 BRIDGE 39.686 -82.574 230.5 

3165000 CROOKED CREEK, RT. 635 BRIDGE AT INTERSECTION WITH 36.769 -80.908 102.0 

3165000 AT MT CARMEL CHURCH ON RT 650, 1.8 MI OFF RT 660 36.698 -81.058 102.0 

3165000 LOW WATER BRIDGE OFF RT 711,APPROX .75 MI W. FOX 36.614 -81.306 102.0 

3202750 KNOX CREEK RT. 697 AT STATE LINE 37.471 -82.062 326.3 

3206600 EAST FORK TWELVEPLOTE CK 38.052 -82.308 99.7 

3206600 BEECH FORK LAKE 38.299 -82.397 99.7 

3207800 LEVISA FORK TEEL BR.ON RAILROAD AVE OFF RT 83, .1 37.277 -82.101 769.2 

3208500 Russell Fork UPSTREAM OF LAZARUS BR & DOWNSTR RT 7 37.193 -82.288 740.7 

3208950 CRANES NEST RIVER N.E. FROM ROUTE 83 37.151 -82.411 172.2 

3208950 POUND RIVER VA 37.166 -82.523 172.2 

3208950 DISMAL CREEK, RT. 666 BRIDGE 37.243 -82.028 172.2 

3208950 MCCLURE RIVER RT. 63 BR N OF CLINCH 37.168 -82.361 172.2 

3274750 BLUE R ON INTERSTATE 70 AT MILE POINT 63.76 39.854 -85.477 152.0 

3333700 WILDCAT CR 40.486 -86.108 626.8 

3347000 W FK WHITE RIVER 40.178 -85.342 624.2 

3353500 EAGLE CR 39.735 -86.197 450.7 

4072150 DUCK CREEK AT SEMINARY ROAD NEAR ONEIDA, WI 44.465 -88.219 279.7 

4094000 E BR LITTLE CALUMET RIVER 41.617 -87.126 171.5 

4105000 BATTLE CREEK R@ 9 MILE RD; PENNFIELD TWP SEC 21 42.364 -85.122 624.2 

4177720 FISH CR 41.465 -84.814 97.1 
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4232034 IRONDEQUOIT CR AT RAILROAD MILLS, NR FISHERS NY 43.027 -77.478 101.5 

5078230 LOST R AT CSAH-5 AT OKLEE 47.844 -95.859 657.9 

5406500 SUGAR RIVER AT VALLEY RD. 42.973 -89.567 118.1 

5408000 KICKAPOO RIVER AT ONTARIO, WI 43.715 -90.587 688.9 

5551700 SOMONAUK CREEK AT SHERIDAN, IL 41.544 -88.687 181.8 

5592575 HICKORY CREEK NEAR BLUFF CITY, IL 38.925 -89.039 114.5 

5595730 CASEY FORK AT ROUTE 37 NEAR MT. VERNON, IL 38.269 -88.899 227.9 

40263491 DRUMMOND BOG DISCHARGE 1MI NE DRUMMOND,WI 46.349 -91.258 169.4 

     Missouri (Calibration watersheds) 

   6295113 ROSEBUD C AT RESERVATION BNDRY NR KIRBY MT 45.360 -106.990 315.2 

6623800 ENCAMPMENT RIVER AB HOG PARK CR, NR ENCAMPMENT, WY 41.020 -106.820 186.3 

6710605 BEAR CREEK ABOVE MORRISON 39.650 -105.180 451.1 

6906150 LONG BR. @ INKWELL ST.  39.890 -92.490 58.9 

6906200 E. FK. CHARITON NEAR HWY 36 39.740 -92.510 287.1 

6911900 DRAGON C 2.25MI S/BURLINGAME,KAN 38.710 -95.830 292.2 

6914950 BIG BULL CK AT I-35 38.750 -94.970 73.6 

6921200 LINDLEY CREEK MO HWY 64 BRIDGE 37.750 -93.280 287.1 

6935890 CREVE COEUR CREEK NEAR CREVE COEUR, MO 38.680 -90.480 56.4 

6935980 COWMIRE CREEK AT BRIDGETON, MO 38.760 -90.430 9.6 

     Missouri (Validation watersheds) 

   6187915 SODA BUTTE CR AT PARK BNDRY AT SILVER GATE 45.000 -110.000 80.0 

6298000 TONGUE RIVER NEAR DAYTON, WY 44.840 -107.300 528.0 
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6332515 BEAR DEN CREEK NR MANDAREE, ND 47.780 -102.760 189.7 

6409000 CASTLE CR NR HILL CITY SD 44.010 -103.830 203.0 

6720990 BIG DRY CREEK 50 YARDS UPSTREAM OF USGS GUAGE STATION 40.060 -104.830 274.2 

6803000 SALT CREEK AT PIONEERS BLVD AT LINCOLN, NE 40.770 -96.710 428.0 

6889200 SOLDIER CR. NEAR ST. CLERE 39.370 -95.910 381.9 

6889200 SOLDIER C, I RD NR DELIA, KS  SC-7 39.260 -95.880 381.9 

6893500 BLUE RIVER AT KANSAS CITY, MO 38.950 -94.550 481.8 

6893500 BLUE RIVER STATION 40 (BR-40) 39.030 -94.520 481.8 

6906300 EAST FORK LITTLE CHARITON R. NEAR HUNTSVILLE, MO 39.450 -92.560 563.9 

6918740 LITTLE SAC RIVER NEAR WALNUT GROVE, MO 37.390 -93.410 607.4 

6935955 FEE FEE CREEK NEAR BRIDGETON, MO 38.720 -90.440 30.0 

6936475 COLDWATER CREEK NEAR BLACKJACK, MO 38.810 -90.250 103.5 

     Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (Calibration watersheds) 

  7024000 BAYOU DE CHIEN NEAR CLINTON, KY 36.629 -88.964 177.9 

7030392 WOLF R 72.6 @ HWY 8113 NEAR LAGRANGE  QUAD 432SW 35.032 -89.248 543.9 

7031692 FLETCHER CREEK AT SYCAMORE VIEW ROAD AT MEMPHIS 35.169 -89.866 79.0 

7048800 RICHLAND CREEK AT GOSHEN, AR 36.104 -94.008 357.4 

7052152 WILSON CREEK NEAR BROOKLINE, MO 37.147 -93.375 102.3 

7052160 WILSON CREEK NEAR BATTLEFIELD, MO 37.118 -93.404 151.0 

7053250 YOCUM CREEK NEAR OAK GROVE, AR 36.454 -93.357 136.8 

7055646 BUFFALO RIVER AT WILDERNESS BOUNDARY 35.943 -93.406 148.7 

7060710 NORTH SYLAMORE CREEK NR FIFTYSIX AR. 35.992 -92.214 150.5 

7083000 HALFMOON CREEK NEAR MALTA, CO. 39.172 -106.389 61.1 
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7103780 MONUMENT C AB N.GATE BLVD AT USAF ACADEMY, CO. 39.031 -104.848 211.6 

7104000 MONUMENT CREEK AT PIKEVIEW, CO. 38.918 -104.819 528.4 

7145700 SLATE CREEK NEAR WELLINGTON 37.216 -97.348 398.9 

7178520 DOG CREEK @ SPAVINAW FLOWLINE 36.249 -95.598 194.0 

7184000 LIGHTNING CREEK NEAR OSWEGO 37.237 -95.044 510.2 

7191160 SPAVINAW CREEK NEAR MAYSVILLE, AR 36.365 -94.551 228.4 

7191179 SPAVINAW CREEK NEAR CHEROKEE, AR 36.342 -94.588 269.4 

7191220 SPAVINAW CREEK NEAR SYCAMORE, OK 36.335 -94.641 344.5 

7194800 ILLINOIS RIVER AT SAVOY, AR 36.103 -94.344 432.5 

7195000 OSAGE CREEK NEAR ELM SPRINGS, AR 36.222 -94.287 336.7 

7195855 FLINT CREEK 1/8 MILE BELOW FAGEN CREEK 36.216 -94.604 154.9 

7196000 FLINT CREEK NEAR KANSAS, OK 36.186 -94.707 284.9 

7196900 BARON FORK AT DUTCH MILLS, AR 35.880 -94.487 105.2 

7197360 CANEY CREEK NEAR BARBER, OK 35.785 -94.856 232.1 

7247000 POTEAY RIVER AT CAUTHRON, AR 34.919 -94.299 525.8 

7247250 BLACK FORK BELOW BIG CREEK NR PAGE, OK 34.774 -94.512 192.7 

7247500 FOURCHE MALINE NEAR TED OAK, OK 34.913 -95.156 316.0 

7249400 JAMES FORK NEAR HACKETT, AR 35.163 -94.407 380.7 

7263295 MAUMELLE RIVER AT WILLIAMS JUNCTION, AR 34.876 -92.775 119.4 

7311200 BLUE BEAVER CREEK NEAR CACHE, OK 34.623 -98.564 63.7 

7311630 MIDDLE WICHITA RIVER NEAR GUTHRIE, TX 33.796 -100.075 130.3 

7311782 S WICHITA RV AT LOW FLOW DAM NR GUTHRIE, TX 33.622 -100.209 577.6 

7335700 KIAMICHI RIVER NEAR BIG CEDAR, OK 34.638 -94.613 103.9 

7340300 COSSATOT R NR VANDERVOORT AR 34.380 -94.236 232.1 
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7351500 CYPRESS BAYOU AT LINWOOD AVENUE, S. SHREVEPORT 32.344 -93.764 170.9 

7352000 SALINE BAYOU AT LA. HWY 507, EAST OF BIENVILLE 32.355 -92.963 398.9 

7362587 ALUM FORK SALINE RIVER NEAR REFORM, AR 34.797 -92.934 69.9 

7366200 LITTLE CORNEY BAYOU NEAR LILLIE, LA 32.929 -92.633 538.7 

7373000 BIG CR AT POLLOCK LA 31.536 -92.408 132.1 

7375000 TCHEFUNCTE RIVER NEAR COVINGTON, LA 30.495 -90.170 266.8 

7375280 TANGIPAHOA RIVER AT OSYKA AT HWY 584 31.012 -90.461 409.2 

7376500 NATALBANY RIVER WEST OF PONCHATOULA, LOUISIANA 30.431 -90.547 205.9 

8010000 BAYOU DES CANNES NR EUNICE, LA 30.483 -92.491 339.3 

8023400 BAYOU SAN PATRICIO AT LA. HWY. 512, NEAR BENSON 31.874 -93.659 207.7 

8045850 CLEAR FK TRINITY RV NR WEATHERFORD, TX 32.740 -97.652 313.4 

8049700 

WALNUT CREEK AT MATLOCK ROAD 2.6 MI NORTHEAST OF 

MANSFIELD 32.581 -97.102 162.7 

8050400 

ELM FORK TRINITY RIVER IMMEDIATELY DOWNSTREAM OF FM 2071 

SOUTH OF GAINESVILLE 33.582 -97.128 450.7 

8057200 WHITE ROCK CK AT GREENVILLE AVE, DALLAS, TX 32.889 -96.757 172.0 

8058900 E FK TRINITY RV AT MCKINNEY, TX 33.244 -96.609 424.8 

8067500 CEDAR BAYOU AT US 90 29.972 -94.986 168.1 

8070500 CANEY CK NR SPLENDORA, TX 30.260 -95.302 271.9 

8071280 

LUCE BAYOU IN TRICONTINENTAL PIPELINE RIGHT-OF-WAY 1.13 KM 

DOWNSTREAM OF CONFLUENCE WITH CAMP BRANCH NORTHEAST OF 

HUFFMAN 30.109 -95.060 564.6 

8074500 WHITEOAK BAYOU AT HOUSTON, TX 29.775 -95.397 223.5 
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8075000 BRAYS BAYOU AT HOUSTON, TX 29.697 -95.412 245.8 

8078000 CHOCOLATE BAYOU NR ALVIN, TX 29.369 -95.321 227.1 

8104900 SOUTH FORK SAN GABRIEL RIVER AT US 183 30.621 -97.861 344.5 

8154700 BULL CK AT LOOP 360 NR AUSTIN, TX 30.372 -97.785 57.8 

8155200 BARTON CK AT SH 71 NR OAK HILL, TX 30.296 -97.926 232.3 

8155240 BARTON CREEK AT LOST CREEK BLVD 30.274 -97.844 277.1 

8155300 BARTON CK AT LOOK 360, AUSTIN, TX 30.245 -97.802 300.4 

8155400 BARTON CK ABV BARTON SPGS AT AUSTIN, TX 30.264 -97.772 323.7 

8158600 WALNUT CK AT WEBBERVILLE RD, AUSTIN, TX 30.283 -97.655 132.9 

8158700 ONION CK NR DRIFTWOOK, TX 30.083 -98.008 321.2 

8158810 BEAR CK BL FM 1826 NR DRIFTWOOD, TX 30.155 -97.940 31.6 

8158840 SLAUGHTER CREEK AT FM 1826 SOUTH OF AUSTIN 30.209 -97.903 21.3 

8162600 TRES PALACIOS RV NR MIDFIELD, TX 28.928 -96.171 375.5 

8178565 SAN ANTONIO RIVER AT IH 410 29.322 -98.450 323.7 

8178800 SALADO CK AT LOOP 13, SAN ANTONIO, TX 29.357 -98.413 489.5 

8181480 LEON CREEK AT IH 35 29.330 -98.584 567.2 

8198000 

SABINAL RIVER 12.5 MILES NORTH OF SABINAL AND 2.3 MILES 

DOWNSTREAMM FROM THE MOUTH OF ONION CREEK 4.13 KM NW OF 

INTERSECTION OF RM187/FM1796 29.493 -99.497 533.5 

8200000 HONDO CK NR TARPLEY, TX 29.570 -99.247 247.6 

8201500 SECO CREEK AT MILLER RANCH 29.573 -99.403 116.5 

     Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (Validation watersheds) 

  7191221 SPAVINAW CREEK NEAR COLCORD, OK 36.323 -94.685 422.2 
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7191222 BEATY CREEK: LOWER 36.366 -94.727 153.3 

7247250 BLACK FORK AT HODGEN, OK 34.843 -94.625 192.7 

8045850 CLEAR FORK TRINITY R AT FM 51 32.872 -97.745 313.4 

8070500 CANEY CREEK AT FM 1485 30.149 -95.192 271.9 

8155240 BARTON CK AT BARTON CK BLVD, AUSTIN, TX 30.296 -97.852 277.1 

8155300 BARTON CK BL BARTON SPGS, AUSTIN, TX 30.265 -97.765 300.4 

8158600 WALNUT CK SP RR BRIDGE, AUSTIN, TX 30.266 -97.657 132.9 

8178565 SAN ANTONIO RIVER AT THEO AVE IN SAN ANTONIO 29.388 -98.499 323.7 

8178700 SALADO CK AT LOOP 410, SAN ANTONIO, TX 29.516 -98.431 354.8 

     Pacific Northwest (Calibration watersheds) 

   470 SWAMP CREEK//USGS GAGING STATI 47.756 -122.234 59.0 

484 BEAR CREEK//FIRST RAILROAD BRI 47.670 -122.110 125.0 

631 ISSAQUAH CREEK//BRIDGE 99C ON 47.552 -122.048 147.0 

404703 MCKAY CREEK AT KIRK ROAD (PEND 45.654 -118.823 515.0 

12056500 NF SKOKOMISH R BL STAIRCASE RP 47.514 -123.330 148.0 

12112600 BIG SOOS CREEK ABOVE HATCHERY 47.312 -122.165 213.0 

12392155 LIGHTNING CREEK AT CLARK FORK 48.151 -116.183 305.0 

13018300 CACHE CREEK NEAR JACKSON 43.452 -110.704 29.0 

13150430 SILVER CREEK AT SPORTSMAN ACCE 43.322 -114.107 165.0 

13238322 NORTH FORK PAYETTE RIVER BL FI 45.035 -116.059 221.0 

14200400 LITTLE ABIQUA CREEK NEAR SCOTT 44.956 -122.628 25.0 

14206950 FANNO CREEK AT DURHAM 45.403 -122.755 82.0 

01G070 MF NOOKSACK R 48.785 -122.112 193.0 
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03B050 SAMISH.R.NR.BURLINGTON 48.546 -122.337 217.0 

13A060 DESCHUTES.R.@.E.ST.BRIDGE 47.012 -122.902 403.0 

18A050 DUNGENESS.R.NR.MOUTH 48.144 -123.128 408.0 

C320 COVINGTON CREEK 47.320 -122.126 91.0 

G320 LITTLE SOOS CRK 47.358 -122.124 20.0 

J484 BEAR CREEK 47.718 -122.076 38.0 

     Pacific Northwest (Validation watersheds) 

   322 NEWAUKUM CREEK// LEFT BANK DOW 47.274 -122.056 82.0 

11321 JOHNSON CREEK AT SE 17th AVE ( 45.447 -122.642 139.0 

412133 WILSON RIVER AT HWY 6 (RIVER M 45.473 -123.735 420.0 

3805015 SCOGGINS CREEK @ OLD HWY 47 45.459 -123.154 110.0 

12500450 YAKIMA RIVER ABOVE AHTANUM CRE 46.534 -120.467 352.0 

13037500 SNAKE RIVER NR HEISE ID 43.613 -111.660 9.0 

08C070 CEDAR R AT LOGAN ST BR AT RENT 47.486 -122.208 456.0 

08C110 CEDAR RIVER NEAR LANDSBURG 47.391 -121.919 334.0 

12A070 CHAMBERS CREEK NEAR STEILACOOM 47.192 -122.572 264.0 

16C090 DUCKABUSH RIVER NEAR BRINNON 47.684 -123.010 179.0 

24F070 NASELLE RIVER NEAR NASELLE 46.373 -123.746 143.0 

27D090 EF LEWIS RIVER NR DOLLAR CORNE 45.815 -122.591 324.0 

D474 NORTH CREEK 47.780 -122.187 74.0 

GAR100 PAYETTE RIVER AT HARTSELL BRID 44.790 -116.145 384.0 

GAR120 NF PAYETTE R AT SHEEP BRIDGE M 44.905 -116.117 384.0 
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California (Validation watersheds) 

   10256500 SNOW C NR WHITE WATER CA 33.871 -116.681 28.3 

10265150 HOT C A FLUME NR MAMMOTH LAKES CA 37.644 -118.854 130.5 

11060400 WARM C NR SAN BERNARDINO CA 34.078 -117.299 499.0 

11073360 CHINO C A SCHAEFER AVENUE NR CHINO CA 34.004 -117.727 143.4 

11073495 CUCAMONGA C NR MIRA LOMA CA 33.983 -117.599 190.3 

11105510 MALIBU C A MALIBU CA 34.043 -118.684 283.7 

11132500 SALSIPUEDES C NR LOMPOC CA 34.589 -120.408 122.8 

11160500 SAN LORENZO R A BIG TREES CA 37.028 -122.058 292.4 

11262900 MUD SLOUGH NR GUSTINE CA 37.263 -120.906 156.0 

11264500 MERCED R A HAPPY ISLES BRIDGE NR YOSEMITE CA 37.732 -119.558 470.6 

11274538 ORESTIMBA CR AT RIVER RD NR CROWS LANDING CA 37.414 -121.015 465.2 

11292000 MF STANISLAUS R AT KENNEDY MDWS NR DARDANELLE CA 38.342 -119.823 241.3 

11381500 MILL C NR LOS MOLINOS CA 40.043 -122.099 341.0 

11383500 DEER C NR VINA CA 39.947 -122.053 564.0 

11391100 SACRAMENTO SLOUGH NEAR KNIGHTS LANDING, CA 38.779 -121.638 257.8 

11439500 SF AMERICAN R NR KYBURZ(RIVER ONLY) CA 38.764 -120.328 500.0 

11447360 ARCADE C NR DEL PASO HEIGHTS CA  38.642 -121.382 98.5 

11451715 BEAR C AB HOLSTEN CHIMNEY CYN NR RUMSEY CA 38.945 -122.345 266.1 

11468500 NOYO R NR FORT BRAGG CA 39.428 -123.737 273.5 

11475560 ELDER C NR BRANSCOMB CA 39.730 -123.644 16.9 

11478500 VAN DUZEN R NR BRIDGEVILLE CA 40.481 -123.890 574.7 

11495800 N FORK SPRAGUE RIVER AT POWER PLANT, NEAR BLY, OR 42.502 -120.987 174.2 
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Table E5.2: Complete list of all variables used by recursive partitioning (RPART) and random forest regression (RFR) analyses.  

Variables are long-term average values unless otherwise noted in the description.   
 
Dependent variable 

name Variable description 

Data 

source 

TNLoad Total nitrogen load (kg N/yr) 1 

TNYield Total nitrogen yield (kg N/km
2
/yr) Calculated 

TNConc Flow-weighted mean nitrogen concentration (mg N/L) Calculated 

Independent variable 

name (area-

normalized, if 

applicable) Variable description 

Data 

source 

BGTNLoad Total nitrogen background load (kg N/yr) 2 

BGTNYield Total nitrogen background yield (kg N/km
2
/yr) 2 

BGTNConc Total nitrogen background concentration (mg N/L) 2 

NMass (NRate‡) Mean nitrogen applied to cultivated and pasture agricultural land in 1997 (kg N) 4 

Canopy (CanopyPer#) Mean canopy cover within the watershed (km2)  5 

ImpBuff (ImpBuffPer+) Mean impervious land area within 100m Buffer (km2)  5 

NLCDAg 

(NLCDAgPer#) Total area of 2006 national land cover dataset (NLCD) agricultural land use classes 81 and 82 (km2)  5 

NLCDDev 

(NLCDDevPer#) Total area of 2006 national land cover dataset (NLCD) developed land use classes 21, 22, 23, and 24 (km
2
)  5 

NLCDDevI 

(NLCDDevIPer
#
) Total area of 2006 national land cover dataset (NLCD) developed land use classes 22, 23, and 24 (km

2
)  5 

NLCDAgBuff 

(NLCDAgBuffPer
+
) 

Total area of 2006 national land cover dataset (NLCD) agricultural land use classes 81 and 82 in the 100m buffer 

(km
2
)  5 



Independent 

variable name (area-

normalized, if 

applicable) Variable description 

Data 

source 
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NLCDDevBuff 

(NLCDDevBuffPer
+
) 

Total area of 2006 national land cover dataset (NLCD) developed land use classes 21, 22, 23, and 24 in the 100m 

buffer (km
2
)  5 

NLCDDevIBuff 

(NLCDDevIBuffPer
+
) 

Total area of 2006 national land cover dataset (NLCD) developed land use classes 22, 23, and 24 in the 100m 

buffer (km
2
)  5 

HLR Predominant hydrologic landscape region (HLR) category 6 

MaxEcoReg Predominant level III nutrient ecoregion category within the watershed 5 

NLCD Predominant national land cover dataset (NLCD) land use category 5 

NLCDMaj Predominant major national land cover dataset (NLCD) land use category 5 

NLCDMajBuff Predominant major national land cover dataset (NLCD) land use category in the 100m buffer 5 

BuffLU Predominant land use in the 100m buffer (undeveloped, developed, or agricultural) Calculated 

NLCDBuff Predominant 2006 national land cover dataset (NLCD) land use in the 100 meter buffer 5 

Streamflow Mean annual streamflow (m
3
/s) 1 

H2OVolume 

(H2OYield
#
) Annual stream volume (m

3
) Calculated 

Irrigated (IrrigatedPer) Irrigated land within the watershed (km
2
) 6 

Buff (BuffPer) Total Buffer area within the watershed (km
2
) 4 

Dams (DamsPer) Major Dams (count) 7 

DamStor (DamStorPer) Total Dam Storage (acrefeet) 7 

Strahler Strahler stream order 2 

Area Total watershed area (km
2
) 4 

MRB SPARROW major river basin identifier 1 

Lat Stream gage latitude 4 

Lon  Stream gage longitude 4 



Independent 

variable name (area-

normalized, if 

applicable) Variable description 

Data 

source 
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Pop2000 (PopPer) 2000 Population density (people/km
2
) 8 

RoadX (RoadXPer) Road crossings within the watershed (count) 4 

HSGA Mean percent of soil within the watershed as hydrologic soil group HGA 6 

HSGAC Mean percent of soil within the watershed as hydrologic soil group HGAC 6 

HSGAD Mean percent of soil within the watershed as hydrologic soil group HGAD 6 

HSGB Mean percent of soil within the watershed as hydrologic soil group HGB 6 

HSGBC Mean percent of soil within the watershed as hydrologic soil group HGBC 6 

HSGBD Mean percent of soil within the watershed as hydrologic soil group HGBD 6 

HSGC Mean percent of soil within the watershed as hydrologic soil group HGC 6 

HSGCD Mean percent of soil within the watershed as hydrologic soil group HGCD 6 

HSGD Mean percent of soil within the watershed as hydrologic soil group HGD 6 

HSG Predominant Hydrologic group category Calculated 

PercSand Mean percent sand in soil within the watershed 6 

PercSilt Mean percent silt in soil within the watershed 6 

PercClay Mean percent clay in soil within the watershed 6 

PercOM Mean percent organic matter in the soil within the watershed 6 

AWC Mean soil available water capacity (cm/cm) within the watershed 6 

Kfactor Mean soil K-factor within the watershed 6 

Rfactor Mean soil R-factor within the watershed 9 

Perm Soil permeability (cm/hr) 6 

SoilThick Soil thickness (m) 6 



Independent 

variable name (area-

normalized, if 

applicable) Variable description 

Data 

source 
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SoilEC Soil electrical conductivity (mS/cm) 4 

SRL25 Percent of soil restrictive layer above 25cm 4 

SRL35 Percent of soil restrictive layer above 35cm 4 

SRL45 Percent of soil restrictive layer above 45cm 4 

SRL55 Percent of soil restrictive layer above 55cm within the watershed 4 

WTDepth Depth to water Table (m) 6 

ArtDrain (ArtDPer) Artificially drained land within the watershed in 1992 (km
2
) 4 

Ditch (DitchPer) Area of ditched land within the watershed (km
2
) 4 

SubDrain (TileDPer) Area of land subject to subsurface drainage within the watershed (km
2
) 4 

BFI-WAHL Baseflow index: from Wahl and Wahl (1995) BFI program 10 

BFI-NHD Baseflow index: from national hydrology dataset 6 

SubH20Contact Subsurface water contact time (days) 6 

GWRech Groundwater recharge (mm/yr) 6 

Runoff Mean estimated runoff  (mm/yr) 11 

InfilOF Mean annual infiltration excess overland flow (% of total streamflow) 6 

SatOF Mean estimated saturation overland flow (% of total streamflow) 6 

FstFrz Average first freeze (day of year) 9 

LstFrz Average last freeze (day of year) 9 

MaxAP Maximum annual precipitation (mm) 9 

MaxPdays Maximum number of days with precipitation (days) 9 

MinAP Minimum annual precipitation (mm) 9 



Independent 

variable name (area-

normalized, if 

applicable) Variable description 

Data 

source 
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MinPdays Minimum number of days with precipitation (days) 9 

AnnualPdays Mean number of days of days with precipitation per year (days) 12 

JanPdays Number of days of precipitation in January (days) 12 

FebPdays Number of days of precipitation in February (days) 12 

MarPdays Number of days of precipitation in March (days) 12 

MayPdays Mean number of days of precipitation in May (days) 12 

JunPdays Number of days of precipitation in June (days) 12 

JulPdays Mean number of days of precipitation in July (days) 12 

AugPdays Number of days of precipitation in August (days) 12 

SepPdays Number of days of precipitation in September (days) 12 

OctPdays Number of days of precipitation in October (days) 12 

NovPdays Mean number of days of precipitation in November (days) 12 

DecPdays Number of days of precipitation in December (days) 12 

‡ Application rate (kg/km2) 

# Percent of watershed area 

+ Percent of 100m buffer area 

1 Moore et al., 2011, Hoos and McMahon, 2009, Robertson and Saad, 2011, Brown et al., 2011, Rebich et al., 2011, Wise and 

Johnson, 2011, Saleh and Domagalski, 2012 

2 Smith et al. 2003 

3 Personal communications with Mike Wieczorek and Naomi Nakagaki, January 15, 2015 

4 Personal communications with Mike Wieczorek, January 15, 2015 

5 Personal communications with Mike Wieczorek and Andrew LaMotte, January 15, 2015 

6 Personal communications with Mike Wieczorek and Dave Wolock, January 15, 2015 



Independent 

variable name (area-

normalized, if 

applicable) Variable description 

Data 

source 

 

226 
 

7 Personal communications with Mike Wieczorek and James Falcone, January 15, 2015 

8 Personal communications with Mike Wieczorek and Curtis Price, January 15, 2015 

9 PRISM Group, 2008 

10 Wahl and Wahl, 1995 

11 Personal communications with Mike Wieczorek, Dave Wolock, and Gregory McCabe, January 15, 2015 

12 Personal communications with Mike Wieczorek, James Falcone, and Ryan Hill, January 15, 2015 
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Table E5.3:  Coefficient values of categorical variables for insertion into recursive 

partitioning (RPART) based and random forest regression (RFR) based multiple linear 

regression models.  For example, when using variables extracted by RPART for 

estimating total nitrogen yield in a developed watershed within hydrologic landscape 

region (HLR) “2”, + 0.0103 is added to the equation. NA represents categories not 

present in the watershed group.   

 

Categorical 

variable name

Variable 

category RPART RFR RPART RFR RPART RFR RPART RFR

2 0.0103 0.0483 -0.244

3 0.175 0.380 NA

4 0.0266 0.316 -0.0346

5 -0.418 -0.585 NA

6 0.361 0.154 NA

7 0.00526 0.285 -0.281

8 -0.208 0.865 -0.660

9 0.113 0.185 -0.341

10 -0.398 0.332 -0.736

11 0.185 0.487 -0.391

12 -0.239 0.0195 -0.320

13 -0.190 0.849 -1.04

15 -0.747 0.000 -0.356

16 0.310 0.482 -0.357

17 NA NA -1.398

18 NA NA -0.398

19 NA NA -0.275

20 NA NA -0.327

2 0.294 0.171 NA

3 NA NA -0.430

4 -0.147 0.425 -0.0754

5 -0.426 0.448 0.179 0.378 0.00

6 0.481 0.575 0.189 0.542 NA

7 0.052 0.358 -0.0119 0.226 0.0696

8 0.364 NA NA 0.373 -0.0188

9 0.258 0.303 -0.054 0.302 -0.0908

10 0.869 0.309 -0.167 0.706 NA

11 0.604 0.272 0.00966 0.603 0.00559

12 0.486 0.214 -0.402 0.267 -0.212

14 0.506 0.275 -0.113 0.435 -0.211

22 0.289

23 -0.0767

24 0.756

41 0.0272

42 -0.205

43 -0.0130

81 0.188

82 0.470

90 -0.142

2 -0.0424

3 0.0565

4 0.132

5 -0.0547

7 0.0466

Total nitrogen concentration
#

Developed watersheds Agricultural watersheds Developed watersheds Undeveloped watersheds

HLR

MaxEcoReg

NLCDBuff

MRB

Total nitrogen yield
#
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Figure E5.1:  Cluster plots for the set of explanatory variables used for (A) load 

estimation and (B) yield and concentration estimation.  Watersheds are represented by the 

colored points and are associated with one of three clusters.  Colored ellipses contain a 

majority of the correspondingly colored watersheds within the specific cluster.

B 

A 
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Figure E5.2: A regression tree for total nitrogen loads in agricultural watersheds as 

produced using recursive partitioning (RPART).  The variables that were extracted at 

each node were considered the important variables for determining total nitrogen load in 

agricultural streams.  Variable names are explained in Table E5.2. 
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Figure E5.3: A plot of variable importance for total nitrogen loads in agricultural 

watersheds, as produced using random forest regression (RFR).  The X-axis represents 

the percent increase in mean squared error (%IncMSE) of dependant variable predictions 

after randomly permuting all of the values within each independent variable.  The visual 

break in slope was used to define which variables are important and which are not.  

Variables with values that fall along the top line were considered important for estimating 

loads in agricultural streams, whereas variables with values that fall along the bottom line 

were considered not important.  Lines were drawn manually.  Variable names are 

explained in Table E5.2. 
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A 

 
B 

 
C 

 
Figure E5.4:  Residuals (log10-transformed) from total nitrogen load (log10-

transformed) estimates from multiple linear regression equations for calibration and 

validation data sets compared to estimated load values for (A) agricultural, (B) 

developed, and (C) undeveloped streams using important variables from recursive 

partitioning (RPART) and random forest regression (RFR).  Note the differing values on 

the X-axes.   
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A 

 
B 

 
C 

 
 

Figure E5.5:  Residuals (log10-transformed) from total nitrogen yield (log10-

transformed) estimates from multiple linear regression equations for calibration and 

validation data sets compared to estimated yield values for (A) agricultural, (B) 

developed, and (C) undeveloped watersheds using important variables from recursive 

partitioning (RPART) and random forest regression (RFR).  Note the differing values on 

the X-axes.   
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C 

 
Figure E5.6:  Residuals (log10-transformed) from total nitrogen concentration (log10-

transformed) estimates from multiple linear regression equations for calibration and 

validation data sets compared to estimated concentration values for (A) agricultural, (B) 

developed, and (C) undeveloped streams using important variables from recursive 

partitioning (RPART) and random forest regression (RFR).  Note the differing values on 

the X-axes. 
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