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Abstract

Common Mode Voltage (CMV) in any power converter has been the major contributor

to premature motor failures, bearing deterioration, shaft voltage build up and elec-

tromagnetic interference. Intelligent control methods like Space Vector Pulse Width

Modulation (SVPWM) techniques provide immense potential and flexibility to reduce

CMV, thereby targeting all the afore mentioned problems. Other solutions like passive

filters, shielded cables and EMI filters add to the volume and cost metrics of the entire

system. Smart SVPWM techniques therefore, come with a very important advantage

of being an economical solution.

This thesis discusses a modified space vector technique applied to an Indirect Ma-

trix Converter (IMC) which results in the reduction of common mode voltages and

other advanced features. The conventional indirect space vector pulse-width modu-

lation (SVPWM) method of controlling matrix converters involves the usage of two

adjacent active vectors and one zero vector for both rectifying and inverting stages of

the converter. By suitable selection of space vectors, the rectifying stage of the matrix

converter can generate different levels of virtual DC-link voltage. This capability can

be exploited for operation of the converter in different ranges of modulation indices for

varying machine speeds. This results in lower common mode voltage and improves the

harmonic spectrum of the output voltage, without increasing the number of switch-

ing transitions as compared to conventional modulation. To summarize it can be said

that the responsibility of formulating output voltages with a particular magnitude and

frequency has been transferred solely to the rectifying stage of the IMC.

Estimation of degree of distortion in the three phase output voltage is another facet

discussed in this thesis. An understanding of the SVPWM technique and the switching

sequence of the space vectors in detail gives the potential to estimate the RMS value

of the switched output voltage of any converter. This conceivably aids the sizing and

design of output passive filters. An analytical estimation method has been presented to

achieve this purpose for am IMC. Knowledge of the fundamental component in output

voltage can be utilized to calculate its Total Harmonic Distortion (THD).
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The effectiveness of the proposed SVPWM algorithms and the analytical estima-

tion technique is substantiated by simulations in MATLAB/Simulink and experiments

on a laboratory prototype of the IMC. Proper comparison plots have been provided

to contrast the performance of the proposed methods with the conventional SVPWM

method. The behavior of output voltage distortion and CMV with variation in operating

parameters like modulation index and output frequency has also been analyzed.
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Chapter 1

Introduction

1.1 The Indirect Matrix Converter Topology

Matrix converters (MC) [1] have been discussed over the past two decades as an all-

silicon solution compared to the conventional back-to-back connected voltage source

converters for industrial adjustable speed drives. They are a modern AC-AC power

converter which can formulate sinusoidal voltages/currents of a particular magnitude

and frequency. Its unique features like single stage power conversion, elimination of the

bulky DC-link capacitor, high power density, open loop input power factor correction,

regenerative capability, etc. give it an upper hand [2]. This can directly translate to

improved life-time, reliability and compactness of the system. Matrix converters can be

implemented via two different topologies [3]

• Direct Matrix Converter (DMC)

• Indirect Matrix Converter (IMC)

The IMC consists of two stages of operation. The first stage is the rectifier stage which

consists of six bidirectional switches and the second stage is the inverter stage which

consists of six unidirectional switches. The performance of the IMC is similar to the

DMC in terms of output and input waveforms. But as proposed by [4], the IMC has

lesser commutation problems as compared to the DMC.

Although the matrix converters offer many advantages, it has two major disad-

vantages. Its maximum voltage transfer ratio is limited to 0.866 and the converter is
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Figure 1.1: Indirect matrix converter (IMC) topology

unstable to momentary power source interruptions due to the absence of an intermediate

power storage element. There have been many studies addressing these issues [5–7].

1.2 State of the Art

A major problem in these electric drives is the generation of switching common-mode

voltages (CMV) at the machine terminals. Coupled with parasitic capacitances, this

results in electromagnetic interference (EMI), shaft voltage buildup and high frequency

bearing and ground currents which reduce the machines lifetime [8–10]. Common mode

chokes and increased filter requirements can reduce the peak values of these common

mode voltages. But this would translate to additional hardware components and would

make the entire system bulkier and expensive. Few of these methods have been discussed

in [11–13]. Therefore converter control strategies are explored to reduce the peak CMV.

This eliminates the aforementioned disadvantages of volume and cost. A few model

predictive control technique based strategies are discussed in [14–16]. Analysis and

comparison of common mode voltage characteristics between a matrix converter and a

Voltage Source Inverter (VSI) is presented in [17].

Space Vector Pulse Width Modulation is another very effective and flexible IMC

control strategy. In this strategy, every vector of the rectifying stage formed by a current

source rectifier (CSR) and the inverting stage formed by a voltage source inverter (VSI)

corresponds to a particular switching state. An intelligent choice of these switching

vectors can reduce the value of peak CMV. The control strategies of the CSR and the
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VSI are independent in nature. A few advantages of this technique over other control

techniques are

• Wide linear modulation range

• Greater flexibility to reduce switching losses or common mode voltage

• Improved Total Harmonic Distortion

Different SVM techniques to reduce CMV by controlling the VSI is discussed in

[18], [19]. This is applied to an IMC while employing the conventional SVM on the CSR

in [20, 21]. Their methods involve the usage of multiple active voltage vectors while

eliminating the usage of zero vectors, but it translates to additional switching losses.

Another method to eliminate the CMV in the DMC topology has been proposed by [22].

But this method comes with a disadvantage of limiting the voltage transfer ratio to 0.5.

A method to appropriately choose zero vectors on the CSR to reduce the harmonic

distortion in the output voltage is proposed in [23]. SVM techniques to reduce CMV in

current source based drives is dealt with in [24, 25] . Extending the similar concept to

the rectifying stage of an IMC, [21] and [26] suggest using different active current vectors

on the CSR to generate two levels of virtual DC-link voltage. Adjustable output voltage

of the IMC is synthesized by appropriate usage of zero vectors for the VSI control. This

is particularly advantageous for operation of the IMC at lower modulation index range

because the THD of output voltage is greatly reduced.

1.3 Contribution of the thesis

Making use of the CSR’s capability to produce different levels of DC-link voltage, the

proposed modulation strategies discussed in this thesis transfer control of generating

the required output voltage to the rectifying stage entirely. The VSI is controlled to

operate at the maximum modulation index, without usage of any zero vectors. There is

another region of DC-link voltage for the higher modulation range of operation, which

has not been addressed in literature as applied to an IMC. This is targeted in Method

I where three adjacent active current vectors are used for forming the higher region

of DC-link voltage. Usage of alternate active current vectors and an appropriate zero
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vector produces the lower region of DC-link voltage and is the basis behind Method II.

The choice of zero vectors in Method II is in accordance with [23], thereby improving

its performance as compared to [26]. The proposed method results in reducing the peak

CMV by 42.3% compared to conventional modulation. Apart from the improvement

in peak values of CMV, the lower order harmonics (third) are also reduced in the

proposed method. This reduction aids the design of common mode chokes according

to the paper [27] by reducing its size and width. Added benefits are reduced distortion

in the output voltage, reduction in the switching losses in the inverter stage and lower

core losses in the rotating machine.

The thesis also presents an analytical estimation method to predict the amount of

distortion in output voltage. The method is inspired from [28–31]. Knowledge of the

SVPWM strategy implemented for the operation of the IMC, gives us the potential

to exactly estimate the voltage levels and corresponding dwell times of the switched

output voltage of the matrix converter. This information is sufficient to compute its

RMS value. Its fundamental component and its THD can be subsequently evaluated.

The thesis is organized in the following manner -

• Chapter 1 provides an introduction.

• Chapter 2 describes the conventional Space Vector Modulation Technique imple-

mented for the control of an Indirect Matrix Converter.

• Chapter 3 details the proposed Space Vector Modulation Technique for the control

of an Indirect Matrix Converter. The technique is validated with simulation and

hardware results.

• Chapter 4 proposes a procedure for the analytical estimation of distortion in out-

put voltage.

• Chapter 5 discusses performance comparison of the proposed and conventional

SVM techniques. It also substantiates the analytical estimation method.

• Chapter 6 presents the conclusion and the future work.



Chapter 2

Conventional Space Vector

Modulation Technique

The IMC topology consists of a rectifying stage (CSR) and an inverting stage (VSI)

as shown in Fig. 1.1. The CSR is controlled appropriately to produce a virtual DC-

link voltage as well as to maintain sinusoidal input currents. Similarly, the function of

the VSI is to generate balanced output three-phase voltages of desired magnitude and

frequency. This fact translates to operation of the converter at different modulation

indices. This can be achieved through control on the CSR and the VSI. The thesis

focuses on a Pulse Width Modulation (PWM) technique called SVPWM. In SVPWM,

for a sufficiently small time interval, the reference voltage or current vector can be

formulated by the usage of stationary vectors. As the time instant changes a new set

of stationary vectors may be used for formulating the reference. This time interval for

a converter depends on its switching frequency.

The space vector X corresponding to any three phase quantities xa, xb and xc can

be expressed as (2.1). The two major aspects of this modulation strategy are selection

of switching vectors and computation of corresponding time intervals. This section

discusses these aspects for the conventional SVPWM method.

X = xa + xbe
j2π/3 + xce

j4π/3 (2.1)

5
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Figure 2.1: Conventional SVM: (a) Space vectors of CSR, (b) Space vectors of VSI and
(c) Switching sequence

The space vector diagram of the rectifier stage comprises of six active current vectors

(I1-I6) and three zero current vectors as shown in Fig. 2.1(a). Each vector represents

a distinct state of the CSR. For every phase x ǫ a, b, c, switches SxP and SxN can take

values of 0 or 1. “SxP = 1” or “SxN = 1” implies that the input phase x is connected to

the positive pole “P” or negative pole “N” of the DC-link respectively. Out of the three

switches SaP ,SbP and ScP , connected to “P”, only one switch can be on at any instant.

This applies to the corresponding three switches connected to “N”. The purpose of

the CSR is to ensure the formulation of three phase balanced input sinusoidal currents.

According to the SVPWM method, the reference input current vector Iin is generated

by the usage of two adjacent active vectors and one zero vector. The time instants for

application of each vector is decided by its duty ratio. Duty ratio can be expressed as

= T/Ts, where Ts is the sample time and T is the time for which a particular vector is

applied. Table 2.1 maps the current space vectors with the state of switches, where 1
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refers to the switch being ON and 0 refers to the switch being OFF .

Table 2.1: Switching States for the Rectifying Stage of IMC

Switching Function Iab Iac Ibc Iba Ica Icb Iaa Ibb Icc

SaP 1 1 0 0 0 0 1 0 0

SbP 0 0 1 1 0 0 0 1 0

ScP 0 0 0 0 1 1 0 0 1

SaN 0 0 0 1 1 0 1 0 0

SbN 1 0 0 0 0 1 0 1 0

ScN 0 1 1 0 0 0 0 0 1

The duty ratios of current vectors I1, I2 and Iz are given by dI1, dI2 and dIz

respectively. We consider an instant of time when the reference vector, Iin lies in Sector

1, as seen in Fig. 2.1(a). Solutions to the above duty ratios given by (2.3) can be

obtained by solving (2.2). Here mI (= Iin/IDC) is the modulation index of the CSR, β

is angle between the first vector and reference vector, Iin is the peak input current to

be synthesized and IDC is the average DC-link current.

dI1I1 + dI2I2 + dIz × 0 = Iin

dI1 + dI2 + dIz = 1 (2.2)

dI1 = mI sin
(π

3
− β

)

dI2 = mI sin β

dIz = 1− dI1 − dI2 (2.3)

Usage of two adjacent active vectors and one zero vector to form the current reference

results in the the DC-Link voltage as seen in Fig. 2.2. For example in Sector 1, the

current reference is formed using the vectors Iab, Iac and an appropriate zero vector
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resulting in voltage levels vab, vac and a zero voltage.

0
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Figure 2.2: DC-Link voltage for Conventional SVPWM

2.2 SVM of Inverting Stage

The space vector diagram of the inverting stage comprises of six active voltage vectors

(V1-V6) and two zero voltage vectors (V0,V7) as shown in Fig. 2.1(b). The switching

function of this stage is defined as Sy = 1(y = A,B,C) when the switch is ON or

Sy = 0 when that switch is OFF . The corresponding switches on the lower leg have

complimentary switching signals Sy. The states of the switches corresponding to each

vector is summarized in Table. 2.2. In this converter at any instant of time, only one

switch in a leg can be switched on.
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Table 2.2: Switching States for the Inverting Stage

Switching Function V1 V2 V3 V4 V5 V6 V0 V7

SA 1 1 0 0 0 1 0 1

SB 0 1 1 1 0 0 0 1

SC 0 0 0 1 1 1 0 1

SA 0 0 1 1 1 0 1 0

SB 1 0 0 0 1 1 1 0

SC 1 1 1 0 0 0 1 0

Like the CSR, in the VSI the reference output voltage vector is generated by using

two adjacent active vectors and one zero vector. If the duty ratios for the voltage vectors

V1, V2 and Vz are given by dV1, dV2 and dVz, solutions to these duty rations given in

(2.5) can be obtained by solving (2.4). Here mV (= Vo/VDC) is the modulation index of

the VSI, α is angle between the first vector and reference vector, Vo is the peak output

voltage to be synthesized and IDC is the average DC-link voltage.

dV1V 1 + dV2V 2 + dVz × 0 = V o

dV1 + dV2 + dVz = 1 (2.4)

dV1 =
√
3mV sin

(π

3
− α

)

dV2 =
√
3mV sinα

dVz = 1− dV1 − dV2 (2.5)

In order to minimize the switching losses in the converter, the total number of

switching transitions are minimized at the inverting and the rectifying stage of the

converter. The switching sequence of the various voltage and current vectors is provided

in Fig. 2.1(c). It can further be noticed that during the instant when the current vector

transitions, a zero voltage vector is applied. This makes the rectifying stage of the
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converter soft switched. In order to generate the pulses that control the operation

of various switches in the IMC, the duty ratios are compared with a high frequency

symmetrical triangular carrier with a upward ramp and a subsequent downward ramp.

The switching frequency for various simulations and experimental results in this thesis

is 5 kHz.

2.3 Common Mode Voltage Analysis for CSR and VSI

The common mode voltage (CMV) in an IMC can be defined as the voltage between

the load neutral point No and the neutral of the input three phase power supply Ni.

The expressions for individual CMV of the rectifier and inverter can be expressed as

in (2.8) and (2.11) respectively. The switching states of the switches of the rectifying

stage decides the DC-Link voltage waveform. Similarly appropriate modulation of the

switches of the inverting stage generates the output three phase balanced voltage wave-

forms from the DC-Link voltage. It can therefore be concluded that the common mode

voltage of the IMC depends on the switching states of the CSR, the VSI and the input

instantaneous three phase voltages given by (2.6). At any instant of time the input

voltages are balanced thereby resulting in equation (2.7)

va = Vi cos (ωit)

vb = Vi cos

(

ωit−
2π

3

)

vc = Vi cos

(

ωit−
4π

3

)

(2.6)

va + vb + vc = 0 (2.7)

2.3.1 CMV for CSR

The CMV of a CSR is given by (2.8). Every current vector corresponds to a particular

state of switches which there by translates to a particular value VCM(CSR). This can

be deduced based on the switches that are ON and the instantaneous values of input
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voltage va, vb and vc. Let us for example consider the current vector Iab. The positive

pole P of the DC-Link is connected to va through the switch upper switch of the a

phase (SaP = 1) while the negative pole N is connected to vb through the lower switch

of the b phase (SbN = 1). Table. 2.3 summarizes the VCM(CSR) values corresponding to

every current vector.

VCM(CSR) =
1

2
(vPNi

+ vNNi
) (2.8)

for an active current vector Iab,

VCM(CSR) =
1

2
(va + vb)

=
−vc
2

(from (2.7)) (2.9)

Similarly for a zero current vector Iaa,

VCM(CSR) =
1

2
(va + va)

= va (2.10)

2.3.2 CMV for VSI

The CMV of a VSI is given by (2.11). Like a CSR, the CMV of a VSI is dependent

on its switching states and instantaneous DC-Link voltage vdc. Let us for example

consider the voltage vector V1. The switching states corresponding to this vector are

(SA, SB , SC) = (1, 0, 0). Therefore the output phase A, through the upper switch (SA =

1) is connected to the positive pole P of the DC-Link while output phases B and C are

connected to the negative pole N of the DC-Link through the corresponding bottom

switches (SB = 1 and SC = 1). Thus, for Iab the output phase voltages vAN , vBN and

vCN can be expressed as (2.14). The VCM(V SI) values corresponding to every voltage

vector is summarized in Table. 2.4.

VCM(V SI) =
1

3
(vAN + vBN + vCN ) (2.11)
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Table 2.3: Instantaneous CMV of the Rectifying Stage

Current Vector Switches ON VCM(CSR)

Iab SaP , SbN −vc/2

Iac SaP , ScN −vb/2

Ibc SbP , ScN −va/2

Iba SbP , SaN −vc/2

Ica ScP , SaN −vb/2

Icb ScP , SbN −va/2

Iaa SaP , SaN va

Ibb SbP , SbN vb

Icc ScP , ScN vc

For active voltage vector V1,

VAN = SA × vdc = vdc

VBN = SB × vdc = 0

VCN = SC × vdc = 0 (2.12)

the corresponding VCM(V SI) can be expressed as,

VCM(V SI) =
1

3
(SAvdc + SBvdc + SCvdc)

=
1

3
(vdc + 0 + 0)

=
1

3
(vdc) (2.13)
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Similarly for a zero voltage vector V7,

VAN = SA × vdc = vdc

VBN = SB × vdc = vdc

VCN = SC × vdc = vdc (2.14)

the corresponding VCM(V SI) can be expressed as,

VCM(V SI) =
1

3
(SAvdc + SBvdc + SCvdc)

=
1

3
(vdc + vdc + vdc)

= vdc (2.15)

Table 2.4: Instantaneous CMV of the Inverting Stage

Voltage Vector SA, SB , SC VCM(V SI)

V1 1, 0, 0 vdc/3

V2 1, 1, 0 2vdc/3

V3 0, 1, 0 vdc/3

V4 0, 1, 1 2vdc/3

V5 0, 0, 1 vdc/3

V6 1, 0, 1 2vdc/3

V0 0, 0, 0 0

V7 1, 1, 1 vdc

This conventional SVPWM method thereby results in the proper control on the

IMC in any modulation index range (0 < m < 0.866), to generate voltage with variable

frequency and magnitude. Fig. 2.3 summarizes the different waveforms in an IMC. The

output voltage of the IMC is switched with a fundamental sinusoidal component. The

modulation technique achieves the purpose of formulating this of a particular magnitude
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and frequency. The DC-Link voltage is used to synthesize the output phase voltages.

Output currents are balanced and sinusoidal in nature. The bottom most waveform is

the net CMV of the IMC, whose peak values lie between Vi and −Vi.
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Figure 2.3: From top to bottom - DC-Link voltage, Output voltage referenced to load
neutral, Output currents and CMV



Chapter 3

Proposed Space Vector

Modulation Technique

The main motive of the proposed SVPWM method is to target the ill effects of CMV

and output voltage distortion. The basic concept of this method lies in the simple fact

that both CMV and output voltage distortion are dependent upon switching states and

switching sequence of the switches in an IMC and SVPWM offers immense flexibility

and potential to reduce them. An intelligent choice of switching states, which translates

back to a smart choice of current or voltage space vectors can improve the harmonic

profile of output voltage and reduce peak values of CMV. This section describes in detail

the novel space vector modulation (SVM) technique and the corresponding switching

sequence. The technique is substantiated through simulation and hardware results.

The solution which this thesis offers to the above mentioned problems requires us

to study the operation of the IMC in two ranges of operation -

• High Modulation Index Range (HMIR)

• Low Modulation Index Range (LMIR)

Two different and independent strategies of SVPWM targets each of these ranges of

operation. Both these methods transfer control of generating appropriate output volt-

ages to the CSR. The usage of zero vectors in the VSI for the generation of balanced

three phase output voltages as discussed in the previous chapter results in a higher peak

15
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value of CMV. In order to eliminate the application of zero vectors the duty ratios of

the active voltage vectors can be normalized to get dV ′

1 and dV ′

2 as per (3.1), where

dV1 and dV2 are obtained from (2.5). This is a good assumption to make because the

contribution of zero vectors to the formation of output voltage is very less when the

inverting stage is operated at its full modulation index. For computational simplicity,

elimination of zero vectors can be achieved by another method where the duty ratios of

the active vectors are given by (3.2).

dV ′

1 =
dV1

dV1 + dV2

dV ′

2 =
dV2

dV1 + dV2
(3.1)

dV ′

1 = dV1

dV ′

2 = 1− dV1 (3.2)

Any variation in modulation of the rectifying stage affects the DC-Link voltage

waveform. For instance, elimination of zero current vectors in the modulation of the CSR

removes all instances of zero voltage on the DC-Link. The proposed method targets the

usage of different combinations of active vectors in the rectifying stage thereby making

use of the different levels of average virtual DC-link voltage. The inverting stage of

the IMC generates three phase balanced output voltages from the DC-Link voltage.

Therefore, the harmonic spectrum of the output voltages is a reflection of the nature

of DC-link voltage. This capability of the CSR is utilized for operation of the IMC in

different ranges of modulation index.
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3.1 Method I for HMIR

The Method I discusses the operation of the IMC at the higher modulation index range

which is defined by 0.577 < m < 0.866, where m (= 1.5mImV ) is the total modulation

index of the IMC. In this range of operation of the converter, the zero current vectors

of the CSR have lesser contribution than the active current vectors towards the genera-

tion of the required fundamental component of input current. Therefore, the proposed

method of modulation eliminates the usage of zero current vectors and uses only active

current vectors. Unlike the conventional SVPWM which uses two active vectors, the

proposed method makes use of three active current vectors for generating the reference

input current.
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Figure 3.1: Modified space vectors of
CSR in proposed SVM technique
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Figure 3.2: Proposed SVM: (a) Formation
of reference in Sector 1, (b) Switching Se-
quence

For operation of the IMC in HMIR, the reference current vector Iin follows the

modified space vector diagram of Fig. 3.4. Here the position of sectors is shifted by

an angle of
π

6
as compared to the conventional space vector of 2.1(a). For generality,

let us assume Iin lies in Sector 1 as represented by the shaded portion of 3.2(a). Three

nearest active vectors I1, I2 and I3 are used to generate this current reference whose
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dwell times, dI1, dI2 and dI3 are obtained by solving (3.3). The solutions are provided

by equation (3.4).

dI1I1 + dI2I2 + dI3I3 = Iin

dI1 + dI2 + dI3 = 1 (3.3)

dI1 = 1−mI sin
(π

6
+ β

)

dI2 =
√
3mI sin

(π

3
+ β

)

− 1

dI3 = 1−mI cos β (3.4)

where β is the angle of Iin with respect to the leading edge of the sector and mI

is the modulation index of the CSR which lies between 0.666 < mI < 1. This range is

defined in order to ensure that the duty cycles in 3.4 stay positive.

Usage of three adjacent active vectors for formation of the current reference results

in three voltage levels at the DC-Link. For example in sector 1, vectors used are Iab,

Iac and Ibc which translates to the DC-Link voltage having three levels of vab, vac and

vbc respectively. The DC-Link voltage for this method is as shown in Fig. 3.3.

Overall, by studying the optimized switching sequence of the space vectors as shown

in Fig. 3.2(b), the duty cycles for the current vectors are obtained by multiplying dV ′

1

and dV ′

2 with dI1, dI2 and dI3 respectively. Table 3.1 summarizes the current vectors

used corresponding to each sector of the space vector diagram of Fig 3.4 while Fig. 3.7

summarizes the various waveforms in the IMC using the modulation strategy proposed

in Method I.
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Table 3.1: Method I - Summary of current vectors for corresponding sectors

Sector ωit Vectors applied

1 0 -
π

3
Iab,Iac,Ibc

2
π

3
-
2π

3
Iac,Ibc,Iba

3
2π

3
- π Ibc,Iba,Ica

4 π -
4π

3
Iba,Ica,Icb

5
4π

3
-
5π

3
Ica,Icb,Iab

6
5π

3
- 2π Icb,Iab,Iac
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3.2 Method II for LMIR

Method II discusses the operation of the IMC at the lower modulation index range which

is defined by 0 < m < 0.5. For this range of operation, two alternate active vectors

along with an appropriate zero vector are used for formation of the reference input

current. Unlike Method I, it is obvious that there is a significant contribution of zero

current vectors towards the formation of the fundamental sinusoidal input current in

LMIR and hence its usage cannot be eliminated. It effectively allows us to access further

lower values of modulation indices. The proper choice of the zero current vector is very

critical to reducing the peak value of CMV in this method. The three available zero

vectors Iaa, Ibb and Icc correspond to VCM(CSR) values of va, vb and vc respectively. The

zero vector chosen should correspond to the phase with the least instantaneous value

of input grid voltage. This is accordance with the concept proposed in [23]. Table.

summarizes the current vectors used for each sector of the space vector diagram of Fig.

3.4.
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quence

The space vector diagram for operation of the IMC in LMIR is similar to the one
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proposed in Method I. Here, for generating a reference current Iin in Sector 1 as rep-

resented by the shaded portion of Fig. 3.5(a), two alternate active vectors I1 and I3

and a zero vector Iz are used. The duty cycles dI1, dI3 and dIz corresponding to these

vectors are obtained by solving the set of equations given by (3.5). The solutions are

consecutively provided in (3.4).

dI1I1 + dI3I3 + dIz × 0 = Iin

dI1 + dI3 + dIz = 1 (3.5)

dI1 = mI cos β

dI3 = mI sin
(π

6
+ β

)

dIz = 1− dI1 − dI3 (3.6)

where β follows the same definition as Method I. Here mI , the modulation index of

the CSR lies between 0.666 < mI < 1. This range is defined in order to ensure that the

duty cycles in 3.6 stay positive.

This method makes use of two alternate active vectors and an appropriate zero

vector for the formation of the current reference in the LMIR. For example in sector 1,

active vectors used are Iab and Ibc resulting in two voltage levels of vab and vbc in thr

DC-Link voltage respectively as shown in Fig. 3.6.

The optimized switching sequence of the space vectors for reducing the number of

switching transitions is demonstrated in Fig. 3.5(b). Overall, the duty cycle of the

current vectors can be obtained in a similar manner as proposed in Method I. It should

be noted that for operation of the IMC in the range 0.5 < m < 0.577, the method

described in [23] can be used. Table. 3.2 summarizes the current vectors to be used in

each sector which Fig. 3.8 summarizes the waveforms obtained by implementation of

poposed Method II to control an IMC.
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Table 3.2: Method II - Summary of current vectors for corresponding sectors

Sector ωit Active Vectors Zero Vector

1 0 -
π

3
Iab,Ibc Ibb

2
π

3
-
2π

3
Iac,Iba Iaa

3
2π

3
- π Ibc,Ica Icc

4 π -
4π

3
Iba,Icb Ibb

5
4π

3
-
5π

3
Ica,Iab Iaa

6
5π

3
- 2π Icb,Iac Icc
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3.3 Summary

Fig. 3.7 and Fig. 3.8 summarizes the various waveforms obtained through simulations of

an IMC model designed in MATLAB/Simulink for Method I and Method II respectively.

We notice that the shape of DC-Link voltages obtained in both are different from the

conventional DC-Link voltage. The shape of the output switched phase voltages is in

correspondence with the shape of the DC-Link voltage. Three phase sinusoidal balanced

currents are formulated by both the proposed modulation techniques. It can be noticed

that the peak of CMV of the IMC has been reduced to lie between
Vi
√
3
and −

Vi
√
3
.

The basic concept of the two proposed methods - Method I and II has been sum-

marized in Table. 3.3. This involves a condensed portrayal of modulation index range

of operation, Vector diagrams and the switching sequence of the vectors for both the

methods. In order to maintain generality it is assumed that the current reference at a

particular instant lies in Sector 1.

Table 3.3: Summary of proposed SVM Techniques

Method m Index Range Vector Diagram Switching Sequence

I 0.577 < m < 0.866

[a b]

1

β

Iin

[b c]
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[a c]
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′
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Chapter 4

Analytical Estimation of Output

Voltage Distortion

Knowledge of the exact SVPWM strategy implemented on the rectifying and inverting

stage of an IMC gives us the potential to accurately estimate the different levels of the

three phase output voltage vAN◦
, referred to the neutral of the output load. The main

motivation behind the estimation of the content of distortion in output voltage lies in

the design on EMI filters for motor loads.

The output voltage vAN◦
can be expressed in terms of the instantaneous output

phase voltages referred to the negative pole N of the DC-Link as given by the equation

(4.1). Moreover vAN , vBN and vCN can be further written in terms of their respective

switching functions (SA, SB and SC) and the instantaneous value of DC-Link voltgae

vdc as per the equation (4.2). The following section describes a step-by-step process to

analytically determine the content of distortion in vANo for conventional SVPWM and

proposed SVPWM techniques - Method I and Method II. The derivation of expressions

for the above methods is executed by taking into consideration an input current reference

Iin and an output voltage reference Vo both in Sector 1 of their respective space vector

diagrams. For a start two assumptions are made,

• Output frequency fo is equal to the grid frequency.

• Iin and Vo are aligned along the leading edge of a sector.

26
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In Chapter 4., it will be shown that the estimation process holds true for 1) fo values

other than the grid frequency 2) fo equal to the grid frequency but with dissimilar

alignment of Iin and Vo.

vAN◦
=

1

3
(2vAN − vBN − vCN ) (4.1)

=
1

3
(2SAvdc − SBvdc − SCvdc) (4.2)

4.1 Analysis for Conventional SVPWM

According to the Conventional SVPWM method discussed in Chapter 2., for references

lying in Sector 1, Iin is generated using active current vectors I1 and I2 while Vin is

generated using active voltage vectors V1 and V2. The zero vectors are not taken into

consideration in this estimation process. This is because the application of zero current

vectors results in vdc = 0 while application of zero voltage vectors results in vANO
= 0.

They therefore have no contribution to output voltage distortion.

Table 4.1: Voltage Levels in VANo and vdc for Conventional SVPWM

Sector
I1 I2

Levels in vdc
dV1 dV2

Levels in vANo

(CSR,VSI) dI1 dI2 dI1dV1 dI1dV2 dI2dV2 dI2dV1

(1,1) Iab Iac vab vac V[100] V[110]
2

3
vab

1

3
vab

1

3
vac

2

3
vac

(2,2) Iac Ibc vac vbc V[110] V[010]
1

3
vac −

1

3
vac −

1

3
vbc

1

3
vbc

(3,3) Ibc Iba vbc vba V[010] V[011] −
1

3
vbc −

2

3
vbc −

2

3
vba −

1

3
vba

(4,4) Iba Ica vba vca V[011] V[001] −
2

3
vba −

1

3
vba −

1

3
vca −

2

3
vca

(5,5) Ica Icb vca vcb V[001] V[101] −
1

3
vca

1

3
vca

1

3
vcb −

1

3
vcb

(6,6) Icb Iab vcb vab V[101] V[100]
1

3
vcb

2

3
vcb

2

3
vab

1

3
vab
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Application of I1 and I2 in Sector 1 of the rectifying stage corresponds to switching

states [a, b] and [a, c] respectively. Apart from the zero voltage level due to the zero

current vector, this results in two instantaneous voltage levels of vdc, vab and vac for

dwell times, dI1 and dI2 respectively. Shifting focus to the inverting stage, application

of V1 and V2 corresponding to switching states [1, 0, 0] and [1, 1, 0] in Sector 1 results

in four instantaneous voltage levels of VANo ,
2

3
vab,

1

3
vab,

1

3
vac and

2

3
vac with dwell

times of dI1dV1, dI1dV2, dI2dV2 and dI2dV1 respectively. This is in accordance with the

switching sequence of space vectors as shown in Fig. ??. The voltage levels of VANo are

obtained using equations (4.1) and (4.2). Table. 4.1 summarizes the vdc and vANo levels

for different sectors of the CSR and VSI.

The RMS square of output voltage of the inverting stage of the IMC (=vANo) over one

sampling cycle in the first sector is computed by the equation given in (4.3). This concept

is extended and the RMS square expressions of vANo in a sampling cycle are obtained

for the second sector in (4.4) and third sector in (4.5). The equations (4.3),(4.4) and

(4.5) repeats for the remaining three sectors. The RMS square of the inverting stage’s

output voltage over one sector can be found by (4.6) where ωo is the output frequency

of the IMC. Taking into consideration the contribution from each sector, the net RMS

square of vANo over a fundamental cycle is found from (4.7) as a function of modulation

indices mI and mV in (4.8). We further notice that this expression is independent of

grid frequency and output frequency, thereby validating the assumptions made at the

beginning of this chapter. The RMS square of the switching frequency component which

can be translated to distortion in output voltage is given by (4.9) where fundamental

component of output voltage, Vo is expressed in terms of fundamental component of

grid voltage Vi as
3

2
mImV Vi.
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v2ANo,S−1 (rms) = dI1dV1

(

2

3
vab

)2

+ dI1dV2

(

1

3
vab

)2

+ dI2dV2

(

1

3
vac

)2

+dI2dV1

(

2

3
vac

)2

(4.3)

v2ANo,S−2 (rms) = dI1dV1

(

1

3
vac

)2

+ dI1dV2

(

−
1

3
vac

)2

+ dI2dV2

(

−
1

3
vbc

)2

+dI2dV1

(

1

3
vbc

)2

(4.4)

v2ANo,S−3 (rms) = dI1dV1

(

−
1

3
vbc

)2

+ dI1dV2

(

−
2

3
vbc

)2

+ dI2dV2

(

−
2

3
vba

)2

+dI2dV1

(

−
1

3
vba

)2

(4.5)

v2ANo,i(rms) =
1

3

∫

SECTORi

v2ANo,S−i(rms) d (ωot) , i = 1, 2, 3 (4.6)

v2ANo
(rms) =

1

3

∑

i=1,2,3

v2ANo,i(rms) (4.7)

v2ANo
(rms) =

mImV V
2
i

(

2π + 3
√
3
)

4π
(4.8)

v2ANosw(rms) =
mImV V

2
i

(

2π + 3
√
3
)

4π
− V 2

o (rms) (4.9)

4.2 Analysis for Proposed Method I

According to the modulation strategy for Method I, a current reference Iin in Sector

1 of Fig. 3.4 is obtained by using three active current vectors I1, I2 and I3 while a

reference voltage Vo is obtained using two active voltage vectors V1 and V2. For the first

sector, I1, I2 and I3 in the rectifying stage of the IMC correspond to switching states

of [a, b], [a, c] and [b, c] . Application of these vectors results in three different voltage

levels at the DC-Link, which correspond to vab, vac and vbc with dwell times of dI1, dI2

and dI3 respectively. This DC-Link voltage is used by the inverting stage to formulate
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three phase balanced output voltages. In this stage vectors V1 and V2 correspond to

switching states [1, 0, 0] and [1, 1, 0]. Using equations (4.1) and (4.2), we can accurately

predict that here VANo will have six different instantaneous voltage levels,
2

3
vab,

2

3
vac,

2

3
vbc,

1

3
vbc,

1

3
vac and

1

3
vab with dwell times of dI1dV

′

1 , dI2dV
′

1 , dI3dV
′

1 , dI3dV
′

2 , dI2dV
′

2

and dI1dV
′

2 . This is in accordance with the switching sequence in Fig. 3.2(b). Table.

4.2 summarizes the voltage levels in vdc and vANo for different sectors of the CSR and

VSI.

Table 4.2: Voltage Levels in VANo and vdc for Proposed Method I

Sector Levels in vdc Levels in vANo

(CSR,VSI) dI1 dI2 dI3 dI1dV
′

1 dI2dV
′

1 dI3dV
′

1 dI3dV
′

2 dI2dV
′

2 dI1dV
′

2

(1,1) vab vac vbc
2

3
vab

2

3
vac

2

3
vbc

1

3
vbc

1

3
vac

1

3
vab

(2,2) vac vbc vba
1

3
vac

1

3
vbc

1

3
vba −

1

3
vba −

1

3
vbc −

1

3
vac

(3,3) vbc vba vca −
1

3
vbc −

1

3
vba −

1

3
vca −

2

3
vca −

2

3
vba −

2

3
vbc

(4,4) vba vca vcb −
2

3
vba −

2

3
vca −

2

3
vcb −

1

3
vcb −

1

3
vca −

1

3
vba

(5,5) vca vcb vab −
1

3
vca −

1

3
vcb −

1

3
vab

1

3
vab

1

3
vcb

1

3
vca

(6,6) vcb vab vac
1

3
vcb

1

3
vab

1

3
vac

2

3
vac

2

3
vab

2

3
vcb

The RMS square of the output voltage (= vANo) for this method is obtained in

a similar manner as discussed previously. Expressions for vANo over a sampling cycle

in sector 1, 2 and 3 of the inverting stage are provided by equations (4.10), (4.11)
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and (4.12) respectively. These expressions repeat for the remaining three sectors. The

final expression of the RMS square value of vANo over a fundamental cycle, in terms of

modulation indices if provided by (4.13). We do notice here that this expression is not

only independent of grid frequency and ouput frequency but is also independent of mV .

This is because the inverting stage of the IMC is operated at its full modulation index.

The distortion in vANo is given in (4.14), where the definition of Vo remains the same.
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√
3
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4.3 Analysis for Proposed Method II

The previous chapter talks about this method in detail. This method targets the op-

eration of the IMC at the lower modulation indices. A current reference Iin is formed

by active current vectors I1 and I3 and an appropriate zero vector Iz. In sector 1 of

Fig. 3.4, I1,I3 and Iz correspond to switching states of [a, b], [b, c] and [b, b] respectively.

The DC-Link voltage therefore has two voltage levels of vab and vbc. The zero vector

is neglected in this estimation process for the same reasons as cited in the conventional

method. The inverting stage of the IMC follows the same set of voltage vectors and

dwell times as discussed in the previous section. Equations (4.1) and (4.2) are used as a

reference to predict four different voltage levels of VANo. In accordance with the switch-

ing sequence in Fig. 3.5(b) these levels are
2

3
vab,

2

3
vbc,

1

3
vbc and

1

3
vab with dwell times of

dI1dV
′

1 , dI3dV
′

1 , dI3dV
′

2 and dI1dV
′

2 . Table. 4.3 summarizes the different voltage levels

in vdc and vANo for different sectors of the CSR and VSI.

The process of deriving the expression of RMS square of output voltage is similar to

the one described in the previous section. vANo over a sampling cycle in sector 1,2 and

3 of the inverting stage can be written as (4.15), (4.15) and (4.15) respectively. The

final expression, independent of mV , grid frequency and output frequency for the RMS

square of vANo is given by (4.18) while the distortion in it is given by (4.19).
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Table 4.3: Voltage Levels in VANo and vdc for Proposed Method II

Sector Levels in vdc Levels in vANo

(CSR,VSI) dI1 dI2 dI1dV
′

1 dI3dV
′

1 dI3dV
′

2 dI1dV
′

2

(1,1) vab vbc
2

3
vab

2

3
vbc

1

3
vbc

1

3
vab

(2,2) vac vba
1

3
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3
vba −

1

3
vba −

1

3
vac

(3,3) vbc vca −
1

3
vbc −

1

3
vca −

2

3
vca −

2

3
vbc

(4,4) vba vcb −
2

3
vba −

2

3
vcb −

1

3
vcb −

1

3
vba

(5,5) vca vab −
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3
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3
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1

3
vab

1

3
vca

(6,6) vcb vac
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3
vcb
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3
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2

3
vac

2

3
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2
i

3π
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v2ANosw(rms) =
2
√
3mIV

2
i

3π
− V 2

o (rms) (4.19)

4.4 Summary

To conclude, the analytical expressions of output voltage of the IMC referred to the load

neutralNo, for the conventional method and proposed methods, I and II are summarized

in Table. 4.4. It can be seen that none of these expressions depend on grid frequency
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(ωi) or output frequency (ωo). Moreover, it can also be noticed that the expressions for

Method I and Method II are independent of mV unlike the conventional method. This

is because for both the proposed method, the inverting stage of the IMC is operated

at its full modulation index and the entire control of generating variable frequency and

variable magnitude output voltage is transferred to the rectifying stage.

Table 4.4: Analytical Expressions for different SVPWM Methods

SVPWM Method Analytical Expressions for v2ANo
(rms)

Conventional
mImV V

2
i

(

2π + 3
√
3
)

4π

Proposed Method I
V 2
i

(

π + 4
√
3mI − 3

√
3
)

3π

Proposed Method II
2
√
3mIV

2
i

3π



Chapter 5

Results and Performance

Analysis

This chapter presents the results in the form of various waveforms obtained through

model-based simulation and on a laboratory prototype of the IMC. Proposed methods

I and II are validated by operation of the IMC at two different points - 1) in HMIR and

2) in LMIR. The proposed analytical estimation method of output voltage distortion is

also substantiated with appropriate results. The different sections to follow are -

• Simulation Results

• Experimental Results

• Comparison and Performance Analysis

5.1 Simulation Results

The proposed SVPWM techniques discussed in Chapter. 3 are validated through simula-

tions performed on an IMC, modeled in MATLAB/Simulink. For the purpose of proper

comparison, the conventional SVPWM technique, discussed in Chapter. 2 is also simu-

lated on the same model. The model is simulated using ideal switches for the IMC with

supply grid at 120VLLRMS
and a switching frequency of 5kHz. The output frequency is

maintained at 30 Hz and the load is R = 5.4 Ω and L = 22 mH per phase. This section

35
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presents the simulation results of various waveforms during the operation of the IMC at

m = 0.7 (HMIR) and m = 0.4 (LMIR). Results for conventional and proposed methods

are displayed alongside each other for easy comparison. All figures on the left hand

side of this section correspond to operation of the IMC using the conventional SVPWM

method. Similarly figures on the right hand side correspond to operation of the IMC

employing the proposed SVPWM methods. These set of waveforms are substantiated

by experimental results discussed in the next section.

Fig. 5.1 and Fig. 5.5 ensures that both grid currents and output currents are

balanced and sinusoidal in nature for conventional and proposed SVPWM methods.

The quality of grid currents can be improved by proper design of an input filter, which

is beyond the scope of this thesis work. A single phase grid current and corresponding

phase voltage of the IMC are presented in Fig. 5.3 and Fig. 5.7. We observe that

for both modulation methods at both the points of operation, the grid grid voltage and

current are nearly in phase with the each other, thereby maintaining unity power factor.

The DC-link voltage, output line-neutral voltage and CMV are presented in Fig. 5.2

and Fig. 5.6. It can be inferred from Fig. 5.3(b) that the higher region of DC-Link

voltage is utilized in Method I, for formulation of balanced output voltages at m = 0.7.

A similar conclusion can be drawn from Fig. 5.7(b) where the lower region of DC-Link

is utilized to meet the same purpose at m = 0.4. Utilization of this capability of the

rectifying stage to formulate different DC-Link voltage levels is the primary concept

behind the proposed SVPWM methods. The shape of the output line-neutral voltages

follows the shape of the corresponding DC-Link voltage. This results in an improved

harmonic spectrum of output voltages. Both the proposed methods of modulation,

also come with another major advantage of reducing the peak value of CMV by a

factor of
√
3 in comparison to the conventional method. The harmonic spectrum of

output switched voltage and CMV is presented in Fig. 5.4and Fig. 5.8. There is an

obvious improvement in the harmonic spectrum of CMV for the proposed methods. The

reduction in the magnitude of third harmonic content results in a decrease in the RMS

values of CMV - 18.25% in Method I and 34.6% in Method II. Even though there is

not an obvious improvement in the harmonic spectrum of output voltage, the improved

impacts can be judged from comparison curves of Fig. 5.16(a) and Fig. 5.16(b).
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Figure 5.1: Simulation Results at m = 0.7 for (a) Conventional SVPWM (b) Proposed
Method I. From top to bottom - Grid currents, Output currents and Output line-line
voltage
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Figure 5.2: Simulation Results at m = 0.7 for (a) Conventional SVPWM (b) Proposed
Method I. From top to bottom - Grid current and Grid voltage
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Figure 5.3: Simulation Results at m = 0.7 for (a) Conventional SVPWM (b) Proposed
Method I. From top to bottom - DC-Link voltage, Output line-neutral voltage and CMV
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Figure 5.4: Simulation Results at m = 0.7 for (a) Conventional SVPWM (b) Proposed
Method I. From top to bottom - FFT of Output line-neutral voltage and FFT of CMV
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Figure 5.5: Simulation Results at m = 0.4 for (a) Conventional SVPWM (b) Proposed
Method II. From top to bottom - Grid currents, Output currents and Output line-line
voltage
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Figure 5.6: Simulation Results at m = 0.4 for (a) Conventional SVPWM (b) Proposed
Method II. From top to bottom - Grid current and Grid Voltage
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Figure 5.7: Simulation Results at m = 0.4 for (a) Conventional SVPWM (b) Proposed
Method II. From top to bottom - DC-Link voltage, Output line-neutral voltage and
CMV
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Figure 5.8: Simulation Results at m = 0.4 for (a) Conventional SVPWM (b) Proposed
Method II. From top to bottom - FFT of Output line-neutral voltage and FFT of CMV
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5.2 Experimental Results

This segment discusses the experimental results for proposed modulation methods I at

m = 0.7 and II at m = 0.4 that are obtained on a scaled down laboratory prototype of

the IMC as shown in Fig. 5.15. The corresponding results for operation of the IMC using

the conventional method is also discussed for the purpose of performance comparison.

Integrated power IGBT module APTGF90TA60PG from Microsemi and gate driver

6SD106EI from CONCEPT are used. Control signals for SVM are generated from a

FPGA (Xilinx XC3S500E). The experiments are run with a grid voltage of 120VLLRMS

with a modulation index of m = 0.7 for Method I and m = 0.4 for Method II at a

switching frequency of 5kHz. Output at 30Hz is generated across a balanced three

phase load of R = 5.4 Ω and L = 22 mH per phase. An appropriate input filter was

used to ensure unity power factor at the grid.

Fig. 5.9 for m = 0.7 and Fig. 5.12 for m = 0.4 presents the three phase output

currents, output line-neutral voltage and FFT of output line to neutral voltage for

conventional and proposed SVPWM methods. It can be observed that even though the

magnitude of output current is the same, the shape of the output line to neutral voltage

waveform is different. The RMS values of output voltage are as follows

• At m = 0.7 - 60V for Conventional SVPWM in Fig. 5.9(a) and 56.7V for Proposed

Method I in Fig. 5.9(b).

• At m = 0.4 - 47.4V for Conventional SVPWM in Fig. 5.12(a) and 39.6V for

Proposed Method II in Fig. 5.12(b).

Similarly Fig. 5.10for m = 0.7 and Fig. 5.12 for m = 0.4 presents the CMV

for conventional and proposed SVPWM methods. The peak of the CMV in both the

proposed methods has been reduced by a factor of
√
3 in comparison to the conventional

method. The FFT of the CMV shows that the third harmonic component’s (=180Hz)

peak value has been reduced by 64.5% in Method I and by 62.4% in Method II. The

RMS values of CMV are as follows

• At m = 0.7 - 50.2V for Conventional SVPWM in Fig. 5.10(a) and 37.7V for

Proposed Method I in Fig. 5.10(b).
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(a) (b)

Figure 5.9: Experimental Results atm = 0.7 for (a) Conventional SVPWM (b) Proposed
Method I. From top to bottom - Output currents (X-Axis : 10ms/div, Y-Axis : 5A/div),
output line-neutral voltage (X-Axis : 10ms/div, Y-Axis : 50V/div) and FFT of output
line-neutral voltage (X-Axis : 5kHz/div, Y-Axis : 10V/div)

(a) (b)

Figure 5.10: Experimental Results at m = 0.7 for (a) Conventional SVPWM (b) Pro-
posed Method I. From top to bottom - CMV (X-Axis : 5ms/div, Y-Axis : 50V/div)
and FFT of CMV (X-Axis : 5kHz/div, Y-Axis : 5V/div)
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(a) (b)

Figure 5.11: Experimental Results at m = 0.7 for (a) Conventional SVPWM (b) Pro-
posed Method I. From top to bottom - Grid voltage and current (X-Axis : 5ms/div,
Y-Axis : 100V/div, 10A/div), DC-Link voltage (X-Axis : 5ms/div, Y-Axis : 100V/div)
and output line-line voltage (X-Axis : 5ms/div, Y-Axis : 200V/div)

• At m = 0.4 - 66V for Conventional SVPWM in Fig. 5.13(a) and 41.5V for

Proposed Method II in Fig. 5.13(b).

The grid voltage, grid current, DC-Link voltage and output line-line voltage wave-

forms for the conventional and proposed methods are given in Fig. 5.11 for m = 0.7

and Fig. 5.14 for m = 0.4. The shape of the output line-line voltage waveform is in ac-

cordance with its respective DC-Link voltage. As observed, the lower region of DC-link

voltage is used for operation of the IMC at a lower modulation index and vice versa.

This improves the harmonic spectrum of the output switched voltage of the IMC. It can

also be noticed that the DC-Link voltage in Fig. 5.11(b) has no instant of zero voltage

unlike Fig. 5.14(b). This is because Method I only uses active current vectors at the

rectifying stage Method II uses both active and zero current vectors.
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(a) (b)

Figure 5.12: Experimental Results at m = 0.4 for (a) Conventional SVPWM (b) Pro-
posed Method II. From top to bottom - Output currents (X-Axis : 10ms/div, Y-Axis :
5A/div), output line-neutral voltage (X-Axis : 10ms/div, Y-Axis : 50V/div) and FFT
of output line-neutral voltage (X-Axis : 5kHz/div, Y-Axis : 70V/div)

(a) (b)

Figure 5.13: Experimental Results at m = 0.4 for (a) Conventional SVPWM (b) Pro-
posed Method II. From top to bottom - CMV (X-Axis : 5ms/div, Y-Axis : 50V/div)
and FFT of CMV (X-Axis : 5kHz/div, Y-Axis : 5V/div)
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(a) (b)

Figure 5.14: Experimental Results at m = 0.4 for (a) Conventional SVPWM (b) Pro-
posed Method II. From top to bottom - Grid voltage and current (X-Axis : 5ms/div,
Y-Axis : 100V/div, 10A/div), DC-Link voltage (X-Axis : 5ms/div, Y-Axis : 100V/div)
and output line-line voltage (X-Axis : 5ms/div, Y-Axis : 200V/div)

Figure 5.15: Laboratory prototype of the IMC
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5.3 Comparison and Performance Analysis

Now that the experimental and simulation results have been presented that confirm and

validate the operation of the IMC with the proposed methods of modulation, we shift

our focus to compare its performance with the conventional SVPWM method, based on

a few parameters like

• Output Voltage Distortion

• Common Mode Voltage (CMV)

• Switching Transitions

5.3.1 Output Voltage Distortion

The IMC produces switched voltage at its output with a fundamental sinusoidal com-

ponent. The distortion in this voltage is due to the presence of switching and higher

order harmonic components. The machine terminals are subjected to this voltage. A

higher degree of distortion in output voltage would compromise its quality and increase

the core losses in the machine.

With change in Modulation Index - Fig. 5.16(a) compares the RMS value of

output voltage for the proposed SVPWM with the conventional method for different

values of modulation indices. Assuming that the fundamental component is nearly the

same in both the methods, the amount of distortion in output voltage follows the same

trend as shown. This comparison plot also validates the effectiveness of the proposed

analytical estimation method and the expressions provided in Table. 4.4, for the three

SVPWM methods. Fig. 5.16(b) compares the THD in output voltage for the simulated

model.

With change in Output Frequency (fo) - Fig. 5.17(a) and Fig. 5.17(b) presents

the comparison of RMS value of output voltage with change in output frequency for

m = 0.7 and m = 0.4 respectively. It can be observed from the experimental data

points that the RMS values do not change with change in output frequency. This

observation can also be concluded from the expressions summarized in Table. 4.4 which

are independent of output frequency.
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voltage (b) Comparison of THD in output voltage
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Figure 5.17: With change in Output Frequency : (a) Comparison of RMS value of
output voltage at m = 0.7 (b) Comparison of RMS value of output voltage at m = 0.4
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5.3.2 Common Mode Voltage
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Figure 5.18: Comparison of CMV with modulation index

As proven in the previous sections dealing with experimental and simulation results,

in both the proposed methods of modulation, the peak of the CMV is reduced by a

factor of
√

(3) as compared to its corresponding value with the conventional method of

modulation. These peak values of CMV remains a constant with change in modulation

index or output frequency. The proposed SVPWM method also reduces the peak of the

third harmonic component (=180Hz), which is the major contributor towards the net

RMS value of CMV.

With change in Modulation Index - Here Fig. 5.18 provides a comparison of the

RMS values of CMV for the different modulation techniques over a range of modulation

indices. We observe that the percentage of improvement in VCMV (rms) for the LMIR

is higher than the HMIR. The decreasing trend in the RMS values of CMV with the

increase in the value of modulation index, in the conventional SVPWM method can

be attributed to the decrease in the usage of zero voltage vectors for the formation of

output reference voltage at higher ranges of operation. On the other hand, the proposed

methods do not use zero voltage vectors for modulation. The inverting stage of the IMC
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Figure 5.19: With change in Output Frequency : (a) Comparison of RMS value of CMV
at m = 0.7 (b) Comparison of RMS value of CMV at m = 0.4
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is thus operated at its full modulation index for both the methods - I and II. We observe

that for Method I (HMIR), RMS values of CMV increase with increase in modulation

index while for Method II (LMIR), the RMS values of CMV decrease with increase in

modulation index. This trend can be attributed to the usage of different set of current

vectors for each method.

With change in Output Frequency - Fig. 5.19(a) at m = 0.7 and Fig. 5.19(b) at

m = 0.4 presents the comparison of RMS values of CMV for both SVPWM techniques

with change in output frequency. It should be observed that the values remain a constant

for fo < fi and fo > fi, where fo is the output frequency and fi is the grid frequency.

5.3.3 Switching Transitions

A higher number of switching transitions over one time sample will translate to increased

switching losses in the converter. Table. 5.1 summarizes the switching sequence of each

of the SVPWM methods. The switching sequence represents the current and voltage

space vectors used over one sample time and their corresponding dwell times. Here the

number of transitions correspond to the changeover from one vector to the other and

not the actual transition of switches.

For the conventional method, the rectifying stage of the IMC is soft switched be-

cause a transition in the current space vector is simultaneously accompanied with the

application of a zero voltage vector. So the number switching transitions in this case

correspond to the ones on inverting stage of the IMC. If we consider the switching

sequences of the two proposed methods, neither the rectifying stage nor the inverting

stage is soft switched. So the total number of switching transitions takes into account

both the stages of the IMC. We also observe from the table that the performance of the

converter in terms of switching losses will follow a similar trend due to an equal number

of switching transitions in all the three SVPWM methods.
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Table 5.1: Summary of Switching Sequence and Switching Transitions

SVPWM Method Switching Sequence Transitions

Conventional
V1V2V7V1

dI1dV1

V7

dIzdI2dV2

V2

dI2dV7dI1dV7dI1dV0

V0

dI1

I1 I2

dI2

V0

dIz

Iz

dI2dV1dI1dV2 dI2dV0

6

Method I
I1

V2V1

I1I2 I3 I3 I2

dV ′

1
dV ′

2

dI1dV
′

1
dI2dV

′

1
dI3dV

′

1
dI3dV

′

2
dI2dV

′

2
dI1dV

′

2

6

Method II
V2V1

I1I3I1 Iz I3 Iz

dV ′

1
dV ′

2

dI1dV
′

1
dIzdV

′

1
dI3dV

′

1
dI3dV

′

2
dIzdV

′

2
dI1dV

′

2

6



Chapter 6

Conclusion and Future Work

Common Mode Voltage is a very significant practical issue with electric drive systems.

Higher values of CMV results in high frequency bearing currents and EMI problems.

The bearing currents in particular results in premature failure of motors. Additional

hardware solutions addressing CMV, like passive filters and shielded cables have the

disadvantage of adding to the volume and cost metrics of the system. This thesis

shifts the focus to intelligent control techniques which can reap similar benefits at no

additional cost or space requirements. The technical novelty of this work lies in the

proposition of a new SVPWM control technique which not only targets at reducing

the CMV but also improves the harmonic spectrum of the output switched voltage of

the IMC. Considering the fact that the IMC topology finds its use in variable speed

drive applications, two independent modulation techniques have been proposed, each

targeting a different range of operation of the IMC. These two modes are summarized

as 1) HMIR - 0.577 < m < 0.866 and 2) LMIR - 0 < m < 0.5.

The switching states of the rectifying stage of the converter control the shape of the

DC-Link voltage waveform. Intelligent control (in the form on an SVPWM technique)

of these switches provides the flexibility and potential to attain different voltage levels

at the DC-Link which further translates to an improved harmonic spectrum of output

voltage. Therefore, the objective and control to generate output voltages of a certain

magnitude and frequency is transferred to the rectifying stage of the converter. The

inverting stage of the IMC is always operated at its full modulation index.

This thesis also proposes a methodical analytical estimation method to accurately
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predict the degree of distortion in output voltage. This process has been explained in

detail for both the conventional and proposed SVPWM techniques. Simple mathemat-

ical expressions have been obtained to estimate the RMS square value of output phase

voltages. The expressions only depend on values of input grid voltage and modulation

index (operating parameter). It is independent of switching, grid or output frequencies.

With a proper knowledge of the fundamental component in output voltage, the THD

can be easily calculated. Proper comparison plots have been provided to prove the

effectiveness and accuracy of this estimation method.

The working of the proposed modulation techniques have been explained and val-

idated through both simulation results on an IMC model in MATLAB/Simulink and

experimental results on a laboratory prototype. The peak values of CMV has been

reduced by a factor of
√
3 compared to the conventional technique. The methods also

comes with other advanced features like reduction reduction in THD of the output phase

voltage, reduced switching losses in the VSI and lower machine losses. Plots comparing

the conventional and proposed algorithm based on harmonic content and CMV have

been provided. Variations of these parameters with output frequency and modulation

index has also been analyzed.

6.1 Future Work

• Implement the proposed algorithm with appropriate V/f control on a motor to

analyze the nature of shaft voltage and bearing currents, and compare it with the

conventional SVPWM algorithm.

• Usage of active voltage vectors on the inverting stage with normalized dwell times

demands an equal compensation on the rectifying stage. Inclusion of this feature

can potentially improve the performance of the proposed methods.

• The estimation of RMS square of output voltage and thereby distortion, can be

used for the design of output passive filters at the motor terminals.

• The estimation procedure proposed in this thesis can be extended to estimation

of CMV and switching losses.
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• Proposing another SVPWM algorithm targeting the operation of the IMC at 0.5 <

m < 0.577.

• Comparison of the proposed SVPWM technique with other similar techniques

targeting improvement in THD and reduction of CMV.
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