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Abstract 

 The present study utilized a cross-modal priming paradigm to investigate 

dimensional information processing in speech.  Primes were facial expressions that varied 

in two dimensions: affect (happy, neutral, or angry) and mouth shape (corresponding to 

either /a/ or /i/ vowels).  Targets were CVC words that varied by prosody and vowel 

identity.  In both the phonetic and prosodic conditions, adult participants responded to 

congruence or incongruence of the visual-auditory stimuli.  Behavioral results showed a 

congruency effect in percent correct and reaction time measures. Two ERP responses, the 

N400 and late positive response, were identified for the effect with systematic between-

condition differences. Localization and time-frequency analyses indicated different 

cortical networks for selective processing of phonetic and emotional information in the 

words.  Overall, the results suggest that cortical processing of phonetic and emotional 

information involves distinct neural systems, which has important implications for further 

investigation of language processing deficits in clinical populations. 
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Chapter 1: Introduction 

 

 This chapter provides a literature review motivating the current thesis project on 

phonetic and prosodic processing in the brain.  It begins with an overview of the elements 

of speech, which is then further broken down into the elements of interest for this 

investigation: phonetics and prosody.  Following is a brief discussion of priming 

paradigms and their use in behavioral and event-related potential research.  The event-

related potential components that are particularly relevant to this study (the N400 and late 

positive response) are then reviewed.  The fifth and sixth sections review the importance 

of localization and cortical rhythm analyses for evaluating phonetic and prosodic 

processing.  The final section presents research questions for the current investigation of 

phonetic and prosodic processing in an affective priming paradigm.  

 

1.1 Elements of speech 

Simply defined, speech is the acoustic representation of language.  But researchers’ 

efforts to reduce speech to its essential elements have not yielded a single clear 

description due to the co-existence of multiple informational dimensions in the speech 

signal.  The seemingly concise dichotomies of linguistic and paralinguistic or segmental 

and suprasegmental do not adequately describe the complexity of the speech signal. 

The linguistic content of speech is universally viewed as an arbitrary language code 

that can be broken down into vowels, consonants, or their attributes (Fox, 2000).  The 
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term “segmental” describes these discrete units, the most basic of which is the phoneme. 

Laver and Hutcheson (1972) propose that paralinguistic information encompasses all 

other elements of speech, including non-linguistic and non-verbal features (both vocal 

and non-vocal).  The related term “suprasegmental” describes the phonological structure 

superimposed on the segments (i.e., the use of stress on a syllable), which can also carry 

language-specific features. 

The word prosody comes from the Greek prosodia meaning “sung to music.”  

Describing prosody in the context of the whole speech signal presents a challenge.  Let us 

first consider prosody in the context of paralinguistic information.  Laver and Hutcheson 

(1972) propose that the non-verbal, vocal paralinguistic features can be described as the 

speaker’s tone of voice.  However, Fox (2000) points out that prosodic features of 

linguistic significance also express tone of voice.  Crystal (1969) suggests that prosodic 

features consist of variations in pitch, loudness, duration and silence whereas 

paralinguistic features, while vocal, are identified independently of these characteristics.  

Reflecting on these comparisons, it should come as no surprise that there is some 

conceptual overlap in the definitions between the terms paralinguistic and prosodic (Fox, 

2000; Roach, Stibbard, Osborne, Arnfield & Setter, 1998).  

While we can use the phonetic characteristics of length, accent, intonation, and tone 

to distinguish prosodic from phonetic features, these descriptors alone are insufficient.  

Prosody is too complex for its features to simply be superimposed on speech segments as 

a collection of suprasegmental characteristics.  The acoustic cues of pitch frequency, 
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duration, and intensity have been described as the “quasi-independent” basic parameters 

of prosody (Fox, 2000).  This is to say that these acoustic cues are often mutually 

dependent, despite the possibility of manipulating them independently of one another. 

Manipulating these cues allows speakers to communicate emotion through prosody.  

In the current experiment, we were particularly interested in the emotional aspect of 

prosody as opposed to its phonetic characteristics. Understanding the brain mechanisms 

that govern the proper use of these affective cues along with the expression of linguistic 

content is important for theories on the neural representations of language as well as 

practical applications such as intervention for individuals with communication difficulties 

in terms of affective speech comprehension/production.  Brain imaging studies have 

investigated the timing, localization, and cortical rhythm characteristics related to 

processing the phonetic and prosodic elements of speech, which will be further discussed 

in the upcoming sections. 

 

1.2 Priming paradigms 

One common experimental task in psycholinguistic research is the use of priming. 

Priming refers to the facility with which a participant processes a stimulus (target) based 

on an earlier experience with a specific stimulus (prime).  Researchers measure the 

accuracy rate and reaction times associated with different types of targets to make 

inferences about memory organization and the cognitive processes involved.  In an early 

priming experiment, Segal (1966) measured activation of a primed word based on its 
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appearance in a subsequent association task.  Priming has often been investigated through 

an identification task using degraded stimuli, where the participant has studied only some 

of the stimuli in a prior session (Roediger & McDermott, 1993, as cited in Greene, Eaton 

& LaShell, 2001).  Reduced reaction times in response to semantically or conceptually 

congruent prime-target pairs (i.e., pet-cat, furniture-chair) have generally been seen to 

reflect spreading-activation theories for memory (Collins & Loftus, 1975). 

Priming paradigms have been employed in behavioral and event-related potential 

studies to evaluate the intersection between pairs of stimuli both within and across 

modalities.  In these paradigms, primes and targets are combined to investigate the effects 

of their congruency or incongruency in a specified aspect.  Greene et al. (2001) explored 

the effect of within-modal and cross-modal priming on spatio-temporal event processing.  

They observed an effect for visual priming of auditory targets, but not the reverse.  The 

authors therefore proposed that a visual event provided specific information that could 

facilitate processing of an auditory target, whereas the auditory primes were more vague 

and had the potential to correspond to a wide range of visuals. 

 

1.2.1 Affective priming 

An adjective evaluation task created by Fazio, Sanbonmatsu, Powell, and Kardes 

(1986) was an early model of the affective priming.  In that experiment, affectively 

related primes facilitated an evaluative decision of adjective targets, as demonstrated by 
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shorter latencies preceding the adjective evaluation (“good” or “bad”).  This has been 

described as “automatic attitude activation” (for a review, see Fazio, 2001). 

Affective priming paradigms since that time have extended beyond the traditional 

visual word prime-target pairs to explore interactions between stimulus domains and 

modalities.  Picture primes and written word targets have been used to investigate the 

neural mechanisms at play during cross-domain visual affective priming paradigms 

(Zhang, Lawson, Guo & Jiang, 2006; Zhang, Li, Gold & Jiang, 2010).   

Other prime-target pairs have spanned two modalities, combining stimuli such as 

affective sentence prosody and written words (Schirmer, Kotz & Friederici, 2002) or 

musical stimuli and written words (Goerlich, Witteman, Schiller, Van Heuven, Aleman & 

Martens, 2012).  Facial expressions have been used as targets in cross-modal priming 

paradigms with sentence primes (Czerwon, Hohlfeld, Wiese & Werheid, 2013) and 

musical primes (Lense, Gordon, Key & Dykens, 2014).  Other cross-modal affective 

priming paradigms have used facial expressions as primes for emotional words (Schirmer 

& Kotz, 2006) and musical stimuli (Kamiyama, Abla, Iwanaga & Okanoya, 2013). 

 

1.2.2 Stimulus onset asynchrony 

When investigating the neural mechanisms at play in priming paradigms, it is 

important to consider the influence of the stimulus onset asynchrony (SOA).  The SOA, 

or the duration from the onset of the prime to the onset of the target, can impact brain 

responses to affective priming.  Hermans, De Houwer, and Eelen (2001) found an 
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affective priming effect for an SOA of 300 milliseconds (ms), but not 1000 ms. Based on 

this research, Goerlich et al. (2012) employed a constant SOA of 200 ms in their 

investigation of cross-modal affective priming in music and speech. 

Zhang et al. (2010) investigated the effect of short SOAs in their affective priming 

experiment with picture primes and word targets.  Congruent and incongruent picture-

word pairs were presented with stimulus onset asynchronies of 150 ms and 250 ms. 

Results suggest that emotional picture primes affect target word processing, even at very 

short SOAs. 

 

1.3 Behavioral and event-related potential measures 

In order to determine the facilitative effect of primes on targets, a variety of 

behavioral and brain measures have been utilized.  As mentioned previously, differences 

in reaction time in response to congruent vs. incongruent pairs are thought to reflect 

increased or decreased facilitation of target processing.  In conjunction with this measure, 

event-related potentials (ERPs) are especially valuable for investigating the timing of 

neural components underlying both phonetic and prosodic processing.  Of particular 

interest to this experiment are the N400 and the late positive response (late positive 

component [LPC] or late positive potential [LPP]). 

 

1.3.1 N400 component 
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Event-related potential research is a noninvasive method of measuring neural 

responses to specific events.  It provides high temporal resolution suitable for 

investigating brain responses to acoustic and linguistic processing at the millisecond 

level.  A wide research base has established specific ERP components that occur in 

response to specific linguistic violations (e.g. semantic or syntactic violations).  One such 

response is the N400 component, a negativity occurring approximately 400 ms after a 

violation of meaning (Kutas & Hillyard, 1980).  Traditionally, this component has been 

studied in the context of semantic expectancy violations in sentences (for a review, see 

Kutas & Federmeier, 2011).  The N400 response has also been observed in semantic 

congruency studies that pair speech with visual stimuli involving gestures (Kelly, Creigh 

& Bartolotti, 2010; Kelly, Ward, Creigh & Bartolotti, 2007; Özyürek, Willems, Kita & 

Hagoort, 2007; Stevens & Zhang, 2013).  

Researchers have addressed the role of emotion in speech using a variety of 

approaches and have identified different components based on those paradigms (for 

summary, see Appendix A).  Recent studies have observed the N400 component in the 

context of emotional valence congruency violations.  Increased N400 amplitude 

responses have been observed in response to visual affective incongruence of prime-

target word pairs (Czerwon et al., 2013) and picture-word pairs (Bostanov & 

Kotchoubey, 2004; Zhang et al., 2010).  Kamiyama et al. (2013) report the presence of 

the N400 component in response to mismatched stimuli in an affective priming paradigm 

in which a happy or sad musical stimulus is preceded by a congruent or incongruent 
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facial expression.  In the prosodic context, Schirmer and Kotz (2003) identified an N400 

component following incongruent conditions of an auditory emotional Stroop task where 

participants judged the valence of an adverb or the emotional prosody with which it was 

spoken.  Similarly, greater N400 responses occurred in experiments where the valence of 

a word was incongruent (as opposed to congruent) with the prosody of a preceding 

sentence (Schirmer et al., 2002; Schirmer, Kotz & Friederici, 2005). 

In their variant of a cross-domain affective priming paradigm, Aguado, Dieguez-

Risco, Méndez-Bértolo, Pozo, and Hinojosa (2013) observed a reverse priming effect 

wherein the N400 response was larger in response to congruent compared to incongruent 

stimuli (facial primes and emotional word targets).  Paulmann and Pell (2010) identified 

the same response in a facial affective decision task.  However, reverse priming occurred 

only for the short primes (200 ms), not for the medium-length primes (400 ms).  For 

these, a classic N400 response was observed. 

Zhang et al. (2010) identified both an N400 and a late positive response in their 

cross-domain affective priming experiment.  The N400 response occurred for 

incongruent picture-word prime-target pairs at a stimulus onset asynchrony (SOA) of 150 

ms. In contrast, the late positive potential occurred in response to prime-target 

incongruency at an SOA of 250 ms. The next section will discuss the late positive 

response in greater detail. 

 

1.3.2 Late positive response 
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A late positive response has been observed in affective priming experiments and is 

generally seen to reflect increased attention to unexpected targets (see summary in 

Appendix A).  Mismatched affective face pairs (e.g. angry-happy) revealed a parietally 

distributed late positive potential (LPP) between 500–600 ms after presentation of the 

target face (Werheid, Alpay, Jentzsch & Sommer, 2005).  The authors proposed the late 

positivity was a response to enhanced arousal resulting from the sudden change as 

opposed to the emotional valence (see Schupp, Cuthbert, Bradley, Cacioppo, Ito & Lang, 

2000).  Zhang et al. (2010) observed an increased LPP in response to affectively 

incongruent words between 550–700 ms. 

This positive-going deflection is often discussed as a possible variant of the P300 

component, reflecting updating working memory (Hajcak, Dunning & Foti, 2009; also 

see Donchin & Coles, 1988).  The P300 is known to be a neurocognitive index of novelty 

detection and attentional capture, and its amplitude is strongly dependent on the stimulus 

context and task demands (Nie, Zhang, & Nelson, 2014). Because Zhang et al. (2010) 

also observed an N400 component in their experiment, they propose that the LPP may in 

fact be a P300 component reflective of updating working memory.  They further suggest 

that the late positive potential may be indicative of conscious processing of the picture 

stimuli, evidenced by the lack of a late positive potential in both a word-word paradigm 

(Zhang et al., 2006) and a subliminal affective priming paradigm with facial stimuli (Li, 

Zinbarg, Boehm & Paller, 2008).  
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Other studies have identified a late positive response in experiments of emotion or 

prosody.  The late positivity was identified in various tasks during which the participant 

was consciously attending to some characteristic of the stimuli, such as congruency 

(Aguado et al., 2013; Chen, Zhao, Jiang & Yang, 2011; Kamiyama et al., 2013), sound 

intensity deviation (Chen et al., 2011), or level of arousal (Paulmann, Bleichner & Kotz, 

2013).  

 

1.4 Localization 

Localization of these processes is another area of investigation.  Various 

methodologies have been implemented to study the regional as well as hemispheric 

distribution of phonetic and prosodic processing.  It is generally accepted that language is 

primarily localized in the left hemisphere.  Emotion processing has greater right 

hemisphere involvement. 

Buchanan et al. (2000) used functional magnetic resonance imaging (fMRI) to 

investigate the localization of phonemic and prosodic processing.  They observed left 

hemisphere lateralization in the frontal lobe and auditory cortex during phonemic tasks 

and right hemisphere lateralization in the same regions for the emotion detection task 

(Buchanan et al.).  In another fMRI study, Grandjean et al. (2005) found enhanced 

responses in the superior temporal sulcus (STS) for angry compared to neutral stimuli 

presented in a dichotic listening paradigm.  Although activation was observed bilaterally, 

there was a general increase in right STS activity when participants attended to the left 
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ear and no corresponding increase in the left STS when participants attended to the right 

ear.  The authors assert that these effects are attributable to the difference in prosody and 

could not be accounted for by changes in acoustic cues (i.e. frequency and amplitude). 

Schirmer & Kotz (2006) challenge the idea that vocal emotion is uniquely a right 

hemisphere process.  Rather, they propose that prosodic processing is a multi-step 

process with differential involvement of both hemispheres.  Recent investigations into the 

lateralization of prosody support this model (Iredale, Rushby, McDonald, Dimoska-Di 

Marco & Swift, 2013; Paulmann et al., 2013; Witteman et al., 2014).  

The first step of the working model is the early processing of acoustic information, 

demonstrated by N1 and mismatch negativity (MMN) responses in the secondary 

auditory cortex (Schirmer & Kotz, 2006).  These are both ERP components that occur in 

response to changes in frequency or intensity; the N1 is a negativity occurring ~100 ms 

after stimulus onset, and the MMN has been observed in oddball paradigms 100–200 ms 

after presentation of the deviant stimulus (N1: Engelien, Schulz, Ross, Arolt & Pantev, 

2000; MMN: Tse, Tien & Penney, 2006). 

Oddball paradigms with standard and deviant emotional vocalizations also 

demonstrate an MMN effect, this one occurring at approximately 200 ms (Schirmer, 

2004).  Schirmer & Kotz (2006) take this as evidence that the listener uses acoustic cues 

to determine the emotional significance.  Based on existing research, the authors infer 

that the right anterior superior temporal sulcus may be activated for the emotional MMN 

effect (Grandjean et al., 2005). 
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In the final stage of the current model, the listener uses higher order thinking to 

apply emotional meaning.  This is the process most directly explored by experiments in 

which the task is to label emotions, such as those described in the previous section of this 

chapter.  The right inferior frontal gyrus (IFG) is implicated here for evaluative 

judgments, while the left IFG is active for semantic judgments of words spoken with 

incongruous (compared to congruous) prosody. 

 

1.5 Cortical rhythms 

 A relatively new area of analysis in ERP research is the application of time-

frequency analysis to examine degree of trial-by-trial coherence in cortical rhythms that 

may give rise to the salient components in the averaged ERP waveforms (Luck, 2014). 

There is a growing body of literature on the cortical rhythms that mediate phonetic and 

prosodic processing in an audiovisual priming paradigm.  The different cortical rhythms 

are considered to reflect resonant neural networks that code and transfer information 

across brain regions to support various sensory, motor and cognitive processing. 

Researchers have investigated how frequency bands are modulated in response to 

different auditory and visual cues (for a review of EEG coherence, see Weiss & Mueller, 

2003). Of particular interest in the current investigation are the following oscillations: 

delta (1–4 Hz), theta (4–8 Hz), beta (12–30 Hz) and gamma (>30 Hz).  Senkowski, 

Schneider, Foxe, and Engel (2008) reviewed the implications of these cortical oscillations 

on cross-modal sensory integration. 
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A subset of the studies reviewed by Senkowski et al. (2008) investigated gamma 

band activity in audiovisual semantic priming paradigms.  Increased gamma oscillations 

were observed in response to incongruent audiovisual information in an object 

recognition task where the participant determined which animal they saw (visual) or 

heard (auditory) depending on the experimental block (Yuval-Greenberg & Deouell, 

2007).   Schneider, Debener, Oostenveld, and Engel (2008) performed a similar study 

using an audiovisual priming paradigm in which participants categorized only the 

auditory target.  Their results demonstrated increased gamma oscillations in response to 

auditory targets that were incongruent with visual primes. 

Theta band power has been tied to responses of arousal (Basar, Basar-Eroglu, 

Karakas & Schürmann, 1999).  It may also increase in response to semantic violations 

(Hald, Bastiaansen & Hagoort, 2006) and working memory of verbal stimuli (Klimesch, 

et al., 2006; Scheeringa, Petersson, Oostenveld, Norris, Hagoort & Bastiaansen, 2009; 

Summerfield & Mangels, 2005).  Furthermore, theta activity has been tied to visual 

presentation of emotional faces to adults (Balconi & Pozzoli, 2009; Knyazev, 

Slobodskoj-Plusnin & Bocharov, 2009) as well as affective or formant-exaggerated 

speech presented to infants (Orekhova, Stroganova, Posikera & Elam, 2006; Radicevic, 

Vujovic, Jelicic & Sovilj, 2008; Santesso, Schmidt & Trainor, 2007; Zhang et al., 2011). 

Delta modulations have also been shown to increase in response to linguistic and 

speech processing (Giraud & Poeppel, 2012; Radicevic et al., 2008; Scheeringa, et al., 

2009).  Similarly, delta band power may be more synchronized in response to emotional 
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faces compared to neutral ones (Knyazev et al., 2009).  Zhang et al. (2011) also found 

increased delta synchronization in infants when they were presented with formant-

exaggerated vowels. 

Investigations of beta power changes in response to emotional stimuli represent a 

relatively small subset of the cortical rhythm research.  However, it is generally observed 

that beta oscillations occur in response specifically to the visual information of emotional 

facial stimuli (Okazaki, Kaneko, Yumoto & Arima, 2008, as cited in Balconi & Pozzoli, 

2009).  Güntekin and Basar (2007) found a notably stronger increase in beta in response 

to angry compared to happy facial stimuli.  Further investigation into this phenomenon 

revealed increased power for both beta and gamma bands in response to unpleasant 

pictures presented in a block design, but no effect on either frequency band in a random 

design (Güntekin & Tülay, 2014). 

 

1.6 Research questions 

 In this event-related potential study, we explored phonetic and prosodic 

processing using two visual priming conditions to examine behavioral and neural 

responses associated with the identification of phonetic mismatch and prosodic 

mismatch.  In line with the priming literature, we hypothesized that participants would 

take more time to react to incongruent audiovisual stimuli than to congruent audiovisual 

stimuli, regardless of condition (prosodic vs. phonetic).  We anticipated that behavioral 

accuracy for detecting incongruent audiovisual pairs would be dependent on dimensional 



   15 
 
 
 

 

information (prosodic vs. phonetic) with potential dimensional interaction effects.  We 

further predicted that participants would exhibit both an N400 response and a late 

positive response to incongruent audiovisual stimuli in both conditions. In addition to the 

conventional ERP waveform analysis, we applied a source localization method to test 

whether different cortical regions were involved in generating the N400 and late positive 

responses for the two conditions (prosodic vs. phonetic). We were also interested in 

determining whether different cortical rhythms mediated the generation of the N400 and 

late positive responses in the two conditions.  The results would collectively provide a 

better understanding of the brain mechanisms underlying the processing of prosodic and 

phonetic information in spoken language.  
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Chapter 2: Methods 

 

2.1 Participants 

Twelve right-handed adults (6 male, 6 female) between the ages of 18 and 24 

participated in the experiment.  All participants were native English speakers with no 

history of speech, language, or hearing impairment.  Prior to the start of the experiment, 

each participant read and signed an informed consent form (see Appendix B).  

Participants were compensated ten dollars per hour for their participation. 

 

2.2 Stimuli 

The stimuli included both visual primes and auditory targets.  The visual primes were 

four photographs of a male face showing a happy or an angry expression with a mouth 

shape that was representative of either an /ɑ/ or an /i/ vowel (Appendix C).  The same 

male model produced the four auditory targets.  These were consonant-vowel-consonant 

(CVC) sequences /bɑb/ (“bob”) and /bib/ (“beeb”) produced with happy or angry 

prosody. 

 

2.3 Procedure 

During the EEG recording session, participants were seated in a comfortable chair in 

a soundproof booth (ETS-Lindgren Acoustic Systems).  Participants were fitted with a 

stretchable 64-channel Waveguard cap, and continuous EEG data were recorded using 
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the Advanced Neuro Technology system.  The Ag/AgCl electrodes were arranged to 

match the standard International 10-20 Montage System and intermediate locations, with 

the ground electrode located at the AFz electrode.  The bandpass filter for EEG recording 

was for the 0.016-200 Hz range, and the sampling rate was 512 Hz.  Impedances for the 

individual electrodes were kept at or below 5 kΩ. 

Visuals were presented in the center of the screen against a green background 

(Appendix C).  Each visual prime was presented for 400 ms before the onset of the target 

auditory stimulus whose duration was 295 ms (Figure 1).  There were 160 trials per 

block.  Auditory stimuli were presented at 60 dB sensation level (Rao, Zhang & Miller, 

2010).  The presentation order for the phonetic and prosodic blocks was counterbalanced 

across participants. 

 

Figure 1. Visual schematic of affective priming paradigm.  The visual prime was 
presented for 400 ms before the onset of the auditory target, whose duration was 295 ms. 
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In the prosodic condition, participants were instructed to evaluate a match or 

mismatch between the emotion of the face and the emotion of the voice.  In the phonetic 

condition, participants were instructed to evaluate a match or mismatch between the 

articulation and the auditory word target (Figure 2).  They indicated their responses 

(match vs. mismatch) by pressing the left or right arrow key on a keyboard.  In the 

phonetic block, participants were instructed to evaluate a match or mismatch between the 

vowel of the word and the mouth shape.  Again, they indicated a match or a mismatch by 

pressing the left or right arrow key.   

   

Figure 2. Congruent and incongruent stimuli.  These are examples of congruent and 
incongruent stimuli for phonetic and prosodic conditions. 
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2.4 Data analysis 

2.4.1 Behavioral data analysis 

Behavioral responses were analyzed for percent correct accuracy and mean reaction 

time.  Analysis of percent accuracy accounted for all possible response categories (hits, 

correct rejections, misses, and false alarms). The pairings of a face and a voice were 

classified as either congruent or incongruent.  A “correct” response was agreement 

(“yes”) with a congruent pairing or disagreement (“no”) with an incongruent pairing. 

Mean reaction times were calculated for each subject for each of the four conditions 

(phonetic congruent, phonetic incongruent, prosodic congruent, prosodic incongruent). 

Mixed repeated-measure ANOVA tests evaluated two main factors and their interaction: 

congruency (congruent vs. incongruent) and condition (phonetic vs. prosodic). Post-hoc 

tests were also conducted to further investigate interaction effects. 

 

2.4.2 ERP waveform analysis 

ERP averaging was performed offline in BESA (Version 6.0, MEGIS Software, 

GmbH, Germany).  Artifact correction parameters were set at 100.0μV for horizontal 

electrooculogram (HEOG) and 150.0μV for the vertical electrooculogram (VEOG) to 

minimize the effects of eye drift and blink, respectively.  After the artifact correction was 

applied, the raw EEG data were bandpassed at 0.5 – 40 Hz.  The ERP epoch length was 

1500 milliseconds, including a pre-stimulus baseline of 100 milliseconds.  The automatic 

artifact scanning tool in BESA was applied to detect noisy signals.  The automatic artifact 
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rejection criterion was set at plus or minus 50μV.  Additionally, trials where the 

difference between two adjacent sample points exceeded 75 μV were excluded from 

analysis. 

To improve the signal-to-noise ratio of the data, nine electrode regions were defined 

for analysis (Figure 1). They were organized from anterior to posterior and left to right.  

The left anterior (LA) region included channel sites F7, F5, F3, FT7, FC5, and FC3, the 

middle anterior (MA) region included F1, FZ, F2, FCZ, FC1, and FC, and the right 

anterior (RA) region included F8, F6, F4, FT8, FC6, FC4.  The left central (LC) region 

included channel sites T7, C5, C3, TP7, CP5, and CP3, the middle central (MC) region 

included C1, CZ, C2, CP1, CP2, and CPZ, and the right central (RC) region included T8, 

C6, C4, TP8, CP6, and CP4.  The left posterior (LP) included channel sites P7, P5, P3, 

PO7, PO3, and O1, the middle posterior (MP) region included P1, PZ, P2, POZ, and OZ, 

and the right posterior (RP) region included P8, P6, P4, PO8, PO4, and O2.  Similar 

channel groupings were used in previous studies (Chen et al., 2011; Schneider et al., 

2008; Stevens & Zhang, 2014; Zhang et al., 2011).  

Based on visual inspection and evidence from previous literature, two time windows 

were selected for analysis: an early time window from 250 – 450 ms (N400 component, 

Aguado et al., 2013; Kamiyama et al., 2013; Kotz & Paulmann, 2011) and a late time 

window from 700 – 1000 ms (late positive response, Chen et al., 2011; Paulmann, 

Bleichner & Kotz, 2013; Kotz & Paulmann, 2011).  These latencies were measured based 

on the onset of the auditory stimulus, which occurred at 400 ms.  However, the baseline 
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for the epoch was calculated based on the 100 ms preceding the onset of the visual prime 

to prevent interference of visual processing activities.  Repeated measures ANOVA tests 

were performed for these two peaks of interest.  Within-subject factors were condition 

(phonetic and prosodic), laterality (left, middle, and right), and site (anterior, central, and 

posterior) (Figure 3). 

 
 

 

Figure 3. Electrode grouping. Electrode channels were grouped into nine regions for 
statistical analysis: left anterior (F7, F5, F3, FT7, FC5, FC3), middle anterior (F1, FZ, F2, 
FCZ, FC1, FC), right anterior (F8, F6, F4, FT8, FC6, FC4), left central (T7, C5, C3, TP7, 
CP5, CP3), middle central (C1, CZ, C2, CP1, CP2, CPZ), right central (T8, C6, C4, TP8, 
CP6, CP4), left posterior (P7, P5, P3, PO7, PO3, O1), middle posterior (P1, PZ, P2, POZ, 
OZ), right posterior (P8, P6, P4, PO8, PO4, O2) (Chen et al., 2011; Schneider et al., 
2008; Stevens & Zhang, 2014; Zhang et al., 2011). 
 
 

2.4.3 Source localization analysis 
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Source localization analysis was performed using the minimum norm estimation 

(MNE) in BESA software (Zhang et al., 2011).  MNE analysis approximated the current 

source space, using the smallest norm to explain the measured ERP signals.  These were 

reference-free estimates of cortical current activities.  MNE was implemented in the 

process outlined below: 

1. The electrode montage was calculated by using the standard positions for the 

WaveGuard EEG cap relative to the standard head model (Boundary Element Model) 

in BESA. 

2. Depth weighting and spatio-temporal weighting were adopted to avoid bias towards 

superficial sources and improve the focality and reliability of the source activities. 

3. The total activity at each source location (750 dipole locations in the left hemisphere 

and 750 in the right hemisphere) was calculated as the root mean square of the dipole 

source activities.  These solutions were then projected to the standard realistic brain 

model in BESA.  The current source data for the prefixed locations at all latencies 

were further analyzed for temporal and spatial interpretations. 

4. The total MNE activities in each hemisphere were added at each time point.  A two-

tailed z-test relative to baseline mean and variance was applied to the MNE 

differences between the two stimuli at each sample point.   

5. Regional contributions to the total MNE activities were examined using standard 

anatomical boundaries in the Talairach space for each region of interest (ROI) in the 

brain space.   
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2.4.3 Time frequency analysis 

 
Time frequency analysis was also performed for the nine regions of interest (ROIs): 

left anterior (LA), middle anterior (MA), right anterior (RA), left central (LC), middle 

central (MC), right central (RC), left posterior (LP), middle posterior (MP), and right 

posterior RP).  Inter-trial coherence in terms of phase locking values in delta (1–4 Hz), 

theta (4–8 Hz), beta (13–30 Hz) and gamma (>30 Hz) frequency bands was computed for 

each subject in each of the two conditions (phonetic vs. prosodic) with the open source 

EEGLAB package (Delorme & Makeig, 2004). The inter-trial coherence measure is an 

estimate of mean normalized phase across trials, which can range from 0 (indicating 

random phase coherence or complete lack of synchronization) to 1 (indicating perfect 

phase synchrony across trials). The inter-trial coherence data (also referred to as phase 

locking values) were averaged across the frequencies within the range of each frequency. 

The peak phase locking values corresponding to the N400 and late positive response 

components in their respective windows were identified for each frequency band for each 

listening condition on an individual basis. For each experimental condition (prosodic vs. 

phonetic), a direct comparison of the time-frequency analysis data with a false discovery 

rate (FDR) (Benjamini & Hochberg, 1995) corrected p-value threshold of 0.01 was 

conducted to determine what frequency bands mediated the N400 and late positive 

responses.  
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2.4.5 Statistical analysis 

All statistical analyses were completed in Systat 10.  A repeated measures analysis of 

variance (ANOVA), with α = 0.05, was conducted to examine the statistical significance 

of listening condition (phonetic vs. prosodic) on N400 and late positive response 

latencies and amplitudes recorded at the selected regions of interest.  The repeated-

measures ANOVA was also applied in evaluating behavioral and neural responses in the 

phonetic and prosodic conditions. Post-hoc t-tests were also conducted to further 

determine how the different factors contributed to the significant interaction effects in the 

ANOVA tests.  
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Chapter 3: Results 

 

3.1 Behavioral results 

The percent correct showed a congruency effect (F(1,11) = 5.79, p < 0.05) and there 

was a significant interaction between congruency and condition (F(1, 11) = 8.16, p < 

0.05) (Figure 4).  Post-hoc t-tests revealed that the prosodic condition (but not the 

phonetic condition) showed a significant accuracy difference between the congruent and 

incongruent trials (p < 0.05).  

The reaction times showed a congruency effect (F(1,11) = 28.67, p < 0.01).  

Participants took more time to respond to incongruent stimuli than congruent stimuli, 

regardless of condition.  Post-hoc t-tests revealed that both the prosodic condition and the 

phonetic condition showed a congruency effect in reaction time (p < 0.05).  

 

Figure 4.  Percent correct accuracy (A) and reaction times (B).  Presented for phonetic 
and prosodic conditions. 
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3.2 ERP results 

3.2.1 N400 

A repeated measure ANOVA in the early time window (250 – 450 ms after onset 

of the auditory target, 650 – 850 ms in figures) revealed a significant main effect for 

listening condition (F(1,11) = 7.95, p < 0.05) (Figures 5-7).  Congruent trials were 

subtracted from incongruent trials to create the subtracted waveform seen in Figure 7A.  

The subtracted waveforms show clear N400 peaks across all regions of interest.  These 

peaks are followed by a late positivity.  The phonetic condition elicited stronger N400 

activity for the incongruent stimuli than the prosodic condition.  There was also a 

significant main effect for laterality (left, middle, right) (F(1,11) = 7.17, p < 0.01).  

Furthermore, there was a condition × laterality interaction (F(1,11) = 4.33, p < 0.05), 

indicating that the stronger N400 activity for incongruent stimuli in the phonetic 

condition was dependent on lateral location (left, middle, right).  There was also a 

condition × site × laterality effect (F(1,11) = 4.04, p < 0.01) for the N400 component.  

Post-hoc t-tests revealed that the N400 in the phonetic condition was left 

dominant in the central and posterior sites (p < 0.05). No significant laterality effect was 

found for the N400 in the prosodic condition. The topographic distribution (Figure 7B) 

for the N400 component confirms left hemisphere dominance for the phonetic condition, 

whereas the distribution appears to be more bilateral for the prosodic condition.  

 

3.2.2 Late positive response 
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A repeated measure ANOVA in the late time window (700 – 1000 ms after onset 

of the auditory target, 1100 – 1400 ms in figures) revealed significant effects for electrode 

site (anterior, central, posterior) (F(1,11) = 7.49, p < 0.01) and laterality (left, middle, 

right) (F(1,11) = 19.03, p < 0.01).  In contrast to the N400 component results, there was a 

significant interaction effect for condition × site (F(1,11) = 3.89, p < 0.05).  Finally, there 

was a condition × site × laterality effect (F(1,11) = 3.10, p < 0.05). 

Post-hoc t-tests showed anterior vs. posterior significant differences in both 

hemispheres for both the prosodic and phonetic conditions (p < 0.05). But there was no 

significant laterality effect in any of the anterior, central, or posterior sites in either 

condition. The topographic distribution (Figure 7) for the late positive response appears 

relatively similar between the two conditions, with the exception of a greater frontal 

negativity in the phonetic condition.  However, there is not a clear hemispheric pattern 

like that seen for the N400 component. 
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Figure 5. ERP average waveforms for phonetic condition.  ERP average waveforms are 
presented for nine regions comparing responses to congruent and incongruent stimuli in 
the phonetic condition. Regions are organized by laterality and site: left anterior (LA), 
left central (LC), left posterior (LP), middle anterior (MA), middle central (MC), middle 
posterior (MP), right anterior (RA), right central (RC), and right posterior (RP).  In the 
waveform plot for LP, the dark gray bar shows the length of the visual prime and the light 
gray bar shows the presentation of the auditory target.  The N400 and late positive 
response (LPR) latencies were measured from the onset of the auditory target at 400 ms.  
These are denoted with arrows on the MP waveform. 
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Figure 6. ERP average waveforms for prosodic condition.  ERP average waveforms are 
presented for nine regions comparing responses to congruent and incongruent stimuli in 
the prosodic condition.  Regions are organized by laterality and site: left anterior (LA), 
left central (LC), left posterior (LP), middle anterior (MA), middle central (MC), middle 
posterior (MP), right anterior (RA), right central (RC), and right posterior (RP).  In the 
waveform plot for LP, the dark gray bar shows the length of the visual prime and the light 
gray bar shows the presentation of the auditory target.  The N400 and late positive 
response (LPR) were measured from the onset of the auditory target at 400 ms.  These are 
denoted with arrows on the MP waveform. 
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Figure 7. ERP difference waveforms and scalp topography.  This figure shows ERP 
difference waveforms (incongruent - congruent).  In the average waveforms (A), the gray 
bar highlights the N400 component.  Scalp topography of the N400 and late positive 
responses for the two listening conditions is shown in (B). 
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3.2.3 Localization results 

Source localization analyses provided a rough estimation of cortical activation 

patterns for the N400 and late positive responses in the current experiment (Figure 8).  

Total activity waveforms for the phonetic and prosodic conditions are not highly 

revealing because of the differential patterns of cortical activation.  Regions where the 

minimum norm estimation analysis yielded a z score of 4 or greater (p< 0.001) are 

described below for each condition. 

Source localization patterns for the N400 response show strong left hemisphere 

lateralization in the phonetic condition, with contributions from the superior temporal and 

inferior parietal regions as well as the primary motor cortex.  In the prosodic condition, 

the N400 response shows a pattern of right hemisphere dominance with superior temporal 

and inferior parietal region activations. 

The late positive response appears to have more distributed regions of activation 

for the phonetic condition.  These regions generally include the parietal lobe in addition 

to the primary motor cortex, with possible contributions from the occipital region.  Left 

hemisphere activations in the prosodic condition include parietal and occipital regions, 

while right hemisphere activity includes occipital, temporal, and inferior parietal regions. 
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Figure 8. Minimum norm estimation activity. (A) Boundary Element Method (BEM) 
head model (B) total activity waveforms for phonetic and prosodic conditions in the left 
and right hemispheres (C) Minimum norm estimation (MNE) activity for the N400 
response (D) MNE activity for the late positive response. 

 

3.2.4 Cortical rhythm results 

Time-frequency analysis evaluated the contributions of delta (1–4 Hz), theta (4–8 

Hz), beta (12–30 Hz) and gamma (>30 Hz) oscillations to ERP responses (Figure 9).  In 

the phonetic condition, the lower frequency bands (delta, theta and beta rhythms) 

contributed to the N400 response and theta rhythm contributed to late positive response 

(p < 0.01).  In the prosodic condition, the primary contributors to both N400 and late 
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positive responses were beta and gamma rhythms. Also, theta band oscillations showed a 

significant difference between the congruent and incongruent trials (p < 0.01) at the late 

positivity window in the prosodic condition.  Furthermore, there was significant early 

gamma activity before the onset of the auditory target for the prosodic condition (p < 

0.01).  A similar rest-state gamma rhythm, which was argued to reflect predictive coding 

of the following auditory target based on the visual information preceding the sound, was 

previously reported in an experiment investigating the McGurk effect (Keil, Muller, 

Ihssen & Weisz, 2012). 

 
 

Figure 9. Cortical time-frequency analysis. Compares cortical oscillations for 
incongruent and congruent trials (and their difference) in phonetic and prosodic 
conditions. 
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Chapter 4: Discussion 

 

4.1 Congruency effect in behavioral data 

Overall, participants were more accurate at identifying congruent face and voice pairs 

than incongruent combinations.  Furthermore, percent correct accuracy was dependent 

upon dimensional information.  Participants were less accurate at identifying prosodic 

incongruency (78.56%) than prosodic congruency (89.54%) while percent correct 

accuracy for the phonetic condition was nearly identical for the incongruent and 

congruent conditions (88.13% and 88.45% respectively).  In a recent experiment by Chen 

et al. (2011), participants were more accurate at identifying a prosodic match compared 

to a prosodic mismatch when attending to sound intensity deviation in a sentence.  

However, the same authors found no effect for accuracy in a congruency detection task 

using the same stimuli.  Kamiyama et al. (2013) observed high accuracy (above 90%) for 

both congruent and incongruent face/music pairs. As different studies tested different 

informational dimensions, it is difficult to reach a simple consensus across the studies. 

Our data suggest that the phonetic judgment accuracy was not much affected whether the 

visual prime matched the auditory target or not, whereas prosodic judgment accuracy was 

significantly affected.  

Results for reaction time demonstrated that participants took longer to respond to 

incongruent stimuli than congruent stimuli, irrespective of whether the condition was 

phonetic or prosodic.  A similar effect has been observed in previous studies (Kamiyama 
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et al., 2013; Stevens & Zhang, 2014).  In the experiment by Kamiyama et al., participants 

with and without musical experience judged congruent face-music pairs more quickly 

than incongruent pairs. In a cross-language comparison, Stevens & Zhang identified an 

audiovisual congruency effect regardless of language background or inclusion of an 

independent gesture variable. 

 

4.2 N400 audiovisual congruency effect 

Consistent with our hypotheses, we observed both an N400 response and a late 

positive response to incongruent audiovisual stimuli.  Our results were in line with the 

results of previous studies evaluating responses to various congruent and incongruent 

stimuli (Kamiyama et al., 2013; Schirmer & Kotz, 2013; Stevens & Zhang, 2014).  In the 

current experiment, the phonetic condition elicited a larger N400 component than the 

prosodic condition.  Furthermore, the N400 for the linguistic processing condition 

showed left hemisphere dominance, whereas the N400 for the prosodic processing 

condition did not (see further discussion in the localization results section).  

Existing literature evaluating emotional processing spans a wide range of 

experimental approaches and identifies multiple ERP components. Among the studies 

that identified an N400 response, there was a mixture of priming and reverse priming 

effects (Aguado et al., 2013; Kamiyama et al., 2013; Paulmann & Pell, 2010).  In a facial 

affective decision task presented in a priming paradigm, Paulmann and Pell observed 

both of these effects.  They observed a normal effect for the medium-length prime of 400 
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ms (the length of the visual prime in the current experiment), whereas there was a greater 

response for congruent compared to incongruent stimuli when participants were 

presented with a short prime (200 ms). As a possible explanation for the reverse priming 

effect they observed in their experiment, Aguado et al. cites their use of stimuli with 

complex affective valence.  The design differed from that of the current experiment in 

that the facial presentation was followed by the visual presentation of a word with 

emotional content rather than an auditory presentation of a non-word (absent of 

emotional content) spoken with different emotional prosody.  

 

4.3 Late positive response congruency effect across conditions 

Throughout the literature, researchers have posited a variety of explanations for the 

late positivity response.  While there is not a clear consensus regarding its functional 

significance, the late positive response is generally characterized as reflecting increased 

attention to unexpected targets.  This response has been identified in response to 

incongruency of affective face or word stimuli (Werheid et al., 2005; Zhang et al., 2010).  

Our findings in the current experiment support this explanation; we observed a late 

positive response in response to incongruent stimuli, regardless of condition.  In contrast 

to these results, the late positive potential (LPP) identified by Aguado et al. (2013) was 

modulated by affective valence (positive vs. negative) of the target word, but not by 

congruency of the visual stimuli.  The authors propose that the LPP reflected an 

evaluative priming effect.   
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Because the late positive response was observed following the N400 component, it is 

appropriate to entertain the possibility that the late response is in fact a variant of the 

P300 component, reflecting working memory updating (see Hajcak et al., 2009; Zhang et 

al., 2010).  Conscious processing of visual stimuli might also contribute to the late 

response, as suggested by Zhang et al. to account for the lack of a late positivity in 

response to other priming paradigms (word-word: Zhang et al., 2006; subliminal affective 

priming: Li, Zinbarg, Boehm & Paller, 2008).  The late positive response has been 

observed in experiments where the participant consciously attended to congruency of 

emotional or prosodic stimuli (Aguado et al., 2013; Chen et al., 2011; Kamiyama et al., 

2013). 

Witteman et al. (2014) observed an effect of the late positive potential (LPP) in an 

emotional task, but not the linguistic one.  This effect was larger at posterior sites in the 

left hemisphere, but proximal sites in the right hemisphere.  Our results show that the late 

positivity did not vary by condition in isolation, but interaction effects show an effect of 

condition dependent on site as well as an effect dependent on site and laterality.  Effects 

for site and laterality were also observed independently of each other, indicating clear 

localization of the late positive response. 

 

4.4 Cortical regions for the N400 and LPP responses 

In the current experiment, participants were asked to attend to either the phonetic or 

the prosodic dimension of the same stimuli.  Overall, our results indicate that different 
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brain regions are recruited for each of these conditions for both the N400 and late 

positive response.  This may reflect the underlying mechanisms of how the individuals 

selectively tune to one dimension of information (Rao, Zhang & Miller, 2010).  For the 

N400 component, we observed left hemisphere lateralization in the phonetic condition 

but right hemisphere lateralization for the prosodic condition.   In the same conditions, 

cortical activations for the late positive response were more broadly distributed. 

It appears that there was some primary motor cortex involvement for both the N400 

and late positive response.  However, this pattern of activation was only seen in the 

phonetic condition.  We speculate that the motor cortex involvement might partly be due 

to the participants indicating their response by pressing a key on a computer keyboard, 

which was more consistent in timing across trials for the phonetic condition than for the 

prosodic condition. It is important to note that source localization analysis represents a 

weak area in event-related potential research (Luck, 2014).  But despite its imprecision, 

source localization analysis can help to determine which neural networks are implicated 

in a given task, particularly when compared to the oscillation rhythm patterns across the 

cortical network activations (see discussion in the following section). 

 

4.5 Cortical rhythms mediating audiovisual congruency effects 

The MNE analysis and time-frequency analysis results revealed cortical network 

activation patterns that varied across conditions.  Delta, theta, and beta oscillations 

contributed to the N400 response in the phonetic condition.  The late positive response in 
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the same condition was modulated only by theta rhythms.  In contrast, beta and gamma 

activity contributed to both the N400 and late positive response in the prosodic condition.  

There was also a significant difference in theta activity between incongruent and 

congruent conditions for the late positive response. 

Theta oscillations have been observed in response to the visual presentation of 

emotional faces (Balconi & Pozzoli, 2009; Knyazev et al., 2009).  Although both 

conditions involved the visual presentation of happy or angry faces, theta activity was 

only observed for both ERP responses in the phonetic condition and not for the prosodic 

condition.  There was also increased theta activity for the difference between congruent 

and incongruent face/voice pairs in the late positive response. 

Increased gamma activity is often seen in response to incongruent audiovisual 

information (for a review, see Senkowski et al., 2008).  While cortical rhythms in the 

gamma frequency range were observed for incongruency in the prosodic condition, no 

such activity was present for incongruency in the phonetic condition in our study.  

Güntekin and Basar (2007) identified an increase in beta activity in response to angry 

compared to happy facial stimuli, but no such effect between emotions was observed in 

the current investigation. 

These distinct patterns support our interpretation that different cortical regions are 

involved in mediating selective attention to phonetic and prosodic processes.  How 

exactly these processes are related, however, remains unclear.  Specific cortical sites may 

contribute to each ERP response, with different cortical rhythm patterns arising from 
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these neural networks.  Conversely, distinct cortical rhythms may be at play, leading to 

the recruitment of localized neural networks. 

In addition to these cortical rhythm patterns for the N400 and late positive response, 

time frequency analysis yielded significant gamma activity preceding the onset of the 

auditory target in the prosodic condition.  A similar predictive coding response has been 

observed during the resting state in experiments investigating the McGurk effect (Keil et 

al., 2012).  This finding highlights the utility of time-frequency analysis in ERP research.  

In this case, time-frequency analysis revealed an apparent difference that was not visible 

in the waveform. 

 

4.6  Limitations and future directions 

One concern with our experimental design is the amount of lag time between the 

visual and auditory presentations.  When Paulmann and Pell (2010) presented visual 

primes of different lengths, the resulting ERP patterns differed.  While our results were 

consistent with the results of Paulmann and Pell’s medium-length prime, we did not 

investigate the possible differences resulting from visual primes of different lengths. 

Another factor to consider is the relationship between the selected vowel sounds and 

emotions.  The /i/ vowel is produced with spread lips and lends itself more easily to a 

happy facial expression, while the /a/ vowel is taller and corresponds more closely to a 

large, angry facial expression.  To combine the vowel sound and emotions that are 

inherently in conflict with each other (i.e. angry + /i/ and happy + /a/) required that the 
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expression of happiness or anger be clearly displayed without sacrificing the appropriate 

mouth shape for the vowel.  The model in the photographs compensated for this 

limitation by manipulating his brow to express happiness or anger. 

Our experiment was designed in a way that required behavioral responses from the 

participants.  It is worth considering whether a format that does not rely on an overt 

response might be effective and more suitable for testing individuals whose behavioral 

responses are limited because of impaired language or cognition.  For example, the 

mismatch negativity (MMN) paradigm is a passive listening task, which would be more 

user-friendly to a wider range of participants.  

MMN experiments investigating the pre-attentive responses to emotional prosody 

have identified differences in the ERP responses of men and women (Schirmer & Kotz, 

2006; Fan, Tsu & Cheng, 2013).  These and other experiments suggest that emotional 

prosody processing is dependent on gender (Schirmer et al., 2002; Schirmer et al., 2005).  

These differences have also been documented in gender comparisons of responses to 

facial expressions (Guntenkin & Basar, 2007).  Future research should evaluate whether 

the ERP waveform, localization, and cortical rhythm findings presented here differ 

between men and women. 

Conventional ERP research provides excellent time resolution but comparatively poor 

localization information.  Minimum norm estimation can identify which broad regions at 

the cortical level are implicated in certain processes, but its resolution cannot rival that of 

more precise imaging techniques like fMRI.  This limitation of the imaging method 
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impacts our ability to make specific claims about the precise brain regions involved in the 

processing of incongruent audiovisual information in the phonetic and prosodic 

conditions.  However, the localization results taken in tandem with the topographical 

potential distribution data and cortical rhythm activity can help elucidate the neural 

dynamics underlying phonetic and prosodic processing. 

Time frequency analysis is still a relatively novel area of ERP research, but it is one 

that warrants further investigation.  The dynamic information it provides beyond the level 

of the waveform is analogous to spectral analysis of speech.  For example, consider the 

speech segments “ra” and “la” presented at the same intensity.  At the waveform level, 

the phonemic contrast could be indistinguishable, but the spectrograms would easily 

reveal their characteristic formant transitions.  Along the same line, time frequency 

analysis for the ERP data provides highly valuable information about the neural dynamics 

underlying the processing of the multidimensional speech signal (Zhang, 2008). 

In typical development, children appear to implicitly and effortlessly tease apart the 

many informational dimensions that make up speech.  These dimensions include 

linguistic cues, like phonetic and semantic information, as well as non-linguistic cues, 

such as emotion and speaker identity.  However, research suggests that some clinical 

populations may exhibit difficulty with sorting these multiple sources of information 

(Gebauer, 2014; Marshall, Harcourt-Brown, Ramus & van der Lely, 2009; Paul, 

Auguestyn, Klin & Volkmar, 2005; Wang & Tsao, 2015), which would lead to 

developmental delays or disorders in language learning.  The current investigation 
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provides a baseline from normal adults for comparison to clinical populations, such as 

individuals with autism, language impairment, or aphasia.  Future research should 

investigate how these individuals integrate audiovisual speech information and 

selectively attend to a single dimension of information while ignoring the others.  If we 

can identify the neural markers that are tied to the clinical manifestation of language 

impairment, electrophysiological measures like those utilized in the current investigation 

may provide more objective diagnostic criteria for future clinical practice.  However, 

further research efforts are necessary to establish a robust system that allows 

identification of reliable neural markers at the individual level. 
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Appendix A 

Summary of ERP Components 

 
Study Task Design ERP Component Time Rationale 

Aguado, Dieguez-Risco, 
Méndez-Bértolo, Pozo & 
Hinojosa (2013) 

Affective priming 
paradigm, double task 
procedure 

N400 400 ms 
Reverse priming effect; N400 was larger 
in response to congruent stimuli 
compared to incongruent stimuli 

Late positive potential (LPP) 700 ms Evaluative priming effect 

Chen, Zhao, Jiang & Yang 
(2011) 

 
Participants attended to 
prosody match vs. 
mismatch 

 

Early negative effect 150 – 250 ms Occurred later than classic N1 component 

Positive effect 250 – 450 ms 
Comparable to prosodic expectancy 
positivity (PEP); fronto-central location 

Late positive component (LPC) 450 – 900 ms Location: mainly posterior 

Participants attended to 
separate task (visual 
probe) 
 

Early negative effect 150 – 250 ms 
Early negativity was been caused by the 
emotional prosody violation and not an 
acoustic change; anterior-central location 

Positive effect 250 – 400 ms 
Integration process of expectancy 
violation 
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Participants decided 
whether obvious sound 
intensity deviation 
occurred 
 

Early negative effect 130 – 230 ms 
Occurred earlier for environmental 
prosody deviations than spectrally rotated 
versions; anterior and central areas 

Positive effect 230 – 430 ms 
Larger positivity for all mismatched 
stimuli compared to matched stimuli; all 
regions and hemispheres 

Late positive component (LPC) 430 – 900 ms 
Match and Type effects over posterior 
regions 

Goerlich, Witteman, 
Schiller, Van Heuven, 
Aleman & Martens (2012) 

Affective 
categorization: judged 
valence of affective 
targets 

N400 400 – 500 ms 

No behavioral or ERP effects when 
participants categorized same affective 
targets based on non-affective 
characteristics; response competition 
plays a role 

Iredale, Rushby, McDonald, 
Dimoska-Di Marco & Swift 
(2013) 

Discrimination task: 
semantically neutral 
word pairs with 
congruent and 
incongruent prosody  

N1 50 – 100 ms 

Initial processing stage; greater response 
for emotional prosody than neutral 
prosody; larger amplitude at parietal sites 
than frontal sites 

P2 100 – 200 ms 

Reflects differentiation of emotion; 
amplitude largest for happy in left 
hemisphere and largest for angry in right 
hemisphere 

N3 400 – 650 ms 
Third processing stage (cognitive); 
localized in frontal cortex  

Kamiyama, Abla, Iwanaga 
& Okanoya (2013) 

Affective priming 
paradigm 

N400 250 – 450 ms  
Integrative processing of face-music pairs 
affected by congruency 
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Paulmann, Bleichner & Kotz 
(2013) 

Participants were asked 
to rate arousal of 
pseudo-sentences or 
their own arousal 
(implicit vs. explicit 
instructions) 

P200 170 – 230 ms High arousing stimuli 

Late positivity component (LPC) 450 – 750 ms 
 
High arousing stimuli  
 

Paulmann, Jessen & Kotz 
(2012) 

Emotional prosody 
judgment task 

Prosodic expectancy positivity 
(PEP) 

470 ms Posterior electrode sites 

Linguistic prosody 
judgment task 

Prosodic expectancy positivity 
(PEP) 

620 ms Anterior electrode sites 

Paulmann & Pell (2010) 
Priming paradigm; 
facial affective decision 
task 

N400 440 – 540 ms 
Normal priming effect for medium-length 
prime and reverse priming effect for short 
prime 

Schirmer & Kotz (2003) 
Auditory emotional 
word Stroop task 

N400 350 – 650 ms 

Larger negativity for emotionally 
incongruous words compared to 
congruous words; time course and scalp 
distribution similar to N400  

Witteman, Goerlich-Dobre, 
Martens, Aleman, Van 
Heuven & Schiller (2014) 

Dichotic detection task; 
emotional and 
linguistic tasks 

Early negativity 100 – 140 ms 

Left ear elicited stronger negativity than 
right ear in both hemispheres for 
emotional task; each ear elicited larger 
negativity in the contralateral hemisphere 
for linguistic task 

N2 180 – 320 ms 
Larger response at frontocentral sites for 
emotional task; larger response at 
posterior sites for linguistic task 

Late positive potential (LPP) 350 – 900 ms 

Effect present for emotional but not 
linguistic task; larger at posterior sites in 
the left hemisphere, but proximal sites in 
the right hemisphere  



    
 
 
 

 

57 

Zhang, Lawson, Guo & 
Jiang (2006) 

Visual affective 
priming; participants 
identified target 
pleasantness 

N400 480 – 680 ms 
N400 sensitive to affective prime-target 
mismatches in the visual domain, no 
cross-modal differences 

Zhang, Li, Gold & Jiang 
(2010) 

Cross-domain visual 
affective priming 
paradigm; participants 
categorized target 
pleasantness 

 
N400 
 

350 – 450 ms 
Incongruent affective stimuli; anterior 
scalp regions for stimulus onset 
asynchrony of 250 ms 

Late positive potential (LPP) 550 – 700 ms 

Attentional resource allocation; across 
scalp regions for stimulus onset 
asynchrony (SOA) of 400 ms and across 
posterior scalp regions for positive targets 
for SOA of 250 ms 
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Appendix B 

CONSENT FORM FOR ADULT PARTICIPANTS 

 

Emotion Processing in Visual and Auditory Modalities: An Event-Related Potential 

Study 
 
You are invited to participate in a research study titled “Emotion Processing in Visual 

and Auditory Modalities”.  This study is being conducted in the Department of Speech-
Language-Hearing Sciences at the University of Minnesota.  You were selected as a 
possible participant because you fit the profile we are interested in assessing, and have no 
medical history of hearing damage or brain injury.  The target populations of the study 
are adults with no history of speech and hearing disorder or brain damage.  
 
This form may contain words or language that are unfamiliar to you.  Please ask the 
researcher if you would like something explained to you.  We ask that you read this form 
and ask any questions that you may have before agreeing to be in the study. 
 
The researchers in this project include Yang Zhang (Ph.D.) of the Department of Speech-
Language-Hearing Sciences and Erin Diamond (Undergraduate Research Assistant) 
Department of Speech-Language-Hearing Sciences. 
 
Background Information 

 
The purpose of the study is to examine how the human brain processes emotion in visual 
and auditory modalities. We will take both behavioral and brain measures when you 
listen see a facial expression and/or hear a voice characterized by a specific emotion.  For 
part of the experiment, you will be asked to identify the emotion presented as a facial 
expression on the screen or through a voice as one of three emotions.  For the other part, 
you will be asked to identify whether or not the emotion presented in the face matches the 
emotion presented in the voice. 
 
We hope that the results of this study will help us better understand how emotions are 
processed in the brain. Although the results of the tests will not be of direct benefit to 
you, they may yield information that will be helpful for the development of effective 
treatments for people who struggle with emotion processing, such as autistic individuals. 
 
Procedures 

 
If you agree to be in this study, we would ask you to do the following things: 
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In the recording session, you will sit in a comfortable chair in a sound-treated booth. A 
stretchable cap with electrodes sewn into it will be fit on your head much like a shower 
cap. The electrodes will touch the scalp on different spots to record electrical brain 
activities corresponding to those individual spots. The experimenter will put conductive 
gels on each electrode to automatically record your brain activities as you listen to 
sequences of sounds and watch the visually presented material. The set-up will take us 
about 15 minutes. 
 
The study will consist of four different sections.  In two of the parts, you will be asked to 
identify the emotion that you perceive, either by looking at a facial expression or by 
listening to a voice.  In the other two parts, you will see a face and hear a voice 
simultaneously and be asked to choose whether the emotions of the face and voice are 
congruent or incongruent. 
 
During the recording you will be asked to sit as still as possible and to relax your face and 
muscles as much as possible.  You will be given multiple short breaks of about 2-3 
minutes in between recording sessions.  The experiment will take a total of two hours to 
complete. If you normally wear contact lenses, we suggest you wear glasses to minimize 
excessive blinking which can interfere with testing.  After testing, your hair will be 
messy. A hair wash station with sanitized combs, shampoo, towels, and a hair dryer is 
available for you to use after the experiment is finished. 
 
Throughout the experiments, we will be watching you from a video monitor in the 
control room via an intercom system. The monitoring system is necessary to ensure 
proper data collection and timely correction if we see any problematic data. The 
monitoring video is not recorded. You can stop the session at any time for any reason by 
simply telling the experimenter that you would like to stop.  
 
Risks and benefits:  
 
You may choose to end participation at anytime without negatively impacting your 
relationship with the University of Minnesota or the researchers. 
 
This study follows the standard procedures in neurophysiological studies and there is no 
known risk. However, you may be bored of listening or watching the stimuli. Taking a 
short break may prevent the occurrence of boredom. Application of gel for recording 
brainwaves on the scalp is a standard procedure. The gel is made of non-toxic and non-
allergenic materials and completely safe; it can be washed off easily using tap water. 
Accommodations will be made so that you can wash your hair and clean up after the 
experiment has been completed. 
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There is no direct benefit for participating in this study, although findings in this study 
will help us to better understand how emotions are processed in the human brain. This 
information can be helpful for developing treatment strategies for people with emotion 
processing problems.  
 
Compensation: 

 
You will receive compensation of $20.00 for your participation in this study. If you are 
unable or unwilling to complete the study, you will be compensated at a pro-rated rate of 
$10.00 per hour of participation.   
 

Confidentiality: 

 
The records of this study will be kept private. In any sort of report we might publish, we 
will not include any information that will make it possible to identify a subject. Research 
records will be stored securely and only researchers will have access to the records.  
 

Voluntary Nature of the Study: 

 
Participation in this study is voluntary. Your decision whether or not to participate will 
not affect your current or future relations with the University of Minnesota. If you decide 
to participate, you are free to not answer any question or to withdraw at any time without 
affecting those relationships.  In the case of withdrawal, the compensation fee will be 
based on the percentage of participation in the study.  
 
Research Related Injury:  

 
In the event that this research activity results in an injury, treatment will be available, 
including first aid, emergency treatment and follow-up care as needed.  Care for such 
injuries will be billed in the ordinary manner, to you or your insurance company.  If you 
think that you have suffered a research related injury let the study physicians know right 
away. 
 

Contacts and Questions: 

 
The researchers conducting this study are: Dr. Yang Zhang and Dr. Zhang’s research 
assistants. You may ask any questions you have now. If you have questions later, you are 

encouraged to contact them at 115 Shevlin Hall, 164 Pillsbury Drive, Minneapolis, MN 
55455, Phone: (612) 624-3322, or email: zhang470@umn.edu, diamo057@umn.edu. 
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If you have any questions or concerns regarding this study and would like to talk to 
someone other than the researcher(s), you are encouraged to contact the Research 
Subjects’ Advocate Line, D528 Mayo, 420 Delaware St. Southeast, Minneapolis, 
Minnesota 55455; (612) 625-1650. 
 
You will be given a copy of this information to keep for your records. 

 

Statement of Experiment Consent: 

 
I have read the above information. I have asked questions and have received answers. I 
consent to participate in the adult study. 
 
 
Signature:_____________________________________________ Date: _____________ 
 
 
Signature of Investigator:________________________________ Date: _____________ 
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