
Exploring Energy, Accuracy and Cost Trade-offs in Cache
Architectures for Approximate Computing

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Vinayak Bhargav Srinath

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

David J. Lilja

June, 2015

c© Vinayak Bhargav Srinath 2015

ALL RIGHTS RESERVED

Acknowledgements

I would like to thank Prof.David J. Lilja for his guidance and patience during my

Master’s research in Approximate Computing. His motivation, direction and trust in

my abilities have helped me complete my work with ease.

I am also thankful to the rest of my thesis committee Prof.John Sartori and Prof.Antonia

Zhai, for their suggestions and insight. The C-SPIN research group under Prof.Lilja

namely William Thuoy and Cong Ma, have provided me with very helpful direction

with regards to my thesis and I’m grateful for their help.

I would also like to thank M. Shoushtari and Alireza Shafaei Bejestan for their help

in regards to gem5 and PCACTI simulators

Last but not the least I would like to thank my parents, Srinath.A.L, Ambujakshi.S.P

and my sister Vaishnavi for their love and encouragement.

This work was supported in part by National Science Foundation grant no. CCF-

1438286. Any opinions, findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the NSF.

i

Dedication

I dedicate this thesis work to my loving parents and sister who have always supported

me.

ii

Abstract

A processor’s power consumption can be most efficiently reduced by lowering the supply

voltage. But with reduced voltage levels comes the major concern of failure of memory

circuits. ASIC designers define a minimum operable voltage of the processor’s on-

chip cache often referred to as the Vccmin which is the voltage level below which the

processor’s memory-subsystem is no longer reliable. This guard-banding mechanism

adds an additional overhead on the processor’s memory-subsystem which does not allow

it to operate below this voltage, and its important to note that the processor’s memory-

subsystem is one of the major contributors of its overall energy consumption. Guard-

banding mechanisms are not just limited to increased minimum operable voltages and

they result in large overheads. If certain restrictions are relaxed on the reliability of the

output we can obtain significant savings in energy by eliminating these guard-banding

mechanisms. This work explores different configurations of architectures suitable for low

voltage operation of image and video applications by outlining the energy, accuracy, area

and performance trade-offs.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background and Motivation 4

2.1 Approximate Computing . 4

2.2 Recent work . 5

2.3 SRAM Failure . 6

3 Architecture 9

3.1 Programmer Control . 9

3.1.1 Data Classification . 9

3.1.2 Knobs to Control Output Quality 10

3.2 Hardware . 10

3.2.1 Virtual Address Table . 11

3.2.2 Defect Map . 11

3.2.3 Cache Controller . 12

3.2.4 Cache Architecture . 13

iv

4 Experimental Setup 17

4.1 Simulator Modeling . 17

4.1.1 gem5 . 17

4.1.2 PCACTI . 19

4.2 Data extraction method . 20

5 Applications 22

5.1 Application Set . 22

5.1.1 Edge Detection . 23

5.1.2 Image Smoothing . 24

5.1.3 x264 Video Encoder . 24

5.2 Accuracy Metrics . 26

6 Analysis 28

6.1 Energy Analysis . 28

6.2 Accuracy Analysis . 33

6.3 Performance Analysis . 38

6.4 Related Work . 41

7 Conclusion and Discussion 42

7.1 Future Work . 43

References 45

Appendix A. Glossary and Acronyms 49

Appendix B. Simulator Modifications and Wrapper Scripts 51

B.1 gem5 . 51

B.1.1 Parameter Addition . 51

B.1.2 Pseudo Instructions . 52

B.1.3 Virtual Address Table . 53

B.1.4 Error Model . 54

B.1.5 Defect Map . 54

B.1.6 Hybrid Cache and Cache Configurations 55

v

B.1.7 Cache Controller . 56

B.1.8 Fault Injection . 57

B.2 PCACTI . 57

B.3 Wrapper Scripts . 58

B.4 Matlab . 58

B.5 MSU VQMT . 59

vi

List of Tables

3.1 Defect map values and corresponding Vdd levels 12

3.2 Area overhead for different configurations 16

4.1 gem5 Parameter Setting . 19

6.1 Benchmarks and inputs . 28

A.1 List of Acronyms . 49

vii

List of Figures

2.1 6T and 8T SRAM cell schematic . 6

2.2 SNM Curves for 6T and 8T cells . 7

2.3 Bit Error rates of 6T and 8T SRAM cells 8

3.1 Hardware modifications to existing cache architecture 10

3.2 Virtual Address Table (VAT) . 11

3.3 Replacement Policy of Cache Controller 13

3.4 Hybrid-Memory layout . 14

3.5 Determining optimal value for number of reliable bits α 15

4.1 Approximate declarations in the program 18

4.2 Data Extraction Flowchart . 20

5.1 Shows circular masks at different places of an image with an edge 23

5.2 Shows the masks with USAN in the white parts of the mask 23

5.3 I, P and B Frames of a sequence of images (Img src: Wikipedia) 25

5.4 YUV 4:2:0 pixel format (Img src: stackoverflow) 25

5.5 Images having nearly same MSE but entirely different perceptual quality[1]

. 27

6.1 Energy distribution for Edge detection application 29

6.2 Cache capacity reduction with drop in voltage 30

6.3 Energy distribution for Image smoothing application 31

6.4 Energy distribution for x264 Video encoding application 32

6.5 Edge Detection accuracy results for all configurations 33

6.6 Output image quality comparison for Edge Detection in (a) Only 6T

cache (b) Hybrid cache, at 700mV, 560mV and 420mV 34

6.7 Image smoothing accuracy results for all configurations 35

viii

6.8 Output image quality comparison for Image Smoothing in (a) Only 6T

cache (b) Hybrid cache, at 700mV, 560mV and 420mV 36

6.9 x264 accuracy results for each frame for different voltage levels 37

6.10 Output image quality comparison for x264 Video Encoder in (a) Only 6T

cache (b) Hybrid cache, at 700mV, 560mV and 420mV 38

6.11 Normalized Execution time for (a) Edge Detection (b) Image Smoothing

(c) x264 Video Encoder . 39

6.12 x264 encoded video file size comparison 40

ix

Chapter 1

Introduction

The current trend of CMOS technology has been towards scaling and driving down

the transistor sizes to attain higher density and thus be able to add more and more

functionality on the chip. Reduced chip area helps reduce costs and over the years the

transistor has scaled down according to the Moore’s law but the processor’s operating

voltages have not scaled down in a similar fashion [2]. This has resulted in higher power

consumption and leakage. On-Chip memories have been hogging the power and area

resources of the processor.

Recent processors incorporate multiple cores and each of these cores have their own

private caches and shared caches which are generally CMOS SRAM cells. With the

increase in cache sizes over the years and the increase in hardware variability due to

reduced feature sizes as a result of technology scaling, has resulted in the need for

Memory gaurd-banding by various methods. The Vt fluctuations at lower technology

nodes , the short Channel effect [3] etc., leads to an over-design and causes a lot of

overhead such as Error Correcting Cache, Higher Cache Supply Voltages etc. Increased

error correction abilities result in increased area and higher supply voltage causes higher

leakage in the SRAM cells.

However with the shift towards mobile technologies in the recent years have led the

ASIC Design engineers to be conscious of the power budget of the chip. The focus has

shifted towards architectures that are more power efficient and employ novel methods to

explore this domain. The most effective approach to reducing the power consumption

on-chip is by reducing the voltage because dynamic power is a quadratic function of

1

2

voltage and leakage power is exponentially dependent on voltage [4]

Processor’s power consumption has been the most important aspect in modern day

mobile technologies and with the growing need to have more and more devices becoming

portable, the need to increase the efficiency of the processors with regards to its energy

utilization has grown. The key factor in consideration of design of embedded/mobile or

wearable technologies has been its battery life. As the semiconductor industry pushes

down the transistor sizes in accordance with the Moore’s law , the device variability

has gone up. ITRS predicts the variability to increase over the coming decades[5].

Thus, power reduction in processors has become a challenging task due to the voltage

margins that are introduced to allow for error free operation of memories. If we relax the

constraints on the reliability of the hardware by allowing for accuracy and performance

trade-off due to low voltage operations, we can obtain significant energy savings.

Computing platforms are designed based on the principle of exactness and that all

computations must be executed in a precise manner. Approximate computing deviates

from this approach and is application aware, wherein it exploits intrinsic application

error resilience and takes into consideration perceptible quality of the output [6] Several

applications are inherently error tolerant, thus, by capitalizing on such factors, we can

work with faulty and unreliable hardware.

In this work, we use Hybrid memories which are a combination of 8T [7] and 6T

SRAM cells for storing approximate data and a 6T SRAM array at higher voltage to

store data which is critical and cannot be approximated. First we analyze the impact

of approximation on the output because of voltage lowering and also the impact on

output quality with increased area due to increased 8T cell count in the Hybrid array.

We conclude that there is an optimal ratio for 8T and 6T cells in the Hybrid array and

it has been used in this architecture. This architecture is targeted towards Image and

Video applications and the reasons for this are discussed in future chapters. We also a

discuss a scheme to map data to reliable or unreliable accordingly to avoid application

failures. Lastly we discuss the trade-off for Accuracy and Cache capacity for Energy

reduction in detail by defining identifying a suitable metric for output fidelity and

compare different proposed cache architectures.

• Chapter 2 introduces the concerns of scaled CMOS technologies and the moti-

vation behind the need for low voltage architectures and some of the different

3

architectures that are relevant.

• Chapter 3 discusses the proposed architecture and the functionality.

• Chapter 4 discusses the experimental setup, the simulator modifications and the

simulation methodology.

• Chapter 5 talks about the applications that are suitable for approximation and

where approximation can be handled.

• Chapter 6 analyses the results for the benchmarks and its impact on Energy,

Accuracy, Area and performance by comparing and contrasting between different

configurations.

• Chapter 7 concludes the work by interpreting the results from the analysis of

different configurations presented in this thesis.

Chapter 2

Background and Motivation

The following sections briefly describe the need for new energy efficient architectures

that aware of application’s properties to tolerate errors and introduces approximate

computing as a field along with some examples of recent work on energy accuracy

trade-offs. It also provides basics of SRAM failures and hybrid memories.

2.1 Approximate Computing

Several techniques [8, 9, 10] are introduced to mitigate hardware concerns regarding

reliability and many software mechanisms [11, 12] are being explored to perform error

recovery. However all these techniques are done in an application agnostic environment

where software and hardware are decoupled from one another. It is useful to note the

trend in hardware manufacturing has evolved over time and the traditional architecture

using reliable CMOS has changed and now includes some software error correction

and hardware error correction while using unreliable structures. But, it is necessary

to understand that several applications are inherently error tolerant [6] which can use

unreliable memories and reduce these guard-banding overheads.

Approximate computing is an emerging design perspective which capitalizes on these

error resilience properties. Error resilience is property shared among a large set of

applications such as image, audio and video processing, communications, data mining,

computer vision and search. These applications have very few side effects as a result of

memory faults and with proper identification of regions of application which are error

4

5

tolerant we can achieve significant energy savings.

2.2 Recent work

There has been an increased interest in the field of approximate computing and this

has sparked extensions to existing programming languages like Java for energy efficient

computation[13] which helps add new data-types for approximate data and also enforces

very expressive rules for handling of these data-types and demonstrate a savings of 10-

50% in energy.

Energy reduction in main memory has been shown to be effective when there is a

tolerable amount error. It has been shown that we can leverage trade-offs in energy and

hardware correctness [14] and save 20-25% energy consumption in a mobile device with

minimal changes to hardware.

Adding ISA extensions to handle regions of code for which error recovery has to

be performed [15], moves the burden of error recovery to software and relaxes the

hardware recovery support by providing a hardware organization that has helped relax

the reliability considerations of the hardware. It also allows programmers the ability to

utilize the ISA by providing compiler support. Similar work which extends on adding

approximate data-types [13] by providing a micro architectural design that supports the

ISA extensions shows potential power savings with acceptable QoS degradation.

QoS is an important metric as we have to ensure so that the approximation intro-

duced does not cause the results to be indiscernible and is within specified bounds.

Dynamically adapting the level of approximation to ensure the QoS constraints speci-

fied by the programmer by monitoring the run-time behavior [16] has shown improved

performance and energy consumption.

Reducing the Cache capacity to allow for low voltage operation [17] by disabling

cache-words that are failing at low voltages allows for very low voltage operation and

saves significant amount of energy. As discussed previously, error tolerant qualities of a

large set of applications help in utilizing the faulty regions of cache rather than causing a

reduction cache capacity [18] by providing knobs to the programmer to control the level

of approximation based on voltage levels. Creating a scheme for mapping of data into

appropriate locations and drive the programmer to notify the regions of application

6

which can tolerate error can help achieve significant leakage energy reduction due to

voltage lowering in the SRAM Cache.

The work described in thesis focuses on Image and Video applications. However,

we believe that it can be extended to other forms of applications as well. Image and

Video data, which is stored in the form of pixels, has a larger dependence on the MSB

bits of the pixel data as it contains a majority of the information. Hence using different

tolerance levels to different bit-positions can help improve the output quality and achieve

even further voltage reduction. This priority based scheme [19] having different ratios of

reliable and unreliable bits in the cache has been shown to have very promising results

with respect to costs as compared to using a completely reliable memory which has high

area cost to output accuracy.

2.3 SRAM Failure

The Hybrid Cache structure[19] used in this work comprises of 8T and 6T SRAM

cells(see Figure 2.1). A brief description of both these cell structures are given below

along with the SRAM failure mechanisms for both and the resulting bit error rate

graphs.

Figure 2.1: 6T and 8T SRAM cell schematic

The SRAM cell is a memory element which stores either a 0 or 1 at the node V1. Data

is read or written into the cell by using the wordline(WL) and bitlines(BL*). During

7

the SRAM read operation, both bitlines are precharged and then disconnected from the

precharge circuitry. The cell contents are then read out by activating the wordlines.

The differential pair formed across the BLL and BLR due to the node voltages V1 and

V2 is sensed by external circuitry and helps determine the contents of the cell. The

write operation is done by pulling down one of the bitlines and then writing the value

to the cell by turning on the wordline.

The SRAM cell has to be designed appropriately so as to avoid cell failure due to

hardware fluctuations. A larger device size in general helps counteract the hardware

fluctuations but the cost of the chips go high with increased area. Thus designers have

to work with area constraints while designing the cell. The standard 6T SRAM cell

faces conflicting conditions while sizing the PU, PG and PD transistors for read and

write operations and is susceptible to parametric variations. The 8T as shown in the

Figure 2.1 is identical to the 6T cell albeit the addition of two transistors RPD and

RPG which are solely used for read. This decouples the read and write operations and

helps improve the SNM of the cell (Figure 2.2).

Figure 2.2: SNM Curves for 6T and 8T cells

The SNM is the Static Noise Margin of the cell and the size of the window in this

8

curve determines the maximum amount of voltage variation that the cell can tolerate

while assuring reliable operation. Parametric variations causes the window size to shrink

and at a certain voltage level the cell would no longer operate reliably. As it can be

seen the 6T cell has a smaller SNM for the same voltage as a 8T cell. However the 8T

cell is much larger than the 6T cell and has 30% area overhead.

When the cache structure is fabricated, all the cells are not exactly the same and

this can be attributed to hardware variations. This causes some cells in the cache to be

less robust than the others. The voltage level that assures with a certain confidence that

no cells are faulty is the minimum operable voltage called the Vccmin for the L1 Cache

its generally 700-725mV. This voltage dependent failure probability for a cell is called

the Bit Error Rate(BER). The SRAM failure rates for 8T and 6T are shown below in

Figure 2.3(as per data from [20]).

Figure 2.3: Bit Error rates of 6T and 8T SRAM cells

In this work we use a cache which has both 8T and 6T SRAM cells called a Hybrid

cache and we define an optimal ratio of these 8T to 6T cells for this Hybrid cache in

chapter 3.

Chapter 3

Architecture

We discuss in this chapter the programmer decisions on data classification and the

knobs provided to the programmer to help achieve the required output quality and

the software support to accomplish this. We also discuss the hardware architecture

utilized [18] to map the data that is partitioned into approximate and precise into their

respective locations. We also discuss the incorporation of Hybrid memories into the

cache architecture.

3.1 Programmer Control

While using unreliable memories it is vital for the programmer to map the data accord-

ingly. The programmer has to decide the data which is non-critical and those that are

critical to avoid unexpected program behavior.

3.1.1 Data Classification

Accurate Data Classification and Mapping is the first step towards low voltage com-

putation. For example, one cannot store the instructions to be executed in unreliable

regions of memory. Pointers and data that effect the control flow of the program should

not be approximated. There are existing works[13] that introduce checks to provide a

safe and general programming construct. However, this work relies on the programmer’s

knowledge to determine the data which is non-critical and critical and the compiler is

modified to interpret the language extensions.

9

10

3.1.2 Knobs to Control Output Quality

The programmer should also be able to fine tune the output accuracy for acceptable

results and hence obtain an optimal trade-off of energy for quality because always op-

erating at the lowest available voltage is not ideal and sometimes results in increased

execution times. Here, the programmer is given the ability to set the cache voltage

levels at either VH, VM or VL which are high, medium and low voltages respectively.

More importantly, it is necessary for the programmer to keep in mind that switching

voltages causes several cycles of stall as the cache has to be flushed so as to ensure that

the critical data is not corrupted.

3.2 Hardware

The hardware architecture for supporting the tune-able approximation has been de-

scribed in the Figure 3.1 below and is marked by the blue border along with the modi-

fications to existing cache architectures denoted by shaded gray blocks.

Figure 3.1: Hardware modifications to existing cache architecture

11

3.2.1 Virtual Address Table

The Virtual Address Table (VAT) is an on chip register file to denote the address space

in the program that can be approximated. It contains a start address and end address

and a validity bit as shown in the Figure 3.2. Before the data is mapped onto the

Figure 3.2: Virtual Address Table (VAT)

appropriate block, the virtual address of the data is run through the VAT which checks

if the incoming address is within range of any of the VA Start and VA End blocks using

a set of comparators. The Validity bit is used for re-use of these registers. When a

new approximate declaration of a block of data is made, it is entered into the VAT with

Valid=1, once this block goes out of scope or the approximate block is freed(block has

to be undeclared as approximate) the Valid bit is set to 0. The entries with Valid=0

are potential replacement candidates for new declarations of approximate blocks.

If the Input VA is within range of any of these sets of address spaces and the Valid=1

then it is deemed as an approximate data and can be mapped to the unreliable parts of

the memory by the cache controller.

3.2.2 Defect Map

As discussed previously, memories operate above a voltage Vccmin that ensures fault free

operation. But in this architecture, where the cache operates at a low voltage, memory

faults can occur. It is necessary to identify the faulty locations and keep a track of

these so that we don’t accidentally map critical data into these faulty locations. The

defect identification granularity is set at the cache block level. A defect map has been

introduced [17][18] that represents if the cache block is defective at a given voltage. In

this work we employ three different voltage levels which the approximate bank of ways

12

can switch to: VH (High Vdd), VM (Medium Vdd), VL (Low Vdd). A list of possible

values in the defect map for a block is listed in the Table 3.1. For example, the defect

map value of ’01’ implies that the corresponding cache block has no faults for VH and

VM voltage levels and is faulty at lower voltages.

Defect map value Clean Voltages

00 VH

01 VH, VM

10 VH, VM, VL

Table 3.1: Defect map values and corresponding Vdd levels

This Defect Map can be an on-chip memory that is populated at the processor boot-

up using a BIST mechanism like a March Test[21] running at VH, VM, VL and finding

out the voltage level at which the cache block becomes faulty . If this is stored in a

non-volatile memory it need not be performed at every boot-up of the processor. Since

we are using just 2bits per cache block of size 64B to keep a track of the block’s health,

the overhead is negligible. The Defect Map size is less than 0.2% of the cache size.

3.2.3 Cache Controller

The cache controller has to aware of the type of the data, i.e if the incoming block

for replacement is a critical block or not and also where to map the incoming block

of data. The cache-controller makes this decision based on (1) current voltage level of

the approximate ways of the cache, (2) the defect map (which denotes whether a cache

block is clean or faulty) and (3) the VA table (which denotes whether the incoming

block for replacement is a critical block or not). We define here a criticality aware

LRU replacement policy and we have explored two kinds of replacement policies. Block

replacement is not in the critical path for read and write access and hence does not

impact the delay. The performance with regards to misses for these two methods have

been explained in chapter 6. The simple flow of each of these policies are shown in

Figure 3.3.

13

• Split LRU where the critical blocks are stored only in the Precise(High Voltage)

ways of the cache

• Shared LRU where the critical block can be stored either in Precise(High Volt-

age) ways or in the Approximate(Low Voltage) ways of the cache(see Figure 3.1)

provided the block is not faulty.

Figure 3.3: Replacement Policy of Cache Controller

3.2.4 Cache Architecture

The L1-DCache has been modified into two separate sections. For a cache that is N -way

set associative, k -ways are chosen as high voltage precise ways which are held at VH

to ensure reliable operation and N-k ways are used for approximate storage where the

voltage level can be tuned according to the QoS required. In this work, we have used

a Hybrid-Memory array comprising of a combination of 8T and 6T SRAM cells for the

N-k approximate ways so as to provide higher quality output. The accuracy gains have

been shown in chapter 6.

A 4-way set associative L1-DCache has been used in this work and we have experi-

mented with (1) a3p1: 3-Approximate-ways and 1-precise way (2) a2p2: 2-Approximate

and 2-precise ways and demonstrated the energy trade-offs for these.

Image and Video applications are the target applications for this architecture and

the major portion of the data that can be approximated is pixel data which are stored

as 8bit blocks. These pixels have higher sensitivity to errors in the MSB bits as it can

14

potentially change the color value if there is a bit-flip in the MSB while the magnitude of

error due to a bit-flip in the LSB is lesser. In order to address this issue we have used a

combination of 8T-cells for MSB bits and 6T-cells for LSB bits. This is because 8T has

a lower BER as compared to 6T (Figure 2.3) however it comes at the cost of increased

area. 8T cells utilize 30% more area than a 6T cell. Hence we need to determine the

optimal ratio of 8T:6T cells since increased area results in increased costs.

Figure 3.4: Hybrid-Memory layout

The Hybrid-Memory array is laid out as given in the Figure 3.4. As shown, each

cache block in the tunable low voltage array is broken into chunks of 1Byte where α

bits are 8T cells which are more reliable and 8−α bits are 6T cells. This way we ensure

a higher protection for MSB bit at the cost of increased area, however, it significantly

improves the output quality.

The effective area(Aeff) for a N -way set associative cache where k-ways are used as

precise, given that the 8T cells are β times larger than 6T cells is given by

Aeff =
(αβ + (8 − α))(N − k) + 8k

8N

The area increase as compared to a cache which is made of only 6T cells for a a3p1

15

configuration with (α = 3) 8T bits per Byte is 8.4% and for a a2p2 configuration it

is 5.6%. In order to determine the optimal value of α we ran simulations for different

configurations and determined that there is a point beyond which the gains in output

accuracy diminishes as the area increases. The output accuracy metric used is Structural

Similarity Index(SSIM)[22] where a SSIM of 1 indicates that the output is exactly the

same as an error free output. The worst case SSIM is taken into consideration for each

value of α and the SSIM/Aeff is plotted as shown in the Figure 3.5 and it is found that

α = 3 is an optimal value. Thus for further analysis we consider a Hybrid-Memory with

this optimal configuration.

Figure 3.5: Determining optimal value for number of reliable bits α

In this architecture we include the Hybrid array only in the section that allows for

tunable low voltage operation. This is because we do not need this extra area overhead

in the High Voltage array as it ensures error free operation. This has helped reduce the

16

area costs for a same sized cache completely fabricated in its entirety as a hybrid array.

Table 3.2 shows the area overhead for different configurations as compared to the base

case of having a cache consisting only of 6T SRAM cells.

Configuration Area Overhead

All 8T array, α = 8 30%

Entire Array as Hybrid, α = 3 11.25%

a3p1 Hybrid, α = 3 8.4%

a2p2 Hybrid, α = 3 5.6%

Table 3.2: Area overhead for different configurations

Chapter 4

Experimental Setup

In this chapter we discuss the experimental setup used in this work: the simulator

modeling, the simulation methodology and the data extraction methods.

4.1 Simulator Modeling

For this work we have use the gem5 [23] and PCACTI [24] (Cache simulator based on

CACTI6.5). We have also used the ITRS MASTAR tool to obtain voltage dependent

device parameters to feed to PCACTI. The detailed description of source code changes

and tool use has been explained in the Appendix B.

4.1.1 gem5

gem5 [23] is a cycle accurate simulator which is capable of full system simulation. It

supports X86, ARM and ALPHA ISAs and it is most widely used in the field of Com-

puter Architecture. This work focuses on the memory model section of the simulator.

gem5 has two different memory models: Classic and Ruby. The Classic memory model

has a simpler and faster memory system with basic reconfigurability however the Ruby

model is more complex and flexible and is written in SLICC. We have used the Classic

memory model for this work due to its simplicity.

17

18

Language Extensions

The programmer has to able to specify the regions of code that are to be declared as

approximate. This in-turn must be mapped by gem5 onto the the VAT which keeps

a track of the approximate data in the application. m5 DECLARE APPROXIMATE

(START VA,END VA) and m5 UNDECLARE APPROXIMATE (START VA,END VA)

as shown below in Figure 4.1 are used by the programmer to declare and undeclare the

approximate data. gem5 Pseudo-Instructions have been used to implement the lan-

guage extensions so as to map these into the op codes that write into the VAT which is

accessed by the cache controller.

(a)

(b)

Figure 4.1: Approximate declarations in the program

Hybrid Cache architecture

The hybrid cache model has been incorporated in the Classic memory model of gem5.

A voltage dependent bit error model (see 2.3) has been introduced. The faults in the

cache are modeled having an uniform distribution with a probability given by the BER

at the voltage. A Defect Map of the faults generated at each voltage are detected by

the March Test during the BIST and automatically written into an on-chip memory

accessible by the cache controller.

Only the L1-DCache is modified to contain the hybrid cache and the rest of the

cache architecture is left intact. Whenever data written or is being read from a faulty

cache block, the faults are injected into it based on a fault injection mechanism which

mocks the behavior of an actual faulty cache.

The LRU cache replacement policy has been modified so as to map the data based

19

on criticality as we are dealing with unreliable sections of the memory. The cache con-

troller is provided access to the Defect Map model and also the LRU counters so as to

perform the selection of the cache block to evict. We have implemented both the Split

and Shared policies discussed in 3.2.3. Table 4.1 shows the gem5 simulator parameters

used for simulation.

Components Parameters Value

System

ISA X86

Type Detailed (OoO)

Core count 1

Simulation mode Syscall Emulation

Cache Line Size 64B

L1-DCache

Voltage Levels VH, VM, VL

Size, Assoc 32KB, 4-way

Way Split a3p1, a2p2

Replacement Policy Split LRU, Shared LRU

8T Cells/Byte 3

L2 Cache Size, Assoc 256KB, 8-way

Main Memory Type, Size LPDDR3, 512MB

Table 4.1: gem5 Parameter Setting

4.1.2 PCACTI

We have used PCACTI[25] to obtain the Leakage energy and Dynamic Access energy

values for the L1-DCache and L2 cache. PCACTI has been used in this work as it is an

extension to CACTI [24] that models the 8T SRAM Cell. CACTI is a widely accepted

cache power and area simulator in the computer architecture field. It is not as accurate

as HSpice but it does give a fair estimate.

PCACTI however provides statistics for the cache based on a fixed Vccmin. But,

as discussed previously we operate the cache at multiple voltage domains and some

20

are below the Vccmin. It is important to note that several parameters change with the

change in the operating voltage of the Cache. Some of the major parameters are Vt

(threshold voltage), mobility, NMOS-PMOS on and off currents which effect the delay

and power calculations.

We have used the MASTAR [26] tool from ITRS to obtain these values and modified

the PCACTI device files so as to obtain a reliable estimate of the power and performance

parameters as a result of voltage reduction. The values of power obtained from PCACTI

is multiplied with the corresponding events in gem5 to get the overall power/energy

consumption.

4.2 Data extraction method

The chart in Figure 4.2 describes the complete setup used for data extraction. Perl was

the main scripting language used to automate the experiment runs and data extraction.

We have used Matlab scripts [22] and MSU VQMT tool for extracting the SSIM values.

Figure 4.2: Data Extraction Flowchart

21

The cache architectures, replacement policies, number of reliable bits α , operat-

ing voltage, the benchmark to be run and the inputs for the benchmarks are toggled

through a configuration file which is read by perl scripts that invoke different instances

of PCACTI and gem5 to run these configurations.

PCACTI generates a output file which contains Power and Energy numbers for

different events for each configuration that is run. In this work we are concerned with

the L1 Cache leakage power and L2 Cache access energy at different voltages for the

different configurations of the cache architecture discussed in chapter 3. gem5 generates

a statistics file for each configuration and for each benchmark run. We consider the

execution time as a performance metric and the events such as L2 tag accesses and L2

read and write hits to measure L2 Dynamic energy. These event numbers from gem5

are multiplied with values from PCACTI to get the total energy consumption.

The voltage dependent fault model that is introduced in gem5 injects faults in the

L1 Cache and we keep track of the blocks that are faulty and not faulty to measure the

cache capacity degradation.

Each invocation of gem5 for a specific configuration and benchmark generates an

output. This is either a portable graymap image (PGM) or a H.264 encoded video.

The image accuracy with respect to the golden output is obtained by running the

SSIM implementation in Matlab. Similarly, for the video outputs, the SSIM values for

each frame is computed using the MSU VQMT tool. All the above results are then

consolidated using perl scripts to generate files read by gnuplot for plotting the graphs.

Chapter 5

Applications

This chapter talks about the applications that are investigated, their working and also

the regions of the application that are suitable for approximation. We will also define a

metric that we use to measure the accuracy of the output.

5.1 Application Set

Our primary target set of applications for this architecture are Image and Video appli-

cations. We have chosen the SUSAN Low Level Image Processing package [27] which

includes Edge Detection and Image Smoothing. It is a part of the MiBench [28] bench-

mark suite that targets embedded processors which are expected to be low power devices

and hence is a perfect target application suite for this analysis. For Video application,

x264 an open-source video encoder for the H.264 formats has been chosen.

To perform approximation, it is important to understand which regions of appli-

cation are tolerant to errors. We have to ensure that any approximation to the code

does not cause some irrecoverable errors and lead to change in the control flow of that

application or cause segmentation faults. Hence, understanding the application work-

ing also becomes a vital part of approximate computing, highlighting the importance of

programmer controlled approximation which can help localize approximation to regions

which he deems appropriate. We will briefly describe these benchmarks and highlight

the error tolerant regions of the application and their inherent immunity to errors.

22

23

5.1.1 Edge Detection

The SUSAN principle for image recognition uses masks with a center nucleus pixel.

The brightness of each pixel in the mask is compared with the brightness of the mask’s

nucleus. The area of the mask which has the same brightness of the nucleus is defined

as the ”USAN”(Univalue Segment Assimilating Nucleus).

Figure 5.1: Shows circular masks at different places of an image with an edge

Figure 5.2: Shows the masks with USAN in the white parts of the mask

24

As it can be seen the USAN area (white region in the circular mask in Figure 5.2) is

highest when the mask lies flat on the surface and is lower at the edges and even lower

at corners. The edges are detected based on this principle. The application is shown to

be resilient to Gaussian noise as the USAN area does not change much with the change

in the pixel value of a few pixels in the mask. We have thus allowed for approximate

storage of the source image pixels which are gathered for this computation.

5.1.2 Image Smoothing

The SUSAN image smoothing is a noise filtering algorithm which preserves the image

structure by smoothing over the neighbors which form a part of the same region as the

central pixel of the mask. It averages over all of the pixels in the locality which lie in the

USAN. It is a similar technique as the edge detection and hence we have employed the

same technique of storing the source image pixels in unreliable storage. Any errors in

the source, as a result, be averaged out by the filtering technique. Thus, this benchmark

has shown high tolerance to random errors in the source image and still provides a good

result.

5.1.3 x264 Video Encoder

x264 is an open-source encoding tool that is based on the H.264 Advanced Video Coding

(AVC) standard [29]. H.264, also known as MPEG-4 Part 10/AVC, is the latest MPEG

standard for video encoding which allows for low bandwidth high quality transmission.

It can compress a video file to less than 80% of the size compared to a Motion-JPEG

compression and more than 50% as compared to MPEG4-Part2 thus utilizes low network

bandwidth and storage space or give a very high quality output for the same bitrate/size.

Thus several video streaming sites like YouTube has adopted this standard. It has

become a standard format for mobile devices and network cameras.

The H.264 standard uses several techniques to reduce the file size, one of which

is to prevent transmission of static elements and exploits both spatial and temporal

redundancy. Video encoding is done using done using frames and this uses 3 basic

frames called I,P and B frames. The I-Frames are basic frames and is encoded without

reference to other frames. The P-Frames are predicted from I-Frames and the B-Frames

25

or Bi-predictive frames reference both I and P Frames. Figure 5.3 illustrates the three

frames and how they relate to one-another. The motion estimation between frames are

done using macro-blocks which are blocks of non-overlapping pixels [30].

Figure 5.3: I, P and B Frames of a sequence of images (Img src: Wikipedia)

Each pixel derives its value from YUV values which represented with one ”lumi-

nance” component called Y (equivalent to grey scale) and two ”chrominance” compo-

nents, called U (blue projection) and V (red projection) respectively. In most common

formats, the Y plane components of a pixel are dominant and comprise of 66.67% of

the pixel value. Since these Luma pixels are the most used, it is beneficial if this is

stored in a low voltage array. These ”Luma pixels” are 8bits in length and it represents

a gray scale image. The following Figure 5.4 shows a 4:2:0 sub-sampling scheme and

how chroma pixels are shared among pixels in different rows.

Figure 5.4: YUV 4:2:0 pixel format (Img src: stackoverflow)

26

5.2 Accuracy Metrics

Working at lower voltages and unreliable memories result in lower quality outputs. Here

we define a metric to measure the quality degradation as compared to a output obtained

by using reliable hardware running at higher voltages. The goal of a fidelity metric here

is to compare two images/video frames to the error free version which shall be referred to

as the golden output. MSE (Mean Squared Error) and PSNR has been quite dominant

as a fidelity metric in image processing. Given a noise-free mxn monochrome image I

and its noisy approximation K, MSE is defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j) −K(i, j)]2

The PSNR is a function of the MSE and is defined (in dB) as:

PSNR = 20 · log10 (MAXI) − 10 · log10 (MSE)

Here, MAXI is the maximum possible pixel value of the image. When the pixels are

represented using 8 bits per sample, its value is 255. Here we see that MSE essentially

comprises of differences between pixels of an image. However, it does not consider

temporal or spatial relationships between signals. This means that if the pixels in the

image is re-ordered in the same way MSE will be the same. Also, it goes to show that all

pixels of the image are equally important. However, visual perception of quality is very

different. The human visual system is highly adapted to process structural information.

Structural information is the idea that pixels have a strong inter-dependencies when

they are spatially close. Thus, a fidelity metric called SSIM (Structural SIMilarity)

[22] has been chosen which measures structural distortion.

The SSIM algorithm typically breaks down images into patches of 8x8 pixels and

measures similarities of three elements of the image patches: the similarity l(x, y) of

the local patch luminance (brightness values), the similarity c(x, y) of the local patch

contrasts, and the similarity s(x, y) of the local patch structures which is the inner-

product of the correlation between two images. SSIM is computed as (generally α =

β = γ = 1):

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ

27

The change in the structural information between a reference (In our case, the

golden output without distortions) and the distorted image is related on a scale of -1

to 1. A value of SSIM=1 means that the two images are perfectly identical. In this

work the noise introduced is mostly random noise and PSNR sometimes fails to catch

the degradation of image quality. The following Figure 5.5 shows how SSIM is a better

fidelity metric than MSE/PSNR. The MSE is the same even if the entire image is made

brighter, has increased contrast or injected with a noise etc.

Figure 5.5: Images having nearly same MSE but entirely different perceptual quality[1]

Thus, considering the factors mentioned above, SSIM was chosen as the fidelity

metric over MSE/PSNR.

Chapter 6

Analysis

This chapter presents the results and analysis for different architectures proposed in

chapter 3. We discuss the energy savings, the output accuracy degradation due to

voltage lowering and the best configuration for the set of benchmarks considered. The

Table 6.1 describes the benchmarks and the corresponding inputs used in this work.

Benchmark Input Format Size

Edge Detection Lena test image pgm 512x512 Grayscale

Image Smoothing Lena test image pgm 512x512 Grayscale

x264 encoder Akiyo yuv 30 frames, CIF 352x288

Table 6.1: Benchmarks and inputs

6.1 Energy Analysis

This section discusses the Energy analysis for the three different benchmarks. We have

considered the L1 Leakage energy and the L2 Dynamic Access energy for analyzing the

energy efficiency of the cache architecture. The L2 accesses are done upon misses in the

L1, and L2 misses result in a request for the block from main memory. The following

graphs show the dependence of Energy consumed on different cache architectures and

different cache replacement policies.

28

29

Edge detection is an interesting benchmark with regards to approximation be-

cause it does show resilience to errors and performs well at low voltage using unreliable

hardware. The bars for leakage energy (Figure 6.1) in the L1-DCache drop with the

lowering of voltage however the L2 Accesses increase. This is because of a reduced num-

ber of non-faulty cache blocks. We notice that the Split and Shared cache replacement

policies have different L2 Access Energy consumption. The shared case performs better

because it makes use of the non-faulty blocks in the approximate ways of the cache.

Thus resulting in fewer misses. This is especially visible at 560mV. The Split-LRU case

effectively treats the approximate and precise ways of the cache bank to be separate.

However, the Shared-LRU treats it as a unified cache.

Figure 6.1: Energy distribution for Edge detection application

The following Figure 6.2 shows the cache capacity degradation. The Shared-LRU

scheme helps the precise data to be mapped into the non-faulty (grey bars in the graph)

30

regions of the approximate bank, effectively giving the visualization of a larger cache.

These grey regions can be used interchangeably by precise and approximate data.

Figure 6.2: Cache capacity reduction with drop in voltage

The a3p1 and a2p2 have same energy consumption at the baseline 700mV but at

lower voltages, the leakage energy of the a3p1 configuration is much lower. This is

because, effectively, only one cache line is at VH and the rest operate at lower voltages.

But this causes the number of misses to increase for the precise data in the program

since the precise data effectively sees only a direct mapped cache at low voltages, causing

L2 Access Energy to go up.

The most noticeable result is the VL (420mV) case where the energy bars for the

cache architecture using only 6T SRAM cells are much higher than the base case. This

is because the execution time has increased by 3.5x and it can be attributed to the

high number of faults which in-turn causes a lot of false edges to be generated and

detecting each edge adds to the run-time. It is interesting to note that the Hybrid cache

architecture outperforms the purely 6T SRAM array and goes to show that this image

processing application is indeed sensitive to position of error.

Image smoothing shows a higher resilience to error as compared to edge detection

31

Figure 6.3: Energy distribution for Image smoothing application

as the application run-time remains nearly unaffected. This can be attributed to the

nature of the application which is in-effect a noise filtering algorithm which smoothen-

s/averages the pixels over the USAN area. In the Figure 6.3 we can see that the leakage

energy at 420mV in both the Hybrid and 6T case for a2p2 configuration is nearly 41%

lesser than the base-case at 700mV and a3p1 is 61% lesser. However the a3p1 config-

uration has increased L2 Accesses because of the cache capacity for the precise data

reducing to 1/4 of the cache size. The total energy reduction for the a3p1 configuration

at 420mV including the L2 Access energy is just 7.3%. We can see that from these two

image processing applications, the performance of the a2p2 configurations in regards to

total energy is much better at lower voltages than the a3p1 configuration.

x264 video encoding application shows a large dependence on input source quality

in order to perform encoding. It can be seen in the Figure 6.4.

32

Figure 6.4: Energy distribution for x264 Video encoding application

The Voltage reduction has resulted in increased execution times. This is because

x264 video encoding is done based on the differences between frames. As discussed

before in chapter 5, the encoding is done using I,P and B Frames. Since we are fetching

the frame data approximately, the differences between two frames start to increase if

there is a lot of noise introduced due to faults. Hence the encoder thinks that each

frame as a result is entirely different from the other. This results in multiple I-Frames

as compared to P and B frames which are larger in size because it contains the entire

image data for that frame. P and B frames contain only the non-static information

between frames. Writing these I-Frames into the encoded video file takes longer, which

results in increased execution times.

However, it is interesting to note that the Hybrid memory performs much better

than the purely 6T case because the amount of error introduced in the MSBs is much

smaller. Hence, the built in noise-reduction capabilities of x264 is capable of eliminating

33

the noise caused due to faults in the LSBs. This has resulted in reduced I-Frame count

and better quality output which is described in the following section.

6.2 Accuracy Analysis

In this section we explore the accuracy trade-offs due to low voltage operation and

working with unreliable memories.

Edge detection benchmark output accuracy depends closely on the level of ap-

proximation. As seen in the Figure 6.5 below the output image quality drops steeply at

low voltages.

Figure 6.5: Edge Detection accuracy results for all configurations

At lower voltages the cache starts to become more and more faulty and hence creates

more faulty pixel data. This results in artificial edges being created and the number

of these artificial edges rises exponentially. Since the purely 6T cache has a uniform

BER throughout, the MSB fault can result in a complete change in the pixel color, say

34

from a white pixel to a black pixel or vice versa. However the Hybrid cache enforces

protection on the MSB bits. Thus the number of false edges introduced in the Hybrid

cache is much lesser.

Figure 6.6 compares the output quality degradation of a purely 6T cache and a

Hybrid cache. Which shows that low voltage operation is possible with a Hybrid cache

whereas at 420mV the 6T has indiscernible outputs. It has also been shown that the

potential energy savings in the 6T case is lost at very low voltages due to the increased

execution time which in-turn causes an increase in the total energy consumption.

(a)

(b)

Figure 6.6: Output image quality comparison for Edge Detection in (a) Only 6T cache

(b) Hybrid cache, at 700mV, 560mV and 420mV

The SSIM values at 420mV for Hybrid cache is 0.512 whereas for the 6T cache is

35

Figure 6.7: Image smoothing accuracy results for all configurations

0.062. This shows that we cannot aggressively scale voltage for this benchmark and a

threshold of 560mV should be set for this application to obtain acceptable results. Even

at 560mV the Hybrid has about 8% better quality output.

Image Smoothing has shown the most error resilience among the benchmarks

chosen in this work. The inherent noise filtering function of the image smoothing has

resulted in higher quality outputs. However the errors in the MSB cause significant

reduction in the output quality. The SSIM values for the purely 6T cache at 420mV

drops as low as 0.258 whereas the Hybrid cache maintains a very high quality image with

a SSIM of 0.935. This is because image smoothing by itself is some sort of mechanism

to remove variations in the LSB bits of a pixel in a particular region of the image by

applying filters.

The output image quality comparison of the same test image is shown in the Figure

6.8 where it can clearly be seen that the Hybrid cache has the same or better output

36

(a)

(b)

Figure 6.8: Output image quality comparison for Image Smoothing in (a) Only 6T cache

(b) Hybrid cache, at 700mV, 560mV and 420mV

quality at 420mV than a purely 6T cache at 560mV. This shows a potential voltage

reduction of 140mV without compromise on quality. The purely 6T cache suffers from

high noise levels causing the smoothing algorithm to fail because of very minimal number

of pixels under the USAN area to perform the smoothing.

x264 Video Encoder provides an interesting take on the approximation. In this

case the encoder reads in a raw video file and performs video encoding based on the

latest H.264 video encoding standard. Here the input raw frames are read in and

computation for encoding is performed on these frames which are stored approximately

at low voltages. Here we are dealing with multiple output frames being encoded, so

37

we present the SSIM values (Figure 6.9) for each output frame as read by a decoder

and compare it to the baseline encoded video file at 700mV. These values are obtained

using the MSU Video Quality Measurement Tool [31] which compares a video file with

respect to a reference.

Figure 6.9: x264 accuracy results for each frame for different voltage levels

We have grabbed the same frame from all encoded video files for fair comparison

and it can be seen in the Figure 6.10. The purely 6T cache has very low quality output

at 420mV, however, the Hybrid cache has nearly the same output quality at 420mV

as the 6T case at 560mV. But, its important to note that in this benchmark, we do

not obtain any energy savings by lowering voltage due to the increase in the execution

time(see 6.1). Thus, this work differentiates from other recent work by correlating energy

and accuracy as interdependent variables for designing an error tolerant cache rather

than separate components. This also stresses the tolerance threshold of applications to

errors in the inputs. The x264 Video Encoder thus may not be a suitable application

38

for approximation considering the energy and accuracy trade-offs. Future work can

explore the decoder section instead of the encoder as it’s objective is only the rendering

of the frames based on the encoded information and we presume that approximating

this would not result in increased overheads.

(a)

(b)

Figure 6.10: Output image quality comparison for x264 Video Encoder in (a) Only 6T

cache (b) Hybrid cache, at 700mV, 560mV and 420mV

6.3 Performance Analysis

In this section we explore the degradation in performance for the different benchmarks

due to the reduced voltages on different cache architectures. We consider the normalized

execution time as the metric to determine the performance of the application in low

voltage conditions. The Figure 6.11 gives a summary of normalized execution time for

the three benchmarks considered in this work.

39

(a) (b)

(c)

Figure 6.11: Normalized Execution time for (a) Edge Detection (b) Image Smoothing

(c) x264 Video Encoder

Edge Detection has been shown to be capable of tolerating moderate levels of

error. It has also been shown in 6.1 that the energy consumption for a purely 6T cache

at 420mV is higher than the baseline case which is contrary to what we want to achieve.

The execution time for this case goes up by 3.76x in the a3p1 configuration and 3.56x

in the a2p2 configuration, whilst the Hybrid cache has an execution time of 1.18x in the

a3p1 configuration and 1.16x in the a2p2 configuration.

Image Smoothing is nearly unaffected by the faults in the memory and this is

a perfect application for low voltage operation. The execution time goes down on an

40

average by 1%-2% even while running at 420mV for all cache configurations.

The x264 Video Encoder application is sensitive to errors and it can be seen that the

purely 6T cache suffers at low voltage operation. There is a near exponential increase

in the execution time from 1.43x at 560mV to 2.39x at 460mV. However, for the Hybrid

cache the execution time is increases by 1.07x at 560mV and 1.59x at 420mV.

Execution time is not the only parameter to consider for a video encoder. Since

the primary job of an encoder is to compress the raw video files and make it suitable

for storage/transmission over the network we must consider the compression factor also

as a metric to determine if this is suitable for approximation. Higher compression

ratios result in smaller storage space and network bandwidth for communication. The

following Figure 6.12 shows the increase in file-size due to low voltage operation as a

result of higher number of static I-frames which are larger in size. We see here that low

voltage operation is not always beneficial and we have to consider the behavior of the

application to errors.

Figure 6.12: x264 encoded video file size comparison

41

Area overhead is also another trade-off factor with respect to fabrication costs and

these overheads are listed in Table 3.2.

6.4 Related Work

Recent research in the field of approximate computing talk about software techniques

[15][13][16] and hardware architectures [19][32][14][17][18] to allow for low voltage op-

eration of applications. They also highlight the energy savings mainly with regards to

leakage and accuracy degradation due to approximation. However it is important to

understand that the application may not behave the same in an approximated environ-

ment. This work explores different cache architectures combined with the techniques

adopted in [18][19] and [13] and evaluate its behavior during low voltage operation (be-

low voltage margins). We have implemented the proposed set of cache architectures on

the L1-DCache and not only explored the result of energy reduction in terms of Leakage

due to voltage lowering but also the L2 Access energy which is also an important factor

that has been neglected in past works.

This work also shows that merely increasing the error tolerance threshold of the

outputs does not mean increase in energy savings because applications tend to be de-

pendent on the quality of the inputs to a certain extent. Certain applications are highly

error tolerant, some moderately and some highly sensitive. We have shown all three

varieties and their behavior and also stress the need for a such a classification [6]. Thus

relating all the parameters such as Energy, Accuracy , Performance and Cost (Area)

becomes a necessity for low voltage approximate computing.

Chapter 7

Conclusion and Discussion

CMOS technology scaling over the years have resulted in increased device variability.

SRAM is one of the most sensitive device to hardware variations. Design Engineers

thus impose several guard-banding mechanisms to enforce fault free operation. Voltage

margin is one of the guard-banding mechanism that prevents low voltage operation

and thus resulting in high power consumption. A large set of applications, however,

are tolerant to error and do not require these guard-banding techniques. The shift to

mobile and low power devices has sparked the need to explore such trade-offs.

The focus of this work is to show techniques to improve the existing methods to

reduce energy consumption. We explore image and video applications as they would

be the best fits for the Cache architectures proposed for low voltage operation and how

Hybrid memories help improve accuracy and performance. The detailed analysis of the

trade-offs in consideration are shown and we have also made a note of the application

error tolerance. We also show that error tolerance is best decided by the application

programmer and hence have provided the knobs to the programmer to tune for best

trade-off.

We have first discussed the architectural support to handle the programmer decla-

rations for approximation of data and then the different cache configurations with cache

replacement policies. Among the cache configurations explored, we have seen that a 4-

way L1D-Cache implemented with a combination of 8T and 6T cells having two tunable

approximate ways and two high voltage precise ways (a2p2 HY) have the best results in

terms of Total Energy, Accuracy, Performance and Area. We have also shown how Split

42

43

and Shared replacement policies perform and how we can utilize non-faulty blocks in

approximate ways to get performance and energy gains with the caveat that the BIST

is capable of catching all faults at boot-up.

The total area overhead for this cache configuration as compared to the baseline

is 5.8%. In the case of Edge Detection we have shown that this configuration would

help reduce energy by 31% while maintaining an output with a SSIM of 0.9803 and a

performance reduction as low as 1%. For Image Smoothing the energy reduction is as

high as 41% for a output with a SSIM of 0.935. x264 Video Encoder has been shown

to be sensitive to approximation with negligible gains in-terms of energy. However, it

provides an interesting take on application error tolerance which shows how cumulative

error adversely effects performance and counteracts the energy savings obtained due to

low voltage operation.

7.1 Future Work

The important take away from this work is finding an optimum trade-off space among

several variables. Thus developing a system that helps provide the best architecture

while maximizing for a particular variable would be beneficial. For example, automatic

tuning of the number of the approximate ways based on the miss-rates and outputs.

Another approach would be to attack the problem at the application level and take into

consideration application phases while applying the voltage tuning to reap maximum

benefits.

In this work we have used a simple single core architecture and it would be interesting

to see the scaling benefits if incorporated in a multi-core architecture while keeping in

mind that the cache would have to be invalidated during a context switch, to prevent the

new program’s data from accessing the old program’s data as we are using a virtually

addressed cache. We could also explore similar architectures for higher level caches and

the main memory while making sure critical information and data is not effected and

then determine the energy savings. However, in-order to achieve this, the higher levels

of cache should have a different VA Table which would specify the main memory pages

that are stored approximately and fills into the cache from these locations would be

stored in approximate ways of the cache. Also in the case of evicting a page from the

44

main memory we must make sure that only approximable data is filled in the unreliable

regions of memory otherwise it could lead to catastrophic failures of the application.

GPUs could potentially benefit from this model for approximation as the applications

that are generally handled by the GPU are image or video applications. The shared

memory in the GPU could be sectioned into reliable and unreliable memory. An aging

model could also be added to simulate the transistor aging to automatically update the

defect map which allows to keep track of faulty blocks over time.

References

[1] Zhou Wang and Alan C. Bovik. Mean squared error: Love it or leave it? a new

look at signal fidelity measures. Signal Processing Magazine, IEEE, 26(1):98–117,

January 2009.

[2] International Solid-State Circuits Conference. ISSCC 2014 Tech Trends.

[3] Fabio D’Agostino and Daniele Quercia. Short-Channel effects in MOSFETs. De-

cember 2000.

[4] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated

Circuits (2nd Edition). Prentice Hall electronics and VLSI series. Prentice Hall, 2

edition, January 2003.

[5] The international technology roadmap for semiconductors. Technical report, ITRS,

2012.

[6] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan.

Analysis and characterization of inherent application resilience for approximate

computing. In Design Automation Conference (DAC), 2013 50th ACM / EDAC /

IEEE, pages 1–9. IEEE, May 2013.

[7] Leland Chang, Robert K. Montoye, Yutaka Nakamura, Kevin Batson, Richard J.

Eickemeyer, Robert H. Dennard, Wilfried Haensch, and Damir Jamsek. An 8T-

SRAM for variability tolerance and Low-Voltage operation in High-Performance

caches. Solid-State Circuits, IEEE Journal of, 43(4):956–963, April 2008.

[8] Guanghui Liu. ECC-cache: A novel low power scheme to protect Large-Capacity

l2 caches from transiant faults. In Information Assurance and Security, 2009. IAS

45

46

'09. Fifth International Conference on, volume 2, pages 193–199. IEEE,

August 2009.

[9] Albert Meixner, Michael E. Bauer, and Daniel J. Sorin. Argus: Low-Cost, compre-

hensive error detection in simple cores. In Microarchitecture, 2007. MICRO 2007.

40th Annual IEEE/ACM International Symposium on, pages 210–222. IEEE, De-

cember 2007.

[10] Man L. Li, Pradeep Ramachandran, Swarup K. Sahoo, Sarita V. Adve, Vikram S.

Adve, and Yuanyuan Zhou. Understanding the propagation of hard errors to

software and implications for resilient system design. SIGOPS Oper. Syst. Rev.,

42(2):265–276, March 2008.

[11] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative software-

based memory error detection and correction for operating system data structures.

In Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP Inter-

national Conference on, pages 1–12. IEEE, June 2013.

[12] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: cost-effective architec-

tural support for rollback recovery in shared-memory multiprocessors. In Computer

Architecture, 2002. Proceedings. 29th Annual International Symposium on, pages

111–122. IEEE, 2002.

[13] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. EnerJ: Approximate data types for safe and general

low-power computation. In Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, volume 46 of PLDI ’11,

pages 164–174, New York, NY, USA, June 2011. ACM.

[14] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.

Flikker: Saving DRAM refresh-power through critical data partitioning. SIGPLAN

Not., 46(3):213–224, March 2011.

[15] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An archi-

tectural framework for software recovery of hardware faults. In Proceedings of the

47

37th Annual International Symposium on Computer Architecture, ISCA ’10, pages

497–508, New York, NY, USA, 2010. ACM.

[16] Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting

energy-conscious programming using controlled approximation. In Proceedings of

the 2010 ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

[17] Chris Wilkerson, Honglliiang Gao, Alaa R. Alameldeen, Zeshan Chishti, Muham-

mad M. Khellah, and Shiih-Liien Lu. Trading off cache capacity for reliability to

enable low voltage operation. In Computer Architecture, 2008. ISCA '08.

35th International Symposium on, pages 203–214. IEEE, June 2008.

[18] Majid Shoushtari, Abbas BanaiyanMofrad, and Nikil Dutt. Exploiting Partially-

Forgetful memories for approximate computing. Embedded Systems Letters, IEEE,

7(1):19–22, March 2015.

[19] Ik J. Chang, Debabrata Mohapatra, and Kaushik Roy. A Priority-Based 6T/8T

hybrid SRAM architecture for aggressive voltage scaling in video applications. Cir-

cuits and Systems for Video Technology, IEEE Transactions on, 21(2):101–112,

February 2011.

[20] Brian Zimmer, Borivoje Nikolic, and Krste Asanović. Resilient design methodol-

ogy for Energy-Efficient SRAM. Master’s thesis, EECS Department, University of

California, Berkeley, May 2013.

[21] Qikai Chen, Hamid Mahmoodi, Swarup Bhunia, and Kaushik Roy. Efficient testing

of SRAM with optimized march sequences and a novel DFT technique for emerging

failures due to process variations. Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 13(11):1286–1295, November 2005.

[22] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image

quality assessment: from error visibility to structural similarity. Image Processing,

IEEE Transactions on, 13(4):600–612, April 2004.

[23] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

48

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,

39(2):1–7, August 2011.

[24] H. P. Labs. CACTI 6.0: A tool to model large caches. Technical report.

[25] Alireza Shafaei, Yanzhi Wang, Xue Lin, and Massoud Pedram. FinCACTI: Ar-

chitectural analysis and modeling of caches with Deeply-Scaled FinFET devices.

In VLSI (ISVLSI), 2014 IEEE Computer Society Annual Symposium on, pages

290–295. IEEE, July 2014.

[26] The International Technology Roadmap for Semiconductors. Model for Assessment

of CMOS Technologies And Roadmaps.

[27] Stephen M. Smith and J. Michael Brady. SUSAN a new approach to low level

image processing. Int. J. Comput. Vision, 23(1):45–78, May 1997.

[28] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor

Mudge, and Richard B. Brown. MiBench: A free, commercially representative

embedded benchmark suite. In Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop on, pages 3–14. IEEE, December 2001.

[29] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra. Overview

of the H.264/AVC video coding standard. Circuits and Systems for Video Tech-

nology, IEEE Transactions on, 13(7):560–576, July 2003.

[30] Axis Communication. H.264 video compression standard, 2008.

[31] Dmitriy Vatolin, Alexey Moskvin, Oleg Petrov, Sergey Putilin, Sergey Grishin, and

Arsaev Marat. MSU video quality measurement tool (PSNR, MSE, VQM, SSIM)

http://compression.ru/video/quality measure/video measurement tool en.html.

[32] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture

support for disciplined approximate programming. SIGPLAN Not., 47(4):301–312,

March 2012.

Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix contains a table of acronyms and their

meaning.

Table A.1: List of Acronyms

Acronym Meaning

CMOS Complementary metal-oxide-semiconductor

ASIC Application-specific integrated circuit

SRAM Static random-access memory

8T SRAM An eight transistor variant of the SRAM cell

6T SRAM A six transistor variant of the SRAM cell

SNM Static Noise Margin

BER Bit Error Rate

Vt Threshold Voltage

ITRS The International Technology Roadmap for Semiconductors

QoS Quality of Service

ISA Instruction Set Architecture

MSB Most Significant Bit

LSB Least Significant Bit

VA Virtual Address

49

50

VAT Virtual Address Table

LRU Least Recently Used

SSIM Structural Similarity

Aeff Effective Area

BIST Built-in Self Test

MSE Mean Squared Error

PSNR Peak Signal to Noise Ratio

PNG Portable grey map

Appendix B

Simulator Modifications and

Wrapper Scripts

A detailed description of the simulator modifications are provided here. This also gives

a description of the scripts written to execute the experiments and how to use them.

B.1 gem5

The entire cache architecture implementation was done on gem5 Classic Memory model.

The simulator was modified to take in new parameters to automate the cache setup and

run experiments. gem5 was built for X86 architecture. The gem5 code with the latest

changes can be obtained by cloning the repository made in the cspin servers using

mercurial. Some of the implementations are similar to the one described in [18].

B.1.1 Parameter Addition

The additional parameters to gem5 such as the cache Vdd, number of precise ways, the

Split and Shared LRU cache replacement policy for handling precise and approximate

data, and the number of 8T SRAM cells in a pixel block of 8-bits was added. The

number of acceptable faulty bits is a mechanism to switch off cache blocks if it exceeds

a specified number of faults. However in this work we set this parameter to the total

number of bits in a cache block because cache disabling adds unnecessary overheads to

51

52

the controller to handle flushing blocks that are being disabled. The help and usage has

also been provided and can be accessed by running the following command:

. / bu i ld /X86/gem5 . f a s t . / c on f i g s /example/ se . py −h

. . .

−−l1d cvdd=L1D CVDD L1 cache vdd

−−l1d num8T=L1D NUM8T

number o f 8T in L1

−−l 1 d a f b=L1D AFB Acceptable Faulty Bi t s in L1

−−l1d cache mode=L1D CACHEMODE

L1D cache opera t ing in Sp l i t (0) or Shared (1) Mode

−−l 1 d p r e c i s e way s=L1D PRECISE WAYS

L1D cache : number o f p r e c i s e ways (1 or 2)

. . .

These parameters are added in the Python Configuration files as well as Python

Object classes that correspond to its C++ simulation object classes.

. / c o n f i g s /common/CacheConfig . py

. / c on f i g s /common/Caches . py

. / c on f i g s /common/Options . py

. / s r c /mem/cache /BaseCache . py

. / s r c /mem/cache / tags /Tags . py

B.1.2 Pseudo Instructions

The gem5 pseudo instructions are added to handle the programmer controlled approx-

imation. When the programmer specifies the approximate declarations in the source

code, the simulator treats it as a separate instruction.

pic−>img . plane [i] = x264 mal loc (s i z e) ;

i f (i==0)

{
m5 DECLARE APPROXIMATE((u in t 64 t) (pic−>img . plane [i]) ,

(u i n t 64 t) (pic−>img . plane [i] + s i z e)) ;

}

These are added to the m5op to emit the instructions in the compiled code.

u t i l /m5/m5ops . h //Add func t i on number here

53

u t i l /m5/m5op . h //Add func t i on pro to t ype here

u t i l /m5/m5op x86 . S // I n s t a n t i a t e a TWOBYTEOP

The program with these approximate declarations now can access the function pro-

totype using the header files and can be cross-compiled as shown below. Note that we

need static binaries for execution in the syscall emulation mode of gem5.

gcc −W −stat ic −O4 −o <prg approx> <prg>. c −I <path to gem5>/u t i l /m5

<path to gem5>/u t i l /m5/m5op x86 . S

We also have to overwrite reserved opcodes, the ones that are emitted by the code

when compiled with m5op

/∗ s rc /arch/x86/ i s a / decoder / two by t e opcodes . i s a ∗/
. . .

0x56 : DECLAREAPPROXIMATE({{
PseudoInst : :DECLAREAPPROXIMATE(xc−>tcBase () , Rdi , Rsi) ;

}} , I sNonSpecu lat ive) ;

0x57 : UNDECLAREAPPROXIMATE({{
PseudoInst : :UNDECLAREAPPROXIMATE(xc−>tcBase () , Rdi) ;

}} , I sNonSpecu lat ive) ;

We have added the functional simulation implementation of these calls in the fol-

lowing files

/∗ s rc /sim/ p s eudo in s t . hh ∗/
void DECLAREAPPROXIMATE(ThreadContext ∗ tc , u i n t 64 t arg1 , u i n t 64 t arg2) ;

. .

/∗ s rc /sim/ p s eudo in s t . cc ∗/
void

DECLAREAPPROXIMATE(ThreadContext ∗ tc , u i n t 64 t arg1 , u i n t 64 t arg2)

{
. . .

tc−>getSystemPtr()−>vAddrMap . addVirtAddr (arg1 , arg2) ;

. . .

}

B.1.3 Virtual Address Table

The Virtual Address Table is a table that keeps a track of the data that can be approx-

imated. This table is at the system-level in gem5 where it can be accessed by the core

54

and the cache. The behavior of this module such as checking if an input VA request is

within range of any of the entries and adding and removing entries based on the pseudo

instruction has been defined in the following file:

/∗ . / s rc /sim/system . hh ∗/
. . .

class virtualAddressMap

{
. . .

} ;

B.1.4 Error Model

The Error model that models the voltage dependent BER is is defined in the following

files and its values are initialized based on the cache Vdd.

/∗ . / s rc /mem/cache/ tag s / base . hh ∗/
. . .

typedef struct ber {
int num8T;

int afb ;

double ber6T ;

double ber8T ;

} bitErrorRate ;

/∗ . / s rc /mem/cache/ tag s / base . cc ∗/

/∗ BER i n i t i a l i z e d in the cons t ruc t o r ∗/
BaseTags : : BaseTags (const Params ∗p)
. . .

cacheBitErrorRate . ber6T = f1 (vdd) ;

cacheBitErrorRate . ber8T = f2 (vdd) ;

. . .

B.1.5 Defect Map

The defect map is populated using a BIST mechanism during boot-up and to imitate

this we have injected faults to the L1-DCache based on the BER model when the cache

is initialized in the simulator environment. The mechanism scans through all the bits in

55

the cache and injects a fault based on the error probability and then populates a fault

map. The fault map is then used to generate a status for each block based on whether a

particular block has faulty bits or not. The functions that define these are implemented

in the following files.

/∗ . / s rc /mem/cache/ b l k . hh ∗/
. . .

void populateFaultMap (int num8T,

double ber6T ,

double ber8T ,

std : : de fau l t random eng ine &re ,

bool protec tedFlag)

{
. . .

}
. . .

void s e tB lkSta te (int afb , bool protec tedFlag)

{
. . .

}

Some friendly print functions are also added to help debug and prints when running

gem5 in debug mode.

B.1.6 Hybrid Cache and Cache Configurations

The Hybrid cache is modeled purely based on the error rate and this is taken into

consideration while populating the fault map by setting corresponding BER based on

the bit positions. It is modeled in the same file given above. The 2a2p and 3a1p

configurations are generated based on the parameter l1d precise ways passed into the

following file which defines the base set associative tag store and initializes the cache.

/∗ . / s rc /mem/cache/ tag s / b a s e s e t a s s o c . cc ∗/
. . .

BaseSetAssoc : : BaseSetAssoc (const Params ∗p)
. . .

{ /∗ Logic to con t r o l f a u l t genera t ion based on number o f

p r e c i s e ways in a N−way s e t a s s o c i a t i v e cache ∗/
}

56

B.1.7 Cache Controller

The Cache Controller is critical to this architecture as it must make a decision based on

multiple inputs. It gets the block’s status faulty/non-faulty from the defect map and

if the incoming data that’s being written in is an approximate data or not. We have

included both the Split and Shared LRU policies and can be toggled using the run-time

parameter l1d cache mode to configure the controller accordingly. The logic has been

implemented in the the following file:

/∗ . / s rc /mem/cache/ tag s / l r u . cc ∗/
. . .

BaseSetAssoc : : BlkType∗
LRU: : f indVict im (Addr addr , Addr v addr) const

{
/∗ Function modi f ied to map the data us ing v addr ∗/
. . .

i f (cache mode == 0)

{ /∗ S p l i t LRU po l i c y implemented here ∗/ }
else i f (cache mode == 1)

{ /∗ Shared LRU po l i c y implemented here ∗/ }
else

{ /∗ New p o l i c i e s f o r f u t u r e e x t en s i on s ∗/ }
. . .

}

The cache implementation has been modified to pass the virtual addresses of fill

requests to run through the VAT and determine whether the data is precise or approx-

imate. Several changes are made in the file following file:

/∗ . / s rc /mem/cache/ cache imp l . hh ∗/
. . .

/∗ Pass the V i r tua l Address o f r e que s t wh i l e a l l o c a t i n g

a new b l o c k on mu l t i p l e s c enar i o s ∗/
/∗ Passing approximate data to core or sending

data to h i ghe r l e v e l s o f cache during e v i c t i o n

o f a d i r t y b l o c k ∗/
. . .

57

B.1.8 Fault Injection

The data is fetched from the main memory or L2 and if written in a block that has

faults we need to make the faulty data available to the processor. These faults injected

based on the fault-map generated during boot-up. To emulate the real hardware faults

we mask the fault-map which has the fault locations with the actual data. It has been

implemented in the following file:

/∗ . / s rc /mem/cache/ b l k . hh ∗/
. . .

void applyFault ()

{
/∗ read in the f a u l t map f o r the b l k and

app ly f a u l t s to the data in the b l k ∗/
}
. . .

B.2 PCACTI

PCACTI models the 6T and 8T device parameters in .xml files. However they are

for a fixed Vdd level and but parameters like Vt (threshold voltage), mobility, NMOS-

PMOS on and off currents for different voltage levels depend on voltage. We have used

the ITRS MASTAR tool to generate these values. PCACTI is run using a wrapper

perl script that generates the the .xml files for the corresponding Vdd levels using the

parameters from MASTAR. PCACTI is run for each of these configurations which then

outputs several files with power calculations for the cache. They are available in:

. / p c a c t i ou t / l 1

. / p ca c t i ou t / l 2

The Parameters such as Data Array Leakage, Tag Access Energy, Read and Write

Energy are multiplied with corresponding events from the gem5 stats file to obtain the

total energy for the cache.

58

B.3 Wrapper Scripts

A few perl modules are written as a necessity to automate the runs of gem5 and compute

the performance, energy and accuracy. The scripts are available in:

/∗ Main s c r i p t s to genera te run f i l e s f o r gem5

or genera te s t a t i s t i c s based on ou tpu t s ∗/
. / r u n s c r i p t s / bin /

/∗ The con f i g u r a t i on s t ha t d r i v e a l l the runs

and determine the s t a t i s t i c s to output ∗/
. / r u n s c r i p t s / c on f i g s /

/∗ The modules to genera te s c r i p t s ,

grab s t a t i s t i c s , genera te p l o t f i l e s f o r

gnup lo t e t c . ∗/
. / r u n s c r i p t s / l i b /

The modules introduced with several functions to make the runs and data extraction

easy is listed below:

. / r u n s c r i p t s / l i b /MyPerlMods

Cac t i In f o .pm //Grab s t a t i s t i c s i n f o from pca c t i o u t

ConfigGrab .pm //Read in the Conf i gura t ion f i l e s

GenRunScripts .pm //Generate run−s c r i p t s f o r gem5

GnuPlotFi les .pm //Generate gnup lo t f r i e n d l y . dat f i l e s

StatGrab .pm //Grab s t a t i s t i c s from gem5 runs

S t a tMu l t i p l i e r .pm //Mu l t i p l y Cact i and gem5 s t a t i s t i c s

B.4 Matlab

Matlab was used to generate the SSIM values which is used as an accuracy metric. The

SSIM metric calculation was done using the scripts provided by [22]. When gem5 is

run in the syscall emulation mode the benchmark writes it outputs which in this case is

either a image or a video file. gem5 is run without any approximation and this is used

as the golden file for comparison. Each of the files output by gem5 runs are compared

to this golden file.

/∗ Excerpt from Matlab ssim c a l c u l a t i o n ∗/

59

. . .

imageData = imread (pgmFileName) ;

ss imValues (k , j)=ssim (baseImg , imageData) ;

. . .

B.5 MSU VQMT

We have used the MSU VQMT tool [31] to measure the SSIM values for each frame

of the encoded video while comparing to the golden file. It outputs a csv file with the

frame number and the SSIM metric values.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Approximate Computing
	Recent work
	SRAM Failure

	Architecture
	Programmer Control
	Data Classification
	Knobs to Control Output Quality

	Hardware
	Virtual Address Table
	Defect Map
	Cache Controller
	Cache Architecture

	Experimental Setup
	Simulator Modeling
	gem5
	PCACTI

	Data extraction method

	Applications
	Application Set
	Edge Detection
	Image Smoothing
	x264 Video Encoder

	Accuracy Metrics

	Analysis
	Energy Analysis
	Accuracy Analysis
	Performance Analysis
	Related Work

	Conclusion and Discussion
	Future Work

	References
	 Appendix A. Glossary and Acronyms
	 Appendix B. Simulator Modifications and Wrapper Scripts
	gem5
	Parameter Addition
	Pseudo Instructions
	Virtual Address Table
	Error Model
	Defect Map
	Hybrid Cache and Cache Configurations
	Cache Controller
	Fault Injection

	PCACTI
	Wrapper Scripts
	Matlab
	MSU VQMT

