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ABSTRACT  

CD38 is a multifunctional enzyme that regulates intracellular calcium ([Ca++]i ) 

homeostasis. It is expressed in airway smooth muscle (ASM) cells where it elevates 

[Ca++]i through its enzymatic product cyclic ADPribose (cADPR) and increases ASM 

contractility. Increased expression of CD38 in the ASM cells derived from the 

asthmatic patients (AS-HASM) and attenuated airway hyperresponsiveness to 

contractile stimuli shown by CD38-/- mice implicate the importance of CD38 in 

asthma.  

The proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) is 

considered to be an important mediator for airway pathology in asthma. The reason 

for the differential expression of TNF-α-induced-CD38 in AS-HASM cells, does not 

involve transcriptional regulation of CD38 which is through signaling pathways 

mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K), and 

transcription factors nuclear factor kappa-B (NF-κB) and AP-I. Thus I hypothesized 

that post-transcriptional regulation of CD38 by microRNAs account for the differential 

expression of TNF-α induced -CD38 in AS-HASM cells.  

Among the several potential microRNAs predicted for CD38 by microRNA 

target-predicting algorithms, I selected miR-140-3p and miR-708 for further studies, 

as these showed differential expression in the AS-HASM cells compared to those 

from healthy subjects.  

Overexpression of these either microRNAs in ASM cells inhibited the TNF-α 

induced expression of CD38 at messenger RNA (mRNA) and protein levels. 

Luciferase-reporter assays with a mutated 3’UTR of the CD38 transcript confirmed 

the specific target sites for both microRNAs. Transcript stability assays revealed that 
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mRNA degradation is not the mechanism underlying regulation by microRNAs. 

Examination of the expression and activation levels of proteins in the upstream 

signaling pathways of CD38 revealed that miR-140-3p, by inactivating p38 MAPK 

and NF-κB, and miR-708, by inactivating c-Jun N-terminal kinase (JNK) MAPK and 

Akt by elevating the expression of their phosphatases MKP-1 and PTEN respectively, 

control the expression of CD38 indirectly. 

Further, we found that miR-708 downregulates the expression of many 

chemokines and inhibits the serum induced proliferation of human ASM cells.  

We conclude that both microRNAs have therapeutic potential in controlling 

asthma related symptoms through regulating the expression of CD38 and 

chemokines and controlling the proliferation of human ASM cells.     
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1. Asthma 

1.1 Definition, characteristic features and clinical signs 

Asthma is a common chronic respiratory disorder affecting about 300 

million people worldwide (282). It is characterized by chronic inflammation, 

reversible airflow limitation and remodeling of airway structures (238). According 

to GINA report, 2014, asthma is defined as a “heterogeneous disease that is 

usually characterized by chronic airway inflammation with history of respiratory 

symptoms such as wheeze, shortness of breath, chest tightness and cough that 

vary over time and in intensity, together with variable expiratory airflow limitation.”  

These signs, including airflow typically change in magnitude over time. These 

features may resolve naturally or with treatments and remain absent for many 

months. Conversely, patients may experience episodic flare-ups of asthmatic 

symptoms that may pose a life-threatening risk.  Under the microscope the 

stained tissue sections of lungs obtained from asthmatic patients show histo-

pathological lesions such as disrupted epithelial cells, hyper plastic goblet cells, 

increased smooth muscle mass, increased fibrotic tissues, collagen deposition 

and metaplastic epithelial cells (23, 56, 140, 275, 292, 314).  

1.2 Prevalence and economic importance 

The prevalence of asthma is increasing every year and currently it is 

estimated that ~300 million people of all ages are affected world-wide (43). It is 

predicted that in 2025, an additional 100 million people will be affected by asthma 

(World Health Organization, 2007). In USA alone, the prevalence of asthma is 

increasing since 1980 and it is estimated that nearly 30 million people are 
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affected currently (U.S. Department of Health and Human Services Centers for 

Disease Control and Prevention). In 2010, 1 in 12 adults and 1 in 11 children 

were affected by asthma. According to a 2014 CDC report, the total cost of 

asthma (medical expenditures, untimely deaths, loss of productivity due to 

missed work days) in the US is $56 billion each year. In 2008 asthma caused 

10.5 million missed days of school and 14.2 million missed days of work and in 

2009 it accounted for 479,300 hospitalizations, 1.9 million emergency department 

visits and 8.9 million doctor visits. In the last decade there has been a ~15% 

increase in the number of people with asthma. Overall, health and economic 

burdens of asthma pose a serious concern in the US and the rest of the world. 

1.3 Etiology 

Both environmental factors and genetic elements influence the onset of 

asthma (75). Children are more prone to this disorder than adults (141) and it is 

the number one chronic condition responsible for school absenteeism of children 

(CDC). Male-children and female-adults are more susceptible to asthma (141). 

Other than gender and age, other genetic factors known to be involved in 

triggering asthma are obesity (40, 92, 115, 135, 214, 307), stress (27, 278, 341) , 

exercise (27) and pregnancy (61, 102, 104, 241, 339, 364).   

Environmental factors 

Environmental factors that induce asthmatic symptoms are allergens such 

as various pollens, animal hair and dander, cockroaches, chemicals, fumes and 

microbes.  Asthma caused by allergens is the most common form in the US and 

it is estimated about  50% of asthmatic cases are due to allergic asthma (248). 



4 

 

Epigenetic modulations that influence the transcriptional activity of asthma-

susceptible genes are histone modifications, DNA methylations and microRNA 

activities (295).  Epigenetic modulations influence the expression of microRNAs 

such as let-7a, miR-9, miR-34a, miR-124, miR-137, miR-148 and miR-203 (296). 

On the other hand microRNAs can affect the expression of epigenetic modulators 

such as histone deacetylase, histone acetyl transferase and DNA methyl 

transferase by interfering with their gene expression (295, 296). 

Genetic factors - Asthma susceptible genes 

Asthma is not linked to only one gene but several genes that interact with 

each other and cause asthma pathogenesis (227). Thus far, more than 100 

genes have been identified as asthma-related (315), though not all 100 genes 

may co-act to exhibit the asthma phenotype in an individual. While interplay of a 

group of genes may be involved in eliciting asthma symptoms in one individual, 

interaction of another group of genes may be responsible for inducing the asthma 

phenotype in another individual. Since asthma is associated with both genetic 

and environmental factors, carrying an asthma susceptible gene by itself may not 

result in inducing asthmatic symptoms. Exposure to and interaction with specific 

environmental triggers is also needed for an individual to demonstrate clinical 

signs. Candidate gene studies using animal models, positional cloning using 

linkage analyses, and genome wide associated studies (GWAS) have led to the 

identification of numerous asthma susceptibility genes. Candidate gene studies 

have identified many genes that are involved in the development of diverse 

biological effects such as T-helper cell-2 inflammation, regulatory T- cell function, 
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HLA locus/immunity and IgE response of B cells (184). Using linkage studies 

new genes have been recognized (227) . They are A disintegrin and 

metalloproteinase domain-containing protein 33 (ADAM33) (337) , DPP10 (8), 

PHF11(372), HLA-G(253), and GPRA (199) with a role in atopy, airway 

hyperresponsiveness (AHR) and elevated IgE levels. GWAS studies identified 

genes including IL1RL1(132), TSLP(35), IL33, HLA-DP (254), ORMDL3 (243), 

and Childhood Management Program cohort found genes including PDE4D,  

IRAK-3, PHF11, IL10, ITGB3 (287), IL13 (159) , and IL4R (159). These genes 

appear to be involved in irregular inflammatory/immunologic responses.  Some of 

these genes have been already studied and have been shown to be involved in 

the pathogenic pathways of asthma (212). For example, the gene ADAM33 is 

associated with bronchial hyperresponsiveness (212). The ORLMD3 gene 

product is  regulating ER-mediated Ca2+ signaling and cellular stress (55) as well 

as sphingolipid homeostasis (47) and is associated with the stress-related 

signaling molecule c-Jun N-terminal kinase (JNK) (336). Chemokines CCL11 and 

CCL5 are also identified as asthma susceptible genes (342). From these 

findings, it is clear that asthma is a complex disease involving many mechanisms 

and pathways.  

2. Asthma phenotypes 

Multiple etiological origins and differences in the pathogenesis of the disease 

cause heterogeneity in asthma phenotype and, there is no strong correlation 

between pathological features and clinical symptoms or treatment response. 

Many asthma phenotypes identified in humans are clustered according to 
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etiology, clinical severity, steroid treatment response, appearance of histo-

pathological lesions and onset of asthma in life (42, 333) as shown in Table 1. 

Based on etiology, patients are grouped into allergic asthma, non-allergic asthma 

(viral infection, occupational asthma) and intrinsic asthma (exercise-induced, 

stress-induced asthma). Allergic asthma often starts in childhood and responds 

well to inhaled-gluco-corticosteroids (ICS). Induced sputum of these patients will 

have readily seen eosinophils. Most of the time, non-allergic patients do not 

respond well to ICS treatment and their induced sputum may have neutrophils or 

eosinophils or very few inflammatory cells. When clinical severity ( frequency of 

asthma attacks, FEV1 and other asthma symptoms) is considered, patients are 

grouped into mild, moderate and severe. According to histo-pathological lesions, 

there are two sets of asthmatic patients, those who have eosinophilic asthma and 

those with neutrophilic asthma (346). Physicians sometimes categorize asthmatic 

patients , into steroid responders and steroid non-responders (229), and patients 

with childhood onset and adult onset asthma (346). Mostly, severe asthmatic 

patients need higher doses of ICS or systemic administration of steroids to 

control the symptoms of asthma or they do not respond to steroids at all. Patients 

with adult onset asthma, especially women, often show refractory asthma, a form 

of severe asthma that does not respond to treatments. Existence of a variety of 

phenotypes indicates that asthma therapy needs to be tailored to the phenotype 

and the pathogenic mechanism causing asthma. 
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Table 1: Asthma phenotypes  

Etiology Allergic asthma, non-

allergic asthma, intrinsic 

asthma 

Clinical severity Mild, moderate, severe 

Histo-pathological lesions Eosinophilia, neutrophilia 

Response to corticosteroid 

therapy 

Steroid responders and 

steroid non-responders 

 Onset Childhood onset and adult 

onset 

 

3. Asthma diagnosis 

Diagnosing asthma before starting any treatment is essential since many other 

disease conditions also present with apparently similar clinical signs. The steps 

involved in making a diagnosis of asthma are as follows: 

a. History of clinical symptoms  

Whether the clinical symptoms worsen at night, vary over time and in intensity, 

are increased by exposure to allergens/irritants, climate change, exercise or 

strong smoke (tobacco and cigarette smoke, indoor household solid fuels).  

b. Physical examination  

During the physical examination, expiratory wheezing on auscultation may be 

present. If the asthma is severe, it may not be possible to hear any wheeze due 

to severely limited airflow caused by increased obstruction of airways. While 

expiratory wheezing may be present in other respiratory diseases, inspiratory 

wheezing is not a feature of asthma. 
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c. Spirometry - Lung/Pulmonary function tests (PFT) 

PFT provide information about the level of lung function impairment and serves 

as a tool to evaluate the level of improvement after treatment, i.e. treatment 

response. The values from PFT of asthmatic subjects are compared with values 

seen in normal healthy individuals of similar age, height, gender and race as well 

as with results of previous PFT. These tests help in the identification of diseases 

such as asthma, chronic obstructive pulmonary disease (COPD) and pulmonary 

fibrosis. 

I.  Peak Expiratory Flow (PEF).  

This measures the amount of air one can exhale to the best of their capability. It 

is unreliable because measurements may differ from instrument to instrument by 

20% resulting in false positive or false negative results.  

ii.  Forced Vital Capacity (FVC) 

Here, one inhales as deeply as possible and then exhales as forcefully as 

possible. Measurement of the amount of exhaled air is called FVC.     iii.          

Forced Expiratory Volume in 1 second (FEV1) 

This measures the maximum amount of air one can forcefully exhale in one 

second after full inspiration.  An FEV1 that is less or more than 12% of baseline 

(before the use of broncho dilator) and less or more than 200 ml from baseline 

(before the use of broncho dilator) after the administration of a bronchodilator is 

considered as improved lung function. Since reduced FEV1 may be present in 

other disease conditions, a ratio of FEV1/FVC yields a more reliable indication of 



9 

 

airflow limitation. A ratio that is lower than 0.75-0.8 is considered as being 

indicative of asthma. This is more trustworthy than peak expiratory flow. 

iii. Provocation Test - Methacholine Challenge Test 

This test is performed when clinical symptoms and spirometry results do not 

clearly establish a diagnosis of asthma. Methacholine is a spasmogen which 

causes asthmatic airways to contract involuntarily and constrict rapidly at 

concentrations much lower than in a healthy subject. This test enables detection 

of how responsive or irritable the airways are to methacholine. Spirometry is 

done before and after each dose of the methacholine challenge. A 20% reduction 

in FEV1 relative to baseline is considered as a positive indication of asthma and 

the methacholine concentration that causes a positive reaction is referred to as 

PC20. To distinguish asthmatic patients from healthy subjects, usually 8 to 16 

mg/mL methacholine is used as an optimal cut off range. Inhaled histamine or 

exposure to cold air can also be used in this test instead of methacholine. 

4. Asthma in animals  

Dogs (330), cats (76) and horses(149) can develop asthma-like symptoms 

as in humans. However, cats and horses are more prone to develop these 

symptoms compared to dogs.  The disorder is referred to as allergic bronchitis in 

dogs, feline asthma or allergic bronchitis in cats and recurrent airway obstruction 

or heaves in horses (149)  (Merck Veterinary Manual). In these animals, the 

symptoms can be triggered by pollen, hay, straw, cigarette smoke, wood burning 

stoves, fire places, carpet or floor cleaners, deodorizers, air fresheners, dust, dry 

air, exercise, viruses, cold temperatures, rapid breathing due to exercise, 
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chemicals in the air, etc. Animals show symptoms such as difficulty in breathing, 

shortness of breath, wheezing, open-mouth breathing, cough (dry, hacking), pale 

mucous membranes (bluish gums and tongue), lethargy, exercise intolerance, 

lack of appetite and weight loss (Merck Veterinary Manual). Animals are treated 

with glucocorticoids, antihistamines and bronchodilators to relieve these 

symptoms (119) (Merck Veterinary Manual).  

5. Animal asthma models  

For asthma-related laboratory studies, mice are widely used as an animal 

model due to the following reasons: they are closely related to humans with 

respect to genome sequences, easier to handle, easier for genetic manipulation, 

comparatively less expensive, fast breeding due to a shorter gestation period and 

readily available reagents and tools for analysis. Further, mice are known to 

exhibit an asthma phenotype when exposed to pro-inflammatory cytokines (54, 

188, 373).  

Guinea pigs are also used in asthma studies. Advantage of using them is, 

they show immediate and late phase airway responsiveness, but the 

disadvantage is, their major anaphylactic antibody is IgG. While rabbits show 

immediate and late phase airway responses and advantageously produce IgE as 

their primary anaphylactic antibody but neonatal immunization is needed for late 

phase airway responses (302). Other animal models for asthma such as sheep, 

pigs and horses (7, 50, 156) also have been used. However, they are not very 

popular due to the lack of availability of appropriate tools and reagents for 
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analysis as well as cost ineffectiveness of conducting experiments using these 

models (302).  

6. Functions of Airway Smooth Muscle (ASM) cells 

ASM cells are important structural cells in the airways. They are known to 

maintain bronchial tone and mediate bronchoconstriction in response to foreign 

bodies and stimuli. ASM cells were recently recognized to have a role in 

inflammation. They secrete pro-inflammatory mediators such as cytokines, 

chemokines, growth factors, ECM proteins, etc., express receptors for these 

molecules and act as immuno-modulatory cells (358) that can function in an 

autocrine or paracrine manner (80). The secreted inflammatory mediators 

promote AHR during acute inflammation (53) and induce proliferation of ASM 

cells and altering the structure of the airway wall during chronic inflammation 

(185).  

Structural changes in the airways are a significant component of the 

pathogenesis of asthma. The increased ASM mass in the airway wall is thought 

to be due to ASM cell proliferation, ASM cell hypertrophy, prolong survival of 

ASM cells, transformation and differentiation of fibroblasts into myofibroblasts 

and then to ASM cells. In addition, increased airway ASM mass could be caused 

by migration of vascular smooth muscle cells to airways, differentiation of stem 

cells in the peripheral blood or the airways into ASM cells, migration and 

transformation of epithelial cells into ASM cells via the process of epithelial 

mesenchymal transition. Since ASM cells participate in the development of all 

three cardinal features of asthma namely, AHR, inflammation and remodeling of 



12 

 

airway wall, they are considered to be a distinct and attractive therapeutic target 

for asthma.  

7. Airway inflammation 

7.1 Mediators and cells involved in pathogenesis 

Asthma triggering agents induce and maintain chronic inflammation 

through a variety of mediators like histamine, immunoglobulin E (IgE), 

prostaglandins and leukotrienes (26).  Table 2 lists the different types of 

mediators and their functions in detail. This table is adapted from a review 

article published in 1998 by The American  

Society for Pharmacology and Experimental Therapeutics (26). The cells 

involved in producing these mediators are epithelial cells, dendritic cells, T-cells, 

B-cells, mast cells, macrophages, eosinophils and ASM cells (28, 247).  

Epithelial cells produce Thymic Stromal Lymphopoietin, when they encounter 

allergens and induce dendritic cells to process the allergens and present them to 

T-lymphocytes (72). Once T-cells are activated by the antigen-priming, they 

produce interleukin IL-13 and IL-4 to induce B-cells and IL-5 to induce 

eosinophils (71, 143). Induced B-cells produce antigen specific immunoglobulin E 

(IgE) which binds to the surface of mast cells. Cross linking of IgEs by the 

allergen  activates mast cells to de-granulate and various mediators such as 

histamines and prostaglandins and de nova synthesis and release of 

leukotrienes resulting in recruiting more inflammatory cells to the site (71). The 

above mechanism is depicted in Figures 1 and 2. IgE can also bind to 

macrophages and induce them to release inflammatory mediators (71).  
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Figure i: Common mechanism for allergic asthma 

 

Figure ii: Cross-linking of allergens with IgE  

 

 

7.2 TH2 biased inflammation and hygiene hypothesis 

   Changes in the environment along with epigenetic factors are thought to 

be the major causes for the recent enhancement in prevalence of asthma (144). 
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These factors influence the severity of the disease and responsiveness to 

therapy (247). The main hypotheses regarding increased prevalence of asthma 

are the hygiene hypothesis and the hypothesis based on TH1–TH2 imbalance 

(111, 332) as a result of increased urbanization.  The “hygiene hypothesis” is a 

widely accepted hypothesis to explain the prevailing increased frequency of 

allergic asthma.  It suggests that increased susceptibility to allergic diseases in 

urban children is due to less exposure to symbiotic microbes resulting in the 

suppression of natural development of the immune system relative to children 

living in a farm environment (130, 257). Diminished exposure to certain 

organisms such as Hepatitis A virus (235)  Fungi (Eurotium and Penicillium) (1)  

and Mycobacterium (69, 303) in early life results in a less robust and defective 

immune system which in turn leads to many chronic inflammatory disorders 

including asthma.  For thousands of years our ancestors have been exposed to 

helminths and harmless environmental saprophytes that live in decomposing 

matter. Continuous exposure of the gut to helminths and saprophytes  enables 

regulatory dendritic cells to continuously sample the gut contents, allergens and 

self (290), thus keeping the immune system in check. A subsequent detection of 

a “known” pathogen of a specific pattern by Toll like receptors results in the  

recruitment of specific T-reg cells to act on the allergen and suppress the 

inflammation (333, 365). This process is called immune tolerance. Because of 

the recent Westernization associated with hygienic measures, these exposures 

have been minimized to a large extent in current conditions and changed the 

gut/airwaymicrobiome. The lack of early exposure to these beneficial organisms 



15 

 

leads to the defective development and regulation of the immune system, 

intolerance to allergens and endotoxins, and increased susceptibility to allergic 

inflammation (289).  

 The hypothesis about TH1 and TH2 imbalance states that people who 

lack induction of the TH1 pathway by viral or bacterial infections early in their life 

are prone to having an activated TH2 pathway later in their life (117, 176). 

Hepatitis A virus (HAV) infection, which occurs through orofecal route, has a 

receptor on human lymphocytes called ‘T cell immunoglobulin domain, mucin-like 

domain-1’ (TIM-1). This receptor is involved in regulating a subset of T 

lymphocytes. The binding of HAV to TIM-1 receptor on lymphocytes might 

suppress the TH2 response and enhance the T-reg response which is anti-

inflammatory (235, 335).  
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Table ii. Inflammatory mediators and functions 

 Mediators names Function 

Amine 
mediators 

  

 Histamine 
 

Bronchoconstriction, airway 
secretion, plasma exudation, 
neural effects, chemotaxis 

 Serotonin  
 

Plasma exudation, neural effects 

              
 

Adenosine Neural effects 

Lipid-derived 
mediators 

  

Prostanoids PGD2 and PGF 2α 
 

Bronchoconstriction, airway 
secretion, neural effects 

 PGE2 
 

Airway secretion, neural effects 

Thromboxane 
(Tx) 

 Bronchoconstriction, plasma 
exudation, neural effects, AHR 

Leukotrienes 
 

LTB4 
 

Chemotaxis 

 LTC4, LTD4& LTE4 
 

Bronchoconstriction, airway 
secretion, plasma exudation, 
chemotaxis  

Peptide 
mediators 

Bradykinin 
 

Plasma exudation, 
bronchoconstriction, airway 
secretion 

 Tachykinins-
Substance P 
 

Neural effects, 
bronchoconstriction, airway 
secretion, plasma exudation 

 Tachykinins-NKA Bronchoconstriction, airway 
secretion, plasma exudation 

 Endothelins 
 

Bronchoconstriction, airway 
secretion, plasma exudation, 
neural effects 

 Complement Chemotaxis, bronchoconstriction, 
airway secretion, plasma 
exudation 

Small 
molecules 

Reactive oxygen 
species 
 

Airway secretion, plasma 
exudation 

 Nitric oxide Airway secretion, neural effects, 
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chemotaxis 
Cytokines Lymphokines - IL-

2, IL-3, IL-4, IL-5, 
IL-IL-13, IL-15, 
IL-16, and IL-17 
 

Eosinophil growth, maturation, 
activation and migration; T 
lymphocyte, growth, 
differentiation, proliferation and 
activation; activation of other cells 
like macrophages, B cells, 
neutrophils, epithelial cells, 
endothelial cells, fibroblasts. 

 Pro-inflammatory 
cytokines-IL-1, 
TNF, IL-6, IL-11, 
GM-CSF, and SCF 
 

Adhesion to vascular endothelium, 
growth factor for B cells, Th2 cells, 
neutrophil chemoattractant, T cell 
and epithelial cell activation, 
activation of fibroblasts, 
proliferation and maturation of 
hematopoietic cells, endothelial 
cell migration, growth factor for 
mast cells 

 Inhibitory cytokines 
-IL-10, IL-1Rα, IFN-
γ, IL-12, and 1L-18 

Inhibits eosinophil survival, inhibits 
eosinophil influx after allergen, 
decrease the proliferation of TH1 
and TH2 cells, decrease the 
activation of macrophages, 
increase the growth of B cells, 
natural killer cells and mast cells,  

Growth 
factors 

PDGF, TGF-β, 
FGF, EGF, and 
IGF 

Fibroblast and ASM proliferation, 
release of collagen, fibroblast 
proliferation, chemoattractant for 
monocytes, fibroblasts, and mast 
cells, 

Chemokines  Attract leukocytes into tissues 
Proteases Mast cell tryptase, 

mast cell chymase 
and matrix 
metalloproteinases 
 

Tryptase increase the 
sensitiveness of airways to 
histamines, proliferation of ASM 
cells; chymase activates TGF-β 
and induces fibroblast proliferation  
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However, not all viral infections, i.e., measles, mumps, chickenpox and herpes 

viral infections, would provide protection against chronic inflammation by calming 

the TH2 responses (31, 232, 251).  

7.3 Storage of inflammatory mediators  

Many inflammatory mediators, cytokines and chemokines, are stored 

within intracellular compartments such as secretory granules, Weibel-Palade 

(WPB) body and vesicles in inflammatory cells and airway structural cells. These 

stored mediators can be differentially released depending on the pathways 

involved such as degranulation (piecemeal degranulation, anaphylactic 

degranulation), exocytosis, and secretion. 

In endothelial cells, WPB stores eotaxin-3 and IL-8 whereas small 

granules other than WPB, store CXCL1 and CCL2 (81). Their exocytosis may be 

regulated by elevated levels of intracellular Ca++, cAMP or phorbol esters (58). It 

has been found that these small granules are distinctly regulated by Protein 

Kinase A and Protein Kinase C compared to WPB in endothelial cells (58, 260).  

Mast cells release inflammatory mediators and other substances through 

constitutive exocytosis and regulated exocytosis (99). Constitutive exocytosis 

happens throughout the lifetime of a cell without a stimulus. Regulated 

exocytosis occurs with a clear stimulus like pH, osmolarity changes, binding of 

ligands to receptors etc. Many secretory pathways are involved in differentially 

releasing the substances to various stimuli. Degranulation involves in readily 

releasing the preformed mediators that are stored in granules, to a stimulus.  In 
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secretion, substances are moved from one containment to another through an 

active process. Exocytosis occurs when vesicles trafficking to the plasma 

membrane, fuse with it and release to the environment. In mast cells, two types 

of degranulation have been identified. One is piecemeal degranulation (PMD) 

and the other one is anaphylactic degranulation (AND) (98, 99). PMD involves 

selective release of substances from granules without fusion with plasma 

membrane or with other granules. In contrast, AND involves granule to granule 

and granule to plasma membrane fusion and a burst of release of granule 

contents mediated by soluble N-ethylmaleimide-sensitive factor attachment 

protein receptors (SNAREs) (245). Calcium flux is important for mast cell 

degranulation (107, 245). Several molecules are involved in mast cell 

degranulation such as Rac1, Rac2, Rab27b (305), Rab3d (285), Cdc42 (157), 

MARCKS (139), etc.  

Many signaling pathways are known to participate in the expression and 

release of inflammatory mediators. Table 3 shows various pathways involved in 

chemokine expression and release in different cell types.  

Table iii. Pathways involved in chemokine expression and release  

Inducer Pathway Chemokin
e 
expressio
n 

Chemokin
e release 

Reference Cells 

IL-13  MAPK and 
STAT-6  

 CCL11 Peng et al, 2004  HASM 

TSLP MAPK and 
STAT-3  

CCL11, 
CXCL8  

 CCL11, 
CXCL8 

Shan et al, 2010  HASM 

IL-1β  MAPK, NF-
κB  

 CCL11, 
CCL2 and 
CCL7 

CCL11, 
CCL2 and 
CCL7 

Wuyts et al, 
2003 

 HASM 

TNF-α  JNK MAPK  CXCL1    Lo et al, 2014 Vascular 
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endothelia
l cells  

TNF-α  p38 MAPK 
and PI3K 

  CXCL1  Lo et al, 2014 Vascular 
endothelia
l cells 

IL-17A  MAPK CCL11  CCL11  Rahman et al, 

2006 

HASM 

IL-17 + 
IL-1β 

MAPK and 
PI3K 

CXCL8  CXCL8 Dragon et al, 
2007 

HASM 

IL-31 MAPK CCL2 CCL2 Wai et al, 2007 Bronchial 
epithelial 
cells 

 

7.4 Extracellular matrix 

The ECM not only supports structural and immune cells (198) in the lung 

but actively participates  in controlling ASM proliferation (152, 252, 313), ASM 

contractility (86, 153) and secretion of inflammatory mediators (60). Through 

changing the phenotypes of ASM cells, the ECM alters the functions of airway 

wall. 

During asthma, ECM components such as collagens, proteoglycan, 

hyaluronan, tenascin-C, versican, elastin, fibronectin, and MMP-1 are aberrantly 

expressed (18, 274). Severe asthmatic patients with persistent asthma and 

permanent structural changes show increased deposition of fibronectin and 

collagen in the sub-epithelial matrix (153). Fibrillar forms of collagen present in 

the ECM bind to ASM cell integrins and influence the rigidity, distensibility and 

the structural stability of ASM cells (36). Consequential mechanical tension in the 

cell wall induces ASM cell differentiation. Furthermore, elastin, MMPs-1, 9 and -

12 are highly expressed between the ASM bundles in asthmatic patients (19, 
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288). Altered concentration of the components of ECM in the lungs promotes 

ASM cell proliferation and migration. 

8. Airway hyperresponsiveness (AHR) 

Excessive ASM contraction occurs in asthmatics (223) due to increased 

actin–myosin coupling (261). Increased concentration of [Ca++]i induces 

contraction of ASM cells through myosin light chain by two pathways. One is 

through calmodulin, which binds to Ca++ and activates the myosin light chain 

kinase (MYLK) by phosphorylating it. MYLK in turn activates myosin light chain 

(109, 370). The other pathway is through the small GTPase, RhoA. Increased 

[Ca++]i induces loading of GTP onto RhoA, which in turn induces Rho associated 

coiled-coil–containing protein kinase (ROCK) to directly phosphorylate myosin 

light chain phosphatase and inactivate it (163). This causes increased 

phosphorylation of myosin light chain.  

[Ca++]i can be increased by acetylcholine released from parasympathetic 

nerves that innervate ASM (150).  Acetylcholine binds to G-protein coupled M2 

muscarinic receptors, which recruit Gq subunit intracellularly (150). This activates 

phospholipase C (PLC) which phosphorylates Phosphatidylinositol 4, 5-

bisphosphate (PIP2) to produce Inositol trisphosphate (IP3) (105). IP3 is a potent 

second messenger for Ca++ released from the sarcoplasmic reticulum to 

cytoplasm.  

Increased extracellular concentration of potassium ions causes opening of 

voltage-gated calcium channels in the plasma membrane and thus increases 

[Ca++]I (105). During asthma, TH2 and TH1 cytokines at increased levels, bind to 
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G-protein coupled receptors (GPCR) and induce various signaling pathways to 

increase [Ca++]i(334).  

Further, integrins are important transmembrane proteins that link the 

intracellular actin-myosin cytoskeleton to the ECM (136). Smooth muscle 

contraction due to the interaction between actin and myosin that is mediated by 

integrins and the ECM is translated into forceful narrowing of the airway wall. 

This is dependent on the strength of binding of ASM cells to the underlying ECM. 

Narrowing of the airway wall can occur with changes in the ECM even in the 

absence of changes in actin-myosin interactions (239, 369).    

Increased airway wall thickness due to ASM cell proliferation can also cause 

increased airway contractility (13, 200, 353).  

9. Airway remodeling 

9.1 Pathological features 

Airway remodeling in asthma has been recognized for over a hundred 

years. However many aspects of this pathological feature such as etiology, 

molecular/cellular mechanisms and relevance to physiology and clinical outcome 

are still not well understood. Among asthmatic patients, only 5-10% of them are 

severely affected (326). However, they are responsible for a large portion (>50%) 

of asthma-related costs (300). Most of the severely affected asthma patients 

have substantial remodeling of the airways. Currently available asthma therapies 

do not control airway remodeling, and this drives the need for continued research 

in this area to develop drugs that can resolve remodeled airways. 
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Characteristic features of airway remodeling include increased ASM mass, 

sub-epithelial fibrosis, goblet cell hyperplasia, sub-mucosal mucus gland 

hypertrophy, desquamation of epithelium, formation of new blood vessels and 

increase ECM deposition (63, 74, 259). Narrowing of the airway lumen and 

obstruction in airflow are a consequence of increased ASM mass through 

generation of greater force when airways contract. Meanwhile, persistent airway 

obstruction is also caused by hyperplasia of sub-epithelial fibroblasts (41, 242). 

9.2 Role of ASM cells in remodeling  

Changes in smooth muscle properties from contractile to proliferative due to 

several environmental stress are fundamental to the increase in ASM mass.  

Many studies have shown that asthmatic subjects exhibit increased ASM mass 

which is one of the important structural changes observed in airway remodeling 

(56). This could be due to smooth muscle hyperplasia, hypertrophy, decreased 

apoptosis, migration of smooth muscle cells from other places (vascular smooth 

muscle, stem cells) and differentiation of fibroblasts into smooth muscle cells. 

While TH2-derived chronic inflammation was thought to be the cause of airway 

remodeling, increasing evidence questions this belief. For instance, the 

augmented ASM mass observed in some children with severe asthma has not 

been associated with inflammation (38) 

Human ASM cells derived from asthmatic or healthy subjects have been 

shown to proliferate in response to a wide array of mitogenic factors (Table 4).  
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Table iv. Mitogenic factors for ASM cell proliferation 

 

 

 

 

 

 

 

 

 

 

 

 

Mitogenic factors induce ASM proliferation by activating signaling 

pathways through the receptors such as receptor tyrosine kinase (RTK) or G-

protein coupled receptors (GPCR). Two distinct downstream signaling pathways 

of these receptors, namely phosphoinositide 3-kinase (PI3K) and extracellular 

signal-regulated kinase (ERK), have been identified as major pathways that 

independently induce ASM cell proliferation (52, 195). Both pathways control the 

expression/activation of cyclin D to exert their proliferative function (263, 265). 

PI3K targets the downstream small GTPase Rac1 which activates the cyclin D1 

promoter through the cAMP response element binding protein (CREB). This 

results in activation of the transcription factor (ATF)-2 binding site. Rac1 is a part 

Mitogenic factor Examples 

Growth factors Platelet derived growth factor (PDGF), epidermal 

growth factor (EGF) 

Cytokines  TNF-α, TGF- β 

Chemokines  CCL3, CCL5, CCL11 

Inflammatory 

mediators   

Histamine, endothelin, thromboxane A2, 

sphingosine 1-phosphate 

Enzymes  Tryptase, thrombin,  elastase, MMP 

ECM components  Fibronectin, Collagen 1 

Others Reactive oxygen species, mechanical stretch 
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of the NADPH oxidase complex which produces H2O2 in response to mitogens. 

Cells treated with mitogens and antioxidants showed attenuated expression of 

cyclin D1 and H2O2, indicating that mitogens induce ASM cell proliferation 

through the PI3-kinase/Rac1/NADPH oxidase pathway (46, 264). It has been 

found that human ASM cells derived from asthmatic patients (AS-HASM) are 

more proliferative than cells derived from non-asthmatic healthy subjects (NA-

HASM) (175). Furthermore, studies have shown that AS-HASM cell proliferation 

is regulated by the PI3K pathway and NA-HASM cell proliferation is controlled by 

the ERK MAPK pathway (52). This intrinsic defect in AS-HASM cells is thought to 

be due to decreased expression of CCAAT-enhancer-binding proteins (C/EBPα) 

(280) or changes in [Ca++]i homeostasis (327). C/EBPα decreases the expression 

of cell-cycle inhibitor p21 which in turn increases ASM cell proliferation. 

Increased biogenesis of mitochondria leading to ASM cell proliferation was noted 

when there was an abnormal influx of extra cellular Ca++ along with activation of 

peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α), nuclear 

respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (mtTFA) 

(327). 

TGF-β is increasingly expressed in the airways of severely affected 

asthmatic patients relative to healthy subjects (284). It induces fibroblasts to 

produce ECM and ASM to increase their cellular size(284). On the other hand, it 

was noted that TGF-β either increases or inhibits ASM cell proliferation (110). 
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10. Asthma therapy 

10.1 Current treatment for asthma  

While there is no current cure for asthma, it can be successfully controlled 

by avoiding exposure to asthma triggers, proper monitoring of asthma symptoms 

and preventive check-ups. Nasal nebulizers containing broncho-dilators such as 

short acting β2-adrenergic receptor agonists or anti-cholinergics along with 

inhaled glucocorticoids are used to control exacerbations (58). Short acting β2-

adrenergic receptor agonists are given to relax the ASM, dilate airway walls, and 

increase air flow. This can be achieved within five minutes and lasts up to 3-6 

hours. Use of β2-adrenergic receptor agonists, alone in patients with severe and 

persistent asthma, leads to exacerbation of asthmatic symptoms with increased 

mortality (258).  In addition, patients using this drug for extended periods of time 

may develop tolerance due to down regulation of β2-adrenergic receptors. 

Simultaneous use of β2-adrenergic receptor agonists and glucocorticoids has a 

beneficial effect as it increases the number of β2-adrenergic receptors by 

inducing receptor gene expression. Glucocorticoids bind directly to the 

glucocorticoid response element (GRE) in the promoter region of β2-adrenergic 

receptor gene and transcriptionally enhance gene expression (174). During 

asthma, the activity of histone deacetylase (HDAC) decreases while that of 

histone acetyl transferase (HAT) increases. Generally, this causes increased 

expression of pro-inflammatory genes. An added benefit of corticosteroid 

treatment is that it inhibits HAT by recruiting HDAC2 to the activated pro-
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inflammatory gene complex and represses pro-inflammatory gene expression 

(25).  

For long-term treatment, patients are prescribed inhaled long-acting β2-

adrenergic receptor agonists (LABAs) with inhaled glucocorticoids and in severe 

asthmatic conditions, systemic glucocorticoids are used.  Prolonged and frequent 

use of systemic glucocorticoids causes side effects such as suppression of 

hypothalamic-pituitary axis, reduced growth rate in children, obesity and reduced 

bone density (218). As alternative controller therapy, there are many other drugs 

available such as leukotriene modifiers, anti IgE therapy, theophylline or mast 

cell stabilizers (362). Leukotriene modifiers either antagonize leukotriene 

receptors or inhibit activation of the 5-lipoxygenase pathway thus decreasing the 

availability of bronchocontrictive peptidoleukotrienes (189, 213, 349). All of these 

alternate controller treatments are relatively less effective than glucocorticoids 

and not all patients respond to them. Non-medicinal treatments such as yoga, 

homeopathy, ayurveda, and acupuncture are also sometimes employed to 

control symptoms (57-59). The following table lists the various groups of 

available drugs, their names and function. 
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Table v: Current treatment options for asthma  

Group Sub- Group Drug Examples Action 

Broncho-

dilators 

Short-acting β2-

agonists, Long-

acting β2-agonists, 

Anti-cholinergics 

Salbutamol 

Formoterol, 

Salmeterol 

Tiotropium 

(Spiriva) and 

ipratropium 

bromide. 

 

Relaxing smooth 

muscle cells 

Glucocorticoids Inhaled 

glucocorticoids 

Prednisone Transactivation of 

anti-inflammatory 

proteins by binding to 

GRE and 

Transrepression    of 

pro-inflammatory 

proteins by blocking 

translocation of 

transcription factors 

to nucleus and 

recruiting HDAC2. 

Leukotriene 

modifiers 

 Montelukast and 

Zafirlukast 

Antagonism of 

cysteinyl-leukotriene 

type 1 receptors 

Leukotriene 

modifiers 

 Pranlukast and 

Zileuton 

Inhibition of the 5-

lipoxygenase 
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pathway of 

leukotriene 

metabolism 

Mast cell 

stabilizers 

 Cromolyn Inhibits degranulation  

Monoclonal 

anti-IgE 

antibody  

 Omalizumab Inhibits IgE binding to 

mast cells 

PDE4 inhibitors  Rolipram/ 

Methylxanthines 

Inhibits enzyme PDE 

and increase the 

concentration of 

cAMP 

Monoclonal 

antibody to 

block receptor-

IL4Rα 

 Dupilumab Simultaneously 

blocking IL4 and IL13 

Antibody 

against TSLP 

In clinical trials AMG 157 Blocks development 

of Th2-inflammation. 

Serotonin 

antagonist 

In clinical trials 5-HT (5-hydroxy 

tryptamine) 

Reduces 

inflammation 

 

Major limitations of current therapies for asthma are multiple etiologies 

and incomplete understanding of the underlying mechanisms of asthma 

development. In general, glucocorticoids are effective as an asthma symptom 

controller in about 90% of asthmatic patients. However, there is a certain 
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percentage of patients (5-10%) refractory to glucocorticoid therapy (256). 

Another disadvantage of steroid therapy is unwanted side effects as they are 

broad spectrum drugs. Severe asthmatic patients who use glucocorticoid inhalers 

for extended periods of time are known to develop systemic side effects such as 

decreased bone density, obesity, depression, retardation in growth and hormonal 

imbalances.  Long time users of inhalers are also known to develop oral thrush 

(147). Using spacers may reduce this Candida infection since spacers reduce the 

deposition of drugs on oral surfaces. 

10.2 Studies aimed at developing treatment options 

Despite effective control of symptoms in a majority of asthmatic patients 

by corticosteroid therapy, in the small portion of severely affected patients that 

are refractory (256), even high oral doses of steroids or other maintenance 

therapies such as leukotriene receptor antagonists are ineffective. In recent 

years, many potential therapeutic targets have been evaluated and progressed to 

human clinical trials in order to develop new treatment strategies for severe 

asthmatics who are refractory to current therapies.  New treatment approaches 

are aimed at reducing airway inflammatory cells (eosinophils and neutrophils) 

and ASM mass, optimizing airway caliber and blocking specific effector 

mechanisms (256).  

Patients with refractory asthma have multiple phenotypes caused by 

various pathogenic origins that may be responsible for different mechanisms 

leading to the development and persistence of airway inflammation and 
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remodeling. Thus, targeting any single effector molecule or effector cell may 

control asthma symptoms in some patients, but may not be effective in others. 

10.2.1 Enhancing bronchodilation 

Studies have found that adding a long–acting muscarinic cholinergic 

receptor antagonist (LAMA), such as tiotropium or aclidinium bromide to the 

standard regimen of corticosteroids and long-actingβ2-adrenergic receptor 

agonists (LABA), has improved lung function in severe asthmatic patients (125). 

Another study showed LAMA works better than LABA with corticosteroids in 

severe refractory asthma (256), although other studies have reported that 

tiotropium causes side effects such as difficulty in urination and retention (125).     

10.2.2 Reducing ASM mass: Bronchial Thermoplasty 

Drugs that are currently available for asthma are able to control airway 

inflammation and AHR. However, there are no medications available to reduce 

remodeling of structural tissues such as the increased ASM mass seen in severe 

asthma. Due to the presence of increased amount of smooth muscle mass and 

excessive contraction of airway smooth muscle cells in asthma, attempts have 

been made to reduce the muscle mass by a method called bronchial 

thermoplasty. It is a new, non-drug, minimally invasive procedure developed to 

treat patients with severe persistent asthma.  Bronchial thermoplasty is 

performed by delivering a specific amount of radiofrequency thermal energy to 

the airway wall. A flexible bronchoscope is inserted through the mouth or nose 

and gently pushed to reachable airways (~3-10 mm) of the patient’s lungs. A 

catheter system is extended through the tip of the bronchoscope to make contact 
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with the airway wall and expose it to thermal energy of ~ 65°C. Radiofrequency 

ablation has been used to treat cardiac arrhythmias and lung cancer as well. This 

technology was first tested in animal models before use in humans. In animal 

studies, it was found that bronchial thermoplasty destroys the actin-myosin 

interaction, disrupting the ASM contractile process (100).  

This is performed in patients who are 18 years of age or older and have 

severe asthma that is not controlled by inhaled corticosteroids and long-acting 

β2-adrenergic receptor agonists.  The procedure is performed over three 

separate visits and has been found to be effective for up to five years (348).   

This approach showed improvement in lung function (57, 170). But the 

disadvantage of this approach is that it can be done only in the larger airways 

and it could result in unwanted effects like collapse of lungs.  

10.2.3. Decreasing airway inflammatory cells  

In order to suppress eosinophilia in severe refractory asthma, specific 

antibodies and antisense RNAs have been employed.  A monoclonal antibody  

against IL-5 (hMAb, mepolizumab) (345), antisense RNA against the common 

beta chain of cytokine receptors that regulates IL-5, IL-3 and GM-CSF(6) 

(needed for the eosinophil maturation and migration) and antisense RNA against 

the CCR3 receptor that regulates eosinophil recruitment mediated by the 

chemokine eotaxin have all been tested and  shown to help  in controlling 

asthmatic symptoms (123).   

For suppression of neutrophilia, an antagonist of CXCR2, a receptor that 

mediates the effects of the chemokine IL-8 and an  antagonist of chemoattractant 
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receptor-homologous molecule expressed on Th-2 cells (CRTh2) which gets 

activated by prostaglandin D2 have been evaluated. Blockade of these receptors 

was found to enhance lung function and reduce asthmatic symptoms (164). 

10.2.4 Obstructing airway inflammatory effector mediators 

Many studies have been carried out to prevent the binding of cytokines IL-

4 and IL-13 to the alpha chain of their common receptor using antibodies. These 

cytokines are necessary for IgE production. Mixed results were obtained in 

different studies, with some reporting improvement in symptoms and others not.  

The existence of multiple mechanisms of asthma pathogenesis may explain the 

variation in the outcome of these studies (16). 

Treatment with hMAb and antisense RNA against the mediator IL-5 

effectively controlled asthma exacerbation (123, 345). Blocking of IgE binding to 

its receptor (Fc€R1) with MAb (omalizumab) also proved to be an effective 

therapy for refractory asthma (291, 299, 331). Recently antibodies against TSLP 

(124) and agonists at serotonin receptors (5HT2) (250) have also been shown to 

be beneficial in controlling asthma symptoms. 

10.2.5 Immunotherapy 

Immunotherapy is a new approach in which specific allergens are 

administered subcutaneously or sublingually for 5-6 years. At first the specific 

allergen is administered in small doses and then gradually increased to reach an 

optimal concentration. This enables the body to develop tolerance to the 

allergen, preventing a strong immune response when there is a subsequent 

encounter with the same allergen (22, 78, 113, 114). Immunotherapy is similar to 
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vaccination; the difference is that the former blunts the immune system and the 

latter provokes the immune system (33). This approach is directed towards the 

allergen and not the symptoms, and after 5-6 years of therapy patients have 

been shown to experience attenuated asthma-like symptoms. However, the 

disadvantage is that some patients develop severe anaphylactic responses 

during treatment (344). 

  11 Role of CD38 

11.1 Background 

CD38 is a 45 kDa transmembrane type II glycoprotein, ubiquitously 

expressed on the plasma membranes of cells (238). The CD38 gene with 70,776 

bases is located on chromosome 4 in the plus strand (4p15). The mRNA of CD38 

contains 1491 bases with 8 exons (NCBI).  The CD38 protein has 300 amino 

acids (UniProtKB). It has a short cytoplasmic N-terminal region with 20 amino 

acids and an extensive extra-cellular C-terminal region with 256 amino acids. 

The extracellular domain has multiple enzymatic functions such as ADP-ribosyl 

cyclase activity that converts β-NAD into cADPR, cADPR hydrolase activity that 

converts cADPR into ADP ribose and NAD+ glycohydralase activity that converts 

NAD+ into ADP-ribose (205). The first exon of CD38 transcript is responsible for 

producing the N-terminal and transmembrane portions of the protein while exons 

2-8 are encode the extra-cellular C-terminal region of the protein (249). CD38 

expressed on the plasma membrane of cells has many functions such as cell 

adhesion, calcium signaling and signal transduction (238).  
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Receptor activity of CD38 in leukocytes (T and B lymphocytes) and 

dendritic cells promotes activities such as adhesion and proliferation. CD38 plays 

a role in antigen priming in T lymphocytes and in proliferation of B lymphocytes 

by initiating upstream signaling cascades (222). In dendritic cells, CD38 plays a 

role in cell trafficking from peripheral tissues to lymph nodes and in antigen 

presentation to T lymphocytes (267, 268). In bone tissue, CD38 induces 

osteoclasts to increase bone absorption (311). In pancreas, it stimulates beta 

islet cells to secrete insulin. Impairment or loss of CD38 in these cells leads to 

type II diabetes mellitus (361).  

CD38 serves as a molecular marker in some disease states. It is used as 

a negative prognostic marker in chronic lymphocytic leukemia (CLL) (84). 

Presence of an increased number of circulating CD38+ B lymphocytes indicates 

that they are immature and in a proliferative stage. Typically, only B lymphocytes 

that are found in germinal centers of secondary lymphoid organs possess CD38 

(84). Once they come out of the germinal center and enter the marginal zone, 

they become CD38 negative. In CLL, because B cells proliferate rapidly, they 

escape normal maturation processes and enter the blood stream prematurely 

from lymph nodes. Therefore, the presence of CD38 on circulating B cells is an 

indicator of aberrant proliferation as seen in CLL. Similarly, increased expression 

of CD38 by regulatory T lymphocytes is also indicative of progressive CLL (219). 

In human immunodeficiency virus (HIV) infection, the amount of CD38 present on 

T lymphocytes correlates with disease progression (219).  
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11.2 Role of cyclic ADP-ribose (cADPR) 

In ASM cells, the enzymatic activity of CD38 is important because it 

produces cADPR which is involved in ASM contraction and AHR. The 

extracellular multi-enzymatic region of CD38 generates the potent second 

messenger cADPR required for the release of [Ca++]i from stores (204-208). 

There are many mechanisms proposed for the entry of extracellularly produced 

cADPR into the cytoplasm. Some of the suggested methods are via 

internalization by the plasma membrane (83), through connexin-43 channels 

(308), by a catalytically active channel created by 2 or 4 CD38 monomers (112) 

or by a nucleotide transporter (97). 

cADPR, after entering the cytoplasm, binds to an accessary protein FKBP 

12.6 and induces the ryanodine receptor to release Ca2++ into the cytoplasm from 

the sarco-endoplasmic reticulum, which serves as an intracellular calcium store 

(371). The released Ca++ in turn induces ryanodine receptors to release more 

calcium ions. This mechanism is referred to as “calcium induced calcium release 

(CICR)” (210) 

11.3. Calcium homeostasis 

Calcium concentrations within a cell are much lower (100-200 nM) than 

the extracellular compartment (1-2 mM) (96, 240). Normal calcium homeostasis 

in the intracellular compartment is strictly maintained. by the regulation of Ca++ 

“influx” from outside of the cell, “release” of Ca++ from intracellular stores and 

calcium re-uptake from cytoplasm into the sarco-endoplasmic reticulum through 

‘sarco-endoplasmic reticulum calcium ATPase’ (SERCA). Influx of calcium ions 
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occurs through various ion exchangers, voltage gated channels, calcium-release 

channels, second messengers and pumps. Other channels involved in 

maintaining [Ca++]i homeostasis are Store Operated Channels (SOC) and ORAI-

STEMI channels through a mechanism called Store Operated Calcium Entry 

(SOCE) (304, 310).  

11.4 Excitation-contraction coupling  

Agonists of subunit–Gq tagged GPCR such as histamine, bradykinin, 

cysteinyl leukotrienes, thrombin, serotonin and acetylcholine released from 

parasympathetic nerve terminals are known to regulate the calcium dynamics of 

ASM cells and their contractility through receptors in the ASM cell membrane 

(193). When ASM cells are excited they elicit a biphasic intracellular calcium 

response (234, 276). After stimulation, [Ca++]i  concentration shows a sharp 

elevation followed by a rapid fall but is still above the basal level and in a steady 

state. Altered intracellular calcium dynamics triggers many downstream cell 

signaling pathways. Elevated Ca++ binds to the protein calmodulin which 

activates Myosin Light Chain Kinase (MLCK). Activated MLCK, in turn 

phosphorylates the myosin and promotes its binding to actin. Sliding of actin-

myosin bridges causes the smooth muscle cells to contract (370). This explains 

the role CD38 plays in AHR (180). 

12. MicroRNAs 

12.1 Biogenesis and Mode of action 

MicroRNAs are produced endogenously in the nucleus. They are non-

coding, ~ 22 nucleotide long small RNAs involved in almost all cellular processes 
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including development, differentiation, metabolism, and organ functions as well 

as in many pathological processes such as inflammation, stress response, heart 

failures, renal failures, various forms of cancer and mental disorders (29). In 

mammals more than 50% of all protein coding genes are regulated by 

microRNAs. They exhibit a specific spatio-temporal expression pattern during 

environmental changes and developmental stages.  An individual microRNA can 

inhibit the expression of hundreds of genes, fine tune them at different levels and 

maintain the cellular network.  Aberrantly expressed microRNAs cause 

disturbances in the cellular network and lead to diseases. Up to now, about 1500 

microRNAs have been discovered in the human genome. Thus, microRNAs are 

emerging gene regulators, playing roles in a variety of disorders. Their 

expression and function are controlled through transcriptional and 

posttranscriptional mechanisms (29). Aberrant expression of microRNAs could 

be due to a single nucleotide polymorphism or nucleotide deletions either on their 

mature sequence or at the cleavage sites where RNA-lll endonucleases Drosha 

and Dicer act to cleave pri-microRNAs and pre-microRNAs, respectively (29).  

Pathogenic processes could also be initiated due to a polymorphism at the 

3’UTR of a target mRNA where microRNAs bind (297).  

12.2 MicroRNAs in asthma 

Accumulating evidence indicates that microRNAs play a crucial role in the 

development of asthma (21).  Changes in the expression levels of microRNAs 

can be identified in airway structural tissues such as epithelial and smooth 

muscle cells and serum from asthmatic patients (338). Altered microRNA levels 
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play a part in the pathogenesis of asthma. Based on several microRNA-target-

predicting algorithms, studies have proved that microRNAs control many 

signaling pathways involved in asthma pathogenesis such as expression of 

MMP, TGF-β signaling, inflammatory processes and NF-κB signaling (197, 338). 

Many studies in mouse models and with human cell cultures have revealed the 

role of microRNAs in asthma. A spontaneous development of asthma–like 

phenotype with inflammation and airway remodeling was observed in miR-155 

knockout mice (262). Another study showed that increased expression of miR-

126 is involved in TH2 inflammation and Toll-Like Receptor (TLR-4) activation in 

asthma (233). Chiba et. al. demonstrated that expression of miR-133a is reduced 

after IL-13 treatment of human bronchial smooth muscle cells (66). The above 

studies suggest that down-regulation of miR-155 or miR-133a and up-regulation 

of miR-126 may have a role in the pathogenesis of asthma.  

MiR-146a is expressed in a variety of cell types such as alveolar epithelial 

cells, bronchial epithelial cells and bronchial smooth muscle cells and alters the 

expression of IL-1-β-induced chemokines such as IL-8 and RANTES (273). Thus 

MiR-146a may have a role in the pathogenesis of asthma as well.  

Stimulation of human airway smooth muscle cells with IL-1β, IFN-γ and 

TNF-α down-regulates the expression of miR-25.  Inhibitors of miR-25 decreased 

the expression of RANTES and eotaxin but increased the expression of TNF-α. 

With KLF-4 as a target protein, which in turn is a potent inhibitor of smooth 

muscle-specific gene expression (197) and playing a role in regulating many pro-

inflammatory cytokines, miR-25 may play an important role in asthma 
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pathogenesis. MiR-708 plays a role in cell proliferation. In small cell lung 

carcinoma, highly expressed miR-708 down regulates the trans-membrane 

protein TMEM88 by directly binding to the 3’UTR of the transcript. Reduced level 

of TMEM88 protein, a negative regulator of the Wnt signaling pathway, induces 

cell proliferation in lung carcinoma (169). An anti-proliferative function of miR-708 

was observed in renal cell carcinoma, where it targets survivin, a member of the 

inhibitor of apoptotic protein (IAP) family (294). Survivin plays a role in 

proliferation and inhibiting apoptosis. It is highly expressed in embryonic tissues, 

cancerous cells and vascular smooth muscle cells during vascular injuries (294). 

Based on these studies, I hypothesize that miR-708 may have a potential role in 

ASM cell proliferation.  

12.3 MicroRNA therapy 

MicroRNAs can regulate multiple genes of redundant pathogenic 

pathways of a disease, and fine tune them to varying degrees to gain a favorable 

effect. Thus, unlike other therapeutics that target only one gene or protein, 

microRNA therapy can target multiple genes resulting in a more effective and 

potent outcome (338).  

Different approaches to microRNA therapy to reverse the disease 

condition include administration of synthetic mimics of specific microRNA or of 

viral vectors to replace the shortage of microRNAs that are down-regulated in the 

disease condition.  Another option is delivery of antagomirs of microRNAs or 

microRNA sponges, which compete for the same target as the microRNA of 

interest into cells to block the microRNAs that are over-expressed due to a 
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pathological condition. For example, tumor development in a mouse model of 

non-small cell lung cancer was reduced when mimic of let-7 was injected intra-

tumorally. Likewise, administration of an antagomir of miR-21 to a mouse model 

of gliomas decreased the activity of MMPs (118).  Yet another example is the 

complete regression of B lymphoid tumors by administration of  miR-21 to mice in 

vivo (237). 

Various chemical modifications such as, 2’-O-methyl, 2’-O-methoxyethyl, 

2’-fluoro, RNA with a phosphorothioate modification, modified nucleotide or 

locked nucleic acid, have been employed to increase the cellular uptake and 

stability of synthetic oligonucleotides (mimic of miRNA or inhibitors of miRNA). 

These chemically modified therapeutic nucleotides were conjugated with 

cholesterol at their 3’ end and wrapped in a lipid bilayer as lipid nanoparticles. 

These nanoparticles, when introduced into a tissue, fuse with the phospholipid 

bilayer of the cell membrane and gain entry to the cytoplasm. There they interact 

with endosomes at low pH and release therapeutic miRNAs intracellularly (44, 

49).  

In an experiment carried out to evaluate the efficacy of anti-miR-122  

therapy in hepatic C viral (HCV) infection, antagomir of miR-122 (5 mg/kg) with 

Locked Nucleic acids (LNA) modifications was injected intravenously into 

chimpanzees once a week for 12 weeks. After 2 weeks from the end of 

treatment, the viral titer was dramatically lower (400 times lower in serum and 

200 times lower in liver). In phase II trials in humans, administration of a 

chemically modified antagomir of miR-122 has shown successful results for HCV 
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infection. Recently, Regulus Therapeutics, Inc., announced that administration of 

chemically modified GalNac-conjugated anti-miR-122 at 2 mg/kg subcutaneously 

in patients with HCV as mono therapy reduced viral load by 4.1 log10 on day 29. 

They declared that the drug was safe, well-tolerated and has a promising 

pharmacokinetic profile.  

Thus far, miR-34, a deregulated microRNA in many cancers, is the only 

microRNA tested in clinical trials as replacement therapy. A synthetic miRNA 

mimic of miR-34 named MRX34 is in phase I clinical trials (Mirna Therapeutics) 

for liver cancer in humans.  Here MRX34 is incorporated into liposome as 

SMARTICLES (Marina Biotech) and delivered. 

Other approaches to deliver microRNA in vivo are (i) cationic liposomes 

(PU-PEI, DOTMA) (68) that have low immunogenicity and high cellular uptake 

but retain cytotoxicity and are non-biodegradable, (ii) neutral liposomes (siPORT, 

SLNs) (77, 325, 352) with low immunogenicity but have non-specific uptake and 

toxicity that accumulate in the lung, (iii) viral vectors that are stable and have high 

transfection efficiency but are highly immunogenic and toxic, (194) that have low 

immunogenicity but have poor cellular uptake with rapid degradation and renal 

clearance.  

While there are some draw backs and questions that remain unanswered 

about microRNA therapy such as their off-target effect, bio-stability, 

immunogenicity, toxicity and renal clearance, various reports have shown that 

the microRNA therapy can be well-tolerated in animals as well as in humans (39, 

192, 352) since microRNAs are endogenous unlike siRNAs which are synthetic.  
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13. Previous findings from our laboratory 

• Induction of CD38 expression by  pro-inflammatory cytokines in ASM 

cells (87) 

• Contribution of CD38 and cADPR to AHR (89). 

• Allergen sensitized Cd38 KO mice exhibit attenuated AHR relative to 

wild type mice (134).  

• ASM cells obtained from Cd38 KO mice showed reduced calcium 

responses compared to control mice in response to stimulation with 

spasmogens (89).  

• In the presence of 8-Br-cADPR, an antagonist of cADPR, HASM cells 

showed reduced calcium responses to contractile agonists (87). 

• Pro-inflammatory cytokine TNF-α-induced CD38 expression has 

transcriptional regulation through the MAP kinase and PI3 kinase 

pathway (180, 323). 

• Transcriptional regulation of CD38 occurs through transcription factors 

NF-κB and AP-1 (323).  

• Increased expression of CD38 in asthmatic HASM cells compared to 

NA-HASM cells (179). 

• Class 1A PI3 kinases increase CD38 expression in human ASM cells 

following exposure to TNF-α (180). 
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14. Significance of the study 

Asthma is a chronic respiratory disorder that is known for centuries. 

Despite considerable increase in knowledge regarding this disorder, several 

aspects about the pathogenic mechanism remain unclear and have hindered the 

development of completely effective treatment options or the prevention 

strategies. Currently, symptomatic treatment with corticosteroids is the first line of 

effective therapy for asthma, although a small number of patients are refractory 

to steroid therapy (256). Further, some asthmatic patients on therapy with other 

available drugs for asthma either do not respond well or show side effects. Thus, 

it is important to identify novel molecules that play a critical role in the 

pathogenesis of asthma and evaluate their function and regulation in order to 

define alternative targets for asthma therapy.  

In this context, previous studies from this laboratory have identified CD38 

on ASM cells as a potential asthma target. CD38, a transmembrane protein, is 

expressed in a variety of cells (191, 216, 224). ASM cells are known to play 

many important roles in the pathogenesis of asthma such as airway contractility, 

airway inflammation and remodeling (261). CD38 possesses multiple enzymatic 

activities. Its ADP-ribosyl-cyclase activity converts the nucleotide metabolite β-

NAD into cADPR, which is a potent intracellular Ca++ releaser (180). In HASM 

cells, elevated Ca++ in the intracellular compartment causes contraction of 

smooth muscle cells resulting in AHR, one of the cardinal features of asthma (87-

89, 133).   
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Previous studies from our laboratory indicate that signaling pathways 

associated with CD38 may provide novel therapeutic strategies in attenuating 

AHR and asthma. TNF-α and TH2 cytokines induce CD38 expression 

transcriptionally via transcription factors NF-κB and AP-1 and MAP Kinases (322, 

323). CD38 protein and transcripts are differentially induced in ASM cells derived 

from asthmatic patients compared to non-asthmatic patients (178). Since 

expression of the above transcription factors and MAP Kinases are comparable 

between asthmatic and non-asthmatic ASM cells, the differentially induced CD38 

expression could be due to post-transcriptional mechanisms which could 

potentially involve aberrantly regulated microRNAs in ASM cells during asthma.  

In this investigation, I explored the potential role of microRNA in the regulation on 

CD38 expression in HASM cells and in a mouse model of allergic asthma. 

Further, the effect of microRNA on the proliferative function of ASM cells was 

investigated. The findings of this study revealed novel regulatory pathways of 

CD38 expression and identified other asthma-related genes that contribute to the 

overall pathogenesis of asthma.  

 

 

 

 

 

 

 



46 

 

 

 

CHAPTER ii 

 

miR-140-3p regulation of TNF-alpha-induced CD38 expression in human 

airway smooth muscle cells 

 

Joseph A. Jude,1 Mythili Dileepan,1 Subbaya Subramanian,2 Julian Solway,3 

Reynold A. Panettieri, Jr.,4Timothy F. Walseth,5 and Mathur S. Kannan1 

 

Department of Veterinary and Biomedical Sciences1, University of Minnesota, 

Twin Cities, Minnesota;  Department of Surgery2, University of Minnesota, Twin 

Cities, Minnesota; Department of Medicine3, University of Chicago, Chicago, 

Illinois; Department of Medicine4, University of Pennsylvania, Philadelphia, 

Pennsylvania; and  Department of Pharmacology5, University of Minnesota, Twin 

Cities, Minnesota 

 

 

 

 

Reprinted from American Journal of Physiology Lung Cellular and Molecular 

Physiology, 303: L460–L468, 2012 

 



47 

 

Background  

CD38, a membrane protein expressed in airway smooth muscle (ASM) 

cells, plays a role in cellular Ca2+ dynamics and ASM contractility. In human ASM 

(HASM) cells, TNF-α induces CD38 expression through activation of MAPKs, 

NF-κB, and AP-1, and its expression is differentially elevated in cells from 

asthmatic patients compared with cells from non-asthmatic subjects. The CD38 

3′-untranslated region (UTR) has targets for miR-140-3p. We hypothesized that 

miR-140-3p regulates CD38 expression in HASM cells by altering CD38 mRNA 

stability. Basal and TNF-α-induced expression of miR-140-3p was determined in 

non-asthmatic human ASM (NA-HASM) and asthmatic human ASM (AS-HASM) 

cells. NA-HASM and AS-HASM cells were transfected with control, miR-140-3p 

mimic, or miR-140-3p antagomirs, and CD38 expression and CD38 mRNA 

stability were determined. Luciferase reporter assays were used to determine 

miR-140-3p binding to the CD38 3′-UTR. Activation of p38, ERK, and JNK 

MAPKs, NF-κB, and AP-1 was determined in miR-140-3p mimic-transfected NA-

HASM. TNF-α attenuated miR-140-3p expression in NA-HASM and AS-HASM 

cells but at a greater magnitude in AS-HASM cells. CD38 mRNA expression was 

attenuated by miR-140-3p mimic at comparable magnitude in NA-HASM and AS-

HASM cells. Mutated miR-140-3p target on the CD38 3′-UTR reversed the 

inhibition of luciferase activity by miR-140-3p mimic. CD38 mRNA stability was 

unaltered by miR-140-3p mimic in NA-HASM or AS-HASM cells following arrest 

of transcription. TNF-α-induced activation of p38 MAPK and NF-κB was 

attenuated by miR-140-3p mimic. The findings indicate that miR-140-3p 
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modulates CD38 expression in HASM cells through direct binding to the CD38 3′-

UTR and indirect mechanisms involving activation of p38 MAPK and NF-κB. 

Furthermore, indirect mechanisms appear to play a major role in the regulation of 

CD38 expression. 
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Introduction 

CD38 is a cell surface protein expressed in a variety of mammalian cells, 

including airway smooth muscle (ASM) cells (350). CD38 possesses multiple 

enzymatic activities, with ADP-ribosyl cyclase activity generating cyclic ADP-

ribose (cADPR), a Ca 2+-mobilizing agent (158, 209). Past studies in our 

laboratory established that the CD38/cADPR pathway plays an important role in 

cellular Ca++ dynamics and ASM contractility (87, 89). In human ASM (HASM) 

cells, TNF-α induces CD38 expression through activation of the transcription 

factors NF-κB and AP-1 and MAPK kinases (322). Among the MAPKs, p38 and 

ERK MAPKs mediate TNF-α-induced CD38 expression through modulation of 

transcript stability (322). We recently reported that, in ASM cells from subjects 

with a history of asthma, TNF-α-induced CD38 expression was differentially 

elevated, although the mechanistic basis of this differential elevation was not 

clearly understood (178). 

MicroRNAs (miRNAs) are noncoding small RNAs emerging as 

posttranscriptional regulators in various biological processes, including 

inflammation; they can regulate expression of their target genes by destabilizing 

the transcripts or by translational repression (29). Accumulating evidence has 

proven that miRNAs are associated with various pathological conditions in 

humans. Recent studies have shed light on the role of miRNAs in airway 

disorders such as asthma, chronic obstructive pulmonary disorder, and idiopathic 

pulmonary fibrosis. Recent studies report a role for miR-21 in determining the T 

helper (Th) type 1 (Th1)/Th2 immune response to antigen, thus playing a role in 
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the pathogenesis of allergic asthma (220, 221). Other studies have attempted to 

determine the role of specific miRNAs in airway inflammation and allergic airway 

hyperresponsiveness (AHR). Studies of the roles of let-7 and miR-155 in IL-13 

signaling and the potential role of miR-133 in RhoA expression were among 

those that highlight the roles of miRNA in the pathogenesis of airway 

inflammatory disorders (66, 220, 221, 231). In the present study, bioinformatic 

tools were used to determine potential miRNA response elements in the 3′-

untranslated region (UTR) of the human CD38 gene. Expression of miR-140-3p, 

which came as a top hit in one of the target prediction algorithms, and its 

functional role in CD38 expression were determined in asthmatic ASM (AS-

HASM) and nonasthmatic ASM (NA-HASM) cells. We hypothesized that miR-

140-3p downregulates CD38 expression in HASM cells through 

posttranscriptional mechanisms. 
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Materials and methods 

Reagents. 

Tris-base, glucose, HEPES, and other chemicals were purchased from Sigma 

Chemical (St. Louis, MO), unless otherwise noted. Human recombinant TNF-α 

(rhTNF-α) was purchased from R & D Systems (Minneapolis, MN); HBSS and 

DMEM from GIBCO-BRL (Grand Island, NY); TRIzol, SuperScript III reverse 

transcriptase, NCode miRNA first-strand synthesis kit, Platinum SYBR Green 

quantitative PCR (q-PCR) mix, and Lipofectamine RNAiMax from Invitrogen Life 

Technologies (Carlsbad, CA); miRVana RNA isolation kit from Ambion Life 

Technologies (Carlsbad, CA); NE-PER nuclear/cytoplasmic extraction kit from 

Pierce (Rockford, IL); antibodies for MAPKs and NF-κB and lamin A/C, actin, α-

tubulin, MAPK kinase 3 (MKK3), the dual-specificity phosphatase MKP-1, and 

nuclear receptor-interacting protein (NRIP-1) from Cell Signaling Technology; 

TransAM ELISA kits (NF-κB and AP-1) from Active Motif (Carlsbad, CA); 

QuikChange Lightning Multi Site-Directed mutagenesis kit from Agilent 

Technologies (Santa Clara, CA); control (C.ele-miR-67), miR-140-3p mimic, and 

antagomir (hsa-miR-140-3p mature sequence 5′-

UACCACAGGGUAGAACCACGG-3′) oligonucleotides from Dharmacon 

(Lafayette, CO); and chemiluminescent substrate for horseradish peroxidase 

(HRP) from Millipore (Billerica, MA). 

HASM cell cultures and treatments. 

Procedures for isolation and culture of HASM cells are described elsewhere (87, 

178). Briefly, HASM cells were obtained from the laboratory of R. A. Panettieri, 
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Jr. The cells were from de-identified healthy donors (NA-HASM cells) and donors 

who died due to severe asthma (AS-HASM cells). All experiments were 

conducted in HASM cells in passage 4 or 5. In all the experiments, prior to 

exposure to TNF-α, the cells were growth-arrested for 48 h in arresting medium 

without serum, but in the presence of transferrin and insulin. In experiments to 

determine the expression of CD38 and miR-140-3p, the cells were exposed to 

vehicle (0.1% BSA in PBS) or 10 ng/ml rhTNF-α for 0–24 h. To determine CD38 

mRNA stability, the cells were exposed to TNF-α for 12 h and then washed to 

remove TNF-α before addition of actinomycin D (5 μg/ml) to arrest transcription. 

Total RNA was collected at 0, 6, 12, and 24 h after transcriptional arrest. Data 

are reported for only 0- and 24-h time points for brevity. In experiments to 

determine the activation of NF-κB and MAPKs, cells were exposed to rhTNF-α 

(10 ng/ml) for 1 h and 15 min, respectively. 

Extraction of total RNA and cDNA synthesis. 

Total RNA was extracted from HASM cells following the manufacturer's 

instructions (miRVana, Ambion). Briefly, HASM cells (5 × 104 – 2 × 105) were 

collected in sterile PBS and centrifuged, and the pellet was homogenized in a 

buffer provided in the kit. Column-eluted total RNA was quantified in a 

bioanalyzer (Agilent NanoDrop). To synthesize cDNA from small RNA, 200 ng of 

total RNA were polyadenylated, and cDNA was synthesized using NCode first-

strand synthesis kit according to the manufacturer's instructions. In parallel, 200 

ng of total RNA were used to synthesize cDNA from larger RNA using the 

SuperScript III reverse transcription kit. 
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Extraction of whole cell/nuclear lysates. 

Whole cell lysates were obtained by sonication of HASM cells (2–5 × 105) in lysis 

buffer (50 mM Tris, 100 mM NaCl, 50 mM NaF, 40 mM β-glycerol phosphate, 2 

mM EDTA, 0.2 mM Na3VO4, 1% Triton X-100, and protease inhibitor cocktail, pH 

7.4). Nuclear extracts were collected from HASM cells (5–6 × 105) using the NE-

PER cytoplasmic and nuclear extraction kit, according to the manufacturer's 

protocols. 

Transient transfection of HASM cells. 

HASM cells were plated into appropriate formats and cell number (2 × 105 

cells/well in a 6-well plate or 5 × 105 cells/plate in a 100-mm culture plate) 24 h 

prior to transfection. Transfection was performed using Lipofectamine RNAimax 

according to the manufacturer's instructions. Briefly, control (C.ele-miR-67), miR-

140-3p mimic, or miR-140-3p antagomir oligonucleotides were transfected at 5–

100 nM. Control oligonucleotide was transfected at 50 or 100 nM. 

q-PCR. 

To determine miR-140-3p expression, a forward primer specific to miR-140-3p 

and a universal primer targeting the poly (T) of the cDNA were used according to 

the manufacturer's instructions. Mammalian small nuclear RNA U6 was used for 

normalization of miR-140-3p expression. To determine CD38 expression, q-PCR 

was performed using Brilliant SYBR Green Master Mix, as described elsewhere 

(322). Cyclophilin was amplified as the housekeeping control. 
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Site-directed mutagenesis. 

Site-directed mutagenesis was performed in luciferase-CD38 3′-UTR reporter 

plasmids. CD38–3′-UTR (481 bases long; UGC genome browser) has a 

predicted miR-140-3p target site at 8 bases after the stop codon in the CD38 

mRNA. The first miR-140-3p target had a 7-base complementarity to the miR-

140-3p. A second target site with a 6-base complementarity to miR-140-3p was 

found 21 bases from the first target site. The first target site (mutated 1) or both 

target sites (mutated 1+2) were mutated to determine the selectivity of miR-140-

3p binding to these sites. The QuikChange Lightning Multi Site-Directed 

mutagenesis kit was used to mutate 4 bases (taGaGGa) at the first target site 

(CTGTGGT) or 3 bases (aGaGGa) at the second target site (TGTGGT) (Fig. 2A, 

top). Twenty bases flanking the target site with mutation were designed as 

primers for mutation. The primers for each mutagenesis were as follows: first 

target site mutation primer 

(TCTGAGATCTGAGCCAGTCGtaGaGGaTGTTTTAGCTCCTTGACTCC) and 

second target site mutation primer 

(TTTAGCTCCTTGACTCCTaGaGGaTTATGTCATCATACATGACTCAGC). Wild-

type and mutant plasmids were expanded in Escherichia coli and sequenced to 

confirm mutations. 

SDS-PAGE and Western blotting. 

Total protein (10 μg) was resolved in a 4–20% Tris·HCl SDS gel and 

electrophoretically transferred onto a polyvinylidene difluoride membrane. The 

blot was blocked in 5% skim milk solution in PBS containing 0.05% Tween 20 for 
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≥4 h. The blot was probed with relevant primary antibodies and then incubated 

with HRP-conjugated secondary antibodies. After washes in PBS containing 

0.05% Tween 20, the blots were treated with the chemiluminescent substrate for 

HRP and exposed to X-ray film for visualization of bands. 

ELISA. 

For determination of NF-κB or AP-1 activation, ELISA was performed according 

to the manufacturer's instructions (Activ Motif) and as previously described (178). 

Briefly, 3 μg of nuclear extracts from HASM cells were incubated in a multiwell 

plate coated with oligonucleotides carrying consensus NF-κB or AP-1 

sequences. Competitor oligonucleotide (20 pmol, 20× excess) was added to 

some reactions to determine the specificity of the binding. 

ADP-ribosyl cyclase assay. 

The ADP-ribosyl cyclase activity of HASM cell lysates was quantified by 

measurement of the reverse cyclase activity of CD38. HASM whole cell lysates 

containing 5 μg of total protein were incubated for 1 h at 37°C with or without 10 

mM nicotinamide in the presence of 0.45 mM cADPR. The reverse cyclase 

reaction was stopped by addition of 25 μl of 1 M HCl, vacuum-filtered through a 

0.45-μm protein-binding membrane (Immobilon, Millipore), and neutralized with 

15 μl of 2 M Tris-base. The filtrate was incubated with reagent mixture containing 

2 μM rezasurin, 0.76% (vol/vol) ethanol, 4 μM flavin mononucleotide, 40 μg/ml 

alcohol dehydrogenase, and 0.04 U/ml diaphorase in NaH2PO4/Na2HPO4 buffer, 

pH 6.8, at room temperature. Fluorescence was quantified (excitation at 544 nm 

and emission at 590 nm) in a fluorometer (FLUO star Galaxy, BMG 
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Biotechnologies), and the rate of fluorescence emission was calculated. The 

quantity of NAD generated in the reaction was calculated from a standard curve 

generated from known NAD. 

Data analysis. 

Each experiment was performed three to six times (NA-HASM or AS-HASM cells 

obtained from 3–6 donors were used). Values are means ± SE. Data were 

statistically analyzed by Student's t-test or one-way ANOVA (depending on the 

number of experimental groups analyzed) using GraphPad Prism software. 

Differences were considered significant at P ≤ 0.05. 
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Results 

Expression of miR-140-3p in HASM cells. 

HASM cells were exposed to vehicle (0.1% BSA in sterile PBS) or TNF-α (10 

ng/ml) for 24 h, and expression of miR-140-3p and CD38 mRNA was 

determined. In TNF-α-treated NA-HASM cells, miR-140-3p expression was 

marginally reduced compared with vehicle-treated cells (Fig. 1A). In TNF-α-

treated AS-HASM cells, miR-140-3p expression was significantly reduced 

compared with vehicle-treated cells (Fig. 1B). The basal miR-140-3p expression 

levels were comparable in NA-HASM and AS-HASM cells (Fig. 1C). Exposure to 

TNF-α for 24 h resulted in downregulation of miR-140-3p expression in NA-

HASM and AASM cells, but to a greater magnitude in AS-HASM cells (Fig. 1C). 

Exposure to IL-13, a Th2 cytokine with a critical role in asthma pathogenesis, did 

not alter miR-140-3p expression in either group of HASM cells (data not shown). 
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Fig. 1. Expression of miR-140-3p in vehicle-treated (C) and TNF-α-treated  

nonasthmatic airway smooth muscle (NA-HASM) and asthmatic airway 

smooth muscle (AS-HASM) cells. A: in the presence of TNF-α, miR-140-3p 

expression was marginally attenuated in NA-HASM cells compared with cells 

treated with vehicle (n = 5). B: in AS-HASM cells, TNF-α significantly attenuated 

miR-140-3p expression (n = 6). *P < 0.05. C: basal miR-140-3p expression levels 

were comparable between NA-HASM and AS-HASM cells. In the presence of 

TNF-α, miR-140-3p expression was significantly attenuated in AS-HASM cells 

compared with NA-HASM cells. *P < 0.05. (Data in A–C are from the same 

experiments.) D: when NA-HASM (NA) and AS-HASM (A) cells were exposed to 

TNF-α for 0–24 h, both showed attenuated miR-140-3p expression at 24 h, 

although reduction was statistically significant only in AS-HASM cells (n = 3). *P 

< 0.05. E: TNF-α produced a time-dependent increase in CD38 mRNA 

expression in NA-HASM and AS-HASM cells. Magnitude of CD38 induction in 
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AS-HASM cells was higher in AS-HASM cells, although differential increase was 

not statistically significant because of larger standard error in AS-HASM cells. 

 

In another set of experiments, miR-140-3p expression was determined at 

different times following exposure to TNF-α. Significant attenuation of miR-140-

3p expression was noted at 24 h of TNF-α exposure in AS-HASM cells compared 

with NA-HASM cells (Fig. 1D). TNF-α induced CD38 mRNA expression in a time-

dependent manner in NA-HASM and AS-HASM cells, with larger magnitudes of 

CD38 expression in AS-HASM cells, confirming our earlier findings (178) (Fig. 

1E). 

miR-140-3p mimic inhibits TNF-α-induced CD38 up-regulation in HASM 

cells. 

To determine the functional role of miR-140-3p in CD38 expression in HASM 

cells, we transfected NA-HASM and AS-HASM cells with miR-140-3p mimic or 

control oligonucleotides and determined the effects on CD38 mRNA expression 

and ADP-ribosyl cyclase activity. Transfection of NA-HASM cells with a range of 

miR-140-3p mimic oligonucleotides resulted in a concentration-dependent 

increase in miR-140-3p expression (Fig. 2A). In cells transfected with miR-140-

3p mimics, upregulation of TNF-α-induced CD38 mRNA was significantly 

attenuated in a concentration-dependent manner, although without a linear 

relationship to the mimic concentration (Fig. 2B). At higher concentrations of 

miR-140-3p mimic (20 and 50 nM), TNF-α-induced ADP-ribosyl cyclase activity 

was significantly reduced compared with the cells transfected with 50 nM control 
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oligonucleotide (Fig. 2C). At the optimal concentration (50 nM), miR-140-3p 

mimic transfection attenuated TNF-α-induced CD38 mRNA expression in NA-

HASM and AS-HASM cells to a similar magnitude (Fig. 2D). Transfection of NA-

HASM and AS-HASM cells with miR-140-3p mimic oligonucleotides also resulted 

in comparable inhibitory effects on TNF-α-induced ADP-ribosyl cyclase activity 

(Fig. 2E). Transfection of antagomirs for miR-140-3p did not alter basal or TNF-

α-induced ADP-ribosyl cyclase activity in either group of HASM cells (Fig. 2E). 
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Fig. 2. Inhibition of TNF-α-induced CD38 expression in HASM cells by miR-

140-3p mimic. Mimics of miR-140-3p (140 mimic) or antagomirs for the 

microRNA (miRNA) were transiently transfected into NA-HASM and AS-HASM 

cells, and CD38 mRNA expression and ADP-ribosyl cyclase activity were 

determined. A: transient transfection of NA-HASM cells with miR-140-3p mimic 

oligonucleotide resulted in a concentration-dependent increase in miR-140-3p 

expression (n = 3). B: transfection of miR-140-3p mimics in NA-HASM cells 

resulted in a concentration-dependent attenuation of TNF-α-induced CD38 

mRNA expression, although the relationship between mimic concentration and 

CD38 expression was not linear (n = 3). *P < 0.05, all concentrations vs. control 

oligonucleotide (Cont oligo). C: in NA-HASM cells transiently transfected with 

miR-140-3p mimic oligonucleotides, ADP-riboysl cyclase activity was significantly 

attenuated at higher concentrations of the mimic (n = 3). *P < 0.05 vs. Cont oligo. 

D: when NA-HASM and AS-HASM cells were transiently transfected with 50 nM 

control oligonucleotide or miR-140-3p mimic oligonucleotide, CD38 mRNA 

expression was comparably attenuated in both groups of cells (n = 2). *P < 0.05. 
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E: TNF-α-induced ADP-ribosyl cyclase activity was attenuated to a comparable 

magnitude in NA-HASM and AS-HASM cells in the presence of miR-140-3p 

mimic oligonucleotides (n = 3). Basal [control (C)] and TNF-α-induced (T) ADP-

ribosyl cyclase activities were unaltered in NA-HASM or AS-HASM cells 

transiently transfected with miR-140-3p antagomir oligonucleotides (n = 3). *P < 

0.05 vs. Control oligonucleotide (T). 

 

miR-140-3p targets the CD38 3′-UTR. 

To determine whether miR-140-3p brings about its effects through direct binding 

to the 3′-UTR of CD38, dual luciferase reporter assays were performed in human 

embryonic kidney (HEK)-293 or NIH 3T3 cells. Cotransfection of cells with miR-

140-3p mimic oligonucleotides and the wild-type Luc-CD38 3′-UTR resulted in a 

marginal 10–20% inhibition of luciferase activity in HEK-293 or NIH 3T3 cells. 

Site-directed mutation of the first miR-140-3p target on the CD38 3′-UTR partially 

reversed the inhibition by miR-140-3p mimic oligonucleotide in HEK-293 cells 

(Fig. 3A). When the luciferase reporter assay studies were repeated in NIH 3T3 

cells, site-directed mutation of the first miR-140-3p target completely reversed 

the luciferase inhibition by miR-140-3p mimic (Fig. 3B). Mutation of both miR-

140-3p targets on the CD38 3′-UTR resulted in elevated luciferase activity in the 

presence of miR-140-3p mimic oligonucleotides (Fig. 3B). To determine the 

effect of miR-140-3p mimic transfection on CD38 mRNA stability, NA-HASM and 

AS-HASM cells were transfected with 20 nM control oligonucleotide or miR-140-

3p mimic. At 12 h following TNF-α exposure (0 h), mimic-transfected NA-HASM 
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and AS-HASM cells showed attenuated CD38 mRNA levels compared with 

control oligonucleotide-transfected cells (Fig. 3C). There were no further 

reductions in CD38 mRNA levels in mimic-transfected cells at 6, 12, and 24 h in 

either group of HASM cells (Fig. 3C; 6- and 12-h data not shown). 
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Fig. 3. miR-140-3p targets the CD38 3′-untranslated region (UTR). Luciferase 

reporter assays were performed in Luc-CD38-3′-UTR constructs containing wild-

type or mutated (Mutated) target. A: 2 miR-140-3p targets on CD38 3′-UTR and 

mutations on each target (top). ORF, open reading frame. Bottom: in human 

embryonic kidney (HEK)-293 cells cotransfected with wild-type Luc-CD38-3′-UTR 
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and miR-140-3p mimic oligonucleotides, luciferase activity [relative light units 

(RLU)] was marginally reduced compared with cells cotransfected with 

scrambled-sequence oligonucleotides; in HEK-293 cells cotransfected with 

target-mutated Luc-CD38-3′-UTR and miR-140-3p mimic oligonucleotides, 

inhibition of luciferase activity was partially reversed (n = 3). B: in NIH 3T3 cells 

cotransfected with wild-type Luc-CD38-3′-UTR and miR-140-3p mimic 

oligonucleotides, luciferase activity was marginally reduced compared with cells 

cotransfected with scrambled-sequence oligonucleotides. When the first miR-

140-3p target on Luc-CD38-3′-UTR was mutated (mutated 1), inhibition of 

luciferase activity was completely reversed. When both miR-140-3p targets on 

Luc-CD38-3′-UTR were mutated (mutated 1+2), luciferase activity was 

significantly elevated in the presence of miR-140-3p mimic oligonucleotides (n = 

4). C: in NA-HASM and AS-HASM cells transfected with miR-140-3p mimic 

(mimic 140), CD38 mRNA levels were comparably attenuated at 0 h (NA-0 and 

A-0; following TNF-α removal and transcriptional arrest) compared with cells 

transfected with control oligonucleotides. There were no further reductions in 

CD38 mRNA levels at 6, 12, or 24 h (NA-24 and A-24) following transcriptional 

arrest in mimic-transfected cells of either group. *P < 0.05 vs. wild-type or 

mutated vector cotransfected with scramble oligonucleotide. **P < 0.05 vs. wild-

type vector cotransfected with miR-140-3p mimic oligonucleotide. ActD, 

actinomycin D. 
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miR-140-3p mimic attenuates activation of p38 MAPK in HASM cells. 

Results of the 3′-UTR luciferase reporter assay indicated that direct 

binding of miR-140-3p mimic on the 3′-UTR of CD38 only partially accounted for 

the inhibition of CD38 expression. We previously reported that the MAPKs 

mediate TNF-α-induced CD38 expression in HASM cells (322). Therefore, to 

determine whether changes in MAPK activation were involved in the miR-140-3p 

effect on CD38 expression, activation of p38, ERK, and JNK MAPKs was 

determined in HASM cells following transfection with miR-140-3p mimic 

oligonucleotides. Transfection with miR-140-3p mimic reduced the TNF-α-

induced p38 phosphorylation, with no significant changes in the expression of 

total p38 (Fig. 4, A and B). TNF-α-induced activation of ERK or JNK was not 

altered by transfection with miR-140-3p mimic (Fig. 4, C and D). Expression of 

MKK3, a Ser/Thr protein kinase upstream of p38 MAPK, was not altered in the 

presence of miR-140-3p mimic oligonucleotides (Fig. 4E). We also determined 

the expression of MKP-1, which is known to inactivate p38, ERK, and JNK 

MAPKs. Transfection of HASM cells with miR-140-3p antagomir or mimic 

oligonucleotides did not alter MKP-1 expression (Fig. 4F). 
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Fig. 4. miR-140-3p mimic attenuates activation of p38 MAPK in NA-HASM 

cells. TNF-α-induced activation of p38, ERK, and JNK MAPKs was determined 

in NA-HASM cells transiently transfected with 50 nM control oligonucleotides or 

miR-140-3p mimic oligonucleotide. A: representative Western blot showing 

marginally reduced TNF-α-induced p38 MAPK activation in miR-140-3p mimic 

transfection. Phos, phosphorylated. B: average relative densitometry 

measurement (n = 5) of Western blot showing marginally reduced p38 MAPK 

activation in miR-140-3p mimic-transfected NA-HASM cells. C and D: basal and 
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TNF-α-induced activation of ERK and JNK MAPKs was not altered in the 

presence of miR-140-3p mimics. Blots are representative of 5 independent 

experiments. E: expression of MAPK kinase 3 (MKK3), a kinase upstream of p38 

MAPK, was not altered by transient transfection with miR-140-3p mimic 

oligonucleotides. Blot is representative of 3 independent experiments. F: 

representative blot showing unaltered expression of MKP-1, a dual-specificity 

phosphatase, in HASM cells transfected with miR-140-3p antagomir or miR-140-

3p mimic oligonucleotides (n = 3). 

 

miR-140-3p mimic attenuates activation of NF-κB in HASM cells. 

We previously reported that the transcription factors NF-κB and AP-1 mediate 

TNF-α-induced CD38 expression in HASM cells (181, 322). Transient 

transfection of HASM cells with miR-140-3p mimic oligonucleotides marginally 

attenuated activation of the transcription factor NF-κB (Fig. 5, A and B). 

Transfection with miR-140-3p did not have a significant effect on TNF-α-induced 

AP-1 activation (Fig. 5C). Expression of NRIP was not altered by miR-140-3p 

mimic transfection in HASM cells (Fig. 5D). 

 

B A 
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Fig. 5. miR-140-3p mimic attenuates activation of transcription factor NF-κB 

in NA-HASM cells. TNF-α-induced activation of NF-κB was determined in NA-

HASM cells transiently transfected with 50 nM control oligonucleotide or miR-

140-3p mimic oligonucleotides. A: TNF-α-induced nuclear translocation of NF-κB 

C 
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(phosphorylated p65 subunit) was marginally attenuated in NA-HASM cells 

transfected with miR-140-3p mimic oligonucleotides. B: TNF-α-induced activation 

of NF-κB, measured as binding of p65 subunit to a consensus DNA motif 

[absorbance at 450 nm (Abs 450)], was marginally reduced in NAASM cells 

transfected with miR-140-3p mimic oligonucleotides (n = 5). C: TNF-α-induced 

activation of AP-1 (measured as binding of phosphorylated c-Jun to consensus 

DNA sequence) was unaltered in the presence of miR-140-3p mimic 

oligonucleotides (n = 4). D: expression of nuclear receptor-interacting protein 

(NRIP), which is associated with NF-κB activation in other cell systems, was not 

altered in HASM cells transfected with mimic 140 (n = 3). Blots (A and D) are 

representative of results from 3 independent experiments. C, vehicle; T, TNF-α. 
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Discussion 

This is the first report of the regulatory role of miR-140-3p in CD38 

expression in HASM cells. Our findings show that miR-140-3p expression is 

lower in HASM cells from donors with a history of severe asthma, in the presence 

of TNF-α. Our findings also indicate that the effects of miR-140-3p on CD38 

expression are mediated through direct binding of miRNA to the CD38 transcript 

and indirect mechanisms involving activation of p38 MAPK and NF-κB. The net 

result of the modest inhibition of activation of p38 and NF-κB by miR-140-3p 

transfection is the robust attenuation of CD38 expression in HASM cells. 
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Previous studies conducted in our laboratory established that TNF-α-

induced CD38 expression in HASM cells is mediated at the transcriptional and 

posttranscriptional levels (181, 322). The MAPKs ERK1/2 and p38 play a role in 

posttranscriptional regulation, whereas p38 and JNK MAPKs have a role in 

transcriptional regulation of the CD38 gene (322). One of the objectives of the 

current study was to determine the role of miR-140-3p in the regulation of CD38 

expression. Studies by other investigators revealed that specific miRNAs, such 

as miR-21 and miR-133a, contribute to the pathogenesis of airway inflammatory 

disorders (66, 221). Chiba et al. (66) showed that IL-13, a Th2 cytokine with a 

prominent role in allergic asthma, downregulates the expression of miR-133a. It 

is suggested that the downregulation of miR-133a leads to elevated RhoA, a 

procontractile protein in the ASM cells. CD38 contributes to the development of 

AHR in mouse models of asthma (133, 134). The CD38-null mouse developed 

significantly lower levels of airway responsiveness than the wild-type mouse in 

response to the contractile agonist methacholine (89). The CD38-null mouse also 

developed reduced AHR compared with the wild-type mouse following brief 

exposure to TNF-α or IL-13 (133, 134). Therefore, investigating the miRNAs that 

target CD38 gene expression in HASM cells may lead to an understanding of the 

signaling pathways involved in the pathogenesis of AHR and asthma. 

Multiple web-based target prediction algorithms [Target Scan 

(www.targetscan.org), miRWalk (www.ma.uni-heidelberg.de), and miRbase 

(www.mirbase.org)] were used to determine potential miRNA targets in the CD38 

3′-UTR. From the list of predicted miRNAs, miR-140-3p was chosen for further 
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investigation, because it has been reported as one of the highly expressed 

miRNAs in HASM cells (354). Furthermore, in HASM cells exposed to a mixture 

of inflammatory cytokines including TNF-α, there is significant downregulation of 

several miRNAs, including miR-140 and some miRNAs involved in the regulation 

of the smooth muscle phenotype (197). In earlier publications by other 

investigators, miR-140 has been reported as a cartilage-specific miRNA in 

mouse and zebrafish (329, 351). However, these reports were largely referring to 

miR-140-5p, one of the two mature miRNAs originating from the precursor miR-

140. In the present study, we focused on miR-140-3p and its role in regulation of 

CD38 expression. 

An altered miRNA expression profile has been reported in T cells obtained 

from patients with severe asthma, indicating that miRNAs are among the 

mechanisms involved in the cellular phenotypic changes observed in asthma 

(328). Attenuation of miR-140-3p expression in AS-HASM cells by TNF-α 

suggests that this miRNA may have a role in the asthmatic phenotype in ASM 

cells. The mechanisms involved in miR-140-3p downregulation by TNF-α in 

HASM cells are yet to be determined. Recent studies in human chondrocytes 

showed that the proximal upstream region of pri-miR-140 has functional 

response elements for chondrogenic transcription factors Sox5/Sox6/Sox9, 

indicating transcriptional regulation of miR-140-3p and miR-140-5p expressions 

(363). Different transcriptional regulators and epigenetic mechanisms such as 

DNA methylation may be involved in the altered miR-140-3p expression in AS-

HASM cells. The finding that miR-140-3p expression is attenuated to a larger 
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magnitude in AS-HASM cells in the presence of TNF-α suggests an anti-

inflammatory role for this miRNA. The potential anti-inflammatory role for miR-

140-3p is supported by previously reported findings of downregulated miR-140 

expression in whole lung lysate from rats exposed to cigarette smoke extract 

(167). We also found that IL-13, a Th2 cytokine with a major role in asthma, did 

not alter the expression levels of miR-140-3p in NA-HASM or AS-HASM cells 

(data not shown). These observations suggest that miR-140-3p may have a 

functional role selective to TNF-α signaling. TNF-α is a cytokine with a major role 

in the pathogenesis of asthma (4, 321). TNF-α expression is elevated in the 

airways of asthmatic patients, and some recent therapeutics for asthma target 

TNF-α and its receptors in lungs (34, 45, 160, 367).  Therefore, defining the role 

of miRNAs involved in the regulation of TNF-α-induced genes in ASM may have 

a therapeutic potential. Although TNF-α attenuates miR-140-3p expression to a 

greater magnitude in AS-HASM cells, it does not appear to solely contribute to 

the differential induction of CD38 expression by TNF-α that we reported in a 

recent study (178). 

Although the inhibitory effect of miR-140-3p mimic on luciferase activity 

was modest, mutation of both miR-140-3p target sites reversed the inhibition, 

indicating binding of the miRNA to the 3′-UTR of CD38. Since the 3′-UTR of the 

CD38 transcript possesses targets for other miRNAs as well, a significant effect 

on stability or translatability of the CD38 transcript may require multiple miRNAs. 

However, the significant inhibition of CD38 mRNA and protein expression by 

miR-140-3p mimic oligonucleotides suggests that additional mechanisms are 
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involved in miR-140-3p regulation of CD38 expression in HASM cells. In this 

context, we found that miR-140-3p mimic attenuated p38 MAPK activation with 

no apparent effects on ERK or JNK MAPKs, demonstrating the selectivity of miR-

140-3p for specific targets on cell signaling pathways in HASM cells. The 

marginal inhibitory effect of miR-140-3p mimic on p38 MAPK activation does not 

appear to be related to the upstream kinase MKK3 or the MAPK dual-specificity 

phosphatase. However, it remains to be determined whether other MAPK 

phosphatases with higher substrate specificity to p38 MAPK mediate the miR-

140-3p-mediated attenuation of p38 activation. 

The significant attenuation of TNF-α-induced CD38 mRNA expression by 

miR-140-3p mimic suggests that the regulation by miRNA may be through 

transcription of the CD38 gene in HASM cells. The transcription factors NF-κB 

and AP-1 mediate TNF-α-induced CD38 expression in HASM cells (181). The 

role of NF-κB signaling in airway inflammatory disorders has been demonstrated 

through in vitro studies and animal models (90, 318). For this reason and 

because of the availability of numerous synthetic inhibitors of NF-κB signaling, 

this pathway remains an attractive therapeutic target in airway inflammatory 

disorders such as asthma and chronic obstructive pulmonary disorder. Although 

the DNA binding activity of NF-κB was only marginally reduced by miR-140-3p 

mimic transfection, the reduction was a consistent finding in five independent 

experiments. Furthermore, a recent study reported attenuation of NF-κB 

activation by miR-140-3p in hepatocytes, primarily by targeting NRIP-1, a 

coactivator of NF-κB (316). This is an unlikely mechanism in HASM cells, since 
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NRIP-1 expression was unaltered in cells transfected with miR-140-3p. The 

results of CD38 mRNA stability also showed that, following transcription arrest, 

CD38 mRNA levels were maintained for up to 24 h. The expression levels of 

miR-140-3p remain high for up to 72 h following transfection. If the effects of 

miR-140-3p on CD38 transcript levels were due to binding to 3′-UTR target sites, 

we would have seen a significant decline in transcript levels following 

transcription arrest. A lack of correlation between miR-140-3p and CD38 

expression following TNF-α treatment strengthens the argument that miR-140-3p 

effects are largely indirect and time-dependent. Furthermore, overexpression of 

miR-140-3p causes a significant decline in CD38 transcript levels before arrest of 

transcription, with no further decline in transcript levels for up to 24 h, favoring a 

mechanism that involves indirect transcriptional regulation of CD38 expression in 

HASM cells. 

In summary, miR-140-3p regulates TNF-α-induced CD38 expression in 

HASM cells through direct interaction with the 3′-UTR of CD38 mRNA and 

indirect mechanisms involving activation of p38 MAPK and the transcription 

factor NF-κB. However, we cannot rule out other indirect mechanisms, such as 

competing endogenous RNAs (320), in the regulation of CD38 expression in 

HASM cells. Understanding the signaling pathways involved in miR-140-3p 

regulation of CD38 expression in HASM cells may reveal novel therapeutic 

targets for AHR and asthma. 
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Background  

The cell-surface protein CD38 mediates airway smooth muscle (ASM) 

contractility by generating cyclic ADP-ribose, a calcium-mobilizing molecule. In 

human ASM cells, TNF-α augments CD38 expression transcriptionally by NF-κB 

and AP-1 activation through inducing MAPK and PI3K signaling. CD38−/− mice 

develop attenuated airway hyperresponsiveness following allergen or cytokine 

challenge. The post-transcriptional regulation of CD38 expression in ASM is 

relatively less understood. In ASM, microRNAs (miRNAs) regulate inflammation, 

contractility, and hyperproliferation. The 3’ Untranslated Region (3’UTR) 

of CD38 has multiple miRNA binding sites, including a site for miR-708. MiR-708 

is known to regulate PI3K/AKT signaling and hyperproliferation of other cell 

types. We investigated miR-708 expression, its regulation of CD38 expression 

and the underlying mechanisms involved in such regulation in human ASM cells. 

Growth-arrested human ASM cells from asthmatic and non-asthmatic 

donors were used. MiRNA and mRNA expression were measured by quantitative 

real-time PCR. CD38 enzymatic activity was measured by a reverse cyclase 

assay. Total and phosphorylated MAPKs and PI3K/AKT as well as enzymes that 

regulate their activation were determined by Western blot analysis of cell lysates 

following miRNA transfection and TNF-α stimulation. Dual luciferase reporter 

assays were performed to determine whether miR-708 binds directly 

to CD38 3’UTR to alter gene expression. 

Using target prediction algorithms, we identified several miRNAs with 

potential CD38 3’UTR target sites and determined miR-708 as a potential 
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candidate for regulation of CD38 expression based on its expression and 

regulation by TNF-α. TNF-α caused a decrease in miR-708 expression in cells 

from non-asthmatics while it increased miR-708 expression in cells from 

asthmatics. Dual luciferase reporter assays in NIH-3 T3 cells revealed regulation 

of expression by direct binding of miR-708 to CD38 3’UTR. In ASM cells, miR-

708 decreased CD38 expression by decreasing phosphorylation of JNK MAPK 

and AKT. These effects were associated with increased expression of MKP-1, a 

MAP kinase phosphatase and PTEN, a phosphatase that terminates PI3 kinase 

signaling. 

In human ASM cells, miR-708 regulates the TNF-α-induced-

CD38 expression directly by binding to 3’UTR and indirectly by regulating JNK 

MAPK and PI3K/AKT signaling and has the potential to control airway 

inflammation, ASM contractility and proliferation. 
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Introduction 

The cell-surface protein CD38 mediates calcium signaling in airway smooth 

muscle (ASM) and innate immune responses (268). The ADP-ribosyl cyclase 

activity associated with CD38 converts β-nicotinamide adenine dinucleotide (β-

NAD) to cyclic adenosine diphosphoribose (cADPR) and adenosine 

diphosphoribose (ADPR) (205). In previous investigations in ASM, we showed 

that cADPR mediates calcium release from the sarcoplasmic reticulum and 

promotes contractility (87, 88). Furthermore, CD38−/− mice exhibit attenuated 

methacholine responsiveness and airway hyperresponsiveness (AHR) following 

allergen sensitization and challenge as well as after intranasal IL-13 challenge 

(89, 120, 134). ASM cells obtained from CD38−/− mice exhibit attenuated 

intracellular calcium responses to contractile agonists relative to cells obtained 

from wild-type mice (89). These observations indicate a prominent role 

of CD38 in AHR, a cardinal feature of asthma in humans. 

The transcriptional regulation of CD38 in ASM involves the transcription factors 

NF-κB and AP-1 and signal transduction mechanisms involving activation of MAP 

kinases and PI3 kinase (179, 322). CD38 is ubiquitously expressed in many cell 

types in addition to ASM cells and its expression is augmented by inflammatory 

and Th2 cytokines including TNF-α and IL-13 (87),(24) (2, 67, 93, 116, 186, 196). 

While the transcriptional regulation of CD38 expression has been thoroughly 

investigated in mammalian cells, there is a paucity of information regarding post-

transcriptional regulation of its expression. In this regard, we recently reported 

evidence for such regulation involving the microRNA (miRNA) miR-140-3p (177). 
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In human ASM cells, human recombinant TNF-α-(rh-TNF-α)-

induced CD38 expression is attenuated by miR-140-3p through both direct 

binding to the 3’ Untranslated Region (3’UTR) of CD38 as well as indirect 

mechanisms involving activation of p38 MAP kinase and the transcription factor 

NF-κB. CD38 3’UTR is ~481b long and has multiple miRNA binding sites, 

including a site for miR-708. Prior studies have revealed a prominent regulatory 

role of miR-708 in the expression of phosphatase and tensin homolog (PTEN), 

which in turn regulates PI3 kinase signaling through activation of AKT(340). In 

other cell types, PI3 kinase/AKT signaling regulates expression of target genes 

by activating the proinflammatory transcription factor NF-κB (215). An effect of 

miR-708 on PTEN expression is expected to profoundly affect cytokine-

induced CD38 expression in ASM cells by modulating PI3 kinase signaling. In 

ASM cells obtained from asthmatics, rh-TNF-α induces significantly 

greater CD38 expression compared to its expression in cells from non-

asthmatics(178). In this study, we investigated the expression of miR-708, its 

potential additive role with miR-140-3p in the regulation of CD38 expression and 

the underlying mechanisms involved in such regulation in human ASM cells. We 

also examined miR-708 expression and its effects on CD38 expression in ASM 

cells obtained from asthmatics to determine whether the augmented cytokine-

mediated CD38 expression stems from altered regulation through miR-708. 
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Materials and methods 

Reagents 

DMEM was from GIBCO-BRL (Grand Island, NY); rh-TNF-α was from R&D 

Systems (Minneapolis, MN); TRIzol, SuperScript III reverse transcriptase, NCode 

miRNA first-strand synthesis kit, Platinum SYBR Green quantitative PCR (q-

PCR) mix, Opti-MEM® reduced serum medium and Lipofectamine® RNAiMax 

transfection reagent were from Invitrogen Life Technologies (Carlsbad, CA); 

Brilliant lll Ultra-Fast SYBR Green q-PCR Master Mix from Agilent Technologies, 

Inc (Santa Clara CA); Fugene HD transfection reagent was from Roche 

Diagnostics (Indianapolis, IN); QuikChange Lightning Multi Site-Directed 

mutagenesis kit was from Agilent Technologies, Inc (Santa Clara, CA); control 

oligo (scrambled sequence mimic), miR-708 mimic (mature miR-708 sequence: 

5’-AAGGAGCUUACAAUCUAGCUGGG-3’), and antagomir oligonucleotides 

were from Dharmacon (Lafayette, CO); Dual Luciferase Reporter Assay System 

was from Promega (San Luis Obispo, CA); NIH-3 T3 cells were from ATCC 

(#CRL-1658, Manassas, VA); chemiluminescent substrate for horseradish 

peroxidase (HRP) was from Millipore (Billerica, MA); rabbit primary antibodies 

against major MAPK family, PTEN, AKT2, AKT and β-actin as well as anti-rabbit 

secondary antibody were from Cell Signaling Technology (Danvers, MA); mouse 

primary antibodies for MKP-1, α-actin and goat-anti mouse antibodies were from 

Santa Cruz Biotechnology (Dallas, TX). Tris-base, glucose, HEPES and other 

chemicals were from Sigma Chemical Co. (St. Louis, MO) unless otherwise 

mentioned. 
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Culture and transfection of HASM cells 

Isolation, culture and maintenance of HASM cells was carried out as described in 

our previous publications (87, 178, 323)  Briefly, HASM cells obtained from 

unidentified healthy donors or from fatal asthmatics were maintained in culture 

and used until the smooth muscle phenotype is sustained (2–5 passages). 

DMEM supplemented with 10% FBS, 100 U/ml penicillin, 0.1 mg/ml 

streptomycin, and 0.25 g/ml amphotericin B was used to grow the HASM cells up 

to 80% confluency. Rh-TNF-α (10 ng/ml) was used to induce the expression of 

CD38 in HASM cells while control cells were treated with 0.1% BSA in PBS. 

Since human cells used in this study were obtained from unidentified donors, it is 

considered Exempt under National Institutes of Health guidelines. Drs. Panettieri 

and Kannan have Institutional Review Board approval for the use of these cells in 

the study. 

Transient transfection of primary HASM cells with miR-708 mimic, 

antagomir or scrambled sequence mimic at 10–100 nM was carried out in the 

presence of Lipofectamine® RNAiMax transfection reagent. Reduced serum 

Opti-MEM® medium was used as a base to prepare the transfection complex 

containing Lipofectamine and the oligonucleotides. After 20 min of incubation at 

room temperature the transfection complex was gently dropped on to the cell 

suspension (1.5-2.0 × 105 cells/well in 24 well plates or 2.5-3.0 × 105 cells/well in 

6 well plates) which was seeded few minutes (<3 min) prior to the addition of 

transfection complex. Transfected cells were incubated at 37°C for 24 h, growth 
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arrested for 24 h, exposed to rh-TNF-α for another 24 h before isolation of total 

RNA or total protein. 

Total RNA isolation 

PureLink and mirVana RNA isolation kits (Ambion Life Technologies, Carlsbad, 

CA) were used to isolate total large RNA and small RNA, respectively, according 

to the manufacturer’s instruction. 

cDNA synthesis and quantitative q-PCR 

NCode™ miRNA First-Strand-cDNA synthesis kit was used to synthesize cDNA 

followed by q-PCR for miRNAs using the Platinum q-PCR Kit according to the 

manufacturer’s instruction. Briefly, expression of miR-708 at constitutive levels 

and after induction with rh-TNF-α was measured by q-PCR after poly-

adenylation. Whole miR-708 sequence was employed as a specific forward 

primer and universal q-PCR primer was used as a reverse primer. Mammalian 

small nuclear RNA U6, a spliceosomal RNA, served as a control housekeeping 

gene. To measure changes in the expression of CD38 (178, 322) and JNK at 

transcript levels (following miR-708 mimic or scrambled sequence mimic 

transfection), q-PCR was performed using Brilliant SYBR Green Master Mix. 

Primers for JNK were selected using Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and performed in the Stratagene 

Mx3000p q-PCR system, under the following conditions: 1 cycle of 95°C for 5-

min segment, 40 cycles of 95°C for 30 s, 59°C for 30 s, 72°C for 45 s, and a final 

1 cycle of 95°C for 1 min, 59°C for 30s and 95°C for 30s (JNK forward primer 5’-

CACCACCAAAGATCCCTGACA-3’; JNK reverse primer 5’-
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CTGTGCTAAAGGAGAGGGCT-3’). Expression level of cyclophilin was used to 

normalize the expressions of CD38 and JNK. 

mRNA stability 

HASM cells were transfected with miR-708 mimic or scrambled sequence mimic. 

After 24 h, transfection medium was replaced with growth-arrest medium for 

24 h. Cells were then exposed to rh-TNF-α for 12 h in fresh growth arrest 

medium which was replaced with fresh growth arrest medium containing 

actinomycin D (5 μg/ml) to inhibit transcription. At different time points (0, 6, 12 

and 24 h), cells were collected for isolation of total RNA to evaluate the rate of 

decay of CD38 transcript by q-PCR. 

Western blot 

Twenty four hours after transfection of ASM cells with miRNA, cell growth was 

arrested for 24 h (with serum-free media containing transferrin and insulin) 

followed by treatment with rh-TNF-α for an additional 24 h. Cells were collected 

in the lysis buffer (50 mM Tris, 100 mM NaCl, 50 mM NaF, 40 mM β-glycerol 

phosphate, 2 mM EDTA, 0.2 mM Na3VO4, 1% Triton X-100, and protease 

inhibitor cocktail, pH 7.4), lysed by sonication and total protein concentration in 

the lysates estimated by Bradford assay (Bio-Rad Laboratories, Inc, Hercules, 

CA). Equal amounts of total protein (5–15 μg) were separated by SDS-PAGE (4-

20% gradient gels), transferred onto a PVDF membrane and blocked overnight in 

5% skim milk in PBS containing 0.05% Tween 20 (PBST) at 4°C. Incubation of 

membranes with primary antibodies was carried out in 1% skim milk in PBST at 

4°C overnight. After three 5-minute washes with PBST, membranes were 
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incubated with HRP-conjugated secondary antibodies in 1% milk for 1 h at room 

temperature. Primary rabbit antibodies against all major MAPKs, β-actin, PTEN, 

Pan AKT and AKT2 were used at a dilution of 1:1000 except antibodies to detect 

p38 and phospho-p38 which were used at a dilution of 1:500. Primary mouse 

antibodies (smooth muscle-specific α-actin and MKP-1) were used at a dilution of 

1:700. Anti-rabbit secondary antibodies were used at a dilution of 1:5000, while 

goat anti-mouse secondary antibodies were used at a dilution of 1:4000. To 

determine the activation of MAPKs and AKT following miR-708 transfection, cells 

were collected at 20 min or 2 h respectively after treatment with rh-TNF-α and 

lysed. After electrophoresis, same membranes were probed for phosphorylated 

and total protein expression, stripping membranes (Restore Plus Western Blot 

Stripping Buffer [Thermo Fisher Scientific Co., Pittsburgh], 30 min) between 

blots. Intensity of protein bands was measured using ImageJ image analysis 

software and the level of expression of phosphorylated protein relative to total 

protein was considered as a measure of activation. In the case of MKP-1, PTEN 

and total MAP kinase protein expression, cells were collected 24 h after 

stimulation with rh-TNF-α and changes in expression level relative to loading 

control (smooth muscle specific α-actin or β- actin) were measured. 

Reverse ADP-ribosyl cyclase assay 

The enzymatic function of CD38 was quantified by reverse cyclase assay as 

described in our earlier publication (178). Briefly, equal amount of (5 -15 μg) total 

proteins in human ASM (HASM) cell lysates were incubated at 37°C for 1 h with 

cADPR (0.45 mM) in the presence or absence of nicotinamide (10 mM). The 
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enzymatic reaction was terminated by adding 25 μl of 1 M HCl, and contents 

were vacuum filtered (0.45 μm, Immobilon, Millipore), neutralized (15 μl of 2 M 

Tris-base), and incubated at room temperature with a mixture of the following 

reagents: rezasurin (2 μM), ethanol, flavin mononucleotide (4 μM), alcohol 

dehydrogenase (40 μg/ml) and diaphorase (0.04 U/ml) in phosphate buffer 

(Na2HPO4/NaH2PO4). FLUO star Galaxy fluorometer was used to quantify the 

rate of fluorescence emitted at 590 nm which is proportionate to the amount of 

NAD generated by the CD38 present in 5–15 μg of total protein. 

Mutation of miR-708 target site and dual luciferase reporter assay 

Location of miR-708 target site at the 3’UTR of CD38 transcript is 21 bases away 

from the stop codon. Mutation of four bases (ctCgCCg) at the target site 

(AGCTCCT) specific for miR-708 was achieved using the QuikChange Lightning 

Multi Site-Directed mutagenesis kit. The primer sequence designed for the 

mutation consists of target sequence and 14 bases flanking the target sequence 

(5’-GCTGTGGTTGTTTTCTCGCCGTGACTCCTTGTGGT-3’). XL10-GOLD Ultra 

competent E. coli was used to expand the wild-type and mutant plasmids. NIH-

3 T3 cells seeded in 24 well plates (1.5-2.0 × 105 cells/well) were co-transfected 

with miR-708 mimic or scrambled sequence mimic (50 nM), wild-type (or 

mutated) firefly Luc-CD38-3’UTR-reporter plasmid (200 ng/well) and Renilla 

luciferase plasmid (control) (30 ng/well), in culture medium (Opti-MEM® reduced 

serum medium; 100 μl), facilitated by Fugene HD transfection reagent (1 μl/well). 

After 24 h, cells were collected in lysis buffer and luciferase activity in triplicate 

samples for each condition was measured with a luminometer according to the 
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manufacturer’s recommendation (Synergy 2 microplate reader, BioTek, 

Winooski, VT). Renilla luciferase activity was used to normalize the firefly 

luciferase activity. 

Statistical analysis 

HASM cells obtained from 3–8 different donors were used. Values represent 

means ± SEM. Data were analyzed for statistical significance by Student’s t-test 

or one-way ANOVA (depending on the number of experimental groups analyzed) 

using GraphPad Prism 6 Software. Differences were considered significant at 

p < 0.05. 
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Results 

Differential expression of miR-708 in HASM cells 

In order to investigate the potential regulation of CD38 expression by multiple 

miRNAs, we first analyzed the CD38 3’UTR for miRNA binding sites using target 

prediction algorithms. MiRNAs miR-1272, miR-548, miR-208a, miR-1298, miR-

708 and miR140-3p were predicted to bind to the CD383’UTR with high context 

score. Expression levels of these miRNAs in HASM cells were evaluated by q-

PCR. As co-expression of miRNA(s) along with its target gene transcript is 

required for regulation, using a cycle threshold (ct) cut-off, miRNAs with ct values 

above 34 in HASM cells were filtered out (Figure 1A). Other miRNAs (miR-708 

and miR140-3p) which showed ct values ranging from 20–30 (Figure 1A) were 

selected for further studies. 
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Figure 1. Expression of miR-708 in rh-TNF-α-treated ASM cells. A:Analysis of 

miRNAs that are predicted to target CD38 by q-PCR. Expression levels of these 

miRNAs in HASM cells with and without TNF-α treatment were normalized with 

small nuclear RNA U6. miRNAs with ct values above and below 34 in HASM 

cells are indicated by the horizontal line (n = 3–4 donors). B and C: miR-708 

expression in HASM cells from non-asthmatics (NA-HASM) and asthmatics (AS-

HASM), respectively. Rh-TNF-α produced a significant reduction in miR-708 

expression in growth-arrested NA-HASM cells compared with cells treated with 

vehicle (n = 8 donors), while it produced a significant increase in its expression in 

1

A B

C
D
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AS-HASM cells (n = 6 donors). D: miR-708 expression in AS-HASM cells is 

higher than in NA-HASM cells both under vehicle and TNF-α-treated conditions 

(3–5 donors/group). Values are shown as mean ± SEM. C-vehicle-treated cells 

(0.1% BSA); T- rh-TNF-α (10 ng/ml) treated cells. 

 

To evaluate the expression of miR-708 in HASM cells obtained from non-

asthmatic and asthmatic donors in the presence of rh-TNF-α, q-PCR was 

performed. In non-asthmatic HASM (NA-HASM) cells, rh-TNF-α produced a 

significant (p < 0.0001) reduction in the expression of miR-708 (Figure 1B) 

compared to expression in unstimulated (vehicle-treated) cells. In contrast, rh-

TNF-α exposure significantly increased the expression of miR-708 (p = 0.0098) in 

asthmatic-HASM (AS-HASM) cells (Figure 1C). Further, expression of miR-708 

in AS-HASM cells was found to be higher in vehicle treated (~2-fold) and rh-TNF-

α treated (>10-fold) cells when compared to NA-HASM cells (Figure 1D). 

miR-708 inhibits CD38 expression and its enzymatic activity in HASM cells 

To examine whether miR-708 alters the expression level of CD38, NA-HASM 

cells were transiently transfected with different concentrations (10nM, 50nM and 

100nM) of miR-708 mimic. Over-expression of miR-708 mimic at 50 nM and 100 

nM concentrations significantly decreased CD38 transcript level (Figure 2A). 

This finding was further confirmed in AS-HASM where miR-708 mimic at 50 nM 

significantly inhibited CD38 transcript level relative to the scrambled sequence 

mimic (Figure 2B). Further, transfection of AS-HASM cells and NA-HASM cells 

with miR-708 at a concentration of 50 nM decreased the enzymatic activity of 
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CD38 measured by ADP-ribosyl cyclase assay (Figure 2C). To establish the 

specificity of the inhibitory effect of endogenous miR-708 on CD38 expression, 

NA-HASM cells were transfected with miR-708 mimic, scrambled sequence 

mimic or the antagomir of miR-708 mimic. Rh-TNF-α-induced CD38 expression 

following miR-708-antagomir transfection was similar to the expression in cells 

transfected with scrambled sequence mimic (Figure 2D). 

 

 

2

A

B
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Figure 2.  miR-708 inhibitsCD38expression in HASM cells. A: NA-HASM cells 

were transfected with different concentrations of miR-708 mimic (mimic) or 

scrambled sequence mimic (scr), followed by exposure to 10 ng/ml rh-TNF-α. 

CD38 transcript levels were measured by q-PCR. Results are shown as % CD38 

C

D
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mRNA relative to scrambled sequence mimic (scr) transfection. Significant 

inhibition of CD38 expression was observed following transfection of miR-708 

mimic at concentrations ≥ 50 nM (n = 3–5 donors).B: CD38 transcript levels 

following transfection with miR-708 mimic (50 nM) or scrambled sequence mimic 

in AS-HASM cells. Note significant attenuation of CD38 expression by miR-708 

mimic transfection (n = 3 donors); C: ADP-ribosyl cyclase activity in AS-HASM 

(AS) and NA-HASM (NA) cells following transfection with miR-708 mimic or 

scrambled sequence mimic and exposure to rh-TNF-α (MT and ST, respectively, 

(n = 3 donors). Note significant attenuation of enzyme activity in cells from AS-

HASM and NA-HASM after transfection with miR-708 mimic. D: CD38 transcript 

levels in NA-HASM cells following transfection with miR-708 mimic (50 nM), 

scrambled sequence mimic or antagomir for the miRNA (ant-mir) (n = 3 donors). 

Note the lack of inhibition of CD38 expression in cells transfected with ant-miR. 

Data represent mean ± SEM. 

 

Our previous studies have identified a role for miR-140-3p in the regulation of 

cytokine-induced CD38 gene expression and enzyme activity independent of 

miR-708(177). Since the target sites of these miRNAs are closely situated in the 

3’UTR of CD38 transcript (see Figure 3A), we examined whether transfection of 

HASM cells with both miR-140-3p and miR-708 would amplify the inhibitory effect 

on enzymatic activity of CD38. Co-transfection of HASM cell with miR-140-3p 

and miR-708 at 50 nM and 100 nM (equimolar concentrations) significantly 

inhibited CD38 enzymatic activity relative to cells transfected with scrambled 
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sequence mimic. However there was no evidence of an additive effect 

(Figure 4).  
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Figure 3. Interaction of miR-708 with the 3’UTR of CD38.  A: Predicted 

binding sites for miR-708 and miR-140-3p in 3’UTR of CD38. Shown are the 

mutated bases in the miR-708 target site of the 3’UTR ofCD38. B: Relative 

luciferase activity in NIH-3 T3 cells co-transfected with reporter plasmid and 

different concentrations of miR-708 mimic (mimic) or scrambled sequence mimic 

C

D
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(scr) at the highest concentration (n = 3, experiments in triplicate). Note 

significant reduction in luciferase activity following transfection with miR-708 

mimic at all concentrations. C: Relative luciferase activity in cells co-transfected 

with reporter plasmid containing either wild-type (wild) or mutant 

(mut) CD38 3’UTR followed by transfection with 50 nM of miR-708 mimic (mimic) 

or scrambled sequence mimic (scr) (n = 3, experiments in triplicate). Note no 

inhibition of luciferase activity in cells co-transfected with mutant CD38 3’UTR. D: 

CD38 mRNA stability measured in growth-arrested HASM cells. Cells were 

transfected with 50 nM miR-708 and exposed to rh-TNF-α in the presence of 

actinomycin D. At time points indicated, CD38 transcript levels were quantified by 

q-PCR (n = 2–5 donors). Graph shows plots of non-linear regression of mRNA 

decay over time for NA-HASM and AS-HASM cells, with the dotted lines 

indicating the best fit. Values are means ± SEM for results shown. 

 

4
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Figure 4. Effect of miR-708 in combination with miR-140-3p on ADP-ribosyl 

cyclase activity in NA-HASM cells. Cells (n = 3 donors) were co-transfected 

with equimolar concentrations of miR-708 and miR-140-3p, miR-708 mimic alone 

or the corresponding control scrambled sequence mimic at the indicated 

concentrations followed by exposure to 10 ng/ml rh-TNF-α (T) and measurement 

of ADP-ribosyl cyclase activity. Data represents mean ± SEM. Note that no 

additive effect was observed in cells transfected with equimolar concentrations of 

miR-708 and miR-140-3p relative to miR-708 alone. 

 

miR-708 directly binds to 3’UTR of CD38 

MiRNAs can inhibit gene expression directly by binding to the target gene at the 

3’UTR or indirectly by inhibiting multiple components in the signaling pathway 

(30, 244). We first examined whether miR-708 regulates the expression of CD38 

by directly binding to its 3’UTR by performing dual luciferase reporter assays in a 

heterologous cell system (NIH-3 T3 cells). Four bases in the target sequence on 

the CD38 3’UTR were mutated to establish specificity of miR-708 target binding 

(Figure 3A). A significant reduction in relative luciferase activity was noted when 

miR-708 mimic and reporter plasmid were co-transfected compared to co-

transfection with a scrambled sequence mimic (Figure 3B). Mutation of four 

bases in the target sequence on the CD38 3’UTR reversed the inhibitory effect of 

miR-708 on luciferase activity confirming the specificity of its target binding at the 

3’UTR of CD38 (Figure 3C). To examine whether this binding leads to mRNA 

degradation, CD38 mRNA stability was measured in HASM cells transfected with 
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miR-708 mimic or scrambled sequence mimic and exposed to rh-TNF-α followed 

by actinomycin D for transcriptional arrest. For analysis of mRNA stability, the 

amount of CD38 mRNA remaining at each time point up to 24 h relative to 0 h 

was determined by q-PCR using the 2-ΔΔCt calculation method and plotting 

against time. Nonlinear regression analysis of biological replicate samples was 

fitted using one-phase decay kinetics (GraphPad Prism 6). In NA- and AS-ASM 

cells transfected with miR-708 mimic or the scrambled sequence mimic, there 

was comparable decay in CD38 mRNA content, with half-life ranging from 16–

32 h (Figure 3D). 

Transcriptional regulation of CD38 expression by miR-708 

In prior studies, we reported that cytokine-induced changes in CD38 expression 

in HASM cells involve activation of MAP kinases and PI3 kinases. Among the 

MAP kinases, p38 and JNK MAP kinases were found to regulate expression 

transcriptionally while ERK MAP kinase was involved in regulation post-

transcriptionally through transcript stability (322). In this study, we examined the 

effect of miR-708 transfection following TNF-α exposure (20 min) on levels of 

total MAP kinase protein as well as phosphorylated (activated) protein in order to 

determine whether decreased MAP kinase activation is an underlying 

mechanism in the regulation of CD38 expression. Cells were transfected with 

miR-708 mimic or its scrambled sequence mimic, exposed to rh-TNF-α for 24 h 

and expression levels of the MAP kinases determined by Western blot analysis 

of cell lysates. Transfection of HASM cells with miR-708 mimic had little effect on 

levels of phosphorylated or total ERK and p38 (Figure 5). A significant reduction, 
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however, was noted in the level of phosphorylated JNK MAP kinase in growth-

arrested, TNF-α exposed (20 min) cells following miR-708 transfection 

(Figure 6A). Further, although total JNK MAP kinase expression remained 

unaltered in these cells (Figure 6B), there was a significant reduction in JNK 

mRNA expression (Figure 6C). We next examined whether reduced JNK 

phosphorylation might be a consequence of increased expression of a 

phosphatase. Expression of a MAP kinase phosphatase, MKP-1, was measured 

by Western blot in miR-708-transfected cells following rh-TNF-α exposure. MKP-

1 expression was significantly higher in cells transfected with miR-708 mimic 

compared to cells transfected with the scrambled sequence mimic (Figure 6D). 

These results suggest that decreased JNK MAP kinase phosphorylation caused 

by increased expression of MKP-1 may be involved in miR-708 regulation 

of CD38 expression in HASM cells. 
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Figure 5. Effect of miR-708 transfection on ERK and p38 MAP kinase 

activation and expression in NA-HASM cells. Western blot analysis of cell 

lysates following transfection with 50 nM miR-708 mimic (mimic) or scrambled 

mimic (scr) and treatment with rh-TNF-α for 20 min (for total and phosphorylated 

levels) or 24 h (for total expression levels) were performed with antibodies 

against phosphorylated and total ERK (A and B) as well as p38 (C and D), 

respectively. Note no significant change in expression of total or phosphorylated 



104 

 

ERK (n = 5–6 donors) and p38 (n = 3–5 donors) following miR-708 mimic 

transfection. Each Western blot is a representative blot from a single donor. 

Values are means ± SEM for results shown. C-vehicle-treated cells (0.1%BSA); 

T- rh-TNF-α (10 ng/ml) treated cells. 

 

Figure 6. Effect of miR-708 transfection on JNK MAP kinase signaling in 

NA-HASM cells. A and B: Western blot analysis of cell lysates following 

transfection with 50 nM miR-708 mimic (mimic) or scrambled sequence mimic 
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(scr) was performed as described in Figure 5 to detect JNK MAP kinase after rh-

TNF-α treatment for 20 min (total and phosphorylated levels) (n = 4 donors) as 

well as total JNK expression after rh-TNF-α treatment for 24 h (n = 3 donors). 

Note significant down-regulation of JNK MAP kinase phosphorylation but no 

change in total JNK protein expression in mimic-transfected cells compared to 

cells transfected with scr. C: Total RNA extracted from cells transfected with 

mimic or scr and treated with rh-TNF-α (24 h) was analyzed for JNK mRNA 

expression by q-PCR (n = 3 donors). Note significant down-regulation of JNK 

expression by mimic. D: MKP-1 expression in cells transfected with mimic or scr 

and treated with rh-TNF-α for 24 h was examined by Western blot analysis (n = 5 

donors). Note significant up-regulation of MKP-1 expression in mimic-transfected 

cells compared to scr. Each Western blot is a representative blot from a single 

donor. Values are means + SEM for results shown. C-vehicle-treated cells (0.1% 

BSA); T-TNF-α (10 ng/ml) treated cells. 

 

In a prior study, we reported that regulation of CD38 expression in HASM cells 

involves activation of PI3 kinases(179). Furthermore, PI3 kinase signaling is 

regulated by other miRNAs, including miR-708 (293). Therefore, we measured 

levels of phosphorylated AKT, a molecule in the PI3 kinase signaling cascade, as 

well as levels of PTEN, a phosphatase that terminates PI3 kinase signaling. In 

cells transfected with miR-708 mimic, the level of phosphorylated AKT was 

significantly lower relative to cells transfected with the scrambled sequence 

mimic (Figure 7A). Further, a significant reduction was also noted in the 
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expression of AKT2 (Figure 7B), an isoform of AKT that has a 3’UTR binding site 

for miR-708 (293). In consistence with an overall attenuation of PI3 kinase 

signaling in miR-708-mimic-transfected cells, there was a significant increase in 

PTEN expression compared to expression in cells transfected with the scrambled 

sequence mimic (Figure 7C). A similar increase in PTEN expression was 

observed in AS-HASM cells following miR-708 mimic transfection compared to 

cells transfected with the scrambled sequence mimic (Figure 7D). 
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Figure 7. Effect of miR-708 transfection on PTEN/AKT signaling. A,B and C: 

NA-HASM cells were transfected with 50 nM miR-708 mimic (mimic) or 

scrambled sequence mimic (scr) and treated with rh-TNF-α for 2 h to measure 

total and phosphorylated AKT (n = 3 donors) or 24 h to measure AKT2 (n = 3 

donors) and PTEN expression (n = 8 donors) by Western blot analysis of cell 

lysates. Note significant down-regulation of AKT phosphorylation and AKT2 



108 

 

expression and up-regulation of PTEN expression. D: PTEN expression in AS-

HASM cells was higher (not significant) in samples from 3 of 4 donors. Each 

Western blot is a representative blot from a single donor. Values are 

means ± SEM for results shown. C-vehicle-treated cells (0.1% BSA); T-TNF-α 

(10 ng/ml) treated cells. 
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Discussion 

The cell-surface protein CD38 is known to contribute to calcium regulation 

and contractility of ASM (87). In prior investigations, we and others have shown 

that in ASM cells calcium release through ryanodine receptor channels in the 

sarcoplasmic reticulum during agonist stimulation involves cyclic ADP-ribose 

(cADPR) (87, 95, 187). This involves the enzymatic activity of CD38, i.e., ADP-

ribosyl cyclase, which converts β-NAD to cADPR (205, 350). Furthermore, 

exposure of ASM cells to inflammatory cytokines results in significantly 

augmented CD38 expression and cADPR-mediated intracellular calcium 

release (87). These observations strongly implicate the CD38/cADPR pathway of 

calcium signaling in ASM hyperresponsiveness, a hallmark of 

asthma. CD38 deficient mice are also hyporesponsive to inhaled methacholine 

following sensitization and challenge with allergen (120) as well as following 

challenge with inhaled inflammatory cytokines (133, 134). These mice develop a 

robust airway inflammatory response following allergen or cytokine challenge, 

although ASM obtained from these mice exhibit significantly attenuated 

contractile responses to relevant airway spasmogens (133). Furthermore, ASM 

cells obtained from CD38 deficient mice show attenuated intracellular calcium 

responses to spasmogens (89). Together, these results indicate a significant role 

for CD38 in calcium signaling and contractility of ASM and AHR. Therefore, 

delineating the mechanisms that regulate its expression can lead to better 

understanding of changes in ASM function in diseases such as asthma. 
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MiRNAs are known to play critical roles in the regulation of gene expression and 

in disease pathogenesis (30). Recent studies have identified several miRNAs 

whose expression in ASM cells is down-regulated by inflammatory cytokines (66, 

177, 197). There is also evidence for miRNA regulation of ASM contractility (66) 

and relaxation (347) as well as ASM phenotype (162, 197). Increased ASM mass 

due to growth factor-driven ASM cell hypertrophy and hyperplasia is also a 

feature of diseases such as asthma (3, 62, 161, 230) and COPD (366). Recent 

reports have identified the specific role of miR-221 and miR-10a in the regulation 

of ASM proliferation (162, 272). It is interesting to note that miR-10a targets two 

key signaling molecules involved in cell proliferation, i.e., PI3 kinase and ERK 

MAP kinase. MiR-10a suppresses the expression of the catalytic subunit of PI3 

kinase, leading to decreased AKT phosphorylation. 

In this study, we identified miR-708 as a regulator of CD38 in HASM cells. 

We further characterized miR-708 in HASM on the basis that its expression in 

HASM cells is regulated by the inflammatory cytokine rh-TNF-α, which is 

elevated during allergic asthma (59, 146), as well as its differential expression in 

cells from asthmatics versus non-asthmatics, and therefore its potential to 

regulate the expression of genes involved in signaling mechanisms regulating 

inflammation. We report that miR-708 down-regulates CD38 expression through 

mechanisms that involve direct binding to the 3’UTR as well as indirectly by 

regulating JNK MAP kinase and PI3 kinase signaling in HASM cells.  
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Among the numerous potential CD38 3’UTR binding targets that we have 

identified, miR-708 and miR-140-3p (177) appear to play major roles in the 

regulation of CD38 expression in HASM cells. We also observed that transfection 

of cells with both miR-140-3p and miR-708 has no additive or synergistic effects 

on CD38 enzymatic activity, suggesting that either miRNA is capable of 

independently regulating CD38 expression in HASM cells. 

In the current study, we have shown that over-expression of miR-708 

through transfection causes increased PTEN expression and an associated 

decrease in AKT phosphorylation. PTEN expression in certain cancers is 

regulated by miRNAs. A recent study reported that miR-221 and miR-222 

inhibit PTEN expression by binding to the 3’UTR, while knockdown of these 

miRNAs causes induction of PTEN expression (70). PTEN expression in human 

hepatocellular cancer cells is also under the regulation of miR-21 (79). 

Knockdown of miR-21 causes increased PTEN expression in these cells. 

Regulation of PTEN expression in these cancer cell lines by miRNAs has a direct 

effect on tumor cell proliferation, migration and invasion. These studies suggest 

that miRNA regulation of PI3 kinase signaling in ASM cells by altering the 

expression of PTEN would have a profound impact on cell proliferation. In this 

context, a previous study demonstrated that in ASM cells obtained from 

asthmatics, the PI3 kinase/AKT pathway has a major contribution to cell 

proliferation (52). However, in ASM cells obtained from non-asthmatics, cell 

proliferation appears to be regulated by ERK MAP kinase signaling (52). In the 

current study, we found that miR-708 also regulates the phosphorylation of JNK 
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MAP kinase in NA-HASM cells. This effect appears to be a consequence of 

increased expression of MKP-1, a MAP kinase phosphatase. Why this enhanced 

MKP-1 expression is not accompanied by decreased phosphorylation of p38 and 

ERK MAP kinases is not clear. However, it is very likely that the expression of 

some of the upstream kinases involved in the p38 and ERK MAP kinase 

pathways may be increased, compensating for the increased MKP-1 expression. 

It is worth noting that loss of PTEN in certain cancer cells results in increased 

JNK activation independent of AKT and implicating JNK as a component of the 

PTEN/PI3 kinase signaling cascade (343). Thus, it is likely that the decreased 

JNK MAP kinase phosphorylation observed in this study may stem from 

increased PTEN expression. Decreased JNK activation in ASM cells has been 

shown to have an effect on CD38 expression through transcription factors NF-κB 

and AP-1 (322). Our study also shows that ASM cells obtained from asthmatics 

have increased constitutive as well as rh-TNF-α-induced expression of miR-708 

compared to expression in cells from non-asthmatics. The functional effect of 

increased miR-708 expression in these cells remains to be determined. In a prior 

study, we reported a differential induction of CD38 expression in response to rh-

TNF-α treatment in ASM cells from asthmatics (178)  although an enhanced half-

life of CD38 transcript appears not to be an underlying mechanism for this 

differential induction. 

In summary, this study provides evidence for miR-708 regulation 

of CD38 expression in human ASM cells. This regulation stems from direct 

3’UTR binding to the transcript as well as through regulation of signaling 
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involving PI3 kinase and JNK MAP kinase pathways. The inhibition of PI3 kinase 

signaling by miR-708 involves induction of PTEN expression which is likely to 

have a significant impact on ASM cell proliferation and AHR, the latter through 

inhibition of expression of CD38 and potentially other pro-inflammatory genes. 

Our findings suggest the possibility that miR-708 can be used as a potential 

therapeutic strategy to inhibit ASM cell proliferation and contractility. 

Summary figure: 
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Background  

Human airway smooth muscle cells are a source of cytokines and chemokines. 

The expression of chemokine genes is regulated by transcription factors NF-κB 

and AP-1 and involves activation of the MAP kinases and PI3 kinases. In a 

recent study, we reported that miR-708 transfection of HASM cells results in 

significant augmentation of expression of DUSP-1, a MAP kinase phosphatase 

and PTEN, a phosphatase that dephosphorylates Akt to inhibit the PI3 kinase 

signaling. Both these signaling pathways are critical for the expression of several 

pro-inflammatory genes and for regulating cell proliferation. In this study, we 

investigated the regulation of inflammatory gene expression, chemokine release 

and cell proliferation in HASM cells following transfection with miR-708. Gene 

expression results revealed significant downregulation of expression of several 

chemokine genes as well as some genes associated with the asthmatic 

phenotype and functional and pathway analysis showed changes in the 

expression of many of the IL-17 proinflammatory pathway as well as genes 

involved in cell cycle regulation. Validation of the microarray results using q-PCR 

revealed significant downregulation of expression of CCL11, CXCL10, CCL2 and 

CXCL8 as well as asthma related genes such as CD44, ADAM33 and 

RARRESS2. Of the chemokines that were assayed, only CCL11 and CXCL12 

release was inhibited by miR-708 transfection. Serum-induced HASM cell 

proliferation was inhibited by miR-708 transfection. These results indicate a 

profound anti-inflammatory effect of miR-708 in HASM cells with potential to 
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inhibit recruitment of inflammatory cells into the airways and inhibition of cell 

proliferation.    
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Introduction 

Several recent reports have provided evidence that airway smooth muscle 

(ASM) has strong proinflammatory and immunomodulatory functions (80, 85, 

148, 324). These properties of ASM are mediated through its synthetic function 

as well as through expression of a variety of cell-surface molecules, integrins 

(129, 136, 319), and Toll-like receptors (101, 226). During acute airway 

inflammation, mediators and cytokines released from structural and inflammatory 

cells alter ASM contractile function (51, 73, 271, 359). However, during persistent 

airway inflammation, cytokines and chemokines produced by inflammatory cells 

and ASM can cause ASM proliferation, leading to structural changes in the 

airways, often referred to as airway remodeling (142, 185).   During chronic 

airway inflammation, the immunomodulatory role of ASM may be more significant 

in establishing structural changes within the airways than its contractile function. 

In this context, recent reports show that ASM is capable of releasing cytokines 

such as IL-5 (173, 203), IL-6 (11, 236), IL-33 (277), TSLP (368), GM-CSF (298) 

and VEGF (190); chemokines such as RANTES (173), Fractalkine (103), CCL11 

(127), CXCL10 (5, 48, 121), CXCL8(171); adhesion molecules such as ICAM-

1(15, 266), VCAM-1(202, 266), CD44 (201) and LFA-1(131); and growth factors 

such as IGF-1 (255, 281) and stem cell factor (155). Cytokines released by 

immune cells recruited into the lungs during allergic inflammation may also 

stimulate ASM cells to alter the expression of proinflammatory genes in an 

autocrine or paracrine manner. There is also evidence for hypersecretion of 

chemokines both constitutively and in response to cytokines in ASM cells 



118 

 

obtained from asthmatics than in cells from non-asthmatics (142, 306). There is 

also increased chemotaxis of mast cells toward ASM cells from asthmatics both 

in vivo and in vitro (9, 48, 261, 312). Other studies have examined the 

transcriptional regulation of expression of chemokine genes in human ASM cells 

(12, 171). While such transcriptional regulation of expression of chemokines is 

better understood, the post-transcriptional regulation is an emerging area of 

investigation. In this context, recent studies provide evidence for specific 

microRNAs in the regulation of ASM proliferation (162, 272), ASM phenotype 

(197) and airway inflammation (231, 328). 

MicroRNAs (miRNAs) are small non-coding ~22nt RNAs that regulate 

gene expression by binding to the 3’-Untranslated Region (3’UTR) of target 

mRNAs to cause mRNA degradation and/or translational repression (29). Since 

binding of miRNAs to target sequences is dependent on its ‘seed’ sequence, a 

single miRNA can potentially regulate a large number of genes. However, 

specific miRNAs are known to regulate cellular functions such as differentiation, 

proliferation, and apoptosis and dysregulation of miRNA expression is known in 

controlling inflammation (29, 137, 138). In a recent report we identified miR-708 

in the post-transcriptional regulation of expression of a cell-surface protein CD38 

through two major signaling pathways (91). Transfection of human ASM cells 

with miR-708 causes the induction of phosphatase and tensin homolog (PTEN), 

which regulates PI3K/AKT signaling by decreasing Akt phosphorylation and is 

involved in NF-κB-regulated genes. MiR-708 also induces DUSP-1, a dual 

specificity phosphatase leading to JNK MAPK dephosphorylation (91). The net 
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effect of PTEN and DUSP-1 induction in ASM cells should lead to modulation of 

two key signaling pathways involved in inflammation and cell proliferation. There 

is evidence that the expression of several chemokine genes in human ASM cells, 

the release of chemokines and cell proliferation are also regulated by these same 

signaling pathways (52, 94, 217, 279, 317). Therefore, in the present study, we 

evaluated differentially expressed genes in human ASM cells following miR-708 

transfection and stimulation with the inflammatory cytokine TNF-α, with particular 

emphasis on the expression of cytokine/chemokine genes, other pro-

inflammatory genes, and those involved in the asthmatic phenotype compared to 

scrambled sequence of mimic transfected cells. From the microarray results of 

differentially expressed genes following miR-708 transfection, we confirmed the 

expression levels of cytokine/chemokine genes, other pro-inflammatory genes, 

and those involved in the asthmatic phenotype using q-PCR. Since many of 

these chemokines are involved in the recruitment of inflammatory cells such as 

eosinophils, basophils, mast cells and T lymphocytes into the airways during 

allergic airway disease, we also measured their release from cells stimulated with 

the inflammatory cytokine TNF-α and following transfection with miR-708.   
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Materials & methods 

Reagents 

Reagents used in the current study: DMEM from GIBCO-BRL (Grand Island, 

NY); rh-TNF-α from R&D Systems (Minneapolis, MN); TRIzol, SuperScript III 

reverse transcriptase, Opti-MEM® reduced serum medium and Lipofectamine® 

RNAiMax transfection reagent from Invitrogen Life Technologies (Carlsbad, CA); 

Brilliant lll Ultra-Fast SYBR Green q-PCR Master Mix from Agilent Technologies 

Inc (Santa Clara CA); control oligo (scrambled sequence mimic) and miR-708 

mimic (mature miR-708 sequence: 5’-AAGGAGCUUACAAUCUAGCUGGG-3’) 

from Dharmacon (Lafayette, CO); CyQUANT® NF Cell Proliferation Assay Kit 

from Thermo Fisher Scientific brand Life technologies ( Eugene, Oregon 97402); 

Tris-base, glucose, HEPES and other chemicals from Sigma Chemical Co. (St. 

Louis, MO). 

Microarray sample preparation 

ASM cells, derived from three de-identified healthy donors, used between 2-5th 

passages, were seeded at 1.5 X 105 cells/well and transfected with mimic or 

scrambled sequence mimic of miR-708 at 50 nM concentration (91). We used the 

same concentration which was previously determined to be optimal to inhibit the 

expression of CD38 (91). Cells that were growth arrested (24 h) after 

transfection, were induced with pro-inflammatory cytokines TNF-α at 10 ng/ml 

(24 h).  Total RNA was harvested using PureLink RNA isolation kit according to 

the manufacturer’s instructions. Purity of the RNA was determined with a 

Nanometer 2000C for the ratios 260/280 and 260/230. For each condition (mimic 
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or scrambled oligo treatment) 1000 ng of total RNA was subjected to microarray 

analysis. Genome-wide changes in gene expression in transfected cells were 

generated using Illumina human (HT-12) arrays and analyzed using BeadStudio 

version 3.1.1. 

Data Analysis 

For statistical analysis and clustering, we used the Partek Genomics Suite 

software package (Partek Inc., St. Louis, MO, USA). We performed a paired t-

test with donor ID and mimic/control as the nominal variables. Before comparison 

analysis and clustering, we filtered extremely low and non-variant genes out of 

the datasets. Significance cutoff filters were set at P < 0.05 and an expression 

change of at least 2-fold. For functional and pathway analyses we used Ingenuity 

Pathway Analysis (IPA) software (Qiagen, Redwood City, CA, USA). IPA 

employs a right-tailed Fisher exact test to calculate a P value corresponding to 

the probability that a biologic function not relevant to the input dataset is falsely 

identified as relevant. A Benjamini–Hochberg false discovery rate of 0.05 was 

used to correct such P values. 

 Validation of genes by q-PCR 

As described in the “Microarray sample preparation”, total RNA was 

isolated and cDNA was prepared using reverse transcription kit from Invitrogen 

Life Technologies (Carlsbad, CA). cDNAs were subjected to q-PCR analysis 

using Brilliant SYBR Green Master Mix and Stratagene Mx3000p q-PCR system 

(Foster City, CA). Primer sequences and conditions for the genes tested are 
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provided in Table 1. The β-actin gene was used as a housekeeping gene to 

normalize the expressions of other genes. 

Table 1: Primer sequences for chemokine genes 

Gene primer sequences 

CXCL10 F: 5' - 3' GAACTGTACGCTGTACCTGCA 

  R: 5' - 3' TTGATGGCCTTCGATTCTGGA 

CXCL8 F: 5' - 3' ACTGAGAGTGATTGAGAGTGGAC 

  R: 5' - 3' AACCCTCTGCACCCAGTTTTC 

CCL5 F: 5' - 3' CAGTCGTCTTTGTCACCCGAA 

  R: 5' - 3' TCCCAAGCTAGGACAAGAGCA 

CCL2 F: 5' - 3' AGGTGACTGGGGCATTGAT 

  R: 5' - 3' GCCTCCAGCATGAAAGTCTC 

CXCL12 F: 5' - 3' TGCCAGAGCCAACGTCAAG 

  R: 5' - 3' CAGCCGGGCTACAATCTGAA 

CCL11 F:  5' - 3' CCCCAGAAAGCTGTGATCTTCA 

  R: 5' - 3' GGAGTTGGAGATTTTTGGTCCAGAT 

RARRES2 F: 5' - 3' GAGGGACTGGAAGAAACCCG 

  R: 5' - 3' CATGGCTGGGGATAGAACGG 

ADAM33 F:  5' - 3' GACCTAGAATGGTGTGCCAGA 

  R:  5' - 3' AGCCTGGC TTGTCACAGAAG 

CD44 F:  5' - 3' AGCATCGGATTTGAGACCTG 

  R: 5' - 3' GTCCACATTCTGCAGGTTCC 

β-Actin F:   5' - 3' ACACTGTGCCCATCTACGAGG 

  R:  5' - 3' AGGGGCCGGACTCGTCATACT 
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Chemokine Release assay 

Human ASM cells were transfected with mimic or scrambled sequence 

mimic of miR-708 or were untransfected (control) as described in an earlier 

publication (91).  Cells were then growth arrested and treated with 10ng/ml TNF-

α. Cell culture supernatants were collected at different time points ranging from 

6-48 h. Collected supernatants were aliquoted and immediately stored at -80 o F 

until assayed. Chemokines in the culture supernatants were quantified using 

ELISA kits from R&D system according to the manufacturer’s instructions 

(Minneapolis, MN 55413). 

Proliferation assay 

Human ASM cells derived from healthy donors were transfected with 

mimic or scrambled sequence mimic of miR-708 and seeded at a concentration 

of ~7000 cells/well in 96 well plates. RNAimax was used to facilitate the 

transfection according to the manufacturer’s instruction (Invitrogen Life 

Technologies). Twenty four hours after plating, the cells were growth arrested 

with serum deprived media that was supplemented with insulin and transferrin. 

After 24 h, cells were treated with 10% fetal bovine serum for 48 h and the 

number of cells enumerated using the Cyquant assay kit according to the 

manufacturer’s instructions (20) (Thermo Fisher Scientific brand Life 

technologies).  
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Results 

 Microarray results 

Gene expression results are shown as a heatmap (Figure 1). Visual 

inspection easily identifies differential patterns of expression between samples 

treated with a miR-708 mimic (purple bar) versus a scrambled control (orange 

bar). Principal Component Analysis (PCA) confirmed the mimic as the primary 

differential component (Figure 2). Our analysis found that 821 genes were 

differentially expressed (348 upregulated and 473 downregulated) in HASM cells 

transfected with a miR-708 mimic versus a scrambled control sequence (paired t-

test, P < 0.05). Table 2 summarizes the differentially expressed 

chemokines/cytokines, transcription factors, extracellular matrix components, 

calcium signaling molecules, growth factors and other genes related to airway 

hyperresponsiveness. The complete list of genes is available as Supplemental 

Table 1.  
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Figure 1: Heatmap of mRNA microarray expression data. Purple bar indicates 

samples treated with the miR-708 mimic; orange bar indicates samples treated 

with a scrambled control. Sample rows are arranged in the same donor-order 

(i.e. donor 1 samples are rows 1 and 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. PCA Analysis showing a clear primary separation of samples based 

on miR-708 mimic versus scrambled control. Secondary separation was by donor 

ID.  
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Table 2. Summary of differentially expressed genes 

  Gene ID 

fold 

change Function 

Inflammatory 

mediators       

Chemokines  CXCL10 -2.695 Chemoattracts  mast cell  

  CCL8 -5.38 Chemoattracts monocytes  

  CCL11 -8.968 Chemoattracts Eosinophils  

  CXCL12 -5.254 

Chemoattractant T-lymphocytes & 

monocytes  

  CCL5 -3.52 Chemoattracts Eosinophil  

  CCL2 -3.21 

Chemoattracts  monocytes, fibrocytes and 

basophils  

 CXCL8 -2.03 

Chemoattracts neutrophils, basophils and 

T-cells  

 CXCL16 -2.688 Scavenger receptor on macrophages 

 CXCL5 -2.389 Activates neutrophils  

 CXCL9 -2.375  Chemoattracts activated T-cells 

 CXCL11 -2.151 

Chemoattracts interleukin-activated T-

cells 

 CXCL6 -2.039 Chemoattracts neutrophil, granulocytes 

Cytokines    

  IL18BP -4.028 Inhibits the early TH1 cytokine response 

  IL6 -1.832 

Stimulates the differentiation of B-cells 

and acts as a myokine. 
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TNFSF13

B -4.216 Stimulates B- and T-cell function 

Genes associated with 

ECM        

 VCAM1 

-20.59 Enhances leukocyte-endothelial cell 

adhesion and T cell inflammatory 

functions 

  COL3A1 -9.808 Activates RhoA pathway 

  COL6A1 

-3.185 A major structural component of 

microfibrils 

  CD44 -4.25 

Increases airway hyperresponsiveness 

(122); leads to inflammation (182, 183) by 

interacting with T-cell (201) and mast cell 

(128); increases  ASM cell proliferation (3) 

  THBS1 -4.797 Increases IL-8 production (165)  

  MXRA5 -4.581 Associates with matrix-remodeling protein 

 

ADAMTS-

1 6.158 Increases FEV1 (269) 

 TAPBP -4.38 

Increases antigen processing and 

assembly of MHC class I (17) 

Transcription factors       

  NFκB1       -1.876 Regulates immune response  

  RELA -1.728 Regulates immune response 

Calcium signaling       

  CD38 -2.286 Increases cell adhesion, signal 
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transduction, AHR and calcium signaling. 

  

BDKRB1 

 -1.994 

Increases chronic and acute inflammatory 

responses 

  FKBP10 -2.198 Regulates [Ca2+]i dynamics 

Growth factors and 

related genes       

  IGFBP5 -4.009 Prolongs the half-life of the IGFs 

  PDGFRL -4.258 Increases proliferation 

  EGFL6 -3.886 

Regulates of cell cycle & induces 

proliferation  

Airway 

hyperresponsiveness    

 ACTG2 -17.181 Increases muscle contraction 

 TAGLN -4.691 

Increases calcium interactions and 

contractility 

 MYLK -2.12 Increases Smooth muscle contraction 

 PDE5A -2.50 Inactivates of cGMP (108) 

Genes associated with 

proliferation F2F7 6.8 Blocks proliferation  (82) 

 IL24 11.6 Anti-proliferative (360)  

 COL1A1 -7.474 Increases ASM cell proliferation (151) 

 DUSP6 10.915 Decreases ASM cell proliferation 

 UBE2C 18.96 Increases cell proliferation 

 CDC20 16.459 Increases cell proliferation 
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 ID1 16.089 Increases cell proliferation 

 ANGPTL4 12.633 Increases ASM cell proliferation (309) 

 CDK1 5.387 Increases cell proliferation 
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Functional and Pathway Analysis 

The most significant biologic functions for this differential gene set 

included decreased inflammatory response, cytokine expression and signaling. In 

particular, many components of the IL-17 proinflammatory pathway were 

downregulated. Multiple pathways and biologic functions related to cell cycle 

progression were predicted to be upregulated. 

 

 

 

 

 

 

 

 

Figure 3. Network diagram showing potential regulatory pathways 

connecting miR-708 and down-regulated molecules of interest in human 

ASM cells. Note significant down-regulation of several chemokine genes, CD44, 

and CD38. Genes are colored either by observed expression changes in the 

paired t-test (Green, fold decrease given below gene name) or by predicted 

activation status (Blue = predicted inhibition) based on the assumption of 

increased miR-708 (Red). Potential relationships are indicated by solid (direct 

interaction) or dotted (indirect interaction) lines. Interaction lines are colored 

based on whether the predicted relationship leads to inhibition (Blue), leads to 
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activation (Yellow; inconsistent with observed results), or effect was not able to 

be predicted (Gray). 

 

miR-708 inhibits chemokine mRNA expression and other asthma related 

genes 

Results of gene expression analysis revealed significant downregulation of 

expression of several chemokine genes as well as some genes associated with 

the asthmatic phenotype. Therefore, we used q-PCR analysis to validate the 

microarray results of expression of these genes. Human ASM cells were 

transfected with miR-708 mimic oligonucleotides or the scrambled control and 

then treated with TNF-α. Twenty four hours following the addition of TNF-α, total 

RNA was collected from the cells and subjected to q-PCR analysis. There was 

significant inhibition in the expression of chemokine genes CCL11 (p=<0.0001), 

CXCL10 (p=0.0308), CCL2 (p=0.0422) and CXCL8 (p=0.0156) (Figure 4) as well 

as other ‘asthma related’ genes such as CD44 (p=0.0328), ADAM33 (p=0.0016) 

and RARRESS2 (p=0.0006) (Figure 5). On the other hand, the mRNA 

expression levels for chemokine genes CCL5 (p=0.0549) and CXCL12 following 

transfection with the miR-708 mimic were not significantly different from 

expression in scrambled miR-708 oligonucleotide-transfected cells (Figure 5).    
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Figure 4. Downregulation of chemokine mRNA expression following miR-

708 transfection. Human ASM cells derived from 3-5 donors were transfected 

with mimic or scrambled (Scr) sequence mimic of miR-708 followed by exposure 

to TNF-α (10ng/ml) to measure chemokine mRNA expression. Note the 

significant inhibition in the expression of CCL11, CXCL10, CXCL8 and CCL2 

following miR-708 mimic transfection compared to expression in cells transfected 

with scrambled sequence. Data represent mean±SEM. 
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Figure 5. Down regulation of other ‘asthma related’ genes by miR-708. 

HASM cells obtained from 3-5 donors were transfected with mimic or scrambled 

sequence mimic (control) of miR-708 followed by treatment with TNF-α 

(10ng/ml/). Note significant inhibition of expression of CD44, ADAM33 and 

RARRES2 transcripts in miR-708 mimic-transfected cells compared to 

expression in scrambled sequence transfected cells. Data represent mean±SEM. 

miR-708 transfection and release of chemokines. 

To determine whether changes in the mRNA expression of chemokines 

were reflected in their protein expression, we measured their release in HASM 

cell culture supernatant following miR-708 mimic or scrambled sequence mimic 

transfection and TNF-α induction. As a control, we collected the culture 

supernatant from untransfected but TNF-α treated HASM cells.  Of the 

chemokines that were assayed, only CCL11 release exhibited significant down 

regulation of release in mimic miR-708-transfected cells compared to release 

from cells transfected with the scrambled miR-708 oligonucleotides or from 

control cells at all-time points examined (Figure 6). CXCL12 release on the other 

hand exhibited significant inhibition following addition of TNF-α at 24 h but not at 

earlier time points (Figure 6). 
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Figure 6. Chemokine release from HASM cells following miR-708 

transfection. HASM cells from 3-6 donors were transfected with mimic or 

scrambled sequence mimic of miR-708 and treated with TNF-α (10ng/ml) 

following growth arrest of cells. Twenty hours later cell culture supernatants were 

collected for the measurement of chemokines. Note the release of CCL11 was 

significantly inhibited at every time point following miR-708 transfection when 

compared to scrambled sequence mimic transfection. The release of CXCL12 

was significantly inhibited only at 24 h, relative to control. Data represent 

mean±SEM.  
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miR-708 inhibits proliferation of HASM cells  

Functional and pathway analysis of differentially expressed genes following miR-

708 transfection revealed changes in the expression of several genes involved in 

cell cycle progression/regulation. Therefore, we examined the effect of miR-

708mimic transfection on serum-induced HASM cell proliferation. HASM cells 

were transfected with mimic or scrambled sequence of mimic miR-708 

oligonucleotides and exposed to 10% serum for 48 h. Cell proliferation measured 

using the Cyquant assay showed significant inhibition of proliferation in cells 

transfected with the mimic miR-708 as compared to cells transfected with the 

scrambled miR-708 oligonucleotides (Figure 7).  

 

Figure 7. miR-708 decreased the proliferation of HASM cells. HASM cells 

derived from 4-6 donors were transfected with mimic or scrambled sequence 

mimic of miR-708 followed by treatment with 10% bovine fetal serum for 48 h. 

Proliferation of cells was measured using Cyquant proliferation assay kit. Note 

significant inhibition of proliferation of cells transfected with mimic of miR-708 
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relative to cells that were transfected with scrambled sequence mimic of miR-

708. Data represent mean±SEM. 
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Discussion   

Using a transcriptomics-based approach, we investigated differentially 

expressed genes in human ASM cells treated with TNF-α following miR-708 

transfection compared to expression in cells transfected with the scrambled 

mimic oligonucleotides. This analysis revealed significant changes in the 

expression of several genes, including those for chemokines / cytokines, 

extracellular matrix proteins, transcription factors, calcium signaling molecules, 

growth factors, and genes associated with airway hyperresponsiveness. Several 

genes involved in cell cycle regulation were up-regulated, although E2F7, 

DUSP6 and IL-24, genes that block cell proliferation, were significantly up-

regulated. The net functional effect of these changes in gene expression was 

reflected in inhibition of serum-induced cell proliferation. There was down-

regulation of expression of JNK MAP kinase which is involved in serum-induced 

ASM cell proliferation (64). The changes in the expression of chemokine genes 

revealed in this approach were confirmed by q-PCR. In addition, miR-708 also 

produced down-regulation of expression of several ‘asthma-related’ genes such 

as CD44 (182, 201), ADAM33 (154, 337) and RARRES2 (37, 145, 228). Prior 

reports have shown that CD44 is involved in mast cell-ASM cell adherence 

through Type I collagen and this adherence is greater during airway inflammation 

as well as in ASM cells derived from asthmatics (128).   

In the present study, we examined the post-transcriptional regulation of 

expression of several inflammatory genes in human ASM cells by miR-708. In a 

recent study in human ASM cells stimulated with the inflammatory cytokine TNF-
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α, we showed that transfection with miR-708 caused a significant augmentation 

of PTEN and DUSP-1 expression, with concomitant decreased activation of Akt 

and JNK MAP kinase respectively (91). The PI3 kinase/Akt and MAP kinase 

signaling mechanisms are clearly involved in airway inflammation by activating 

transcription factors such as NF-κB and AP-1 (106, 211, 283, 357). Recent 

reports have shown that this signaling is involved in the hyperproliferative 

phenotype of ASM cells from asthmatics (52). The promoter regions of several 

chemokine genes contain binding sites for NF-κB and AP-1 as well as for other 

transcription factors (10, 126, 286). Furthermore, TNF-α is capable of inducing 

the expression and release of these chemokines from human ASM cells as well 

(9, 12, 14, 32, 127). Although the mechanisms by which miR-708 decreased the 

expression of the chemokine genes that we examined are not addressed in this 

study, miRNA target prediction algorithms showed 3’UTR targets for miR-708 for 

CXCL12 and CCL5 but not for the other chemokines examined. It is very likely 

that the inhibition of expression of chemokine genes following miR-708 

transfection resulted from indirect mechanisms of decreased activation of 

transcription factors and MAP kinases involved in their regulation. 

We examined the expression and release of several chemokines from 

human ASM cells stimulated with TNF-α in this study. There was significant 

inhibition of expression of chemokines involved in the recruitment of eosinophils, 

mast cells, T lymphocytes and fibrocytes following miR-708 transfection of 

human ASM cells. However, chemokine release studies revealed that there was 

inhibition of release of CCL11 and CXCL12. It is interesting to note that our 
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microarray results showed a high level of down-regulation of CXCL12 

expression, while the q-PCR results did not show any change in CXCL12 

transcript levels following miRNA transfection. It is very likely that miR-708 may 

regulate transcription and release of some chemokines while it may have a 

dominant effect on release for others. It is also known that production of specific 

chemokines in ASM cells may involve unique signaling pathways and stimuli, as 

has been shown for CXCL10 release (9).  In this study, the authors demonstrated 

that in human ASM cells exposed to TNF-α or IL-1β, CXCL10 production 

required JNK MAP kinase activation, while its release was induced by p38 MAP 

kinase activation. The results of the microarray analysis of differentially 

expressed genes and q-PCR results confirmed selective down-regulation of JNK 

MAP kinase expression by miR-708, with decreased JNK MAP kinase 

phosphorylation. Recent investigations have shown that stimulation of ASM cells 

with a mixture of cytokines causes significantly higher amounts of chemokine 

release than following exposure to individual cytokines (172, 317). It should be 

emphasized that in our study chemokine release was measured from cells 

following miRNA transfection and growth-arrest, before stimulation with TNF-α. It 

will be interesting to examine release of chemokines in response to a mixture of 

cytokines following miR-708 transfection. 

There was also attenuation of serum-induced proliferative response of 

ASM cells following miR-708 transfection. Although the molecular mechanisms 

underlying this attenuation are not addressed in this study, it is likely that it 

stemmed from inhibition of JNK MAPK and PI3 kinase/Akt activation by miR-708 
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that we reported in our earlier study (91) and confirmed in this study for JNK 

MAPK. 

In conclusion, this study demonstrates a profound anti-inflammatory effect 

of miR-708 in human ASM cells stimulated with the inflammatory cytokine TNF-α, 

with significant down-regulation of expression and release of several important 

chemokines involved in the recruitment of inflammatory cells into the airways 

during allergic airway inflammation. Serum-induced ASM cell proliferation is also 

attenuated by miR-708 transfection, which should have an impact on airway wall 

remodeling in asthma. 
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CHAPTER v 

Conclusions and future directions 
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General Conclusions and Future Directions  

My goal was to determine whether microRNAs play a role in regulating the 

expression of CD38 and altering the phenotype of human airway smooth muscle 

(HASM) cells.  Using bio informatics/ algorithms such as TargetScan, MIRDB, 

DIANA and PITA, the following microRNAs predicted to have target sites at the 

3’-UTR of CD38 mRNA were selected based on high context score: miR-140-3p, 

miR-20a, miR-20b, miR-708, miR-1272, miR-208a, miR-548 and miR-1298. The 

pattern of expression of these microRNAs in HASM cells in the presence of the 

pro-inflammatory cytokine TNF-α (or vehicle as control) was determined by q-

PCR. MicroRNAs miR-140-3p and miR-708 were differentially expressed in 

HASM cells in the presence of TNF-α, showing a CT value of 35 or lower in the 

q-PCR analysis and were selected for further studies. My work is primarily based 

on the regulation of the expression of CD38 and other asthma related genes by 

miR-708 in HASM cells. 

MicroRNAs are powerful gene modulators (29). Aberrantly expressed 

microRNAs cause disturbances in cellular processes, which lead to diseases. 

Several microRNAs have been implicated in the pathophysiology of asthma, 

such as miR-133a in bronchial hyperresponsiveness (65) as well as miR-10a 

(162), miR-221 (272) and miR-25 (197) in airway smooth muscle hyperplasia. 

Since miR-708 was predicted to have a target site at the 3’UTR of CD38, a 

known player in AHR, we sought to determine whether miR-708 might play a 

regulatory role in the expression of CD38. Accordingly, I first transiently 

transfected the mimic of miR-708 or a control microRNA (scrambled sequence 
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mimic) at different concentrations into HASM cells and measured the expression 

of CD38 at mRNA and protein levels, using q-PCR and reverse cyclase assays, 

respectively. I found that miR-708 inhibits the expression of CD38 at 50 nM and 

100nM but not at 10nM. This concentration (10nM) may not be the optimum 

(threshold) concentration for miR-708 to initiate its inhibitory effect on the 

expression of CD38.  

Conclusion 1: 

miR-708 regulates the expression of CD38 at mRNA and protein level  

MicroRNAs exert their inhibitory effect mostly by directly binding to the 

3’UTR of their target mRNA (29, 30). Therefore, to determine whether miR-708 

directly binds to the predicted target site at the 3’UTR of CD38 and regulates 

gene expression, NIH-3T3 cells were transiently transfected with luciferase-

reporter-plasmids with CD38-3’UTR constructs and mimic of miR-708 or 

scrambled sequence mimic as a control. Here I used a heterologous cell system 

(NIH-3T3) to perform this assay because HASM cells are primary cells and are 

technically challenging to transfect with larger plasmids. I found that the relative 

luciferase activity in cell lysates obtained from cells transfected with the mimic of 

miR-708 was lower compared to lysates of cells transfected with scrambled 

sequence mimic or the luciferase-reporter–plasmid alone. The specificity of 

target binding by miR-708 was confirmed by mutating four bases in the target 

sequence which reversed the inhibitory effect of miR-708 on luciferase gene 

expression.  
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Conclusion 2: 

miR-708 has specific functional and putative target sites at the 3’UTR 

of CD38. 

MicroRNAs regulate the expression of genes post-transcriptionally by 

binding to their target site at the 3’UTR of mRNA and degrading it or repressing 

translation, depending on the degree of sequence complementarity (29, 30). We 

performed mRNA stability assays to determine whether miR-708 inhibits the 

expression of CD38 by degrading the transcript. After transfection with mimic of 

miR-708 and growth arrest, HASM cells were treated with TNF-α for 12 h to 

induce CD38 expression. Actinomycin D was used to arrest further transcription 

and total RNA was collected at different time points to analyze the expression 

level of CD38 relative to 0 time point using non-linear regression analysis.  I 

found that binding of miR-708 to its target site did not result in degradation of 

CD38 mRNA, therefore miR-708 should have caused translational repression.  

Conclusion 3: 

miR-708 does not regulate the expression of CD38 through 

degradation of CD38 mRNA.  

MicroRNAs can indirectly regulate the expression of a target gene by 

regulating multiple constituents in signaling pathways (168). Since the expression 

of CD38 at mRNA level was significantly inhibited by miR-708, I sought to 

determine whether miR-708 regulates expression of CD38 at the level of 

transcription. Because MAPK and PI3K signaling pathways transcriptionally 



145 

 

regulate the expression of CD38 in the presence of TNF-α, I examined the 

activation and expression level of genes in these pathways. I found that following 

miR-708 transfection, activation of JNK MAPK and Akt in TNF-α-treated HASM 

cells was inhibited and the expression of their phosphatases, MKP-1 and PTEN, 

respectively was elevated.  

Conclusion 4: 

miR-708 transcriptionally regulates the expression of CD38 through 

inactivating JNK MAPK and Akt and increasing the expression of their 

inhibitors MKP-1 and PTEN.  

Since miR-140-3p is also differentially expressed in HASM cells treated 

with TNF-α, I examined whether this microRNA plays a role in regulating the 

expression of CD38. Over-expression of miR-140-3p in cells transfected with the 

mimic of this microRNA inhibited the expression of CD38 in a concentration-

dependent manner at mRNA and protein level. Luciferase reporter assays as 

described earlier with miR-708 confirmed direct and specific (by site-directed 

mutagenesis) interaction of miR-140-3p with the 3’-UTR target binding site of 

CD38. Further, I observed that as in the case of miR-708, miR-140-3p 

transfection did not alter CD38 mRNA stability. Since transcript degradation was 

not the cause for decreased levels of CD38 mRNA, I sought to determine 

whether miR-140-3p exerts its regulatory effect on CD38 expression at a 

transcriptional level.   

Western blot analysis to detect the level of expression and activation 

status of signaling molecules in the MAPK and PI3K pathway as well as of the 
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transcription factors NF-κB and AP-1 revealed that over expression of miR-140-

3p decreases the activation of p38 MAPK and NF-κB (figure 1).  

Conclusion 5:  

MiR-140-3p regulates the expression of CD38 post-transcriptionally 

by binding to its putative target site and transcriptionally by inactivating 

p38 MAPK and transcription factor NF-κB.  

MicroRNAs simultaneously regulate several genes that accomplish a 

cellular process or a tissue function.  In order to determine whether miR-708 

transfection alters expression of other asthma related genes, I performed a 

microarray analysis of total RNA isolated from HASM cells that were transfected 

with mimic of miR-708 or scrambled sequence mimic and treated with TNF-α. 

Interestingly, I found that several inflammation-associated genes such as 

chemokines, cytokines, genes associated with extracellular matrix components 

and genes related to TNF-α and NF-κB were down-regulated. Decreased 

expression of some of these inflammatory genes such as CCL11, CXCL10, 

CXCL8, CCL2, RARRES2 (retinoic acid receptor responder 2) and extra cellular 

matrix associated genes such as ADAM33 (a disintergrin and metalloprotease 

33) and CD44 was validated by q-PCR. Chemokines secreted by HASM cells 

play an important role during inflammation by attracting/recruiting inflammatory 

cells to the airways. Chemokines CCL11, CXCL10, CXCL8, CCL2 and 

RARRES2 have been shown by other investigators to recruit eosinophils, mast 

cells, neutrophils, monocytes, dendritic cells and macrophages, respectively. We 

measured the release of CCL11, CCL5, CXCL10, CXCL8 and CXCL12 in the 
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culture supernatant of HASM cells transfected with mimic of miR-708 or 

scrambled sequence mimic at different time points ranging from 6-48h. We found 

that the release of only CCL11 was inhibited by miR-708 transfection with a 

coordinated decrease at the mRNA level. Although the expression of other 

chemokines was inhibited at the mRNA level, there was no corresponding 

decrease at the protein level.  This suggests that these chemokines might be 

stored in vesicles or in pre-formed granules as seen in other  cell types such as 

eosinophils, endothelial cells, mast cells, etc., and when TNF-α is added to the 

cell culture they are readily released. Expression and release of these 

chemokines from HASM cells is known to be controlled by various signaling 

pathways depending on the type of trigger. IL-17A-induced expression of CCL11 

involves the MAPK pathway (279), while TSLP-induced expression of CC/CXC 

chemokines involves MAPK and STAT3 pathways (301). Likewise, IL-β-induced 

release of CCL11, CCL2 and CCL7 involves activation of the MAPK pathway as 

well as the transcription factor NF-κB (357) and IL-13-induced release of CCL11 

involves MAPK and STAT-6 signaling pathways (270). Therefore it is possible 

that signaling pathways that are not regulated by miR-708 may be involved in the 

release of the chemokines CCL5, CXCL10, CXCL8 and CXCL12 and when the 

cells are exposed to TNF-α, irrespective of whether miR-708 is present or not, 

HASM cells readily released these chemokines. On the other hand, it is also 

possible that mRNAs of these chemokines that were transcribed prior to miR-708 

transfection/over-expression undergo protein translation and are released. In this 

case, differences in the release of these chemokines following miR-708 
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transfection may be detected in the culture supernatant at later time points. 

However, taking into consideration that this is a transient transfection system and 

the half-life of microRNAs within cells after transfection in vitro is about 3-5 days, 

we collected supernatants only up to 48h. Studies from other laboratories 

suggest that using a mixture of cytokines (cytomix) containing IFN-γ, IL1-β, and 

TNF-α instead of TNF-α alone may enable detection of differences in the release 

of these other chemokines compared to control (cells transfected with scrambled 

sequence mimic) (9, 91). Establishing stable transfection using viral vectors is 

technically challenging since the procedure entails several passages of cells for 

the selection of successfully transected cells which may lead to loss of smooth 

muscle phenotype in HASM primary cells.  

CD44, a cell surface glycoprotein, is a key receptor for hyaluronan and a 

major component of the extra cellular matrix which plays a role in airway 

remodeling and AHR.  Further, CD44 has been shown to promote the homing of 

activated T-lymphocytes to asthmatic airways (201). Studies have shown that 

allergen-challenged CD44-deficient mice exhibit markedly attenuated AHR 

compared to wild type (WT) mice and that administration of antibodies against 

CD44 to allergen-challenged WT mice results in reduced AHR (122).  Thus, 

inhibition of the expression of CD44 by miR-708 is likely to have a beneficial 

effect on asthma-related symptoms. Likewise, down-regulation of ADAM33 and 

RARRES2 gene expression by miR-708 is also likely to be beneficial in asthma 

since both have been implicated in asthma. ADAM33 is an asthma susceptibility 

gene strongly associated with bronchial hyperresponsiveness with a role in 



149 

 

airway remodeling by promoting fibroblast hyperplasia (212, 225, 246, 337) and 

RARRES2, is a chemoattractant for dendritic cells and macrophages (166, 355, 

356).   

Microarray analysis of miR-708-transfected cells also revealed inhibition of 

expression of various other genes that could impact inflammation such as (i)  

those associated with extracellular matrix, i.e.,  collagen types 1,3 and 6, VCAM, 

THBS1, MXRA5; (ii) TNF-α related genes, i.e., TNFRSF11B and TNFSF13B; (iii) 

genes related to smooth muscle contraction, i.e., TAGLN, MYLK, ACTG2; (iv) 

transcription factors, i.e., NF-κB1 and RELA;  (v) growth factor related genes 

such as IGFBP5, PDGFRL, EGFL6. In addition, up regulation of important genes 

such as PPIL5 that suppress the activation of NF-κB, DUSP6 that inactivates 

MAPKs, BMP2 that up-regulates PTEN and IL-24 that has anti-inflammatory and 

anti-proliferative properties was also noted. 

Conclusion 6: 

miR-708 inhibits the expression of several inflammatory genes 

including chemokines CCL11, CXCL10, CXCL8, CCL2 and RARRES2, 

extracellular matrix components CD44 and ADAM33 as well as the release 

of CCL11 by HASM cells. 

Proliferation of HASM cells causes thickening of the airway wall and 

obstruction of airflow. Several studies have shown that thickening of the airway 

wall due to increased smooth muscle mass increases airway resistance. Further, 

studies have also shown that the MAPK and PI3K signaling pathways regulate 

the proliferation of HASM cells. MicroRNAs such as miR-10a and miR-221 have 
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been shown to play a role in the proliferation of HASM cells. miR-708, a focus of 

the current study, has been implicated in many cancer-related studies and is 

shown to have anti-proliferative as well as pro-proliferative properties, depending 

on the type of cancer. Given the role of MAPK and PI3K signaling pathways in 

regulating the proliferation of HASM cells, participation of miR-708 in down-

regulating these signaling pathways as shown in the current study may have an 

inhibitory effect on proliferation of HASM cells (figure 1). In the microarray data, 

we found that expression of an almost equal number of pro-proliferative and anti-

proliferative genes were altered in HASM cells transfected with mimic of miR-708 

and treated with TNF-α. To further, explore this, we performed proliferation 

assays using the CYQUANT cell proliferation assay kit with HASM cells following 

transfection with mimic of miR-708 or scrambled sequence mimic in the presence 

of TNF-α or 10% fetal bovine serum. miR-708 was found to inhibit the 

proliferation of NA-HASM cells by about 37% in the presence of fetal bovine 

serum.  

Conclusion 7:  

miR-708 has an anti-proliferative function in HASM cells. 
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Figure 1. Proposed model for the microRNA regulation of CD38 and other 

asthma related genes, based on the findings of the present investigation. 

 

 

 

Figure 1: Model depicting regulation of chemokine gene expression 

and proliferation of human airway smooth muscle cells: 

Exposoure of human airway smooth muscle cells to the inflammatory cytokine 

TNF-α causes activation of the MAP kinases and PI3 kinase signaling pathways. 

These results in augmented expression of the cell-surface protein CD38 through 

transcription factors NF-κB and AP-1 to cause increased calcium signaling, 

contractility and airway hyperresponsiveness (AHR). TNF-α also causes 

increased ASM cell proliferation through MAP kinase and PI3 kinase/Akt 

signaling pathways. The expression and secretion of several chemokines from 
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ASM cells is significantly increased on exposure to TNF-α. MiR-708, by 

increasing the expression of a dual specificity phosphatase (DUSP-1) decreases 

JNK MAP kinase phosphorylation, resulting in decreased expression of CD38 

and several chemokine genes. By inducing the expression of PTEN, a 

phosphatase that inactivates Akt, miR-708 can inhibit cell proliferation as well as 

CD38 expression. MiR-140-3p, on the other hand, decreases activation of p38 

MAP kinase and NF-κB resulting in decreased CD38 expression. MiR-140-3p 

effects on inhibition of chemokine gene expression and secretion may also be 

exerted through decreased activation of p38 MAP kinase and NF-κB.  

Future Direction 1:  

Test efficacy of miR-708 in down-regulating allergen-induced airway 

inflammation and AHR in mouse models: Cholesterol-incorporated, nucleotide-

locked miR-708 will be administered intranasally or intravenously to asthmatic 

mice and pulmonary function assays (plethysmography) as well as airway 

inflammation based on total and differential cell counts in BAL fluid will be 

determined. To compare miR-708 versus an inhibitor of CD38 in controlling AHR 

and inflammation, the CD38 inhibitor (modified NAD) will be delivered 

intranasally to allergen-challenged WT mice and airway inflammation will be 

assessed.  I anticipate that allergen-challenged mice administered with miR-708 

will exhibit lower AHR than mice that received CD38 inhibitors though species 

differences and species specific functions may interfere with the results.  
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Future Direction 2:  

Previous studies from our laboratory have shown that asthmatic CD38-/- chimeric 

mice that were transplanted with WT bone marrow demonstrate partial rescue in 

airway resistance to contractile agonists.  To determine whether CD38 expressed 

by inflammatory cells have a role in controlling airway contractility, an inhibitor of 

CD38 will be administered to these mice and pulmonary function will be 

measured. Here I anticipate that chimeric mice that received the inhibitor will 

exhibit less airway contractility compared to mice that received the vehicle alone.  

Future Direction 3:  

Establish the ability of miR-708 to inhibit cellular recruitment by HASM cells: 

Since miR-708 and miR-140-3p inhibit release of CCL11 and CXCL12 by HASM 

cells, respectively, migration assays will be performed with culture supernatants 

of HASM cells transfected with mimic of miR-708, mimic of miR140-3p or 

scrambled sequence mimic and activated with TNF-α to examine recruitment of 

human eosinophils and Jurkat cells (a human T cell line), respectively, in 

Transwell chamber plates. We anticipate that there will be less cellular migration 

with culture supernatants from cells transfected with mimic of miR-708 or 

miR140-3p relative to culture supernatants from cells transfected with scrambled 

sequence mimic. 
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Perspectives of the current study 

• Previous studies from our laboratory showed that airways of allergen 

challenged CD38 -/- mice were hyporesponsive   to contractile agonist 

methacholine compared to that of wild type mice.  Airway smooth 

muscle (ASM) cells derived from CD38 -/- mice also showed reduced 

calcium responses to contractile agonists compared to that of wild type 

mice.  These studies revealed the significant role of CD38 in calcium 

signaling and airway hyperresponsiveness (AHR). Further, it has been 

found that signaling pathways MAPK and PI3K regulate TNF-α 

induced- CD38 expression and ASM cells of asthmatic patients have 

increased expression of CD38 when compared to ASM cells from 

healthy subjects.  In the current studies, microRNAs miR-708 and miR-

140-3p are shown to control the expression of CD38 directly by binding 

to the 3’UTR and indirectly through MAPK and PI3K signaling 

pathways. Collectively, these data suggest that the microRNAs miR-

708 and miR-140-3p may have a potential role in attenuating AHR by 

controlling the expression of CD38. 

• The signaling pathways MAPK and PI3K also regulate the expression 

and release of many proinflammatory cytokines and chemokines. In 

asthma, proinflammatory mediators trigger these signaling pathways to 

produce tremendous amounts of chemokines and cytokines in the 

airways that augment and sustain the inflammation. Administration of 
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pharmacological inhibitors of MAP kinases or PI3kinases in allergen 

induced mouse asthma models reduces the airway inflammation. In 

the current study I found that microRNA miR-708 controls the signaling 

pathways MAPK and PI3K by inactivating JNK MAPK and AKT and 

increases the expression of their phosphatases MKP-1 and PTEN 

respectively. Thus introduction of mimics of miR-708 in the airways to 

target ASM cells would cause a high impact in controlling airway 

inflammation. Validation of the reduced mRNA expression of many 

chemokines and the reduced release of CCL11 following miR-708 

transfection in human ASM cells compared to control, further support 

this hypothesis. Likewise, microRNA miR-140-3p inactivates p38 

MAPK and transcription factor NF-κB, and inhibits the mRNA 

expression of many chemokines and the release of CXCL12. Thus 

miR-140-3p may also have a therapeutic potential in controlling airway 

inflammation. Further it has been shown by other laboratories that 

CD38 is essential for dendritic cell trafficking from peripheral tissues to 

regional lymph nodes, T-cell antigen priming and chemotactic 

migration of neutrophils. Thus regulating the expression of CD38 in 

these cells by microRNAs miR-708 and miR-140-3p, we might be able 

to control the airway inflammation. 

• Another aspect of CD38 in contributing to the pathogenesis of airway 

inflammation would be through production of a purine nucleoside, 

adenosine. It is known to be produced from ATP and hypothesize to be 
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produced through the enzymatic activity of CD38 from the substrate 

NAD, which also acts as a source for the production cADPR, a potent 

Ca++ releaser from intracellular Ca++storages.  Adenosine is highly 

expressed in the airways of asthmatic patients and has been shown to 

elevate the expression of IL6 through STA3 activation. IL6 is involved 

in the proliferation of fibroblasts and ASM. Further adenosine binds to 

its receptor A1R on the membrane of ASM cells and induce the 

production of IP3 (inositol triphosphate) another secondary messenger 

for Ca++release from intracellular Ca++storages. Therefore, by 

regulating the expression of CD38 by microRNAs miR-708 and miR-

140-3p, we may potentially control the airway hyperresponsiveness by 

blocking adenosine-IP3 pathway, airway inflammation by blocking 

adenosine production itself and airway remodeling by hindering the 

adenosine - IL6 pathway.  
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