Optical Properties of Hydrogenated Amorphous Silicon with Nanocrystalline Germanium via CPM

Yijia Liu University of Minnesota-Twin Cities UROP

Introduction			PM&absorpt	ion spectru	m of a-Si:H	Three transimissions	
 Due t ease subst rises electr The d of a-t localiz and c expor 	o the low cost of production of deposition on a variety of rates, amorphous silicon(a-S great interests of large area onics applications. lisorder in the atomic structu Si leads to the presence of zed states in both valence ba onduction band and the nential decay of the band tail	and • C n n ii) P • H v ire n • th ind ru s. th	PM is short for co neasuring absorpti hotocurrent consta lowever,α spectru alues, which need neasurements in t ne Ritter-Weiser fo elative absorption there are three pos ne right. In this pro- paior concerns, wh	nstant photocurre ion coefficient α by ant as photo energe m produced by CF is a traditional tran he applicable region prmula below will of spectrum. ssible transitions in pject, transition 1 a pich will produce T	nt method, / keeping the gy varied. PM is only relative smission ons to calibrate it calibrate the n a:Si:H shown in and 2 are the auc and Cody	Pelocalized States Localized States	Pelocalized States Delocalized States Delocalized States 1 2 2 0 Energy (eV)
 It is a constraint of the constraint of	ly gap, hydrogen and germal troduced to a-Si, forming nc Si:H. Ims used in the projects are Si:H with varying Ge conten and Cody energy gap and ch slope are measured via C	nc- PM. the standard stand standard standard stand standard standard stand standard	 For good device quality films, Urbach slope should be 50meV~70 meV and Tauc and Cody gaps should be 1.6eV~1.8 eV. To measure its mobility gap and disorder , Tauc and Cody energy gap and Urbach slope are determined in the absorption spectrum for 1.1eV to 2.1 eV via CPM. 			Figures above are the sketches of a-Si:H band gap density of states (left) and the indication of three types of transitions. (right) Figure on the right is a sketch of absorption spectrum of a- Si:H with indication of the Urbach region.	(i) by the second state of the second state o
Results and analysis							CONCIUSION
1.00E+05 1.00E+04 1.00E+03 1.00E+03 1.00E+02	nGaS017B.2					 a. The graph on the left are α spectrum of the two films with different germanium content but there is no obvious difference between the two spectrum above 1.4 eV. b. Tauc and Cody energy gaps are less favorable and contradicts the fact the larger Ge content leads to smaller mobility gap. 	 The increase of Ge content fails to change obviously the mobility gap and Urbach slope. It is worthy to check the film without Ge content and slightly higher Ge content for further confirmations. Above 2.0eV, the flat regions may affect the measurements of moblity
1.00E+01	c.Urbach slopes of two films are almost the same and						gap.
film nGaS017 nGaS017 Table.1:	xd(µm) E^{T}_{g} (eV) E^{c}_{g} (eV) E_{0} (meV)indicates that the band tails are broad and a great amoun of disorder12.94%1.81.551.4712527.29%2.21.611.55128ummary of two films' parameters-crystal fraction x, thickness of the film d, Tauc E^{T}_{a} Cody energy gap E^{c}_{a} and Utbach slope E_{0}					 R.A Street, <i>Hydrogenated</i> <i>Amorphous Silicon</i> (Cambrdge University Press, 1991) L. Wienkes, Optical Absorption in Thin Film Mixed-Phase AmorphousSilicon(unpublished) 	