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Abstract 

Integrated control laws are developed for stability augmentation and active flutter 

suppression (AFS) of a flexible, flying-wing drone. The vehicle is a 12-pound unmanned, flying-

wing research aircraft with a 10 ft wingspan. AFS is flight critical since the subject vehicle is 

designed to flutter within its flight envelope. The critical flutter condition involves aeroelastic 

interactions between the rigid-body and elastic degrees of freedom; hence the control laws must 

simultaneously address both rigid-body stability augmentation and flutter suppression. The 

control-synthesis approach is motivated by the concept of Identically Located Force and 

Acceleration (ILAF), successfully applied on some previous operational aircraft. Based on the 

flutter characteristics and on conventional stability-augmentation concepts, two simple loop 

closures are suggested. It is shown that this control architecture robustly stabilizes the body-

freedom-flutter condition, increases the damping of the second aeroelastic mode (which becomes 

a second flutter mode at higher velocity), and provides reasonably conventional vehicle pitch-

attitude response. The critical factors limiting the performance of the feedback system are 

identified to be the bandwidth of the surface actuators and the pitch effectiveness of the control 

surfaces. 

1. Introduction 

We seek to develop integrated control laws for stability augmentation and active flutter 

suppression (AFS) for a flexible, flying-wing research drone. AFS is flight critical in this instance 
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since the subject vehicle is designed to flutter within the flight envelope. The vehicle of interest, 

depicted in Figs. 1 and 2, is Lockheed Martin’s Free-Flying Aeroelastic Demonstrator (FFAD), a 

12-pound unmanned, flying-wing aircraft with a 10 ft wingspan (Ref. 1), The vehicle is a low-

speed swept-back flying wing with winglets on the wing tips for directional stability, and an 

electric motor driving a pusher propeller (not shown in the figure) mounted at the top rear of the 

rigid center body. The entire trailing edge of the wing consists of eight control surfaces. The 

planform parameters are listed in Table 2, and the mass properties are given in Table 3, all from 

Ref. 2. Note that this is a fairly small, lightweight, unmanned vehicle.  

One of these vehicles was provided for flight research to the Unmanned Air Vehicle 

(UAV) Lab of the University of Minnesota (UMN), and we are collaborating in this research. 

These vehicles were precursors to the unmanned, multi-utility X-56A vehicle currently 

undergoing flight testing at NASA’s Armstrong Flight Research Center.  

 

 
Figure 1, Vehicle Configuration 

 

 
Figure 2, Vehicle Planform View 
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Table 1, Planform Description 

Planform 
Area, S Span, b Aspect 

Ratio, AR 
Taper 

Ratio, λ  M.A.C.,  c   LE Sweep, ΛLE 

11.67 ft2 10 ft 8.57 4.25 1.313 ft 22 deg 
 

Table 2, Vehicle Mass Properties 
Property Value 
Total Weight 1.99 lb 
C.G. Location 23.26 in (from nose) 
Pitch Moment of Inertia 1245.8 lb-in2 

Roll Moment of Inertia 8529.5 lb-in2 

Yaw Moment of Inertia 8118.4 lb-in2 

Product of Inertia (est) -0.30 ln-in2 

 

2. The NDOF Dynamic Model 

A previously developed n-degree-of-freedom (NDOF) math model of the longitudinal 

dynamics (Ref. 3) will be utilized in the control-law synthesis. And a review of this model 

development and the vehicle dynamics will significantly aid in understanding the control-law 

development. The modeling approach yields an integrated NDOF model based on first principles, 

derived in the vehicle-fixed, or non-inertial, reference frame. The results in Ref. 3 were compared 

to those of Lockheed Martin (Ref. 1), and good agreement was indicated. Although the vehicle is 

statically stable in pitch, it is predicted to exhibit both body-freedom and bending torsion flutter at 

47 and 57 kt, respectively. 

Only the first three symmetric free vibration modes were used in the development of the 

NDOF dynamic model, but these were shown to be sufficient to capture the critical aspects of the 

dynamics. The modal data for these three vibration modes are given in Table 3, along with the 

data sources. The values from the UMN GVTs highlighted in bold were used in the dynamic 

modeling. 
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Table 3, Structural Vibration Characteristics 

Data and Source 1st Sym Mode 2nd  Sym Mode 3rd Sym Mode 
Frequency, UMN FEM 34.9 r/s 94.5 r/s 163.2 r/s 
 Frequency, UMN GVT 34.6 r/s 117.8 r/s 145.6 r/s 

Frequency, LM GVT 35.4 r/s 123.4 r/s 147.3 r/s 
Damping, UMN GVT 1.55% 2.06% 2.85% 

Gen. Mass, UMN FEM 0.28950 sl-ft2 0. 00772 sl-ft2 0. 05239 sl-ft2 

 
The mode shapes for these three symmetric modes, obtained from the FEM, are shown in 

Figs. 3-5, respectively. Note that in these modes vertical (Z) translations are positive down, and 

wing-torsional displacements θ are positive leading-edge up. It is clear from Figs. 3 and 5 that the 

first and third symmetric modes exhibit both bending and torsional displacements, but are referred 

to herein as “bending” modes. The second symmetric mode shape in Fig. 4 exhibits almost pure 

torsional displacement. 

   

 
Figure 3, Mode Shape, First Symmetric Mode 
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Figure 4, Mode Shape, Second Symmetric Mode 

        
Figure 5, Mode Shape, Third Symmetric Mode 

We will revisit these mode shapes again many times. But note here that the first mode is 

characterized by nose-down pitch/torsion in phase with wing-tip-down transverse displacement. 

Plus the bending and torsion in the first and third modes involves displacements of the vehicle 

center body as well as the wings. 

As noted in Ref. 4, one can mathematically describe the instantaneous shape of the 

structure in terms of free-vibration mode shapes and modal coordinates. That is, given sufficiently 
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large n, the instantaneous elastic deformation dE of the vehicle’s structure at some location p on 

the undeformed vehicle can be expressed in terms of the n vibration mode shapes evaluated at 

location p, or ν i(p) and the n time-dependent vibration modal coordinates ηi(t), or 

 
   
dE (p,t) = νi(p)ηi(t)

i=1

n

∑   1 

When all ηi = 0, therefore, the vehicle is in its undeformed shape. 

The system states in the NDOF dynamic model associated with the n elastic degrees of 

freedom are chosen as these vibration modal coordinates ηi(t). Furthermore, from Lagrange’s 

equation, these n modal coordinates are governed by n second order differential equations of the 

following form 

     ηi(t)+ 2ζ iω i
ηi(t)+ω i

2ηi(t) = Qi / Mi   2 
 
where  ζi = vibration modal damping 

  ωi = in-vacuo vibration modal frequency 

  Qi = generalized force acting on the i’th modal coordinate 

  Mi = generalized mass of the i’th vibration mode 

The NDOF dynamic model used includes the first three symmetric vibration modes, so here n = 3.  

The linear NDOF model for the longitudinal dynamics takes the form given in Eqns. 3 

below, with the first four states corresponding to the three rigid-body degrees of freedom, while 

the last six states correspond to the three elastic degrees of freedom. In the absence of unsteady-

aerodynamic effects, there are no additional states associated with lagged aerodynamic. Also, this 

model is for the “bare airframe” only. Actuator dynamics are added later. Note the natural 

partitioning of the system into inertially decoupled rigid-body and elastic subsystems. The terms 
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Zη , Mη , and Ξ•  

are the dimensional aeroelastic stability derivatives, which capture the 

aerodynamic coupling between all the degrees of freedom. These derivatives are functions of 

flight condition, mass properties (including generalized masses), and the vibration mode shapes 

discussed above. 
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3. The Flutter Characteristics 

Now consider Fig. 6, showing the dynamic-pressure root locus for the model just 

described. The eigenvalues of the system (A) matrix are shown for seven flight velocities between 

30 and 60 kt. The system modes are labeled according to their modal genesis. That is, the mode 



 Submitted to the Journal of Guidance, Control, and Dynamics May 19, 2015  

 8 

branches are identified according to their genesis mode of pure rigid-body mode or pure free-

vibration mode with no aerodynamic forces. But to be clear, all the modes involve coupling 

through the aerodynamics, and hence are not pure short period, pure vibration, etc. 

                            
 

Next consider the branch labeled “Short Period.” As the flight velocity, or dynamic 

pressure, increases, the natural frequency and damping of this mode both increase. The next 

branch labeled “1st Bending” begins at the pole from the first symmetric-bending vibration mode, 

almost on the imaginary axis at 34.6 rad/sec, and as flight velocity increases this branch 

eventually crosses the imaginary axis. This axis crossing corresponds to the BFF condition, which 

here occurs at a flight velocity of approximately 47 kt and with a frequency of 27.5 rad/sec (4.4 

Hz). 
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Next, with regard to the branch labeled “1st Torsion,” the branch begins at the pole arising 

from the second symmetric vibration mode (torsion mode), almost on the imaginary axis at 117.8 

rad/sec, and at higher flight velocity it also crosses the imaginary axis, indicating a second flutter 

mode. This flutter condition is predicted to occur at a flight velocity of 57 kt, and with a 

frequency of 80 rad/sec (12.7 Hz). 

Finally, consider the branch labeled “2nd Bending. This branch begins near the imaginary 

axis at 145.6 rad/sec, this mode’s vibration frequency, and as the flight velocity increases, these 

roots simply move further into the left half plane. The Phugoid roots remain near the origin at all 

flight velocities. 

Some variations on the above model were also considered in Ref. 3, which involve 

truncating or residualizing the second and third elastic degrees of freedom. Residualization yields 

a reduced-order model that retains the static-elastic effects of the residualized degrees of freedom 

on the aerodynamics, while truncation eliminates both the dynamics and the static-elastic 

aerodynamic effects of the truncated degrees of freedom. 

Truncation or residualization of the second and third elastic degrees of freedom leads to 

quite different results. With a truncated model neither the “Short-Period” nor the “1st Bending” 

roots move as much with flight velocity, and no flutter instability is indicated over this range of 

velocity. So the “Short-Period” and “1st-bending” degrees of freedom interact much less in the 

absence of the “1st Torsion” mode. In contrast, the dynamics of the residualized model are quite 

similar to those for the full-order model. There exists considerable interaction between the “Short-

Period” and “1st Bending” modes in this case, and such a model also suggests BFF occurs at a 

flight velocity of approximately 47 kt with a frequency of 27.5 rad/sec. These results are almost 

identical to those obtained from the full-order model for the BFF condition, and these combined 
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results also indicate that the static-elastic effects of the first-torsion mode, which are included in a 

residualized model, are important to the existence of BFF.  

When comparing these results from Ref. 3 with LM’s results reported in Ref. 1, quite 

good agreement was found in terms of the presence of both flutter conditions, and with regards to 

the flutter speeds, flutter frequencies, and genesis modes of the flutter conditions. Plus, the flight-

test results reported in Ref. 1 confirmed a critical flutter speed of approximately 46 kts. All these 

results are summarized in Table 6 below. 

 
Table 6, Comparison Of Flutter Speeds and Frequencies 

Model/Test BFF Flutter 
Speed 

BFF Flutter 
Frequency 

BT Flutter 
Speed 

BT Flutter 
Frequency 

LM Analytical 43 kt 4.2 Hz 57 kt 10.5 Hz 
LM Flight Test 46 kt 4.5 Hz NA NA 

Full-Order Model 47 kt 4.4 Hz 57 kt 12.7 Hz 
Residualized Model 47 kt 4.4 HZ NA NA 

Truncated Model No Flutter No Flutter NA NA 
 
4. Attitude Dynamics  

The transfer functions for pitch-attitude and plunge-acceleration (measured at the cg 

location of the undeformed vehicle) from elevator ( δ3 ) are given below. (Here a shorthand 

notation in used. Two terms in square brackets denote the damping and frequency of a quadratic 

polynomial, and a single term in brackets denotes the negative of the root of a first-order 

polynomial.) The flight condition is 3000 ft altitude and 60 fps velocity, below the critical flutter 

speed. 

θcg (s)
−δ 3(s)

= 65.24 [0.0536][7.044][0.22,41.2][0.05,101.7][0.05,165.3]
[−0.01,0.61][0.59,18.1][0.15,30.9][0.07,103.7][0.08,146.0]

 deg/deg 

 4 
nZ−cg (s)
−δ 3(s)

= −0.2276 [0][ − 0.0279][29.58][−25.58][0.24,42.3][0.07,104.1][−282.6][246]
[−0.01,0.61][0.59,18.1][0.15,30.9][0.07,103.7][0.08,146.0]  

ft/sec2/deg
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The lowest frequency mode is the Phugoid, while the next higher-frequency is a short-

period-like mode, discussed further below. The presence of the three aeroelastic modes is 

indicated by the three sets of higher-frequency dipoles (pole-zero pairs) in each of these transfer 

functions. The two “highest-frequency” zeros in the acceleration transfer function are effectively 

at infinity in the complex plane.  

The second mode, with a natural frequency of around 18 rad/sec, is not a classical short-

period mode. This mode’s eigenvector or mode is depicted in Fig. 7. Note that unlike a 

conventional short-period mode shape for a rigid vehicle, the second largest contributor to this 

modal response is centerbody pitch rate due to the first elastic degree of freedom, indicated by 

   
θE1 . So as in a true short-period mode, there is virtually no surge velocity urig present in this 

mode, the mode is dominated by the rigid-body (i.e., mean axis) pitch-rate response of the vehicle 

qrig, and the phase relationships between rigid-body pitch rate, pitch attitude, and angle of attack 

are as in a conventional short-period mode. But this elastic-short-period mode is a highly coupled 

rigid-body and elastic mode.  

 
Figure 7, “Elastic-Short-Period” Mode Eigenvector (Mode Shape) 

 The next-highest-frequency mode reflected in the transfer functions is the lightly damped 

first aeroelastic mode (AE Mode 1), with an undamped natural frequency of approximately 31 

rad/sec. This mode’s eigenvector (or mode shape) is depicted in Fig. 8, also indicating a coupled 

qrig, rad/sec 
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rigid-body/elastic mode, but dominated by the centerbody elastic pitch-rate deformation 

associated with the first elastic (bending-torsion) degree of freedom,    
θE1 . The next largest 

contributor to this modal response is the rigid-body pitch rate (mean axis) qrig, and there is again 

virtually no surge velocity urig present in this modal response. So as with the elastic-short-period 

mode in Fig. 7, this first aeroelastic mode also exhibits extensive rigid-elastic coupling. 

 

            

 
 

Figure 8, Coupled First and Second Aeroelastic Mode Eigenvectors (Mode Shapes) 
 
The next-highest-frequency mode is the second aeroelastic mode (AE Mode 2), with an 

undamped natural frequency of approximately 104 rad/sec. This mode’s eigenvector (or mode 

shape) is also depicted in Fig. 8. Recall the genesis of this mode was a pure torsional vibration 

mode. This mode is now also a coupled rigid-body/elastic mode, but is dominated by the 

centerbody pitch-rate associated with the second elastic (torsion) degree of freedom    
θE 2 . The next 

largest contributors to this modal response are the rigid-body pitch rate qrig and the elastic pitch 

rate associated with the first elastic degree of freedom    
θE1 . It is interesting to note that in this 

modal response the centerbody-pitch-rate associated with the first two elastic degrees of freedom 

   
θE1  and θE 2  are almost perfectly in phase, while the rigid-body pitch rate qrig is almost 180 
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degrees out of phase with these two elastic responses. This second aeroelastic mode also exhibits 

significant rigid-elastic coupling.  

The last mode is the third aeroelastic mode (mode shape not plotted) with an undamped 

frequency of 146 rad/sec, and it is almost entirely elastic centerbody-pitch-rate deformation 

associated with the third elastic degree of freedom, or    
θE3 . So this is almost a pure elastic mode. 

 Now consider Fig. 9, which shows the centerbody-pitch-rate step responses from a 

negative-one-degree elevator deflection  δ3 , from the three different dynamic models. The 

response shown in blue is for the rigid vehicle, obtained from truncating all three elastic degrees 

of freedom, the response in red is the response from a reduced-order model obtained by 

residualizing all three elastic degrees of freedom, and the response shown in orange is from the 

full-order NDOF model corresponding to Eqns. 3. These three responses differ significantly, 

indicating the degree of flexibility of this vehicle. The pitch-rate responses from the models that 

include the effects of the elastic deformation are quicker, with peak times about 40 percent less 

than that of the rigid model.  

As the final topic in this section we will again consider the vehicle’s modal characteristics 

(eigenvalues and eigenvectors), except at a flight condition above the flutter speed. The 

longitudinal eigenvectors and eigenvalues for the 50 kt flight condition are shown in Fig 10. 

These modal characteristics clearly indicate that the vehicle is very flexible, and that the rigid-

body and elastic degrees of freedom are highly coupled. And in addition to the system now being 

unstable, these eigenvectors differ significantly from those shown in Figs. 7 and 8. Most notably, 

although it appears that an “elastic-short-period mode” is still present, in this mode the response 
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Figure 9, Pitch-Rate Step Response From Del3 (deg/sec/deg) 
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θE1 , plus the rigid-body 

pitch rate is now in phase with the two elastic response rates. So with increased flight velocity, 

there is more coupling between the rigid-body and elastic degrees of freedom in the modes, and 
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Figure 10, Modal Characteristics at the 50k Flight Condition - Unstable 

 
5. Actuator-Sensor Pair Selections 

The overall approach to be taken in the control synthesis is motivated by the concept 

known as Identically Located Force and Acceleration (ILAF), successfully utilized in the 

development of the active-structural-mode control system on the B-1 aircraft (Ref. 8), and others. 

ILAF essentially states that a force applied to a point on the structure proportional to the velocity 

of the structure measured at the point of application of the force will increase the damping of all 

structural modes. This concept is powerful since it does not rely on precise knowledge of the 

structural mode shapes, which are difficult to predict accurately and change with changes in mass 

distribution and stiffness properties of the structure. 

The basic idea behind ILAF stems from Eqn. 2 above, or 

   ηi (t)+ 2ζ iω i η(t)+ω i
2ηi =Qi /Mi , i = 1,...,n   5 

 
where all the terms in this equation are defined below Eqn. 2. Recall that this is the equation of 

motion governing the i’th elastic degree of freedom associated with the i’th free-vibration mode 

of the vehicle’s structure. The generalized force Qi exciting this degree of freedom is due to the 
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forces acting on the vehicle. Now consider some point force F acting on the structure at location 

xF, yF, zF on the undeformed vehicle. The generalized force in this case can be expressed in terms 

of the dot product between the applied force F and the vibration mode shape (expressed as a 

vector quantity), or 

    Qi = νi xF , yF , zF( )•F   6 

where the mode shape νi was introduced in Eqn. 1. 

 Now assume that the force F is strictly proportional to the local velocity of the structure 

measured at the point xF, yF, zF. Or in terms of the structural deformation dE in Eqn. 1, let 

 
   
F = K

ddE

dt
body

xF , yF , zF( )   7 

where K is some negative constant of proportionality, and the time rate of change of dE is taken 

with respect to the vehicle’s body-fixed coordinate frame. So from Eqn. 1 again we see that this 

force F may be written as  

 
    
F = K

ddE

dt
body

xF , yF , zF( ) = K νi
i=1

n

∑ xF , yF , zF( ) ηi(t)   8 

And therefore, the generalized force Qi becomes simply 

 

   

Qi = Kνi xF , yF , zF( )• ν j xF , yF , zF( ) η j (t)
j=1

n

∑ = ′K ηi(t)+ K j
η j (t)

j=1
j≠i

n

∑   9 

with  ′K  strictly non positive and Kj = 0 for all j ≠ i if the mode shapes are orthogonal. 

Now if one inserts this expression into Eqn. 5 above for the i’th mode, we see that the 

damping of this elastic mode will always be increased unless F happens to be applied at a node 

where νi(xF,yF,zF) = 0. And in like manner the damping of all i elastic modes will be increased. Of 

course the practical issues include the measurement of the local velocity of the structure, the 

application of a point force, and the finite bandwidth of the force actuator. 
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From the discussion in Sections 3 and 4 above, one can observe that the crux of the flutter-

suppression problem for this vehicle is the interactions between the vehicle’s rigid-body pitching 

and the first symmetric bending/torsion mode, as well as the second flutter condition involving 

the second symmetric torsion mode. And a key will be the judicious selection of sensor-actuator 

combinations to be used.  This selection will be guided by the ILAF concept and accomplished 

via logic and basic feedback techniques, rather than any mathematic algorithms. The thought 

process is as follows: 

1. We seek to increased damping of all aeroelastic modes and to do so robustly against 

changes in mass distribution and/or stiffness properties – so we will apply ILAF. 

2. The increased damping realized through the application of ILAF is theoretically achieved 

regardless of the point of velocity measurement and force application on the structure. But 

the co-located force and measurement will be most effective at damping modes with mode 

shapes such that the modes are both highly observable in the velocity measurement and 

highly controllable from a force applied at that location. That is, the location chosen on the 

structure for measurement and force application should not lie near node lines for 

particularly troubling (e.g., unstable) modes.  

3. The BFF condition involves the interactions between the vehicle-pitching mode (elastic-

short-period) and the first aeroelastic mode that involves both bending and significant 

pitching/wing twist (see Fig. 3). And of course, the elastic-short-period mode involves 

pitching of the center body and wing. Finally, as suggested by the vehicle mode shape in 

Fig. 8, pitch coupling is key to BFF.  
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4. So as a corollary to ILAF, applying a pure pitching moment to a point on the structure 

proportional to the pitch rate measured at the same location on the structure should be 

effective at suppressing body-freedom flutter.  

5. But note that true ILAF is not possible for this vehicle as configured. ILAF requires 

applying a force (or a torque) at a point on the structure, but the control surfaces generate 

distributed loads over the wing or center body. Plus the trailing-edge control surfaces 

generate both wing twist (torque) as well as increased lift, not the pure pitching moment 

called for by ILAF. The center-body flaps, however, apply a distributed load over a region 

of the structure over which the mode shapes (Figs. 3-5) are constant (i.e., the center body), 

which is desirable. So this body-flap/pitch-rate force-measurement pair are not perfect, but 

perhaps sufficiently close to ILAF to be successful. 

6. This hypothesis is supported by the results shown in Fig. 11. (The flight condition is 50 kt 

at 3000 ft,) Note that the locations of the zeros in the aeroelastic dipoles are such that 

damping of all modes is increased. Plus, this loop closure is especially effective at 

stabilizing the BFF. 

7. The mode least affected by this loop closure is the second aeroelastic mode, with genesis 

consisting of the first-torsion vibration mode. Note from its mode shape in Fig. 4 that this 

mode exhibits little center-body pitch (twist) and essentially no bending. So the mode is 

not very observable or controllable with regard to this body-flap/pitch-rate loop. Recall 

that this mode eventually becomes unstable at higher dynamic pressure, so it must be 

actively controlled through a second loop closure. But since this mode should not be 

greatly affected by the body-flap/pitch-rate loop, the control-law synthesis should be 

simpler. 
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Figure 11, Root Locus – Center-Body Pitch Rate From Body-Flap Deflection (qCB/-δBF) 
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discussed earlier under Item 5 above, plus twist acceleration is being fed back, rather than 

twist velocity. So the damping of all modes may not be increased, but the torsion-mode 

damping will be significantly increased, as desired. Note that this loop closure also tends 

to stabilize the BFF, but that is not its primary purpose. With a low loop gain the damping 

of the first torsion mode should be sufficiently increased, without excessively 

destabilizing the elastic-short-period mode. Differencing the two wing-tip accelerometers, 

one at the wing’s leading edge and one at the hinge line of the outboard control surface 

may be used to sense wing-tip twist acceleration. 

Consequently, a properly tuned control scheme that both feeds back center-body pitch rate to 

the body flaps as well as differenced wing-tip accelerometers to the outboard control surfaces 

should be effective at both suppressing BFF as well as increasing the damping of the first-torsion 

mode as needed. Plus, there is an additional benefit of feeding pitch rate to a pitch control surface. 

It is known (c.f., Ref. 3) that such a feedback loop is both effective at increasing the damping of a 

conventional short-period mode, plus it preserves conventional aircraft-like dynamics. This is in 

contrast to some attitude controllers that contaminate conventional aircraft-like modal 

characteristics. Hence, the pitch-rate-feedback loop is also effective as a rigid-body stability-

augmentation system (SAS). Therefore, the control architecture depicted in Fig. 13 is proposed, 

and will now be consider in more detail. 
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Figure 12, Root Locus – Wing-Tip Twist From Del-4 Deflection (

  
qTip /-δ4) 

 
 

 
Figure 13, Suggested Feedback Architecture 
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6. Control-Law Synthesis and Analysis 

This analysis addresses both the 50 kt and 60 kt flight conditions, the first one being below 

the torsion flutter speed and only the BFF condition is unstable.  Only the 50 kt case will be 

considered in detail here, with the results for the 60 kt flight condition summarized later. 

Conventional frequency-domain techniques and successive loop closure will be employed. 

Recalling that closure of the pitch-rate/body-flap loop minimally affects the torsion-mode roots, 

plus observing that the wing-twist loop will have the higher crossover frequency of the two loops, 

suggest that addressing the augmentation of the torsion mode first is advisable.  

6.1. Bare-Airframe Only – 50 Knots 

Ignoring the actuators for now, we take the transfer functions a(s) in Fig. 12 to be unity. 

Using MATLAB’s control-design tool, the particulars of the wing-twist/outboard-flap loop 

closure (with the body-flap loop open) are revealed in Fig. 14. Three plots are included in the 

figure, a root locus (identical to that in Fig 12), and the open- and closed-loop frequency 

responses for this feedback loop. As indicated in the root locus, a modest gain (-7.5x10-4 

deg/deg/sec2) relocates the augmented poles to the locations indicated, and the damping of the 

torsion mode is increased from less than 0.05 to 0.20. The open-loop Bode plot on the right 

confirms that this loop closure is effective at robustly augmenting the torsion mode, with an 

infinite gain margin and a phase margin greater than 90 deg at a gain-crossover frequency of 

around 100 rad/sec. But the loop still retains the neutrally stable BFF mode and the unstable 

Phugoid mode, both at lower frequencies. We will deal with the BFF mode next. 

The second loop closure is the BFF loop, or center-body pitch rate fed back to the body 

flaps with the tip-twist loop closed. Again the particulars of this loop closure are revealed in Fig. 

15, which includes the loop’s root locus and open- and closed-loop frequency responses. This root 
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locus now differs from that in Fig. 11, due to the tip-twist loop having been closed, and in 

particular the torsion-mode poles are now farther to the left, as desired. 

 
Figure 14, Graphical Analysis of the Tip-Twist Loop Closure (nz-twist/δOB) 
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Phugoid mode remains unstable, but it would of course be stabilized through the pilot’s (or 

autopilot’s) control of pitch attitude. The closed-loop eigenvalue locations are given Table 7. 

 
Figure 15, Graphical Analysis of the Pitch-Rate Loop Closure (qcg/δBF) 
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 It is interesting to now consider the modal characteristics of the augmented vehicle, as 

depicted in Fig. 16. The eigenvalues listed in Table 7 are included, to help identify the modes. 

Note that the modes are ordered in this figure to be consistent with the ordering in Fig. 10, and the 

modal characteristics here differ from those of the unaugmented vehicle given in Fig. 10. Most 

notably, in addition to the system being stabilized, the character of the modes has changed 

considerably. The rigid-body pitch rate is no longer the dominant response in the former elastic-

short-period mode, and there is less rigid-body-attitude and angle-of-attack responses in this mode 

as well. So this mode has less overall rigid-body response in it, when compared to the 

corresponding mode in Fig. 10, hence this mode no longer dominates the rigid-body response. 

 

          

      
 

           
Figure 16, Modal Characteristics of the Augmented Bare Airframe – 50 kt 
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ignoring the    θE1  and θE1 components), it is very similar to the phasor diagram for a conventional 

short-period mode for a rigid aircraft. Hence this mode now dominates the vehicle’s rigid-body 

response and has become the new elastic-short-period mode. But the dominant response in this 

mode is that associated with the first elastic degree of freedom, far different from any 

conventional short-period mode. 

6.2. Effect of the Actuators – 50 Knots 

All the results above only considered the dynamics of the bare airframe. They do not 

include the effects of the finite bandwidth of the surface actuators. And we shall see that the 

actuators have a significant effect on the results. Based on information provided by Lockheed 

Martin, the dynamics of the actuators are approximately given by 

 
  

δ (s)
δ c(s)

= 15,790
s2 +163.4s+15,790

  10 

With reference to the block diagram in Fig. 13, a(s) now becomes the above transfer function, and 

we will re-examine our two control loops. 

The particulars of the wing-twist/outboard-flap loop closure (with the body-flap loop 

open) are revealed in Fig. 17. The root locus in this figure is considerably different from that 

shown in Fig. 14, which ignored the actuator dynamics. Now the maximum achievable increase in 

torsion-mode damping is limited, and if the loop gain is too high this mode eventually goes 

unstable. 

A modest gain (-4x10-4 deg/deg/sec2) relocates the augmented poles to the locations 

indicated, and the damping of the torsion mode is doubled from approximately 0.04 to 

approximately 0.08. The open-loop Bode plot on the right confirms that this loop closure 

augments the torsion mode with gain margin greater than 20 dB and a phase margin of almost 90 
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deg at a gain-crossover frequency of around 90 rad/sec. These margins are also shown in the 

loop’s Nyquist plot given in Fig. 18, and the loop still retains the unstable BFF and Phugoid 

modes. The key effect of the actuators is the additional phase loss at the higher frequencies. 

Comparing the phase portion of the open-loop Body plot in Fig. 17 with that in Fig. 14 reveals 

this loss of phase near the crossover frequency, which severely limits the achievable performance 

of this loop. 

 
Figure 17, Graphical Analysis of the Tip-Twist Loop Closure (nz-twist/δOBc) – w. Actuators 

Frequency (rad/s)
10-1 100 101 102 103

-360

-180

0

180

360
-50

0

50

100 Bode Editor for Closed Loop 1(CL1)

Frequency (rad/s)
10-1 100 101 102 103

-225

-180

-135

-90

-45

0

45

90

135

180

225
-120

-100

-80

-60

-40

-20

0

20 Open-Loop Bode Editor for Open Loop 1(OL1)

Real Axis
-40 -30 -20 -10 0
0

20

40

60

80

100

120

140

160 Root Locus Editor for Open Loop 1(OL1)

20

40

60

80

100

120

140

160
0.050.10.160.23

0.44

0.32

0.84

0.6

Augmented 
Torsion Mode 

Actuator 
Phase Loss 

GM 

Actuator Poles x 



 Submitted to the Journal of Guidance, Control, and Dynamics May 19, 2015  

 28 

 
Figure 18, Tip Loop Nyquist – w. Actuators 
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around 45 rad/sec. The positive margins are also shown in the loop’s Nyquist plot in Fig. 20. 

Once again, these margins are limited by the high-frequency phase loss from the actuators. Only 

the Phugoid mode now remains unstable. The closed-loop eigenvalues are given in Table 8. 

 
Figure 19, Graphical Analysis of the Pitch-Rate Loop Closure (qcg/δBFc) – w. Actuators 
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Figure 20, BFF Loop Nyquist – w. Actuators 
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+15 dB, while the phase margins are -60 and +50 deg with a higher gain-crossover frequency of 

about 45 rad/sec. These margins are very close to those found in Figs.19 and 20, which included 

the tip-twist loop closure. Both these sets of results are reassuring. 

The question now turns to the attitude response of the augmented vehicle. Consider the 

one-degree mid-flap step responses in Figs. 21a and 21b. The responses for center-body pitch rate 

and plunge acceleration, both measured at the cg location of the undeformed vehicle, are shown 

along with those for the rigid-body (mean-axis) angle of attack and the body- and outboard-flap 

control deflections. The attitude responses are clearly dominated by the new elastic-short-period 

mode with damping equal to 0.56 and a frequency of 24 rad/sec, and there is some modest 

overshoot in the angle-of-attack and plunge-acceleration responses. The acceleration response 

also exhibits some high-frequency oscillation coming from the third aeroelastic mode that 

contains both pitch and plunge deformations. 

 
Figure 21a, Pitch-Rate (cg) And Control Surface Step Responses from -1-Deg Del3 
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Figure 21b, Mean-Axis AOA and nZ-cg Step Responses from -1-Deg Del3 

This pitch-rate response should be compared to similar responses in Fig. 9, or the pitch-

rate responses for the rigid and flexible model at the slower flight velocity of 60 fps. Except for 

some small aeroelastic oscillations, the pitch-rate response shown in Fig. 21a is very similar to 

that for the residualized model in Fig. 9, which is the response of the flexible vehicle with the 

aeroelastic modes forced to remain in static equilibrium. The similarity between these two sets of 

pitch-rate responses is also very encouraging. 

The body-flap deflection in Fig. 21a mirrors the pitch rate, as expected, and the outboard-

flap deflection indicates the active damping of the second aeroelastic (torsion) mode. These 

control-surface deflections do not appear excessive. 

6.3.Additional Filters  

With a constant pitch-rate-feedback gain in the pitch-rate loop the body-flap deflection 

tracks the center-body pitch rate, as just noted. And in a sustained maneuver this sustained body-

0 0.2 0.4 0.6 0.8 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Med Del Step Response

Time (seconds)

R
ig

id
-B

od
y 

AO
A,

 d
eg

, P
lu

ng
e 

Ac
ce

le
ra

tio
n 

nz
, g

's
Rigid-Body AOA 

Plunge Acceleration 



 Submitted to the Journal of Guidance, Control, and Dynamics May 19, 2015  

 33 

flap deflection will be such that it counteracts the sustained pitch rate, and require greater 

deflections of the vehicle’s pitch control surface (e.g., elevator). To mitigate this undesirable 

effect, we may insert a washout filter in the pitch-rate feedback loop, and the BFF-

suppression/SAS control law now becomes  

 
  

δ BFc(s)
qcg (s)

= −0.20 s
s+1

⎛
⎝⎜

⎞
⎠⎟

 deg/deg/sec   15 

At low frequencies (below 1 rad/sec) the washout filter effectively opens this feedback 

loop, as desired. And at higher frequencies this filter is essentially unity. Furthermore, since the 

washout-filter dynamics lie in a frequency rage well below the crossover frequencies of the two 

control loops, it will have no effect on their stability margins. The main effect of this added filter 

is indicated in the step responses in Fig 22. These responses are again from a commanded one-

degree mid-flap (elevator) input. Comparing these responses with those in Fig. 21a reveals that 

the vehicle’s center-body pitch rate and body-flap deflection slowly decline after 0.4 seconds, as 

desired. In addition, this filter stabilizes the still lightly damped Phugoid mode. 

 With regards to the tip-twist loop, accelerometer outputs are being fed back and such 

outputs tend to be noisy at high frequencies. One would usually not like to drive the actuators 

with such a signal, so a low-pass filter could be used in the feedback path to alleviate such a 

situation. In addition, a low-pass filter provides the additional benefit of gain stabilizing high-

frequency unmodeled elastic modes. But the corner frequency of the filter would have to be high 

enough to maintain the loop’s performance (i.e, the increase in torsion-mode damping) already 

limited by the actuator phase loss. So in our case this corner frequency must be higher than we 

might typically prefer.  
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Figure 22, Pitch-Rate (cg) and Controls Step Responses (w. Washout) from 1-Deg Del3 
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Table 10, Closed-Loop Eigenvalues (With Actuators and Filters) – 60 kt 

                        Eigenvalue, r/s         ς        ω, r/s   Root Locus Branch Identification 
-0.0025 +/- 0.39i 0.0064 0.392 Phugoid 

-1.1 1 1.1 Washout-Filter in Pitch Loop 
-13.5 +/- 29.2i 0.418 32.2 BFF " New Elastic Short Period 
-35 +/- 57.9i 0.518 67.6 Former Elastic Short Period 

-13.8 +/- 87.9i 0.155 89 Stabilized 2nd Aeroelastic 
-74.1 +/- 53.5i 0.811 91.4 Actuator 
-63.9 +/- 79.2i 0.628 102 Actuator 
-15.9 +/- 147i 0.108 148 3rd Aeroelastic 

-1000 1 1000 Low-Pass Filter in Tip Loop 
 

The negative-one-degree elevator step responses of this closed-loop system are depicted in 

Figs. 23a and 23b, which show the center-body pitch rate, body-flap and outboard-flap 

deflections, rigid-body angle of attack, and plunge acceleration at the cg. As in the 50 kt case, the 

pitch response is dominated by the new elastic-short-period mode, which now has a damping ratio 

of about 0.42 and an undamped natural frequency of over 30 rad/sec. The washed-out pitch rate 

and body-flap deflection are evident as well in Fig. 23a. The rigid-body AOA response in Fig. 

23b is not as clean as that shown in Fig. 22b for 50 kt. There is more evidence of aeroelastic 

response in both the pitch rate and rigid-body AOA, but this is not surprising given the higher 

open-loop BFF instability and the large participation of the elastic degrees of freedom in the new 

elastic-short-period mode. Again, the control-surface deflections are modest. 

7. Conclusions 

An integrated control law was developed for the stability augmentation (SAS) and active flutter 

suppression (AFS) of a flexible, flying-wing research drone. A previously developed n-degree-of-

freedom (NDOF) math model of the longitudinal dynamics was utilized in the control-law 

synthesis and analysis. Although the vehicle is statically stable in pitch, it is predicted to exhibit  
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Figure 23a, Pitch-Rate (cg) And Control Surface 1 deg Step Responses – 60 kt, 

 

Figure 23b, AOA and Plunge Acceleration (cg) 1-deg Step Responses– 60 kt 
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both body-freedom and bending torsion flutter at 47 and 57 kt, respectively, and a body-freedom 

flutter (BFF) speed of 46 kt was observed in flight tests. 

BFF involves the aeroelastic interactions between the rigid-body and elastic degrees of 

freedom; hence the control laws must simultaneously address both rigid-body stability 

augmentation and flutter suppression. The overall approach taken in the control-law synthesis was 

motivated by the concept known as Identically Located Force and Acceleration (ILAF. This 

concept is powerful since it does not rely on precise knowledge of the structural mode shapes, 

which are difficult to predict accurately and change with changes in mass and stiffness properties 

of the structure.  

The crux of the flutter-suppression problem was shown to be the interactions between the 

vehicle’s rigid-body pitching and the first symmetric bending/torsion (pitch) mode, as well as the 

interactions between these modes and the second symmetric torsion mode. Based on these facts 

and consideration of the vibration mode shapes and available control surfaces, ILAF and 

conventional SAS techniques suggested two loop closures – feedback of center-body pitch rate to 

the body flaps and feedback of blended wing-tip accelerometers (wing torsion) to the outboard 

wing control surfaces. Analysis was performed at two flight conditions, first at a 50 kt flight 

velocity, below the second flutter speed so only the BFF condition was unstable, and a second at 

60 kt that exhibits two flutter conditions.  It was confirmed that these two feedback loops robustly 

stabilized both flutter conditions, and they were also shown to appropriate affect the modal 

characteristics of the longitudinal dynamics, leading to quite reasonable vehicle attitude response. 

A washout filter was also employed to tailor the low-frequency response and stabilize the 

Phugoid mode, and the control deflections do not appear excessive. The critical factors limiting 
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the performance of the feedback system have been identified to be the bandwidth of the surface 

actuators and the pitch effectiveness of the body flaps. 
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