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Abstract. Rank-based testing procedures have proven quite efficient in classical linear models with
independent observations; they long ago have entered daily practice in such fields as biostatistics or exper-
imental planning. Still, despite the fact that many “historical” rank statistics (runs, signs of differences,
turning point, Wald and Wolfowitz’s rank autocorrelation coefficient, ... ) actually were devised for time
series situations, and despite the recognized need for nonparametric, robust or non Gaussian methods
in the area, most time series analysts completely ignore rank—based procedures. Our objective with the
present survey is to show that rank-based techniques very successfully can handle most of the testing
problems occurring in time series context, such as testing for white noise, testing ARMA (p, ¢) dependence
against ARMA (p + d, ¢ + d) dependence, or testing linear hypotheses about the coefficients of an ARMA
model—always, under unspecified innovation density. The resulting tests of course are distribution—free.
But they also are as powerful as (often, strictly more powerful than) their classical, correlogram-based
counterparts. In addition, they are considerably more robust: whereas classical parametric methods can
yield extremely misleading diagnostic information when the data have outliers, atypical startup behavior or
heavy-tailed distributions, rank—based tests exhibit much better resistance to aberrations of this type. All
these properties should make them extremely attractive, e.g. in the identification and diagnostic checking
process, where the conclusions drawn from rank—based techniques are likely to be much more reliable than
those resulting from an inspection of traditional correlograms.

We start (Section 1) with a general introduction, where we show how invariance arguments naturally
lead to (signed or unsigned) rank—-based methods. Section 2 provides a bibliographical survey of rank-based
methods in serial dependence problems. The so-called linear serial rank statistics and their asymptotic
distributions are introduced in Section 3. Section 4 deals with the basic theoretical result from which
the optimal testing procedures described in the subsequent sections follow: local asymptotic normality of
ARMA likelihood families and the local sufficiency of ranks. Locally most powerful and locally maximin
rank—based tests are investigated in Section 5. Their asymptotic performance is discussed; explicit ARE
(asymptotic relative efficiency) values (with respect to Gaussian parametric methods) are provided. Finally,
Section 6 deals with the important problem of aligned rank tests: asymptotic invariant aligned rank tests,
asymptotically most stringent within the class of all asymptotically similar tests at given probability level
are derived for linear hypotheses about the coefficients of an ARMA model (with unspecified innovation
density). The ARE of these tests with respect to the corresponding Gaussian Lagrange multiplier method
is still the same as in Section 5, and can be as high as 2, e.g. when using median-test (or Laplace) scores
under double-exponential innovation density.
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§1. INVARIANCE, THE HYPOTHESIS OF WHITE NOISE AND RANKS

1.1 Testing for white noise: invariance arguments. Consider the null hypothesis
H under which a series X = (X},...,X,) of observations is white noise. More precisely, let
H denote the hypothesis under which observations D, G
X:,..., X, are independent and identically distributed, with unspecified density (all den-
sities here are with respect to the Lebesgue measure on R). As an alternative, take the
extremely vast and general collection K of all n-dimensional distributions under which the
observed X’s are not white noise anymore—either because of distributional heterogeneity,

serial dependence, or both.

The whole theory of rank tests originates in this almost trivial observation that, letting
g : R — R denote an arbitrary, continuous, one-to-one (hence monotonic: without any
loss of generality, it can be assumed order—preserving) transformation, X = (Xy,..., X,)
is white noise if and only if ¢(X) = (¢(X1),...,9(Xy)) is. More rigorously, it is easy to
see that the problem of testing H against K is invariant with respect to the group G of
continuous, order—preserving transformations ¢ : x — g(x).

The classical attitude in such a situation consists in restricting oneself to the consid-
eration of invariant tests, i.e. tests which are measurable with respect to some maximal
invariant statistic. And a maximal invariant statistic for H consists of the vector of ranks
R = (R,,...,R,), where R; denotes the rank of X; among X,...,X,. This is how
ranks come into the picture: invariance is the theoretical cornerstone of rank-based infer-
ence. Distribution—freeness (hence similarity and unbiasedness), increased power, robust-
ness, ..., however attractive they are, are just by—products, and generally can be reached
through other, more specific techniques.

As a consequence, there is no point in using ranks if, under the null hypothesis to be
tested, the quantities from which ranks are computed do not constitute a white noise series

(or, at least, an exchangeable series).

The above invariance argument is well accepted in such statistical areas as life testing
or experimental planning. It probably sounds highly unfamiliar, theoretical and abstract
to most time series analysts. Time series analysis indeed is very deeply marked with hid-
den Gaussian assumptions — more deeply, perhaps, than any other statistical area: the
L? approach, pervasive use of autocovariances and autocorrelations, Gaussian likelihood
or least squares estimates, Gaussian Lagrange multipliers, ... all arise from (explicit or
implicit) Gaussian assumptions. Though most of such Gaussian methods generally re-
main asymptotically valid under fairly general assumptions, it is usually agreed that the
data preferably should be at least approzimately Gaussian. Whenever they really do not
look Gaussian , various preliminary transformations are generally performed before the
analysis is started: logarithms, Box—Cox transformations, etc... Now, if the objective is
“to normalize” (under H) a series Xi,...,X,, the exact transformation to be applied is
®~10F, where F denotes the cumulated distribution function of the X,’s and @ stands for
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the standard normal distribution function. Of course, the trouble is that F' in practice is
unknown. However, if the empirical distribution function F is substituted for the unknown
one, 1 oF computed at X; is nothing else than ® ~!(R;/(n+1)), where R is the rank of
X, among X1, .., Xn; F(X,) here is taken as R;/(n+1) in order to avoid trivial complica-
tions in the definition of ®! o F. The transformed series then is measurable with respect
to the vector of ranks, and any subsequent inference procedure (of the van der Waerden
type, in rank—order theory terminology) will be rank-based, hence invariant. The idea of
invariance thus is not that remote from time series practice where the parameters e.g. of
a Box—Cox transformation are also estimated from the data.

1.2 Testing for white noise: unbiasedness arguments. Still, one might be reluc-
tant in enforcing the invariance principle underlying the use of rank-based tests. A more
commonly accepted hypothesis testing principle then is the principle of unbiasedness. It
is well known that (under fairly general continuity assumptions) a necessary condition for
unbiasedness is similarity. Whenever a sufficient, boundedly complete statistic exists for
the submodel consisting of the common border H N K between the null hypothesis and the
alternative (in any topology for which expectation is continuous with respect to the distri-
butions in H and K), a-similarity in turn is equivalent to Neyman’s a—structure property,
with respect to the latter statistic. And test statistics possessing this latter property are
obtained by conditioning upon the sufficient statistic at hand, then considering conditional
tests.

Clearly, in the present problem of testing H against I , H N K = H, and a sufficient,
complete statistic is the order statistic X(.) = (X(3) < X(3) < -+ < X(5)). Conditioning
upon X(.) yields the class of permutation tests.

Whereas invariance arguments lead to rank-based tests, unbiasedness arguments thus
lead to permutation tests. Since rank tests are a particular case of permutation tests,
unbiasedness conditions are uniformly weaker than invariance ones.

As we shall see, the class of rank-based tests and hence, a fortiori, that of permutation
tests are locally asymptotically essentially complete for problems dealing e.g. with ARMA
models, in the sense that they both contain locally asymptotically optimal tests for all
usual testing problems in the area.

1.3 Hypotheses reducing to white noise. Aligned ranks. The hypothesis of
white noise of course plays a very fundamental role, in its own right, in a variety of
classical problems, such as testing against location shifts in two—or k-sample situations,
testing against trend or serial dependence, etc. This role is even more fundamental in view
of the host of problems which after adequate transformation reduce to that of testing for
white noise.

In most statistical models, an observed series X = (Xy,...,X,,) indeed is such that,
denoting by @ some parameter, the transformed series Z(0) = (Z,,...,2Z,) = Fo(X)—
call it a residual series—is white noise. In a “parametric” setting, the distribution of

3



this residual series is assumed to be known (in most cases, it is assumed to be Gaussian
); very often however, a “nonparametric” approach, where the residual density remains
unspecified, would be much more realistic. The problem of testing Hy : @ = 6, then reduces
to that of testing for white noise (with unspecified density) in terms of the residual series
Z(6o).

Accordingly, if invariance arguments are to be considered, rank tests should be used,
where the ranks R; are computed from the residual series Z(,). Similarly, permutation
tests, satisfying weaker unbiasedness requirements, should be based on the m! permutations
of Z(6,).

In the specific area of time series analysis, ARMA models, or linear models with ARMA
error terms, or bilinear models, fall within the above class of statistical models whenever the
innovation density remains unspecified. Consider for example the case of an autoregressive
process with linear trend.

Example 1.1. AR(1) model with linear trend. The observations X;, t = 0,1,...,n
satisfy

)

Xi=a+ Be + ey, t=20,1,...,n

where a and 3 are regression parameters, c,ci,...,¢, are known regression constants,
and e; is some solution of

€t — PEt—1 = E¢ t=1,...,n,

with {€;} an iid process with unspecified density, mean zero and variance one, and |p| < 1.
Clearly, the null hypothesis

HO : (aaﬁap) = (007ﬂ07p0)

is equivalent to

H : Z(ao, Bo,po) is white noise (unspecified density)

where
Z(ao,ﬂmpo) = (Zl,---,Zn) >
with
Zy =Xt — poXy_1 — ao(l - Po) - ﬂo(ct - Poet—l) , t=1,...,n.

Still, hypotheses to be tested in practice seldom are of the simple form H, : 8 = 6,
under which the parameter @ has a completely specified value 8y. In most problems, null hy-
potheses take the more general form Hy : 8 € O, where O is some subset of the parametric
space ©. Common examples in time series analysis are: testing an ARMA (p,¢) model
(with unspecified innovation density and unspecified autoregressive and moving average
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coefficients) against alternatives of ARMA (p + 7,¢q + 7) dependence (7 a given positive
integer), testing for the absence of trend in an ARMA (p, ¢) process with unspecified co-
variance structure and unspecified innovation density, testing for ARMA (p, q) dependence
(specified orders p and ¢, unspecified coefficients, unspecified innovation density) against

bilinear dependence, etc.

Though a transformation Fy still exists which transforms the observed series X into a
residual white noise Z(0), the value of @ remains unspecified also under Hj.

A tempting, intuitively natural idea then consists in substituting some “good” estimate
0 for the unknown paramether 0, and an “estimated” residual series Z(0) for the “true” one
Z(09). By a “good” estimate 9 it is meant that @ has values in O and enjoys, under Hy,
such standard properties as being root n-consistent. Estimated residuals can be expected
to be close to the exact ones. Treating them as the latter yields aligned ranks ﬁt and
aligned rank tests, or aligned permutation tests.

The big trouble with aligned ranks is that they generally do not enjoy (even “approxi-
mately”) the fundamental invariance properties of exact ranks: the estimation of § indeed
most of time destroys the exchangeability structure of Z(8) which constitutes the justifi-
cation of rank—based methods, so that from a decision-theoretical point of view, there is
no point anymore in using (aligned) ranks. By the way, the distribution-freeness property
of rank-based statistics under the null hypothesis, which was a consequence of invariance,
also disappears, hence the similarity and unbiasedness features of (genuinely distribution-
free) rank tests. As a consequence, the computation of exact critical values for aligned
rank tests is generally impossible. Even worse: the asymptotic results available for rank
statistics (based on exact ranks R;) generally cannot be used for the corresponding aligned
ones (based on the aligned ranks ﬁt) since in general exact and aligned rank statistics are
not even asymptotically equivalent.

From a theoretical point of view as from the point of view of practice, aligned rank
methods (as well as aligned permutation tests) thus are settling quite a number of nontrivial
problems. Section 6 below is devoted to providing some methodology in solving these
problems in time series context.

1.4 Testing for symmetric white noise. The density of the observations X; (of
the residuals Z; in section 1.3) under the null hypothesis H so far has been assumed to be
completely unspecified (except perhaps for moment conditions such as, e.g. the existence
of a finite variance or finite Fisher information). In many practical problems, this density
further can be assumed to be symmetric (with respect to some known median, which can
be set equal to zero without any loss of generality). Denote by H' this hypothesis of
symmetric white noise.

The vector of ranks R then loses its maximal invariant status for the benefit of
the couple (s,R4), where s = (s1,...,5,) is the vector of signs s; = sign (X;) and
Ry = (R41,...,Ry ,) is the vector of the ranks R, ; of the absolute values |X;| among
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|X1]...|Xy| (invariance here is with respect to the group of continuous, even, order-
preserving transformations).

Statistics which are measurable with respect to this maximal invariant are known as
signed—rank statistics.

The unbiasedness approach to the same problem leads to conditioning upon the order
statistic of absolute values |X|.y = (|X|1) < --+ < |X|(n)), which is sufficient complete
here, yielding a class of sign-assignment — absolute value permutation tests, based on the
2"n! possible combination of a permutation of |X|(.) and a vector of n signs.

1.5 Testing for nonhomogeneous white noise. A further case frequently occurs
in applications, in which the observations, or adequate residual values, under the null
hypotheses to be tested, are still independent and symmetrically distributed, though their
distributions possibly might not be identical anymore—denote this by H". This hypothesis
H'" of nonhomogeneous symmetric white noise allows for heteroskedasticity, contamination,
etc. Symmetric discrete distributions are also allowed.

A maximal invariant (with respect to the group of componentwise continuous, even
and order—preserving transformations of X) is the vector s of signs, leading to sign tests.

The unbiasedness approach—conditioning upon the vector of absolute values (|X}],
..., | Xn|)—yields the broader class of tests which are conditionally measurable with respect
to the vector signs.

§2. NONPARAMETRIC TESTS FOR SERIAL DEPENDENCE:
A BIBLIOGRAPHICAL SURVEY

The nonparametric, rank-based approach to time series analysis problems actually has
a pretty long history, since rank tests against serial dependence and runs tests, which are
a particular case of rank tests, can be traced back to the very beginnings of rank-based
inference. Wald and Wolfowitz (1943) already suggest to substitute the ranks, or some
function thereof, for the observations in the problem of testing randomness against serial
dependence. Tests based on runs, runs up and down, signs of first differences or turning
points already had been considered, for the same problem, in Fisher (1926), Kermack
and McKendrick (1937), Mood (1940) and Wallis and Moore (1941); they subsequently
have been developed in Moore and Wallis (1943), Levene and Wolfowitz (1944), Wolfowitz
(1944), David (1947), Goodman (1958), Edgington (1961) and Granger (1963).

Jogdeo (1968) derives asymptotical results for a very general class of rank statistics,
which includes the rank autocorrelation coefficients to be used repeatedly in subsequent
sections. The conditions he puts on the score functions however are too restrictive for most
purposes (excluding, e.g. the so—called van der Waerden autocorrelations).

In none of these early papers is any particular alternative considered, nor any op-
timality question addressed. The first attempts to investigate the power of serial rank
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procedures against specific alternatives are due to Beran (1972), who introduces rank ana-
logues of integrated periodogram spectral processes, and, in a more applied context, to
Knoke (1977), who conducts a Monte Carlo study of the asymptotic relative efficiencies of
several tests based on serial rank statistics (namely, the Wald-Wolfowitz rank autocorre-
lation coefficient, the turning point statistic and a Kolmogorov-Smirnov one) with respect
to the classical first—order sample autocorrelation coeflicient, for first-order autoregressive
alternatives. This, in some sense, was a first step towards the introduction of rank methods
in time series practice—but still the statistics studied there are not new, are not specifically
devised against any particular alternative, and cannot handle the more general problem of
testing, e.g. an ARMA model against other ARMA models (as described in section 1.3).

Locally most powerful rank tests for randomness against Gaussian autoregressive or
moving average alternatives are derived in Gupta and Govindarajulu (1980). The test
statistics depend on ranks via the expected values of products of order statistics, and
are asymptotically equivalent to our van der Waerden autocorrelation coeflicients. Aiyar
(1981) also investigates first—order statistics of the Wald-Wolfowitz and van der Waerden
types, and derives their asymptotic relative efficiencies with respect to the corresponding
Gaussian procedure, still under first—order autoregressive alternatives.

In a similar situation, Dufour (1981) suggests (traditional nonserial) signed-rank tests
for H' based on the signs and ranks of products of the form X, X; . This way of reducing
a serial problem to a nonserial one however may result in a loss of relevant information
and the ranks used there are not those following from invariance arguments (except in
the case of nonhomogeneous white noise—see Section 1.5). In a more applied context,
Bartels (1982) introduces a rank-based version of von Neumann’s ratio statistic which is
asymptotically equivalent to the Wald-Wolfowitz autocorrelation coefficient of order one,
and investigates the power of the resulting test through Monte Carlo techniques.

Runs also have been used for testing the absence of cross—correlation between two se-
ries: see Goodman and Grunfeld (1961) and Yang and Schreckengost (1981). In the more
complex domain of dynamic econometric models, Campbell and Dufour (1991) present
a promising rank-based approach to the Mankiw—-Shapiro rational expectation model.
Switzer (1984) proposes a Wald-Wolfowitz version of the spatial variogram—a rather iso-
lated attempt to introduce ranks in the area of spatial processes.

In a somewhat different, nonserial context, rank tests against trend alternatives have
been intensively investigated (see Mann (1945) or Savage (1957) for early papers on the
subject, Aiyar, Guillier and Albers (1979) for a more recent one), as well as the asymptotic
behavior of nonserial rank statistics, including multivariate ones, under various mixing
conditions (Serfling (1968), Albers (1978), Tran (1988), Harel (1988) and Harel and Puri
(1989a,b; 1990a; 1991; 1992)).

For more details, we refer to the review papers by Dufour, Lepage and Zeidan (1982)
and Bhattacharyya (1984); see also Govindarajulu (1983).

Up to this point, and in spite of a long history, the subject of rank-based inference
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for time series problems thus remained largely unexplored. Quite a number of partial
results were scattered around, but no coherent and structured theory was available. The
few existing central limit theorems for serial rank statistics were too restrictive for most
purposes; except for a few exceptions, the only problem that had been considered was
that of testing for white noise; optimality problems remained essentially untouched... the
rank-order section of the time series analyst’s tool kit was pretty limited and nearly empty.

A systematic and coherent treatment of time series problems, based on a LeCam-Hajek
approach, since then has been undertaken by the authors in a series of papers, starting
with Hallin, Ingenbleek and Puri (1985, 1987), where the problem of testing for white noise
against ARMA alternatives is considered in its full generality (yielding locally maximin,
rank—based portmanteau tests). The long term objective is to obtain a logically consis-
tent methodology for classical time series problems (identification, diagnostic checking,...),
relying on adequate, rank based substitutes for time series analysis familiar tools such as
correlograms, partial correlograms, Lagrange multipliers, etc.

Locally asymptotically maximin rank-based tests for testing an ARMA model (with
unspecified innovation density) against other ARMA models are derived in Hallin and
Puri (1988). The particular case of first-order autoregressive models is treated in detail
in Dufour and Hallin (1987). The small sample performance of rank-based tests is in-
vestigated in Hallin and Mélard (1989), and appears to be surprisingly good, even for
pretty short series. Signed rank techniques, for ARMA models with symmetric, otherwise
unspecified innovation densities, are considered in Hallin and Puri (1991a) and Hallin,
Laforet and Mélard (1989). Optimal runs tests, allowing for nonhomogeneous innovation
processes, are treated in Dufour and Hallin (1990a), the problem of testing multivariate
white noise against alternatives of (multivariate) ARMA dependence in Hallin, Ingenbleek
and Puri (1989) and Hallin and Puri (1991b), and that of testing white noise against first—
order, superdiagonal bilinear dependence in Benghabrit and Hallin (1992). Finally, the
very general case of ARMA models with a regression trend (also known as the dynamic
regression model) is studied in Hallin and Puri (1991c), where locally optimal, aligned,
rank and signed-rank, tests are derived for a variety of problems, including that of testing
an ARMA (p, ¢) model with unspecified trend component, unspecified ARMA coefficients
and unspecified innovation density, against ARMA (p + 7, q + 7) alternatives.

A review of the main results in the above papers is the subject of the present survey.

Related results on the asymptotic distribution of serial rank statistics under depen-
dence can be found in Harel and Puri (1990b,c), Tran (1990), Nieuwenhuis and Ruym-
gaart (1990). Permutation tests against serial dependence are considered in David and
Fix (1966), Ghosh (1954), Dufour and Roy (1985, 1986), Dufour and Hallin (1990b) and
Hallin, Mélard and Milhaud (1992). A somewhat hybrid test, with mixed parametric and
nonparametric (rank-based) features has been considered by Kreiss (1990a) for testing AR
models.

Rank-based techniques have proven very efficient in classical linear model problems
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(regression, trend, analysis of variance,...), and have entered daily practice in biostatistics
and experimental planning. When the required technology is available, there is no reason
for time series analysis to escape this rule—even more so in view of the recognized need
for robust and non-Gaussian methods in the area.

§3. LINEAR RANK STATISTICS

3.1 Serial and nonserial linear rank statistics. Denote by Z(® = an),...,
Zt(n),...,Z,(,n)) a series of length n. Depending on the problem, Z("™ either may be
the original observation, or some residual series. Let RE") be the rank of Zt(n) among
Zl("), ceny Z,(,n). If Z(™ is white noise, then, with probability one, R(™ = (Rgn), cen, Rﬁ,"))
is uniformly distributed over the n! permutations of (1,2,...,n), whatever the underlying
density of the Zt(n)’s.

It is well known (Hajek and Sidak 1967; Puri and Sen 1971 and 1985) that locally
asymptotically best tests for linear models ( two or k samples, regression, analysis of
variance,...) can be based upon the class of (stmple nonserial) linear rank statistics, of
the form

(3.1) S™ =071y ™ (RM)

t=1

where a(® denotes some score function, and the ¢;’s are known (regression ) constants.
In a time series context, they also can be used in testing against trend (Mann 1945;
Savage 1957). Such nonserial statistics however cannot capture serial dependence features:
actually, it can be shown that their asymptotic distribution is the same under white noise
as under local alternatives of serial dependence. Hallin et al. (1985) therefore suggest the
consideration of serial linear rank statistics, of the form

(3.2) §MW=(m-k)" Y a(RM, R, R,
t=k+1

where the score function a(™ depends on the values of (k + 1) successive ranks: (3.2)
is a serial linear rank statistic of order k, and can be expected to be sensitive to serial
dependencies of orders 1 through k. Nonserial statistics can be considered as a particular
case (k = 0) of the serial ones (or linear combinations thereof).

Classical examples are the runs statistic (where runs are taken with respect to the
median), or order one, with scores

a{™(iy,i9) = I[(2i —n —1)(2i, —n — 1) < 0] ,
the turning point statistic, or order three, with scores
a™M(iy,iy,15) = I[iy > 1y < i3 or iy <iy > i3]
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or Wald and Wolfowitz’ rank autocorrelation coefficient of order k (a serial version of
Spearman’s statistic, here, unlike in Wald and Wolfowitz (1943)’s paper, in a noncircular

version) with scores
(3.3) al™ (i1, ..y ikg1) = d1ikgr -

The mean m(™ of (3.2) under the assumption that Z(™) is white noise is easy to

compute:

(3.4) m™ =[nn-1)...(n =K7Y > a™(,.. . 01)

#Fiegr

where Z Z stands for a summation running over all (k + 1)-tuples of distinct
Gy F e F il

integers between 1 and n. The variance of (3.2) also is easy to obtain from combinatorial
arguments—though a general closed form is rather tedious.

Most serial statistics of practical interest can be decomposed into a linear combination
of simpler statistics of the form
(3:5) S™ = (n-k)" 3 aPERVOR,

t=k+1

The runs statistic for example, is of the form S’in) + Sén), where an) and Sgn) rely on the
scores

agn)(i17i2) = I[2i; < n+1].1[2i, > n + 1]
and

A statistic of the form (3.5) will be called a simple serial linear rank statistic of order
k. The Wald-Wolfowitz autocorrelation coefficient, as well as the f-rank autocorrelation
coeflicients to be introduced later, are simple rank statistics.

Letting
So =3 [aM @™ @
=1

we have, for the mean m(™ of the simple statistic S and the variance (¢(™)? of (n —
k)?S(™ under white noise,

(3.6) m™ = [n(n - ]8T 557 - S{7]
and
(3.7) (0™)? = [n(n — 1)]'[S55’ 55 — S53)
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+ z—( 28 n(n = 1)(n - 2)) S S8 — S8 — SHSE — (S + 255
n—k)(n—k—1)—2(n—
R 1)
L (S SMY2 4 2(5m)2 4 g glm _ ggtn)
45§ g _ g glmyy _ gmgmyz Ly glm glm | g glm (o)
—(n— k)(m(”))z, where (-)* = max(., 0).

2B (n = 1)(n — 2)(n — 3]

Accordingly, (n — k)%(S™)/o(™ is exactly standardized (still, under the hypothesis that
Z(™ is white noise).

3.2 Serial and nonserial linear signed—rank statistics. As mentioned in Sec-
tion 1.4, whenever symmetry assumptions can be made, the vector of ranks loses its max-

imal invariance properties for the benefit of (s(”),Rg_n)), where s(™ = (s1,...,5,) is the
vector of signs s; = sign(Z(n)) = Z(")/|Z("')\ (with the convention 0/0 = 1), and RS:')
denotes the vector of the ranks RS_ ; of absolute values |Zt(")| among |Z§n)|, e |Z,(ln)|. If

Z(™ is absolutely continuous symmetric white noise, then s(®) and RE:) are independently
distributed, s(® uniformly over the 2" elements of {-1,1}", and R(+n) uniformly over the
n! permutations of {1,...,n}.

Here again, locally best tests for linear models with independent and identically dis-
tributed symmetric error (unspecified density) terms can be based on (nonserial) linear,
signed-rank statistics, of the form

(3.8) (n) =n"! Zc a+)(stR(n)t ,

where the ¢;’s are known constants, and ag?) denotes a score function, defined over
{£1,4£2,...,£n}. Time series problems require the more general class of serial linear
signed-rank statistics (Hallin and Puri 1991a), of the form

n

(3.9) S(n) =(n—-k)! Z ag_n)(stRin},st_lRE:)t_l, e ’St—kRE:,z_k .
t=k+1

Simple examples are Goodman (1958)’s simplified runs test (with ag_")(il yi2) = Ifigie <
0]), which coincides (up to additive and multiplicative constants) with Dufour (1981)’s runs
test, or the signed version of the Spearman-Wald-Wolfowitz serial correlation tests, with

n) - . .
ay (G1yee ey tha1) = 110541
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A linear signed-rank statistic will be called simple if it can be written as

n

(3.10) S ==k Y sese—ra? (REDB (R _)) -

t=k+1
The signed Spearman—Wald-Wolfowitz autocorrelations, as well as the signed f-rank au-
tocorrelations to be described later, belong to this family of simple serial statistics. The
mean of (3.10) under the hypothesis of symmetric white noise obviously is zero, whereas,
due to the fact that all cross—products have expectation zero, the variance of (n — k)% S_('_n)

takes the very simple form

311) @2 =mn -7 Y Y (@b (52))

t1#2

= [n(n— 1)) {Z[a@(i)r ST A2 - Z[ai")ci)bi”)(z‘)]?} .

i 7 1

Here again, (n — k)%S_('_n)/ ag_n) is exactly standardized (provided that Z(™) is symmetric
white noise).

3.3 Asymptotic normality. Assuming that the series Z(™) from which the ranks are
taken is white noise, consider the serial statistic S(*) in (3.2). A real-valued function J,

defined over the (k+ 1)-dimensional unit square (0, 1)1, will be called a score-generating
function for S if

(3.12) / T (uy, oo upgr)duy - . duggy < oo

(0,1)k+1

for some § > 0 and

(3.13) nleréoE[(a(“)(joi,...,REJ’T;H_I) - J(Ul,...,UkH))Z} -0,
where joni ceny joi_H denote the ranks of Uy,...Uj4; in a random sample Uy, ..., U, of

independent and identically distributed, uniform (over [0,1]) random variables.
Define

k+1
(3.14)  J*(u1, ... uks1) = J(ua,..yukgr) — 3 E[J(Uy, ..., Ui, ur, Ui,y ..., Uy)]
1=1

+k E[J(Uy,. .., Ury1)] -

Then, relying on a central limit theorem (e.g., Yoshihara, 1976) for U-statistics under
absolutely regular processes, the following asymptotic normality result has been proved

(cf. Hallin et al., 1985).
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PROPOSITION 3.1. Let J denote a score-generating function for the serial rank statistic
S(™) in (3.2). Then (n — k)% (S™ — m(™) is asymptotically normal (under white noise),

with mean zero and variance V2, where

(315) V2 = / [J*(ul,...,uk+1)]2du1 ...dUk+1

[0,1]%+1

k
+22 / J*(ul,...,uk+1)J*(u1+i,...,uk+1+,~)du1 ...d’U,k+1+,' .
i=1[0,1]k+i+1

This result allows for explicit normal approximations, under the null hypotheses of white
noise, for P-values and critical points of tests based on linear serial rank statistics.

Example 3.1. The Spearman autocorrelation coefficient of order one is often defined

(cf. e.g. Kendall and Stuart, 1968) as

(n—1)"'Sr, RMR™, — (n +1)2/4

) _
s (n? — 1)/12 ’

though an exactly standardized version (see Hallin and Mélard 1988) is more convenient
for practical purposes. Letting S(™ = (n — 1)1 ZRE”)RE'_’)I/(n + 1)%, with m(®» =
=2

(3n +2)/12(n + 1), it is easy to check that

(3.16) r —12(8™ —m™) = 24(n — 1)71(S™ — M) — (n — 1)1 .

S is a linear serial rank statistic of order one. A score—generating function for S(*)
is J(u,v) = uv, yielding

1
J*(u,v):uv—u—i—z.

It follows from Proposition 3.1 that (n — 1)%(5(") — m(™) is asymptotically normal, with
mean zero and variance

2
V2= / (uv—u—l—i) dudv =1/144 .

[0,1]?

This, with (3.16), entails that T(Sn) —12(S™ —m(™M) is op(n~%), as n — o0, and confirms
the classical result that (n — 1)%7"%7‘) (as well as 12(n — 1)3(S(™ — m(™)) is asymptotically
standard normal.

13



As in the nonserial case, (3.13) can be shown to hold for J satisfying (3.12) and scores
defined by

a™ (i1, ikg1) = E['](Ul’---aUk+1)|Rgn) = il,---,RSCT_?l = ik+l}

(ezact scores) or, for J monotone with respect to each argument, satisfying (3.12), and

a(")(zl,...,zkH) =J <n~'1_1 ye ey TLk—:ll>

scores

(approzimate scores).

The case of signed-rank statistics is roughly similar. A score-generating function J+
for S’_(}_n) =(n— k)_IZag_n)(stREn), ceey st_kRif)k) is a real-valued function, defined over the
(k + 1)-dimensional open square (—1,1)¥*!, such that, denoting by Vi,...,V,, an n—tuple
of independent and identically distributed rectangular [—1, 1] variables,

(3.17) E[J:(Vi, Vay.. ., Vig1) )P < o0
for some 6 > 0, and

(3.18) lim E{[a{ (sen(Vi)RYY, .., sgn(Vie 1) Rk s1) = T4+ (Vise o, Vign)P} =0

as n — oo. RE:’Z here denotes the rank of |V;| among |V4],...,|V,|; the notation sgn(V;) is
used in an obvious fashion. Associated with J,, define J} as

(319) J:—(vl7---7vk+l) = J+(1)1,...,’l)k+l)

k
_ o—(k+1) Z Z / Jy(wi,...,we, 801, Wey1,. .., wE)dwW
SE{-1,1} £=0/_{ &
+ 27 (kg / J4(wi, w2, ..., wk1)dwW
[_lyllk
1

1
where [ (...)dvstandsfor [ ... [(...)sgn(v;)...sgn(vi)dvy ... dvy.
[—1,1]* -1 -1

PROPOSITION 3.2. Let Jy denote a score-generating function for the signed-rank
statistic Sg_n) in (3.9). Then (n — k)%Sg_n) is asymptotically normal (under symmetric
white noise), with mean zero and variance V}, where (same notation as in (3.18))

k
(3.20) Vi = E[(J1(Vi, .., Vigr )1 + 2D ETE(Vis -, Vi) TE (Vigis -+, Vg

i=1

14



Example 3.2. Parallel to the unsigned statistic considered in Example 3.1, a signed
version of the Spearman autocorrelation coefficient of order one can be defined as

(n— 17187851 RYRY)
(n+ )20+ 1)/6

2, =

(though an exactly standardized version might be preferable for practical purposes—see
Hallin et al. 1990). Letting

S = (n — 1)1 Sy si5-1 RUVRT_ /(0 4+ 1)2,

we have rg_")s = GSg_n)(n + 1)2/(n + 1)(2n + 1). A score-generating function for S&")
is J4(u,v) = uv. Since E[ViW||[Ve| = |v]] = 0,£ = 1,2,0 € [0,1] and E[W\V}] =

0, Ji(u,v) = J4(u,v) (under symmetric white noise), and

V+:£—1 / (wv)idu dv =1/9 .

[_171]2

It follows that (n — 1)%5(") is asymptotically normal, with mean zero and variance 1/9,

and that
(n+1)?

(n+1)(2n+1)

rg_n,)s - 35_('_11) = _(|_n) [6 -3 = oP(n_Jf) .

Consequently, (n — 1)12“r_(:39 is asymptotically standard normal (under symmetric white
noise). This statistic, to the best of our knowledge, never had been considered in the
literature. Its asymptotic performance is investigated in Hallin et al. (1990).

As in the unsigned case, (3.18) holds, for (2 + §)-integrable score-generating functions
J+ and ezact scores

af:)(z'l,...,ik_l.l) =F [J+(V1,...,Vk+1)|sgn(1/'1)RE,_Tt)l = i1,---,Sgn(Vk+1)RE£)k+]J ,

or, provided in addition that Jy is monotone with respect to each argument, with approz-

), : gl k41
ag_)(ll,...,lk_f_]):.]-p (n+1 Yy 7‘L+1> :

1mate scores

§4. LOCAL ASYMPTOTIC NORMALITY OF ARMA PROCESSES
AND THE LOCAL SUFFICIENCY OF RANKS

4.1 Local asymptotic normality results for ARMA models. The asymptotic
results of Section 3 are valid under white noise assumptions, and thus allow for constructing
invariant, distribution—{ree tests based on signed or unsigned serial linear rank statistics,
for a variety of time series problems. If, however, power or optimality issues are to be
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addressed, more information is needed on the structure of the specific problem at hand.
Since uniformly most powerful tests cannot be expected to exist—such strong optimal-
ity results in general are not available, in time series analysis, even in a more restricted
parametric, Gaussian context—weaker optimality properties have to be considered. These
weaker properties, of a local and asymptotic nature, rely on the local structure of the
families of likelihood functions involved.

This local structure has been studied by several authors, who under various technical
assumptions have established the locally asymptotically normal (LAN) structure (LeCam,
1960) of families of ARMA likelihood functions. Davies (1973) and Dzhaparidze (1986)
investigate the LAN property for Gaussian ARMA processes. Akritas and Johnson (1982)
deal with AR processes only. Hallin et al. (1985) and Hallin and Puri (1987) established a
LAN result for general ARMA processes, using classical, Cramér-type, technical assump-
tions. Swensen (1985) considers the case of AR processes with a regression trend, and
Garel (1989) that of MA ones, still with trend. Kreiss (1987) deals with ARMA processes
without trend, and Kreiss (1990b) with AR(oco) process. The results of Swensen and
Kreiss rely on martingale central limit theorems, and those by Akritas and Johnson on
quadratic mean differentiability conditions which are less restrictive than the Cramér—type

assumptions made by Hallin et al. (1985), Hallin and Puri (1987) and Garel (1989).

We shall not attempt here to describe in detail the technical conditions under which
the LAN property holds. The assumptions we are giving here are not the weakest; but
they are quite simple, and they are satisfied by most densities used in practice (not all of
them: e.g. Cauchy).

4.2 Notation and main assumptions. All densities below—denoted by f, g, with
distribution functions F, G—are of the form

9(z) = g,(z) =07'gi(z/0) >0, z€R

with

/:z: gi1(z)dz =0 and /wzgl(:z:)d:c =1.

The variance ¢? will always remain unspecified; since however it plays no role in the
sequel, it will be dropped in the notation. Still for simplicity, we shall assume that g
is absolutely continuous, so that the derivative §(z) = dg(z)/dz exists for almost all z.
Defining ¢,(z) = —g(z)/g(z), we also assume that the Fisher information

[ i@t = *100) = ) = [ &, Ior(a)de

is finite. Since g(z) is always strictly positive, G is strictly increasing, and the inverse G !

is well defined.

16



Consider the stochastic difference equation (ARMA (p1, ¢1) model)
P1 q1
(4.1) Xe— Y AiXei=et ) Biewi,

in short A(L)X; = B(L)e;, where L stands for the lag operator and A(z) = 1-$A4;z% , B(2)
= 14X B;2'. In all ARMA models below, it is always assumed that A(z) and B(z), z € C
have no common roots, and satisfy the usual invertibility and causality conditions. We
denote by H, én)(A, B) the hypothesis under which an observed series X(®) = (X ;n), ey
Xt(n), . ,X,(ln)) is a finite realization of some solution of (4.1), where {¢,;} is a white noise
process (i.e., an iid process) with density g. The notation H(™(A,B) = LgJH;n)(A,B)
is used whenever g remains completely unspecified (except for the few general technical
conditions above); the notation H(n)(A, B) = bJ{H,Sn)(A, B)| g symmetric with respect to

zero} is used whenever g is symmetric but otherwise unspecified (still, apart from the few
general technical conditions).

4.3 Signed and unsigned f-rank autocorrelations. Just as parametric autocor-
relation coefficients play an essential role in the classical parametric analysis of time series
models, a special case of serial rank statistics will play an essential role in our nonpara-
metric approach. These nonparametric counterparts of usual autocorrelation coefficients
have been introduced in Hallin et al. (1987) as f—rank autocorrelations and in Hallin and
Puri (1991a) as signed f-rank autocorrelations.

Denote by f,p = — f /f and F a probability density function, the corresponding score
function and distribution function, respectively. The f-rank and signed f-rank autocor-
relations (see below for a definition) being invariant with respect to scale transformations,

f can be chosen as fi, so that [z?f(z)dz = 1. The (unsigned) f-rank autocorrelation of
lag 7 is then defined as

(n) (n)
(n) Rt -1 Rt—i (n) (n)
4.2 E —_— F ] -
( ) [t z+180< <n+1>> <n+1) " /3 ,

where m(™ and s are given by (3.6) and (3.7) with

Stm = ,Z:;“’ (= <nil>)e (= <njrl)>m

Particular cases are

(a) the van der Waerden autocorrelation coefficients, associated with Gaussian densities

n (n) (n)
o — — R — R —1 n n
L= =07 3 27 (B Yoo (25 -t |1,

t=1+1

)
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(as usual ®(z) = (27r)_% f_zoo e~¥’/2dy denotes the standard normal distribution func-
tion; note that, due to the symmetry of the Gaussian distribution, quite a number of
terms in (3.6) and (3.7) cancel out),

(b) the Wilcozon autocorrelation coefficients, associated with logistic densities,

n (n) R(n)
(n) \—1 Rt 1 1 t—1 (n) (n)
riw = [(n—1 -5 |log————= — /sw
v |:( : t=2i;1(n+1 2) n—I—l—R() }

(c) the Laplace autocorrelation coefficients, associated with double exponential densities,

n (n) R(n) 1
(n) -1 Ri ™ 1) opolt=i ) 7| pm s .t
lL_[(n Z) tzg;lsgn(n_l_l 2) [Og( n+1 t - 2
—10g<2—2nt—H>I[RE)<—'2—-J —mL) /SL).

Note that only the van der Waerden statistic can be considered, stricto sensu, as an

autocorrelation coefficient. Actually, up to normalizing constants, rg v)dW is the classi-

cal autocorrelation coefficient resulting from substituting the transformed observations
(q)_l(REn)/n + 1)) for the original one (Xt(n) or Zt(")). The symmetric structure of this
measure of serial dependence, where the past and future play exchangeable roles, is a con-
sequence of the fact that (except for a few, very particular MA cases) Gaussian ARMA
processes are the only time-reversible ones (Weiss, 1975; Hallin et al., 1988). The past
and future, in non Gaussian processes, do not play symmetric roles; accordingly, they do
not play symmetric roles in the definition of f-rank autocorrelations either.

The importance of f-rank autocorrelations will follow from the asymptotic decompo-
sition of log likelihood ratios (section 4.4 below).

Under symmetric densities, a signed version of f-rank autocorrelations, involving
signed ranks, can be used with the same notation as above. Letting Fiy = 2F — 1, define
the signed f-rank autocorrelation of lag ¢ as

R R
n)+ o\ — n n - =+, - +,t—1 n
(4.3) r( ) =(n—-di)! E sgn(Zt( )Zt(_)i)go <F+1 (n 1)) F (n tl )/ (n)

t=141

where {Zt(n)} is the series from which the ranks are computed, and

(s = In(n — 1) 1{Z<p< (n+1))§(p+(+1))
_,;["o(ﬂl(nil))ﬁl<nil>r}'
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n)+

Here again, provided the Z; (")s are symmetric white noise, (n —1)? r( is exactly stan-

dardized. Particular cases are

(d) the signed van der Waerden autocorrelation coefficients

n 1+ R n+1+R{)_,
(n)+ -\ —1 (n)Z(n) &! n+ +t ) -1 +.t—1
Pivaw = (M —1) t'—Z+1 sgn(Zy i) ( 2(n+1) 2(n+1)

—1
2

X[n(n — 1]} Z(<I>-1(i/<n+1>))2] =@/

(e) the signed Wilcozon autocorrelation coefficients

n (n)
n o — n n (n) n+1+ R+ t—1 n
riv’f =(n—i)"" Z sgn(2{™ 2 ))R lo <n+ TR /3(+,)W :
t=141 +,t—1

(f) the signed Laplace autocorrelation coefficients

1
n R(") . n . 2) 2

(n)+ _ N —1 (n) (n) +,t—1 -1 !
rir, =—(n—1) E sgn(Z; ' Z, )log< ] )/{n E [log <n+1>} } .

t=1i+1 1=1

A signed van der Waerden autocorrelation is thus the usual autocorrelation computed from
the series of “signed standard ~ normal quantiles” sgn(Z f ") )o!

(% + Rgn) /2(n + 1)) associated with the residual series Z(™. Wilcoxon and Laplace auto-

correlations constitute weighted versions of the traditional Wilcoxon signed rank and runs
test statistics respectively.

The following asymptotic results can be established for all f-rank autocorrelations. If
H(™(A, B) (resp. H(")(A B)) is the hypothesis of interest, the ranks (resp. signed ranks)

to be used are those of the residuals Z(n) [A(L)/B(L)]X(n) (the “starting values” used
in the inversion of B(L) can be chosen arbitrarily.)

PROPOSITION 4.1. (Hallin et al., 1987; Hallin and Puri, 1991).

(i) Under H™(A, B), (n — i)%rg}) and (n — )2?"] f» U # J, are asymptotically jointly
normal, with mean zero and unit covariance matrix.

(ii) Under H.(i_n)(A,B), (rg})-l_ ) is op(n~2); accordingly, (n — z)zr( »F and (n —

])2r(n)+ , ¢ # 3 also are asymptotmaﬂy jointly normal, with mean zero and unit
covariance matrix.
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0...0) € Rz | B = (B;...B,,0...0) € R , § = (A',B')’ € RP>*%2. Denote by
O the (open) subset of RP2+92 for which (4.1) constitutes a valid, causal and invertible,
ARMA model of orders p; and ¢; (i.e. Ap, # 0 # By, no common roots, causality and
invertibility). Similarly, let v € RP2 |, § = R , 7 = (+/,8') € RPe+e2. H{M (@4 n=3r
accordingly constitutes a sequence of hypotheses, approaching, in some sense to be made
clearer in the sequel, to H g")(o). Under this sequence X(™ is generated by some ARMA
(p, q) model, p1 < p < p2, ¢1 < ¢ < qa, with coeflicients of the form A + n_%'y, B +n"%6

4.4 Local asymptotic normality. Let po > p1 , ¢ > ¢1 , A = (41...4,,

and innovation density g.
Denote by L,(,.T;) the likelihood function of X(® under H ;n) (9), hence by

L‘()n) . the likelihood of X () under Hg")(ﬂ + n‘%r). Define the random variable
+n 2Tg

A(n)

CR Y]

(X(n)) = log L;:)n_% . (X(n))/L‘(’;ng)(X(n))

)

(whenever L‘(’i) . and Ll(;lg) are zero, A can be left arbitrary).
nZryg ’

Denote by ¢, and h, the Green’s functions associated with the difference operators
A(L) and B(L) respectively (i.e. characterized by

z_:guL“ =[AL)]™" and Y h,L*=[B(L)]).

Let

min(pa,i+p1—1)

(4.4a) a; = Z Vi9i—j

Jj=1
and

min(g2,i+g;—1)

(4.4b) b= Y bk,

i=1
so that

/A(L)

a(L) = iaiLi = [{2 v; Lt
=1 =1

and
b(L) = f:b,-L" = (i 5,L"> /B(L).
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It follows from the causality and invertibility properties of (4.1) that the sequences a = (a;)
1

and b = (b;) are absolutely summable: denote by [la + b|| their 2 norm [Z(ai + bi)z] .

=1

Also, letting © = max(p2 — p1, g2 — 1), introduce the (7 + p1 + ¢q1) X (p2 + ¢2) matrix

{1 0 0 1 0 ... 0 \
g1 1 hy 1
(4.5) M(O) = gp2_1 1 hq2_1 e ].
gpz 01 hQ2 hl
\gﬂ'+P1+¢11—1 Ir+pi+q1—p2 h7r+P1+ql—1 hﬂ'+P1+¢]1—<I2 )
Finally, denote by {t/)gl) e Ep 1—H“)} an arbitrary fundamental system of solutions of the
homogeneous equation (or order p; +¢;) A(L)B(L)y, =0, t € Z; by C,, the Casorati
matrix
(1) +
( Yt ’war]:l w \
(1) +
1/)7r+2 '(/)Sr‘l:Z )
(4.6) C, -
(1) (p1+q1)
\¢W+P1+q1 d)wli;pﬂil—th )

and by anTEZ:; the vector of rank statistics

(4.7)

(

n—1

2

i=mw+1

t=m+1

(n—1)% rg?g)
(n)

(n— 7)% Tmg

(n— i)V

\ "Z_:l (n _ 'L)% ¢(P1+91)
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where the ranks are those of the residuals Zt(") = [A(L)/B(L)|X t(n). The covariance matrix
of n%TE;; under H™ (A4, B) is

(4.8) W = ,
o | W
n—1
with wg:,)w = z ?Z)Ek)%b,w ,ke=1,....p1+q ,
i=m+1

which converges, as n — oo , to

e

(o ]
with wy ke = z 1/)1“)1/)50 (convergence again follows from the causality and invertibility
i=n+1

of A(L) and B(L)).

We may now state the main LAN result.

PROPOSITION 4.2. For each @ € ® (and under mild technical assumptions on g)

. n n n Lrxr | 0 n
() A,y (X®) = 3 ™y M) | — | Ty (I(01))?
1—1
0 c;
1. Lnn | 0
-5 ™YM'@) x M@y ™ I(g1) + 0p(1) ,
0 | Cy'wuCy’

under Hgn)(O), asn — oo, for '™ such that sup(r(™)'r(") < oo.

0

(i)  forallt € RP2*92 n3r'M'(9) Loxn

0 Cl—l
P
mal, under H(n)(ﬂ), as n — oo, with mean zero and variance

Tfpn; 1s asymptotically nor-

PM(9) | o M(@)r I(g1) = [la + b|2Z(g1).

0 C:/)_]w,/,C;l

22



(ii1) Denote by rg,';)(r) the f-rank autocorrelations computed from the residuals

P2 q2

n — i —1 : n
Zt( )('r) = Z(A,- +n~%y;)L /Z(Bi +n 25,-)L] Xt( ),
i=1 i=1

Then, under H;n)(ﬂ), as n — 0o,

1 n n
(4.10) ni(r{(r) - rV) =

— (a;+b;) /Sof (F_l(u))gog(G-l(u))du/F—l(u)G—l(u)du I(g1)"% +op(1)
= (@i +b)T(lf) + 0p(1)
with 1(61f) = { [ (P @)y G7 () [ P16 )  Hgr)

0

It follows from (i) and (ii) that A,(,;"T); g(X(")) is asymptotically normal, under H g")(a),
with mean —1||a + b||?I(g;) and variance ||a 4 b||*I(g;).

The family of likelihoods {Lg,4, @ € ®} is thus locally asymptotically normal (more pre-
cisely, the family {Lg.,,0 € RP>%92} is restricted locally asymptotically normal for @ € ®) in
the sense of LeCam (1960)’s conditions (DN1 to DN6), and Tspf}—hence the corresponding
f-rank autocorrelations, or the ranks themselves are locally sufficient. Note that the di-
mension of the locally sufficient statistic Tgbn pisT+pi+q = max(p; + 2, p2 +¢1 ), whereas
the dimension of the parameter space is p; + g2. This corresponds to the well-known fact
that the information matrix of an ARMA model is singular.

In view of Proposition 4.1, Proposition 4.2 remains valid, under symmetric densities, if
signed ranks and signed rank autocorrelations are substituted for the unsigned ones. This
latter fact is of particular interest.

The type of ranks (signed or unsigned) to be adopted—if rank-based techniques are
to be considered—indeed depends, as explained in Section 1, on the invariance features of
the testing problem at hand. Now, the effectiveness of the choice between signed unsigned
ranks, in the classical symmetric i.i.d. case, is obscured, in practice, by the fact that
(unsigned) ranks are totally insensitive to a variety of alternatives. Testing the slope of
a regression line e.g. can be achieved (in a strictly unbiased manner) by means of either
unsigned or signed rank techniques, whereas testing the intercept using unsigned ranks is
impossible. A highly perverse consequence of this fact is that the type of alternative at
hand in most cases apparently dictates which type of ranks (unsigned ones for the slope,
signed ones for the intercept) should be adopted, and thus which invariance argument
is relevant—see e.g. Puri and Sen (1985, Sections 5.2 and 5.3) for a typical example
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of this questionable attitude. Serial dependence problems and, more particularly, that
of testing an ARMA model with unspecified innovation density, provide an interesting
instance where an effective choice between signed and unsigned ranks cannot be eluded,
and where power considerations do not supersede the much more fundamental invariance
principles underlying this choice.

The following consequences of Proposition 4.2 will be particularly useful in the sequel.

PROPOSITION 4.3. (i) Let J denote a score-generating function for the serial rank
statistic S in (3.2). Then, under Hgn)(0+n—2'r) , (n—k)%(SM™ —m™) is asymptotically
k

normal, as n — oo, with mean —3 Z(ai + b;)C;, where

=1

k—1
Ci=)Y / T* (s w1 g (G (ur45))G ™ (urgji)dun - dugs

7=010,1]4+1
and variance V? given in (3.15).

(ii) Let J; denote a score-generating function for the serial signed-rank statistic
Sin) in (3.9). Then, under H{™ (0+n~=%7) (g, a symmetric density function), (n — k)} S_(*_")
k

T 0

is asymptotically normal, as n — oo, with mean Z(ai + b;)C;", where

=1

k—t

Cz+ = Z / J+(2u1 — 1, e ,2uk+1 - 1)Lpg(G_1(u1+j))G_1(u1+]-+,-)du1 .o .duk+1 )
j=0[0’1]k+1

and variance V} given in (3.18) (due to the fact that

1
ﬁJ+(2u—1, ey 2’le+1 — 1)—.]:_(27,1,1 —1, ey 2’Uk+1 - ].)Lpg(G_l(Ug))G—l(uZl)dul e d’ltk+1:0
0

for all 1 <L #4' < k+1, whether Jy or J} is used does not affect the value of C;").

(iii) Both (n — i)%rg}) and (n — i)%ry}H (which are asymptotically standard normal

)

under H(™(0) and H_(,_n)(ﬂ), respectively), are asymptotically normal under Hgn)(ﬂ-f—n_%'r),
as n — oo, with mean (a; + b;)I(f|g), where

1

10£19) = § [0 (B @ey(G w)du [ PG (wdu p 1]

0
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and variance one (for rgf}H, of course, f and g are to be symmetric).

PROPOSITION 4.4. (i) n%Tfﬁ)f is asymptotically normal, as n — oo, with mean 0
under H(™ (@), mean

/ a; + by \

a7r+b1r

(4.11) 3 (ai+ )9 | I(£lg) = py(n)I(flg)

i=nw+1

S a; + b; (Pr+q1)

i=n+1

under H 5")(0 + n~37) and full-rank covariance matrix W, (see (4.9)) under both.

n I 0 n
(ii) The quadratic rank statistic n(Tfp;})’ (0 w_l) Tfp;} does not depend on the par-
¥

(1) (P1+41)}
t y Pt

ticular fundamental system {v adopted; it is asymptotically chi-square,

with © 4 p1 + q1 = max(p; + g2, P2 + 1) degrees of freedom under H(™(8), and asymptot-

PRI

ically noncentral chi-square, still with max(p; + g2, p2 + q1) degrees of freedom, but with
noncentrality parameter -;-[lla + b||I(f|g)]* under Hgn)(o_l_ =37,

The consequences of Proposition 4.2 are of primary importance for all inference prob-
lems in the area: hypothesis testing, estimation, model selection and identification, among
others. In the hypothesis testing context, which we develop in some detail in Sections 5
and 6, Proposition 4.2, in a very intuitive interpretation, implies that, asymptotically and
locally, testing problems about @ can be treated as testing problems about the mean py,
of the central sequence of statistics TEZ} A complex problem about ARMA parameters 0
thus turns out to be asymptotically equivalent to a hopefully much simpler one about the
mean of a multinormal statistic with locally constant covariance structure.

§5. LOCALLY ASYMPTOTICALLY OPTIMAL RANK TESTS

5.1 Locally asymptotically most powerful tests. The theoretical results of Sec-
tion 4.4 allow for the construction of locally asymptotically optimal rank tests for a variety
of problems. The problems treated in the present section are those dealing with ARMA
models which, under the null hypothesis and except for the innovation density, are com-
pletely specified. Depending upon the alternative (which may have a one-dimensional or
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multidimensional structure, locally (one-sided) most powerful or locally maximin rank-
based tests can be derived.

Denote by H™ and K (") two sequences of hypotheses, i.e. two sequences of non-

. (n) . i

overlapping subsets of some parameter space. A sequence ¢, = of tests is called asymptot
ically most powerful for H(™ against K () at probability level « if

(5.1) lim sup [Eo(n)(gbin)) - a] <0, 6™eH™

n—oo

and, for any sequence ¢(™ satisfying (5.1),
(52) liminf |:E0(n)(¢£n) — qﬂ(n))} >0 , 0(”) € I{(") .
n—oo

Whenever K™ can be considered as a local alternative with respect to H(™ (e.g. K™

contiguous to H(™), ¢£«n) will also be termed locally asymptotically most powerful.

PROPOSITION 5.1. The (sequence of) rank-based test(s)

1
2

)

n—1 n—1
(5.3) 6 =1 Y (n—i)¥(ai +b)r{} > kia lZ(ai +b;)?
=1

=1

where ky_o = ®7!(1 — ) denotes the (1 — a)-standard normal quantile,

(i) is locally asymptotically most powerful (at probability level a) for testing H(™(8)
against H}n) 0+ n~2kr), k> 0 arbitrary.

(ii) has asymptotic power
(5.4) 1= ®(ki—a — [la+ bl I(flg))
against Hé") @+ n 7).

Note that (as expected) the asymptotic power of the rank-based test (5.3) against
H](cn)(ﬂ—}- n~ %) —namely, 1 — ®(ki_o — |Ja+ b||[I(#1)]?) —equals that of the Neyman test
ngg\T;I)) (for H ;")(0) against H j(rn)(()—l— n~31)). The latter indeed consists in rejecting H }n)(G)

whenever A,(;:) s 1s “too large”, i.e., in view of Proposition 4.2, asymptotically reduces to
n . n ]‘ =
(55) wp =1 Ay, + Slla+bIPI(f1) > ki—alla+ BII(A))?

The asymptotic distribution of Ag;nr); s under H)(cn)(ﬂ + n_%'r) can be shown to be normal,

with mean 1 ||a+b||?I(f1) and the same variance as under H }")(0). The asymptotic power
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of (5.5) therefore is 1 — ®(k1_o — ||a + b||[I(f1)]2). The norm ||a + b|| accordingly can
be interpreted as a “natural” distance between the sequences H(™(6) and H ](cn)(O +n37),
equivalent to the L!-distance 2sup{l —a — ®(k;_o — |ja + b||[I(f1)]" %)}

«

Here again, in case the innovation densities are restricted to symmetric ones, signed
ranks and signed autocorrelation coefficients can be substituted for the unsigned ones:
Proposition 5.1 can be formulated without modification with rg;an instead of rg}) (and, of
course, symmetric densities f and g¢). If a parametric, Gaussian approach, is adopted (all
densities then, under the null hypothesis as well as under the alternative, are assumed to
be Gaussian), Proposition 5.1 takes the form

PROPOSITION 5.2. Denote by rgn) the classical autocorrelation coefficient of order 1.
The parametric test

1
2

n—1 n—1
o™ =1 iff Z(n - i)%(ai + b;) rﬁ") > k1o [Z(ai +b;)?
=1 1=1

(i) is locally most powerful (at probability level a) for testing H(™ () (or H _(i_n) (9)) against
H&n)(a + n~3kr) (where N stands for a normal density with mean zero and arbitrary
variance), k > 0 arbitrary.

(ii) has asymptotic power
(5.6) 1—®(ki—o —[la+b])

against Hs(,n) (0 + n=%7), whatever g may be.

This confirms the analogy between f-rank autocorrelations (under innovation density
f) and usual autocorrelation coefficients (under Gaussian innovation densities). The even-

tual superiority of f-rank autocorrelations comes from the I(f|g) factor appearing in (5.4),
but not in (5.6).

Example 5.1. Consider the problem of testing the null hypotheses H(™(0) that X
is white noise (with unspecified density) against an alternative of possible ARMA (p, q)
dependence, max(p,q) =1 ,ie. Xy — AX, 1 =€e;+ Bey_1, A+ B > 0. Here Zt(n) =
Xt(") and the ranks are those of the observed series X(™ itself. The rank-based test
rejecting H(™(0) whenever (n — 1)%7*8}) > ki_q is locally most powerful (against X; —
n"3aXe_; = e +n"%Be4_1, a+B>0 arbitrary) if ¢;, under the alternative, has density
f (with arbitrary variance). If Gaussian (logistic, double exponential) alternatives are
to be privileged or are to be feared most, then a van der Waerden (Wilcoxon, Laplace)
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autocorrelation rgnv) AW (ringv,rgnl)/ should be adopted. If the density under H(™(0) can
be assumed symmetric, then signed ranks and signed autocorrelations can be substituted

for the unsigned ones.

Example 5.2. Consider the problem of testing p = po against p > po in the AR(1)
model X; — pX; = &; with unspecified but symmetric innovation density. A signed-rank,
genuinely distribution—free test can be performed, which is locally most powerful against
Gaussian alternatives, among all tests at (asymptotic) probability level «, by rejecting

p = po Whenever
n—1
NP S g n
(1= o) Y (= )3l > by
=1

The signs and ranks here are those of the residuals Zt(n) =X t(n) —poX t(f)l and their absolute

values |Zt(n)| (assume X(™ = (Xén),an),...,X,(@n))). If the density (under p = py)
cannot be assumed symmetric, unsigned ranks and unsigned autocorrelations should be
used instead of the signed ones.

The asymptotic relative efficiencies of the signed and unsigned rank procedures de-
scribed in this section with respect to each other, and with respect to their parametric
counterparts, are computed in Section 5.3.

5.2 Locally maximin tests. The local alternatives considered in Section 5.2 are
basically one-dimensional, one—sided alternatives: the tests provided by Propositions 5.1
and 5.2 are optimal against a specified (+,8) direction in the parameter space, along with
specified innovation density. In many situations of practical interest, the alternative is
inherently multidimensional, and no particular (7,8) direction is to be privileged. A natural
idea then consists in considering tests which are locally asymptotically mazimin.

Informally speaking, a maximin test, at given probability level a, is a test whose worst
performance is best within the class of all tests at level a. More precisely, let H(™ and
K™ denote two sequences of (nonoverlapping) hypotheses. The corresponding sequence
of envelope power functions is

,B(a;H(”),K(")) = supi%f Eo¢(¢p), a€(0,1),
¢

where the sup and ir;f are taken over all tests ¢ satisfying Egp < o , 8 € H(®) and all
¢

values of @ in K(®, respectively. A sequence ¢in) of tests is called asymptotically (locally,
if K(™ is a local alternative to H(™) maximin for H(") against K™, at (asymptotic) level
a, if

n—oo

(5.7) lim sup [Eo(n)(gb&”)) - a] <0, 6™ecH™
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and

(5.8) liminf | Epm (i) — B(es H® K™Y >0, 6™ e K™ |
n—oo

If however nontrivial maximin tests are to be obtained, K(™) has to be bounded away
from H™. If Indeed the L'-distance between H(™ and K™ (for fixed n) would be zero,
the envelope power function trivially would reduce to f(a; H ) K (")) = «. The simplest
idea, if H(™ and a local alternative K(™ are to be considered, consists in defining a local
alternative whose L!-distance to H(™ remains (asymptotically) bounded from below by
some fixed, strictly positive, constant d. In the problem of testing H(™(8) (or H_(i_n)(ﬂ))
—i.e. a specified ARMA (p;,q;) model with unspecified (or symmetric unspecified) in-
novation density —against unspecified ARMA (p, ¢) alternatives, with p; < p < p, and
q1 < q < go, such local alternatives with bounded L;-distance from H (")(0) (or H_(i_n)(O))
are (for fixed f) of the form

(5.9) KM (d) = | J{H@+n77) | a+b| > d},

where the union is taken over all 7 € RP27% such that ||a+b| (with a and b as defined in
(4.4) is larger than or equal to d. The alternative (5.9) accordingly can be interpreted as
the outside of a L'-hypersphere. Due to the particular L! topology of ARMA likelihoods,
K j(p")(d) however resembles a cylinder rather than a sphere in the RP2+92 space. The choice
of d, as we shall see, does not affect the final result and the form of locally maximin tests.

PROPOSITION 5.3. (i) The (sequence of) rank-based test(s)
I 0
(5.10) $™ =1 iff (T T >3
I W;l

(which, from Proposition 4.4, do not depend on the particular fundamental system adopted),
where X21 denotes the (1 — a)-quantile of a chi-square variable with ™ + p; + q; =
—a

max(p1 + g2, p2 + q1) degrees of freedom, is locally asymptotically maximin, at probability
level a, against any alternative of the form I\")(t")(d) , d>0.

(ii) The asymptotic power of (5.10) against Hgn) 0+ n_%'r) is
1-F(_ szla+blP(I(£19))%) ,

where F( ;\) denotes the distribution function of a noncentral chi-square variable with
7 + p1 + q1 degrees of freedom and noncentrality parameter ).

(iii) The envelope power function f(c; H(™(8), K}")(d)) converges to (same notation as
above) 1 — F(le_a; slla+ b|2I(f1)).

The same result of course still holds if signed ranks are substituted for unsigned ones.

[ts parametric counterpart involves a parametric version TE/:;W say, of Tg;}, where classical

(n) (n)

parametric autocorrelations r; ' are substituted for the rank-band ones r; e
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PROPOSITION 5.4. (i) Substituting TE/)T?N for TEJZ} in (5.10) yields a parametric test

which is locally maximin, at probability level a, for H(™(8) (for H_(f_")(ﬂ)) against any
Kj(\fn)(d) , d > 0 (where N stands for a normal density with mean zero and arbitrary

variance).

(ii) The asymptotic power of this test against H 3")(0 + n"%r) is (same notation as above)
1-F(x*_ ;5lla+bl?).

Example 5.3. As in Example 5.1, consider the problem of testing the null hypothesis
H™(0) that X(® is white noise, with unspecified (or unspecified symmetric) density.
The alternative now is the whole class of possible ARMA (p,q) dependencies, with 0 <
max(p,q) < 7w and unspecified coefficients, but the subset of it at which optimality is
desired is that with innovation density f. The f-rank (signed or unsigned) portmanteau
test of order 7 .

™ =1 if and only if Z(n - z')(rl(-;'}))2 > le_a ,
i=1
where le_a is the (1 — a)—quantile of a chi-square variable with 7 degrees of freedom, is
then locally asymptotically maximin. The same property holds for the parametric port-
manteau test (where the parametric autocorrelations rgn) are substituted for the rank-

based rg})) against normal alternatives.

Example 5.4. Consider the problem of testing the null hypothesis that an observed

4
series X(™ was generated by the ARMA (1,1) model X; — 5 Xi_1=¢¢+ % €t—1, tEL,
against unspecified ARMA (2,2) alternatives (or, equivalently, against ARMA (2,1) or

ARMA (1,2) alternatives). Let Z(_nl) = Z((Jn) =0 and Zt(n) = Xt(") —% Xt(f)l —% Zt(f)l , t=
1,...,n ; denote by rg’nf) the corresponding f-rank autocorrelations. A fundamental

system of solutions of

4 1
(1—3L)(1+§)¢t=0,t62
w_ (47 o (17
i 5 17t 2 ’

here 7 = max(p; — p1,92 — q1) = 1. The covariance matrix W? is of the form

o (FOT )

i -]
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The test statistic of Proposition 5.3(i) is thus

QU = n(r{")+

wif =
n—1 1—2 n—1 1—2
4 ) 1 ()
”(Z(s) By (5)
1=2 1=2
~2

'zn(r("))z (1.436)n ri <§> ff}>- + (19.600)n [t:( %) (n)]2

1=2

—(3.937)n lni‘l (‘;) gv})] Zl __ (n)]

1=2 L =2

31l ot ©|g

Wik | ot
3
|
/l\\
N =
N
|
(V]
0

If ARMA (3,3) (or ARMA (3,2), ARMA (3,1), ARMA (1,3), ... ) alternatives are to be

considered, QEZ} has to be modified to
. 2 ne1 ) 2
(n) (n)
(5) T, f] + (78.400)n ng (—§> r;. f]
n—1 n—1
+(9.844)n [2 (—) (")] [Z ( ) ("’} .
1=3 =3

5.3 Asyrriptotic Relative Efficiencies. Asymptotic, local power comparisons be-

|
-

n

n(r{M)? + n(rir)? + (2.243)n [

tween tests are usually made on the basis of asymptotic relative efficiencies (ARE’s). Recall
that the ARE of a test 1; with respect to another one 9, both at probability level «, can
be defined as the limiting value of the ratio No/N;, where N; is the number of observa-
tions required for the power of 1, to equal the power of 1, based on N; observations, as
min(Ny, N3) — oo and the alternative converges to the null hypothesis (see e.g. Puri and
Sen 1985, section 3.8, for a more rigorous definition).

ARE computations are greatly simplified in situations where ¥; and 1, are based on
test statistics which are asymptotically normal or chi-square under the null hypothesis
and contiguous consequences of alternatives. If 3; and 2 consist in rejecting the null
hypothesis H(™ for “large values of” test statistics, S; and S respectively, which are
asymptotically normal, N(0, o1) and N(0, 72) respectively, under H™ and N(yu;,0,) and
N(p2,02) respectively, under the alternative K then the ARE of ¥; with respect to 1y
is

ARE (41 /%) = ( ‘“2)2 .

o1
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If S; and S, are both asymptotically chi-square with d degrees of freedom under H (™,
and asymptotically noncentral chi-square with d degrees of freedom and noncentrality
parameters A\; and A2, respectively, then

ARE (1/%2) = (M1/X2)* .

The results of Sections 5.1 and 5.2 thus allow for an explicit computation of the mutual
ARE’s of the various parametric and nonparametric tests proposed.

PROPOSITION 5.5. The asymptotic efficiency of the optimal procedures (as described
in Propositions 5.1 and (5.3) based on (signed or unsigned) f-rank autocorrelations with re-
spect to their counterparts based on (signed or unsigned) g-rank autocorrelations, against
alternatives of the form Hﬁ”)(o +n73T), is

Jo 5 (F~(w)gn(H™ (w))du fo F~(u)H (u)du ]’

I(fIR)/I(g|M)]? = | <% 1 ,
T = | ga( @ ) nE (o |} G 0

where notations ¢¢, ¢4, én, F, G, H are used in an obvious fashion. Under the same condi-
tions, the ARE of procedures based on f-rank autocorrelations with respect to the optimal
Gaussian parametric procedures, based on classical parametric autocorrelation coefficients
(as described in Propositions 5.2 and 5.4) is

[orE B s [ P wE | J105),

which reduces to I(f;) > 1 for h = f and I(f;) =1 if and only if f and h are Gaussian.

Other asymptotic efficiencies can be derived from Proposition 4.3. Explicit numerical
values are provided in Table 5.1 below.
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(1) (2) (3) (4) (5)

Classical 1.000 1.000 1.005 1.634 1.096 normal
(1) parametric 1.000 0.954 0.911 1.232 1.000 logistic
1.000 0.816 0.675 0.500 0.790 double exp.

Signed or 1.000 1.000 1.055 1.634 1.096 normal
(2) wunsigned 1.048 1.000 0.954 1.291 1.048 logistic
van der Waerden 1.226 1.000 0.827 0.613 0.968 double exp.

Signed or 0.948 0.948 1.000 1.550 1.091 normal

(3) unsigned 1.098 1.048 1.000 1.352 1.098 logistic
Wilcoxon 1.482 1.209 1.000 0.741 1.170 double exp.
Signed or 0.612 0.612 0.646 1.000 0.671 normal

(4) unsigned 0.812 0.775  0.740 1.000 0.812  logistic
Laplace 2.000 1.631 1.350 1.000 1.580 double exp.
Signed or 0.912 0.912 0.917 1.490 1.000 normal

(5) unsigned 1.000 0.954 0.911 1.232 1.000 logistic
Spearman 1.266 1.033 0.855 0.633 1.000 double exp.

Table 5.1. Mutual ARE’s for the various parametric and nonparametric tests described in
Sections 5.1 and 5.2, under normal, logistic and double exponential densities, respectively.

An inspection of Table 5.1 reveals the excellent asymptotic performances of rank tests:
the van der Waerden tests perform uniformly and strictly better than the corresponding
normal-theory tests—except of course under normal densities, where they perform equally
well. The ARE of optimal normal theory tests with respect to the corresponding Laplace
procedure can be as low as 0.500. Spearman tests (which are never optimal, since the
Spearman autocorrelation coeflicients do not belong to the class of f-rank autocorrelations)
are uniformly (though not very significantly) dominated by Wilcoxon tests.

As expected from Proposition 4.3, signed and unsigned optimal tests are asymptoti-
cally equivalent. The fact that their mutual ARE’s are one however does not imply that
the advantage of using signed-rank tests instead of unsigned ones (whenever innovation
densities are symmetric) is nil, or negligible, neither for short series lengths, nor even
asymptotically. Numerical investigations of the performance of signed-rank tests (Hallin
et al. 1990) indicate that, for moderate, fixed n, the power of signed-rank procedures can
be substantially larger than that of unsigned ones, an empirical finding that should be
confirmed by a theoretical investigation of the corresponding deficiencies.

A systematic investigation of the finite sample behavior of (unsigned) rank based tests
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for randomness, both under the null hypothesis (tables of exact critical values) and under
alternatives of AR(1) serial dependence (Monte Carlo study of the power function) has
been conducted in Hallin and Mélard (1988). This study reveals that rank tests often are
substantially more powerful than traditional parametric procedures, even for pretty short
series (n = 20, e.g.); of course, they are much more reliable under the null hypothesis,
and theoretically provide exact tests (whereas the probability level of parametric tests is
only approximative) even when traditional procedures are not valid — e.g. under Cauchy
innovation densities (see Hallin and Puri (1991a) for a numerical illustration). In addition,
they also are considerably more robust, and less sensitive to the presence of outliers,
atypical startup behavior, etc.

All these properties show how useful a general rank based methodology would be in
the identification and validation steps of time series analysis. Such a methodology however
requires additional results allowing for the treatment of nuisance parameters. This is the

subject of the next section.
§6. ALIGNED RANK TESTS

6.1 Ranks and aligned ranks. The test described in Section 5 are valid if and only
if the residuals Zt("), the ranks of which are used, under the null hypothesis to be tested,
are ezact residuals. These tests thus allow for testing ARMA models with unspecified
innovation densities but completely specified coefficients.

Unfortunately, in most practical problems, one has to test ARMA models with unspec-
ified coeflicients. This is the case, typically, in diagnostic checking and model validation
situations. It is also the case in identification problems, where the main tools (partial
correlograms, corner method tables, ...) actually are test statistics—even though the
identification process does not exactly reduce to any hypothesis testing problem.

More generally, one might like to test the null hypothesis H(™(€,.) (or Hin)(gr), in the
case of unspecified, symmetric innovations) that the parameters A,...,4,,, By,..., By,
of the ARMA (p;, ¢;) model underlying the observed series X (") satisfy some given linear
constraints (to be precise, p; + ¢ — r linearly independent ones) and thus belong to some
r-dimensional linear subspace &, of RP1*91. Innovation densities in H(™(€,) and H (")(87)
remain unspecified; whenever they need to be specified, the notation H ft )(Er) will be used.
The alternative consists of unrestricted ARMA (p,q) models with py <p<py,q1 < ¢<

g2. More specific alternatives however might be considered when optimality properties are
to be described.

In what follows, we assume the existence of a root n consistent sequence 5(") =

(A‘gn) A;T), ..,0, B\g") B\g?), 0,...,0)" of constrained estimates of @ = (A,,...,
Ap.,0,...,0,By,...,B,,,0,. 0)' ie. a sequence of statistics such that (A(n) ,A\g,’f),
ﬁg"), o ("))’ € &, (in the sequel, we also wr1te0 E Erorf € &,) and the distributions

of n%(b\( — ) form, under H(™(€,) (or under H (n)(gr)), a relatively compact sequence.
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Root n consistency however is not sufficient for establishing the asymptotic results
stated below: additional uniformity properties are required, which are satisfied if “smoother”

versions of 5(") are used (see LeCam 1960, Appendix 1). One of the “smoothed” versions

of 5(") is as follows (same reference). Denote by A the o—field of Borel sets of R(™) | by
V an open convex symmetric neighborhood of the origin in €., by A&n) the product o—field
of A™ by the o—field of Borel subsets of £.. On V, letting v denote a probability measure
having a bounded continuous density with respect to the Lebesgue measure, define v(™) as
a random variable having distribution v on V, and put

0&71) :#n) + n~iv(™

The sequence of estimates oi”) is still root n consistent, and meets the uniformity re-

quirements that might not hold for #n) and are technically necessary for establishing
Propositions 6.1 and 6.2 below.

Other smoothing methods are also described in LeCam (1960).

We do insist however that these smoothing procedures are of little practical relevance,
if any at all. First, because they typically have the nature of analytical procedures guar-
anteeing ad hoc probabilistic limit results, whereas in statistical practice, one is interested
in approximation results only: for given V and v, and for fixed, “reasonably large” n, it

makes extremely little difference whether Gﬁn) or 5(") is used. A second reason is that the

actual computation of 5(”), with a finite number of decimal values, automatically provides

a “smooth”, approximate value 052), say, of 6(") (hence of 09’)).

For all these reasons, this smoothing problem should not be given too much attention

and, in the sequel, we shall make no notational difference between b{n), w ~ and 0&2): the

simple notation 5(”) will be used throughout, and 5(") will be assumed “smooth enough”.

Denote by Z\t(n) = Zt(")(ﬁ")) (Z; A(n)L /Zi B(n)L )X(n) the “estimated” re51d11als

associated with 70("), by RE") = RE")(E(")) , Rinz = (")(0 ) and 5, = st(a ) the

corresponding ranks and signs (namely, the aligned ranks, aligned signed ranks and aligned

signs for the problem considered). The notation A(T}) (n) (5(")) '5,7})4" = (")+(§(n))

G50 0W, L pEte) G FW R0 p+
¢ L4 ¢f i f

Since the f-rank autocorrelations r and the rank-based statistics T{" v f (or the signed
ones Tfp;}'*_) have been shown locally asymptotlcally sufficient for H (")(0) (or Hﬁr")(a))
against H}")(o + n“Jz"r) T € RP2T92 a natural idea would consist in using the aligned
autocorrelations F(z'}) (or A(nH') and aligned rank statistics T( ") ( ’/I\‘%?}_'_) for H(M(E,)
(or H_(,_n)(gr)) against U{H}n)(O—i— n 21‘), 0cé&, 0+nir ¢ Er}. A closer look at this

apparently simple idea however reveals a number of apparently unredeemable theoretical

. owill be used in a similar fashion.

drawbacks.
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First, invariance is lost. Substituting estimated parameters @(n) for exact ones 0 in-
duces among the residuals Z(n) complex interrelations that destroy their exchange-ability
features, hence the invariance property of ranks. This is not just a slight defect in view of
the fact, stressed in Section 1, that invariance is the cornerstone of rank—based inference:
if invariance 18 lost, there is not point in using ranks anymore.

Second, distribution—freeness, and even asymptotic distribution—freeness, is lost as
well: it follows indeed from Proposition 6.1 below that the asymptotic mean of aligned
rank autocorrelation coefficients under H 5")(0) depends on g. This again is not just a
detail without importance, since distribution-freeness (or, at least, asymptotic distribution-
freeness) is crucially necessary if a testing procedure valid under unspecified densities g is
to be carried out.

Last and not the least, the local optimality properties of Section 5 obviously cannot
be expected to hold anymore in the case of aligned rank tests. Even in the parametric,
normal-theory context, additional requirements of unbiasedness or similarity have to be
invoked, when nuisance parameters are present, if optimality results are to be obtained.
Some form of similarity is likely to be necessary here, too.

6.2 Asymptotic invariance. Since strict invariance apparently is too restrictive a
requirement here, some weaker, asymptotic form of it might be more appropriate. Let us
define an asymptotically invariant statistic as a statistic asymptotically equivalent (under
the null hypothesis considered, hence under contiguous alternatives) to an invariant (hence,
in the present context, rank-based) one. More precisely, let S(*) denote a sequence of rank—
based statistics such that, for some appropriate centering sequence m("),n”% (S (n) _ m("))
is relatively compact under a sequence of null hypotheses H(™. The sequence 5™ obtained
on substituting aligned ranks (aligned signs, aligned signed ranks) for the exact ones in
S(") is said to be asymptotically invariant under H™ if S _ g(m) — oP(n_%), under
H™ asn — .

This concept of asymptotic invariance here would be helpful if, e.g. i:fr}) —rg,r}) or ?g,’})"- —

rz(-;}H would be op(n~%) under H(™ (@), i.e. if aligned rank autocorrelation coefficients
would be asymptotically equivalent to the genuine ones. Unfortunately, this does not

hold, since, from Proposition 4.2, it can be shown that

PROPOSITION 6.1. Under H{™(8),
(6.1) nd (Y —r(Y) = =@ +5")I(flg) + op(1), n— oo,

where Egn) and ?)\E") result from substituting nl/z(ﬁ(") —0) fort = (v,8') in (4.4). The
same result also holds for ?g;}”.
It follows that ?f'}) cannot be asymptotically invariant: I( f|g) indeed is not a distribution—

free quantity. Nor can ?(i,T}H be.
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Though however no aligned-rank autocorrelation individually is asymptotically invari-
ant, some specific linear combinations of them are. More precisely, denote by Tfpn} the lo-

cally (at 8) sufficient statistic associated with the fundamental system {1/) M .., ¢Ep 1-'_ql)},

by zb(]) the value at ¢ of the solution of (X; AL N (2 .B;L )z,bt =0 characterlzed by the same
starting values ¢(]) (]) , s =1,2,...,p1 + ¢ as gbt , and by T(n) the locally (at

0= A( ) sufficient statistic associated with the fundamental system {1/)(n), Ny 1ﬂ“)}

but computed from the aligned ranks Rﬁ") Tf,;;f can be defined similarly in the signed

rank case. ’

The asymptotic mean under Hé")(o + n~37) of nl/zTgb':} is py. ¢(T)I(f|g) (Proposi-
tion 4.4) where py, s is a linear transform (of rank 7 + p; + ¢1) of 7, depending on @
and the choice of the fundamental system {1/)51 )}, but not on g. When 7 unrestrict-
edly takes its values in RP2%92 py. ¢ can take any value in R™P1%% If 7 is of the form
(Y15 sYp150,..,0,61,...,84,,0,...,0), where (y1,...,7p,,61,...,84,)" belongs to &,
thus satisfying p; + ¢ —r independent linear restrictions, it can be shown that py,. s(7) also
satisfies m + p1 + q; — r independent linear restrictions, of the form

(6.2) QB)py;s =0

where Q(0), a (7 +p; +¢1 —7) X (7+p1+¢1) matrix of rank 7+p; +¢; —r = max(ps+q1, p1 +
g2) — T, is a continuous function of 8. The vector py, ¢ accordingly lies in a r-dimensional
linear subspace of RT+P1+41,

The following result can then be established.

PROPOSITION 6.2. For any 0 € &,, any fundamental system {’l/)gl)} and any f ,
~(n)| [~(n n -1
(6.3) Q@ ") [sz; — 1] = op(n~?)

under H(™(0) , 0 € €,, as n — co. Accordingly, Q(’é(n))i‘g; is a vector of m +p; +¢q1 — 1
asymptotically invariant statistics (under H(™(@)).

A similar result can be proved, under H i")(a) , for 9(5(”))'?(5}*

6.3 Locally asymptotically similar tests. The following definition of local asymp-
totic similarity has been proposed by LeCam (1960) (under the terminology differential
asymptotic similarity). A sequence #(™ of tests is said to be locally asymptotically similar
under H ](cn) (&), at asymptotic probability level a, if for every 8 € €, and every bounded
BcCé,

(6.4) lim sup |EH(")(o+n—’2‘r)(¢(n)) —al=0.

n—oo eB

37



LeCam (loc. cit.) then shows how locally optimal tests, asymptotically enjoying, within
the class of locally asymptotically similar tests, the same optimal properties (stringency
or minimaxity) as the usual normal theory tests for Gaussian linear hypotheses, follow on
applying the Gaussian likelihood ratio principle at the local asymptotical level.

For the particular problem of testing H (n)(ﬁr), this leads to a test statistic of the form

n . 1 (n TR — 1 =(n ~
Q) =_ inf [(niT) —E W (nITT — )
w0 )p=o ’ ’

6.5
e = n(T(”)) WA - W:IK(K W:lK) K W;l Tfp")f
where K = K(?)(")) is any (7 + p1 + ¢1) X r full rank matrix such that Q(b{n))K =0 (so
that 9(5(”)),7 = 0 if and only if g = KX for some A € R", and N K = 0 if and only if
N = MQ(a(n)) for some matrix M of appropriate dimension).

Denoting by V/‘\’% an arbitrary symmetric square root of \/7\\717;, (6.5) also takes the form

n(T) )'v’v:’f I- W:%K(K'V’V:IK)—IK'V’V:% Woipm

— n(T(n) )IW 2 PW 2T(")
P if’

where P is a symmetric, idempotent matrix of rank 7 + p; + g1 — r. Qgcn) therefore is
—~_1

asymptotically chi-square under H ;n) (@), € &,. But, since P W$2K =0, Q(fn) is also

of the form

(1) vy ~(n) ] () = (n)
)@ )M MQO )T
n(Ty )@ ) Q6 )T

(for some matrix M, the explicit form of which is not needed here); hence, in view of
Proposition 6.2, Qgcn) is asymptotically invariant under H(™ (@) ,0 € €,. Accordingly, Q;n)
is also asymptotically chi-square, with © + p; + ¢1 — r degrees of freedom, under any
hypothesis of the form H !Sn) (), hence under H(™ ().

A similar result holds for the signed version Q;nH of Q(fn).

6.4 Optimal aligned rank tests. Summing up the findings of Sections 6.2 and 6.3,
we may state the following result.

PROPOSITION 6.3. The sequence of aligned-rank tests rejecting H(™(&,) whenever
Q(n) L
where le denotes the (1 — a)—quantile of a chi-square variable with m +p1 +q1 —r
-«
degrees of freedom and Qgc") is given in (6.5)
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(i) is asymptotically invariant
(i) is locally asymptotically similar under H(™(E,), at probability level
(ii1) is asymptotically most stringent against U{H}n)(O-I- n—%'r) 0 € &, T ¢ &}, within
the class of all asymptotically similar (under H ](cn)(gr), at probability level a) tests.

A similar proposition holds in the signed-rank case.

The test thus proposed possesses all the asymptotic optimality properties one can
expect when testing H}n)(ﬁr) (with specified innovation density f). In addition, it is
asymptotically invariant, similar and distribution—free under the much broader null hy-
pothesis H(™(&,) (with unspecified innovation density); it has much better robustness
features than its usual Gaussian parametric competitors, with ARE values (with respect
to the latter) as shown in Table 5.1. The amount of computation involved is not heavier
than in the case e.g. of traditional Lagrange multiplier tests (see also Kreiss (1990 a) for
optimal parametric AR procedures).

For all these reasons, they should be very attractive in a variety of practical problems
when innovation densities are suspected to be severely non—Gaussian, or contaminated
by possible outliers. For instance, it advantageously could be substituted for parametric
Lagrange multiplier statistics in Potscher (1983, 1985)’s recursive identification procedure.

6.5 Example: testing AR (1) versus ARMA (2,1) dependence. As an il-
lustration, consider the problem of testing a null hypothesis of first—order autoregressive
dependence

Xe—pXic1=¢er, 0<]|p|<1,

where the parameter p and density of &; remain unspecified. Denote by 5™ a root n
consistent estimate of p (the least square estimate, for instance), and let Zt(n) =X En) —
A(")Xt(n)l , t = 1,...,n (for simplicity, assume that X(gn) is available). Assume that an
ARMA (2,1) alternative is considered. Suppose however that, for some reason, one is
willing to be particularly powerful against ARMA processes with innovation density f (f
specified up to a scale transformation). The (aligned) ranks f{ﬁ"’ here are those of the
residuals Z\t(n), and the autocorrelation coefficients to be used are the (aligned) f-rank
autocorrelations 7{1})

A simple fundamental system (a fundamental system here consists of any nonidentically
zero solution, since the dimension of the solution space is one) of solutions of (1—/p\(")L)¢t =
0is {Z)\t = (p™)*=2 and the corresponding (aligned) locally sufficient statistic is (p; =
1, g =0;hencer =1andr =1)

(n-1)% 77

o Zm—]) (Y7
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The corresponding, ezact ng)f (not a statistic since p is unknown) is
(n—=1)f r{7)
ntT(™ =

" Z(n—JV =)

which is asymptotically bivariate normal, with mean zero and covariance matrix

1 0
W, =
0 (1-p)7"

under H™(p).
Local ARMA (2,1) alternatives Hgn)(p,'y, 6) are of the form

X:—(p+ n_%’)’l)Xt—l - Tl_%’hXt—z =¢&¢+ n"1§ Et—1 ,

where v = (v1,72)" and the innovation density is g ; n%TE/Z} under such an alternative is
asymptotically bivariate normal, still with covariance matrix W, and with mean

71+ 6
s (1, 6)I(flg) = I(flg)
[o(71 +8) +72]/(1 = p?)
since a; = and b, =6p"', i=1,2,....

P+ 1) i i>1
Clearly, if v = 6§ = 0, pp, s(7,6) is of the form 71 (1 p/(1—p?))’, and accordingly satisfies
the (unique, since 7+ p1 +¢1 —r=1+4+1+0—1=1) linear constraint

(—p 1- Pz)ﬂp;f(% 6)=0.
Here Q(8) = Q(p) is the 1 X 2 row matrix (—p 1 — p?). It follows that

(=" 1= T

n—1

1 (n)y~(n n y n)\j— n

(6.7) = —(n— D)) + 11— (™) Y (n - EE™) )
j=2

is asymptotically invariant, and asymptotically equivalent to its exact, non-aligned coun-
terpart. The optimal, asymptotically similar aligned rank test of Proposition 6.3 consists
in rejecting the null hypothesis whenever the quadratic statistic

n—1

n n n n NS n ) — n

(68) Q) ={—(n—DIFVFHY +[1- (@) Y (n—i)E")Y A
i=2
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exceeds the (1 — ) quantile of a chi-square variable with one degree of freedom (since the
asymptotic variance of (6.7) is one).

The form of the test statistic (6.8) is not quite familiar, and its relation with classical,
parametric time series procedures does not straightforwardly appear from (6.8). Denote
by Qg\? ) the Gaussian counterpart of Q(fn)

2

n—1
6.9 Q% =1 (- +[1- (GEA Y (- )Wy

where p(™ denotes the Gaussian maximum likelihood estimator of the AR (1) parameter
p, and F(jn) stands for the corresponding classical residual autocorrelations. The Gaussian
Lagrange multiplier approach to the problem (Godfrey 1979; Hosking 1980) leads to the
test statistic (Hosking 1980, Theorem 1)

(6.10) ™= ZW :

to be compared also with the quantiles of a chi-square variable with one degree of freedom.

Qg\? ) and Q(Ln) apparently are distinct test statistics. However, it follows from asymp-
totic linear relationships among (parametric) estimated residual autocorrelations (McLeod
1978, Theorem 1) that

n—1
(6.11) Z(ﬁ("))f_lﬁ.") = oP(n_%) , n — oo .
i=1
Accordingly, our locally optimal Gaussian statistic g\? ) satisfies
(6.12) QM =n(7™) +op(1), n—ooo.

Similarly, for the Lagrange multiplier statistic, (6.11) implies
(6.13) (L") = n(rln))2 +op(1), n — oo,

which in turn entails
gf)— (Ln)=0p(1), n— oo .

The parametric, Gaussian counterpart of our rank-based statistic (6.8) is thus asymptot-
ically equivalent to the Gaussian Lagrange multiplier test statistic. It follows that the
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ARE’s of rank tests based on (6.8) with respect either to their Gaussian parametric coun-
terpart (based on (6.9)) or the more familiar Lagrange multiplier test (based on (6.10))
are still those provided in Table 5.1.

Whether an asymptotic equivalence of the form (6.11) or (6.12) also holds for aligned
rank-based residual autocorrelations is not known. The asymptotic invariance of (6.7)
implies that (6.8) is asymptotically equivalent to its exact unaligned version @&n) , say.
The van der Waerden version of the latter, under Gaussian densities, in turn is asymptot-

n) n))z_

ically equivalent to the parametric Qg\f , hence to n(F(1 Note however that, whereas

QE,Z)W , g\? ) and Q(Ln) are asymptotically equivalent to the corresponding quantities com-

puted from exact residuals, these equivalences do not hold for n(?gn))2 which is asymptot-

ically distinct from n(rgn))z, where rgn) denotes the exact first-order residual autocorre-
~(n)

lation. Nor is 7.5 ,p asymptotically invariant. The linear relation (6.11) indeed does not
hold for exact residual autocorrelations.
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