
Large Scale Optimization for Machine Learning

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Huahua Wang

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor of Philosophy

Arindam Banerjee

December, 2014

c© Huahua Wang 2014
ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution to my time in grad-

uate school.

First and foremost, I would like to express my sincerest gratitude and appreciation to my

advisor Prof. Arindam Banerjee for his invaluable support and guidance throughout my gradu-

ate study. His motivation, enthusiasm, immense knowledge and dedication to research trigger

my interests on research. His advice has been extraordinary by all means, opening the door of

machine learning for me, letting me fly, introducing me to professors and senior researchers,

encouraging me to reach others, sharpening my technical presentation and writing skills, and

overall preparing me to be an independent and competent researcher.

Second, I would like to extend my great thanks to Prof. Daniel Boley, Vipin Kumar, Xi-

aotong Shen to serve on my thesis committee and Prof. Zhiquan Luo and Yousef Saad on the

committee of my thesis proposal.

Third, I am also grateful to my collaborators: Daniel Boley, Inderjit Dhillon, Qiang Fu,

Chen Jin, Shiva Prasad Kasiviswanathan, Cho-Jui Hsieh, Zhiquan Luo, Prem Melville, Pradeep

Ravikumar. It was my honor to work with them. I would also thank my collegues in the

machine learning department in the NEC Labs, Princeton, where I ventured into deep learning,

and particularly Dr. Martin Renqiang Min who offered me the opportunity.

Last but not least, I would also like to show my gratitude to my lab mates: Amrudin Agovic,

Soumyadeep Chatterjee, Sheng Chen, Konstantina Christakopoulou, Puja Das, Farideh Faza-

yeli, Qiang Fu, Andre Goncalves, Nicholas Johnson, Igor Melnyk, Hanhuai Shan, Vidyashankar

Sivakumar, Karthik Subbian, Amir Taheri and Tinghui Zhou. Thank you for teaching me diver-

sified culture, languages, etc.

i

Dedication

To my parents.

ii

Abstract

Over the last several decades, tremendous tools have been developed in machine learning,

ranging from statistical models to scalable algorithms, from learning strategies to various tasks,

having a far-reaching influence in broad applications ranging from image and speech recogni-

tions to recommender systems, and from bioinformatics to robotics. In entering the era of big

data, large scale machine learning tools become increasingly important in training a big model

on a big dataset. Since machine learning problems are fundamentally empirical risk mini-

mization problems, large scale optimization plays a key role in building a large scale machine

learning system. However, scaling classical optimization algorithms like stochastic gradient de-

scent (SGD) in a distributed system raises some issues, e.g., synchronization. Synchronization

is required because consistency should be maintained, i.e., the parameters in different machines

should be the same. Synchronization leads to blocking computation and performance degrada-

tion of a distributed system. Without blocking, overwriting may happen and consistency can

not be guaranteed. Moreover, SGD may not be suitable for constrained optimization problems.

To address the issues of scaling optimization algorithms, we develop several novel opti-

mization algorithms suitable for distributed systems from two settings, i.e., unconstrained op-

timization and equality-constrained optimization. First, building on SGD in the unconstrained

optimization setting, we propose online randomized block coordinate descent which randomly

updates some parameters using some samples and thus allows the overwriting in SGD. Second,

instead of striving to maintain consistency at each iteration in the unconstrained optimization

setting, we turn to the equality-constrained optimization which guarantees eventual consistency

, i.e., the parameters in different machines are not the same at each iteration but will be the same

eventually. The equality-constrained optimization also includes the cases that SGD can not be

applied.

The alternating direction method of multipliers (ADMM) provides a suitable framework for

equality-constrained optimziation but raises some issues: (1) it does not provide a systematic

way to solve subproblems; (2) it requires to solve all subproblems and synchronization; (3) it

is a batch method which can not process data online. For the first issue, we propose Bregman

ADMM which provides a unified framework to solve subproblems efficiently. For the second

issue, we propose parallel direction method of multipliers (PDMM), which randomly picks

iii

some subproblems to solve and does asynchronous aggregation. Finally, we introduce online

ADMM so that the algorithm can process partial data at each iteration.

To validate the effectiveness and scalability of the proposed algorithms, we particularly

apply them to a variety of applications, including sparse structure learning and maximum a

posterior (MAP) inference in probabilistic graphical models, and online dictionary learning. We

also implement the proposed methods on various architectures, including hundreds to thousands

CPU cores in clusters and GPUs. Experimental results show that the proposed methods can

scale gracefully with the number of cores and perform better than state-of-the-art methods.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Statistical Learning Theory . 2

1.2 Distributed Machine Learning System . 4

1.3 Contributions and Organization of the Thesis 6

I Unconstrained Optimization 11

2 Online Randomized Block Coordinate Descent 12
2.1 Introduction . 12

2.2 Related Work . 15

2.2.1 Online and Stochastic Gradient Descent 15

2.2.2 Randomized Block Coordinate Descent 16

2.3 Online Randomized Block Coordinate Descent 17

2.3.1 ORBCD for Online Learning . 18

2.3.2 ORBCD for Stochastic Optimization 19

v

2.3.3 ORBCD with variance reduction . 20

2.4 The Rate of Convergence . 22

2.4.1 Online Optimization . 23

2.4.2 Stochastic Optimization . 26

2.4.3 ORBCD with Variance Reduction . 28

II Equality-constrained Optimization 34

3 Alternating Direction Method of Multipliers 35
3.1 Introduction . 35

3.2 Analysis for Batch Alternating Direction Method 37

3.2.1 Convergence Rate for the Objective 37

3.2.2 Convergence Rate for the Optimality Conditions (Constraints) 40

3.2.3 Rate of Convergence of ADM based on Variational Inequality 44

4 Bregman Alternating Direction Method of Multipliers 47
4.1 Introduction . 47

4.2 Bregman Alternating Direction Method of Multipliers 49

4.2.1 Generalized BADMM . 50

4.3 Convergence Analysis of BADMM . 54

4.4 Experimental Results . 61

4.A Convergence of BADMM with Time Varying Step Size 64

5 Parallel Direction Method of Multipliers 66
5.1 Introduction . 66

5.2 Parallel Direction Method of Multipliers . 69

5.2.1 Inexact PDMM . 72

5.2.2 Connections to Related Work . 73

5.2.3 Randomized Overlapping Block Coordinate 74

5.3 Theoretical Results . 75

5.4 Experimental Results . 78

5.A Convergence of PDMM . 81

5.A.1 Technical Preliminaries . 81

vi

5.A.2 Theoretical Results . 93

5.B Connection to ADMM . 101

5.C Connection to PJADMM . 102

6 Online Alternating Direction Method of Multipliers 108
6.1 Introduction . 108

6.2 Online Alternating Direction Method . 110

6.3 Regret Analysis for OADM . 114

6.3.1 General Convex Functions . 114

6.3.2 Strongly Convex Functions . 117

6.4 Regret Analysis for OADM with η = 0 . 121

6.4.1 General Convex Functions . 121

6.4.2 Strongly Convex Functions . 124

6.5 Further Discussions . 125

6.5.1 Inexact ADMM Updates (η > 0) . 126

6.5.2 Stochastic Convergence Rates . 127

6.5.3 Connections to Related Work (η = 0) 129

6.5.4 Projection-free Online Learning . 130

6.6 Experimental Results . 132

6.6.1 Generalized Lasso . 132

6.6.2 Simulation . 134

6.A Proof of Theorem 19 and 21 in Case 2 in Section 6.5.1 135

6.B Proof of Stochastic Convergence Rates . 138

III Applications 141

7 Bethe-ADMM for Tree Decomposition based Parallel MAP Inference 142
7.1 Introduction . 142

7.2 Background and Related Work . 144

7.2.1 Problem Definition . 144

7.2.2 ADMM based MAP Inference Algorithms 146

7.3 Algorithm and Analysis . 146

vii

7.3.1 ADMM for MAP Inference . 146

7.3.2 Bethe-ADMM . 149

7.3.3 Convergence . 151

7.3.4 Extension to MRFs with General Factors 155

7.4 Experimental Results . 156

7.4.1 Comparison with Primal based Algorithms 157

7.4.2 Comparison with Dual based Algorithms 158

7.4.3 Edge based vs Tree based . 160

7.4.4 Scalability Experiments on Multicores 161

8 Large Scale Sparse Precision Estimation 162
8.1 Introduction . 162

8.2 Column Block ADMM for CLIME . 165

8.3 Leveraging Sparse, Low-Rank Structure . 167

8.3.1 Sparse Structure . 167

8.3.2 Low Rank Structure . 168

8.4 Scalable Parallel Computation Framework . 168

8.5 Experimental Results . 170

8.5.1 Comparision with Existing Algorithms 171

8.5.2 Scalability of CLIME ADMM . 172

8.A Optimization Convergence Rate for CLIME ADMM 175

8.A.1 O(1/T) Convergence Rate for Objective Function 176

8.A.2 O(1/T) Convergence Rate for the Optimality Conditions 179

8.B Statistical Convergence Rates with Covariance Perturbation 183

8.B.1 CLIME Estimator: Bounds in terms of λ 184

8.B.2 Bounds for λ . 185

9 Gaussian Copula Precision Estimation with Missing Values 189
9.1 Introduction . 189

9.2 Gaussian Copula Precision Estimation with Missing Values 191

9.2.1 Kendall’s tau with missing values . 192

9.2.2 Spearman’s rho with missing values 192

9.2.3 Plugin estimate for CLIME . 193

viii

9.3 Theoretical Analysis . 194

9.3.1 Kendall’s Tau with Missing Values . 196

9.3.2 Spearman’s Rho with Missing Values 197

9.3.3 Plug-in CLIME Estimator . 200

9.4 Experimental Results . 201

9.4.1 Synthetic Data . 202

9.4.2 Climate Data . 204

10 Online `1-Dictionary Learning with Application to Novel Document Detection 206
10.1 Introduction . 206

10.2 Preliminaries . 208

10.3 Novel Document Detection Using Dictionary Learning 209

10.4 Online `1-Dictionary Learning . 212

10.4.1 Online `1-Dictionary Algorithm . 213

10.5 Experimental Results . 216

10.5.1 Experiments on News Streams . 219

10.5.2 Experiments on Twitter . 220

10.A Proof of Theorem 39 . 221

10.B Proof of Theorem 40 . 226

10.C ADMM Equations for updating X and A’s . 226

10.D Pseudo-Codes from Section 10.5 . 228

11 Conclusions 230

References 233

ix

List of Tables

4.1 Comparison of BADMM (GPU) with Gurobi 63

5.1 Parameters (τi, νi) of PDMM. K is the number of primal blocks randomly cho-

sen from J primal blocks, KI is the number of dual blocks randomly chosen

from I dual blocks. K̃i = min{di,K} where di is the number of nonzero

blocks Aij in the i-th row of A. 70

5.2 The ’best’ results of PDMM with tuning parameters τi, νi in RPCA. PDMM1

randomly updates one block and is the fastest algorithm. PDMMs converges

faster than other ADMM methods. 79

6.1 Main results for regret bounds of OADM in solving linearly-constrained com-

posite objective optimization, in comparison with OGD, FOBOS, COMID and

RDA in solving composite objective optimization. In both general and strongly

convex cases, OADM achieves the optimal regret bounds for the objective,

matching the results of the state-of-the-art methods. In addition, OADM also

achieves the optimal regret bounds for constraint violation, showing the equality

constraint will be satisfied on average. 110

6.2 Regret Bounds for Online Alternating Direction Method 113

8.1 Comparison of runtime (sec) on real datasets. 175

8.2 Effect (runtime (sec)) of using different number of cores in a node with p = 106.

Using one core per node is the most efficient as there is no resource sharing with

other cores. 175

9.1 Edges dicovered by DoPinG and mGlasso on Climate Data. > denotes the num-

ber of edges in DoPinG graph but not in mGlasso graph. < is on the contrary.

. 205

10.1 AUC Numbers for ROC Plots in Figure 10.1. 219

x

10.2 Sample novel documents detected by our online algorithm. 221

xi

List of Figures

1.1 Four layers of distributed machine learning system: (a) data layer, (b) system

layer, (c) model layer, (d) application layer. 4

4.1 Comparison BADMM and ADMM. BADMM converges faster than ADMM. . 62

5.1 Comparison of the convergence of PDMM (withK blocks) with ADMM meth-

ods in RPCA. The values of τi, νi in PDMM is computed according to Ta-

ble 5.1. Gauss-Seidel (GSADMM) is the fastest algorithm, although whether

it converges or not is unknown. PDMM3 is faster than PDMM1 and PDMM2.

For the two randomized one block coordinate methods, PDMM1 is faster than

RBSUMM. 78

5.2 Comparison of convergence of PDMM and other methods in overlapping group

Lasso. 80

6.1 The convergence of sparsity, objective value and constraints for lasso in OADM

with q = 0.5, ρ = 1, η = t. 134

6.2 The NNZs found by OADM, ADM, FOBOS and RDA with q = 0.5 for lasso.

OADM is closest to the actual NNZs. 136

6.3 The TV patterns found by OADM, ADM, FOBOS and RDA. OADM is the best

in recovering the patterns. 137

7.1 Results of Bethe-ADMM, Exact ADMM, Primal ADMM and proximal algorithms on

two simulation datasets. Figure 7.1(a) plots the value of the decoded integer solution

as a function of runtime (seconds). Figure 7.1(b) and 7.1(c) plot the relative error with

respect to the optimal LP objective as a function of runtime (seconds). For Bethe-

ADMM, we set α = β = 0.05. For Exact ADMM, we set β = 0.05. For Primal

ADMM, we set β = 0.5. Bethe-ADMM converges faster than other primal based

algorithms. 156

xii

7.2 Both Bethe-ADMM and MPLP are run for sufficiently long, i.e., 50000 itera-

tions. The dual objective value is plotted as a function of runtime (seconds).

The MPLP algorithm gets stuck and does not reach the global optimum. 157

7.3 Results of Bethe-ADMM, MPLP and Dual ADMM algorithms on two protein design

datasets. Figure 7.3(a) plots the the value of the decoded integer solution as a function

of runtime (seconds). Figure 7.3(b) and 7.3(c) plot the dual value as a function of

runtime (seconds). For Dual ADMM, we set β = 0.05. For Bethe-ADMM, we set

α = β = 0.1. Bethe-ADMM and Dual ADMM have similar performance in terms of

convergence. All three methods have comparable performances for the decoded integer

solution. 158

7.4 A simulation dataset with m = 2, s = 7 and n = 3. In 7.4(a), the red nodes (S12)

are sampled from tree 1 and the blue nodes (D12) are sampled from tree 2. In 7.4(b)

, sampled nodes are connected by cross-tree edges (E12). Tree 1 with nodes in D12

and edges in E12 still form a tree, denoted by solid lines. This augmented tree is a

tree-structured subgraph for Bethe-ADMM. 159

7.5 Results of Bethe-ADMM algorithms based on tree and edge decomposition on three

simulation datasets with m = 10, n = 20. The maximum constraint violation in L(G)

is plotted as a function of runtime (seconds). For both algorithms, we setα = β = 0.05.

The tree based Bethe-ADMM algorithm has better performance than that of the edge

based Bethe-ADMM when the tree structure is more dominant in G. 159

7.6 The Open MPI implementation of Bethe-ADMM has almost linear speedup on the CRU

dataset with more than 7 million nodes. 161

8.1 CLIME-ADMM on shared-memory and distribtued-memory architectures. . . . 170

8.2 Synthetic datasets . 171

8.3 Shared-Memory. 173

8.4 Distributed-Memory. 174

9.1 (a,b) ROC curves without projection (Ŝ need not be positive semi-definite),

(c,d) ROC curves with projection (Ŝ is positive semi-definite) with n = 200

and under different missing probabilities (δ = 0.1−0.3). By increasing number

of observed data (smaller δ), the ROC curve approaches the ROC curve of no-

missing data (δ = 0). 201

xiii

9.2 ROC curve with δ = 0.1, 0.2, 0.3, p = 100, and different number of samples

(n). For a fixed value of δ, with increasing number of samples, the higher TP

rates is obtained. 202

9.3 ROC curve of mGlasso with n = 200 and different missing probabilities.

mGlasso has a worse performance on non-Gaussian data compared to DoPinG

(Figure 9.1). 203

9.4 Precision and Recall Curve with different δ. DoPinG is significantly better than

mGlasso for non-Gaussian data. 204

9.5 The graph discovered by DoPinG and mGlasso. 204

10.1 ROC curves for TDT2 for timesteps where novel documents were introduced. . 218

10.2 Running time and SRE plots for TDT2 and Twitter datasets. 220

xiv

Chapter 1

Introduction

In recent years, the amount of data being collected in a variety of scientific, societal, and com-

mercial domains has exploded at a rate we have never seen before. These include search en-

gines, online social networks, online gaming systems, healthcare, social media, climate sci-

ences, ecology and environmental sciences, finance and economics and so on. The trend is ex-

pected to continue, in fact grows several folds, in the foreseeable future. In the past decade, we

have seen great success in efficiently managing the massive data with the rise of Google, Face-

book, Baidu, Alibaba and many other internet companies. In entering a new stage of gaining

intelligence or knowledge from learning a large amount of data, machine learning has earned

its reputation after many years of competition [91, 96] on the way towards the so-called arti-

ficial intelligence. In fact, we are seeing the rise of machine learning in industry, e.g., Siri in

Apple iphone, Google brain, face recognition in Facebook, letting alone the use of pervasive

recommender systems in Netflix and Amazon. In the foreseeable future, machine learning will

reshape the business in more and more sectors like healthcare, retail and manufacturing, as

happening in the Internet sector.

In principle, machine learning consists of three components, i.e., data, model and algorithm.

For a particular task, machine learning is to learn a model from data using some algorithm. Al-

though the data and model could be very different for different applications, the underlying

problems required to be solved in machine learning are strikingly similar. As shown by sta-

tistical learning theory [195, 110, 135, 18, 9, 138, 102, 103](see Section 1.1), most machine

learning problems can be reduced to solving empirical risk minimization problems or structural

risk minimization problems, which often resort to optimization.

1

2

In the era of big data, model also needs to grow bigger, in order to accomodate the complex-

ity of big data. For example, an image recognition system named Google brain [42], which can

recognize objects like birds, cats and human in images, needs to train a large neural network

model with 4 billion parameters on 16 million images. Deepface [184] trains a deep network

with more than 120 million parameters on 4 million facial images. However, the big model and

data poses a great challenge to the learning, which may take weeks or months if running on

a single machine and using conventional algorithms. To accelerate the learning, parallelism is

indespensable. Two kinds of parallelism are commonly considered. One is model parallelism

where model is distributed across multiple devices and trained in parallel. The other is data

parallelism where data is distributed across multiple devices and processed in parallel. The par-

tition of data and model raises issues of synchronization when deploying current optimization

algorithms which are usually designed for a single machine to a distributed system. Synchro-

nization is to guarantee that model parameters in different machines are the same, which are

called consistency. Synchronization leads to blocking computation, which greatly degrades

the performance of a distributed system. Therefore, we need to design novel optimization al-

gorithms suitable for a distributed system. How to scale current optimization algorithms in a

distributed system is the main motivation of this thesis, which will be discussed in detail in

Section 1.2.

1.1 Statistical Learning Theory

Given an input space X , an output space Y and a probability distribution P (x, y) of input-

output pairs (x, y) ∈ X × Y . Consider a family of classifiers F , consisting of real-valued

functions defined on the space Ω, and assume that each f ∈ F maps Ω to Y . To measure the

goodness of the classifier, a loss function `(f(x), y) : X × Y 7→ R is defined. In classification,

`(f(x), y) = 1(f(x) 6= y) where 1 is the indicator function. The expectation of the loss over

distribution P (x,y) is defined as expected risk, i.e.,

E(f) = EP (x,y)[`(f(x), y)] =

∫
`(f(x), y)dP (x, y) . (1.1)

Since P (x,y) is unknown, the expected risk is unknown. In practice, we are given a set of

training examples {(x1, y1), · · · , (xn, yn)}, which are assumed as independent and identically

distributed (i.i.d.) random samples of P (x,y). The average loss over n training samples is

3

defined as empirical risk,

En(f) =
1

n

n∑
i=1

`(f(xi), yi) . (1.2)

The generalization error of En(f) is used to characterize the goodness of a model learned from

training samples, , which is defined as

max
f∈F

E(f)− En(f) . (1.3)

For any model f ∈ F , if (1.3) is well bounded by some metrics, the performance of the learned

model on the unseen samples is guaranteed. The last several decades have witnessed the estab-

lishment of mathematical foundations of statistical learning theory on the generalization error

bound of a predicative function f ∈ F in (1.3) (e.g. classifier) learned from data applied

to the unknown observations [195, 110, 135, 18, 9, 138, 102, 103]. The generalization er-

ror bound is usually characterized by Vapnik-Chervonenkis dimension or VC-dimension [195]

which measures the complexity of a function class F . In binary classification, for any f , with

high probability, we have

E(f) ≤ En(f) + c

√
VCdim(F)

n
, (1.4)

where c is an constant and VCdim(F) denotes the VC-dimension of class F [9].

As a result, many machine learning problems are fundamentally solving the following em-

pirical risk minimization problem:

min
f∈F

En(f) . (1.5)

To avoid the overfitting, a regularizer R(f) is often used to control the complexity of model,

then we have the following structural risk minimization problem:

min
f∈F

En(f) + λR(f) , (1.6)

where λ > 0 is the regularization parameter. Most of machine learning methods are in the form

of (1.6), including support vector machines (SVM) [38, 39], sparse logistic regression [61] and

deep learning [81, 46]. This thesis will revolve around how to efficiently solve the empirical

risk minimization problem using some optimization methods.

4

Figure 1.1: Four layers of distributed machine learning system: (a) data layer, (b) system layer,

(c) model layer, (d) application layer.

1.2 Distributed Machine Learning System

As both data and model grow bigger and bigger, the empirical risk minimization problem (1.5)

could consist of millions to billions of data points and that amount of model parameters, pos-

ing a great challenge to solving the optimization problem. Therefore, considerable efforts

have been devoted to scaling up optimization algorithms through parallalization and distribu-

tion [42, 113, 112, 40, 226, 150, 123, 64] and on various architectures, including shared-memory

architectures [150], distributed memory architectures [112, 40, 42, 64] and GPUs [157].

In general, a distributed machine learning system is made up of four layers, i.e., data layer,

system layer, model layer and application layer, as illustrated in Figure 1.1. In data layer, data

may store in multiple machines and will be fed into the system asynchronously. System layer

manages all kinds of resources like data, model and computing infrastructures. It should provide

dynamic job scheduling, efficient communication, fault tolerance and elastic scalability. A key

component in the system layer is optimization or learning algorithms which conduct resources

to train a model. Model layer defines common machine learning models or methods, e.g., deep

learning [81, 46], probabilistic graphical models [198, 101], SVM [38, 39] and so on. Once a

5

model has been trained, we may use the model to recognize images or recommend products,

which are going to be defined in the application layer.

First generation distributed system simply uses MapReduce [43], e.g. Mahout in Hadoop.

Since MapReduce is not efficient for iterative-convergent optimization algorithms, Spark1 and

Graphlab [123] have then been developed. Very recently, Parameter Server [42, 112, 113, 40]

has been proposed as a general-purpose distributed machine learning system. In the parameter

server, model parameters are distributed across several servers and data can only be accessed

locally by computing machines or the so-called workers. While servers maintain global param-

eters, each worker has a local copy of global parameters and local data. In addition, workers

perform the following three operations:

• Pull the global parameters from the servers;

• Compute local results using the copy of parameters and local data;

• Push local results to the servers.

The parameter server usually uses the optimization algorithm called stochastic gradient descent

(SGD) [162, 95] or online gradient descent (OGD) [27, 225, 76, 52, 53, 210] . However, SGD

requires synchronization in the first step and the third step because the algorithm should use

consistent parameters to make progress. All workers pull the newest and same parameters from

the servers. The servers should gather all results from workers to update global parameters,

otherwise the results of slower workers will be discarded. With synchronization, consistency

is guaranteed but the computations should be blocked or locked, e.g., fast workers should wait

slower workers. However, synchronization will slow down the system, particularly considering

that jobs may fail or may be preempted by the system. To avoid the blocking, the parameter

server [42] was implemented without synchronization, but runs the risk of encountering the

following two issues:

• Some worker uses old parameters while other workers uses new parameters;

• Several workers compete to write results to the server, leading to overwriting.

However, it is still remain unclear that whether SGD with such changes is guaranteed to work.

In addition to the issue of consistency in the parameter server, parameter server is mainly de-

signed for unconstrained optimization problems, which may not be suitable for constrained
1 http://spark.apache.org/

6

optimization problems, e.g., MAP inference in probabilistic graphical models [198] and sparse

structure learning [23].

1.3 Contributions and Organization of the Thesis

The main contribution of this thesis is to develop novel optimization methods to address the

issues encountered in a distributed system. Nonetheless, we prove the rate of the convergence

of the proposed methods. The thesis is divided into three main parts: (1) unconstrained op-

timization; (2) equality-constrained optimization; (3) applications. We describle each part in

detail.

Part I is to address the overwriting issue of SGD in the parameter server. When the first

worker overwrites the result of the second worker, the parameters in servers are only updated

by the first worker, implying that part of model parameters are randomly updated by some

workers using part of data.

• In Chapter 2, we propose online randomized block coordinate descent (ORBCD) [202] by

combining the two well-known algorithms named stochastic gradient descent (SGD) and

randomzied block coordinate descent. At each iteration, ORBCD only computes the par-

tial gradient of one block coordinate of one mini-batch samples. ORBCD is well suited

for the composite minimization problem where one function is the average of the losses

of a large number of samples and the other is a simple regularizer defined on high dimen-

sional variables. We show that the iteration complexity of ORBCD has the same order as

OGD or SGD. For strongly convex functions, by reducing the variance of stochastic gra-

dients, we show that ORBCD can converge at a geometric rate in expectation, matching

the convergence rate of SGD with variance reduction and RBCD.

Part II focuses on the issue of consistency and constrained optimization problems under the

study of the equality-constrained optimization problems. The equality constraints may come

from the problems themselves, e.g., MAP inference in probabilistic graphical models [198] and

sparse structure learning [23], or may come from the decomposition of the big empirical loss

minimization problems into many small problems in a distributed system. For the later case,

each subproblem maintains a local (partial) copy of global model parameters. To guarantee the

7

consistency between the local model and the global model, an inequality constraint is intro-

duced, leading to the following equality-constrained optimization problems:

min
x

J∑
j=1

fj(xj) + g(z) s.t. xj = Ujz , (1.7)

where xj is a local model parameter, z is the global model parameter, Uj is a diagonal matrix

where diagonal elements are 1 or 0, serving to choose the coordinates of z. We do not intend

to maintain consistency at each iteration as SGD, i.e., the equality constraint is always satis-

fied. Instead, the inconsistency is allowed at each iteration but the consistency can be achieved

eventually.

The alternating direction method of multipliers (ADMM) provides a suitable framework

for the equality-constrained optimization problems but raises some issues. ADMM consists of

three main steps: (1) split the big problem (global model with all datasets) into many small

subproblems (local model with partial datasets), (2) solve all subproblems in parallel, (3) syn-

chronize the results of all subproblems. In the first step, it is important to achieve a tradeoff

between the number of subproblems and how efficiently the subproblems can be solved. As

the number of subproblems increases, communication increases and the convergence will slow

down. On the other hand, reducing the number of subproblems will increase the complexity of

subproblems, e.g., whether the subproblems can be efficiently solved. To this end, we propose

Bregman ADMM where the subproblems can be solved efficiently. In the second and third

step, if there is a large number of subproblems, solving all subproblems and synchronizing all

of them make ADMM unappealing compared to SGD. To address the two issues, we propose

parallel direction method of multipliers (PDMM), which randomly picks some subproblems to

solve and does asynchronous aggregation. Finally, we propose online ADMM which process

partial data at each iteration. The organizations of chapters in Part II are described as follows:

• In Chapter 3, we first briefly review the alternating direction method of multipliers (ADMM)

for solving the equality-constrained optimization problems. Then we prove the rate of

convergence of ADMM [200], facilitating the improvement and modifications of ADMM

which are needed in some scenarios.

• In Chapter 4, we generalize ADMM to Bregman ADMM (BADMM) [201], which al-

lows the choice of different Bregman divergences to exploit the structure of problems.

8

BADMM provides a unified framework for ADMM and its variants, including general-

ized ADMM, inexact ADMM and Bethe ADMM. We establish the global convergence

and theO(1/T) iteration complexity for BADMM. In some cases, BADMM can be faster

than ADMM by a factor of O(n/ log(n)) where n is the dimension of the problem. Ex-

perimental results are illustrated on the mass transportation problem, which can be solved

in parallel by BADMM. BADMM is faster than ADMM and highly optimized commer-

cial software Gurobi, particularly when implemented on GPU.

• In Chapter 5, we propose a parallel randomized block coordinate variant of ADMM

named parallel direction method of multipliers (PDMM) [204, 205] to solve the opti-

mization problems with multi-block linear constraints. PDMM can randomly update

primal and dual blocks in parallel, behaving like parallel randomized block coordinate

descent. We establish the global convergence and the iteration complexity for PDMM

with constant step size. We also show that PDMM can do randomized block coordinate

descent on overlapping blocks. Experimental results show that PDMM performs better

than state-of-the-arts methods in two applications, robust principal component analysis

and overlapping group lasso.

• Chapter 6, we generalize ADMM to the online and stochastic setting where ADMM can

simply work on a mini-batch samples at each iteration [200]. We consider two scenarios

in the online setting, based on whether an additional Bregman divergence is needed or

not. In both settings, we establish regret bounds for both the objective function as well as

constraints violation for general and strongly convex functions.

Part III contains several applications of proposed algorithms to a variety of machine learning

problems. In particular, Bregman ADMM is used to do large scale sparse structure learning and

MAP inference in probabilistic graphical models.

• Chapter 7 presents Bethe-ADMM [64] to solve the maximum a posteriori (MAP) in-

ference in Markov Random Fields (MRF). Bethe-ADMM is based on two ideas: tree-

decompositon of the graph and Bregman ADMM. The Bregman divergence used in

Bethe-ADMM is induced by negative Bethe-entropy, which makes the tree subproblem

easy to solve in parallel using the sum-product algorithm. The proposed algorithm is ex-

tensively evaluated on both synthetic and real datasets to illustrate its effectiveness. Fur-

ther, the parallel Bethe-ADMM is shown to scale almost linearly with increasing number

9

of cores [92].

• In Chapter 8, we consider a Bregman ADMM (inexact ADMM) algorithm for the prob-

lem of sparse precision matrix estimation in high dimensions using the (CLIME) esti-

mator, which has several desirable theoretical properties. We develop a large scale dis-

tributed framework for the computations, which scales to millions of dimensions and

trillions of parameters, using hundreds of cores [203]. The proposed framework solves

CLIME in column-blocks and only involves elementwise operations and parallel ma-

trix multiplications. We evaluate our algorithm on both shared-memory and distributed-

memory architectures, which can use block cyclic distribution of data and parameters to

achieve load balance and improve the efficiency in the use of memory hierarchies. Exper-

imental results show that our algorithm is substantially more scalable than state-of-the-art

methods and scales almost linearly with the number of cores.

• In Chapter 9, following Chapter 8, we generalize the CLIME estimator to double plu-

gin Gaussian (DoPinG) copula estimators for the problem of estimating sparse precision

matrix of Gaussian copula distributions using samples with missing values in high di-

mensions [206]. DoPinG uses two plugin procedures and consists of three steps: (1)

estimate nonparametric correlations based on observed values, including Kendall’s tau

and Spearman’s rho; (2) estimate the non-paranormal correlation matrix; (3) plug into

existing sparse precision estimators. We prove that DoPinG copula estimators consis-

tently estimate the non-paranormal correlation matrix at a rate of O(1
(1−δ)

√
log p
n), where

δ is the probability of missing values. We provide experimental results to illustrate the

effect of sample size and percentage of missing data on the model performance. Exper-

imental results show that DoPinG is significantly better than estimators like mGlasso,

which are primarily designed for Gaussian data.

• In Chapter 10, online ADMM is used to solve the problem of online `1-dictionary learn-

ing [98]. Online `1-dictionary learning uses the `1-penalty to measure the reconstruc-

tion error, in contrast to the squared loss in traditional dictionary learning. Online `1-

dictionary learning is particularly effective in the automated identification of such news

is the detection of novel documents from a voluminous stream of text documents in a

robust and scalable manner. Empirical results on news-stream and Twitter data, shows

that this online `1-dictionary learning algorithm for novel document detection gives more

10

than an order of magnitude speedup over the previously known batch algorithm, without

any significant loss in quality of results.

Finally, we conclude the thesis in Chapter 11 by summarizing the contributions of thesis

and discussing future work.

Part I

Unconstrained Optimization

11

Chapter 2

Online Randomized Block Coordinate
Descent

2.1 Introduction

In recent years, considerable efforts in machine learning have been devoted to solving the fol-

lowing composite objective minimization problem:

min
x

f(x) + g(x) =
1

I

I∑
i=1

fi(x) +

J∑
j=1

gj(xj) , (2.1)

where x ∈ Rn×1 and xj is a block coordinate of x. f(x) is the average of some smooth

functions, and g(x) is a simple function which may be non-smooth. In particular, g(x) is block

separable and blocks are non-overlapping. A variety of machine learning and statistics problems

can be cast into the problem (2.1). In regularized risk minimization problems [74], f is the

average of losses of a large number of samples and g is a simple regularizer on high dimensional

features to induce structural sparsity [4]. While f is separable among samples, g is separable

among features. For example, in lasso [189], fi is a square loss or logistic loss function and

g(x) = λ‖x‖1 where λ is the tuning parameter. In group lasso [218], gj(xj) = λ‖xj‖2, which

enforces group sparsity among variables. To induce both group sparsity and sparsity, sparse

group lasso [61] uses composite regularizers gj(xj) = λ1‖xj‖2 + λ2‖xj‖1 where λ1 and λ2

are the tuning parameters.

Due to the simplicity, gradient descent (GD) type methods have been widely used to solve

12

13

problem (2.1). If gj is nonsmooth but simple enough for proximal mapping, it is better to just

use the gradient of fi but keep gj untouched in GD. This variant of GD is often called proxi-

mal splitting [37] or proximal gradient descent (PGD) [191, 11] or forward/backward splitting

method (FOBOS) [53]. Without loss of generality, we simply use GD to represent GD and

its variants in the rest of this chapter. Let m be the number of samples and n be dimension

of features. m samples are divided into I blocks (mini-batch), and n features are divided into

J non-overlapping blocks. If both m and n are large, solving (2.1) using batch methods like

gradient descent (GD) type methods is computationally expensive. To address the computa-

tional bottleneck, two types of low cost-per-iteration methods, online/stochastic gradient de-

scent (OGD/SGD) [162, 95, 27, 225, 76, 52, 53, 210] and randomized block coordinate descent

(RBCD) [148, 21, 161, 160], have been rigorously studied in both theory and applications.

Instead of computing gradients of all samples in GD at each iteration, OGD/SGD only com-

putes the gradient of one block samples, and thus the cost-per-iteration is just one I-th of GD.

For large scale problems, it has been shown that OGD/SGD is faster than GD [185, 175, 176].

OGD and SGD have been generalized to handle composite objective functions [146, 37, 191, 11,

52, 53, 210]. OGD and SGD use a decreasing step size and converge at a slower rate than GD.

In stochastic optimization, the slow convergence speed is caused by the variance of stochastic

gradients due to random samples, and considerable efforts have thus been devoted to reduc-

ing the variance to accelerate SGD [168, 174, 211, 93, 126, 221]. Stochastic average gradient

(SVG) [168] is the first SGD algorithm achieving the linear convergence rate for stronly convex

functions, catching up with the convergence speed of GD [145]. However, SVG needs to store

all gradients, which becomes an issue for large scale datasets. It is also difficult to understand

the intuition behind the proof of SVG. To address the issue of storage and better explain the

faster convergence, [93] proposed an explicit variance reduction scheme into SGD. The two

scheme SGD is refered as stochastic variance reduction gradient (SVRG). SVRG computes

the full gradient periodically and progressively mitigates the variance of stochastic gradient

by removing the difference between the full gradient and stochastic gradient. For smooth and

strongly convex functions, SVRG converges at a geometric rate in expectation. Compared to

SVG, SVRG is free from the storage of full gradients and has a much simpler proof. The similar

idea was also proposed independently by [126]. The results of SVRG is then improved in [105].

In [211], SVRG is generalized to solve composite minimization problem by incorporating the

variance reduction technique into proximal gradient method.

14

On the other hand, RBCD [148, 160, 124, 176, 30, 90, 115] has become increasingly pop-

ular due to high dimensional problem with structural regularizers. RBCD randomly chooses

a block coordinate to update at each iteration. The iteration complexity of RBCD was estab-

lished in [148], improved and generalized to composite minimization problem by [160, 124].

RBCD can choose a constant step size and converge at the same rate as GD, although the

constant is usually J times worse [148, 160, 124]. Compared to GD, the cost-per-iteration

of RBCD is much cheaper. Block coordinate descent (BCD) methods have also been studied

under a deterministic cyclic order [171, 190, 125]. Although the convergence of cyclic BCD

has been established [190, 125], the iteration of complexity is still unknown except for special

cases [171].

While OGD/SGD is well suitable for problems with a large number of samples, RBCD is

suitable for high dimension problems with non-overlapping composite regularizers. For large

scale high dimensional problems with non-overlapping composite regularizers, it is not eco-

nomic enough to use one of them. Either method alone may not suitable for problems when

data is distributed across space and time or partially available at the moment [148]. In ad-

dition, SVRG is not suitable for problems when the computation of full gradient at one time

is expensive. In this chapter, we propose a new method named online randomized block co-

ordinate descent (ORBCD) which combines the well-known OGD/SGD and RBCD together.

ORBCD first randomly picks up one block samples and one block coordinates, then performs

the block coordinate gradient descent on the randomly chosen samples at each iteration. Essen-

tially, ORBCD performs RBCD in the online and stochastic setting. If fi is a linear function, the

cost-per-iteration of ORBCD isO(1) and thus is far smaller thanO(n) in OGD/SGD andO(m)

in RBCD. We show that the iteration complexity for ORBCD has the same order as OGD/SGD.

In the stochastic setting, ORBCD is still suffered from the variance of stochastic gradient. To

accelerate the convergence speed of ORBCD, we adopt the varaince reduction technique [93]

to alleviate the effect of randomness. As expected, the linear convergence rate for ORBCD with

variance reduction (ORBCDVD) is established for strongly convex functions for stochastic op-

timization. Moreover, ORBCDVD does not necessarily require to compute the full gradient at

once which is necessary in SVRG and prox-SVRG. Instead, a block coordinate of full gradient

is computed at each iteration and then stored for the next retrieval in ORBCDVD.

The rest of this chapter is organized as follows. In Section 2.2, we review the SGD and

15

RBCD. ORBCD and ORBCD with variance reduction are proposed in Section 2.3. The conver-

gence results are given in Section 2.4.

2.2 Related Work

In this section, we briefly review the two types of low cost-per-iteration gradient descent (GD)

methods, i.e., OGD/SGD and RBCD. Applying GD on (2.1), we have the following iterate:

xt+1 = argminx 〈∇f(xt),x〉+ g(x) +
ηt
2
‖x− xt‖22 . (2.2)

In some cases, e.g. g(x) is `1 norm, (2.2) can have a closed-form solution.

2.2.1 Online and Stochastic Gradient Descent

In (2.2), it requires to compute the full gradient of m samples at each iteration, which could be

computationally expensive if m is too large. Instead, OGD/SGD simply computes the gradient

of one block samples.

In the online setting, at time t+ 1, OGD first presents a solution xt+1 by solving

xt+1 = argminx 〈∇ft(xt),x〉+ g(x) +
ηt
2
‖x− xt‖22 . (2.3)

where ft is given and assumed to be convex. Then a function ft+1 is revealed which incurs the

loss ft(xt). The performance of OGD is measured by the regret bound, which is the discrepancy

between the cumulative loss over T rounds and the best decision in hindsight,

R(T) =
T∑
t=1

[ft(x
t) + g(xt)]− [ft(x

∗) + g(x∗)] , (2.4)

where x∗ is the best result in hindsight. The regret bound of OGD is O(
√
T) when using

decreasing step size ηt = O(1√
t
). For strongly convex functions, the regret bound of OGD is

O(log T) when using the step size ηt = O(1
t). Since ft can be any convex function, OGD

considers the worst case and thus the mentioned regret bounds are optimal.

In the stochastic setting, SGD first randomly picks up it-th block samples and then computes

the gradient of the selected samples as follows:

xt+1 = argminx 〈∇fit(xt),x〉+ g(x) +
ηt
2
‖x− xt‖22 . (2.5)

16

xt depends on the observed realization of the random variable ξ = {i1, · · · , it−1} or generally

{x1, · · · ,xt−1}. Due to the effect of variance of stochastic gradient, SGD has to choose de-

creasing step size, i.e., ηt = O(1√
t
), leading to slow convergence speed. For general convex

functions, SGD converges at a rate of O(1√
t
). For strongly convex functions, SGD converges at

a rate of O(1
t). In contrast, GD converges linearly if functions are strongly convex.

To accelerate the SGD by reducing the variance of stochastic gradient, stochastic vari-

ance reduced gradient (SVRG) was proposed by [93]. [211] extends SVRG to composite func-

tions (2.1), called prox-SVRG. SVRGs have two stages, i.e., outer stage and inner stage. The

outer stage maintains an estimate x̃ of the optimal point x∗ and computes the full gradient of x̃

µ̃ =
1

n

n∑
i=1

∇fi(x̃) = ∇f(x̃) . (2.6)

After the inner stage is completed, the outer stage updates x̃. At the inner stage, SVRG first

randomly picks it-th sample, then modifies stochastis gradient by subtracting the difference

between the full gradient and stochastic gradient at x̃,

vt = ∇fit(xt)−∇fit(x̃) + µ̃ . (2.7)

It can be shown that the expectation of vt given xt−1 is the full gradient at xt, i.e., Evt =

∇f(xt). Although vt is also a stochastic gradient, the variance of stochastic gradient progres-

sively decreases. Replacing∇fit(xt) by vt in SGD step (2.5),

xt+1 = argminx 〈vt,x〉+ g(x) +
η

2
‖x− xt‖22 . (2.8)

By reduding the variance of stochastic gradient, xt can converge to x∗ at the same rate as GD,

which has been proved in [93, 211]. For strongly convex functions, prox-SVRG [211] can

converge linearly in expectation if η > 4L and m satisfy the following condition:

ρ =
η2

γ(η − 4L)m
+

4L(m+ 1)

(η − 4L)m
< 1 . (2.9)

where L is the constant of Lipschitz continuous gradient. Note the step size is 1/η here.

2.2.2 Randomized Block Coordinate Descent

Assume xj(1 ≤ j ≤ J) are non-overlapping blocks. At iteration t, RBCD [148, 160, 124]

randomly picks jt-th coordinate and solves the following problem:

xt+1
jt

= argminxjt
〈∇jtf(xt),xjt〉+ gjt(xjt) +

ηt
2
‖xjt − xtjt‖

2
2 . (2.10)

17

Therefore, xt+1 = (xt+1
jt

,xtk 6=jt). xt depends on the observed realization of the random variable

ξ = {j1, · · · , jt−1} . (2.11)

Setting the step size ηt = Ljt where Ljt is the Lipshitz constant of jt-th coordinate of the

gradient ∇f(xt), the iteration complexity of RBCD is O(1
t). For strongly convex function,

RBCD has a linear convergence rate. Therefore, RBCD converges at the same rate as GD,

although the constant is J times larger [148, 160, 124].

2.3 Online Randomized Block Coordinate Descent

In this section, our goal is to combine OGD/SGD and RBCD together to solve problem (2.1).

We call the algorithm online randomized block coordinate descent (ORBCD), which computes

one block coordinate of the gradient of one block of samples at each iteration. ORBCD essen-

tially performs RBCD in online and stochastic setting.

Let {x1, · · · ,xJ},xj ∈ Rnj×1 be J non-overlapping blocks of x. Let Uj ∈ Rn×nj be nj
columns of an n×n permutation matrix U, corresponding to j block coordinates in x. For any

partition of x and U,

x =
J∑
j=1

Ujxj ,xj = UTj x . (2.12)

The j-th coordinate of gradient of f can be denoted as

∇jf(x) = UTj ∇f(x) . (2.13)

Throughout the chapter, we assume that the minimum of problem (2.1) is attained. In addition,

ORBCD needs the following assumption :

Assumption 1 ft or fi has block-wise Lipschitz continuous gradient with constant Lj , e.g.,

‖∇jft(x + Ujhj)−∇jft(x)‖2 ≤ Lj‖hj‖2 ≤ L‖hj‖2 , (2.14)

where L = maxj Lj .

Assumption 2 1. ‖∇ft(xt)‖2 ≤ Rf , or ‖∇f(xt)‖2 ≤ Rf ;

2. xt is assumed in a bounded set X , i.e., supx,y∈X ‖x− y‖2 = D.

18

While the Assumption 1 is used in RBCD, the Assumption 2 is used in OGD/SGD. We may

assume the sum of two functions is strongly convex.

Assumption 3 ft(x) + g(x) or f(x) + g(x) is γ-strongly convex, e.g., we have

ft(x) + g(x) ≥ ft(y) + g(y) + 〈∇ft(y) + g′(y),x− xt〉+
γ

2
‖x− y‖22 . (2.15)

where γ > 0 and g′(y) denotes the subgradient of g at y.

2.3.1 ORBCD for Online Learning

In online setting, ORBCD considers the worst case and runs at rounds. At time t, given any

function ft which may be agnostic, ORBCD randomly chooses jt-th block coordinate and

presents the solution by solving the following problem:

xt+1
jt

= argminxjt
〈∇jtft(xt),xjt〉+ gjt(xjt) +

ηt
2
‖xjt − xtjt‖

2
2

= Proxgjt (xjt −
1

ηt
∇jtft(xt)) , (2.16)

where Prox denotes the proximal mapping. If ft is a linear function, e.g., ft = ltx
t, then

∇jtft(xt) = ljt , so solving (2.16) is J times cheaper than OGD. Thus, xt+1 = (xt+1
jt

,xtk 6=jt),

or

xt+1 = xt + Ujt(x
t+1
jt
− xtjt) . (2.17)

Then, ORBCD receives a loss function ft+1(x) which incurs the loss ft+1(xt+1). The algo-

rithm is summarized in Algorithm 1.

xt is independent of jt but depends on the sequence of observed realization of the random

variable

ξ = {j1, · · · , jt−1}. (2.18)

Let x∗ be the best solution in hindsight. The regret bound of ORBCD is defined as

R(T) =
T∑
t=1

{
Eξ[ft(xt) + g(xt)]− [ft(x

∗) + g(x∗)]
}
. (2.19)

By setting ηt =
√
t + L where L = maxj Lj , the regret bound of ORBCD is O(

√
T). For

strongly convex functions, the regret bound of ORBCD is O(log T) by setting ηt = γt
J + L.

19

Algorithm 1 Online Randomized Block Coordinate Descent for Online Learning
1: Initialization: x1 = 0

2: for t = 1 to T do
3: randomly pick up jt block coordinates

4: xt+1
jt

= argminxjt∈Xj
〈∇jtft(xt),xjt〉+ gjt(xjt) + ηt

2 ‖xjt − xtjt‖
2
2

5: xt+1 = xt + Ujt(x
t+1
jt
− xtjt)

6: receives the function ft+1(x) + g(x) and incurs the loss ft+1(xt+1) + g(xt+1)

7: end for

2.3.2 ORBCD for Stochastic Optimization

In the stochastic setting, ORBCD first randomly picks up it-th block sample and then randomly

chooses jt-th block coordinate. The algorithm has the following iterate:

xt+1
jt

= argminxjt
〈∇jtfit(xt),xjt〉+ gjt(xjt) +

ηt
2
‖xjt − xtjt‖

2
2

= Proxgjt (xjt −∇jtfit(x
t)) . (2.20)

For high dimensional problem with non-overlapping composite regularizers, solving (2.20) is

computationally cheaper than solving (2.5) in SGD. The algorithm of ORBCD in both settings

is summarized in Algorithm 2.

xt+1 depends on (it, jt), but jt and it are independent. xt is independent of (it, jt) but

depends on the observed realization of the random variables

ξ = {(i1, j1), · · · , (it−1, jt−1)} . (2.21)

The online-stochastic conversion rule [52, 53, 210] still holds here. The iteration complexity

of ORBCD can be obtained by dividing the regret bounds in the online setting by T . Setting

ηt =
√
t+ L where L = maxj Lj , the iteration complexity of ORBCD is

Eξ[f(x̄t) + g(x̄t)]− [f(x) + g(x)] ≤ O(
1√
T

) . (2.22)

For strongly convex functions, setting ηt = γt
J + L,

Eξ[f(x̄t) + g(x̄t)]− [f(x) + g(x)] ≤ O(
log T

T
) . (2.23)

The iteration complexity of ORBCD match that of SGD. Simiarlar as SGD, the convergence

speed of ORBCD is also slowed down by the variance of stochastic gradient.

20

Algorithm 2 Online Randomized Block Coordinate Descent for Stochastic Optimization
1: Initialization: x1 = 0

2: for t = 1 to T do
3: randomly pick up it block samples and jt block coordinates
4: xt+1

jt
= argminxjt∈Xj

〈∇jtfit(xt),xjt〉+ gjt(xjt) + ηt
2 ‖xjt − xtjt‖

2
2

5: xt+1 = xt + Ujt(x
t+1
jt
− xtjt)

6: end for

Algorithm 3 Online Randomized Block Coordinate Descent with Variance Reduction
[tb]

1: Initialization: x1 = 0

2: for t = 2 to T do
3: x0 = x̃ = xt.

4: for k = 0 to m− 1 do
5: randomly pick up ik block samples

6: randomly pick up jk block coordinates

7: vikjk = ∇jkfik(xk)−∇jkfik(x̃) + µ̃jk where µ̃jk = ∇jkf(x̃)

8: xkjk = argminxjk
〈vikjk ,xjk〉+ gjk(xjk) + ηk

2 ‖xjk − xkjk‖
2
2

9: xk+1 = xk + Ujk(xk+1
jj
− xkjk)

10: end for
11: xt+1 = xm or 1

m

∑m
k=1 xk

12: end for

2.3.3 ORBCD with variance reduction

In the stochastic setting, we apply the variance reduction technique [211, 93] to accelerate

the rate of convergence of ORBCD, abbreviated as ORBCDVD. As SVRG and prox-SVRG,

ORBCDVD consists of two stages. At time t+ 1, the outer stage maintains an estimate x̃ = xt

of the optimal x∗ and updates x̃ every m + 1 iterations. The inner stage takes m iterations

which is indexed by k = 0, · · · ,m− 1. At the k-th iteration, ORBCDVD randomly picks ik-th

sample and jk-th coordinate and compute

vikjk = ∇jkfik(xk)−∇jkfik(x̃) + µ̃jk , (2.24)

21

where

µ̃jk =
1

n

n∑
i=1

∇jkfi(x̃) = ∇jkf(x̃) . (2.25)

vitjt depends on (it, jt), and it and jt are independent. Conditioned on xk, taking expectation

over ik, jk gives

Evikjk = EikEjk [∇jkfik(xk)−∇jkfik(x̃) + µ̃jk]

=
1

J
Eik [∇fik(xk)−∇fik(x̃) + µ̃]

=
1

J
∇f(xk) . (2.26)

Although vikjk is stochastic gradient, the variance E‖vikjk −∇jkf(xk)‖22 decreases progressively

and is smaller than E‖∇fit(xt)−∇f(xt)‖22. Using the variance reduced gradient vikjk , ORBCD

then performs RBCD as follows:

xk+1
jk

= argminxjk
〈vikjk ,xjk〉+ gjk(xjk) +

η

2
‖xjk − xkjk‖

2
2 . (2.27)

After m iterations, the outer stage updates xt+1 which is either xm or 1
m

∑m
k=1 xk. The al-

gorithm is summarized in Algorithm 3. At the outer stage, ORBCDVD does not necessarily

require to compute the full gradient at once. If the computation of full gradient requires substan-

tial computational eorts, SVRG has to stop and complete the full gradient step before making

progress. In contrast, µ̃ can be partially computed at each iteration and then stored for the next

retrieval in ORBCDVD.

Assume η > 2L and m satisfy the following condition:

ρ =
L

η − 2L
+

(η − L)J

(η − 2L)m
− 1

m
+

η(η − L)J

(η − 2L)mγ
< 1 , (2.28)

Then h(x) converges linearly in expectation, i.e.,

Eξ[f(xt) + g(xt)− (f(x∗) + g(x∗)] ≤ O(ρt) . (2.29)

Setting η = 4L in (2.28) yields

ρ =
1

2
+

3J

2m
− 1

m
+

6JL

mγ
≤ 1

2
+

3J

2m
(1 +

4L

γ
) . (2.30)

Setting m = 18JL/γ, then

ρ ≤ 1

2
+

1

12
(
γ

L
+ 4) ≈ 11

12
. (2.31)

where we assume γ/L ≈ 1 for simplicity.

22

2.4 The Rate of Convergence

The following lemma is a key building block of the proof of the convergence of ORBCD in both

online and stochastic setting.

Lemma 1 Let the Assumption 1 and 2 hold. Let xt be the sequences generated by ORBCD. jt
is sampled randomly and uniformly from {1, · · · , J}. We have

〈∇jtft(xt) + g′jt(x
t
jt),x

t
jt − xjt〉 ≤

ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22)

+
R2
f

2(ηt − L)
+ g(xt)− g(xt+1) . (2.32)

where L = maxj Lj .

Proof: The optimality condition is

〈∇jtft(xt) + ηt(x
t+1
jt
− xtjt) + g′jt(x

t+1
jt

),xt+1
jt
− xjt〉 ≤ 0 . (2.33)

Rearranging the terms yields

〈∇jtft(xt) + g′jt(x
t+1
jt

),xt+1
jt
− xjt〉

≤ −ηt〈xt+1
jt
− xtjt ,x

t+1
jt
− xjt〉

≤ ηt
2

(‖xjt − xtjt‖
2
2 − ‖xjt − xt+1

jt
‖22 − ‖xt+1

jt
− xtjt‖

2
2)

=
ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22 − ‖xt+1
jt
− xtjt‖

2
2) , (2.34)

where the last equality uses xt+1 = (xt+1
jt

,xtk 6=jt). By the smoothness of ft, we have

ft(x
t+1) ≤ ft(xt) + 〈∇jft(xt),xt+1

j − xtj〉+
Lj
2
‖xt+1

j − xtj‖22 . (2.35)

Since xt+1 − xt = Ujt(x
t+1
jt
− xtjt), we have

ft(x
t+1) + g(xt+1)− [ft(x

t) + g(xt)]

≤ 〈∇jtft(xt),xt+1
jt
− xtjt〉+

Ljt
2
‖xt+1

jt
− xtjt‖

2
2 + gjt(x

t+1
jt

)− gjt(xjt) + gjt(x
t
jt)− gjt(xjt)

≤ 〈∇jtft(xt) + g′jt(x
t+1
jt

),xt+1
jt
− xjt〉+

Ljt
2
‖xt+1

jt
− xtjt‖

2
2 − 〈∇jtft(xt) + g′jt(x

t
jt),x

t
jt − xjt〉

≤ ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22) +
Ljt − ηt

2
‖xt+1

jt
− xtjt‖

2
2 − 〈∇jtft(xt) + g′jt(x

t
jt),x

t
jt − xjt〉 .

(2.36)

23

Rearranging the terms yields

〈∇jtft(xt) + g′jt(x
t),xtjt − xjt〉 ≤

ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22) +
Ljt − ηt

2
‖xt+1

jt
− xtjt‖

2
2

+ ft(x
t) + g(xt)− [ft(x

t+1) + g(xt+1)] . (2.37)

The convexity of ft gives

ft(x
t)− ft(xt+1) ≤ 〈∇ft(xt),xt − xt+1〉

= 〈∇jtft(xt),xtjt − xt+1
jt
〉

≤ 1

2α
‖∇jtft(xt)‖22 +

α

2
‖xtjt − xt+1

jt
‖22 . (2.38)

where the equality uses xt+1 = (xt+1
jt

,xtk 6=jt). Plugging into (2.37), we have

〈∇jtft(xt) + g′jt(x
t
jt),x

t
jt − xjt〉

≤ ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22) +
Ljt − ηt

2
‖xt+1

jt
− xtjt‖

2
2

+ 〈∇jtft(xt),xtjt − xt+1
jt
〉+ g(xt)− g(xt+1)

≤ ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22) +
Ljt − ηt

2
‖xt+1

jt
− xtjt‖

2
2

+
α

2
‖xtjt − xt+1

jt
‖22 +

1

2α
‖∇jtft(xt)‖22 . (2.39)

Let L = maxj Lj . Setting α = ηt − L where ηt > L completes the proof.

This lemma is also a key building block in the proof of iteration complexity of GD, OGD/SGD

and RBCD. In GD, by setting ηt = L, the iteration complexity of GD can be established. In

RBCD, by simply setting ηt = Ljt , the iteration complexity of RBCD can be established.

2.4.1 Online Optimization

Note xt depends on the sequence of observed realization of the random variable ξ = {j1, · · · , jt−1}.
The following theorem establishes the regret bound of ORBCD.

Theorem 1 Let ηt =
√
t + L in the ORBCD and the Assumption 1 and 2 hold. jt is sampled

randomly and uniformly from {1, · · · , J}. The regret bound R(T) of ORBCD is

R(T) ≤ J(

√
T + L

2
D2 +

√
TR2 + g(x1)− g(x∗)) . (2.40)

24

Proof: In (2.32), conditioned on xt, take expectation over jt, we have

1

J
〈∇ft(xt) + g′(xt),xt − x〉 ≤ ηt

2
(‖x− xt‖22 − E‖x− xt+1‖22)

+
R2

2(ηt − L)
+ g(xt)− Eg(xt+1) . (2.41)

Using the convexity, we have

ft(x
t) + g(xt)− [ft(x) + g(x)] ≤ 〈∇ft(xt) + g′(xt),xt − x〉 . (2.42)

Together with (2.41), we have

ft(x
t) + g(xt)− [ft(x) + g(x)] ≤ J

{ηt
2

(‖x− xt‖22 − E‖x− xt+1‖22)

+
R2

2(ηt − L)
+ g(xt)− Eg(xt+1)

}
. (2.43)

Taking expectation over ξ on both sides, we have

Eξ
[
ft(x

t) + g(xt)− [ft(x) + g(x)]
]
≤ J

{ηt
2

(Eξ‖x− xt‖22 − Eξ‖x− xt+1‖22)

+
R2

2(ηt − L)
+ Eξg(xt)− Eξg(xt+1)

}
. (2.44)

Summing over t and setting ηt =
√
t+ L, we obtain the regret bound

R(T) =

T∑
t=1

{
Eξ[ft(xt) + g(xt)]− [ft(x) + g(x)]

}
≤ J

{
−ηT

2
Eξ‖x− xT+1‖22 +

T∑
t=1

(ηt − ηt−1)Eξ‖x− xt‖22

+

T∑
t=1

R2

2(ηt − L)
+ g(x1)− Eξg(xT+1)

}

≤ J

{
ηT
2
D2 +

T∑
t=1

R2

2(ηt − L)
+ g(x1)− g(x∗)

}

≤ J

{√
T + L

2
D2 +

T∑
t=1

R2

2
√
t

+ g(x1)− g(x∗)

}

≤ J(

√
T + L

2
D2 +

√
TR2 + g(x1)− g(x∗)) , (2.45)

25

which completes the proof.

If one of the functions is strongly convex, ORBCD can achieve a log(T) regret bound,

which is established in the following theorem.

Theorem 2 Let the Assumption 1-3 hold and ηt = γt
J + L in ORBCD. jt is sampled randomly

and uniformly from {1, · · · , J}. The regret bound R(T) of ORBCD is

R(T) ≤ J2R2 log(T) + J(g(x1)− g(x∗)) . (2.46)

Proof: Using the strong convexity of ft + g in (2.15), we have

ft(x
t) + g(xt)− [ft(x) + g(x)] ≤ 〈∇ft(xt) + g′(xt),xt − x〉 − γ

2
‖x− xt‖22 . (2.47)

Together with (2.41), we have

ft(x
t) + g(xt)− [ft(x) + g(x)] ≤ Jηt − γ

2
‖x− xt‖22 −

Jηt
2

E‖x− xt+1‖22)

+
JR2

2(ηt − L)
+ J [g(xt)− Eg(xt+1)] . (2.48)

Taking expectation over ξ on both sides, we have

Eξ
[
ft(x

t) + g(xt)− [ft(x) + g(x)]
]
≤ Jηt − γ

2
Eξ‖x− xt‖22 −

Jηt
2

Eξ[‖x− xt+1‖22])

+
JR2

2(ηt − L)
+ J [Eξg(xt)− Eξg(xt+1)] . (2.49)

Summing over t and setting ηt = γt
J + L, we obtain the regret bound

R(T) =

T∑
t=1

{
Eξ[ft(xt) + g(xt)]− [ft(x) + g(x)]

}
≤ −JηT

2
Eξ‖x− xT+1‖22 +

T∑
t=1

Jηt − γ − Jηt−1

2
Eξ‖x− xt‖22

+

T∑
t=1

JR2

2(ηt − L)
+ J(g(x1)− Eξg(xT+1))

≤
T∑
t=1

J2R2

2γt
+ J(g(x1)− g(x∗))

≤ J2R2 log(T) + J(g(x1)− g(x∗)) , (2.50)

26

which completes the proof.

In general, ORBCD can achieve the same order of regret bound as OGD and other first-order

online optimization methods, although the constant could be J times larger.

2.4.2 Stochastic Optimization

In the stochastic setting, ORBCD first randomly chooses the it-th block sample and the jt-

th block coordinate. jt and it are independent. xt depends on the observed realization of

the random variables ξ = {(i1, j1), · · · , (it−1, jt−1)}. The following theorem establishes the

iteration complexity of ORBCD for general convex functions.

Theorem 3 Let ηt =
√
t + L and x̄T = 1

T

∑T
t=1 xt in the ORBCD. it, jt are sampled ran-

domly and uniformly from {1, · · · , I} and {1, · · · , J} respectively. The iteration complexity of

ORBCD is

Eξ[f(x̄t) + g(x̄t)]− [f(x) + g(x)] ≤
J(
√
T+L
2 D2 +

√
TR2 + g(x1)− g(x∗))

T
. (2.51)

Proof: In the stochastic setting, let ft be fit in (2.32), we have

〈∇jtfit(xt) + g′jt(x
t),xtjt − xjt〉 ≤

ηt
2

(‖x− xt‖22 − ‖x− xt+1‖22)

+
R2

2(ηt − L)
+ g(xt)− g(xt+1) . (2.52)

Note it, jt are independent of xt. Conditioned on xt, taking expectation over it and jt, the RHS

is

E〈∇jtfit(xt) + g′jt(x
t),xtjt − xjt〉 = Eit [Ejt [〈∇jtfit(xt) + g′jt(x

t),xtjt − xjt〉]]

=
1

J
Eit [〈∇fit(xt),xt − x〉+ 〈g′(xt),xt − x〉]

=
1

J
〈∇f(xt) + g′(xt),xt − x〉 . (2.53)

Plugging back into (2.52), we have

1

J
〈∇f(xt) + g′(xt),xt − x〉

≤ ηt
2

(‖x− xt‖22 − E‖x− xt+1‖22) +
R2

2(ηt − L)
+ g(xt)− Eg(xt+1) . (2.54)

27

Using the convexity of f + g, we have

f(xt) + g(xt)− [f(x) + g(x)] ≤ 〈∇f(xt) + g′(xt),xt − x〉 . (2.55)

Together with (2.54), we have

f(xt) + g(xt)− [f(x) + g(x)] ≤ J
{ηt

2
(‖x− xt‖22 − E‖x− xt+1‖22)

+
R2

2(ηt − L)
+ g(xt)− Eg(xt+1)

}
. (2.56)

Taking expectation over ξ on both sides, we have

Eξ
[
f(xt) + g(xt)

]
− [f(x) + g(x)] ≤ J

{ηt
2

(Eξ‖x− xt‖22 − Eξ[‖x− xt+1‖22])

+
R2

2(ηt − L)
+ Eξg(xt)− Eξg(xt+1)

}
. (2.57)

Summing over t and setting ηt =
√
t+ L, following similar derivation in (2.45), we have

T∑
t=1

{
Eξ[f(xt) + g(xt)]− [f(x) + g(x)]

}
≤ J(

√
T + L

2
D2 +

√
TR2 + g(x1)− g(x∗)) .

(2.58)

Dividing both sides by T , using the Jensen’s inequality and denoting x̄T = 1
T

∑T
t=1 xt complete

the proof.

For strongly convex functions, we have the following results.

Theorem 4 For strongly convex function, setting ηt = γt
J +L in the ORBCD. it, jt are sampled

randomly and uniformly from {1, · · · , I} and {1, · · · , J} respectively. Let x̄T = 1
T

∑T
t=1 xt.

The iteration complexity of ORBCD is

Eξ[f(x̄T) + g(x̄T)]− [f(x) + g(x)] ≤ J2R2 log(T) + J(g(x1)− g(x∗))

T
. (2.59)

Proof: If f + g is strongly convex, we have

f(xt) + g(xt)− [f(x) + g(x)] ≤ 〈∇f(xt) + g′(xt),xt − x〉 − γ

2
‖x− xt‖22 . (2.60)

Plugging back into (2.54), following similar derivation in Theorem 2 and Theorem 3 complete

the proof.

28

2.4.3 ORBCD with Variance Reduction

According to the Theorem 2.1.5 in [145], the block-wise Lipschitz gradient in Assumption 1

can also be rewritten as follows:

fi(x) ≤ fi(y) + 〈∇jfi(x)−∇jfi(y),xj − yj〉+
L

2
‖xj − yj‖22 , (2.61)

‖∇jfi(x)−∇jfi(y)‖22 ≤ L〈∇jfi(x)−∇jfi(y),xj − yj〉 . (2.62)

Let x∗ be an optimal solution. Define an upper bound of f(x) + g(x)− (f(x∗) + g(x∗)) as

h(x,x∗) = 〈∇f(x),x− x∗〉+ g(x)− g(x∗) . (2.63)

If f(x) + g(x) is strongly convex, we have

h(x,x∗) ≥ f(x)− f(x∗) + g(x)− g(x∗) ≥ γ

2
‖x− x∗‖22 . (2.64)

Lemma 2 Let x∗ be an optimal solution and the Assumption 1 hold, we have

1

I

I∑
i=1

‖∇fi(x)−∇fi(x∗)‖22 ≤ Lh(x,x∗) . (2.65)

where h is defined in (5.23).

Proof: Since the Assumption 1 hold, we have

1

I

I∑
i=1

‖∇fi(x)−∇fi(x∗)‖22 =
1

I

I∑
i=1

J∑
j=1

‖∇jfi(x)−∇jfi(x∗)‖22

≤ 1

I

I∑
i=1

J∑
j=1

L〈∇jfi(x)−∇jfi(x∗),xj − x∗j 〉

= L[〈∇f(x),x− x∗〉+ 〈∇f(x∗),x∗ − x〉] , (2.66)

where the inequality uses (2.62). For an optimal solution x∗, g′(x∗) + ∇f(x∗) = 0 where

g′(x∗) is the subgradient of g at x∗. The second term in (2.66) can be rewritten as

〈∇f(x∗),x∗ − x〉 = −〈g′(x∗),x∗ − x〉 = g(x)− g(x∗) . (2.67)

Plugging into (2.66) and using (5.23) complete the proof.

29

Lemma 3 Let x∗ be an optimal solution and the Assumption 1 hold, we have

h(x,x∗) ≤ L‖x− x∗‖22 . (2.68)

where h is defined in (5.23).

Proof: Since the Assumption 1 hold, we have

〈∇f(x)−∇f(x∗),x− x∗〉 =
1

I

I∑
i=1

J∑
j=1

〈∇jfi(x)−∇jfi(x∗),xj − x∗j 〉

≤ 1

I

I∑
i=1

J∑
j=1

L‖xj − x∗j‖22 = L‖x− x∗‖22 . (2.69)

As shown in Lemma 2,

〈∇f(x)−∇f(x∗),x− x∗〉 = h(x,x∗) , (2.70)

which completes the proof.

Lemma 4 Let vikjk and xk+1
jk

be generated by (2.24)-(2.27). Conditioned on xk, we have

E‖vikjk −∇jkf(xk)‖22 ≤
2L

J
[h(xk,x∗) + h(x̃,x∗)] . (2.71)

Proof: Conditioned on xk, we have

Eik [∇fik(xk)−∇fik(x̃) + µ̃] =
1

I

I∑
i=1

[∇fi(xk)−∇fi(x̃) + µ̃] = ∇f(xk) . (2.72)

Note xk is independent of ik, jk. ik and jk are independent. Conditioned on xk, taking expec-

tation over ik, jk and using (2.24) give

E‖vikjk −∇jkf(xk)‖22 = Eik [Ejk‖v
ik
jk
−∇jkf(xk)‖22]

= Eik [Ejk‖∇jkfik(xk)−∇jkfik(x̃) + µ̃jk −∇jkf(xk)‖22]

=
1

J
Eik‖∇fik(xk)−∇fik(x̃) + µ̃−∇f(xk)‖22

≤ 1

J
Eik‖∇fik(xk)−∇fik(x̃)‖22

≤ 2

J
Eik‖∇fik(xk)−∇fik(x∗)‖22 +

2

J
Eik‖∇fik(x̃)−∇fik(x∗)‖22

30

=
2

IJ

I∑
i=1

‖∇fi(xk)−∇fi(x∗)‖22 +
2

IJ

I∑
i=1

‖∇fi(x̃)−∇fi(x∗)‖22

≤ 2L

J
[h(xk,x∗) + h(x̃,x∗)] . (2.73)

The first inequality uses the fact E‖ζ − Eζ‖22 ≤ E‖ζ‖22 given a random variable ζ, the second

inequality uses ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22, and the last inequality uses Lemma 2.

Lemma 5 Under Assumption 1, f(x) = 1
I

∑I
i=1 fi(x) has block-wise Lipschitz continuous

gradient with constant L, i.e.,

‖∇jf(x + Ujhj)−∇jf(x)‖2 ≤ L‖hj‖2 . (2.74)

Proof: Using the fact that f(x) = 1
I

∑I
i=1 fi(x), we have

‖∇jf(x + Ujhj)−∇jf(x)‖2 = ‖1

I

I∑
i=1

[∇jfi(x + Ujhj)−∇jfi(x)]‖2

≤ 1

I

I∑
i=1

‖∇jfi(x + Ujhj)−∇jfi(x)‖2

≤ L‖hj‖2 , (2.75)

where the first inequality uses the Jensen’s inequality and the second inequality uses the As-

sumption 1.

Now, we are ready to establish the linear convergence rate of ORBCD with variance reduc-

tion for strongly convex functions.

Theorem 5 Let xt be generated by ORBCD with variance reduction (2.25)-(2.27). jk is sam-

pled randomly and uniformly from {1, · · · , J}. Assume η > 2L and m satisfy the following

condition:

ρ =
L

η − 2L
+

(η − L)J

(η − 2L)m
− 1

m
+

η(η − L)J

(η − 2L)mγ
< 1 , (2.76)

Then ORBCDVD converges linearly in expectation, i.e.,

Eξ[f(xt) + g(xt)− (f(x∗) + g(x∗)] ≤ ρt[Eξh(x1,x∗)] . (2.77)

where h is defined in (5.23).

31

Proof: The optimality condition of (2.27) is

〈vikjk + η(xk+1
jk
− xkjk) + g′jk(xk+1

jk
),xk+1

jk
− xjk〉 ≤ 0 . (2.78)

Rearranging the terms yields

〈vikjk + g′jk(xk+1
jk

),xk+1
jk
− xjk〉 ≤ −η〈x

k+1
jk
− xkjk ,x

k+1
jk
− xjk〉

≤ η

2
(‖xjk − xkjk‖

2
2 − ‖xjk − xk+1

jk
‖22 − ‖xk+1

jk
− xkjk‖

2
2)

=
η

2
(‖x− xk‖22 − ‖x− xk+1‖22 − ‖xk+1

jk
− xkjk‖

2
2) , (2.79)

where the last equality uses xk+1 = (xk+1
jk

,xtk 6=jk). Using the convecxity of gj and the fact that

g(xk)− g(xk+1) = gjk(xk)− gjk(xk+1), we have

〈vikjk ,x
k
jk
− xjk〉+ gjk(xk)− gjk(x) ≤ 〈vikjk ,x

k
jk
− xk+1

jk
〉+ g(xk)− g(xk+1)

+
η

2
(‖x− xk‖22 − ‖x− xk+1‖22 − ‖xk+1

jk
− xkjk‖

2
2) . (2.80)

According to Lemma 5 and using (2.61), we have

〈∇jkf(xk),xkjk − xk+1
jk
〉 ≤ f(xk)− f(xk+1) +

L

2
‖xkjk − xk+1

jk
‖22 . (2.81)

Letting x = x∗ and using the smoothness of f , we have

〈vikjk ,x
k
jk
− xjk〉+ gjk(xk)− gjk(x∗)

≤ 〈vikjk −∇jkf(xk),xkjk − xk+1
jk
〉+ f(xk) + g(xk)− [f(xk+1) + g(xk+1)]

+
η

2
(‖x∗ − xk‖22 − ‖x∗ − xk+1‖22 − ‖xk+1

jk
− xkjk‖

2
2) +

L

2
‖xkjk − xk+1

jk
‖22

≤ 1

2(η − L)
‖vikjk −∇jkf(xk)‖22 + f(xk) + g(xk)− [f(xk+1) + g(xk+1)]

+
η

2
(‖x∗ − xk‖22 − ‖x∗ − xk+1‖22) . (2.82)

Taking expectation over ik, jk on both sides and using Lemma 4, we have

E[〈vikjk ,x
k
jk
− x∗jk〉+ gjk(xk)− gjk(x∗)]

≤ L

J(η − L)
[h(xk,x∗) + h(x̃,x∗)] + f(xk) + g(xk)− E[f(xk+1) + g(xk+1)]

+
η

2
(‖x∗ − xk‖22 − E‖x∗ − xk+1‖22) . (2.83)

32

The left hand side can be rewritten as

E[〈vikjk ,x
k
jk
− x∗jk〉+ gjk(xk)− gjk(x∗)] =

1

J
[Eik〈v

ik ,xk − x∗〉+ g(xk)− g(x∗)]

=
1

J
[〈∇f(xk),xk − x∗〉+ g(xk)− g(x∗)] =

1

J
h(xk,x∗) . (2.84)

Plugging into (2.83) gives

1

J
[h(xk,x∗)] ≤ L

J(η − L)
[h(xk,x∗) + h(x̃,x∗)] + f(xk) + g(xk)− E[f(xk+1) + g(xk+1)]

+
η

2
(‖x∗ − xk‖22 − E‖x∗ − xk+1‖22)

≤ L

J(η − L)
[h(xk,x∗) + h(x̃,x∗)] + f(xk) + g(xk)− E[f(xk+1) + g(xk+1)]

+
η

2
(‖x∗ − xk‖22 − E‖x∗ − xk+1‖22) , (2.85)

Rearranging the terms yields

η − 2L

J(η − L)
h(xk,x∗) ≤ L

J(η − L)
[h(x̃,x∗)] + f(xk) + g(xk)− E[f(xk+1) + g(xk+1)]

+
η

2
(‖x∗ − xk‖22 − E‖x∗ − xk+1‖22) . (2.86)

At time t+ 1, we have x0 = x̃ = xt. Summing over k = 0, · · · ,m− 1 and taking expectation

with respect to the history of random variable ξ, we have

η − 2L

J(η − L)

m−1∑
k=0

Eξh(xk,x
∗) ≤ Lm

J(η − L)
Eξh(x̃,x∗) + Eξ[f(x0) + g(x0)]− Eξ[f(xm) + g(xm)]

+
η

2
(Eξ‖x∗ − x0‖22 − Eξ‖x∗ − xm‖22)

≤ Lm

J(η − L)
Eξh(x̃,x∗) + Eξh(x0,x

∗)

+
η

2
(Eξ‖x∗ − x0‖22 − Eξ‖x∗ − xm‖22) ,

where the last inequality uses

f(x0) + g(x0)− [f(xm) + g(xm)] ≤ f(x0) + g(x0)− [f(x∗) + g(x∗)]

≤ 〈∇f(x0),x0 − x∗〉+ g(x0)− g(x∗)

= h(x0,x
∗) . (2.87)

33

Rearranging the terms gives

η − 2L

J(η − L)

m−1∑
k=1

Eξh(xk,x
∗) +

η

2
Eξ‖x∗ − xm‖22

≤ Lm

J(η − L)
Eξh(x̃,x∗) + (1− η − 2L

J(η − L)
)Eξh(x0,x

∗) +
η

2
Eξ‖x∗ − x0‖22 . (2.88)

According to Lemma 3 and assuming η > 2L, we have

η − 2L

J(η − L)

m∑
k=1

Eξh(xk,x
∗) ≤ Lm

J(η − L)
Eξh(x̃,x∗) + (1− η − 2L

J(η − L)
)Eξh(x0,x

∗)

+
η

2
Eξ‖x∗ − x0‖22 . (2.89)

Pick xt+1 so that h(xt+1) ≤ h(xk), 1 ≤ k ≤ m− 1, we have

η − 2L

J(η − L)
mEξh(xt+1,x∗) ≤ [

Lm

J(η − L)
+ 1− η − 2L

J(η − L)
]Eξh(xt,x∗) +

η

2
Eξ‖x∗ − xt‖22 ,

(2.90)

where ther right hand side uses xt = x0 = x̃. Using (2.64), we have

η − 2L

J(η − L)
mEξh(xt+1,x∗) ≤ [

Lm

J(η − L)
+ 1− η − 2L

J(η − L)
+
η

γ
]Eξh(xt,x∗) . (2.91)

Dividing both sides by η−2L
J(η−L)m, we have

Eξh(xt+1,x∗) ≤ ρEξh(xt,x∗) , (2.92)

where

ρ =
L

η − 2L
+

(η − L)J

(η − 2L)m
− 1

m
+

η(η − L)J

(η − 2L)mγ
< 1 , (2.93)

which completes the proof.

Part II

Equality-constrained Optimization

34

Chapter 3

Alternating Direction Method of
Multipliers

3.1 Introduction

In this chapter, we consider optimization problems of the following form:

min
x∈X ,z∈Z

f(x) + g(z) s.t. Ax + Bz = c , (3.1)

where A ∈ Rm×n1 ,B ∈ Rm×n2 , c ∈ Rm, x ∈ X ∈ Rn1×1, z ∈ Z ∈ Rn2×1 and X and

Z are convex sets. The linear equality constraint introduces splitting variables and thus splits

functions and feasible sets into simpler constraint sets x ∈ X and z ∈ Z . (6.2) can easily

accommodate linear inequality constraints by introducing a slack variable. In the sequel, we

drop the convex sets X and Z for ease of exposition, noting that one can consider g and other

additive functions to be the indicators of suitable convex feasible sets. f and g can be non-

smooth, including piecewise linear and indicator functions. In the context of machine learning,

f is usually a loss function such as `1, `2, hinge and logistic loss, while g is a regularizer, e.g.,

`1, `2, nuclear norm, mixed-norm and total variation.

(3.1) can be solved by the well known alternating direction method of multipliers (ADMM

or ADM) [19]. In each iteration, ADMM updates splitting variables separately and alternatively

by solving the augmented Lagrangian of (3.1), which is defined as follows:

Lρ(x, z,y) = f(x) + g(z) + 〈y,Ax + Bz− c〉+
ρ

2
‖Ax + Bz− c‖22, (3.2)

35

36

where y ∈ Rm is dual variable, ρ > 0 is penalty parameter, and the quadratic penalty term

is to penalize the violation of the equality constraint. ADMM consists of the following three

updates:

xt+1 = argminx f(x) + 〈yt,Ax + Bzt − c〉+
ρ

2
‖Ax + Bzt − c‖22 , (3.3)

zt+1 = argminz g(z) + 〈yt,Axt+1 + Bz− c〉+
ρ

2
‖Axt+1 + Bz− c‖22 , (3.4)

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c) . (3.5)

First introduced in [67], ADM has since been extensively explored in recent years due to

its ease of applicability and empirical performance in a wide variety of problems, including

composite objectives [19, 55, 116]. It has been shown as a special case of Douglas-Rachford

splitting method [37, 49, 55], which in turn is a special case of the proximal point method

[166]. Recent literature has illustrated the empirical efficiency of ADM in a broad spectrum

of applications ranging from image processing [149, 58, 1, 28] to applied statistics and ma-

chine learning [172, 1, 219, 220, 214, 116, 8, 139, 133]. ADM has been shown to outper-

form state-of-the-art methods for sparse problems, including LASSO [189, 74, 1, 19], total

variation [69], sparse inverse covariance selection [45, 6, 60, 136, 172, 219], and sparse and

low rank approximations [220, 116, 24]. ADM have also been used to solve linear programs

(LPs) [54], LP decoding [8] and MAP inference problems in graphical models [133, 139, 64].

In addition, an advantage of ADM is that it can handle linear equality constraint of the form

{x, z|Ax+Bz = c}, which makes distributed optimization by variable splitting in a batch set-

ting straightforward [15, 142, 19, 154]. For further understanding of ADM, we refer the readers

to the comprehensive review by [19] and references therein.

Although the proof of global convergence of ADM can be found in [66, 55, 19], the liter-

ature does not have the convergence rate for ADM. We introduce proof techniques for the rate

of convergence of ADM in the batch setting, which establish a O(1/T) convergence rate for

the objective, the optimality conditions (constraints) and ADM based on variational inequali-

ties [56]. TheO(1/T) convergence rate for ADM is in line with gradient methods for composite

objective [145, 146, 53]1 . Our proof requires rather weak assumptions compared to the Lips-

chitz continuous gradient required in general in gradient methods [145, 146, 53]. During/after

the publication of our preliminary version [200], the convergence rate for ADM was also shown
1 The gradient methods can be accelerated to achieve the O(1/T 2) convergence rate [145, 146].

37

in [80, 79, 86, 48, 17, 70]. For strongly convex functions, the dual objective of an accelerated

version of ADMM can converge at a rate of O(1/T 2) [70]. For strongly convex functions,

ADMM can achieve a linear convergence rate [48]. Our proof is different and self-contained.

In particular, the other approaches do not prove the convergence rate for the objective, which is

fundamentally important to regret analysis in the online setting.

3.2 Analysis for Batch Alternating Direction Method

We are interested in the rate of convergence of ADM in terms of iteration complexity, i.e., the

number of iterations needed to obtain an ε-optimal solution. Most first-order methods require

functions to be smooth or having Lipschitz continuous gradient to establish the convergence

rate [145, 146, 53]. The assumptions in establishing convergence rate of ADM are relatively

simple [19], and are stated below for the sake of completeness:

Assumption 4
(a) f : Rn1 → R ∪ {+∞} and g : Rn2 → R ∪ {+∞} are closed, proper and convex.

(b) A KKT point {x∗, z∗,y∗} of the Lagrangian (3.2) of the problem (3.1) exists.

We first analyze the convergence rate for the objective and optimality conditions (con-

straints) separately, which play an important role for the regret analysis in the online setting.

Then, the rate of convergence is established under a joint analysis of the objective and con-

straints using a variational inequality [56].

3.2.1 Convergence Rate for the Objective

The updates of x, z implicitly generate the (sub)gradients of f(xt+1) and g(zt+1), as given in

the following lemma.

Lemma 6 Let ∂f(xt+1) be the subgradient of f(x) at xt+1, we have

−AT (yt + ρ(Axt+1 + Bzt − c)) ∈ ∂f(xt+1) , (3.6)

−AT (yt+1 + ρ(Bzt −Bzt+1)) ∈ ∂f(xt+1) (3.7)

Let ∂g(zt+1) be the subgradient of g(z) at zt+1, we have

−BTyt+1 ∈ ∂g(zt+1) . (3.8)

38

Proof: Since xt+1 minimizes (3.3), we have

0 ∈ ∂f(xt+1) + ATyt + ρAT (Axt+1 −Bzt − c) .

Rearranging the terms gives (3.6). Using (3.5) yields (3.7).

Similarly, zt+1 minimizes (3.4), then

∂g(zt+1) + BTyt + ρBT (Axt+1 + Bzt+1 − c) ∈ 0 .

Rearranging the terms and using (3.5) yield (3.8).

The following lemma shows the inaccuracy of the objective with respect to the optimum at

(t+ 1) is bounded by step differences of y and z.

Lemma 7 Let the sequences {xt, zt,yt} be generated by ADM. Then for any x∗, z∗ satisfying

Ax∗ + Bz∗ = c, we have

f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22)− ρ

2
‖Axt+1 + Bzt − c‖22 +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22) .

(3.9)

Proof: Since f(x) is a convex function and its subgradient is given in (3.7),

f(xt+1)− f(x∗) ≤ −〈AT (yt+1 + ρ(Bzt −Bzt+1)),xt+1 − x∗〉

= −〈yt+1 + ρ(Bzt −Bzt+1),Axt+1 −Ax∗〉

= −〈yt+1,Axt+1 − c + Bz∗〉+ ρ〈Bzt+1 −Bzt,Axt+1 − c + Bz∗〉

= −〈yt+1,Axt+1 − c + Bz∗〉+
ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22

+ ‖Axt+1 + Bzt+1 − c‖22 − ‖Axt+1 + Bzt − c‖22) . (3.10)

where the last equality uses

〈u1 − u2,u3 + u4〉 =
1

2
(‖u4 − u2‖22 − ‖u4 − u1‖22 + ‖u3 + u1‖22 − ‖u3 + u2‖22). (3.11)

Similarly, for convex function g(z), using its subgradient in (3.8), we have

g(zt+1)− g(z∗) ≤ −〈BTyt+1, zt+1 − z∗〉 = −〈yt+1,Bzt+1 −Bz∗〉 . (3.12)

39

Adding (3.10) and (3.12) together yields

f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))

≤ −〈yt+1,Axt+1 + Bzt+1 − c〉+
ρ

2
‖Axt+1 + Bzt+1 − c‖22

− ρ

2
‖Axt+1 + Bzt − c‖22 +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22) . (3.13)

Recalling (3.5), the first two terms in (3.13) can be rewritten as

− 〈yt+1,Axt+1 + Bzt+1 − c〉+
ρ

2
‖Axt+1 + Bzt+1 − c‖22

=
1

2ρ
(2〈yt+1,yt − yt+1〉+ ‖yt − yt+1‖22)

=
1

2ρ
(‖yt‖22 − ‖yt+1‖22) . (3.14)

Plugging back into (3.13) yields the result.

As observed in several experiments [19], the objective is not monotonically non-increasing.

The following theorem shows the objective of ADM has the O(1/T) convergence rate in an

ergodic sense.

Theorem 6 Let the sequences {xt, zt,yt} be generated by ADM and x̄T = 1
T

∑T
t=1 xt, z̄T =

1
T

∑T
t=1 zt. For any x∗, z∗ satisfying Ax∗ + Bz∗ = c, for any T , we have

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) ≤
1
ρ‖y0‖22 + ρ‖Bz∗ −Bz0‖22

2T
. (3.15)

Proof: In (3.9), ignoring −ρ
2‖Axt+1 + Bzt − c‖22 and summing over t from 0 to T − 1, we

have the following telescoping sum

T−1∑
t=0

[f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))]

≤ 1

2ρ
(‖y0‖22 − ‖yT ‖22) +

ρ

2
(‖Bz∗ −Bz0‖22 − ‖Bz∗ −BzT ‖22) .

Since both f and g are convex, dividing by T , applying Jensen’s inequality and letting the

assumptions hold complete the proof.

Although (3.15) shows that the objective value converges to the optimal value, {xt+1, zt+1}
may not be feasible and the equality constraint may not necessarily be satisfied.

40

3.2.2 Convergence Rate for the Optimality Conditions (Constraints)

Assume that {x∗, z∗,y∗} satisfies the KKT conditions of the Lagrangian (3.2), i.e.,

−ATy∗ ∈ ∂f(x∗) , (3.16)

−BTy∗ ∈ ∂g(z∗) , (3.17)

Ax∗ + Bz∗ − c = 0 . (3.18)

According to (3.7), condition (3.16) holds if Bzt+1 − Bzt = 0. According to (3.8), con-

dition (3.17) holds for every iterate. Therefore, the KKT conditions (3.16)-(3.18) hold if the

following optimality conditions are satisfied:

Bzt+1 −Bzt = 0 , (3.19)

Axt+1 + Bzt+1 − c = 0 , (3.20)

The LHS of (3.19) is called primal residual and the LHS of (3.20) is called equality constraint

violation or dual residual [19] when considering (3.5).

Define a residual function of optimality conditions as

R(s, t) = ‖Axs + Bzt − c‖22 + ‖Bzt −Bzs−1‖22 , (3.21)

where s ∈ {t, t+ 1}. In particular, the residual after the z update (3.4) at iteration (t+ 1) is

R(t+ 1, t+ 1) = ‖Axt+1 + Bzt+1 − c‖22 + ‖Bzt+1 −Bzt‖22 . (3.22)

and the residual after the x-update (3.3) at (t+ 1) is

R(t+ 1, t) = ‖Axt+1 + Bzt − c‖22 . (3.23)

Therefore, the convergence of R(t+ 1, t+ 1) implies the convergence of the optimality condi-

tions.

The following two lemmas show the residuals of optimality conditions (constraints) are

monotonically non-increasing.

Lemma 8 Let the sequences {xt, zt,yt} be generated by ADM. Then

R(t+ 1, t) ≤ R(t, t) (3.24)

41

Proof: Since f(x) is a convex function and its subgradient is given in (3.6), for any x, we

have

f(xt+1)− f(x) ≤ −〈AT (yt + ρ(Axt+1 + Bzt − c)),xt+1 − x〉

= 〈yt,Ax−Axt+1〉+ ρ〈Axt+1 + Bzt − c,Ax−Axt+1〉 . (3.25)

Letting x = xt, we have

f(xt+1)− f(xt) ≤ 〈yt,Axt −Axt+1〉+ ρ〈Axt+1 + Bzt − c,Axt −Axt+1〉

= 〈yt,Axt −Axt+1〉+
ρ

2
(‖Axt + Bzt − c‖22 − ‖Axt+1 + Bzt − c‖22 − ‖Axt −Axt+1‖22) .

(3.26)

where the last equality uses

〈u1 − u2,u3 − u1〉 =
1

2
(‖u2 − u3‖22 − ‖u1 − u2‖22 − ‖u1 − u3‖22) . (3.27)

Using the subgradient of f given in (3.7) at xt, for any x,

f(xt)− f(x) ≤ −〈AT (yt + ρ(Bzt−1 −Bzt)),xt − x〉 . (3.28)

Letting x = xt+1, we have

f(xt)− f(xt+1) ≤ −〈yt,Axt −Axt+1〉+ ρ〈Bzt−1 −Bzt,Axt+1 −Axt〉

≤ 〈Axt+1 −Axt,yt〉+
ρ

2
(‖Axt+1 −Axt‖22 + ‖Bzt−1 −Bzt‖22) .

(3.29)

Adding (3.26) and (3.29) together and rearranging the terms complete the proof.

Lemma 9 Let the sequences {xt, zt,yt} be generated by ADM. Then

R(t+ 1, t+ 1) ≤ R(t+ 1, t) (3.30)

Proof: Recalling the subgradient of convex function g(z) given in (3.8), we have

g(zt+1)− g(zt) ≤ 〈−BTyt+1, zt+1 − zt〉 , (3.31)

g(zt)− g(zt+1) ≤ 〈−BTyt, zt − zt+1〉 . (3.32)

42

Adding (3.31) and (3.32) together yields

0 ≤ 〈BT (yt+1 − yt), zt − zt+1〉 = 〈yt+1 − yt,Bzt −Bzt+1〉 . (3.33)

According to (3.5), the right-hand side can be rewritten as

〈yt+1 − yt,Bzt −Bzt+1〉

= ρ〈Axt+1 + Bzt+1 − c, (Bzt − c)− (Bzt+1 − c)〉

=
ρ

2

(
‖Axt+1 + Bzt − c‖22 − ‖Bzt+1 −Bzt‖22 − ‖Axt+1 + Bzt+1 − c‖22

)
. (3.34)

Plugging into (3.33) and rearranging the terms complete the proof.

The above two lemmas together shows that

R(t+ 1, t+ 1) ≤ R(t+ 1, t) ≤ R(t, t) ≤ R(t, t− 1) , (3.35)

meaning R(s, t) is monotonically non-increasing. The following lemma shows R(t + 1, t) is

bounded by step differences of a telescoping series of y and z.

Lemma 10 Let the sequences {xt, zt,yt} be generated by ADM and {x∗, z∗,y∗} satisfy the

KKT conditions (3.16)-(3.18), then

R(t+ 1, t) ≤ ‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22 +
1

ρ2

(
‖y∗ − yt‖22 − ‖y∗ − yt+1‖22

)
.

(3.36)

Proof: Assume {x∗,y∗} satisfies (3.16). Since f is convex, then

f(x∗)− f(xt+1) ≤ −〈ATy∗,x∗ − xt+1〉 = −〈y∗,Ax∗ −Axt+1〉 . (3.37)

Similarly, for convex function g and {z∗,y∗} satisfies (3.17), we have

g(z∗)− g(zt+1) ≤ −〈BTy∗, z∗ − zt+1〉 = −〈y∗,Bz∗ −Bzt+1〉 . (3.38)

Adding them together and using the fact that Ax∗ + Bz∗ = c, we have

f(x∗) + g(z∗)− (f(xt+1) + g(zt+1)) ≤ 〈y∗,Axt+1 + Bzt+1 − c〉 . (3.39)

Adding (3.13) and (3.39) together yields

0 ≤ ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22 − ‖Axt+1 + Bzt − c‖22 + ‖Axt+1 + Bzt+1 − c‖22)

43

+ 〈y∗ − yt+1,Axt+1 + Bzt+1 − c〉 . (3.40)

The last term can be rewritten as

〈y∗ − yt+1,Axt+1 + Bzt+1 − c〉 =
1

ρ
〈y∗ − yt+1,yt+1 − yt〉

= − 1

2ρ

(
‖y∗ − yt‖22 − ‖y∗ − yt+1‖22 − ‖yt+1 − yt‖22

)
. (3.41)

Substituting it into (3.40) and rearranging the terms gives

‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22 +
1

ρ2

(
‖y∗ − yt‖22 − ‖y∗ − yt+1‖22

)
≥ ‖Axt+1 + Bzt − c‖22 + ‖Axt+1 + Bzt+1 − c‖22 −

1

ρ2
‖yt+1 − yt‖22

= ‖Axt+1 + Bzt − c‖22 , (3.42)

which completes the proof.

Now, we are ready to show that the optimality conditions have a O(1/T) convergence rate.

Theorem 7 Let the sequences {xt, zt,yt} be generated by ADM. For any x∗, z∗ satisfying

Ax∗ + Bz∗ = c, for any T , we have

R(T, T) ≤ R(T, T − 1) ≤
λB

maxD
2
z +D2

y/ρ
2

T
, (3.43)

where R(T, T) = ‖AxT + BzT − c‖22 + ‖BzT −BzT−1‖22.

Proof: Since ‖Axt+1 + Bzt − c‖22 is monotonically non-increasing, we have

TR(T, T − 1) = T‖AxT + BzT−1 − c‖22 ≤
T−1∑
t=0

‖Axt+1 + Bzt − c‖22

≤ ‖Bz∗ −Bz0‖22 − ‖Bz∗ −BzT ‖22 +
1

ρ2
(‖y∗ − y0‖22 − ‖y∗ − yT ‖22)

≤ ‖Bz∗ −Bz0‖22 +
1

ρ2
‖y∗ − y0‖22 . (3.44)

Divide both sides by T . Letting Assumption 4 hold and using Lemma 9 yield (3.43).

Results similar to Lemma 9 and 10 have appeared in [19], but Lemma 8 is new. The mono-

tonicity and O(1/T) convergence rate for optimality conditions have also been shown in [79],

but our proof is different and self-contained.

44

3.2.3 Rate of Convergence of ADM based on Variational Inequality

We now prove the O(1/T) convergence rate for ADM using a variational inequality (VI) based

on the Lagrangian given in (3.2). In this section, we need the following assumption [14, 13]:

Assumption 5 y is bounded in Rm and ‖y‖2 ≤ D, i.e., y ∈ Y ⊂ Rm and Y is a bounded set.

Let Ω = X × Z × Y , where X and Z are defined in (6.2). Any w∗ = (x∗, z∗,y∗) ∈ Ω solves

the original problem in (3.1) optimally if it satisfies the following variational inequality [56,

143, 80]:

∀w ∈ Ω , h(w)− h(w∗) + 〈w −w∗, F (w∗)〉 ≥ 0 , (3.45)

where h(w) = f(x) + g(z) and

F (w) =

ATy

BTy

−(Ax + Bz− c)

 =

0 0 AT

0 0 BT

−A −B 0

w +

0

0

c

 = Mw + q

is the gradient of the last term of the Lagrangian. M is an anti-symmetric matrix and wTMw =

0. Then, w̃ = (x̃, z̃, ỹ) approximately solves the problem with accuracy ε if it satisfies

∀w ∈ Ω , h(w̃)− h(w) + 〈w̃ −w, F (w̃)〉 ≤ ε . (3.46)

We show that after T iterations, the average w̄T = 1
T

∑T
t=1 wt, where wt = (xt, zt,yt) are

from (3.3)-(3.5), satisfies the above inequality with ε = O(1/T).

Theorem 8 Let w̄T = 1
T

∑T
t=1 wt, where wt = (xt, zt,yt) from (3.3)-(3.5). Let Assumption

4 and 5 hold, then

∀w ∈ Ω, h(w̄T)− h(w) + 〈w̄T −w, F (w̄T)〉 ≤ L

T
.

where L = ρ
2‖Ax− c‖22 + 1

2ρ‖y‖
2.

Proof: Considering f(x) is a convex function and its subgradient is given in (3.7), ∀x ∈ X ,

f(xt+1)− f(x) ≤ −〈AT (yt+1 + ρ(Bzt −Bzt+1)),xt+1 − x〉 .

Rearranging the terms gives

f(xt+1)− f(x) + 〈xt+1 − x,ATyt+1〉 ≤ ρ〈Ax−Axt+1,Bzt −Bzt+1〉 . (3.47)

45

Using the subgradient of g given in (3.8), we have ∀z ∈ Z

g(zt+1)− g(z) + 〈zt+1 − z,BTyt+1〉 ≤ 0 . (3.48)

Adding (3.47) and (3.48) and denoting h(w) = f(x) + g(z), we have ∀w ∈ Ω

h(wt+1)− h(w) + 〈wt+1 −w, F (wt+1)〉 (3.49)

≤ ρ〈Ax−Axt+1,Bzt −Bzt+1〉+
1

ρ
〈yt+1 − y,−(Axt+1 + Bzt+1 − c)〉

= ρ〈Ax−Axt+1,Bzt −Bzt+1〉+
1

ρ
〈y − yt+1,yt+1 − yt〉 .

The first term can be rewritten as

2〈Ax−Axt+1,Bzt −Bzt+1〉 (3.50)

= 2〈Ax− c− (Axt+1 − c),Bzt −Bzt+1〉

= ‖Ax + Bzt − c‖2 − ‖Ax + Bzt+1 − c‖2 + ‖Axt+1 + Bzt+1 − c‖2 − ‖Axt+1 + Bzt − c‖2 ,

where the last equality uses (8.25). The second term in (3.49) is equivalent to

2〈y − yt+1,yt+1 − yt〉 = ‖y − yt‖2 − ‖y − yt+1‖2 − ‖yt − yt+1‖2 , (3.51)

which uses (8.24). Substituting (3.50) and (3.51) into (3.49) and using (3.5), we have

h(wt+1)− h(w) + 〈wt+1 −w, F (wt+1)〉

≤ ρ

2
(‖Ax + Bzt − c‖2 − ‖Ax + Bzt+1 − c‖2) +

1

2ρ
(‖y − yt‖2 − ‖y − yt+1‖2) .

(3.52)

Summing over t from 0 to T − 1, we have the following telescoping sum

T∑
t=1

[h(wt)− h(w) + 〈wt −w, F (wt)〉] ≤ L , (3.53)

where the constant L = ρ
2‖Ax − c‖22 + 1

2ρ‖y‖
2. Recall that h(w̃) is a convex function of w̃.

Further, from the definition of F (w̃), we have

〈w̃ −w, F (w̃)〉 = 〈w̃ −w,Mw̃ + q〉 = −〈w,Mw̃〉+ 〈w̃ −w,q〉 , (3.54)

46

which is a linear function of w̃. Dividing both sides of (3.53) by T , recalling that w̄T =
1
T

∑T
t=1 wt, and using Jensen’s inequality, we have

h(w̄T)− h(w) + 〈w̄T −w, F (w̄T)〉

≤ 1

T

T∑
t=1

h(wt)− h(w) +
1

T

T∑
t=1

〈wt −w, F (wt)〉

≤ L

T
= O

(
1

T

)
,

which establishes convergence rate for ADM.

The bound requires x and y to be bounded. In general, L is larger compard to the results in

Theorem 6 and 7. According to (3.3),

ρ

T−1∑
t=0

(Axt+1 + Bzt+1 − c) =

T−1∑
t=0

(yt+1 − yt) = yT − y0 = yT , (3.55)

meaning yT is the sum of all past residuls of constraint violation and thus ‖y‖2 is large. [80]

also shows a similar result based on an auxiliary sequence {xt+1, zt+1, ỹt+1 = yt+ρ(Axt+1 +

Azt − c)} instead of the sequence {xt+1, zt+1,yt+1} generated by ADM. Compared to their

proof, our proof is arguably simple and easier to understand. In fact, their proof is based on

weak VI [143, 41, 56], while our proof is based on strong VI [143, 41, 56]. According to

Minty’s lemma [41, 56], they are equivalent if the solution set Ω is closed bounded and VI

operator F is continuous and monotone.

Chapter 4

Bregman Alternating Direction
Method of Multipliers

4.1 Introduction

In ADMM (3.3)-(3.5), the computational complexity of y update (3.5) is trivial. The compu-

tational complexity of ADMM lies in the x and z updates (3.3)-(3.4) which amount to solving

proximal minimization problems using the quadratic penalty term. Inexact ADMM [214, 19]

and generalized ADMM [48] have also been proposed to solve the updates inexactly by lin-

earizing the functions and adding additional quadratic terms. Recently, online ADMM [200]

and Bethe-ADMM [64] add an additional Bregman divergence on the x update by keeping or

linearizing the quadratic penalty term ‖Ax+Bz−c‖22. As far as we know, all existing ADMMs

use quadratic penalty terms.

A large amount of literature shows that replacing the quadratic term by Bregman divergence

in gradient-type methods could greatly boost their performance in solving the constrained opti-

mization problem. First, the use of Bregman divergence could effectively exploit the structure

of problems [33, 10, 52] , e.g., in computerized tomography [12], clustering problems and ex-

ponential family distributions [5]. Second, in some cases, the gradient descent method with

Kullback-Leibler (KL) divergence can outperform the method with the quadratic term by a

factor of O(
√
n lnn) where n is the dimensionality of the problem [10, 12]. Mirror descent

algorithm (MDA) and composite objective mirror descent (COMID) [52] use Bregman diver-

gence to replace the quadratic term in gradient descent or proximal gradient [37]. Proximal

47

48

point method with D-functions (PMD) [33, 25] and Bregman proximal minimization (BPM)

[99] generalize proximal point method by using Bregman divegence to replace the quadratic

term. On the side of ADMM, it is still unknown whether the quadratic penalty term in ADMM

can be replaced by Bregman divergence, although the convergence of ADMM is well under-

stood. However, as pointed out by [19], “There is currently no proof of convergence known for

ADMM with nonquadratic penalty terms.”

In this chapter, we propose Bregman ADMM (BADMM) which uses Bregman divergences

to replace the quadratic penalty term in ADMM, answering the question raised in [19]. More

specifically, the quadratic penalty term in the x and z updates (3.3)-(3.4) will be replaced

by a Bregman divergence in BADMM. We also introduce a generalized version of BADMM

where two additional Bregman divergences are added to the x and z updates. The generalized

BADMM (BADMM for short) provides a unified framework for solving (3.1), which allows

one to choose suitable Bregman divergence so that the x and z updates can be solved efficiently.

BADMM includes ADMM and its variants as special cases. In particular, BADMM replaces all

quadratic terms in generalized ADMM [48] with Bregman divergences. By choosing a proper

Bregman divergence, we also show that inexact ADMM [214] and Bethe ADMM [64] can be

considered as special cases of BADMM. BADMM generalizes ADMM similar to how MDA

generalizes gradient descent and how PMD generalizes proximal methods. In BADMM, the x

and z updates can take the form of MDA or PMD. We establish the global convergence and the

O(1/T) iteration complexity for BADMM. In some cases, we show that BADMM can outper-

form ADMM by a factor O(n/ lnn). We evaluate the performance of BADMM in solving the

linear program problem of mass transportation [82]. By exploiting the structure of the problem,

BADMM leads to massive parallelism and can easily run on GPU. BADMM can even be orders

of magnitude faster than highly optimized commercial software Gurobi. While Gurobi breaks

down in solving a linear program of hundreds of millions of parameters in a server, BADMM

takes hundreds of seconds running in a single GPU.

The rest of this chapter is organized as follows. In Section 4.2, we propose Bregman ADMM

and discuss several special cases of BADMM. In Section 4.3, we establish the convergence of

BADMM. In Section 4.4, we use BADMM to solve the mass transportation problem on a GPU.

49

4.2 Bregman Alternating Direction Method of Multipliers

Let φ : Ω → R be a continuously differentiable and strictly convex function on the relative

interior of a convex set Ω. Denote ∇φ(y) as the gradient of φ at y. We define Bregman

divergence1 Bφ : Ω× ri(Ω)→ R+ induced by φ as

Bφ(x,y) = φ(x)− φ(y)− 〈∇φ(y),x− y〉 .

Since φ is convex, Bφ(x,y) ≥ 0 where the equality holds if and only if x = y. More details

about Bregman divergence can be found in [33, 5]. Two of the most commonly used exam-

ples are squared Euclidean distance Bφ(x,y) = 1
2‖x − y‖22 and KL divergence Bφ(x,y) =∑n

i=1 xi log xi
yi

.

Assuming Bφ(c − Ax,Bz) is well defined, we replace the quadratic penalty term in the

augmented Lagrangian (3.2) by a Bregman divergence as follows:

Lφρ(x, z,y) = f(x) + g(z) + 〈y,Ax + Bz− c〉+ ρBφ(c−Ax,Bz). (4.1)

Unfortunately, we can not derive Bregman ADMM (BADMM) updates by simply solving

Lφρ(x, z,y) alternatingly as ADMM does because Bregman divergences are not necessarily con-

vex in the second argument. More specifically, given (zt,yt), xt+1 can be obtained by solving

minx Lφρ(x, zt,yt), where the quadratic penalty term 1
2‖Ax + Bzt − c‖22 for ADMM in (3.3)

is replaced with Bφ(c−Ax,Bzt) in the x update of BADMM. However, given (xt+1,yt), we

cannot obtain zt+1 by solving minz L
φ
ρ(xt+1, z,yt), since the term Bφ(c−Axt+1,Bz) need

not be convex in z. The observation motivates a closer look at the role of the quadratic term in

ADMM.

In standard ADMM, the quadratic augmentation term added to the Lagrangian is just a

penalty term to ensure the new updates do not violate the constraint significantly. Staying with

these goals, we propose the z update augmentation term of BADMM to be: Bφ(Bz, c−Axt+1),

instead of the quadratic penalty term 1
2‖Axt+1 +Bz−c‖22 in (3.3). Then, we get the following

updates for BADMM:

xt+1 =argmin
x∈X

f(x) + 〈yt,Ax + Bzt − c〉+ ρBφ(c−Ax,Bzt) , (4.2)

zt+1 =argmin
z∈Z

g(z) + 〈yt,Axt+1 + Bz− c〉+ ρBφ(Bz, c−Axt+1) , (4.3)

1 The definition of Bregman divergence has been generalized to nondifferentiable functions [99, 188].

50

yt+1 =yt + ρ(Axt+1 + Bzt+1 − c) . (4.4)

Compared to ADMM (3.3)-(3.5), BADMM simply uses a Bregman divergence to replace the

quadratic penalty term in the x and z updates. It is worth noting that the same Bregman diver-

gence Bφ is used in the x and z updates.

We consider a special case when A = −I,B = I, c = 0. (4.2) is reduced to

xt+1 = argmin
x∈X

f(x) + 〈yt,−x + zt〉+ ρBφ(x, zt) . (4.5)

If φ is a quadratic function, the constrained problem (4.5) requires the projection onto the con-

straint set X . However, in some cases, if choosing a proper Bregman divergence, (4.5) can

be solved efficiently or has a closed-form solution. For example, if f is a linear function

and X is the unit simplex, Bφ should be KL divergence, leading to the exponentiated gradi-

ent [10, 12, 144]. Interestingly, if the z update is also the exponentiated gradient, we have

alternating exponentiated gradients. In Section 4, we will show the mass transportation prob-

lem can be cast into this scenario.

While the updates (4.2)-(4.3) use the same Bregman divergences, efficiently solving the x

and z updates may not be feasible, especially when the structure of the original functions f, g,

the function φ used for augmentation, and the constraint sets X ,Z are rather different. For

example, if f(x) is a logistic function in (4.5), it will not have a closed-form solution even

Bφ is the KL divergence and X is the unit simplex. To address such concerns, we propose a

generalized version of BADMM in Section 2.1.

4.2.1 Generalized BADMM

To allow the use of different Bregman divergences in the x and z updates (4.2)-(4.4) of BADMM,

the generalized BADMM simply introduces an additional Bregman divergence for each update.

The generalized BADMM has the following updates:

xt+1 = argmin
x∈X

f(x) + 〈yt,Ax + Bzt − c〉+ ρBφ(c−Ax,Bzt) + ρxBϕx(x,xt) , (4.6)

zt+1 = argmin
z∈Z

g(z) + 〈yt,Axt+1 + Bz− c〉+ ρBφ(Bz, c−Axt+1) + ρzBϕz(z, zt) ,

(4.7)

yt+1 = yt + τ(Axt+1 + Bzt+1 − c) . (4.8)

51

where ρ > 0, τ > 0, ρx ≥ 0, ρz ≥ 0. Note that we allow the use of a different step size

τ in the dual variable update [48, 86]. There are three Bregman divergences in the general-

ized BADMM. While the Bregman divergence Bφ is shared by the x and z updates, the x

update has its own Bregman divergence Bϕx and the z update has its own Bregman divergence

Bϕz . The two additional Bregman divergences in generalized BADMM are variable specific,

and can be chosen to make sure that the xt+1, zt+1 updates are efficient. If all three Breg-

man divergences are quadratic functions, the generalized BADMM reduces to the generalized

ADMM [48]. We prove convergence of generalized BADMM in Section 3, which yields the

convergence of BADMM with ρx = ρz = 0.

In the following, we illustrate how to choose a proper Bregman divergence Bϕx so that the

x update can be solved efficiently, e.g., a closed-form solution, noting that the same arguments

apply to the z-updates. Consider the first three terms in (7.21) as s(x) + h(x), where s(x)

denotes an easy term and h(x) is the problematic term which needs to be linearized for an

efficient x-update. We illustrate the idea with several examples later in the section. Now, we

have

xt+1 = min
x∈X

s(x) + h(x) + ρxBϕx(x,xt) . (4.9)

where efficient updates are difficult due to the mismatch in structure between h and X . The

goal is to ‘linearize’ the function h by using the fact that the Bregman divergence Bh(x,xt)

captures all the higher-order (beyond linear) terms in h(x) so that:

h(x)−Bh(x,xt) = h(xt) + 〈x− xt,∇h(xt)〉 (4.10)

is a linear function of x. Let ψ be another convex function such that one can efficiently solve

minx∈X s(x)+ψ(x)+〈x,b〉 for any constant b. Assuming ϕx(x) = ψ(x)− 1
ηh(x) is convex,

we construct a Bregman divergence based proximal term to the original problem so that:

argmin
x∈X

s(x) + h(x) + ρxBϕx(x,xt) = argmin
x∈X

s(x) + ψ(x) + 〈x, 1

ρx
∇h(xt)−∇ψ(xt)〉 ,

(4.11)

where the latter problem can be solved efficiently, by our assumption. To ensure ϕx is convex,

we need the following condition:

Proposition 1 If h is smooth and has Lipschitz continuous gradients with constant ν under a

p-norm, then ϕx is ν/ρx-strongly convex w.r.t. the p-norm.

52

This condition has been widely used in gradient-type methods, including MDA and CO-

MID. Note that the convergence analysis of generalized ADMM in Section 4 holds for any ad-

ditional Bregman divergence based proximal terms, and does not rely on such specific choices.

Using the above idea, one can ‘linearize’ different parts of the x update to yield an efficient

update.

We consider three special cases, respectively focusing on linearizing the function f(x),

linearizing the Bregman divergence based augmentation termBφ(c−Ax,Bzt), and linearizing

both terms, along with examples for each case.

Case 1: Linearization of smooth function f : Let h(x) = f(x) in (4.11), we have

xt+1 = argmin
x∈X

〈∇f(xt),x− xt〉+ 〈yt,Ax〉+ ρBφ(c−Ax,Bzt) + ρxBψx(x,xt) .

(4.12)

where∇f(xt) is the gradient of f(x) at xt.

Example 1 Consider the following ADMM form for sparse logistic regression problem [74,

19]:

min
x
h(x) + λ‖z‖1 , s.t. x = z , (4.13)

where h(x) is the logistic function. If we use ADMM to solve (4.13), the x update is as fol-

lows [19]:

xt+1 = argmin
x

h(x) + 〈yt,x− zt〉+
ρ

2
‖x− zt‖22 , (4.14)

which is a ridge-regularized logistic regression problem and one needs an iterative algorithm

like L-BFGS to solve it. Instead, if we linearize h(x) at xt and set Bψ to be a quadratic

function, then

xt+1 = argmin
x

〈∇ h(xt),x− xt〉+ 〈yt,x− zt〉+
ρ

2
‖x− zt‖22 +

ρx

2
‖x− xt‖22 , (4.15)

the x update has a simple closed-form solution.

Case 2: Linearization of the quadratic penalty term: In ADMM, Bφ(c −Ax,Bzt) =
1
2‖Ax + Bzt − c‖22. Let h(x) = 1

2‖Ax + Bzt − c‖22. Then ∇h(xt) = AT (Axt + Bzt − c),

we have

xt+1 = argmin
x∈X

f(x) + 〈yt + ρ(Axt + Bzt − c),Ax〉+ ρxBψ(x,xt) . (4.16)

53

The case mainly solves the problem due to the Ax term which makes x updates nonseparable,

whereas the linearized version can be solved with separable (parallel) updates. Several prob-

lems have been benefited from the linearization of quadratic term [48], e.g., when f is `1 loss

function [74], and projection onto the unit simplex or `1 ball [51].

Case 3: Mirror Descent: In some settings, we want to linearize both the function f and

the quadratic augmentation term Bφ(c−Ax,Bzt) = 1
2‖Ax + Bzt− c‖22. Let h(x) = f(x) +

〈yt,Ax〉+ ρ
2‖Ax + Bzt − c‖22, we have

xt+1 = argmin
x∈X

〈∇h(xt),x〉+ ρxBψ(x,xt) . (4.17)

Note that (6.63) is a MDA-type update. Further, one can do a similar exercise with a general

Bregman divergence based augmentation term Bφ(c − Ax,Bzt), although there has to be a

good motivation for going to this route.

Example 2 [Bethe-ADMM [64]] Given an undirected graph G = (V,E), where V is the

vertex set and E is the edge set. Assume a random discrete variable Xi associated with node

i ∈ V can take K values. In a pairwise MRF, the joint distribution of a set of discrete random

variables X = {X1, · · · , Xn} (n is the number of nodes in the graph) is defined in terms of

nodes and cliques [198]. Consider solving the following graph-structured problem :

min l(µ) s.t. µ ∈ L(G) , (4.18)

where l(µ) is a decomposable function of µ and L(G) is the so-called local polytope [198]

determined by the marginalization and normalization (MN) constraints for each node and edge

in the graph G:

L(G) = {µ ≥ 0 ,
∑
xi

µi(xi) = 1 ,
∑
xj

µij(xi, xj) = µi(xi)} , (4.19)

where µi, µij are pseudo-marginal distributions of node i and edge ij respectively. In particular,

(4.18) serves as a LP relaxation of MAP inference probem in a pairwise MRF if l(µ) is defined

as follows:

l(µ) =
∑
i

∑
xi

θi(xi)µi(xi) +
∑
ij∈E

∑
xij

θij(xi, xj)µij(xi, xj), (4.20)

where θi, θij are the potential functions of node i and edge ij respectively.

54

The complexity of polytope L(G) makes (4.18) difficult to solve. One possible way is to

decompose the graph into trees such that

min
∑
τ

cτ lτ (µτ) s.t. µτ ∈ Tτ ,µτ = mτ , (4.21)

where Tτ denotes the MN constraints (4.19) in the tree τ . µτ is a vector of pseudo-marginals

of nodes and edges in the tree τ . m is a global variable which contains all trees and mτ

corresponds to the tree τ in the global variable. cτ is the weight for sharing variables. The

augmented Lagrangian is

Lρ(µτ ,m,λτ) =
∑
τ

cτ lτ (µτ) + 〈λτ ,µτ −mτ 〉+
ρ

2
‖µτ −mτ‖22 . (4.22)

which leads to the following update for µt+1
τ in ADMM:

µt+1
τ = argmin

µτ∈Tτ
cτ lτ (µτ) + 〈λtτ ,µτ 〉+

ρ

2
‖µτ −mt

τ‖22 (4.23)

(4.23) is difficult to solve due to the MN constraints in the tree. Let h(µτ) be the objective

of (4.23). If linearizing h(µτ) and adding a Bregman divergence in (4.23), we have:

µt+1
τ = argmin

µτ∈Tτ
〈∇h(µtτ),µτ 〉+ ρxBψ(µτ ,µ

t
τ)

= argmin
µτ∈Tτ

〈∇h(µtτ)− ρx∇ψ(µtτ),µτ 〉+ ρxψ(µτ) ,

If ψ(µτ) is the negative Bethe entropy of µτ , the update of µt+1
τ becomes the Bethe entropy

problem [198] and can be solved exactly by the sum-product algorithm in a linear time in the

tree.

4.3 Convergence Analysis of BADMM

We need the following assumption in establishing the convergence of BADMM:

Assumption 6
(a) f : Rn1 → R ∪ {+∞} and g : Rn2 → R ∪ {+∞} are closed, proper and convex.

(b) An optimal solution exists.

(c) The Bregman divergence Bφ is defined on an α-strongly convex function φ with respect

to a p-norm ‖ · ‖2p, i.e., Bφ(u,v) ≥ α
2 ‖u− v‖2p, where α > 0.

55

We start wth the Lagrangian, which is defined as follows:

L(x,y, z) = f(x) + g(z) + 〈y,Ax + Bz− c〉. (4.24)

Assume that {x∗, z∗,y∗} satisfies the KKT conditions of (6.5), i.e.,

−ATy∗ ∈ ∂f(x∗) , (4.25)

−BTy∗ ∈ ∂g(z∗) , (4.26)

Ax∗ + Bz∗ − c = 0 . (4.27)

{x∗, z∗,y∗} is an optimal solution. The optimality conditions of (7.21) and (4.7) are

−AT {yt + ρ(−∇φ(c−Axt+1) +∇φ(Bzt)} − ρx(∇ϕx(xt+1)−∇ϕx(xt)) ∈ ∂f(xt+1) ,

(4.28)

−BT {yt + ρ(∇φ(Bzt+1)−∇φ(c−Axt+1)} − ρz(∇ϕz(zt+1)−∇ϕz(zt)) ∈ ∂g(zt+1) .

(4.29)

If Axt+1 + Bzt+1 = c, then yt+1 = yt. Therefore, (4.25) is satisfied if Axt+1 + Bzt =

c ,xt+1 = xt in (4.28). Similarly, (4.26) is satisfied if zt+1 = zt in (4.29). Overall, the KKT

conditions (4.25)-(4.27) are satisfied if the following optimality conditions are satisfied:

Bϕx(xt+1,xt) = 0 , Bϕz(zt+1, zt) = 0 , (4.30a)

Axt+1 + Bzt − c = 0 , Axt+1 + Bzt+1 − c = 0 . (4.30b)

For the exact BADMM, ρx = ρz = 0 in (7.21) and (4.7), the optimality conditions are (4.30b),

which is equivalent to the optimality conditions used in the proof of ADMM in [19], i.e.,

Bzt+1 −Bzt = 0 , Axt+1 + Bzt+1 − c = 0 . (4.31)

Define the residuals of optimality conditions (4.30) at (t+ 1) as:

R(t+ 1) = Bφ(c−Axt+1,Bzt) + γ‖Axt+1 + Bzt+1 − c‖22
+
ρx

ρ
Bϕx(xt+1,xt) +

ρz

ρ
Bϕz(zt+1, zt) , (4.32)

where γ > 0. If R(t + 1) = 0, the optimality conditions (4.30) and (4.30b) are satisfied. It

is sufficient to show the convergence of BADMM by showing R(t + 1) converges to zero. We

need the following lemma.

56

Lemma 11 Let the sequence {xt, zt,yt} be generated by Bregman ADMM (7.21)-(4.8). For

any x∗, z∗ satisfying Ax∗ + Bz∗ = c, we have

f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))

≤ −〈yt,Axt+1 + Bzt+1 − c〉 − ρ(Bφ(c−Axt+1,Bzt) +Bφ(Bzt+1, c−Axt+1))

+ ρ(Bφ(Bz∗,Bzt)−Bφ(Bz∗,Bzt+1)) + ρx(Bϕx(x∗,xt)−Bϕx(x∗,xt+1)−Bϕx(xt+1,xt))

+ ρz(Bϕz(z∗, zt)−Bϕz(z∗, zt+1)−Bϕz(zt+1, zt)) . (4.33)

Proof: Using the convexity of f and its subgradient given in (4.28), we have

f(xt+1)− f(x)

≤ 〈−AT {yt + ρ(−∇φ(c−Axt+1) +∇φ(Bzt)} − ρx(∇ϕx(xt+1)−∇ϕx(xt)),xt+1 − x〉

= −〈yt,A(xt+1 − x)〉+ ρ〈∇φ(c−Axt+1)−∇φ(Bzt),A(xt+1 − x)〉

− ρx〈∇ϕx(xt+1)−∇ϕx(xt),xt+1 − x〉 . (4.34)

Setting x = x∗ and using Ax∗ + Bz∗ = c, we have

f(xt+1)− f(x∗)

≤ −〈yt,Axt+1 + Bz∗ − c〉+ ρ〈∇φ(c−Axt+1)−∇φ(Bzt),Bz∗ − (c−Axt+1)〉

− ρx〈∇ϕx(xt+1)−∇ϕx(xt),xt+1 − x〉

= −〈yt,Axt+1 + Bz∗ − c〉+ ρ(Bφ(Bz∗,Bzt)−Bφ(Bz∗, c−Axt+1)−Bφ(c−Axt+1,Bzt))

+ ρx(Bϕx(x∗,xt)−Bϕx(x∗,xt+1)−Bϕx(xt+1,xt)) . (4.35)

where the last equality uses the three point property of Bregman divergence, i.e.,

〈∇φ(u)−∇φ(v),w − u〉 = Bφ(w,v)−Bφ(w,u)−Bφ(u,v) . (4.36)

Similarly, using the convexity of g and its subgradient given in (4.29), for any z,

g(zt+1)− g(z)

≤ 〈−BT {yt + ρ(∇φ(Bzt+1)−∇φ(c−Axt+1)} − ρz(∇ϕz(zt+1)−∇ϕz(zt)), zt+1 − z〉

= −〈yt,B(zt+1 − z)〉+ ρ〈∇φ(Bzt+1)−∇φ(c−Axt+1),Bz−Bzt+1)〉

− ρz〈∇ϕz(zt+1)−∇ϕz(zt), zt+1 − z〉

= −〈yt,B(zt+1 − z)〉+ ρ {Bφ(Bz, c−Axt+1)−Bφ(Bz,Bzt+1)−Bφ(Bzt+1, c−Axt+1)}

57

+ ρz(Bϕz(z, zt)−Bϕz(z, zt+1)−Bϕz(zt+1, zt)) . (4.37)

where the last equality uses the three point property of Bregman divergence (4.36). Set z = z∗

in (4.37). Adding (4.35) and (4.37) completes the proof.

Under Assumption 6(c), the following lemma shows that (4.32) is bounded by a telescoping

series of D(w∗,wt) − D(w∗,wt+1), where D(w∗,wt) defines the distance from the current

iterate wt = (xt, zt,yt) to a KKT point w∗ = (x∗, z∗,y∗) as follows:

D(w∗,wt) =
1

2τρ
‖y∗ − yt‖22 +Bφ(Bz∗,Bzt) +

ρx

ρ
Bϕx(x∗,xt) +

ρz

ρ
Bϕz(z∗, zt) . (4.38)

Lemma 12 Let the sequence {xt, zt,yt} be generated by Bregman ADMM (7.21)-(4.8) and

{x∗, z∗,y∗} satisfying (4.25)-(4.27). Let the Assumption 6 hold. R(t+ 1) and D(w∗,wt) are

defined in (4.32) and (4.38) respectively. Set τ ≤ (ασ − 2γ)ρ, where σ = min{1,m
2
p
−1} and

0 < γ < ασ
2 . Then

R(t+ 1) ≤ D(w∗,wt)−D(w∗,wt+1) . (4.39)

Proof: Assume {x∗,y∗} satisfies (4.25). Since f is convex, then

f(x∗)− f(xt+1) ≤ −〈ATy∗,x∗ − xt+1〉 = −〈y∗,Ax∗ −Axt+1〉 . (4.40)

Similarly, for convex function g and {z∗,y∗} satisfying (4.26), we have

g(z∗)− g(zt+1) ≤ −〈BTy∗, z∗ − zt+1〉 = −〈y∗,Bz∗ −Bzt+1〉 . (4.41)

Adding them together and using the fact that Ax∗ + Bz∗ = c, we have

f(x∗) + g(z∗)− (f(xt+1) + g(zt+1)) ≤ 〈y∗,Axt+1 + Bzt+1 − c〉 . (4.42)

Adding (4.42) and (4.33) together yields

0 ≤ 〈y∗ − yt,Axt+1 + Bzt+1 − c〉 − ρ(Bφ(c−Axt+1,Bzt) +Bφ(Bzt+1, c−Axt+1))

+ ρ(Bφ(Bz∗,Bzt)−Bφ(Bz∗,Bzt+1)) + ρx(Bϕx(x∗,xt)−Bϕx(x∗,xt+1)−Bϕx(xt+1,xt))

+ ρz(Bϕz(z∗, zt)−Bϕz(z∗, zt+1)−Bϕz(zt+1, zt)) . (4.43)

Using Axt+1 + Bzt+1 − c = 1
τ (yt+1 − yt), the first term can be rewritten as

〈y∗ − yt,Axt+1 + Bzt+1 − c〉 =
1

τ
〈y∗ − yt,yt+1 − yt〉

58

=
1

2τ

(
‖y∗ − yt‖22 − ‖y∗ − yt+1‖22 + ‖yt+1 − yt‖22

)
=

1

2τ

(
‖y∗ − yt‖22 − ‖y∗ − yt+1‖22

)
+
τ

2
‖Axt+1 + Bzt+1 − c‖22 . (4.44)

Plugging into (4.43) and rearranging the terms, we have

1

2τ

(
‖y∗ − yt‖22 − ‖y∗ − yt+1‖22

)
+ ρ(Bφ(Bz∗,Bzt)−Bφ(Bz∗,Bzt+1))

ρx(Bϕx(x∗,xt)−Bϕx(x∗,xt+1)) + ρz(Bϕz(z∗, zt)−Bϕz(z∗, zt+1))

≥ ρxBϕx(xt+1,xt) + ρzBϕz(zt+1, zt) + ρBφ(c−Axt+1,Bzt)

+ ρBφ(Bzt+1, c−Axt+1)− τ

2
‖Axt+1 + Bzt+1 − c‖22 . (4.45)

Dividing both sides by ρ and letting R(t + 1) and D(w∗,wt) be defined in (4.32) and (4.38)

respectively, we have

D(w∗,wt)−D(w∗,wt+1)

≥ R(t+ 1)+Bφ(Bzt+1, c−Axt+1)− (
τ

2ρ
+ γ)‖Axt+1 + Bzt+1 − c‖22

≥ R(t+ 1) +
α

2
‖Axt+1 + Bzt+1 − c‖2p − (

τ

2ρ
+ γ)‖Axt+1 + Bzt+1 − c‖22 ,

(4.46)

where the last inequality uses the Assumption 6(c).

If 0 < p ≤ 2, ‖u‖p ≥ ‖u‖2. Set α2 ≥
τ
2ρ + γ in (4.46), i.e., τ ≤ (α− 2γ)ρ. We can always

find a γ < α
2 , thus (4.39) follows.

If p > 2, ‖u‖2 ≤ m
1
2
− 1
p ‖u‖p for any u ∈ Rm×1, so ‖u‖2p ≥ m

2
p
−1‖u‖22. In (4.46), set

α
2m

2
p
−1 ≥ τ

2ρ + γ, i.e., τ ≤ (αm
2
p
−1 − 2γ)ρ. As long as γ < α

2m
2
p
−1, we have (4.39).

Remark 1 (a) If 0 < p ≤ 2, then σ = 1 and τ ≤ (α − 2γ)ρ. The case that 0 < p ≤ 2

includes two widely used Bregman divergences, i.e., Euclidean distance and KL divergence.

For KL divergence in the unit simplex, we have α = 1, p = 1 in the Assumption 6 (c), i.e.,

KL(u,v) ≥ 1
2‖u− v‖21 [10].

(b) Since we often set Bφ to be a quadratic function (p = 2), the three special cases in

Section 2.1 could choose step size τ = (α− 2γ)ρ.

(c) If p > 2, the proof requires a sufficiently small step size τ , which may not be needed

in practice. It would be interesting to see whether we can use a same τ = O(ρ) for any p > 0

using other proof techniques.

59

The following theorem establishes the global convergence for BADMM.

Theorem 9 Let the sequence {xt, zt,yt} be generated by Bregman ADMM (7.21)-(4.8) and

{x∗, z∗,y∗} satisfying (4.25)-(4.27). Let the Assumption 6 hold and τ, γ satisfy the conditions

in Lemma 12. Then R(t + 1) converges to zero and {xt, zt,yt} converges to a KKT point

{x∗, z∗,y∗} of (6.5).

Proof: SinceR(t+1) ≥ 0, (4.39) impliesD(w∗,wt+1) ≤ D(w∗,wt). Therefore,D(w∗,wt)

is monotonically nonincreasing and wt converges to a KKT point w∗. Summing (4.39) over t

from 0 to∞ yields
∞∑
t=0

R(t+ 1) ≤ D(w∗,w0) . (4.47)

Since R(t+ 1) ≥ 0, R(t+ 1)→ 0 as t→∞, which completes the proof.

The following theorem establishs a O(1/T) convergence rate for the objective and residual

of constraints in an ergodic sense.

Theorem 10 Let the sequences {xt, zt,yt} be generated by Bregman ADMM (7.21),(4.7),(4.8)

and y0 = 0. Let x̄T = 1
T

∑T
t=1 xt, z̄T = 1

T

∑T
t=1 zt. Set τ ≤ (ασ − 2γ)ρ, where σ =

min{1,m
2
p
−1} and 0 < γ < ασ

2 . For any (x∗, z∗,y∗) satisfying KKT conditions (4.25)-(4.27),

we have

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) ≤ D1

T
, (4.48)

‖Ax̄T + Bz̄T − c‖22 ≤
D(w∗,w0)

γT
, (4.49)

where D1 = ρBφ(Bz∗,Bz0) + ρxBϕx(x∗,x0) + ρzBϕz(z∗, z0).

Proof: Using (4.8), we have

−〈yt,Axt+1 + Bzt+1 − c〉 = −1

τ
〈yt,yt+1 − yt〉

= − 1

2τ
(‖yt+1‖22 − ‖yt‖22 − ‖yt+1 − yt‖22)

=
1

2τ
(‖yt‖22 − ‖yt+1‖22) +

τ

2
‖Axt+1 + Bzt+1 − c‖22 . (4.50)

Plugging into (4.33) and ignoring some negative terms yield

f(xt+1) + g(zt+1)− (f(x∗) + g(z∗)) ≤ 1

2τ
(‖yt‖22 − ‖yt+1‖22)

60

+ ρ(Bφ(Bz∗,Bzt)−Bφ(Bz∗,Bzt+1)) + ρx(Bϕx(x∗,xt)−Bϕx(x∗,xt+1))

+ ρz(Bϕz(z∗, zt)−Bϕz(z∗, zt+1))− ρBφ(Bzt+1, c−Axt+1) +
τ

2
‖Axt+1 + Bzt+1 − c‖22 .

(4.51)

AssumeBφ(Bzt+1, c−Axt+1) ≥ α
2 ‖Axt+1+Bzt+1−c‖2p. If 0 < p ≤ 2, using ‖u‖p ≤ ‖u‖2,

−ρBφ(Bzt+1, c−Axt+1) +
τ

2
‖Axt+1 + Bzt+1 − c‖22 ≤ −

αρ− τ
2
‖Axt+1 + Bzt+1 − c‖22 .

Setting τ ≤ (α− 2γ)ρ, the last two terms on the right hand side of (4.51) can be removed.

If p > 2, ‖u‖2 ≤ m
1
2
− 1
p ‖u‖p for any u ∈ Rm×1, so ‖u‖2p ≥ m

2
p
−1‖u‖22. Then

−ρBφ(Bzt+1, c−Axt+1) +
τ

2
‖Axt+1 + Bzt+1 − c‖22 ≤ −

αρm
2
p
−1 − τ
2

‖Axt+1 + Bzt+1 − c‖22 .

Setting τ ≤ (αm
2
p
−1−2γ)ρ, the last two terms on the right hand side of (4.51) can be removed.

Summing over t from 0 to T − 1, we have the following telescoping sum

T−1∑
t=0

[f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))]

≤ 1

2τ
‖y0‖22 + ρBφ(Bz∗,Bz0) + ρxBϕx(x∗,x0) + ρz(Bϕz(z∗, z0)

= ρBφ(Bz∗,Bz0) + ρxBϕx(x∗,x0) + ρz(Bϕz(z∗, z0) . (4.52)

Dividing both sides by T and applying the Jensen’s inequality gives (4.54).

Dividing both sides of (4.47) by T and applying the Jensen’s inequality yield (4.55).

We consider one special case of BADMM which could outperform ADMM. Assume B = I

and X ,Z are the unit simplex. Let Bφ be the KL divergence. For z ∈ Rn2×1, we have

Bφ(z∗, z0) =

n2∑
i=1

z∗i ln
z∗i
zi,0

=

n2∑
i=1

z∗i ln z∗i + lnn2 ≤ lnn2 . (4.53)

Similarly, if ρx > 0, by choosing x0 = e/n2, Bϕx(x∗,x0) ≤ lnn1. Setting α = 1, σ = 1 and

γ = 1
4 in Theorem 10 yields the following result:

Corollary 1 Let the sequences {xt, zt,yt} be generated by Bregman ADMM (7.21),(4.7),(4.8)

and y0 = 0. Assume B = I, and X and Z is the unit simplex. Let Bφ, Bϕx , Bϕz be KL

61

divergence. Let x̄T = 1
T

∑T
t=1 xt, z̄T = 1

T

∑T
t=1 zt. Set τ = 3ρ

4 . For any (x∗, z∗,y∗)

satisfying KKT conditions (4.25)-(4.27), we have

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) ≤ ρ lnn2 + ρx lnn1 + ρz lnn2

T
, (4.54)

‖Ax̄T + Bz̄T − c‖22 ≤
2
τρ‖y

∗−y0‖22 + 4 lnn2 + 4ρx
ρ lnn1+ 4ρz

ρ lnn2

T
, (4.55)

Remark 2 (a) In [10], it shows that MDA yields a smilarO(lnn) bound where n is dimension-

ality of the problem. If the diminishing step size of MDA is propotional to
√

lnn, the bound is

O(
√

lnn). Therefore, MDA can outperform the gradient method by a factor O((n/ lnn)1/2).

(b) With constant step size, BADMM outperforms ADMM by a factor O(n/ lnn) in an

ergodic sense.

4.4 Experimental Results

In this section, we use BADMM to solve the mass transportation problem [82]:

min 〈C,X〉 s.t. Xe = a,XTe = b,X ≥ 0 . (4.56)

where 〈C,X〉 denotes Tr(CTX), C ∈ Rm×n is a cost matrix, e is a column vector of ones.

(4.56) is called the assignment problem and can be solved exactly by the Hungarian method [108].

The mass transportation problem (4.56) is a linear program and thus can be solved by the sim-

plex method.

We now show that (4.56) can be solved by ADMM and BADMM. We first introduce a

variable Z to split the constraints into two simplex such that ∆x = {X|X ≥ 0,Xe = a} and

∆z = {Z|Z ≥ 0,ZTe = b}. (4.56) can be rewritten in the following ADMM form:

min 〈C,X〉 s.t. X ∈∆x,Z ∈∆z,X = Z . (4.57)

(4.57) can be solved by ADMM which requires the Euclidean projection onto the simplex ∆x

and ∆z, although the projection can be done efficiently [51]. We use BADMM to solve (4.57):

Xt+1 = argmin
X∈∆x

〈C,X〉+ 〈Yt,X〉+ ρKL(X,Zt) , (4.58)

Zt+1 = argmin
Z∈∆z

〈Yt,−Z〉+ ρKL(Z,Xt+1) , (4.59)

62

Yt+1 = Yt + ρ(Xt+1 − Zt+1) . (4.60)

Both (4.58) and (4.59) have closed-form solutions, i.e.,

Xt+1
ij =

Ztij exp(−Cij+Y
t
ij

ρ)∑n
j=1 Z

t
ij exp(−Cij+Y tij

ρ)
ai , Zt+1

ij =
Xt+1
ij exp(

Y tij
ρ)∑m

i=1X
t+1
ij exp(

Y tij
ρ)

bj (4.61)

which are exponentiated graident updates and can be done inO(mn). Besides the sum operation

which can be done in O(log(n)), (4.61) amounts to elementwise operation and thus can be

done in parallel. According to Corollary 1, BADMM can be faster than ADMM by a factor of

O(n/ log(n)).

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
x 10

−3

runtime (s)

P
ri

m
a
l
a
n

d
 d

u
a
l
re

s
id

u
a
l

BADMM

ADMM

(a) m = n = 1000

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
x 10

−3

Iteration

P
r
im

a
l
a
n

d
 d

u
a
l
r
e
s
id

u
a
l

BADMM

ADMM

(b) m = n = 2000

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

log(runtime)

O
b

je
c
ti

v
e
 v

a
lu

e

BADMM

ADMM

(c) m = n = 4000
Figure 4.1: Comparison BADMM and ADMM. BADMM converges faster than ADMM.

We compare BADMM with ADMM and a highly optimized commercial linear program-

ming solvers on the mass transportation problem (4.56) when m = n and a = b = e. C is

randomly generated from the uniform distribution. They run 5 times and the average is reported.

We choose the ’best’ parameter for BADMM (ρ = 0.001) and ADMM (ρ = 0.001). The stop-

ping condition is either when the number of iterations exceeds 2000 or when the primal-dual

residual is less than 10−4.

BADMM vs ADMM: Figure 4.1 compares BADMM and ADMM with different dimen-

sions n = {1000, 2000, 4000} running on a single CPU. Figure 4.1(a) plots the primal and dual

residual against the runtime when the dimension is 1000, and Figure 4.1(b) plots the conver-

gence of primal and dual residual over iteration when the dimension is 2000. BADMM con-

verges faster than ADMM. Figure 4.1(c) plots the convergence of objective value against the

log of runtime. BADMM converges faster than ADMM even when the initial point is further

from the optimum.

BADMM vs Gurobi: Gurobi2 is a highly optimized commercial software where linear

programming solvers have been efficiently implemented. We run Gurobi on two settings: a
2 http://www.gurobi.com/

http://www.gurobi.com/

63

Table 4.1: Comparison of BADMM (GPU) with Gurobi
m=n Gurobi (Laptop) Gurobi (Server) BADMM (GPU)

time objective time objective time objective

210 4.22 1.69 2.66 1.69 0.54 1.69

5× 210 377.14 1.61 92.89 1.61 22.15 1.61

10× 210 - - 1235.34 1.65 117.75 1.65

15× 210 - - - - 303.54 1.63

Mac laptop with 6G memory and a server with 86G memory, respectively. For comparison,

BADMM is run in parallel on a Tesla M2070 GPU with 5G memory and 448 cores3 . We

experiment with large scale problems and use m = n = {1, 5, 10, 15}× 210. Table 1 shows the

runtime and the objective values of BADMM and Gurobi, where a ‘-’ indicates the algorithm

did not terminate. In spite of Gurobi being one of the most optimized LP solvers, BADMM

running in parallel is several times faster than Gurobi. In fact, for larger values of n, Gurobi

did not terminate even on the 86G server, whereas BADMM was efficient even with just 5G

memory! The complexity of most LP solvers in Gurobi is O(n3) and can become slow as n

increases, especially at the scales we consider. Moreover, the memory consumption of Gurobi

increases rapidly with the increase of n. When n = 5 × 210, the memory required by Gurobi

surpassed the memory in the laptop, leading to the rapid increase of time. A similar situation

was also observed in the server with 86G when n = 10× 210. In contrast, the memory required

by BADMM is O(n2)—even when n = 15× 210 (more than 0.2 billion parameters), BADMM

can still run on a single GPU with only 5G memory.

The results clearly illustrate the promise of BADMM. With more careful implementation

and code optimization, BADMM has the potential to solve large scale problems efficiently in

parallel with small memory foot-print.
3 GPU code is available on http://www-users.cs.umn.edu/˜huwang/badmm_mt.zip

http://www-users.cs.umn.edu/~huwang/badmm_mt.zip

64

Appexdix

4.A Convergence of BADMM with Time Varying Step Size

Under the assumption that yt is bounded, the following theorem requires a large step size to

establish the convergence of BADMM.

Theorem 11 Let the sequences {xt, zt,yt} be generated by Bregman ADMM (7.21)-(4.8) and

{x∗, z∗,y∗} satisfying (4.25)-(4.27). Let the Assumption 6 hold and ‖yt‖2 ≤ Dy. Setting

ρx = ρz = c1

√
T , τ = c2

√
T and ρ =

√
T for some positive constant c1, c2, then R(t + 1)

converges to zero.

Proof: Assuming ‖yt‖2 ≤ Dy and using (4.8), we have

‖Axt+1 + Bzt+1 − c‖22 =
1

τ2
‖yt+1 − yt‖22 ≤

2

τ2
(‖yt+1‖22 + ‖yt‖22) ≤

4D2
y

τ2
. (4.62)

Plugging into (4.46) and rearranging the terms yields

R(t+ 1) ≤ D(w∗,wt)−D(w∗,wt+1) + (
τ

2ρ
+ γ)

4D2
y

τ2
. (4.63)

Setting ρx = ρz = c1

√
T , τ = c2

√
T and ρ =

√
T for some positive constant c1, c2, we have

R(t+ 1) = c1Bϕx(xt+1,xt) + c1Bϕz(zt+1, zt) +Bφ(c−Axt+1,Bzt)

+ γ‖Axt+1 + Bzt+1 − c‖22 , (4.64)

Summing (4.63) over t from 0 to T − 1, we have the following telescoping sum

T−1∑
t=0

R(t+ 1) ≤ D(w∗,w0) +

T−1∑
t=0

(
τ

2ρ
+ γ)

4D2
y

τ2
= D(w∗,w0) +

4(c2/2 + γ)D2
y

c2
2

. (4.65)

Therefore, R(t+ 1)→ 0 as t→∞.

The following theorem establishs the convergence rate for the objective and residual of

constraints in an ergodic sense.

Theorem 12 Let the sequences {xt, zt,yt} be generated by Bregman ADMM (7.21)-(4.8). Let

x̄T = 1
T

∑T
t=1 xt, z̄T = 1

T

∑T
t=1 zt. Let the Assumption 6 hold and ‖yt‖2 ≤ Dy. Set ρx =

65

ρz = c1

√
T , τ = c2

√
T , ρ =

√
T for some positive constants c1, c2. For any (x∗, z∗,y∗)

satisfying KKT conditions (4.25)-(4.27), we have

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) ≤
2D2

y

c2

√
T

+
‖y0‖22

2c2T
√
T

+
D2√
T
, (4.66)

‖Ax̄T + Bz̄T − c‖22 ≤
D(w∗,w0)

γT
+

4(c2/2 + γ)D2
y

γc22T
, (4.67)

where D2 = Bφ(Bz∗,Bz0) + c1(Bϕx(x∗,x0) +Bϕz(z∗, z0)).

Proof: Assuming ‖yt‖2 ≤ D2
y and using (4.8), we have

−〈yt,Axt+1 + Bzt+1 − c〉 = −1

τ
〈yt,yt+1 − yt〉 ≤

1

τ
(‖yt‖22 + ‖yt‖2 ∗ ‖yt+1‖2) ≤

2D2
y

τ
.

(4.68)

Plugging into (4.33) and ignoring some negative terms yield

f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))

≤
2D2

y

τ
+ ρ(Bφ(Bz∗,Bzt)−Bφ(Bz∗,Bzt+1)) + ρx(Bϕx(x∗,xt)−Bϕx(x∗,xt+1))

+ ρz(Bϕz(z∗, zt)−Bϕz(z∗, zt+1)) . (4.69)

Summing over t from 0 to T − 1, we have the following telescoping sum

T−1∑
t=0

[f(xt+1) + g(zt+1)− (f(x∗) + g(z∗))]

≤
T−1∑
t=0

2D2
y

τ
+

1

2τ
‖y0‖22 + ρBφ(Bz∗,Bz0) + ρxBϕx(x∗,x0) + ρzBϕz(z∗, z0) .

Setting ρx = ρz = c1

√
T , τ = c2

√
T , ρ =

√
T , dividing both sides by T and applying the

Jensen’s inequality yield (4.66).

Dividing both sides of (4.65) by T and applying the Jesen’s inequality yield (4.67).

Chapter 5

Parallel Direction Method of
Multipliers

5.1 Introduction

In this chapter, we consider the minimization of block-seperable convex functions subject to

linear constraints, with a canonical form:

min
{xj∈Xj}

f(x) =

J∑
j=1

fj(xj) , s.t. Ax =

J∑
j=1

Ac
jxj = a , (5.1)

where the objective function f(x) is a sum of J block separable (nonsmooth) convex functions,

Ac
j ∈ Rm×nj is the j-th column block of A ∈ Rm×n where n =

∑
j nj , xj ∈ Rnj×1 is the

j-th block coordinate of x, Xj is a local convex constraint of xj and a ∈ Rm×1. The canonical

form can be extended to handle linear inequalities by introducing slack variables, i.e., writing

Ax ≤ a as Ax + z = a, z ≥ 0.

A variety of machine learning problems can be cast into the linearly-constrained optimiza-

tion problem (5.1). For example, in robust Principal Component Analysis (RPCA) [24], one

attempts to recover a low rank matrix L and a sparse matrix S from an observation matrix

M, i.e., the linear constraint is M = L + S. Further, in the stable version of RPCA [223],

an noisy matrix Z is taken into consideration, and the linear constraint has three blocks, i.e.,

M = L + S + Z. The linear constraint with three blocks also appears in the latent variable

66

67

Gaussian graphical model selection problem [29, 127]. Problem (5.1) can also include com-

posite minimization problems which solve a sum of a loss function and a set of nonsmooth

regularization functions. Due to the increasing interest in structural sparsity [4], composite

regularizers have become widely used, e.g., overlapping group lasso [222]. As the blocks are

overlapping in this class of problems, it is difficult to apply block coordinate descent methods

for large scale problem [148, 160] which assume block-separable. By simply splitting blocks

through introducing equality constraints, the composite minimization problem can also formu-

lated as (5.1) [19].

A classical approach to solving (5.1) is to relax the linear constraints using the (augmented)

Lagrangian [163, 164], i.e.,

Lρ(x,y) = f(x) + 〈y,Ax− a〉+
ρ

2
‖Ax− a‖22 . (5.2)

where ρ ≥ 0 is called the penalty parameter. We call x the primal variable and y the dual

variable. (5.2) usually leads to primal-dual algorithms which update the primal and dual vari-

ables alternatively. The dual update is simply dual gradient ascent where the dual gradient is the

resiudal of equality constraint, i.e., Ax−a. The primal update is to solve a minimization prob-

lem of (5.2) given y. The primal update determines the efficiency of this class of primal-dual

algorithms and will be the focus of this chapter.

If ρ = 0, (5.2) decomposes into J independent subproblems provided f is separable. In

this scenario, the primal-dual algorithm is called the dual ascent method [20, 178], where the

primal update is solved in a parallel block coordinate fashion. While the dual ascent method can

achieve massive parallelism, a careful choice of stepsize and some strict conditions are required

for convergence, particularly when f is nonsmooth. To achieve better numerical efficiency and

convergence behavior compared to the dual ascent method, it is favorable to set ρ > 0 in the

augmented Lagrangian (5.2). However, (5.2) is no longer separable since the augmentation

term makes x coupled. A well-known primal-dual algorithm to solve (5.2) is the method of

multipliers, which solves the primal update in one block. For large scale optimization problems,

it is often difficult to solve the entire augmented Lagrangian efficiently. Considerable efforts

have thus been devoted to solving the primal update of the method of multipliers efficiently.

In [186], randomized block coordinate descent (RBCD) [148, 160] is used to solve (5.2) exactly,

but leading to a double-loop algorithm along with the dual step. More recent results show (5.2)

can be solved inexactly by just sweeping the coordinates once using the alternating direction

68

method of multipliers (ADMM) [67, 19].

When J = 2, the constraint is of the form Ac
1x1 + Ac

2x2 = a. In this case, it has been

shown that ADMM can solve the augmented Lagrangian seperately and alternatively. Encour-

aged by the success of ADMM with two blocks [19], ADMM has also been extended to solve

the problem with multiple blocks [86, 85, 47, 153, 78, 32]. The variants of ADMM can be

mainly divided into two categories. One is Gauss-Seidel ADMM (GSADMM) [86, 85], which

solves (5.2) in a cyclic block coordinate manner. [86] established a linear convergence rate

for MADMM under some fairly strict conditions: (1) Aj has full column rank; (2) fj has

Lipschitz-continuous gradients; (3) certain local error bounds hold; (4) the step size needs to

be sufficiently small. In [78], a back substitution step was added so that the convergence of

ADMM for multiple blocks can be proved. In some cases, it has been shown that ADMM

might not converge for multiple blocks [32]. In [85], a block successive upper bound mini-

mization method of multipliers (BSUMM) is proposed to solve the problem (5.1). The con-

vergence of BSUMM is established under conditions: (i) certain local error bounds hold; (ii)

the step size is either sufficiently small or decreasing. However, in general, Gauss-Seidel

ADMM with multiple blocks is not well understood and its iteration complexity is largely

open. The other is Jacobi ADMM [207, 47, 153], which solves (5.2) in a parallel block coordi-

nate fashion. In [207, 153], (5.1) is solved by using two-block ADMM with splitting variables

(sADMM). [47] considers a proximal Jacobian ADMM (PJADMM) by adding proximal terms.

In addition to the two types of extensions, a randomized block coordinate variant of ADMM

named RBSUMM was proposed in [85]. However, RBSUMM can only randomly update one

block. Moreover, the convergence of RBSUMM is established under the same conditions as

BSUMM and its iteration complexity is unknown. In [182], ADMM with stochastic dual coor-

dinate ascent is proposed to solve online or stochastic ADMM [200, 152, 183] problem in the

dual, which is not the focus of this chapter.

In this chapter, we propose a randomized block coordinate method named parallel direction

method of multipliers (PDMM) which randomly picks up any number of blocks to update in

parallel, behaving like randomized block coordinate descent [148, 160]. Like the dual ascent

method, PDMM solves the primal update in a parallel block coordinate fashion even with the

augmentation term. Moreover, PDMM inherits the merits of the method of multipliers and can

solve a fairly large class of problems, including nonsmooth functions. Technically, PDMM

has three aspects which make it distinct from such state-of-the-art methods. First, if block

69

coordinates of the primal x is solved exactly, PDMM uses a backward step on the dual update

so that the dual variable makes conservative progress. Second, the sparsity of A and the number

of primal blocks and dual blocks to be updated are taken into consideration to determine the step

size of the dual update. Third, PDMM can randomly choose arbitrary number of primal blocks

and dual blocks for update in parallel. Moreover, we show that sADMM and PJADMM are

the two extreme cases of PDMM. The connection between sADMM and PJADMM through

PDMM provides better understanding of dual backward step. PDMM can also be used to solve

overlapping groups in a randomized block coordinate fashion. Interestingly, the corresponding

problem for RBCD [148, 160] with overlapping blocks is still an open problem. We establish

the global convergence andO(1/T) iteration complexity of PDMM with constant step size. We

evaluate the performance of PDMM in two applications: robust principal component analysis

and overlapping group lasso.

The rest of this chapter is organized as follows. PDMM is proposed in Section 5.2. The

convergence results are established in Section 5.3. We evaluate the performance of PDMM in

Section 5.4. The proof of the convergence of PDMM is given in the Appendix.

Notations: Assume that A ∈ Rm×n is divided into I × J blocks. Let Ar
i ∈ Rmi×n be the

i-th row block of A, Ac
j ∈ Rm×nj be the j-th column block of A, and Aij ∈ Rmi×nj be the

ij-th block of A. Let yi ∈ Rmi×1 be the i-th block coordinate of y ∈ Rm×1. N (i) is a set of

nonzero blocks Aij in the i-th row block Ar
i and di = |N (i)| is the number of nonzero blocks.

λijmax is the largest eigenvalue of AT
ijAij . diag(x) denotes a diagonal matrix of vector x. In

is an identity matrix of size n × n. Let K̃i = min{di,K} where K is the number of blocks

randomly chosen by PDMM and T be the number of iterations.

5.2 Parallel Direction Method of Multipliers

Consider a direct Jacobi version of ADMM which updates all blocks in parallel:

xt+1
j = argmin

xj∈Xj
Lρ(xj ,x

t
k 6=j ,y

t) , (5.3)

yt+1 = yt + τρ(Axt+1 − a) . (5.4)

where τ is a shrinkage factor for the step size of the dual gradient ascent update. However,

empirical results show that it is almost impossible to make the direct Jacobi updates (5.3)-(5.4)

70

Table 5.1: Parameters (τi, νi) of PDMM. K is the number of primal blocks randomly chosen

from J primal blocks, KI is the number of dual blocks randomly chosen from I dual blocks.

K̃i = min{di,K} where di is the number of nonzero blocks Aij in the i-th row of A.

K νi τi

K = 1 0 I
(2J−1)KI+I−KI

1 < K < J 1− 1
K̃i

K

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]

K = KI , I = J 1− 1
K̃i

J
K̃i(3J−2K)

K = J 1− 1
di

1
di

to converge even when τ is extremely small. [86, 47] also noticed that the direct Jacobi updates

may not converge.

To address the problem in (5.3) and (5.4), we propose a backward step on the dual update.

Moreover, instead of updating all blocks, the blocks xj will be updated in a parallel random-

ized block coordinate fashion. We call the algorithm Parallel Direction Method of Multipliers

(PDMM). At time t + 1, PDMM first randomly select K primal blocks denoted by Jt and KI

dual blocks denoted by set It, then executes the following iterates:

ŷti = yti − νiρ(Aix
t − ai) , (5.5)

xt+1
jt

= argmin
xjt∈Xjt

Lρ(xjt ,x
t
k 6=jt , ŷ

t) + ηjtBφjt (xjt ,x
t
jt) , jt ∈ Jt , (5.6)

yt+1
it

= ytit + τitρ(Aitx
t+1 − ait) , it ∈ It , (5.7)

where τi > 0, 0 ≤ νi < 1, ηjt ≥ 0, and Bφjt (xjt ,x
t
jt

) is a Bregman divergence. Note x =

[xt+1
jt∈Jt ,xk 6∈Jt]

T and y = [yt+1
it∈It ,yk 6∈It]

T . Table 5.1 shows how to choose τi and νi under

different numbers of random primal blocks K, random dual blocks KI , and block sparsity of

A. K is the number of blocks randomly chosen from J blocks, and K̃i = min{di,K} where

di is the number of nonzero blocks Aij in the i-th row of A.

In the xjt-update (5.6), a Bregman divergence is addded so that exact PDMM and its inexact

variants can be analyzed in an unified framework [201]. In particular, if ηjt = 0, (5.6) is an exact

update. If ηjt > 0, by choosing a suitable Bregman divergence, (5.6) can be solved by various

inexact updates, often yielding a closed-form for the xjt update (see Section 5.2.1).

71

Algorithm 4 Parallel Diretion Method of Multipliers
1: Input: ρ, ηj , τi, νi
2: Initialization: x1, ŷ1 = 0

3: if τi, νi are not defined, initialize τi, νi as given in Table 5.1

4: r1 = Ax1 − a = −a

5: for t = 1 to T do
6: randomly pick up jt and it block coordinates

7: ŷti = yti − νiρrti
8: xt+1

jt
= argmin

xjt∈Xjt
fjt(xjt)+〈(Ac

jt
)T (ŷt+ρrt),xjt〉+

ρ
2‖A

c
jt

(xjt−xtjt)‖
2
2+ηjtBφjt (x,x

t
jt

)

9: rt+1 = rt +
∑

jt∈Jt Ac
jt

(xt+1
jt
− xtjt)

10: yt+1
it

= ytit + τitρr
t+1
it

, it ∈ It
11: end for

Let rt = Axt − a, then rt+1 = rt +
∑

jt∈Jt Ac
jt

(xt+1
jt
− xtjt). (5.6) can be rewritten as

xt+1
jt

= argmin
xjt∈Xjt

fjt(xjt) + 〈ŷt,Ac
jtxjt〉+

ρ

2
‖Ac

jtxjt +
∑
k 6=jt

Ac
kx

t
k − a‖22 + ηjtBφjt (x,x

t
jt)

= argmin
xjt∈Xjt

fjt(xjt) + 〈(Ac
jt)

T (ŷt + ρrt),xjt〉+
ρ

2
‖Ac

jt(xjt − xtjt)‖
2
2 + ηjtBφjt (x,x

t
jt) .

(5.8)

Therefore, we have the algorithm of PDMM as in Algorithm 4.

To better understand PDMM, we discuss the following three aspects which play roles in

choosing τi and νi: the dual backward step (5.5), the sparsity of A and the choice of randomized

blocks.

Dual Backward Step: We attribute the failure of the Jacobi updates (5.3)-(5.4) to the fol-

lowing observation in (5.3), which can be rewritten as:

xt+1
j = argmin

xj∈Xj
fj(xj) + 〈yt + ρ(Axt − a),Ac

jxj〉+
ρ

2
‖Ac

j(xj − xtj)‖22 . (5.9)

In the primal xj update, the quadratic penalty term implicitly adds full gradient ascent step

to the dual variable, i.e., yt + ρ(Axt − a), which we call implicit dual ascent. The implicit

dual ascent along with the explicit dual ascent (5.4) may lead to too aggressive progress on

the dual variable, particularly when the number of blocks is large. Based on this observation,

72

we introduce an intermediate variable ŷt to replace yt in (5.9) so that the implicit dual ascent

in (5.9) makes conservative progress, e.g., ŷt + ρ(Axt−a) = yt + (1− ν)ρ(Axt−a) , where

0 < ν < 1. ŷt is the result of a ‘backward step’ on the dual variable, i.e., ŷt = yt−νρ(Axt−a).

Moreover, one can show that τ and ν have also been implicitly used when using two-block

ADMM with splitting variables (sADMM) to solve (5.1) [153, 207]. Section 5.2.2 shows

sADMM is a special case of PDMM. The connection helps in understanding the role of the

two parameters τi, νi in PDMM. Interestingly, the step sizes τi and νi can be improved by

considering the block sparsity of A and the number of random blocks to be updated.

Sparsity of A: Assume A is divided into I × J blocks. While xj can be updated in

parallel, the matrix multiplication Ax in the dual update (5.4) requires synchronization to gather

messages from all block coordinates jt ∈ Jt. For updating the i-th block of the dual yi, we

need Aix
t+1 =

∑
jt∈Jt Aijtx

t+1
jt

+
∑

k/∈Jt Aikx
t
k which aggregates “messages” from all xjt .

If Aijt is a block of zeros, there is no “message” from xjt to yi. More precisely, Aix
t+1 =∑

jt∈Jt∩N (i) Aijtx
t+1
jt

+
∑

k/∈Jt Aikx
t
k where N (i) denotes a set of nonzero blocks in the i-th

row block Ai. N (i) can be considered as the set of neighbors of the i-th dual block yi and

di = |N (i)| is the degree of the i-th dual block yi. If A is sparse, di could be far smaller than

J . According to Table 5.1, a low di will lead to bigger step sizes τi for the dual update and

smaller step sizes for the dual backward step (5.5). Further, as shown in Section 5.2.3, when

using PDMM with all blocks to solve composite minimization with overlapping blocks, PDMM

can use τi = 0.5 which is much larger than 1/J in sADMM.

Randomized Blocks: The number of blocks to be randomly chosen also has the effect on

τi, νi. If randomly choosing one primal block (K = 1), then νi = 0 and thus the dual backward

step (5.5) vanishes. If further randomly updating one dual block (KI = 1) and assuming

I = J , τi > 1
3 . In general, for a particular KI , τi increases as K decreases. For a particular K,

τi increases as KI decreases. However, if updating all primal blocks (K = J), no matter how

many dual blocks are updated, τi = 1
di
, νi = 1− 1

di
.

5.2.1 Inexact PDMM

If ηjt > 0, there is an extra Bregman divergence term in (5.6), which can serve two purposes.

First, choosing a suitable Bregman divergence can lead to a closed-form solution for (5.6).

Second, if ηjt is sufficiently large, the dual update can use a large step size (τi = 1) and the

backward step (5.5) can be removed (νi = 0), leading to the same updates as PJADMM [47]

73

(see Section 5.2.2).

Given a differentiable function ψjt , its Bregman divergence is defiend as

Bψjt (xjt ,x
t
jt)=ψjt(xjt)−ψjt(xtjt)−〈∇ψjt(x

t
jt),xjt−xtjt〉, (5.10)

where∇ψjt denotes the gradient of ψjt . Rearranging the terms yields

ψjt(xjt)−Bψjt (xjt ,x
t
jt)=ψjt(x

t
jt)+〈∇ψjt(xtjt),xjt−xtjt〉, (5.11)

which is exactly the linearization of ψjt(xjt) at xtjt . Therefore, if solving (5.6) exactly becomes

difficult due to some problematic terms, we can use the Bregman divergence to linearize these

problematic terms so that (5.6) can be solved efficiently. More specifically, in (5.6), we can

choose φjt = ϕjt− 1
ηjt
ψjt assuming ψjt is the problematic term. Using the linearity of Bregman

divergence,

Bφjt (xjt ,x
t
jt) = Bϕjt (xjt ,x

t
jt)−

1

ηjt
Bψjt (xjt ,x

t
jt) . (5.12)

For instance, if fjt is a logistic function, solving (5.6) exactly requires an iterative algorithm.

Setting ψjt = fjt , ϕjt = 1
2‖· ‖

2
2 in (5.12) and plugging into (5.6) yield

xt+1
jt

= argmin
xjt∈Xjt

〈∇fjt(xtjt),xjt〉+ 〈ŷt,Ajtxjt〉

+
ρ

2
‖Ajtxjt +

∑
k 6=j

Akx
t
k − a‖22 + ηjt‖xjt − xtjt‖

2
2 , (5.13)

which has a closed-form solution. Similarly, if the quadratic penalty term ρ
2‖A

c
jt

xjt+
∑

k 6=j Ac
kxjt−

a‖22 is a problematic term, we can setψjt(xjt) = ρ
2‖A

c
jt

xjt‖22, thenBψjt (xjt ,x
t
jt

) = ρ
2‖A

c
jt

(xjt−
xtjt)‖

2
2 can be used to linearize the quadratic penalty term.

In (5.12), the nonnegativeness of Bφjt implies that Bϕjt ≥
1
ηjt
Bψjt . This condition can

be satisfied as long as ϕjt is more convex than ψjt . Technically, we assume that ϕjt is σ/ηjt-

strongly convex and ψjt has Lipschitz continuous gradient with constant σ, which has been

shown in [201]. For instance, if ψjt(xjt) = ρ
2‖A

c
jt

xjt‖22, σ = ρλmax(Ac
jt

) where λmax(Ac
jt

)

denotes the largest eigenvalue of (Ac
jt

)TAc
jt

. If choosing ϕjt = 1
2‖· ‖

2
2, the condition is satisfied

by setting ηjt ≥ ρλmax(Ac
jt

).

5.2.2 Connections to Related Work

All blocks: There are also two other methods which update all blocks in parallel. If solving

the primal updates exactly, two-block ADMM with splitting variables (sADMM) is considered

74

in [153, 207]. We show that sADMM is a special case of PDMM when setting τi = 1
J and

νi = 1 − 1
J (See Appendix 5.B). If the primal updates are solved inexactly, [47] considers a

proximal Jacobian ADMM (PJADMM) by adding proximal terms where the converge rate is

improved to o(1/T) given the sufficiently large proximal terms. We show that PJADMM [47]

is also a special case of PDMM (See Appendix 5.C). sADMM and PJADMM are two extreme

cases of PDMM. The connection between sADMM and PJADMM through PDMM can provide

better understanding of the three methods and the role of dual backward step. If the primal

update is solved exactly which makes sufficient progress, the dual update should take small

step, e.g., sADMM. On the other hand, if the primal update takes small progress by adding

proximal terms, the dual update can take full gradient step, e.g. PJADMM. While sADMM is a

direct derivation of ADMM, PJADMM introduces more terms and parameters.

Randomized blocks: While PDMM can randomly update any number of blocks, RBUSMM [85]

can only randomly update one block. The convergence of RBSUMM requires certain local error

bounds to be hold and decreasing step size. Moreover, the iteration complexity of RBSUMM is

still unknown. In contast, PDMM converges at a rate of O(1/T) with the constant step size.

5.2.3 Randomized Overlapping Block Coordinate

Consider the composite minimization problem of a sum of a loss function `(w) and composite

regularizers gj(wj):

min
w

`(w) +

L∑
j=1

gj(wj) , (5.14)

which considers L overlapping groups wj ∈ Rb×1. Let J = L + 1,xJ = w. For 1 ≤ j ≤ L,

denote xj = wj , then xj = UT
j xJ , where Uj ∈ Rb×L is the columns of an identity matrix and

extracts the coordinates of xJ . By letting fj(xj) = gj(wj) and fJ(xJ) = `(w), (5.14) can be

written as:

min
x

J∑
j=1

fj(xj) s.t. Ax =

I −U1

. . .
...

I −UL

x1

...

xL

xJ

 = 0. (5.15)

75

where x = [x1; · · · ; xL; xL+1] ∈ Rb×J . xJ is a global variable and xj , 1 ≤ j ≤ L is a local

variable. For a local variable xj , the step 8 in Algorithm 4 can be reduced to

xt+1
j = argmin

xj∈Xj
fj(xj) + 〈ŷtj + ρrtj ,xj〉+

ρ

2
‖xj − xtj‖22 + ηjBφj (x,x

t
j) . (5.16)

where ŷtj = ytj−νjrtj and rtj = xtj−Ujx
t
J . Assume it = jt, ytjt = yt−1

jt
+τjt(x

t−1
jt
−Ujtx

t−1
J).

Otherwise, the dual variable yjt is not going to be updated. Therefore, if the global variable xJ

is not picked in the history, PDMM does not require the synchronization in the updates of local

variables. In contrast, ADMM requires synchronization at each iteration [19]. If the global

variable is selected, its update requires the aggregation of newest information of local variables.

After the update of global variable, PDMM broadcasts the global information to local variables.

Note the aggregation and broadcast steps can be done asynchronously. At time t, only some

local variables are updated, aggregation step at time t + 1 only acquires those local variables,

without the need of synchronization of all local variables. At time t+ 2, PDMM can first send

the global variable to local variables to be selected, without the need of broadcast to all local

variables. In summary, PDMM can solve the consensus optimization asynchronously, without

the need of synchronization of all variables.

In A, KI = K, I = J . For a row block, there are only two nonzero blocks, i.e., di = 2.

Therefore, τi = J
2(3J−2K) >

1
6 , νi = 0.5. In particular, if K = J , τi = νi = 0.5. In contrast,

sADMM uses τi = 1/J � 0.5, νi = 1− 1/J > 0.5 if J is larger.

Remark 3 (a) ADMM [19] can solve (5.15) where the equality constraint is xj = UT
j xJ .

(b) In this setting, Gauss-Seidel ADMM (GSADMM) and BSUMM [85] are the same as

ADMM. BSUMM should converge with constant stepsize ρ (not necessarily sufficiently small),

although the theory of BSUMM does not include this special case.

(c) Consensus optimization [19] has the same formulation as (5.15). Therefore, PDMM can

also be used as a randomized consensus optimization algorithm.

5.3 Theoretical Results

We establish the convergence results for PDMM under fairly simple assumptions:

Assumption 7
(1) fj : Rnj → R ∪ {+∞} are closed, proper, and convex.

76

(2) A KKT point of the Lagrangian (ρ = 0 in (5.2)) of Problem (5.1) exists.

Assumption 8 is the same as that required by ADMM [19, 200]. Assume that {x∗j ,y∗i }
satisfies the KKT conditions of the Lagrangian (ρ = 0 in (5.2)), i.e.,

−AT
j y∗ ∈ ∂fj(x∗j) , (5.17)

Ax∗ − a = 0. (5.18)

During iterations, (5.83) is satisfied if Axt+1 = a. Let ∂fj be the subdifferential of fj . The

optimality conditions for the xj update (5.6) is

−Ac
j [y

t+(1−ν)ρ(Axt − a)+Ac
j(x

t+1
j −xtj)]−ηj(∇φj(xt+1

j)−∇φj(xtj))∈∂fj(xt+1
j) .

(5.19)

When Axt+1 = a, yt+1 = yt. If Ac
j(x

t+1
j −xtj) = 0, then Axt−a = 0. When ηj ≥ 0, further

assuming Bφj (x
t+1
j ,xtj) = 0, (5.82) will be satisfied. Overall, the KKT conditions (5.82)-

(5.83) are satisfied if the following optimality conditions are satisfied by the iterates:

Axt+1 = a ,Ac
j(x

t+1
j − xtj) = 0 , (5.20)

Bφj (x
t+1
j ,xtj) = 0 . (5.21)

The above optimality conditions are sufficient for the KKT conditions. (5.86) are the optimality

conditions for the exact PDMM. (5.87) is needed only when ηj > 0.

Let zij = Aijxj ∈ Rmi×1, zri = [zTi1, · · · , zTiJ]T ∈ RmiJ×1 and z = [(zr1)T , · · · , (zrI)T]T ∈
RJm×1. Define the residual of optimality conditions (5.86)-(5.87) as

R(xt+1) =
ρ

2
‖zt+1 − zt‖2Pt +

ρ

2

I∑
i=1

βi‖Ar
ix

t+1 − ai‖22 +
J∑
j=1

ηjBφj (x
t+1
j ,xtj) . (5.22)

where Pt is some positive semi-definite matrix1 and βi = K
JK̃i

. If R(xt+1)→ 0, (5.86)-(5.87)

will be satisfied and thus PDMM converges to the KKT point {x∗,y∗}. Define the current

iterate vt = (xtj ,y
t
i) and h(v∗,vt) as a distance from vt to a KKT point v∗ = (x∗j ,y

∗
i):

h(v∗,vt) =
K

J

I∑
i=1

1

2τiρ
‖y∗i − yt−1

i ‖
2
2 + L̃ρ(xt,yt) +

ρ

2
‖z∗ − zt‖2Q +

J∑
j=1

ηjBφj (x
∗
j ,x

t
j) ,

(5.23)

1 See the definition in the Appendix 5.A.

77

where Q is a positive semi-definite matrix1 and L̃ρ(xt,yt) with γi = 2(J−K)

K̃i(2J−K)
+ 1

di
− K

JK̃i
is

L̃ρ(xt,yt) = f(xt)− f(x∗) +
I∑
i=1

{
〈yti,Ar

ix
t − ai〉+

(γi − τi)ρ
2

‖Ar
ix

t − ai‖22
}
. (5.24)

The following Lemma shows that h(v∗,vt) ≥ 0.

Lemma 13 Let vt = (xtj ,y
t
i) be generated by PDMM (5.6)-(5.5) and h(v∗,vt) be defined

in (5.23). Setting νi = 1− 1
K̃i

and τi = K
K̃i(2J−K)

, we have

h(v∗,vt) ≥ ρ

2

I∑
i=1

ζi‖Ar
ix

t − ai‖22 +
ρ

2
‖z∗ − zt‖2Q + +

J∑
j=1

ηjBφj (x
∗
j ,x

t
j) ≥ 0 . (5.25)

where ζi = J−K
K̃i(2J−K)

+ 1
di
− K

JK̃i
≥ 0. Moreover, if h(v∗,vt) = 0, then Ar

ix
t = ai, z

t = z∗

and Bφj (x
∗
j ,x

t
j) = 0. Thus, (5.17)-(5.18) are satisfied.

In PDMM, yt+1 depends on xt+1, which in turn depends on It. xt and yt are independent

of It. xt depends on the observed realizations of the random variable

ξt−1 = {I1, · · · , It−1} . (5.26)

The following theorem shows that h(v∗,vt) decreases monotonically and thus establishes

the global convergence of PDMM.

Theorem 13 (Global Convergence of PDMM) Let vt = (xtj ,y
t
i) be generated by PDMM (5.6)-

(5.5) and v∗ = (x∗j ,y
∗
i) be a KKT point satisfying (5.17)-(5.18). Setting νi = 1 − 1

K̃i
and

τi = K
K̃i(2J−K)

, we have

0 ≤ Eξth(v∗,vt+1) ≤ Eξt−1h(v∗,vt) , EξtR(xt+1)→ 0 . (5.27)

The following theorem establishes the iteration complexity of PDMM in an ergodic sense.

Theorem 14 Let (xtj ,y
t
i) be generated by PDMM (5.6)-(5.5). Let x̄T =

∑T
t=1 xt. Setting

νi = 1− 1
K̃i

and τi = K
K̃i(2J−K)

, we have

Ef(x̄T)− f(x∗) ≤
J
K

{∑I
i=1

1
2βiρ
‖y∗i ‖22 + L̃ρ(x1,y1) + ρ

2‖z
∗ − z1‖2Q +

∑J
j=1 ηjBφj (x

∗
j ,x

1
j)
}

T
,

(5.28)

78

0 100 200 300 400 500 600 700 800
−5

−4

−3

−2

−1

0

1

2

3

4

time (s)

r
e

s
id

u
a

l
(l

o
g

)

PDMM1

PDMM2

PDMM3

GSADMM

RBSUMM

sADMM

0 50 100 150 200 250
−5

−4

−3

−2

−1

0

1

2

3

4

iterations

r
e

s
id

u
a

l
(l

o
g

)

PDMM1

PDMM2

PDMM3

GSADMM

RBSUMM

sADMM

50 100 150 200 250 300
7.8

7.85

7.9

7.95

8

8.05

8.1

8.15

time (s)

o
b

je
c

ti
v

e
 (

lo
g

)

PDMM1

PDMM2

PDMM3

GSADMM

RBSUMM

sADMM

Figure 5.1: Comparison of the convergence of PDMM (with K blocks) with ADMM methods

in RPCA. The values of τi, νi in PDMM is computed according to Table 5.1. Gauss-Seidel

(GSADMM) is the fastest algorithm, although whether it converges or not is unknown. PDMM3

is faster than PDMM1 and PDMM2. For the two randomized one block coordinate methods,

PDMM1 is faster than RBSUMM.

E
I∑
i=1

βi‖Ar
i x̄

T − ai‖22 ≤
2
ρh(v∗,v0)

T
. (5.29)

where βi = K
JK̃i

and Q is a positive semi-definite matrix.

5.4 Experimental Results

In this section, we evaluate the performance of PDMM in solving robust principal component

analysis (RPCA) and overlapping group lasso [222]. We compared PDMM with ADMM [19] or

GSADMM (no theory guarantee), sADMM [153, 207], and RBSUMM [85]. Note GSADMM

includes BSUMM [85]. All experiments are implemented in Matlab and run sequentially. We

run the experiments 10 times and report the average results. The stopping criterion is either

residual norm(x-xold)
norm(xold) + norm(y-yold)

norm(yold) ≤ 10−4 or the maximum number of iterations.

RPCA: RPCA is used to obtain a low rank and sparse decomposition of a given matrix A

corrupted by noise [24, 153]:

min
1

2
‖X1‖2F + γ2‖X2‖1 + γ3‖X3‖∗ s.t. A = X1 + X2 + X3 . (5.30)

where A ∈ Rm×n, X1 is a noise matrix, X2 is a sparse matrix and X3 is a low rank matrix.

79

Table 5.2: The ’best’ results of PDMM with tuning parameters τi, νi in RPCA. PDMM1 ran-

domly updates one block and is the fastest algorithm. PDMMs converges faster than other

ADMM methods.
time (s) iteration residual(×10−5) objective (log)

PDMM1 118.83 40 3.60 8.07

PDMM2 137.46 34 5.51 8.07

PDMM3 147.82 31 6.54 8.07

GSADMM 163.09 28 6.84 8.07

RBSUMM 206.96 141 8.55 8.07

sADMM2 731.51 139 9.73 8.07

A = L + S + V is generated in the same way as [153]2 . In this experiment, m = 1000, n =

5000 and the rank is 100. The number appended to PDMM denotes the number of blocks (K)

to be chosen in PDMM, e.g., PDMM1 randomly updates one block.

Figure 5.1 compares the convegence results of PDMM with ADMM methods. In PDMM,

ρ = 1 and τi, νi are chosen according to Table (5.1), i.e., (τi, νi) = {(1
5 , 0), (1

4 ,
1
2), (1

3 ,
1
3)}

for PDMM1, PDMM2 and PDMM3 respectively. We choose the ’best’ results for GSADMM

(ρ = 1) and RBSUMM (ρ = 1, α = ρ 11√
t+10

) and sADMM (ρ = 1). PDMMs perform better

than RBSUMM and sADMM. Note the public available code of sADMM2 does not have dual

update, i.e., τi = 0. sADMM should be the same as PDMM3 if τi = 1
3 . Since τi = 0, sADMM

is the slowest algorithm. Without tuning the parameters of PDMM, GSADMM converges faster

than PDMM. Note PDMM can run in parallel but GSADMM only runs sequentially. PDMM3

is faster than two randomized version of PDMM since the costs of extra iterations in PDMM1

and PDMM2 have surpassed the savings at each iteration. For the two randomized one block

coordinate methods, PDMM1 converges faster than RBSUMM in terms of both the number of

iterations and runtime.

The effect of τi, νi: We tuned the parameter τi, νi in PDMMs. Three randomized meth-

ods (RBSUMM, PDMM1 and PDMM2) choose the blocks cyclically instead of randomly.

Table 5.2 compares the ’best’ results of PDMM with other ADMM methods. In PDMM,

(τi, νi) = {(1
2 , 0), (1

3 ,
1
2), (1

2 ,
1
2)}. GSADMM converges with the smallest number of itera-

tions, but PDMMs can converge faster than GSADMM in terms of runtime. Since GSADMM
2 http://www.stanford.edu/ boyd/papers/prox algs/matrix decomp.html

80

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

time (s)

o
b

je
c
ti

v
e

PA−APG

S−APG

PDMM

ADMM

sADMM

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

iteration

o
b

je
c
ti

v
e

PA−APG

S−APG

PDMM

ADMM

sADMM

20 30 40 50 60 70
−5

−4

−3

−2

−1

0

time (s)

r
e
s
id

u
a
l
(l

o
g

)

1

21

41

61

81

101

Figure 5.2: Comparison of convergence of PDMM and other methods in overlapping group

Lasso.

uses new iterates which increases computation compared to PDMM3, PDMM3 can be faster

than GSADMM if the numbers of iterations are close. PDMM1 and PDMM2 can be faster than

PDMM3. By simply updating one block, PDMM1 is the fastest algorithm and achieves the

lowest residual.

Overlapping Group Lasso: We consider solving the overlapping group lasso problem [222]:

min
w

1

2Lλ
‖Aw − b‖22 +

∑
g∈G

dg‖wg‖2 . (5.31)

where A ∈ Rm×n,w ∈ Rn×1 and wg ∈ Rb×1 is the vector of overlapping group indexed by g.

dg is some positive weight of group g ∈ G. As shown in Section 5.2.3, (5.31) can be rewritten

as the form (5.15). The data is generated in a same way as [216, 34]: the elements of A are

sampled from normal distribution, b = Ax + ε with noise ε sampled from normal distribution,

and xj = (−1)j exp(−(j − 1)/100). In this experiment, m = 5000, the number of groups is

L = 100, and dg = 1
L , λ = L

5 in (5.31). The size of each group is 100 and the overlap is 10.

The total number of blocks in PDMM and sADMM is J = 101. τi, νi in PDMM are computed

according to Table (5.1).

In Figure 5.2, the first two figures plot the convergence of objective in terms of the number

of iterations and time. PDMM uses all 101 blocks and is the fastest algorithm. ADMM is

the same as GSADMM in this problem, but is slower than PDMM. Since sADMM does not

consider the sparsity, it uses τi = 1
J+1 , νi = 1 − 1

J+1 , leading to slow convergence. The two

accelerated methods, PA-APG [216] and S-APG [34], are slower than PDMM and ADMM.

81

The effect of K: The third figure shows PDMM with different number of blocks K. Al-

though the complexity of each iteration is the lowest when K = 1, PDMM takes much more

iterations than other cases and thus takes the longest time. As K increases, PDMM converges

faster and faster. WhenK = 20, the runtime is already same as using all blocks. WhenK > 21,

PDMM takes less time to converge than using all blocks. The runtime of PDMM decreases as

K increases from 21 to 61. However, the speedup from 61 to 81 is negligable. We tried differ-

ent set of parameters for RBSUMM ρ i
2+1
i+t (0 ≤ i ≤ 5, ρ = 0.01, 0.1, 1) or sufficiently small

step size, but did not see the convergence of the objective within 5000 iterations. Therefore, the

results are not included here.

Appexdix

5.A Convergence of PDMM

5.A.1 Technical Preliminaries

We first define some notations will be used specifically in this section. Let zij = Aijxj ∈
Rmi×1, zri = [zTi1, · · · , zTiJ]T ∈ RmiJ×1 and z = [(zr1)T , · · · , (zrI)T]T ∈ RJm×1. Let Wi ∈
RJmi×mi be a column vector of Wij ∈ Rmi×mi where

Wij =

{
Imi , if Aij 6= 0 ,

0 otherwise .
(5.32)

Define Q ∈ RJm×Jm as a diagonal matrix of Qi ∈ RJmi×Jmi and

Q = diag([Q1, · · · ,QI]) ,Qi = diag(Wi)−
1

di
WiW

T
i . (5.33)

Therefore, for an optimal solution x∗ satisfying Ax∗ = a, we have

‖zt − z∗‖2Q =
I∑
i=1

‖zti − z∗i ‖2Qi
=

I∑
i=1

‖zti − z∗i ‖2diag(wi)− 1
di

wiwT
i

=

I∑
i=1

 ∑
j∈N (i)

‖ztij − z∗ij‖22 −
1

di
‖wT

i (zti − z∗i)‖22

=

I∑
i=1

[
‖zti − z∗i ‖22 −

1

di
‖Ar

ix
t − ai‖22

]
, (5.34)

82

where the last equality uses wT
i z∗i = Ar

ix
∗ = ai.

In the following lemma, we prove that Qi is a positive semi-definite matrix. Thus, Q is also

positive semi-definite.

Lemma 14 Qi is positive semi-definite.

Proof: As Wij is either an identity matrix or a zero matrix, Wi has di nonzero entries. Re-

moving the zero entries from Wi, we have W̃i which only has di nonzero entries. Then,

W̃i =

Imi

...

Imi

 , diag(W̃i) =

Imi

. . .

Imi

 , (5.35)

diag(Wi) is an identity matrix. Define Q̃i = diag(W̃i) − 1
di

W̃iW̃
T
i . If Q̃i is positive semi-

definite, Qi is positive semi-definite.

Denote λmax
W̃i

as the largest eigenvalue of W̃iW̃
T
i , which is equivalent to the largest eigen-

value of W̃T
i W̃i. Since W̃T

i W̃i = diImi , then λmax
W̃i

= di. Then, for any v,

‖v‖2
W̃iW̃T

i
≤ λmax

W̃i
‖v‖22 = di‖v‖22 . (5.36)

Thus,

‖v‖2Qi
= ‖v‖2diag(W̃i)− 1

di
W̃iW̃T

i
= ‖v‖22 −

1

di
‖v‖2

W̃iW̃T
i
≥ 0 , (5.37)

which completes the proof.

Let Wt
i ∈ RJmi×mi be a column vector of Wijt ∈ Rmi×mi where

Wijt =

{
Imi , if Aijt 6= 0 and jt ∈ Jt ,

0 otherwise .
(5.38)

Define Pt ∈ RJm×Jm as a diagonal matrix of Pt
i ∈ RJmi×Jmi and

Pt = diag[Pt
1, · · · ,Pt

I] ,P
t
i = diag(Wt

i)−
1

K̃i

Wt
i(W

t
i)
T . (5.39)

where K̃i = min{K, di} ≥ min{|Jt ∩Ni|, di}. Using similar arguments in Lemma 14, we can

show Pt is positive semi-definite. Therefore,

‖zt+1 − zt‖2Pt =

I∑
i=1

‖zt+1
i − zti‖2Pti =

I∑
i=1

‖zt+1
i − zti‖2diag(wt

i)−
1
K̃i

wt
i(w

t
i)
T

83

=

I∑
i=1

∑
jt∈Jt

‖zt+1
ijt
− ztijt‖

2
2 −

1

K̃i

‖(wt
i)
T (zt+1

i − zti)‖22

=

I∑
i=1

[
‖zt+1
i − zti‖22 −

1

K̃i

‖Ar
i (x

t+1 − xt)‖22
]
. (5.40)

In PDMM, two index set Jt and It are randomly chosen. Conditioned on xt, xt+1 and Pt

depend on Jt but are independent of It. Conditioned on Jt, yt+1 depends on It. xt,yt are

independent of It, Jt. xt,yt depend on a sequence of observed realization of random variable

ξt−1 = {(I1, J1), (I2, J2), · · · , (It−1, Jt−1)} . (5.41)

As we do not assume that fjt is differentiable, we use the subgradient of fjt . In particular, if

fjt is differentiable, the subgradient of fjt becomes the gradient, i.e., ∇fjt(xjt). PDMM (5.5)-

(5.7) has the following lemma.

Lemma 15 Let {xtjt ,y
t
it
} be generated by PDMM (5.5)-(5.7). Assume τi > 0 and νi ≥ 0. We

have

∑
jt∈Jt

fjt(x
t+1
jt

)− fjt(x∗jt) ≤ −
K

J

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 − (

KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}
−
∑
jt∈It

〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉+

K

J
〈ŷt + ρ(Axt − a),Axt − a〉

+
I∑
i=1

{
〈yti,Ar

ix
t − ai〉 −

τiKIρ

2I
‖Ar

ix
t − ai‖22

}

−
I∑
i=1

{
〈yt+1
i ,Ar

ix
t+1 − ai〉 −

τiKIρ

2I
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖z∗ − zt‖2Q − ‖z∗ − zt+1‖2Q − ‖zt+1 − zt‖2Pt)

+
∑
jt∈Jt

ηjt(Bφjt (x
∗
jt ,x

t
jt)−Bφjt (x

∗
jt ,x

t+1
jt

)−Bφjt (x
t+1
jt

,xtjt))

+
ρ

2

I∑
i=1

{
[(1− 2K

J
)(1− νi) + [(1− K

J
)
KI

I
+ (1− KI

I
)
K

J
]τi +

1

di
]‖Ar

ix
t − ai‖22

−[1− νi −
KI

I
τi +

1

di
]‖Ar

ix
t+1 − ai‖22 + (1− νi −

1

K̃i

)‖Ar
i (x

t+1 − xt)‖22
}
. (5.42)

84

Proof: Let ∂fjt(x
t+1
jt

) be the subdifferential of fjt at xt+1
jt

. The optimality of the xjt up-

date (5.6) is

0 ∈ ∂fjt(xt+1
jt

) + (Ac
jt)

T [ŷt + ρ(Ac
jtx

t+1
jt

+
∑
k 6=jt

Ac
kx

t
k − a)] + ηjt(∇φjt(xt+1

jt
)−∇φjt(xtjt)) ,

(5.43)

Using (5.5) and rearranging the terms yield

− (Ac
jt)

T [ŷt + ρ(Axt − a) + ρAc
jt(x

t+1
jt
− xtjt)] + ηjt(∇φjt(xt+1

jt
)−∇φjt(xtjt)) ∈ ∂fjt(x

t+1
jt

) .

(5.44)

Using the convexity of fjt , we have

fjt(x
t+1
jt

)− fjt(x∗jt) ≤ −〈ŷ
t + ρ(Axt − a),Ac

jt(x
t+1
jt
− x∗jt)〉

− ρ〈Ac
jt(x

t+1
jt
− xtjt),A

c
jt(x

t+1
jt
− x∗jt)〉 − ηjt〈∇φjt(x

t+1
jt

)−∇φjt(xtjt),x
t+1
jt
− x∗jt〉

= −〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉 − 〈ŷ

t + ρ(Axt − a),Ac
jt(x

t+1
jt
− xtjt)〉

− ρ
I∑
i=1

〈Aijt(x
t+1
jt
− xtjt),Aijt(x

t+1
jt
− x∗jt)〉

+ ηjt

(
Bφjt (x

∗
jt ,x

t
jt)−Bφjt (x

∗
jt ,x

t+1
jt

)−Bφjt (x
t+1
jt

,xtjt)
)
. (5.45)

Summing over jt ∈ It, we have∑
jt∈It

fjt(x
t+1
jt

)− fjt(x∗jt)

≤ −
∑
jt∈It

〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉 − 〈ŷ

t + ρ(Axt − a),
∑
jt∈It

Ac
jt(x

t+1
jt
− xtjt)〉

− ρ
I∑
i=1

∑
jt∈It

〈Aijt(x
t+1
jt
− xtjt),Aijt(x

t+1
jt
− x∗jt)〉

+
∑
jt∈It

ηjt

(
Bφjt (x

∗
jt ,x

t
jt)−Bφjt (x

∗
jt ,x

t+1
jt

)−Bφjt (x
t+1
jt

,xtjt)
)

= −
∑
jt∈It

〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉+

K

J
〈ŷt + ρ(Axt − a),Axt − a〉

−K
J
〈ŷt + ρ(Axt − a),Axt − a〉 − 〈ŷt + ρ(Axt − a),A(xt+1 − xt)〉︸ ︷︷ ︸

H1

85

+
ρ

2

I∑
i=1

∑
jt∈It

(‖Aijt(x
∗
jt − xtjt)‖

2
2 − ‖Aijt(x

∗
jt − xt+1

jt
)‖22 − ‖Aijt(x

t+1
jt
− xtjt)‖

2
2)︸ ︷︷ ︸

H2

+
∑
jt∈It

ηjt

(
Bφjt (x

∗
jt ,x

t
jt)−Bφjt (x

∗
jt ,x

t+1
jt

)−Bφjt (x
t+1
jt

,xtjt)
)
. (5.46)

H1 in (5.46) can be rewritten as

H1 = −〈ŷt + ρ(Axt − a),Axt+1 − a〉+ (1− K

J
)〈ŷt + ρ(Axt − a),Axt − a〉 . (5.47)

According to (5.7), we have

− 〈yt,Axt+1 − a〉 = −〈yt+1,Axt+1 − a〉+ 〈yt+1 − yt,Axt+1 − a〉

= −〈yt+1,Axt+1 − a〉+
∑
it∈It

τitρ‖Ar
itx

t+1 − ait‖22 . (5.48)

Taking expectation over It, we have

− 〈yt,Axt+1 − a〉 = −EIt〈yt+1,Axt+1 − a〉+
KI

I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 . (5.49)

The first term of (5.47) is equivalent to

− 〈ŷt + ρ(Axt − a),Axt+1 − a〉

= −
I∑
i=1

〈ŷti + ρ(Ar
ix

t − ai),A
r
ix

t+1 − ai〉

= −
I∑
i=1

〈yti + (1− νi)ρ(Ar
ix

t − ai),A
r
ix

t+1 − ai〉

= −〈yt,Axt+1 − a〉 −
I∑
i=1

(1− νi)ρ〈Ar
ix

t − ai,A
r
ix

t+1 − ai〉

= −EIt〈yt+1,Axt+1 − a〉+
KI

I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22

+

I∑
i=1

(1− νi)ρ
2

(‖Ar
i (x

t+1 − xt)‖22 − ‖Ar
ix

t − ai‖22 − ‖Ar
ix

t+1 − ai‖22)

= −EIt〈yt+1,Axt+1 − a〉+
KI

2I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22

86

+

I∑
i=1

{
(1− νi)ρ

2
(‖Ar

i (x
t+1 − xt)‖22 − ‖Ar

ix
t − ai‖22)−

(1− νi − KI
I τi)ρ

2
‖Ar

ix
t+1 − ai‖22

}
.

(5.50)

The second term of (5.47) is equivalent to

(1− K

J
)〈ŷt + ρ(Axt − a),Axt − a〉

= (1− K

J
)

I∑
i=1

〈ŷti + ρ(Ar
ix

t − ai),A
r
ix

t − ai〉

= (1− K

J
)

I∑
i=1

〈yti + (1− νi)ρ(Ar
ix

t − ai),A
r
ix

t − ai〉

= (1− K

J
)

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 −

KIτiρ

2I
‖Ar

ix
t − ai‖22

}

+ (1− K

J
)

I∑
i=1

(1− νi +
KIτi
2I

)ρ‖Ar
ix

t − ai‖22 . (5.51)

H2 in (5.46) is equavilant to

H2 =
ρ

2

I∑
i=1

∑
jt∈It

(‖z∗ijt − ztijt‖
2
2 − ‖z∗ijt − zt+1

ijt
‖22 − ‖zt+1

ijt
− ztijt‖

2
2)

=
ρ

2

I∑
i=1

(‖z∗i − zti‖22 − ‖z∗i − zt+1
i ‖

2
2 − ‖zt+1

i − zti‖22)

=
ρ

2
(‖z∗ − zt‖2Q − ‖z∗ − zt+1‖2Q − ‖zt+1 − zt‖2Pt)

+
ρ

2

I∑
i=1

1

di
(‖Ar

ix
t − ai‖22 − ‖Ar

ix
t+1 − ai‖22)− 1

K̃i

‖Ar
i (x

t+1 − xt)‖22 . (5.52)

where the last equality uses the definition of Q in (5.33) and Pt (5.39), and K̃i = min{K, di}.
Combining the results of (5.47)-(5.52) gives

H1 +H2 = −EIt〈yt+1,Axt+1 − a〉+
KI

2I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22

+
I∑
i=1

{
(1− νi)ρ

2
(‖Ar

i (x
t+1 − xt)‖22 − ‖Ar

ix
t − ai‖22)−

(1− νi − KI
I τi)ρ

2
‖Ar

ix
t+1 − ai‖22

}

87

+ (1− K

J
)

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 −

KIτiρ

2I
‖Ar

ix
t − ai‖22

}

+ (1− K

J
)

I∑
i=1

(1− νi +
KIτi
2I

)ρ‖Ar
ix

t − ai‖22

+
ρ

2
(‖z∗ − zt‖2Q − ‖z∗ − zt+1‖2Q − ‖zt+1 − zt‖2Pt)

+
ρ

2

I∑
i=1

1

di
(‖Ar

ix
t − ai‖22 − ‖Ar

ix
t+1 − ai‖22)− 1

K̃i

‖Ar
i (x

t+1 − xt)‖22)

= −K
J

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 − (

KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}

+

{
〈yt,Axt − a〉 −

I∑
i=1

KIτiρ

2I
‖Ar

ix
t − ai‖22

}

−

{
EIt〈yt+1,Axt+1 − a〉 −

I∑
i=1

KIτiρ

2I
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖z∗ − zt‖2Q − ‖z∗ − zt+1‖2Q − ‖zt+1 − zt‖2Pt)

+
ρ

2

I∑
i=1

{
[(1− 2K

J
)(1− νi) + [(1− K

J
)
KI

I
+ (1− KI

I
)
K

J
]τi +

1

di
]‖Ar

ix
t − ai‖22

−(1− νi −
KI

I
τi +

1

di
)‖Ar

ix
t+1 − ai‖22 + (1− νi −

1

K̃i

)‖Ar
i (x

t+1 − xt)‖22
}
. (5.53)

Plugging back into (5.46) completes the proof.

Lemma 16 Let {xtjt ,y
t
i} be generated by PDMM (5.5)-(5.7). Assume τi > 0 and νi ≥ 0. We

have

∑
jt∈Jt

fjt(x
t+1
jt

)− fjt(x∗jt) ≤ −
K

J

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 − (

KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}
−
∑
jt∈It

〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉+

K

J
〈ŷt + ρ(Axt − a),Axt − a〉

+
I∑
i=1

{
〈yti,Ar

ix
t − ai〉 −

τiKIρ

2I
‖Ar

ix
t − ai‖22

}

−
I∑
i=1

{
〈yt+1
i ,Ar

ix
t+1 − ai〉 −

τiKIρ

2I
‖Ar

ix
t+1 − ai‖22

}

88

+
ρ

2
(‖z∗ − zt‖2Q − ‖z∗ − zt+1‖2Q − ‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt))

+
ρ

2

I∑
i=1

[
γi(‖Ar

ix
t − ai‖22 − ‖Ar

ix
t+1 − ai‖22)− βi‖Ar

ix
t+1 − ai‖22

]
. (5.54)

where ηT = [η1, · · · , ηJ]. τi > 0, νi ≥ 0, γi ≥ 0 and βi ≥ 0 satisfy the following conditions:

νi ∈ (max{0, 1− 2J

K̃i(2J −K)
}, 1− 1

K̃i

] , (5.55)

τi ≤
J

(2J −K)KII +K(1− KI
I)

[
4

K̃i

− (4− 2K

J
)(1− νi)] ≤

2K

K̃i[(2J −K)KII +K(1− KI
I)]

,

(5.56)

γi = (3− 2K

J
)(1− νi) +

[
(1− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi +

1

di
− 2

K̃i

, (5.57)

βi =
4

K̃i

− 2(2− K

J
)(1− νi)−

[
(2− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi . (5.58)

Proof: In (5.42), denote

H3 = [(1− 2K

J
)(1− νi) + [(1− K

J
)
KI

I
+ (1− KI

I
)
K

J
]τi +

1

di
]‖Ar

ix
t − ai‖22

− (1− νi −
KI

I
τi +

1

di
)‖Ar

ix
t+1 − ai‖22 , (5.59)

H4 = (1− νi −
1

K̃i

)‖Ar
i (x

t+1 − xt)‖22 . (5.60)

Our goal is to eliminate H4 so that

H3 +H4 = γi(‖Ar
ix

t − ai‖22 − ‖Ar
ix

t+1 − ai‖22)− βi‖Ar
ix

t+1 − ai‖22 , (5.61)

where γi ≥ 0 and βi ≥ 0 .

We want to choose a large τi and a small νi. Assume 1 − νi − 1
K̃i
≥ 0, i.e., νi ≤ 1 − 1

K̃i
,

we have

H4 = (1− νi −
1

K̃i

)‖Ar
i (x

t+1 − xt)‖22 ≤ 2(1− νi −
1

K̃i

)(‖Ar
ix

t − ai‖22 + ‖Ar
ix

t+1 − ai‖22) .

(5.62)

Therefore, we have

H3 +H4 ≤ [(3− 2K

J
)(1− νi) + [(1− K

J
)
KI

I
+ (1− KI

I
)
K

J
]τi +

1

di
− 2

K̃i

]‖Ar
ix

t − ai‖22

89

+ (1− νi +
KI

I
τi −

1

di
− 2

K̃i

)‖Ar
ix

t+1 − ai‖22

= γi(‖Ar
ix

t − ai‖22 − ‖Ar
ix

t+1 − ai‖22)− βi‖Ar
ix

t+1 − ai‖22 . (5.63)

where

γi = (3− 2K

J
)(1− νi) +

[
(1− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi +

1

di
− 2

K̃i

≥ (3− 2K

J
)

1

K̃i

+

[
(1− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi +

1

di
− 2

K̃i

= (1− K

J
)

1

K̃i

− K

JK̃i

+
1

di
+

[
(1− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi ≥ 0 . (5.64)

and

βi = −(1− νi +
KI

I
τi +

1

di
− 2

K̃i

+ γi)

=
4

K̃i

− 2(2− K

J
)(1− νi)−

[
(2− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi . (5.65)

We also want βi ≥ 0, which can be reduced to

τi ≤
J

(2J −K)KII +K(1− KI
I)

[
4

K̃i

− (4− 2K

J
)(1− νi)] (5.66)

≤ J

(2J −K)KII +K(1− KI
I)

[
4

K̃i

− (4− 2K

J
)

1

K̃i

]

=
2K

K̃i[(2J −K)KII +K(1− KI
I)]

.

It also requires the RHS of (5.66) to be positive, leading to νi > max{0, 1 − 2J
K̃i(2J−K)

}.
Therefore, νi ∈ (max{0, 1− 2J

K̃i(2J−K)
}, 1− 1

K̃i
].

Denote Bφ = [Bφ1 , · · · , BφJ]T as a column vector of the Bregman divergence on block

coordinates of x. Using xt+1 = [xt+1
jt∈It ,x

t
jt 6∈It]

T , we have Bφjt (x
∗
jt
,xtjt) − Bφjt (x

∗
jt
,xt+1

jt
) =

Bφ(x∗,xt)−Bφ(x∗,xt+1), Bφjt (x
t+1
jt

,xtjt) = Bφ(xt+1,xt). Thus,∑
jt∈It

ηjt

(
Bφjt (x

∗
jt ,x

t
jt)−Bφjt (x

∗
jt ,x

t+1
jt

)−Bφjt (x
t+1
jt

,xtjt)
)

= ηT (Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt)) . (5.67)

where ηT = [η1, · · · , ηJ].

90

Lemma 17 Let {xtjt ,y
t
it
} be generated by PDMM (5.5)-(5.7). Assume τi > 0 and νi ≥ 0

satisfy the conditions in Lemma 16. We have

f(xt)− f(x∗) ≤
I∑
i=1

{
〈yti,Ar

ix
t − ai〉 − (

KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}

+
J

K

{
L̃ρ(xt,yt)− EItL̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βiEIt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(‖z∗ − zt‖2Q − EIt‖z∗ − zt+1‖2Q − EIt‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)− EItBφ(x∗,xt+1)− EItBφ(xt+1,xt))

}
. (5.68)

where L̃ρ is defined as follows:

L̃ρ(xt,yt) = f(xt)− f(x∗) +
I∑
i=1

{
〈yti,Ar

ix
t − ai〉+

(γi − KI
I τi)ρ

2
‖Ar

ix
t − ai‖22

}
.

(5.69)

τi, νi, γi, βi and η are defined in Lemma 16.

Proof: Using xt+1 = [xt+1
jt∈Jt ,x

t
jt 6∈Jt]

T , we have

f(xt+1)− f(xt) =
∑
jt∈Jt

fjt(x
t+1
jt

)− fjt(xtjt)

=
∑
jt∈Jt

[fjt(x
t+1
jt

)− fjt(x∗jt)]−
∑
jt∈Jt

[fjt(x
t
jt)− fjt(x

∗
jt)] . (5.70)

Rearranging the terms and using Lemma 16 yield∑
jt∈Jt

fjt(x
t
jt)− fjt(x

∗
jt) =

∑
j∈Jt

[fjt(x
t+1
jt

)− fjt(x∗jt)] + f(xt)− f(xt+1)

≤ −K
J

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 − (

KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}
−
∑
jt∈Jt

〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉+

K

J
〈ŷt + ρ(Axt − a),Axt − a〉

+ L̃ρ(xt,yt)− L̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βi‖Ar
ix

t+1 − ai‖22

91

+
ρ

2
(‖z∗ − zt‖2Q − ‖z∗ − zt+1‖2Q − ‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt)) , (5.71)

where L̃ρ(xt,yt) is defined in (5.69). Conditioning on xt and taking expectation over Jt, we

have

K

J
[f(xt)− f(x∗)] ≤ −K

J

I∑
i=1

{
〈yti,Ar

ix
t − ai〉 − (

KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}

+ L̃ρ(xt,yt)− EItL̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βiEIt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(‖z∗ − zt‖2Q − EIt‖z∗ − zt+1‖2Q − EIt‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)− EItBφ(x∗,xt+1)− EItBφ(xt+1,xt)) , (5.72)

where we use

EJt [−
∑
jt∈Jt

〈ŷt + ρ(Axt − a),Ac
jt(x

t
jt − x∗jt)〉] = −K

J
〈ŷt + ρ(Axt − a),Axt − a〉 .

(5.73)

Dividing both sides by K
J and using the definition (5.69) complete the proof.

For the randomized dual block coordinate update, we have the following results.

Lemma 18 Let {xtjt ,y
t
it
} be generated by PDMM (5.5)-(5.7). Assume τi > 0 and νi ≥ 0. We

have

EIt〈y∗ − yt+1,Axt+1 − a〉 =
I

KI

I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

]
+ (

1

2
− KI

I
)

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 . (5.74)

Proof: According to (5.7), we have

yt+1 − yt =
∑
it∈It

(Ar
itx

t+1 − ait) . (5.75)

Using yt+1 = [yt+1
it∈It ,y

t
k 6∈It]

T , we have∑
it∈It

〈y∗it − ytit ,A
r
itx

t+1 − ait〉

92

=
∑
it∈It

[
〈y∗it − yt+1

it
,Ar

itx
t+1 − ait〉+ 〈yt+1

it
− ytit ,A

r
itx

t+1 − ait〉
]

=
∑
it∈It

1

τitρ

[
〈y∗it − yt+1

it
,yt+1

it
− ytit〉+ ‖yt+1

it
− ytit‖

2
2

]
=

I∑
i=1

1

τiρ

[
〈y∗i − yt+1

i ,yt+1
i − yti〉+ ‖yt+1

i − yti‖22
]

=
I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2 + ‖yt+1

i − yti‖22
]

=

I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

]
+
∑
it∈It

1

2τiρ
‖yt+1

it
− ytit‖

2
2

=

I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

]
+
∑
it∈It

τitρ

2
‖Ar

itx
t+1 − ait‖22 . (5.76)

xt+1 is independent of It. Taking expectation over It, we have

KI

I

I∑
i=1

〈y∗i − yti,A
r
ix

t+1 − ai〉 =
I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

]
+
KI

I

I∑
i=1

τiρ

2
‖Ar

ix
t+1 − ai‖22 . (5.77)

Dividing both sides by KI
I yields

〈y∗ − yt,Axt+1 − a〉 =
I

KI

I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

]
+

I∑
i=1

τiρ

2
‖Ar

ix
t+1 − ai‖22 .

(5.78)

Using (5.7) and the fact that yt+1 = [yt+1
it∈It ,y

t
k 6∈It]

T , we have

〈yt − yt+1,Axt+1 − a〉 =
∑
it∈It

〈ytit − yt+1
it

,Ar
itx

t+1 − ait〉 = −
∑
it∈It

τitρ‖Ar
itx

t+1 − ait‖22 .

(5.79)

Taking expectation over It, we have

EIt〈yt − yt+1,Axt+1 − a〉 = −KI

I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 . (5.80)

93

Adding (5.78) and (5.80), we have

EIt〈y∗ − yt+1,Axt+1 − a〉

= EIt〈y∗ − yt,Axt+1 − a〉+ EIt〈yt − yt+1,Axt+1 − a〉

=
I

KI

I∑
i=1

1

2τiρ

[
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

]
+

I∑
i=1

τiρ

2
‖Ar

ix
t+1 − ai‖22 −

KI

I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 , (5.81)

which completes the proof.

5.A.2 Theoretical Results

We establish the convergence results for PDMM under fairly simple assumptions:

Assumption 8
(1) fj : Rnj → R ∪ {+∞} are closed, proper, and convex.

(2) A KKT point of the Lagrangian (ρ = 0 in (5.2)) of Problem (5.1) exists.

Assumption 8 is the same as that required by ADMM [19, 200]. Let ∂fj be the subdiffer-

ential of fj . Assume that {x∗j ,y∗i } satisfies the KKT conditions of the Lagrangian (ρ = 0 in

(5.2)), i.e.,

−AT
j y∗ ∈ ∂fj(x∗j) , (5.82)

Ax∗ − a = 0. (5.83)

During iterations, (5.83) is satisfied if Axt+1 = a. The optimality conditions for the xj up-

date (5.6) is

0 ∈ ∂fj(xt+1
j) + Ac

j [ŷ
t + ρ(Ac

jx
t+1
j +

∑
k 6=j

Ac
kx

t
k − a)] + ηj(∇φj(xt+1

j)−∇φj(xtj)) ,

(5.84)

which is equivalent to

−Ac
j [y

t + (1− ν)ρ(Axt − a) + Ac
j(x

t+1
j − xtj)]− ηj(∇φj(xt+1

j)−∇φj(xtj)) ∈ ∂fj(xt+1
j) .

(5.85)

94

When Axt+1 = a, yt+1 = yt. If Ac
j(x

t+1
j −xtj) = 0, then Axt−a = 0. When ηj ≥ 0, further

assuming Bφj (x
t+1
j ,xtj) = 0, (5.82) will be satisfied. Overall, the KKT conditions (5.82)-

(5.83) are satisfied if the following optimality conditions are satisfied by the iterates:

Axt+1 = a ,Ac
j(x

t+1
j − xtj) = 0 , (5.86)

Bφj (x
t+1
j ,xtj) = 0 . (5.87)

The above optimality conditions are sufficient for the KKT conditions. (5.86) are the optimality

conditions for the exact PDMM. (5.87) is needed only when ηj > 0.

In Lemma 16, setting the values of νi, τi, γi, βi as follows:

νi = 1− 1

K̃i

, τi =
K

K̃i[(2J −K)KII +K(1− KI
I)]

, (5.88)

γi =
J −K
JK̃i

+
1

di
− K

JK̃i

+
K[(J −K)KII +K(1− KI

I)]

JK̃i[(2J −K)KII +K(1− KI
I)]

, βi =
K

JK̃i

. (5.89)

Define the residual of optimality conditions (5.86)-(5.87) as

R(xt+1) =
ρ

2
‖zt+1 − zt‖2Pt +

ρ

2

I∑
i=1

βi‖Ar
ix

t+1 − ai‖22 + ηTBφ(xt+1,xt) . (5.90)

If R(xt+1) → 0, (5.86)-(5.87) will be satisfied and thus PDMM converges to the KKT point

{x∗,y∗}.
Define the current iterate vt = (xtj ,y

t
i) and h(v∗,vt) as a distance from vt to a KKT point

v∗ = (x∗j ,y
∗
i):

h(v∗,vt) =
K

J

I∑
i=1

I

2KIτiρ
‖y∗i − yt−1

i ‖
2
2 + L̃ρ(xt,yt) +

ρ

2
‖z∗ − zt‖2Q + ηTBφ(x∗,xt) .

(5.91)

The following Lemma shows that h(v∗,vt) ≥ 0.

Lemma 19 Let h(v∗,vt) be defined in (5.91). Setting νi = 1− 1
K̃i

and τi = K

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]
,

we have

h(v∗,vt) ≥ ρ

2

I∑
i=1

ζi‖Ar
ix

t − ai‖22 +
ρ

2
‖z∗ − zt‖2Q + +

J∑
j=1

ηjBφj (x
∗
j ,x

t
j) ≥ 0 . (5.92)

where ζi =
(J−K)

KI
I

+K(1−KI
I

)

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]
+ 1

di
− K

JK̃i
≥ 0. Moreover, if h(v∗,vt) = 0, then

Ar
ix

t = ai, z
t = z∗ and Bφj (x

∗
j ,x

t
j) = 0. Thus, (5.82)-(5.83) are satisfied.

95

Proof: Using the convexity of f and (5.82), we have

f(x∗)− f(xt) ≤ −〈ATy∗,x∗ − xt〉 =

I∑
i=1

〈y∗i ,Ar
ix

t − ai〉 . (5.93)

Thus,

L̃ρ(xt,yt) = f(xt)− f(x∗) +
I∑
i=1

{
〈yti,Ar

ix
t − ai〉+

(γi − KI
I τi)ρ

2
‖Ar

ix
t − ai‖22

}

≥
I∑
i=1

{
〈yti − y∗i ,A

r
ix

t − ai〉+
(γi − KI

I τi)ρ

2
‖Ar

ix
t − ai‖22

}

=

I∑
i=1

{
〈yt−1
i − y∗i ,Aix

t − ai〉+ 〈yti − yt−1
i ,Aix

t − ai〉+
(γi − KI

I τi)ρ

2
‖Ar

ix
t − ai‖22

}

≥
I∑
i=1

[
− KI

2JKIτiρ
‖yt−1

i − y∗i ‖22 −
JKIτiρ

2KI
‖Aix

t − ai‖22 +
(γi + KI

I τi)ρ

2
‖Aix

t − ai‖22

]

=
I∑
i=1

[
− KI

2JKIτiρ
‖yt−1

i − y∗i ‖22 + [γi + (1− J

K
)
KI

I
τi]
ρ

2
‖Aix

t − ai‖22
]
. (5.94)

h(v∗,vt) is reduced to

h(v∗,vt) ≥ ρ

2

I∑
i=1

[γi + (1− J

K
)
KI

I
τi]‖Aix

t − ai‖22 +
ρ

2
‖z∗ − zt‖2Q + ηTBφ(x∗,xt) .

(5.95)

Setting 1− νi = 1
K̃i

and τi = K

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]
, we have

γi + (1− J

K
)τi

= (3− 2K

J
)(1− νi) +

[
(1− K

J
)
KI

I
+
K

J
(1− KI

I
)

]
τi +

1

di
− 2

K̃i

+ (1− J

K
)
KI

I
τi

=
(J −K)KII +K(1− KI

I)

K̃i[(2J −K)KII +K(1− KI
I)]

+
1

di
− K

JK̃i

≥ 0 . (5.96)

Therefore, h(v∗,vt) ≥ 0. Letting ζi =
(J−K)

KI
I

+K(1−KI
I

)

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]
+ 1

di
− K

JK̃i
completes the

proof.

The following theorem shows that h(v∗,vt) decreases monotonically and thus establishes

the global convergence of PDMM.

96

Theorem 15 (Global Convergence of PDMM) Let vt = (xtjt ,y
t
it

) be generated by PDMM (5.5)-

(5.7) and v∗ = (x∗j ,y
∗
i) be a KKT point satisfying (5.82)-(5.83). Setting νi = 1 − 1

K̃i
and

τi = K

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]
, we have

0 ≤ Eξth(v∗,vt+1) ≤ Eξt−1h(v∗,vt) , EξtR(xt+1)→ 0 . (5.97)

Proof: Adding (5.94) and (5.68) yields

0 ≤
I∑
i=1

{
〈y∗i − yti,A

r
ix

t − ai〉 − (
KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}

+
J

K

{
L̃ρ(xt,yt)− EItL̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βiEIt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(‖z∗ − zt‖2Q − EIt‖z∗ − zt+1‖2Q − EIt‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)− EItBφ(x∗,xt+1)− EItBφ(xt+1,xt))

}
. (5.98)

According to Lemma 18, we have

I∑
i=1

{
〈y∗i − yti,A

r
ix

t − ai〉 − (
KI

I
− 1

2
)τiρ‖Ar

ix
t − ai‖22

}

=
I

KI

I∑
i=1

1

2τiρ

[
‖y∗i − yt−1

i ‖
2
2 − ‖y∗i − yti‖22

]
. (5.99)

Plugging back into (5.98) gives

0 ≤ I

KI

I∑
i=1

1

2τiρ
(‖y∗i − yt−1

i ‖
2
2 − ‖y∗i − yti‖22)

+
J

K

{
L̃ρ(xt,yt)− EItL̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βiEIt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(‖z∗ − zt‖2Q − EIt‖z∗ − zt+1‖2Q − EIt‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)− EItBφ(x∗,xt+1)− EItBφ(xt+1,xt))

}

=
J

K

{
h(v∗,vt)− EIth(v∗,vt+1)− EItR(xt+1)

}
. (5.100)

97

Taking expectaion over ξt−1, we have

0 ≤ J

K

{
Eξt−1h(v∗,vt)− Eξth(v∗,vt+1)− EξtR(xt+1)

}
. (5.101)

Since EξtR(xt+1) ≥ 0, we have

Eξth(v∗,vt+1) ≤ Eξt−1h(v∗,vt) . (5.102)

Thus, Eξth(v∗,vt+1) converges monotonically.

Rearranging the terms in (5.101) yields

EξtR(xt+1) ≤ Eξt−1h(v∗,vt)− Eξth(v∗,vt+1) . (5.103)

Summing over t gives

T−1∑
t=0

EξtR(xt+1) ≤ h(v∗,v0)− EξT−1
h(v∗,vT) ≤ h(v∗,v0) . (5.104)

where the last inequality uses the Lemma 19. As T → ∞, EξtR(xt+1) → 0, which completes

the proof.

Similar as the Lemma 18, we have the following results.

Lemma 20 Let {xtjt ,y
t
it
} be generated by PDMM (5.5)-(5.7). Assume τi > 0 and νi ≥ 0. We

have

−EIt〈yt+1,Axt+1 − a〉 =
I

KI

I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2

]
+ (

1

2
− KI

I
)

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 . (5.105)

Proof: According to (5.7), we have

yt+1 − yt =
∑
it∈It

(Ar
itx

t+1 − ait) . (5.106)

Using yt+1 = [yt+1
it∈It ,y

t
k 6∈It]

T , we have∑
it∈It

〈−ytit ,A
r
itx

t+1 − ait〉 =
∑
it∈It

[
〈−yt+1

it
,Ar

itx
t+1 − ait〉+ 〈yt+1

it
− ytit ,A

r
itx

t+1 − ait〉
]

98

=
∑
it∈It

1

τitρ

[
〈−yt+1

it
,yt+1

it
− ytit〉+ ‖yt+1

it
− ytit‖

2
2

]
=

I∑
i=1

1

τiρ

[
〈−yt+1

i ,yt+1
i − yti〉+ ‖yt+1

i − yti‖22
]

=

I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2 + ‖yt+1

i − yti‖22
]

=
I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2

]
+
∑
it∈It

1

2τiρ
‖yt+1

it
− ytit‖

2
2

=

I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2

]
+
∑
it∈It

τitρ

2
‖Ar

itx
t+1 − ait‖22 . (5.107)

xt+1 is independent of It. Taking expectation over It, we have

KI

I

I∑
i=1

〈−yti,A
r
ix

t+1 − ai〉 =
I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2

]
+
KI

I

I∑
i=1

τiρ

2
‖Ar

ix
t+1 − ai‖22 .

(5.108)

Dividing both sides by KI
I yields

〈−yt,Axt+1 − a〉 =
I

KI

I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2

]
+

I∑
i=1

τiρ

2
‖Ar

ix
t+1 − ai‖22 . (5.109)

Using (5.7) and the fact that yt+1 = [yt+1
it∈It ,y

t
k 6∈It]

T , we have

〈yt − yt+1,Axt+1 − a〉 =
∑
it∈It

〈ytit − yt+1
it

,Ar
itx

t+1 − ait〉 = −
∑
it∈It

τitρ‖Ar
itx

t+1 − ait‖22 .

(5.110)

Taking expectation over It, we have

EIt〈yt − yt+1,Axt+1 − a〉 = −KI

I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 . (5.111)

Adding (5.109) and (5.111), we have

EIt〈−yt+1,Axt+1 − a〉 = EIt〈−yt,Axt+1 − a〉+ EIt〈yt − yt+1,Axt+1 − a〉

=
I

KI

I∑
i=1

1

2τiρ

[
‖yti‖22 − ‖yt+1

i ‖
2
2

]
+

I∑
i=1

τiρ

2
‖Ar

ix
t+1 − ai‖22 −

KI

I

I∑
i=1

τiρ‖Ar
ix

t+1 − ai‖22 ,

(5.112)

99

which completes the proof.

The following theorem establishes the iteration complexity of PDMM in an ergodic sense.

Theorem 16 Let (xtjt ,y
t
it

) be generated by PDMM (5.5)-(5.7). Let x̄T =
∑T

t=1 xt. Setting

νi = 1− 1
K̃i

and τi = K

K̃i[(2J−K)
KI
I

+K(1−KI
I

)]
, we have

Ef(x̄T)− f(x∗) (5.113)

≤
I
KI

∑I
i=1

1
2τiρ
‖y0

i ‖22 + J
K

{
1

2βiρ
‖y∗i ‖22 + L̃ρ(x1,y1) + ρ

2‖z
∗ − z1‖2Q + ηTBφ(x∗,x1)

}
T

,

E
I∑
i=1

βi‖Ar
i x̄

T − ai‖22 ≤
2
ρh(v∗,v0)

T
. (5.114)

where βi = K
JK̃i

.

Proof: Plugging (5.105) into (5.68) yields

f(xt)− f(x∗) ≤ I

KI

I∑
i=1

1

2τiρ
(‖yt−1

i ‖
2
2 − ‖yti‖22)

+
J

K

{
L̃ρ(xt,yt)− EItL̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βiEIt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(‖z∗ − zt‖2Q − EIt‖z∗ − zt+1‖2Q − EIt‖zt+1 − zt‖2Pt)

+ ηT (Bφ(x∗,xt)− EItBφ(x∗,xt+1)− EItBφ(xt+1,xt))

}
. (5.115)

Taking expectaion over ξt−1, we have

Eξt−1f(xt)− f(x∗) ≤ I

KI

I∑
i=1

1

2τiρ
(Eξt−2‖y

t−1
i ‖

2
2 − Eξt−1‖yti‖22)

+
J

K

{
Eξt−1L̃ρ(xt,yt)− EξtL̃ρ(xt+1,yt+1)− ρ

2

I∑
i=1

βiEξt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(Eξt−1‖z∗ − zt‖2Q − Eξt‖z∗ − zt+1‖2Q − Eξt‖zt+1 − zt‖2Pt)

+ ηT (Eξt−1Bφ(x∗,xt)− EξtBφ(x∗,xt+1)− EξtBφ(xt+1,xt))

}
. (5.116)

100

Summing over t, we have

T∑
t=1

Eξt−1f(xt)− f(x∗) ≤ I

KI

I∑
i=1

1

2τiρ
(‖y0

i ‖22 − EξT−1
‖yTi ‖22)

+
J

K

{
L̃ρ(x1,y1)− EξT L̃ρ(x

T+1,yT+1)− ρ

2

T∑
t=1

I∑
i=1

βiEξt‖Ar
ix

t+1 − ai‖22

+
ρ

2
(‖z∗ − z1‖2Q − EξT ‖z

∗ − zT+1‖2Q − EξT ‖z
T+1 − zT ‖2Q)

+ ηT (Bφ(x∗,x1)− EξTBφ(x∗,xT+1)− EξTBφ(xT+1,xT))

}
. (5.117)

Following (5.94), we have

L̃ρ(xT+1,yT+1)

= f(xT+1)− f(x∗) +

I∑
i=1

[〈yT+1
i ,Aix

T+1 − ai〉+
(γi − KI

I τi)ρ

2
‖Aix

T+1 − ai‖22]

≥ −
I∑
i=1

〈y∗i ,Ar
ix

T+1 − ai〉+

I∑
i=1

[〈yTi ,Aix
T+1 − ai〉+

(γi + KI
I τi)ρ

2
‖Aix

T+1 − ai‖22]

≥ −
I∑
i=1

(
1

2δi
‖y∗i ‖22 +

δi
2
‖Ar

ix
T+1 − ai‖22)

+
I∑
i=1

[
− KI

2JKIτiρ
‖yTi ‖22 + [γi + (1− J

K
)
KI

I
τi]
ρ

2
‖Aix

T+1 − ai‖22
]

≥ −
I∑
i=1

(
1

2δi
‖y∗i ‖22 +

δi
2
‖Ar

ix
T+1 − ai‖22)−

I∑
i=1

KI

2JKIτiρ
‖yTi ‖22 , (5.118)

where δi > 0 and the last inequality uses (5.96).

Plugging into (5.117), we have

T∑
t=1

Eξt−1f(xt)− f(x∗)

≤ I

KI

I∑
i=1

1

2τiρ
‖y0

i ‖22 +
J

K

{
L̃ρ(x1,y1) +

ρ

2
‖z∗ − z1‖2Q + ηTBφ(x∗,x1)

}
+
J

K

{
I∑
i=1

[
1

2δi
‖y∗i ‖22 +

δi − βiρ
2

E‖Ar
ix

T+1 − ai‖22
]}

. (5.119)

101

Settin δi = βiρ, dividing by T and letting x̄T = 1
T

∑T
t=1 xt complete the proof.

Dividing both sides of (5.104) by T yields (5.114).

5.B Connection to ADMM

We use ADMM to solve (5.1), similar as [207, 153] but with different forms. We show that

ADMM is a speical case of PDMM. The connection can help us understand why the two pa-

rameters τi, νi in PDMM are necessary. We first introduce splitting variables zi as follows:

min
J∑
j=1

fj(xj) s.t. Ajxj = zj ,
J∑
j=1

zj = a , (5.120)

which can be written as

min
K∑
j=1

fj(xj) + g(z) s.t. Ajxj = zj , (5.121)

where g(z) is an indicator function of
∑K

j=1 zj = a. The augmented Lagrangian is

Lρ(xj , zj ,yj) =
J∑
j=1

[
fj(xj) + 〈yj ,Ajxj − zj〉+

ρ

2
‖Ajxj − zj‖22

]
, (5.122)

where yj is the dual variable. We have the following ADMM iterates:

xt+1
j = argminxi fj(xj) + 〈ytj ,Ajxj − ztj〉+

ρ

2
‖Ajxj − ztj‖22 , (5.123)

zt+1 = argmin∑K
j=1 zj=a

K∑
j=1

[
〈yti,Ajx

t+1
j − zj〉+

ρ

2
‖Ajx

t+1
j − zj‖22

]
, (5.124)

yt+1
j = ytj + ρ(Ajx

t+1
j − zt+1

j) . (5.125)

The Lagrangian of (5.124) is

L =
J∑
j=1

[
〈ytj ,Ajx

t+1
j − zj〉+

ρ

2
‖Ajx

t+1
j − zj‖22

]
+ 〈λ,

J∑
j=1

zj − a〉 , (5.126)

where λ is the dual variable. The first order optimality is

−ytj + ρ(zt+1
j −Ajx

t+1
j) + λ = 0 . (5.127)

102

Using (5.125) gives

λ = yt+1
j , ∀j . (5.128)

Denoting yt = ytj , (5.127) becomes

yt+1 = yt + ρ(Ajx
t+1
j − zt+1

j) . (5.129)

Summing over j and using the constraint
∑J

j=1 zi = a, we have

yt+1 = yt +
ρ

J
(Axt+1 − a) . (5.130)

Subtracting (5.129) from (5.130), simple calculations yields

zt+1
j = Ajx

t+1
j +

1

J
(Axt+1 − a) . (5.131)

Plugging back int (5.123), we have

xt+1
j = argminxj fj(xj) + 〈yt,Ajxj〉+

ρ

2
‖Ajxj − ztj‖22

= argminxj fj(xj) + 〈yt,Ajxj〉+
ρ

2
‖Ajxj −Ajx

t
j +

Axt − a

J
‖22

= argminxj fj(xj) + 〈ŷt,Ajxj〉+
ρ

2
‖Ajxj +

∑
k 6=j

Akx
t
k − a‖22 , (5.132)

where ŷt = yt − (1 − 1
J)ρ(Axt − a), which becomes PDMM by setting τ = 1

J , ν = 1 − 1
J

and updating all blocks. Therefore, sADMM is a special case of PDMM.

5.C Connection to PJADMM

We consider the case when all blocks are used in PDMM. We show that if setting ηj sufficiently

large, the dual backward step (5.5) is not needed, which becomes PJADMM [47].

Corollary 2 Let {xtj ,yti} be generated by PDMM (5.6)-(5.5). Assume τi > 0 and νi ≥ 0. We

have

f(xt+1)− f(x∗) ≤
I∑
i=1

{
−〈yt+1

i ,Ar
ix

t+1 − ai〉+
τiρ

2
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖zt − z∗‖2Q − ‖zt+1 − z∗‖2Q − ‖zt+1 − zt‖2Q)

103

+
ρ

2

I∑
i=1

{
(νi − 1 +

1

di
)(‖Ar

ix
t − ai‖22 − ‖Ar

ix
t+1 − ai‖22)

+(τi + 2νi − 2)‖Ar
ix

t+1 − ai‖22 + (1− νi −
1

di
)‖Ar

i (x
t+1 − xt)‖22

}
+

J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)−Bφj (x

t+1
j ,xtj)

)
. (5.133)

Proof: Let It be all blocks, K = J . According the definition of Pt in (5.33) and Q in (5.39),

Pt = Q. Therefore, (5.42) reduces to

f(xt+1)− f(x∗) ≤
I∑
i=1

{
−〈yt+1

i ,Ar
ix

t+1 − ai〉+
τiρ

2
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖zt − z∗‖2Q − ‖zt+1 − z∗‖2Q − ‖zt+1 − zt‖2Q)

+
J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)−Bφj (x

t+1
j ,xtj)

)

+
ρ

2

I∑
i=1

{
(νi − 1 +

1

di
)‖Ar

ix
t − ai‖22 − (1− νi − τi +

1

di
)‖Ar

ix
t+1 − ai‖22

+ (1− νi −
1

di
)‖Ar

i (x
t+1 − xt)‖22

}
. (5.134)

Rearranging the terms completes the proof.

Corollary 3 Let {xtj ,yti} be generated by PDMM (5.6)-(5.5). Assume (1)τi > 0 and νi ≥ 0;

(2) ηj > 0; (3) φj is αj-strongly convex. We have

f(xt+1)− f(x∗) ≤
I∑
i=1

{
−〈yt+1

i ,Ar
ix

t+1 − ai〉+
τiρ

2
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖zt − z∗‖2Q − ‖zt+1 − z∗‖2Q − ‖zt+1 − zt‖2Q)

+
J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)

)
. (5.135)

νi and τi satisfy νi ∈ [1− 1
di
− ηjαj

ρIdiλ
ij
max

, 1− 1
di

] and τi ≤ 1 + 1
di
− νi, where λijmax is the largest

eigenvalue of AT
ijAij . In particular, if ηj = (di−1)ρIλijmax

αj
, νi = 0 and τi ≤ 1 + 1

di
.

104

Proof: Assume ηj > 0. We can choose larger τi and smaller νi than Lemma 16 by setting ηj
sufficiently large. Since φj is αj-strongly convex, Bφj (x

t+1
j ,xtj) ≥

αj
2 ‖x

t+1
j − xtj‖22. We have

J∑
j=1

ηjBφj (x
t+1
j ,xtj) ≥

I∑
i=1

J∑
j=1

ηjαj
2I
‖xt+1

j − xtj‖22 ≥
I∑
i=1

∑
j∈N (i)

ηjαj

2Iλijmax

‖Aij(x
t+1
j − xtj)‖22 .

(5.136)

‖Ar
i (x

t+1 − xt)‖22 = ‖
∑

j∈N (i)

Aij(x
t+1
j − xtj)‖22 ≤ di

∑
j∈N (i)

‖Aij(x
t+1
j − xtj)‖22 , (5.137)

where λijmax is the largest eigenvalue of AT
ijAij . Plugging into (5.133) gives

f(xt+1)− f(x∗) ≤
I∑
i=1

{
−〈yt+1

i ,Ar
ix

t+1 − ai〉+
τiρ

2
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖zt − z∗‖2Q − ‖zt+1 − z∗‖2Q − ‖zt+1 − zt‖2Q)

+
ρ

2

I∑
i=1

{
(νi − 1 +

1

di
)(‖Ar

ix
t − ai‖22 − ‖Ar

ix
t+1 − ai‖22)

+(τi + 2νi − 2)‖Ar
ix

t+1 − ai‖22 +
∑

j∈N (i)

[(1− νi)di − 1− ηjαj

ρIλijmax

]‖Aij(x
t+1
j − xtj)‖22

+

J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)

)
. (5.138)

If (1− νi)di − 1− ηjαj

ρIλijmax
≤ 0, i.e., νi ≥ 1− 1

di
− ηjαj

ρIdiλ
ij
max

, we have

f(xt+1)− f(x∗) ≤ ρ

2

I∑
i=1

{
−2

ρ
〈yt+1
i ,Ar

ix
t+1 − ai〉+ τi‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖zt − z∗‖2Q − ‖zt+1 − z∗‖2Q − ‖zt+1 − zt‖2Q)

+
J∑
i=1

ηi

(
Bφi(x

∗
j ,x

t
j)−Bφi(x

∗
j ,x

t+1
j)

)
+
ρ

2

I∑
i=1

{
−(νi − 1 +

1

di
)‖Ar

ix
t+1 − ai‖22 + (τi − 2 + 2νi)‖Ar

ix
t+1 − ai‖22

}
. (5.139)

105

If τi − 2 + 2νi − (νi − 1 + 1
di

) ≤ 0, i.e., τi ≤ 1 + 1
di
− νi, the last two terms in (5.139) can be

removed. Therefore, when νi ≥ 1− 1
di
− ηjαj

ρIdiλ
ij
max

and τi ≤ 1 + 1
di
− νi, we have (5.135).

Define the current iterate vt = (xtj ,y
t
i) and h(v∗,vt) as a distance from vt to a KKT point

v∗ = (x∗j ,y
∗
i):

h(v∗,vt) =
I∑
i=1

1

2τiρ
‖y∗i − yti‖22 +

ρ

2
‖ut − u∗‖2Q +

J∑
j=1

ηjBφj (x
∗
j ,x

t
j) . (5.140)

The following theorem shows that h(v∗,vt) decreases monotonically and thus establishes

the global convergence of PDMM.

Theorem 17 (Global Convergence of PDMM) Let vt = (xtj ,y
t
i) be generated by PDMM (5.6)-

(5.5) and v∗ = (x∗j ,y
∗
i) be a KKT point satisfying (5.82)-(5.83). Assume τi, νi and γi satisfy

conditions in Lemma 3. Then vt converges to the KKT point v∗ monotonically, i.e.,

h(v∗,vt+1) ≤ h(v∗,vt) (5.141)

Proof: Adding (5.94) and (5.135) together yields

0 ≤
I∑
i=1

{
〈y∗i − yt+1

i ,Ar
ix

t+1 − ai〉+
τiρ

2
‖Ar

ix
t+1 − ai‖22

}
+
ρ

2
(‖ut − u∗‖2Q − ‖ut+1 − u∗‖2Q − ‖ut+1 − ut‖2Q)

+
J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)

)
. (5.142)

The first term in the bracket can be rewritten as

〈y∗i − yt+1
i ,Ar

ix
t+1 − ai〉 =

1

τiρ
〈y∗i − yt+1

i ,yt+1
i − yti〉

=
1

2τiρ

(
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2 − ‖yt+1

i − yti‖22
)

=
1

2τiρ

(
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

)
− τiρ

2
‖Ar

ix
t+1 − ai‖22 . (5.143)

Plugging back into (5.142) yields

0 ≤
I∑
i=1

1

2τiρ

(
‖y∗i − yti‖22 − ‖y∗i − yt+1

i ‖
2
2

)

106

+
ρ

2
(‖ut − u∗‖2Q − ‖ut+1 − u∗‖2Q − ‖ut+1 − ut‖2Q)

+
J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)

)
. (5.144)

Rearranging the terms completes the proof.

The following theorem establishes the O(1/T) convergence rate for the objective in an

ergodic sense.

Theorem 18 Let (xtj ,y
t
i) be generated by PDMM (5.6)-(5.5). Assume τi, νi ≥ 0 satisfy con-

ditions in Lemma 3. Let x̄T =
∑T

t=1 xt. We have

f(x̄T)− f(x∗) ≤
1

2τρ‖y
0‖22 + ρ

2‖u
0 − u∗‖2Q +

∑J
j=1 ηjBφj (x

∗
j ,x

0
j)

T
, (5.145)

Proof: Using (5.7), we have

− 〈yt+1
i ,Ar

ix
t+1 − ai〉 = − 1

τiρ
〈yt+1
i ,yt+1

i − yti〉

=
1

2τiρ
(‖yti‖22 − ‖yt+1

i ‖
2
2 − ‖yt+1

i − yti‖22)

=
1

2τiρ
(‖yti‖22 − ‖yt+1

i ‖
2
2)− τiρ

2
‖Ar

ix
t+1 − ai‖22 . (5.146)

Plugging into (5.135) yields

f(xt+1)− f(x∗) ≤
I∑
i=1

1

2τiρ
(‖yti‖22 − ‖yt+1

i ‖
2
2)

+
ρ

2
(‖ut − u∗‖2Q − ‖ut+1 − u∗‖2Q − ‖ut+1 − ut‖2Q)

+

J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)

)
. (5.147)

Summing over t from 0 to T − 1, we have

T−1∑
t=0

[
f(xt+1)− f(x∗)

]
≤

I∑
i=1

1

2τiρ
(‖yti‖22 − ‖yt+1

i ‖
2
2)

+
ρ

2
(‖u0 − u∗‖2Q − ‖uT − u∗‖2Q)

+

J∑
j=1

ηj

(
Bφj (x

∗
j ,x

t
j)−Bφj (x

∗
j ,x

t+1
j)

)
. (5.148)

107

Applying the Jensen’s inequality on the LHS and using x̄T =
∑T

t=1 xt complete the proof.

If ηj = (di−1)ρIλijmax

αj
, νi = 0 and τi = 1. Therefore, PDMM becomes PJADMM [47],

where the convergence rate of PJADMM has been improved to o(1/T).

Chapter 6

Online Alternating Direction Method
of Multipliers

6.1 Introduction

In recent years, online optimization [27, 225, 75] and its batch counterpart stochastic gradient

descent [162, 95] has contributed substantially to advances in large scale optimization tech-

niques for machine learning. Online convex optimization has been generalized to handle time-

varying and non-smooth convex functions [52, 53, 210]. Distributed optimization, where the

problem is divided into parts on which progress can be made in parallel, has also contributed to

advances in large scale optimization [19, 15, 25].

Important advances have been made based on the above ideas in the recent literature. Com-

posite objective mirror descent (COMID) [52] generalizes mirror descent [10] to the online

setting. COMID also includes certain other proximal splitting methods such as FOBOS [53]

as special cases. Regularized dual averaging (RDA) [210] generalizes dual averaging [147] to

online and composite optimization, and can be used for distributed optimization [50]. The three

methods consider the following composite objective optimization [146]:

min
x∈X

T∑
t=1

(ft(x) + g(x)) , (6.1)

where the functions ft, g are convex functions and X is a convex set. Solving (6.1) usually

involves the projection onto X . In some cases, e.g., when g is the `1 norm or X is the unit

108

109

simplex, the projection can be done efficiently. In general, the full projection requires an inner

loop algorithm, leading to a double loop algorithm for solving (6.1) [77].

In this chapter, we propose single loop online optimization algorithms for composite objec-

tive optimization subject to linear constraints. In particular, we consider optimization problems

of the following form:

min
x∈X ,z∈Z

T∑
t=1

(ft(x) + g(z)) s.t. Ax + Bz = c , (6.2)

where A ∈ Rm×n1 ,B ∈ Rm×n2 , c ∈ Rm, x ∈ X ∈ Rn1×1, z ∈ Z ∈ Rn2×1 and X and Z are

convex sets. The linear equality constraint introduces splitting variables and thus splits functions

and feasible sets into simpler constraint sets x ∈ X and z ∈ Z . (6.2) can easily accommodate

linear inequality constraints by introducing a slack variable, which will be discussed in Sec-

tion 6.5.4. In the sequel, we drop the convex sets X and Z for ease of exposition, noting that

one can consider g and other additive functions to be the indicators of suitable convex feasible

sets. ft and g can be non-smooth, including piecewise linear and indicator functions. In the

context of machine learning, ft is usually a loss function such as `1, `2, hinge and logistic loss,

while g is a regularizer, e.g., `1, `2, nuclear norm, mixed-norm and total variation.

We consider two scenarios in the online setting, based on whether an additional Bregman di-

vergence is needed or not for a proximal function in each step. We propose efficient online ADM

(OADM) algorithms for both scenarios which make a single pass through the update equations

and avoid a double loop algorithm. In the online setting, while a single pass through the ADM

update equations is not guaranteed to satisfy the linear constraint Ax+Bz = c in each iteration,

we consider two types of regret: regret in the objective as well as regret in constraint violation.

We establish both types of regret bounds for general and strongly convex functions. In Table

6.1, we summarize the main results of OADM and also compare with OGD [225], FOBOS [53],

COMID [52] and RDA [210]. While OADM aims to solve linearly-constrained composite ob-

jective optimization problems, OGD, FOBOS and RDA are for such problems without explicit

constraints. In both general and strongly convex cases, our methods achieve the optimal re-

gret bounds for the objective as well as the constraint violation, while start-of-the-art methods

achieve the optimal regret bounds for the objective. We also present preliminary experimen-

tal results illustrating the performance of the proposed OADM algorithms in comparison with

FOBOS and RDA [53, 210].

110

Problem min
Ax+Bz=c

∑
t ft(x) + g(z) minx

∑
t ft(x) + g(x)

Methods OADM OGD, FOBOS, COMID, RDA

Regret Bounds Objective constraint Objective

General Convex O(
√
T) O(

√
T) O(

√
T)

Strongly Convex O(log (T)) O(log (T)) O(log (T))

Table 6.1: Main results for regret bounds of OADM in solving linearly-constrained composite

objective optimization, in comparison with OGD, FOBOS, COMID and RDA in solving com-

posite objective optimization. In both general and strongly convex cases, OADM achieves the

optimal regret bounds for the objective, matching the results of the state-of-the-art methods. In

addition, OADM also achieves the optimal regret bounds for constraint violation, showing the

equality constraint will be satisfied on average.

The key advantage of the OADM algorithms can be summarized as follows: Like CO-

MID and RDA, OADM can solve online composite optimization problems, matching the regret

bounds for existing methods. The ability to additionally handle linear equality constraint of the

form Ax + Bz = c makes non-trivial variable splitting possible yielding efficient distributed

online optimization algorithms [44] and projection-free online learning [77] based on OADM.

Further, the notion of regret in both the objective as well as constraint may contribute towards

development of suitable analysis tools for online constrained optimization problems [131, 128].

The rest of the chapter is organized as follows. In Section 6.2, we propose OADM to solve

the online optimization problem with linear constraints. In Section 6.3 and 6.4, we present the

regret analysis in two different scenarios based on whether an additional Bregman divergence

is added or not. In Section 6.5, we discuss inexact ADM updates and show the stochastic

convergence rates, show the connection to related works and projection-free online learning

based on OADM. We present preliminary experimental results in Section 6.6.

6.2 Online Alternating Direction Method

In this section, we extend ADM to the online learning setting. Specifically, we focus on using

online ADM (OADM) to solve the problem (6.2). For our analysis, A and B are assumed to be

111

fixed. At round t, we consider solving the following regularized optimization problem:

xt+1 = argmin
Ax+Bz=c

ft(x) + g(z) + ηBφ(x,xt) , (6.3)

where η ≥ 0 is a learning rate and Bφ(x,xt) is a Bregman divergence [5, 25].

Let φ : Ω→ R be a continuously differentiable and strictly convex function. Denote∇φ(y)

as the gradient of φ at y. The Bregman divergence Bφ : Ω× ri(Ω)→ R+ is defined as

Bφ(x,y) = φ(x)− φ(y)− 〈∇φ(y),x− y〉 .

Two widely used examples are squared Euclidian distance Bφ(x,y) = 1
2‖x− y‖22 and KL

divergence Bφ(x,y) =
∑n

i=1 xi log xi
yi

.

If the problem (6.3) is solved exactly in every step, standard analysis techniques [75] can be

suitably adopted to obtain sublinear regret bounds. While (6.3) can be solved by batch ADM,

we essentially obtain a double loop algorithm where the function ft changes in the outer loop

and the inner loop runs ADM iteratively till convergence so that the constraint are satisfied.

Note that existing online methods, such as projected gradient descent and variants [75, 52] do

assume a black-box approach for projecting onto the feasible set, which for linear constraint

may require iterative cyclic projections [25].

For our analysis, instead of requiring the equality constraint to be satisfied at each time t,

we only require the equality constraint to be satisfied in the long run, with a notion of regret

associated with constraint. In particular, we consider the following constrained cumulative

regret for the online learning problem:

T∑
t=1

ft(xt) + g(zt)− min
Ax+Bz=c

T∑
t=1

ft(x) + g(z)

s.t.
T∑
t=1

‖Axt + Bzt − c‖22 = o(T) , (6.4)

where the cumulative constraint violation is sublinear in T . The goal is to design a single-loop

algorithm for (6.4), which has sublinear regret in both the objective and the constraint violation.

The augmented Lagrangian of (6.3) at time t is

Ltρ(x,y, z) =ft(x) + g(z) + 〈y,Ax + Bz− c〉+ ηBφ(x,xt) +
ρ

2
‖Ax + Bz− c‖2 .

(6.5)

112

Algorithm 5 Online Alternating Direction Method (OADM)
1: Input: ft(x) + g(z),A,B, c, ρ, η, φ(x)

2: Initialization: x1, z1,u1 = 0

3: for t = 1 to T do
4: xt+1 = argminx ft(x) + 〈yt,Ax + Bzt − c〉+ ρ

2‖Ax + Bzt − c‖2 + ηBφ(x,xt) ,

5: zt+1 = argminz g(z) + 〈yt,Axt+1 + Bz− c〉+ ρ
2‖Axt+1 + Bz− c‖2 ,

6: yt+1 = yt + ρ(Axt+1 + Bzt+1 − c) .

7: Receive a cost function ft+1 and incur loss ft+1(xt+1)+g(zt+1) and constraint violation

‖Axt+1 + Bzt+1 − c‖22;

8: end for

At time t, OADM (Algorithm 5) consists of just one pass through the following three update

steps:

xt+1 = argmin
x

{ft(x) + 〈yt,Ax + Bzt − c〉+
ρ

2
‖Ax + Bzt − c‖2 + ηBφ(x,xt)} , (6.6)

zt+1 = argmin
z
{g(z) + 〈yt,Axt+1 + Bz− c〉+

ρ

2
‖Axt+1 + Bz− c‖2} , (6.7)

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c) . (6.8)

Operationally, in round t, the algorithm presents a solution {xt, zt} as well as yt. Then,

nature reveals function ft and we encounter two types of losses. The first type is the traditional

loss measured by ft(xt) + g(zt), with corresponding cumulative regret

R1(T) =
T∑
t=1

ft(xt) + g(zt)− min
Ax+Bz=c

T∑
t=1

ft(x) + g(z) . (6.9)

The second type is the residual of constraint violation, i.e., ‖Axt + Bzt − c‖2. As the updates

include the primal and dual variables, in line with batch ADM, we use the following cumulative

regret for constraint violation:

Rc(T) =

T∑
t=1

‖Axt+1 + Bzt+1 − c‖22 + ‖Bzt+1 −Bzt‖22 . (6.10)

The goal is to establish sublinear regret bounds for both the objective and constraint violation.

The OADM updates (6.6)-(6.7) are similar as ADM updates (3.3)-(3.4) except the x update

in OADM uses a time varying function ft and an additional Bregman divergence, which is the

113

Regret bounds
η > 0 η = 0

R1 Rc R2 Rc

general convex O(
√
T) O(

√
T) O(

√
T) O(

√
T)

strongly convex O(log T) O(log T) O(log T) O(log T)

Table 6.2: Regret Bounds for Online Alternating Direction Method

first scenario where the regret bounds of R1 (6.9) and Rc (6.10) will be presented in Section

4. We also consider another scenario, where η = 0 in (6.6) and thus the Bregman divergence

is eliminated and only the quadratic penalty term is involved in the x-update. xt+1 is kept

close to xt indirectly through the quadratic penalty term at zt. Instead of using {xt, zt} as the

solution at round t, we use a solution {x̂t, zt} based on zt such that Ax̂t + Bzt = c. While

{x̂t, zt} satisfies the constraint by design, the goal is to establish sublinear regret of the objective

ft(x̂t) + g(zt), i.e.,

R2(T) =

T∑
t=1

ft(x̂t) + g(zt)− min
Ax+Bz=c

T∑
t=1

ft(x) + g(z) . (6.11)

The sublinear regret of constraint violation for the true {xt, zt} defined in (6.10) should still be

achieved. The regret bounds for OADM in the two scenarios are summarized in Table 6.2.

Before getting into the regret analysis, we discuss some example problems which can be

solved using OADM. Like FOBOS and RDA, OADM can deal with machine learning problems

where ft is a loss function and g is a regularizer, e.g., generalized lasso and group lasso [19, 189,

210] using `1 or mixed norm, or an indicator function of a convex set. OADM can also be used

to solve the batch optimization problems mentioned in Section 1, including linear programs,

e.g., MAP LP relaxation [139] and LP decoding [8], and non-smooth optimization, e.g. robust

PCA [24, 116]. Another promising scenario for OADM is consensus optimization [19] where

distributed local variables are updated separately and reach a global consensus in the long run.

More examples can be found in [19] and references therein.

In the sequel, we need the following assumptions:

Assumption 9
(a) For a p-norm ‖ · ‖p, the dual norm of subgradient of ft(x) is bounded by Gf , i.e.,

‖∇f ′t(x)‖q ≤ Gf , where f ′t(x) ∈ ∂ft(x),∀x ∈ X and 1
p + 1

q = 1.

114

(b) The Bregman divergence Bφ is defined on an α-strongly convex function φ with respect

to a p-norm ‖ · ‖p, i.e., Bφ(u,v) ≥ α
2 ‖x− y‖2p where α > 0.

(c) x1 = 0,y1 = 0, z1 = 0. For any x∗, z∗ satisfying Ax∗ + Bz∗ = c, Bφ(x∗,x1) ≤
D2

x, ‖z∗ − z1‖2 ≤ Dz.

(d) g(z1) = 0 and g(z) ≥ 0.

(e) For any t, ft(xt+1)+g(zt+1)− (ft(z
∗)+g(z∗)) ≥ −F , where F is a positive constant.

In Assumption 9, (a) and (b) are in general required in the online learning setting [225,

53, 210]. (c) and (d) are simply for the ease of exposition of regret bounds and is commonly

assumed for composite objective [53, 210], e.g., g is a regularizer in machine learning. We may

assume the convex sets of x and z are bounded [225, 75] in (c). To obtain a sublinear regret

bound for constraint violation, we need (e), which is true if functions are bounded from below

or Lipschitz continuous in the convex set [128].

6.3 Regret Analysis for OADM

We consider two types of regret in OADM. The first type is the regret of the objective based

on splitting variables, i.e., R1 defined in (6.9). Aside from using splitting variables, R1 is the

standard regret in the online learning setting. The second is the regret of the constraint violation

Rc defined in (6.10). We establish sublinear regret bounds for several cases whether ft and g

are strongly convex or not.

6.3.1 General Convex Functions

The following establishes the regret bounds for OADM for general convex functions.

Theorem 19 Let the sequences {xt, zt,yt} be generated by OADM (6.6)-(6.8) and let Assump-

tion 9 hold. For any x∗, z∗ satisfying Ax∗ + Bz∗ = c, setting η =
Gf
√
T

Dx

√
2α

and ρ =
√
T , we

have

R1(T) ≤ λB
maxD

2
z

√
T

2
+

√
2GfDx

√
T√

α
, (6.12)

Rc(T) ≤ λB
maxD

2
z +

2
√

2DxGf√
α

+ 2F
√
T . (6.13)

115

Proof: Since xt+1 minimizes (6.6), we have

0 ∈ ∂ft(xt+1) + ATyt + ρAT (Axt+1 −Bzt − c) + η(∇φ(xt+1)−∇φ(xt)) . (6.14)

Rearranging the terms and using (6.8) give the subgradient of ft(xt+1),

−AT (yt+1 + ρ(Bzt −Bzt+1))− η(∇φ(xt+1)−∇φ(xt)) ∈ ∂ft(xt+1) (6.15)

Compared to (3.7) in Lemma 6, the additional terms introduced by Bregman divergence are

included in the subgradient. Therefore, replacing f by ft in Lemma 7 and adding the terms

−η(∇φ(xt+1)−∇φ(xt)), we have

ft(xt+1) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22)− ρ

2
‖Axt+1 + Bzt − c‖22 +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

− η〈∇φ(xt+1)−∇φ(xt),xt+1 − x∗〉 . (6.16)

Using the three point property of Bregman divergence, the last term can be written as

−〈∇φ(xt+1)−∇φ(xt),xt+1 − x∗〉 = Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt) . (6.17)

Let f ′t(xt) ∈ ∂ft(xt). According to the Fenchel-Young’s inequality [165], i.e., 2|〈x,y〉| ≤
‖x‖2q + ‖y‖2p, we have

ft(xt)− ft(xt+1) ≤ 〈f ′t(xt),xt − xt+1〉 = 〈 1
√
αη
f ′t(xt),

√
αη(xt − xt+1)〉

≤ 1

2αη
‖f ′t(xt)‖2q +

αη

2
‖xt − xt+1‖2p . (6.18)

Recalling Bφ(xt+1,xt) ≥ α
2 ‖xt − xt+1‖2p and combining (6.16)-(6.18), we have

ft(xt) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22)− ρ

2
‖Axt+1 + Bzt − c‖22 +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

+
1

2αη
‖f ′t(xt)‖2q + η(Bφ(x∗,xt)−Bφ(x∗,xt+1)) . (6.19)

From Assumption 9, g(z) ≥ 0 and g(z1) = 0 for z1 = 0, R1(T) is bounded as follows :

R1(T) =
T∑
t=1

ft(xt) + g(zt+1)− (ft(x
∗) + g(z∗)) + g(z1)− g(zT+1)

116

≤ 1

2ρ
(‖y1‖22 − ‖yT+1‖22) +

ρ

2
(‖Bz∗ −Bz1‖22 − ‖Bz∗ −BzT+1‖22)

+ η(Bφ(x∗,x1)−Bφ(x∗,xT+1)) +
1

2αη

T∑
t=1

‖f ′t(xt)‖2q

≤ λB
maxD

2
zρ

2
+ ηD2

x +
G2
fT

2αη
. (6.20)

Setting η =
Gf
√
T

Dx

√
2α

and ρ =
√
T yields (6.12).

Now we prove (6.13). Rearranging the terms in (6.16), we have

‖Axt+1 + Bzt − c‖22 ≤
2F

ρ
+

1

ρ2
(‖yt‖22 − ‖yt+1‖22) + (‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

+
2η

ρ
(Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt)) . (6.21)

Letting Assumption 9 hold and summing over t from 1 to T , we have

T∑
t=1

‖Axt+1 + Bzt − c‖22

≤ 2FT

ρ
+

1

ρ2
(‖y1‖22 − ‖yT+1‖22) + (‖Bz∗ −Bz1‖22 − ‖Bz∗ −BzT+1‖22)

+
2η

ρ
(Bφ(x∗,x1)−Bφ(x∗,xT+1))

≤ 2FT

ρ
+ λB

maxD
2
z +

2η

ρ
D2

x . (6.22)

Setting η =
Gf
√
T

Dx

√
2α

and ρ =
√
T , we have (6.13) by using Lemma 9.

Note the bounds are achieved without any explicit assumptions on A,B, c.1 The subgra-

dient of ft is required to be bounded, but the subgradient of g is not necessarily bounded. Thus,

the bounds hold for the case where g is an indicator function of a convex set. Compared to regret

bound for COMID which is GfDx

√
T√

α
[52], the regret bound for the objective of ADMM has an

additional term λBmaxD
2
z

√
T

2 which is for the splitting variable z. In addition to the O(
√
T) regret

bound, OADM achieves the O(
√
T) bound for the constraint violation, which is not considered

in the start-of-the-art online learning algorithms [52, 53, 210], since they do not explicitly han-

dle linear constraint of the form Ax + Bz = c. In fact, the bound for constraint violation could

be reduced to a constant if yt is assumed to be bounded (see Assumption 5), which is shown in

the following theorem.
1 We do assume that Ax+Bz = c is feasible.

117

Theorem 20 Let the sequences {xt, zt,yt} be generated by OADM. Assume that ‖yt‖2 ≤ D.

Setting ρ =
√
T , then

T∑
t=1

‖Axt+1 + Bzt+1 − c‖22 ≤ 4D2 . (6.23)

Proof: According to (6.8), we have

‖Axt+1 + Bzt+1 − c‖22 = ‖1

ρ
(yt+1 − yt)‖22 ≤

2

ρ2
(‖yt+1‖22 + ‖yt‖22) ≤ 4D2

ρ2
. (6.24)

Summing over t from 1 to T and setting ρ =
√
T yield (6.23).

6.3.2 Strongly Convex Functions

We assume both ft(x) and g are strongly convex. Specifically, we assume ft(x) is β1-strongly

convex with respect to a differentiable convex function φ, i.e.,

ft(x
∗) ≥ ft(x) + 〈f ′t(x),x∗ − x〉+ β1Bφ(x∗,x) , (6.25)

where f ′t(x) denotes the subgradient of ft at x and β1 > 0. Assume g is a β2-strongly convex

function, i.e.,

g(z∗) ≥ g(z) + 〈g′(z), z∗ − z〉+
β2

2
‖z∗ − z‖22 , (6.26)

where g′(z) denotes the subgradient of g at z and β2 > 0.

Instead of using fixed ρ and η, we allow them to change over time, i.e., ρt and ηt, which is

fairly standard in the proof of logarithmic regret bounds [75, 53, 210] where the curvature of

a sequence of strongly convex functions ft is considered. The following theorem establishes

logarithmic regret bounds for R1 as well as Rc.

Theorem 21 Let Assumption 9 hold. Assume ft(x) and g are strongly convex given in (6.25)

and (6.26). Setting ηt = β1t, ρt = β2t/λ
B
max, we have

R1(T) ≤
G2
f

2αβ1
log (T + 1) +

β2D
2
z

2
+ β1D

2
x , (6.27)

Rc(T) ≤ 2FλB
max

β2
log(T + 1) + λB

maxD
2
z +

2β1λ
B
maxD

2
x

β2
. (6.28)

118

Proof: Assume ft(x) and g are strongly convex (6.25)-(6.26). Let x be xt+1 and z be zt+1

in (6.25)-(6.26) respectively. Adding them together and rearranging the terms give

ft(xt+1) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 〈f ′t(xt+1),xt+1 − x∗〉 − β1Bφ(x∗,xt+1) + 〈g′(zt+1), zt+1 − z∗〉 − β2

2
‖z∗ − zt+1‖22 .

(6.29)

Compared to the general convex case in Theorem 19, the right hand side has two additional

strongly convex terms. (6.29) can be obtained by letting ρ, η be ρt+1, ηt+1 respectively in (6.16)

and adding the two strongly convex term as follows:

ft(xt+1) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 1

2ρt+1
(‖yt‖22 − ‖yt+1‖22)− ρt+1

2
‖Axt+1 + Bzt − c‖22 +

ρt+1

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

+ ηt+1(Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt))− β1Bφ(x∗,xt+1)− β2

2
‖z∗ − zt+1‖22 .

(6.30)

Let η be ηt+1 in (6.18). Adding to (6.30) and ignoring the negative term−ρt+1

2 ‖Axt+1 +Bzt−
c‖22, we have

ft(xt) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 1

ηt+1
‖f ′t(xt)‖2∗ +

1

2ρt+1
(‖yt‖22 − ‖yt+1‖22) +

ρt+1

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

− β2

2
‖z∗ − zt+1‖22 + (ηt+1(Bφ(x∗,xt)−Bφ(x∗,xt+1))− β1Bφ(x∗,xt+1))− ηt+1Bφ(xt+1,xt) .

(6.31)

Summing over t from 1 to T , we have

R1(T) ≤ 1

2α

T∑
t=1

1

ηt+1
‖f ′t(xt)‖2∗ +

T∑
t=1

1

2ρt+1
(‖yt‖22 − ‖yt+1‖22)

+
T∑
t=1

(
ρt+1

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− β2

2
‖z∗ − zt+1‖22)

+
T∑
t=1

(ηt+1(Bφ(x∗,xt)−Bφ(x∗,xt+1))− β1Bφ(x∗,xt+1)) . (6.32)

119

Assuming ρt is non-decreasing, we have

T∑
t=1

1

2ρt+1
(‖yt‖22 − ‖yt+1‖22) ≤ 1

2ρ2
‖y1‖22 = 0 . (6.33)

Using ‖Bz∗ −Bzt+1‖22 ≤ λB
max‖z∗ − zt+1‖22 and setting ρt = β2t/λ

B
max, we have

T∑
t=1

[
ρt+1(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− β2‖z∗ − zt+1‖22

]
≤

T∑
t=1

[
ρt+1(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− β2

λB
max

‖Bz∗ −Bzt+1‖22
]

≤ ρ2‖Bz∗ −Bz1‖22 +
T∑
t=2

‖Bz∗ −Bzt‖22(ρt+1 − ρt −
β2

λB
max

)

= 2β2D
2
z , (6.34)

where the last equality uses the Assumption 9. Similarly, setting ηt = β1t, the last term in

(6.32) can be rewritten as

T∑
t=1

[ηt+1(Bφ(x∗,xt)−Bφ(x∗,xt+1))− β1Bφ(x∗,xt+1)]

= η2Bφ(x∗,x1) +
T∑
t=2

Bφ(x∗,xt)(ηt+1 − ηt − β1)− ηT+1Bφ(x∗,xT+1)− β1Bφ(x∗,xT+1)

≤ η2Bφ(x∗,x1) +
T∑
t=2

Bφ(x∗,xt)(ηt+1 − ηt − β1)

= 2β1D
2
x . (6.35)

Setting ρt = β2t/λ
B
max, ηt = β1t and combining (6.32), (6.33), (6.34) and (6.35), we have

R1(T) ≤
G2
f

2α

T∑
t=1

1

β1(t+ 1)
+ β2D

2
z + 2β1D

2
x . (6.36)

Applying
∑T

t=1
1
t+1 ≤

∫ T
t=0

1
t+1dt = log(T + 1) gives (6.27).

Now we prove (6.28). Rearranging terms in (6.30), we have

‖Axt+1 + Bzt − c‖22 ≤
2F

ρt+1
+

1

ρ2
t+1

(‖yt‖22 − ‖yt+1‖22) + (‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

120

+
2ηt+1

ρt+1
(Bφ(x∗,xt)−Bφ(x∗,xt+1)−Bφ(xt+1,xt)) . (6.37)

Letting ρt = β2t/λ
B
max and ηt = β1t and summing over t from 0 to T , we have

T∑
t=1

‖Axt+1 + Bzt − c‖22

≤ 2F
T∑
t=1

1

ρt+1
+

T∑
t=1

1

ρ2
t+1

(‖yt‖22 − ‖yt+1‖22) + (‖Bz∗ −Bz0‖22 − ‖Bz∗ −BzT+1‖22)

+
T∑
t=1

2ηt+1

ρt+1
(Bφ(x∗,xt)−Bφ(x∗,xt+1))

≤ 2FλB
max log(T + 1)

β2
+ λB

maxD
2
z +

2β1λ
B
maxD

2
x

β2
. (6.38)

We use (6.33) in the last inequality. According to Lemma 9, we have (6.28).

To guarantee logarithmic regret bounds for both objective and constraints violation, OADM

requires both ft and g to be strongly convex. FOBOS, COMID, and RDA only require g to be

strongly convex although they do not consider linear constraints explicitly. Further, the loga-

rithmic regret bounds for the constraints violation could reduce to constant bound if assuming

yt is bounded.

Theorem 22 Let the sequences {xt, zt,yt} be generated by OADM and ‖yt‖2 ≤ D. Setting

ρt = β2t/λ
B
max, then

T∑
t=1

‖Axt+1 + Bzt+1 − c‖22 ≤
2πD2λB

max
2

3β2
2

. (6.39)

Proof: Replacing ρ by ρt+1 in (6.24) and summing over t from 1 to T , we have

T∑
t=1

‖Axt+1 + Bzt+1 − c‖22 ≤
T∑
t=1

4D2

ρ2
t+1

. (6.40)

Setting ρt = β2t/λ
B
max and using

∑T
t=1

1
t2
≤ π

6 complete the proof.

121

6.4 Regret Analysis for OADM with η = 0

We analyze the regret bound when η = 0. In this case, OADM has the same updates as ADM

except ft is changing over time. The x-update only including the quadratic penalty term is easier

to solve than the one with an additional Bregman divergence, particularly when the Bregman

divergence is not a quadratic function. Without a Bregman divergence to keep two consecutive

iterates of x close, the quadratic penalty term is qualified for this task through variable z. We

consider zt to be the key primal variable, and compute x̂t using zt so that Ax̂t + Bzt = c.

Therefore, we use the regret bound R2 defined in (6.11). While {x̂t, zt} satisfies the equality

constraint, {xt, zt} need not satisfy Axt+Bzt−c = 0. Therefore, we also consider bounds for

Rc as defined in (6.10). A common case we often encounter is when A = I,B = −I, c = 0,

thus x̂t = zt. Consensus optimization is a typical example of this form [19, 15, 141]. In

machine learning, many examples like (group) lasso [19, 218] can be reformulated in this way.

In this section, we need additional assumptions. In Assumption 9 (a), we specify the dual

norm ‖ · ‖q to be `2, i.e., ‖ft(x)‖2 ≤ Gf . To guarantee that Ax̂t + Bzt = c,A ∈ Rm×n1 is

feasible, the equality constraint, in particular, implicitly requires the assumption m ≤ n1. On

the other hand, to establish a bound for R2, A should be full-column rank, i.e., rank(A) = n1.

Therefore, we need the following assumption in this scenario:

Assumption 10 A is a square and full rank matrix, i.e., A is invertible. Let λA
min be the smallest

eigenvalue of AAT , then λA
min > 0.

Assumption 10 is satisfied in most examples like lasso and consensus optimization. Consid-

ering the subgradient of ft given in (3.6), if there always exists a vector vt such that −ATvt ∈
∂ft(xt), Assumption 10 can be safely removed under the implicit assumption that Ax+Bz = c

is feasible.

6.4.1 General Convex Functions

The following theorem shows the regret bounds for R2 as well as Rc.

Theorem 23 Let η = 0 in OADM. Let Assumption 9 and 10 hold. For any x∗, z∗ satisfying

122

Ax∗ + Bz∗ = c, setting ρ =
Gf
√
T

Dz

√
λAminλ

B
max

, we have

R2(T) ≤
GfDz

√
λB

max√
λA

min

√
T , (6.41)

Rc(T) ≤ λB
maxD

2
z +

2FDz

√
λA

minλ
B
maxT

Gf
. (6.42)

Proof: Replacing f by ft in Lemma 7, we have

ft(xt+1) + g(zt+1)− (f(x∗) + g(z∗))

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22)− ρ

2
‖Axt+1 + Bzt − c‖22 +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22) .

(6.43)

Let f ′t(x̂t) ∈ ∂ft(x̂t). Recalling Ax̂t + Bzt = c, then

ft(x̂t)− ft(xt+1) ≤ 〈f ′t(x̂t), x̂t − xt+1〉 = 〈(A−1)T f ′t(x̂t),Ax̂t −Axt+1〉

= −〈(A−1)T f ′t(x̂t),Axt+1 + Bzt − c〉 ≤ 1

2λA
minρ
‖f ′t(x̂t)‖22 +

ρ

2
‖Axt+1 + Bzt − c‖22 .

(6.44)

Adding to (6.43) gives

ft(x̂t) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 1

2λA
minρ
‖f ′t(x̂t)‖22 +

1

2ρ
(‖yt‖22 − ‖yt+1‖22) +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22) .

(6.45)

Letting the assumptions hold, R2(T) is bounded as:

R2(T) ≤
T∑
t=1

[ft(x̂t) + g(zt+1)− (ft(x
∗) + g(z∗))]

≤ 1

2λA
minρ

T∑
t=1

‖f ′t(x̂t)‖22 +
1

2ρ
(‖y1‖22 − ‖yT+1‖22) +

ρ

2
(‖Bz∗ −Bz1‖22 − ‖Bz∗ −BzT+1‖22)

≤
G2
fT

2λA
minρ

+
λB

maxD
2
zρ

2
. (6.46)

Setting ρ =
Gf
√
T

Dz

√
λAminλ

B
max

yields (6.41).

123

Now we prove (6.42). Rearranging the terms in (6.43), we have

‖Axt+1 + Bzt − c‖22 ≤
2F

ρ
+

1

ρ2
(‖yt‖22 − ‖yt+1‖22) + (‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22) .

(6.47)

Letting the assumptions hold and summing over t from 1 to T , we have

T∑
t=1

‖Axt+1 + Bzt − c‖22

≤ 2FT

ρ
+

1

ρ2
(‖y1‖22 − ‖yT+1‖22) + (‖Bz∗ −Bz1‖22 − ‖Bz∗ −BzT+1‖22)

≤ 2FT

ρ
+ λB

maxD
2
z . (6.48)

Setting ρ =
Gf
√
T

Dz

√
λAminλ

B
max

and using Lemma 9 give (6.42).

The following theorem shows that Rc has a constant bound when assuming ‖y‖2 ≤ D2.

Theorem 24 Let the sequences {xt, zt,yt} be generated by OADM with η = 0. Let Assump-

tion 10 hold. Assuming ‖yt‖2 ≤ D2 and setting ρ =
Gf
√
T

Dz

√
λAminλ

B
max

, we have

Rc(T) ≤ 2D2
zλ

A
minλ

B
max

G2
f

(D2 +
G2
f

λA
min

) . (6.49)

Proof: Let f be ft in (3.6). Define

f ′t(xt+1) = −(ATyt + ρAT (Axt+1 + Bzt − c)) . (6.50)

Multiplying both sides by (AT)−1 gives

(AT)−1f ′t(xt+1) = −(yt + ρ(Axt+1 + Bzt − c)) . (6.51)

Rearranging the terms, we have

‖Axt+1 + Bzt − c‖22 =
1

ρ2
‖yt + (AT)−1f ′t(xt+1)‖22

≤ 2

ρ2
(‖yt‖22 + ‖(AT)−1f ′t(xt+1)‖22)

≤ 2

ρ2
(D2 +

G2
f

λA
min

) . (6.52)

124

Summing over t from 1 to T and setting ρ =
Gf
√
T

Dz

√
λAminλ

B
max

, we have (6.49) according to Lemma

2.

Without requiring an additional Bregman divergence, R2 achieves the same
√
T bound as

R1. While R1 depends on xt which may not stay in the feasible set, R2 is defined on x̂t which

always satisfies the equality constraint. The corresponding algorithm requires finding x̂t in each

iteration such that Ax̂t = c−Bzt, which involves solving a linear system. The algorithm will

be efficient in some settings, e.g., consensus optimization where A = I.

6.4.2 Strongly Convex Functions

If g(z) is a β2-strongly convex function given in (6.26), we show that R2 and Rc have logarith-

mic bounds.

Theorem 25 Let η = 0 in OADM. Assume that g(z) is β2-strongly convex and Assumption 9

and 10 hold. Setting ρt = β2t/λ
B
max, we have

R2(T) ≤
G2
fλ

B
max

2λA
minβ2

(log(T + 1)) + β2D
2
z , (6.53)

Rc(T) ≤ λB
maxD

2
z +

2FλB
max

β2
log(T + 1) . (6.54)

Proof: Assuming g(z) is strongly convex (6.26), we can show the regret bound by replacing

ρ by ρt+1 and subtracting the strongly convex term β2
2 ‖z

∗ − zt+1‖22 in (6.45), i.e.,

ft(x̂t) + g(zt+1)− (ft(x
∗) + g(z∗)) ≤ 1

2λA
minρt+1

‖f ′t(x̂t)‖22 +
1

2ρt+1
(‖yt‖22 − ‖yt+1‖22)

+
ρt+1

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− β2

2
‖z∗ − zt+1‖22 . (6.55)

Summing over t from 1 to T , we have

R2(T) ≤
G2
f

2λA
min

T∑
t=1

1

ρt+1
+

T∑
t=1

1

2ρt+1
(‖yt‖22 − ‖yt+1‖22)

+
T∑
t=1

[
ρt+1

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− β2

2
‖z∗ − zt+1‖22

]
. (6.56)

Using (6.33), (6.34) and setting ρt = β2t/λ
B
max, we get (6.53) by applying

∑T
t=1

1
t+1 ≤ log(T+

1).

125

Now we prove (6.54). Replacing ρ by ρt+1 in (6.47), we have

‖Axt+1 + Bzt − c‖22 ≤
2F

ρt+1
+

1

ρ2
t+1

(‖yt‖22 − ‖yt+1‖22) + (‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22) .

(6.57)

Letting the assumptions hold and summing over t from 0 to T , we have

T∑
t=1

‖Axt+1 + Bzt − c‖22

≤ 2F

T∑
t=1

1

ρt+1
+

T∑
t=1

1

ρ2
t+1

(‖yt‖22 − ‖yt+1‖22) + (‖Bz∗ −Bz1‖22 − ‖Bz∗ −BzT+1‖22)

≤ 2F

T∑
t=1

1

ρt+1
+ λB

maxD
2
z . (6.58)

We use (6.33) in the last inequality. Setting ρt = β2t/λ
B
max and using Lemma 9 give (6.54).

Similar as the case of general convex functions, the logarithmic regret bound for constraint

violation can also be reduced to a constant bound, as shown in the following theorem.

Theorem 26 Let η = 0 in OADM. Assume that g(z) is β2-strongly convex and Assumption 10

hold. Assuming ‖yt‖2 ≤ D and setting ρt = β2t/λ
B
max, we have

Rc(T) ≤ πλB
max

2

3β2
2

(
D2 +

G2
f

λA
min

)
(6.59)

Proof: Setting ρt = β2t/λ
B
max in (6.52), summing over t from 1 to T and using

∑T
t=1

1
t2
≤ π

6

complete the proof.

Theorem 26 shows that OADM can achieve the logarithmic regret bound without requiring

ft to be strongly convex, which is in line with other online learning algorithms for composite

objectives.

6.5 Further Discussions

In this section, we discuss several variants of the x update in OADM which can lead to effi-

cient updates and show the stochastic convergence rates. The connection to the related work is

presented. We also show that OADM can serve as projection-free online learning.

126

6.5.1 Inexact ADMM Updates (η > 0)

In OADM (η > 0), since the x update (6.6) involves the function ft, the quadratic penalty

term and a Bregman divergence, it may be computationally expensive to solve it exactly. We

consider several variants which solve the x update inexactly through the linearization of some

terms. The inexact updates can be efficient, and include mirror descent algorithm (MDA) and

composite objective mirror descent (COMID) as special cases.

Case 1: Linearization of the quadratic penalty term The linearization of the quadratic

penalty term in (6.6) can be done by removing ‖Ax‖22 as follows:

‖Ax + Bzt − c‖22 − ‖A(x− xt)‖22 = 2〈Axt + Bzt − c,Ax〉+ ‖Bzt − c‖22 − ‖Axt‖22 .

LetBφ(x,xt) = Bϕ(x,xt)− ρ
2η‖A(x−xt)‖22 in (6.6), whereBϕ is a Bregman divergence and

the quadratic term is used to linearize the quadratic penalty term. Removing constant terms,

(6.6) becomes

xt+1 = argminx ft(x) + 〈yt + ρ(Axt + Bzt − c),Ax〉+ ηBϕ(x,xt) . (6.60)

This case mainly solves the problem caused by A, e.g., Ax makes x nonseparable. Several

problems have been benefited from the linearization of quadratic term [48], e.g., f is `1 loss

function [74] and projection onto the unit simplex or `1 ball [51].

Since Bφ(x,xt) ≥ α
2 ‖x − xt‖22 is required for the analysis in Section 6.3, Bϕ should be

chosen to satisfy that condition. Note

Bφ(x,xt) = Bϕ(x,xt)−
ρ

2η
‖A(x− xt)‖22 ≥ Bϕ(x,xt)−

ρλA
max

2η
‖x− xt‖22 . (6.61)

Therefore, as long as Bϕ(x,xt) ≥ ρλAmax/η+α
2 ‖x − xt‖22, the assumption 9(b) holds, meaning

Theorem 19 and 21 hold for Case 1.

Case 2: Linearization of function ft This case is particularly useful when the difficulty

of solving (6.6) is caused by ft(x), e.g., when ft is a logistic loss function. Linearizing the

function ft at xt in (6.6), we have

xt+1 = argminx〈f ′t(xt),x− xt〉+
ρ

2
‖Ax + Bzt − c‖22 + ηBφ(x,xt) . (6.62)

The updated is called inexact ADMM update if φ is a quadratic function [19]. In the Ap-

pendix 6.A, we show Theorem 19 and 21 continue to hold in this case.

127

Case 3: Mirror Descent In this case, we linearize both the function and the quadratic

term, which can be done by choosing Bφ(x,xt) = Bϕ(x,xt) − ρ
2η‖A(x − xt)‖22 in Case 2.

Combining the results in Case 1 and 2, (6.6) becomes the following MDA-type update:

xt+1 = argminx〈Ft(xt),x〉+ ηBϕ(x,xt) , (6.63)

where Ft(xt) = f ′t(xt)+AT {yt+ρ(Axt+Bzt−c)}, which is the gradient of the objective in

(6.6). Assuming Bϕ(x,xt) ≥ ρλAmax/η+α
2 ‖x−xt‖22 in Case 2, the regret bounds in Theorem 19

and 21 still holds in Case 3.

Case 4: COMID Assume ft is a composite objective consisting of smooth and nonsmooth

part, i.e., ft(x) = fSt (x) + fNt (x), where fSt is the smooth part and fNt is the nonsmooth part.

Let Bφ(x,xt) = Bϕ(x,xt)− ρ
2η‖A(x−xt)‖22, which is used to linearize the quadratic penalty

term. Linearizing the smooth function fSt , (6.6) becomes the following COMID-type update:

xt+1 = argminx f
N
t (x) + 〈FSt (xt),x〉+ ηBϕ(x,xt) , (6.64)

where FSt (xt) = ∇fSt (xt) + AT {yt + ρ(Axt + Bzt − c)}. Applying the analysis in Case 2

on the smooth part, we can get the regret bounds in Theorem 19 and 21.

6.5.2 Stochastic Convergence Rates

In this section, we present the convergence rates for ADMM in the Case 2-4 in Section 6.1 in

the stochastic setting, which solves the following stochastic learning problem:

min
x∈X ,z∈Z

Eξ[f(x, ξ)] + g(z) s.t. Ax + Bz = c (6.65)

f ′(xt, ξt) is an unbiased estimate of f ′(xt) and f(x) = Ef(x, ξ). Correspondingly, the

x-update in (6.62)-(6.63) uses f ′(xt, ξt) to substitute f ′t(xt) and ∇fN (xt, ξt) to substitute

∇fNt (xt) in (6.64). The regret bounds for Case 2-4 in Section 6.1 can be converted to conver-

gence rates in the stochastic setting based on known online-stochastic conversion [26, 53, 210].

More specifically, the stochastic convergence rates in expectation can be obtained by simply

dividing regret bounds by T . Using martingale concentration results [26, 53, 210], the high

probability bounds can also be obtained by applying the Azuma-Hoeffding inequality [3].

Corollary 4 Let the sequences {xt, zt,yt} be generated by stochastic ADM and Assumption 9

hold. Let x̄T = 1
T

∑T
t=1 xt and z̄T = 1

T

∑T
t=1 zt. For any x∗, z∗ satisfying Ax∗ + Bz∗ = c,

setting η =
Gf
√
T

Dx

√
2α

and ρ =
√
T , we have

128

(a) Stochastic convergence rates in expectation

E [f(x̄T) + g(z̄T)]− (f(x∗) + g(z∗))] ≤ λB
maxD

2
z

2
√
T

+

√
2GfDx√
α
√
T

, (6.66)

E
[
‖Ax̄T + Bz̄T + c‖22

]
≤ λB

maxD
2
z

T
+

2
√

2DxGf√
αT

+
2F√
T
. (6.67)

(b) High probability bounds for stochastic convergence rates

P
(
f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) ≥ λB

maxD
2
z

2
√
T

+

√
2GfDx√
α
√
T

+ ε
)
≤ exp

(
− Tαε2

16D2
xG

2
f

)
,

(6.68)

P
(
‖Ax̄T + Bz̄T − c‖22 ≥

2F√
T

+
λB

maxD
2
z

T
+

2
√

2DxGf√
αT

+ ε
)
≤ exp

(
− Tαε2

16D2
xG

2
f

)
.

(6.69)

The proof is presented in Appendix 6.B. Compared to the stochastic convergence rates for CO-

MID [52], the stochastic convergence rates for the objective of ADM has an extra term λBmaxD
2
z

2
√
T

which bounds the splitting variable z. For strongly convex functions, we haveO(log T
T) stochas-

tic convergence rates by applying the online-stochastic conversion [26, 53, 210] on Theorem 21.

Remark 4 We note that [152] has recently established the stochastic convergence rates for

stochastic ADM based on our VI analysis (see Section 2.3), which has the following form in

our notation:

E
[
f(x̄T) + g(z̄T)−(f(x∗) + g(z∗))+D‖Ax̄T + Bz̄T + c‖22

]
≤ λ

B
maxD

2
zρ

2T
+

√
2GfDx√
T

+
D2

2ρT
,

(6.70)

where ‖yt‖2 ≤ D (see Assumption 5). The bound in (6.70) depends on D2, which usually is

large (see Eq. (3.55)) and thus worse than our results which do not rely on D2. As a matter

of fact, we can show the term D2 can be safely removed (setting α = 1 in (6.106) in Ap-

pendix 6.B), i.e.,

E
[
f(x̄T) + g(z̄T)−(f(x∗) + g(z∗))+

ρ

2
‖Ax̄T + Bz̄T + c‖22

]
≤ λ

B
maxD

2
zρ

2T
+

√
2GfDx√
T

.

(6.71)

129

However, since xt, zt are not feasible, f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) may be negative. As

a result, (6.70) or (6.71) may not imply an O(1/T) convergence rate for the equality constraint,

in constrast to (6.67) in Corollary 4. Furthermore, if assuming ‖yt‖2 ≤ D , the residual of

equality constraint has an O(1/T) convergence rate by dividing by T on both sides of (6.23) in

Theorem 20 and using the Jensen’s inequality.

6.5.3 Connections to Related Work (η = 0)

Assume η = 0,A = I,B = −I, c = 0, thus x = z. Hence, the online optimization problem

has the form which is the same as the ones considered in the development of FOBOS [53] and

RDA [210]. The three steps of OADM (η = 0) reduce to

xt+1 = argmin
x
{ft(x) + 〈yt,x− zt〉+

ρ

2
‖x− zt‖22} , (6.72)

zt+1 = argmin
z
{g(z) + 〈yt,xt+1 − z〉+

ρ

2
‖xt+1 − z‖22} , (6.73)

yt+1 = yt + ρ(xt+1 − zt+1) . (6.74)

Let f ′t(xt+1) ∈ ∂ft(x), g′(zt+1) ∈ ∂g(z). The first order optimality conditions for (6.72) and

(6.73) give

f ′t(xt+1) + yt + ρ(xt+1 − zt) = 0 ,

g′(zt+1)− yt − ρ(xt+1 − zt+1) = 0 .

Adding them together yields

zt+1 = zt −
1

ρ
(f ′t(xt+1) + g′(zt+1)) . (6.75)

OADM can be considered as taking the implicit subgradient of ft and g at the yet to be deter-

mined xt+1 and zt+1. FOBOS has the following update [53]:

zt+1 = zt −
1

ρ
(f ′t(zt) + g′(zt+1)) .

FOBOS takes the explicit subgradient of ft at current zt. In fact, FOBOS can be considered as

a variant of OADM, which linearizes the objective of (6.72) at zt :

xt+1 = argmin
x
〈f ′t(zt) + yt,x− zt〉+

ρ

2
‖x− zt‖22 .

130

It has a closed-form solution, i.e., xt+1 = zt − 1
ρ(f ′t(zt) + yt). Denote zt+ 1

2
= xt+1 + 1

ρyt,

then

zt+ 1
2

= zt −
1

ρ
f ′t(zt) . (6.76)

(6.73) is equivalent to the following form:

zt+1 = argminz g(z) +
ρ

2
‖z− zt+ 1

2
‖22 . (6.77)

(6.76) and (6.77) form the updates of FOBOS [53]. Furthermore, if g(z) is an indicator function

of a convex set Ω, substituting (6.76) into (6.77), we have

zt+1 = argminz∈Ω

ρ

2
‖zt −

1

τ
f ′t(zt)− z‖22 = Pz∈Ω

[
zt −

1

τ
f ′t(zt)

]
,

and we recover projected gradient descent [75].

6.5.4 Projection-free Online Learning

For an online constrained optimization problem, the state-of-the-art methods like OGD, FOBOS

and RDA require a full projection onto the constraint set at each round. In many cases, e.g., an

intersection of simple constraints, the full projection can be done by alternating projecting onto

simple constraints cyclically [25]. In OADM, we can decompose functions and constraints into

simpler subproblems by introducing appropriate splitting variables. If the subproblem for each

splitting variable is simple enough to yield efficient projection, the full projection onto the whole

constraint set can be done by projections onto simple constraints at each round along with the

long term equality constraints. Therefore, OADM and its variants can avoid the full projection

at each round. Consider the full projection onto X × Z , which in general requires alternating

projection onto X and Z at each round in OGD, FOBOS and RDA. In OADM, by introducing

equality constraint x = z, the constraint set is split into two parts and x ∈ X and z ∈ Z . At

each round, the primal updates in OADM and its variants project x, z onto X ,Z separately. In

the long run, the equality constraint will be satisfied in expectation, thus x is a feasible solution.

Hence, OADM can be considered as a projection-free online learning algorithm.

In [77], the Frank-Wolfe algorithm is used as a projection-free online learning algorithm,

which solves a linear optimization at each round and has O(T 3/4) regret bound. It assumes

linear optimization can be done efficiently in the constraint set. Realizing that solving a linear

131

optimization still requires an inner loop algorithm, the authors pose an open problem whether

the optimal regret bound can be achieved by performing one iteration of linear-optimization.

We now show how OADM does projection-free online learning with linear constraints,

which includes linear programming and quadratic programming as special cases. Formally,

we consider the problem

min
x

T∑
t=1

ft(x) s.t. Ax = a,Bx ≤ b . (6.78)

In the setting of OADM, we first introduce an auxiliary variable z = Bx to separate inequality

constraint from equality constraint. Then (6.78) can be rewritten as:

min
x,z

T∑
t=1

ft(x) + g(z) s.t. Ax = a,Bx = z , (6.79)

where g(z) is the indicator function of box constraint z ≤ b. The augmented Lagrangian

for (6.79) is as follows:

Lρ(x, z,u,v) = ft(x) + g(z) + 〈u,Ax− a〉+ 〈v,Bx− z〉

+
ρu

2
‖Ax− a‖22 +

ρv

2
‖Bx− z‖22 , (6.80)

where u,v are dual variables and the penalty parameters ρu, ρv > 0. Let the Bregman diver-

gence in the x update in (6.6) be the quadratic function. We have the following OADM updates

for (6.79):

xt+1 = argmin
x

{
ft(x) + 〈ut,Ax− a〉+ 〈vt,Bx− zt〉+

ρu

2
‖Ax− a‖22

+
ρv

2
‖Bx− zt‖22 +

η

2
‖x− xt‖22

}
, (6.81)

zt+1 = argmin
z≤b

{
〈vt,Bxt+1 − z〉+

ρv

2
‖Bxt+1 − z‖22

}
, (6.82)

ut+1 = ut + ρu(Axt+1 − a) , (6.83)

vt+1 = vt + ρv(Bxt+1 − zt+1) , (6.84)

where η ≥ 0. The x-update has a closed-form solution when ft is a linear or quadratic functions,

or the `1 norm. If the x-update does not have a closed-form solution, we can linearize ft at xt as

132

in Section 6.5.1, which leads to a closed-form solution. Further, the z-update has a closed-form

solution of the following form:

zt+1 = min{Bxt+1 + yt/ρ,b} . (6.85)

Thus, OADM gives a projection-free online algorithm for optimization problems under linear

constraints, e.g., linear and quadratic programming. In contrast, state-of-the-art online learning

algorithms require the projection onto the constraints at each round, which amounts to solving

a linear or quadratic program [77].

6.6 Experimental Results

In this section, we use OADM to solve generalized lasso problems [19], including lasso [189]

and total variation (TV) problem [169]. We present simulation results to show the convergence

of the objective as well as constraints in OADM. We also compare it with batch ADM and two

other online learning algorithms: FOBOS [53] and regularized dual averaging (RDA) [210] in

selecting sparse dimension in lasso and recovering data in total variation.

6.6.1 Generalized Lasso

The generalized lasso problem is formulated as follows:

min
x

1

N

N∑
t=1

‖atx− bt‖22 + λ|Dx|1 , (6.86)

where at ∈ R1×n,x ∈ Rn×1,D ∈ Rm×n and bt is a scalar. If D = I, (6.86) yields the lasso.

If D is an upper bidiagonal matrix with diagonal 1 and off-diagonal −1, (6.86) becomes the

problem of total variation. The ADM form of (6.86) is:

min
Dx=z

1

N

N∑
t=1

‖atx− bt‖22 + λ|z|1 , (6.87)

where z ∈ Rm×1. The augmented Lagrangian at round t is

Lρ = ‖atx− bt‖22 + λ|z|1 + 〈y,Dx− z〉+
ρ

2
‖Dx− z‖22 .

133

The three updates of OADM yield the following closed-form updates:

xt+1 = (aTt at + ρDTD + η)−1vt , (6.88)

zt+1 = Sλ/ρ(Dxt+1 + ut) , (6.89)

ut+1 = ut + Dxt+1 − zt+1 , (6.90)

where u = y/ρ, vt = aTt bt + ρDT (zt − ut) + ηxt, and Sλ/ρ denotes the soft thresholding

operator or a shrinkage operator defined as

Sλ/ρ(k) =

k − λ/ρ, k > λ/ρ

0, |x| ≤ λ/ρ
k + λ/ρ, k < −λ/ρ

, (6.91)

which is a simple element-wise operation.

For lasso, the x-update is

xt+1 = (vt − (η + ρ+ ata
T
t)−1aTt (atvt))/(η + ρ) ,

where the inverse term is a scalar. The multiplication terms take O(n) flops [71]. Thus, the

x-update can be done in O(n) flops.

For total variation, we set η = 0 so that

xt+1 = (Qvt − (ρ+ atQaTt)−1QaTt (atQvt))/ρ ,

where Q = (DTD)−1. Since D is a bidiagonal matrix, Qvt and Qat can be done in O(n)

flops [71, 19]. The inverse term is scalar and other multiplication terms costO(n) flops. Overall,

the x-update can be carried out in O(n) flops.

In both cases, the three updates (6.88)-(6.90) can be done inO(n) flops. In contrast, in batch

ADM, the complexity of x-update could be as high asO(n3) orO(n2) by caching factorizations

[19].

FOBOS and RDA cannot directly solve the TV term. We first reformulate the total variation

in the lasso form such that

min
y

1

N

N∑
t=1

‖atD−1y − b‖22 + λ|y|1 , (6.92)

where y = Dx. FOBOS and RDA can solve the above lasso problem and get y. x can be

recovered by using x = D−1y.

134

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

t

N
N

Z
s

(a) Sparsity.

0 1000 2000 3000 4000 5000
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

f(
x

k
)

+
 g

(z
k
)

t

(b) Objective.

0 1000 2000 3000 4000 5000
10

−4

10
−2

10
0

||
r|

| 2

0 1000 2000 3000 4000 5000
10

−5

10
0

||
s
||

2

t

(c) Constraints (top), primal residual

(bottom).

Figure 6.1: The convergence of sparsity, objective value and constraints for lasso in OADM

with q = 0.5, ρ = 1, η = t.

6.6.2 Simulation

Our experiments mainly follow the lasso and total variation examples in [19],2 although we

modified the code to accommodate our setup. We first randomly generated A with N examples

of dimensionality n. A is then normalized along the columns. Then, a true x0 is randomly

generated with certain sparsity pattern for lasso and TV. For lasso, we set the number of nonze-

ros (NNZs) k in x0 as 100, i.e., k = 100. For TV, we first set x0 to be a vector of ones, then

randomly select some blocks of random size in x0 and reset their value to a random value from

[1, 10]. b is calculated by adding Gaussian noise to Ax0/N . In all experiments, N = 100,

which facilitates the matrix inverse in ADM. For lasso, we try different combination of param-

eters from n = [1000, 5000], ρ = [0.1, 1, 10] and q = [0.1, 0.5] for λ = q × |AT b/N |∞. All

experiments are implemented in Matlab.

Convergence: We go through the examples 100 times using OADM. Figure 6.1(a) shows

that NNZs converge to a value close to the actual k = 100 before t = 2000. Figure 6.1(b)

shows the convergence of objective value. In Figure 6.1(c), the dashed lines are the standard

stopping criteria used in ADM [19]. Figure 6.1(c) shows that the equality constraint (top) and

primal residual (bottom) are satisfied in the online setting. While the objective converges fast,

the equality constraints take relatively more time to be satisfied.

Sparsity: We compare NNZs found by batch ADM and three online learning algorithms,
2 http://www.stanford.edu/˜boyd/papers/admm/

http://www.stanford.edu/~boyd/papers/admm/

135

including OADM, FOBOS, and RDA. We set η = 1000 for OADM and γ = 1 for RDA. For

FOBOS, we use a time varying parameter ρt = ρ/
√
t. For online learning algorithms, we go

through the examples 100 times. We run the experiment 20 times and the average results are

plotted. We show the results for q = 0.5 in Figure 2, where n is 1000 for the first three figures

(a)-(c) and 5000 for the last three. While ADM and RDA tend to give the sparsest results,

OADM seems more conservative and converges to reasonably sparse solutions. Figure 2 shows

OADM is closest to the actual NNZs 100. The NNZs in FOBOS is large and oscillates in a big

range, which has also been observed in [210].

Total Variation: We compare the patterns found by the four algorithms. For all algorithms,

N = 100, n = 1000, λ = 0.001 and ρ is chosen through cross validation. In RDA, γ = 100.

Recall that η = 0 in OADM. While we use a fixed ρ for OADM and RDA, FOBOS uses

ρt = ρ/
√
t. Figure 6.3 shows the three different patterns and results found by the algorithms.

ADM seems to follow the pattern with oscillation. OADM is smoother and generally follows

the trend of the patterns. For the first two examples, FOBOS works well and the patterns found

by RDA tend to be flat. In the last example, both FOBOS and RDA oscillate.

Appendix

6.A Proof of Theorem 19 and 21 in Case 2 in Section 6.5.1

Proof of Theorem 19 The first order derivative is 0, i.e.,

f ′t(xt) + AT {yt + ρAT (Axt −Bzt − c)}+ η(∇φ(xt+1)−∇φ(xt)) = 0 , (6.93)

Rearranging the terms yields

−AT (yt + ρAT (Axt+1 −Bzt − c))− η(∇φ(xt+1)−∇φ(xt)) = f ′t(xt) , (6.94)

where the left hand side is same as (6.15). Therefore, 〈f ′t(xt),xt+1 − x∗〉 + g(zt+1) − g(z∗)

can be written as the right hand side of (6.16). Using the convexity of ft, we have

ft(xt)+g(zt+1)− (ft(x
∗) + g(z∗)) ≤ 〈f ′t(xt),xt − x∗〉+ g(zt+1)− g(z∗)

= 〈f ′t(xt),xt+1 − x∗〉+ g(zt+1)− g(z∗) + 〈f ′t(xt),xt − xt+1〉 . (6.95)

Applying (6.18) for the last term, we have (6.19). Therefore, Theorem 19 holds for Case 2.

136

0 1000 2000 3000 4000 5000

0

100

200

400

600

800

1000

t

N
N

Z
s

ADM

OADM

FOBOS

RDA

(a) n = 1000, ρ = 0.1.

0 1000 2000 3000 4000 5000

0

100

200

400

600

800

1000

t

N
N

Z
s

ADM

OADM

FOBOS

RDA

(b) n = 1000, ρ = 1.

0 2000 4000 6000 8000 10000

0

100

200

400

600

800

1000

t

N
N

Z
s

ADM

OADM

FOBOS

RDA

(c) n = 1000, ρ = 10.

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

t

N
N

Z
s

ADM

OADM

FOBOS

DA

(d) n = 5000, ρ = 0.1.

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

t

N
N

Z
s

ADM

OADM

FOBOS

RDA

(e) n = 5000, ρ = 1.

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

t

N
N

Z
s

ADM

OADM

FOBOS

RDA

(f) n = 5000, ρ = 10.

Figure 6.2: The NNZs found by OADM, ADM, FOBOS and RDA with q = 0.5 for lasso.

OADM is closest to the actual NNZs.

Proof of Theorem 21 Using the strong convexity of ft and g defined in (6.25) and (6.26)

respectively, we have

ft(xt) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 〈f ′t(xt),xt − x∗〉 − β1Bφ(x∗,xt) + 〈g′(zt+1), zt+1 − z∗〉 − β2

2
‖z∗ − zt+1‖22

= 〈f ′t(xt),xt+1 − x∗〉+ 〈f ′t(xt),xt − xt+1〉+ 〈g′(zt+1), zt+1 − z∗〉

137

0 200 400 600 800 1000

0

0.02

0.04

0.06

0.08

 n

Data

ADM

OADM

FOBOS

RDA

0 200 400 600 800 1000
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

Data

ADM

OADM

FOBOS

RDA

0 200 400 600 800 1000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

n

Data

ADM

OADM

FOBOS

RDA

Figure 6.3: The TV patterns found by OADM, ADM, FOBOS and RDA. OADM is the best in

recovering the patterns.

− β1Bφ(x∗,xt)−
β2

2
‖z∗ − zt+1‖22 . (6.96)

The first four terms are the same as in (6.95), which can be reduced to (6.19). Therefore, adding

the last two terms to (6.19), we have

ft(xt) + g(zt+1)− (ft(x
∗) + g(z∗))

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22)− ρ

2
‖Axt+1 + Bzt − c‖22 +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

+
1

2αη
‖f ′t(xt)‖2q + η(Bφ(x∗,xt)−Bφ(x∗,xt+1))− β1Bφ(x∗,xt)−

β2

2
‖z∗ − zt+1‖22 .

(6.97)

Summing over t from 1 to T , we have

R1(T) ≤
T∑
t=1

1

2ρt+1
(‖yt‖22 − ‖yt+1‖22) +

1

2β

T∑
t=0

1

ηt+1
‖f ′t(xt)‖22

+

T∑
t=1

(
ρt+1

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− β2

2
‖z∗ − zt+1‖22)

+

T∑
t=1

(ηt+1(Bφ(x∗,xt)−Bφ(x∗,xt+1))− β1Bφ(x∗,xt)) . (6.98)

The difference between (6.98) and (6.32) lies in the last term. Setting ηt = β1t, we have the

following telescoping sum for the last term :

T∑
t=1

(ηt+1(Bφ(x∗,xt)−Bφ(x∗,xt+1))− β1Bφ(x∗,xt))

138

≤ η2Bφ(x∗,x1) +

T∑
t=2

Bφ(x∗,xt)(ηt+1 − ηt − β1)

= 2β1D
2
x , (6.99)

which is the same as (6.35). Therefore, Theorem 21 holds for the Case 2.

6.B Proof of Stochastic Convergence Rates

Although the proof is based on Case 2 in Section 6.1, Case 3 and 4 will follow automatically.

In the stochastic setting, replacing f ′t(xt) by f ′(xt, ξt) in (6.94) gives

−AT (yt + ρAT (Axt+1 −Bzt − c))− η(∇φ(xt+1)−∇φ(xt)) = f ′(xt, ξt) , (6.100)

(a) Replacing ft(xt), f ′t(xt) by f(xt), f
′(xt, ξt) respectively in (6.95) gives

f(xt) + g(zt+1)− (f(x∗) + g(z∗)) ≤ 〈f ′(xt, ξt),xt − x∗〉+ g(zt+1)− g(z∗)

= 〈f ′(xt, ξt),xt+1 − x∗〉+ g(zt+1)− g(z∗) + 〈f ′(xt, ξt),xt − xt+1〉 . (6.101)

As a result, we have the following result by replacing ft(xt), f ′t(xt) by f(xt), f
′(xt, ξt) in (6.19)

f(xt) + g(zt+1)− (f(x∗) + g(z∗))

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22) +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)− ρ

2
‖Axt+1 + Bzt − c‖22

+
1

2αη
‖f ′(xt, ξt)‖2q + η(Bφ(x∗,xt)−Bφ(x∗,xt+1)) . (6.102)

Moving the term ρ
2‖Axt+1 + Bzt − c‖22 to the left hand side and using Lemma 9, we have

f(xt) + g(zt+1)− (ft(x
∗) + g(z∗)) +

ρ

2
‖Axt+1 + Bzt+1 − c‖22

≤ 1

2ρ
(‖yt‖22 − ‖yt+1‖22) +

ρ

2
(‖Bz∗ −Bzt‖22 − ‖Bz∗ −Bzt+1‖22)

+
1

2αη
‖f ′(xt, ξt)‖2q + η(Bφ(x∗,xt)−Bφ(x∗,xt+1)) . (6.103)

Summing over t from 0 to T − 1 and following the derivation in (6.20), we have

T∑
t=1

[
f(xt) + g(zt)− (f(x∗) + g(z∗)) +

ρ

2
‖Axt+1 + Bzt+1 − c‖22

]

139

≤ λB
maxD

2
zρ

2
+ ηD2

x +
‖f ′(xt, ξt)‖2qT

2αη
. (6.104)

Dividing both sides by T , applying the Jensen’s inequality, we have

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) +
ρ

2
‖Ax̄T + Bz̄T + c‖22

≤ λB
maxD

2
zρ

2T
+
ηD2

x

T
+
‖f ′(xt, ξt)‖2q

2αη
. (6.105)

Assume E[‖f ′(xt, ξt)‖2q] ≤ G2
f . Setting η =

Gf
√
T

Dx

√
2α

and taking expectation, we have

E
[
f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) +

ρ

2
‖Ax̄T + Bz̄T + c‖22

]
≤ λB

maxD
2
zρ

2T
+

√
2GfDx√
α
√
T

.

(6.106)

(6.66) follows by setting ρ =
√
T .

Assume f(x̄T)+g(z̄T)−(f(x∗)+g(z∗)) ≥ −F . Dividing both sides by ρ
2 and rearranging

the terms yield

E
[
‖Ax̄T + Bz̄T + c‖22

]
≤ 2F

ρ
+
λB

maxD
2
z

T
+

2
√

2GfDx

ρ
√
α
√
T

. (6.107)

Setting ρ =
√
T gives (6.67).

(b) Using the convexity of f , we have

f(xt)− f(x∗) ≤ 〈f ′(xt),xt − x∗〉 = 〈f ′(xt, ξt),xt+1 − x∗〉+ 〈f ′(xt, ξt),xt − xt+1〉+ εt .

(6.108)

where

εt = 〈f ′(xt)− f ′(xt, ξt),xt − x∗〉 . (6.109)

Let F be a filtration with ξt ∈ Ft for t ≤ T . Since xt ∈ Ft−1,

E[εt|Ft−1] = 〈f ′(xt)−E[f ′(xt, ξt)|Ft−1],xt − x∗〉 = 0 . (6.110)

Therefore,
∑T

t=1 εt is a martingale difference sequence. Assuming Bφ(x∗,xt) ≤ D2
x, ‖xt −

x∗‖p ≤
√

2
αDx. We have

|εt| ≤ ‖f ′(xt)− f ′(xt, ξt)‖q‖xt − x∗‖p ≤ 2

√
2

α
DxGf . (6.111)

140

Applying Azuma-Hoeffding inequality [3] on
∑T

t=1 εt yields

P (
T∑
t=1

εt ≥ ε) ≤ exp

(
− αε2

16TD2
xG

2
f

)
. (6.112)

Combing (6.101) and (6.108), we have

f(xt)+g(zt+1)− (f(x∗) + g(z∗)) ≤ 〈f ′t(xt),xt − x∗〉+ g(zt+1)− g(z∗)

= 〈f ′(xt, ξt),xt+1 − x∗〉+ g(zt+1)− g(z∗) + 〈f ′(xt, ξt),xt − xt+1〉+ εt .

(6.113)

As a result, (6.105) becomes

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) +
ρ

2
‖Ax̄T + Bz̄T + c‖22

≤ λB
maxD

2
zρ

2T
+
ηD2

x

T
+
‖f ′(xt, ξt)‖2q

2αη
+

1

T

T∑
t=1

εt . (6.114)

Assuming ‖f ′(xt, ξt)‖q ≤ Gf and setting η =
Gf
√
T

Dx

√
2α
, ρ =

√
T , we have

f(x̄T) + g(z̄T)− (f(x∗) + g(z∗)) +
ρ

2
‖Ax̄T + Bz̄T + c‖22

≤ λB
maxD

2
z

2
√
T

+

√
2GfDx√
α
√
T

+
1

T

T∑
t=1

εt . (6.115)

Applying (6.112) gives (6.68).

Assume f(x̄T) + g(z̄T) − (f(x∗) + g(z∗)) ≥ −F . In (6.115), dividing both sides by
ρ
2 =

√
T

2 and rearranging the terms yield

‖Ax̄T + Bz̄T + c‖22 ≤
2F

ρ
+
λB

maxD
2
z

T
+

2
√

2GfDx√
αT

+
1

T

T∑
t=1

εt . (6.116)

Applying (6.112) yields (6.69).

Part III

Applications

141

Chapter 7

Bethe-ADMM for Tree Decomposition
based Parallel MAP Inference

7.1 Introduction

Given a discrete graphical model with known structure and parameters, the problem of finding

the most likely configuration of the states is known as the maximum a posteriori (MAP) infer-

ence problem [199]. Existing approaches to solving MAP inference problems on graphs with

cycles often consider a graph-based linear programming (LP) relaxation of the integer program

[31, 158, 197] .

To solve the graph-based LP relaxation problem, two main classes of algorithms have been

proposed. The first class of algorithms are dual LP algorithms [68, 94, 104, 179, 180, 187],

which uses the dual decomposition and solves the dual problem. The two main approaches

to solving the dual problems are block coordinate descent [68] and sub-gradient algorithms

[104]. The coordinate descent algorithms are empirically faster, however, they may not reach

the dual optimum since the dual problem is not strictly convex. Recent advances in coordinate

descent algorithms perform tree-block updates [180, 187]. The sub-gradient methods, which are

guaranteed to converge to the global optimum, can be slow in practice. For a detailed discussion

on dual MAP algorithms, we refer the readers to [179]. The second class of algorithms are

primal LP algorithms like the proximal algorithm [158]. The advantage of such algorithms is

that it can choose different Bregman divergences as proximal functions which can take the graph

structure into account. However, the proximal algorithms do not have a closed form update at

142

143

each iteration in general and thus lead to double-loop algorithms.

As solving MAP inference in large scale graphical models is becoming increasingly im-

portant, in recent work, parallel MAP inference algorithms [133, 139] based on the alternating

direction method of multipliers (ADMM) [19] have been proposed. As a primal-dual algo-

rithm, ADMM combines the advantage of dual decomposition and the method of multipliers,

which is guaranteed to converge globally and at a rate of O(1/T) even for non-smooth prob-

lems [200]. ADMM has also been successfully used to solve large scale problem in a distributed

manner [19].

Design of efficient parallel algorithms based on ADMM by problem decomposition has to

consider a key tradeoff between the number of subproblems and the size of each subproblem.

Having several simple subproblems makes solving each problem easy, but one has to maintain

numerous dual variables to achieve consensus. On the other hand, having a few subproblems

makes the number of constraints small, but each subproblem needs an elaborate often iterative

algorithm, yielding a double-loop. Existing ADMM based algorithms for MAP inference [133,

139] decompose the problem into several simple subproblems, often based on single edges or

local factors, so that the subproblems are easy to solve. However, to enforce consensus among

the shared variables, such methods have to use dual variables proportional to the number of

edges or local factors, which can make convergence slow on large graphs.

To overcome the limitations of existing ADMM methods for MAP inference, we propose a

novel parallel algorithm based on tree decomposition. The individual trees need not be spanning

and thus includes both edge decomposition and spanning tree decomposition as special cases.

Compared to edge decomposition, tree decomposition has the flexibility of increasing the size

of subproblems and reducing the number of subproblems by considering the graph structure.

Compared to the tree block coordinate descent [180], which works with one tree at a time, our

algorithm updates all trees in parallel. Note that the tree block coordinate descent algorithm in

[187] updates disjoint trees within a forest in parallel, whereas our updates consider overlapping

trees in parallel.

However, tree decomposition raises a new problem: the subproblems cannot be solved ef-

ficiently in the ADMM framework and requires an iterative algorithm, yielding a double-loop

algorithm [133, 158]. To efficiently solve the subproblem on a tree, we propose a novel inexact

ADMM algorithm called Bethe-ADMM, which uses a Bregman divergence induced by Bethe

entropy on a tree, instead of the standard quadratic divergence, as the proximal function. The

144

resulting subproblems on each tree can be solved exactly in linear time using the sum-product

algorithm [107]. However, the proof of convergence for the standard ADMM does not ap-

ply to Bethe-ADMM. We prove global convergence of Bethe-ADMM and establish a O(1/T)

convergence rate, which is the same as the standard ADMM [200]. Overall, Bethe-ADMM

overcomes the limitations of existing ADMM based MAP inference algorithms [133, 139] and

provides the flexibility required in designing efficient parallel algorithm through: (i) Tree de-

composition, which can take the graph structure into account and greatly reduce the number

of variables participating in the consensus and (ii) the Bethe-ADMM algorithm, which yields

efficient updates for each subproblem.

We compare the performance of Bethe-ADMM with existing methods on both synthetic

and real datasets and illustrate four aspects. First, Bethe-ADMM is faster than existing primal

LP methods in terms of convergence. Second, Bethe-ADMM is competitive with existing dual

methods in terms of quality of solutions obtained. Third, in certain graphs, tree decomposition

leads to faster convergence than edge decomposition for Bethe-ADMM. Forth, parallel Bethe-

ADMM, based on Open MPI, gets substantial speed-ups over sequential Bethe-ADMM. In

particular, we show almost linear speed-ups with increasing number of cores on a graph with

several million nodes.

The rest of this chapter is organized as follows: We review the MAP inference problem

in Section 7.2. In Section 7.3, we introduce the Bethe-ADMM algorithm and prove its global

convergence. We discuss empirical evaluation in Section 7.4.

7.2 Background and Related Work

We first introduce some basic background on Markov Random Fields (MRFs). Then we briefly

review existing ADMM based MAP inference algorithms in the literature. We mainly focus on

pairwise MRFs and the discussions can be easily carried over to MRFs with general factors.

7.2.1 Problem Definition

A pairwise MRF is defined on an undirected graph G = (V,E), where V is the vertex set and

E is the edge set. Each node u ∈ V has a random variable Xu associated with it, which can

take value xu in some discrete space X = {1, . . . , k}. Concatenating all the random variables

Xu, ∀u ∈ V , we obtain an n dimensional random vectorX = {Xu|u ∈ V } ∈ X n. We assume

145

that the distribution P ofX is a Markov Random Field [199], meaning that it factors according

to the structure of the undirected graph G as follows: With fu : X 7→ R, ∀u ∈ V and fuv :

X × X 7→ R, ∀(u, v) ∈ E denoting nodewise and edgewise potential functions respectively,

the distribution takes the form P (x) ∝ exp
{∑

u∈V fu(xu) +
∑

(u,v)∈E fuv(xu, xv)
}

.

An important problem in the context of MRF is that of maximum a posteriori (MAP) infer-

ence, which is the following integer programming (IP) problem:

x∗ ∈ argmaxx∈Xn

∑
u∈V

fu(xu)+
∑

(u,v)∈E

fuv(xu, xv)

 . (7.1)

The complexity of (7.1) depends critically on the structure of the underlying graph. When

G is a tree structured graph, the MAP inference problem can be solved efficiently via the max-

product algorithm [107]. However, for an arbitrary graph G, the MAP inference algorithm is

usually computationally intractable. The intractability motivates the development of algorithms

to solve the MAP inference problem approximately. In this chapter, we focus on the linear

programming (LP) relaxation method [31, 197]. The LP relaxation of MAP inference problem

is defined on a set of pseudomarginals µu and µuv, which are non-negative, normalized and

locally consistent [31, 197]:

µu(xu) ≥ 0 , ∀u ∈ V ,∑
xu∈Xu

µu(xu) = 1, ∀u ∈ V ,

µuv(xu, xv) ≥ 0, ∀(u, v) ∈ E ,∑
xu∈Xu

µuv(xu, xv) = µv(xv), ∀(u, v) ∈ E .

(7.2)

We denote the polytope defined by (7.2) as L(G). The LP relaxation of MAP inference

problem (7.1) becomes solving the following LP:

max
µ∈L(G)

〈µ,f〉 . (7.3)

If the solution µ to (7.3) is an integer solution, it is guaranteed to be the optimal solution of

(7.1). Otherwise, one can apply rounding schemes [156, 158] to round the fractional solution to

an integer solution.

146

7.2.2 ADMM based MAP Inference Algorithms

In recent years, ADMM [133, 139] has been used to solve large scale MAP inference problems.

To solve (7.3) using ADMM, we need to split nodes or/and edges and introduce equality con-

straints to enforce consensus among the shared variables. The algorithm in [133] adopts edge

decomposition and introduces equality constraints for shared nodes. Let di be the degree of

node i. The number of equality constraints in [133] is O(
∑|V |

i=1 dik), which is approximately

equal to O(|E|k). For binary pairwise MRFs, the subproblems for the ADMM in [133] have

closed-form solutions. For multi-valued MRFs, however, one has to first binarize the MRFs

which introduces additional |V |k variables for nodes and 2|E|k2 variables for edges. The bi-

narization process increases the number of factors to O(|V | + 2|E|k) and the complexity of

solving each subproblem increases to O(|E|k2 log k). We note that in a recent work [132], the

active set method is employed to solve the quadratic problem for arbitrary factors. A general-

ized variant of [133] which does not require binarization is presented in [139]. We refer to this

algorithm as Primal ADMM and use it as a baseline in Section 7.4. Although each subproblem

in primal ADMM can be efficiently solved, the number of equality constraints and dual vari-

ables is O(2|E|k+ |E|k2). In [139], ADMM is also used to solve the dual of (7.1). We refer to

this algorithm as the Dual ADMM algorithm and use it as a baseline in Section 7.4. The dual

ADMM works for multi-valued MRFs and has a linear time algorithm for each subproblem, but

the number of equality constraint is O(2|E|k + |E|k2).

7.3 Algorithm and Analysis

We first show how to solve (7.3) using ADMM based on tree decomposition. The resulting

algorithm can be a double-loop algorithm since some updates do not have closed form solutions.

We then introduce the Bethe-ADMM algorithm where every subproblem can be solved exactly

and efficiently, and analyze its convergence properties.

7.3.1 ADMM for MAP Inference

We first show how to decompose (7.3) into a series of subproblems. We can decompose the

graph G into overlapping subgraphs and rewrite the optimization problem with consensus con-

straints to enforce the pseudomarginals on subgraphs (local variables) to agree with µ (global

147

variable). Throughout the chapter, we focus on tree-structured decompositions. To be more

specific, let T = {(V1, E1), . . . , (V|T|, E|T|)} be a collection of subgraphs of G which satisfies

two criteria: (i) Each subgraph τ = (Vτ , Eτ) is a tree-structured graph and (ii) Each node u ∈ V
and each edge (u, v) ∈ E is included in at least one subgraph τ ∈ T. We also introduce local

variablemτ ∈ L(τ) which is the pseudomarginal [31, 197] defined on each subgraph τ . We use

θτ to denote the potentials on subgraph τ . We denote µτ as the components of global variable

µ that belong to subgraph τ . Note that since µ ∈ L(G) and τ is a tree-structured subgraph

of G, µτ always lies in L(τ). In the newly formulated optimization problem, we will impose

consensus constraints for shared nodes and edges. For the ease of exposition, we simply use the

equality constraint µτ = mτ to enforce the consensus.

The new optimization problem we formulate based on graph decomposition is then as fol-

lows:

min
mτ ,µ

|T|∑
τ=1

ρτ 〈mτ ,θτ 〉 (7.4)

subject to mτ − µτ = 0, τ = 1, . . . , |T| (7.5)

mτ ∈ L(τ), τ = 1, . . . , |T| (7.6)

where ρτ is a positive constant associated with each subgraph. We use the consensus constraints

(7.5) to make sure that the pseudomarginals agree with each other in the shared components

across all the tree-structured subgraphs. Besides the consensus constraints, we also impose

feasibility constraints (7.6), which guarantee that, for each subgraph, the local variablemτ lies

in L(τ). When the constraints (7.5) and (7.6) are satisfied, the global variable µ is guaranteed

to lie in L(G).

To make sure that problem (7.3) and (7.4)-(7.6) are equivalent, we also need to guarantee

that

min
mτ

|T|∑
τ=1

ρτ 〈mτ ,θτ 〉 = max
µ
〈µ,f〉 , (7.7)

assuming the constraints (7.5) and (7.6) are satisfied. It is easy to verify that, as long as (7.7)

is satisfied, the specific choice of ρτ and θτ do not change the problem. Let 1[.] be a binary

indicator function and l = −f . For any positive ρτ , ∀τ ∈ T, e.g., ρτ = 1, a simple approach to

obtaining the potential θτ can be:

θτ,u(xu) =
lu(xu)∑

τ ′ ρτ ′1[u ∈ Vτ ′]
, u ∈ Vτ ,

148

θτ,uv(xu, xv) =
luv(xu, xv)∑

τ ′ ρτ ′1[(u, v) ∈ Eτ ′]
, (u, v) ∈ E(τ) .

Let λτ be the dual variable and β > 0 be the penalty parameter. The following updates

constitute a single iteration of the ADMM [19]:

mt+1
τ = argmin

mτ∈L(τ)
〈mτ , ρτθτ+λtτ 〉+

β

2
||mτ−µtτ ||22 , (7.8)

µt+1 = argmin
µ

|T|∑
τ=1

(
−〈µτ ,λtτ 〉+

β

2
||mt+1

τ −µτ ||22
)
, (7.9)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ) . (7.10)

In the tree based ADMM (7.8)-(7.10), the equality constraints are only required for shared nodes

and edges. Assume there arem shared nodes and the shared node vi hasCvi copies and there are

n shared edges and the shared edge ej has Cej copies. The total number of equality constraints

is O(
∑m

i=1C
v
i k +

∑n
j=1C

e
j k

2). A special case of tree decomposition is edge decomposition,

where only nodes are shared. In edge decomposition, n = 0 and the number of equality con-

straints is O(
∑m

i=1C
v
i k), which is approximately equal to O(|E|k) and similar to [133]. In

general, the number of shared nodes and edges in tree decomposition is much smaller than that

in edge decomposition. The smaller number of equality constraints usually lead to faster con-

vergence in achieving consensus. Now, the problem turns to whether the updates (7.8) and (7.9)

can be solved efficiently, which we analyze below:

Updating µ: Since we have an unconstrained optimization problem (7.9) and the objective

function decomposes component-wisely, taking the derivatives and setting them to zero yield

the solution. In particular, let Su be the set of subgraphs which contain node u, for the node

components, we have:

µt+1
u (xu)=

1

|Su|β
∑
τ∈Su

(
βmt+1

τ,u (xu)+λtτ,u(xu)
)
. (7.11)

(7.11) can be further simplified by observing that
∑

τ∈Su λ
t
τ,u(xu) = 0 [19]:

µt+1
u (xu) =

1

|Su|

T∑
τ=1

mt+1
τ,u (xu) . (7.12)

Let Suv be the subgraphs which contain edge (u, v). The update for the edge components can

149

be similarly derived as:

µt+1
u,v (xu, xv) =

1

|Suv|
∑
τ∈Suv

mt+1
τ,uv(xu, xv) . (7.13)

Updating mτ : For (7.8), we need to solve a quadratic optimization problem for each tree-

structured subgraph. Unfortunately, we do not have a close-form solution for (7.8) in general.

One possible approach, similar to the proximal algorithm, is to first obtain the solution m̃τ to

the unconstrained problem of (7.8) and then project m̃τ to L(τ):

mτ = argminm∈L(τ) ||m− m̃τ ||22 . (7.14)

If we adopt the cyclic Bregman projection algorithm [25] to solve (7.14), the algorithm

becomes a double-loop algorithm, i.e., the cyclic projection algorithm projects the solution

to each individual constraint of L(τ) until convergence and the projection algorithm itself is

iterative. We refer to this algorithm as the Exact ADMM and use it as a baseline in Section 7.4.

7.3.2 Bethe-ADMM

Instead of solving (7.8) exactly, a common way in inexact ADMMs [97, 214] is to linearize the

objective function in (7.8), i.e., the first order Taylor expansion atmt
τ , and add a new quadratic

penalty term such that

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ ,mτ−mt

τ 〉+
α

2
‖mτ−mt

τ‖22 , (7.15)

where α is a positive constant and

ytτ = ρτθτ + λtτ + β(mt
τ − µtτ) . (7.16)

However, as discussed in the previous section, the quadratic problem (7.15) is generally diffi-

cult for a tree-structured graph and thus the conventional inexact ADMM does not lead to an

efficient update for mτ . By taking the tree structure into account, we propose an inexact min-

imization of (7.8) augmented with a Bregman divergence induced by the Bethe entropy. We

show that the resulting proximal problem can be solved exactly and efficiently using the sum-

product algorithm [107]. We prove that the global convergence of the Bethe-ADMM algorithm

in Section 7.3.3.

150

The basic idea in the new algorithm is that we replace the quadratic term in (7.15) with a

Bregman-divergence term dφ(mτ ||mt
τ) such that

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ ,mτ −mt

τ 〉+ αdφ(mτ ||mt
τ) , (7.17)

is efficient to solve for any tree τ . Expanding the Bregman divergence and removing the con-

stants, we can rewrite (7.17) as

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ/α−∇φ(mt

τ),mτ 〉+φ(mτ). (7.18)

For a tree-structured problem, what convex function φ(mτ) should we choose? Recall that

mτ defines the marginal distributions of a tree-structured distribution pmτ over the nodes and

edges:

mτ,u(xu)=
∑
¬xu

pmτ(x1, . . . , xu, . . . , xn), ∀u∈Vτ ,

mτ,uv(xu, xv)=
∑
¬xu,¬xv

pmτ(x1,. . .,xu, xv, . . .,xn), ∀(uv)∈Eτ .

It is well known that the sum-product algorithm [107] efficiently computes the marginal distri-

butions for a tree structured graph. It can also be shown that the sum-product algorithm solves

the following optimization problem [199] for tree τ for some constant ητ :

max
mτ∈L(τ)

〈mτ ,ητ 〉+HBethe(mτ) , (7.19)

where HBethe(mτ) is the Bethe entropy ofmτ defined as:

HBethe(mτ)=
∑
u∈Vτ

Hu(mτ,u)−
∑

(u,v)∈Eτ

Iuv(mτ,uv) , (7.20)

where Hu(mτ,u) is the entropy function on each node u ∈ Vτ and Iuv(mτ,uv) is the mutual

information on each edge (u, v) ∈ Eτ .

Combing (7.18) and (7.19), we set ητ = ∇φ(mt
τ)− ytτ/α and choose φ to be the negative

Bethe entropy of mτ so that (7.18) can be solved efficiently in linear time via the sum-product

algorithm.

For the sake of completeness, we summarize the Bethe-ADMM algorithm as follows :

mt+1
τ = argmin

mτ∈L(τ)
〈ytτ/α−∇φ(mt

τ),mτ 〉+φ(mτ) , (7.21)

151

µt+1=argmin
µ

T∑
τ=1

(
−〈λtτ ,µτ 〉+

β

2
||mt+1

τ −µτ ||22
)
, (7.22)

λt+1
τ = λtτ + β(mt+1

τ − µt+1
τ) , (7.23)

where ytτ is defined in (7.16) and −φ is defined in (7.20).

7.3.3 Convergence

We prove the global convergence of the Bethe-ADMM algorithm. We first bound the Bregman

divergence dφ:

Lemma 21 Letµτ and ντ be two concatenated vectors of the pseudomarginals on a tree τ with

nτ nodes. Let dφ(µτ ||ντ) be the Bregman divergence induced by the negative Bethe entropy φ.

Assuming α ≥ maxτ{β(2nτ − 1)2}, we have

αdφ(µτ ||ντ) ≥ β

2
‖µτ − ντ‖22 . (7.24)

Proof: Let Pτ (x) be a tree-structured distribution on a tree τ = (Vτ , Eτ), where |Vτ | = nτ

and |Eτ | = nτ − 1. The pseudomarginal µτ has a total of 2nτ − 1 components, each being a

marginal distribution. In particular, there are nτ marginal distributions corresponding to each

node u ∈ Vτ , given by

µτ,u(xu) =
∑
¬xu

Pτ (x1, . . . , xu, . . . , xn) . (7.25)

Thus, µu is the marginal probability for node u.

Further, there are nτ − 1 marginal components corresponding to each edge (u, v) ∈ Eτ ,

given by

µτ,uv(xu, xv) =
∑

¬(xu,xv)

P (x1, . . . , xu, . . . , xv, . . . , xn) . (7.26)

Thus, µuv is the marginal probability for nodes (u, v).

Let µτ ,ντ be two pseudomarginals defined on tree τ and Pµτ , Pντ be the corresponding

tree-structured distributions. Making use of (7.25), we have

‖Pµτ − Pντ ‖1 ≥ ‖µτ,u − ντ,u‖1, ∀u ∈ Vτ . (7.27)

152

Similarly, for each edge, we have the following inequality because of (7.26)

‖Pµτ−Pντ ‖1≥‖µτ,uv−ντ,uv‖1, ∀(u, v) ∈ Eτ . (7.28)

Adding them together gives

(2nτ−1)‖Pµτ−Pντ ‖1≥‖µτ−ντ‖1 ≥ ‖µτ−ντ‖2 . (7.29)

According to Pinsker’s inequality [27], we have

dφ(µτ ||ντ) = KL(Pµτ , Pντ) ≥ 1

2
‖Pµτ − Pντ ‖21

≥ 1

2(2nτ − 1)2
‖µτ − ντ‖22 . (7.30)

Multiplying α on both sides and letting α ≥ β(2nτ − 1)2 complete the proof.

To prove the convergence of the objective function, we define a residual term Rt+1
τ as

Rt+1
τ = ρτ 〈mt+1

τ − µ∗τ ,θτ 〉 , (7.31)

whereµ∗τ is the optimal solution for tree τ . We show thatRt+1
τ satisfies the following inequality:

Lemma 22 Let {mτ ,µτ ,λτ} be the sequences generated by Bethe-ADMM. Assume α ≥
maxτ{β(2nτ − 1)2}. For any µ∗τ ∈ L(τ), we have

Rt+1
τ ≤〈λtτ ,µ∗τ−mt+1

τ 〉+α
(
dφ(µ∗τ ||mt

τ)−dφ(µ∗τ ||mt+1
τ)

)
+
β

2

(
‖µ∗τ−µtτ‖22−‖µ∗τ−mt

τ‖22−‖mt+1
τ −µtτ‖22

)
, (7.32)

where Rt+1
τ is defined in (7.31).

Proof: Sincemt+1
τ is the optimal solution for (7.21), for any µ∗τ ∈ L(τ), we have the follow-

ing inequality:

〈ytr+α(∇φ(mt+1
τ)−∇φ(mt

τ)),µ∗τ−mt+1
τ 〉≥0 . (7.33)

Substituting (7.16) into (7.33) and rearranging the terms, we have

Rt+1
τ ≤ 〈λtτ ,µ∗τ −mt+1

τ 〉+ β〈mt
τ − µtτ ,µ∗τ −mt+1

τ 〉

153

+ α〈∇φ(mt+1
τ)−∇φ(mt

τ),µ∗τ −mt+1
τ 〉 . (7.34)

The second term in the RHS of (7.34) is equivalent to

2〈mt
τ − µtτ ,µ∗τ −mt+1

τ 〉 = ‖mt
τ −mt+1

τ ‖22
+‖µ∗τ−µtτ‖22−‖µ∗τ−mt

τ‖22−‖mt+1
τ −µtτ‖22. (7.35)

The third term in the RHS of (7.34) can be rewritten as

〈∇φ(mt+1
τ)−∇φ(mt

τ),µ∗τ −mt+1
τ 〉

=dφ(µ∗τ ||mt
τ)−dφ(µ∗τ ||mt+1

τ)−dφ(mt+1
τ ||mt

τ). (7.36)

Substituting (7.35) and (7.36) into (7.34) and using Lemma 21 complete the proof.

We next show that the first term in the RHS of (7.32) satisfies the following result:

Lemma 23 Let {mτ ,µτ ,λτ} be the sequences generated by Bethe-ADMM. For any µ∗τ ∈
L(τ), we have

|T|∑
τ=1

〈λtτ ,µ∗τ −mt+1
τ 〉 ≤

1

2β
(‖λtτ‖22 − ‖λt+1

τ ‖22)

+
β

2

(
‖µ∗τ −mt+1

τ ‖22 − ‖µ∗τ − µt+1
τ ‖22

)
.

Proof: Let µi be the ith component of µ. We augment µτ ,mτ and λτ in the following way:

If µi is not a component of µτ , we set µτ,i = 0,mτ,i = 0 and λτ,i = 0; otherwise, they are the

corresponding components from µτ ,mτ and λτ respectively. We can then rewrite (7.22) in the

following equivalent component-wise form:

µt+1
i =argminµi

|T|∑
τ=1

(
〈λtτ,i,mt+1

τ,i −µτ,i〉+
β

2
||mt+1

τ,i −µτ,i||
2
2

)
.

For any µ∗τ ∈ L(τ), we have the following optimality condition:

−
|T|∑
τ=1

〈λtτ,i + β(mt+1
τ,i − µ

t+1
τ,i), µ∗τ,i − µt+1

τ,i 〉 ≥ 0 . (7.37)

Combining all the components of µt+1, we can rewrite (7.37) in the following vector form:

−
|T|∑
τ=1

〈λtτ + β(mt+1
τ − µt+1

τ),µ∗τ − µt+1
τ 〉 ≥ 0 . (7.38)

154

Rearranging the terms yields

|T|∑
τ=1

〈λtτ ,µ∗τ −mt+1
τ 〉

≤
|T|∑
τ=1

〈λtτ ,µt+1
τ −mt+1

τ 〉−
|T|∑
τ=1

β〈mt+1
τ −µt+1

τ ,µ∗τ−µt+1
τ 〉

=

|T|∑
τ=1

〈λtτ ,µt+1
τ −mt+1

τ 〉+
β

2

|T|∑
τ=1

(
‖µ∗τ −mt+1

τ ‖22

−‖µ∗τ − µt+1
τ ‖22 − ‖µt+1

τ −mt+1
τ ‖22

)
. (7.39)

Recall µt+1
τ −mt+1

τ = 1
β (λtτ − λt+1

τ) in (7.23), then

〈λtτ ,µt+1
τ −mt+1

τ 〉−
β

2
‖µt+1

τ −mt+1
τ ‖22=

1

2β
(‖λtτ‖22 − ‖λt+1

τ ‖22) . (7.40)

Plugging (7.40) into (7.39) completes the proof.

We also need the following lemma which can be found in [65]. We omit the proof due to

lack of space.

Lemma 24 Let {mτ ,µτ ,λτ} be the sequences generated by Bethe-ADMM. Then

|T|∑
τ=1

‖mt+1
τ −µtτ‖22 ≥

|T|∑
τ=1

‖mt+1
τ −µt+1

τ ‖22+‖µt+1
τ −µtτ‖22 .

Theorem 27 Assume the following hold: (1) m0
τ and µ0

τ are uniform tree-structured distri-

butions, ∀τ = 1, . . . , |T| (2) λ0
τ = 0, ∀τ = 1, . . . , |T|; (3) maxτ dφ(µ∗τ ||m0

τ) = Dµ; (4)

α ≥ maxτ{β(2nτ − 1)2} holds. Denote m̄T
τ = 1

T

∑T−1
t=0 m

t
τ and µ̄Tτ = 1

T

∑T−1
t=0 µ

t
τ . For any

T and the optimal solution µ∗, we have

|T|∑
τ=1

(
ρτ 〈m̄T

τ − µ∗τ , θτ 〉+
β

2
‖m̄T

τ − µ̄Tτ ‖22
)
≤ Dµα|T|

T
.

Proof: Summing (7.32) over τ from 1 to |T| and using Lemma 23, we have:

|T|∑
τ=1

(
Rt+1
τ +

β

2
‖mt+1

τ − µtτ‖22
)

155

≤
|T|∑
τ=1

1

2β
(‖λtτ‖22−‖λt+1

τ ‖22)+
β

2

(
‖µ∗τ−µtτ‖22−‖µ∗τ−µt+1

τ ‖22
)

+
β

2

(
‖µ∗τ −mt+1

τ ‖22 − ‖µ∗τ −mt
τ‖22
)

+ α
(
dφ(µ∗τ ||mt

τ)− dφ(µ∗τ ||mt+1
τ)

)
. (7.41)

Summing over the above from t = 0 to T − 1, we have

T−1∑
t=0

|T|∑
τ=1

(
Rt+1
τ +

β

2
‖mt+1

τ − µtτ‖22
)

≤
|T|∑
τ=1

1

2β
(‖λ0

τ‖22−‖λTτ‖22)+
β

2

(
‖µ∗τ−µ0

τ‖22−‖µ∗τ−µTτ‖22
)

+
β

2

(
‖µ∗τ −mT

τ ‖22 − ‖µ∗τ −m0
τ‖22
)

+ α
(
dφ(µ∗τ ||m0

τ)− dφ(µ∗τ ||mT
τ)
)

≤
|T|∑
τ=1

β

2
‖µ∗τ −mT

τ ‖22 +α
(
dφ(µ∗τ ||m0

τ)−dφ(µ∗τ ||mT
τ)
)

≤
|T|∑
τ=1

αdφ(µ∗τ ||m0
τ) , (7.42)

where we use Lemma 21 to derive (7.42). Applying Lemma 24 and Jensen’s inequality yield

the desired bound.

Theorem 1 establishes theO(1/T) convergence rate for the Bethe-ADMM in ergodic sense.

As T → ∞, the objective value
∑|T|

τ=1ρτ 〈m̄T
τ , θτ 〉 converges to the optimal value and the

equality constraints are also satisfied.

7.3.4 Extension to MRFs with General Factors

Although we present Bethe-ADMM in the context of pairwise MRFs, it can be easily gener-

alized to handle MRFs with general factors. For a general MRF, we can view the dependency

graph as a factor graph [107], a bipartite graph G = (V ∪F,E), where V and F are disjoint set

of variable nodes and factor nodes andE is a set of edges, each connecting a variable node and a

factor node. The distributionP (x) takes the form: P (x) ∝ exp
{∑

u∈V fu(xu) +
∑

α∈F fα(xα)
}

.

156

1 5 10 50 100 200
0

1000

2000

3000

4000

5000

6000

Time(seconds)

I
n

te
g
e
r
 O

b
je

c
ti

v
e
 V

a
lu

e

Bethe−ADMM

Exact ADMM

Primal ADMM

Proximal

(a) Rounded solution with a = 0.5.

1 5 10 50 100 200
0

500

1000

1500

2000

Time (seconds)

R
e
la

ti
v
e
 E

r
r
o
r

Bethe−ADMM

Exact ADMM

Primal ADMM

Proximal

(b) Relative error with a = 0.5.

1 5 10 50 100 200
0

500

1000

1500

2000

2500

3000

Time (seconds)

R
e
la

ti
v
e
 E

r
r
o
r

Bethe−ADMM

Exact ADMM

Primal ADMM

Dual ADMM

(c) Relative error with a = 1.

Figure 7.1: Results of Bethe-ADMM, Exact ADMM, Primal ADMM and proximal algorithms on two

simulation datasets. Figure 7.1(a) plots the value of the decoded integer solution as a function of runtime

(seconds). Figure 7.1(b) and 7.1(c) plot the relative error with respect to the optimal LP objective as a

function of runtime (seconds). For Bethe-ADMM, we set α = β = 0.05. For Exact ADMM, we set

β = 0.05. For Primal ADMM, we set β = 0.5. Bethe-ADMM converges faster than other primal based

algorithms.

The relaxed LP for general MRFs can be constructed in a similar fashion with that for pairwise

MRFs.

We can then decompose the relaxed LP to subproblems defined on factor trees and impose

equality constraints to enforce consistency on the shared variables among the subproblems.

Each subproblem can be solved efficiently using the sum-product algorithm for factor trees and

the Bethe-ADMM algorithm for general MRFs bears similar structure with that for pairwise

MRFs.

7.4 Experimental Results

We compare the Bethe-ADMM algorithm with several other state-of-the-art MAP inference

algorithms. We show the comparison results with primal based MAP inference algorithms in

Section 7.4.1 and dual based MAP inference algorithm in Section 7.4.2 respectively. We also

show in Section 7.4.3 how tree decomposition benefits the performance of Bethe-ADMM. We

run experiments in Section 7.4.1-7.4.3 using sequential updates. To illustrate the scalability

of our algorithm, we run parallel Bethe-ADMM on a multicore machine and show the linear

speedup in Section 7.4.4.

157

100 1000 10000 100000
430

435

440

445

450

455

460

465

470

Time (seconds)

D
u

a
l

O
b

je
ct

iv
e

V
a
lu

e

Bethe−ADMM

MPLP

Figure 7.2: Both Bethe-ADMM and MPLP are run for sufficiently long, i.e., 50000 iterations.

The dual objective value is plotted as a function of runtime (seconds). The MPLP algorithm

gets stuck and does not reach the global optimum.

7.4.1 Comparison with Primal based Algorithms

We compare the Bethe-ADMM algorithm with the proximal algorithm [158], Exact ADMM al-

gorithm and Primal ADMM algorithm [139]. For the proximal algorithm, we choose the Breg-

man divergence as the sum of KL-divergences across all node and edge distributions. Following

the methodology in [158], we terminate the inner loop if the maximum constraint violation of

L(G) is less than 10−3 and set wt = t. Similarly, in applying the Exact ADMM algorithm,

we terminate the loop for solving Mτ if the maximum constraint violation of L(τ) is less than

10−3. For the Exact ADMM and Bethe-ADMM algorithm, we use ‘edge decomposition’: each

τ is simply an edge of the graph and |T| = |E|. To obtain the integer solution, we use node-

based rounding: x∗u = argmaxxu µu(xu).

We show experimental results on two synthetic datasets. The underlying graph of each

dataset is a three dimensional m × n × t grid. We generate the potentials as follows: We set

the nodewise potentials as random numbers from [−a, a], where a > 0. We set the edgewise

potentials according to the Potts model, i.e., θuv(xu, xv) = buv if xu = xv and 0 otherwise. We

choose buv randomly from [−1, 1]. The edgewise potentials penalize disagreement if buv > 0

and penalize agreement if buv < 0. We generate datasets using m = 20, n = 20, t = 16, k = 6

with varying a.

Figure 7.1(a) shows the plots of (7.1) on one synthetic dataset and we find that the algo-

rithms have similar performances on other simulation datasets. We observe that all algorithms

converge to the optimal value 〈µ∗,f〉 of (7.3) and we plot the relative error with respect to the

optimal value |〈µ∗ − µt,f〉| on the two datasets in Figure 7.1(b) and 7.1(c).

158

10 100 1000
−400

−300

−200

−100

0

100

200

Time (seconds)

I
n

te
g
e
r
 O

b
je

c
ti

v
e
 V

a
lu

e

Bethe−ADMM

Dual ADMM

MPLP

(a) Rounded integer solution on 1jo8.

10 100 1000
120

140

160

180

200

220

Time (seconds)

D
u

a
l

O
b

je
c
ti

v
e
 V

a
lu

e

Bethe−ADMM

Dual ADMM

MPLP

(b) Dual value on 1jo8.

100 1000 10000
400

450

500

550

600

Time (seconds)

D
u

a
l

O
b

je
c
ti

v
e
 V

a
lu

e

Bethe−ADMM

Dual ADMM

MPLP

(c) Dual value on 1or7.

Figure 7.3: Results of Bethe-ADMM, MPLP and Dual ADMM algorithms on two protein design

datasets. Figure 7.3(a) plots the the value of the decoded integer solution as a function of runtime

(seconds). Figure 7.3(b) and 7.3(c) plot the dual value as a function of runtime (seconds). For Dual

ADMM, we set β = 0.05. For Bethe-ADMM, we set α = β = 0.1. Bethe-ADMM and Dual ADMM

have similar performance in terms of convergence. All three methods have comparable performances for

the decoded integer solution.

Overall, the Bethe-ADMM algorithm converges faster than other primal algorithms. We

observe that the proximal algorithm and Exact ADMM algorithm are the slowest, due to the

sequential projection step. In terms of the decoded integer solution, the Bethe-ADMM, Exact

ADMM and proximal algorithm have similar performances. We also note that a higher objective

function value does not necessarily lead to a better decoded integer solution.

7.4.2 Comparison with Dual based Algorithms

In this section, we compare the Bethe-ADMM algorithm with the MPLP algorithm [68] and

the Dual ADMM algorithm [139]. We conduct experiments on protein design problems [215].

In these problems, we are given a 3D structure and the goal is to find a sequence of amino-

acids that is the most stable for that structure. The problems are modeled by nodewise and

pairwise factors and can be posed as finding a MAP assignment for the given model. This is

a demanding setting in which each problem may have hundreds of variables with 100 possible

states on average.

We run the algorithms on two problems with different sizes [215], i.e., 1jo8 (58 nodes and

981 edges) and 1or7 (180 nodes and 3005 edges). For the MPLP and Dual ADMM algorithm,

we plot the value of the integer programming problem (7.1) and its dual.. For Bethe-ADMM

algorithm, we plot the value of dual LP of (7.3) and the integer programming problem (7.1).

159

(a) (b)

Figure 7.4: A simulation dataset with m = 2, s = 7 and n = 3. In 7.4(a), the red nodes (S12) are

sampled from tree 1 and the blue nodes (D12) are sampled from tree 2. In 7.4(b) , sampled nodes are

connected by cross-tree edges (E12). Tree 1 with nodes inD12 and edges inE12 still form a tree, denoted

by solid lines. This augmented tree is a tree-structured subgraph for Bethe-ADMM.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Time (seconds)

M
a
x
im

u
m

 C
o
n

s
tr

a
in

t
V

io
la

ti
o
n

Tree Decomposition

Edge Decomposition

(a) s = 1023.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (seconds)

M
a
x
im

u
m

 C
o
n

s
tr

a
in

ts
 V

io
la

ti
o
n

Tree Decomposition

Edge Decomposition

(b) s = 4095.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (seconds)

M
a
x
im

u
m

 C
o
n

s
tr

a
in

t
V

io
la

ti
o
n

Tree Decomposition

Edge Decomposition

(c) s = 16383.

Figure 7.5: Results of Bethe-ADMM algorithms based on tree and edge decomposition on three simu-

lation datasets with m = 10, n = 20. The maximum constraint violation in L(G) is plotted as a function

of runtime (seconds). For both algorithms, we set α = β = 0.05. The tree based Bethe-ADMM algo-

rithm has better performance than that of the edge based Bethe-ADMM when the tree structure is more

dominant in G.

Note that although Bethe-ADMM and Dual ADMM have different duals, their optimal values

are the same. We run the Bethe-ADMM based on edge decomposition. Figure 7.3 shows the

result.

We observe that the MPLP algorithm usually converges faster, but since it is a coordinate

ascent algorithm, it can stop prematurely and yield suboptimal solutions. Figure 7.2 shows that

on the 1fpo dataset, the MPLP algorithm converges to a suboptimal solution. We note that the

convergence time of the Bethe-ADM and Dual ADM are similar. The three algorithms have

similar performance in terms of the decoded integer solution.

160

7.4.3 Edge based vs Tree based

In the previous experiments, we use ‘edge decomposition’ for the Bethe-ADMM algorithm.

Since our algorithm can work for any tree-structured graph decomposition, we want to empiri-

cally study how the decomposition affects the performance of the Bethe-ADMM algorithm. In

the following experiments, we show that if we can utilize the graph structure when decompos-

ing the graph, the Bethe-ADMM algorithm will have better performance compared to simply

using ‘edge decomposition’, which does not take the graph structure into account.

We conduct experiments on synthetic datasets. We generate MRFs whose dependency

graphs consist of several tree-structured graphs and cross-tree edges to introduce cycles. To

be more specific, we first generate m binary tree structured MRFs each with s nodes. Then for

each ordered pair of tree-structured MRFs (i, j), 1 ≤ i, j ≤ m, i 6= j, we uniformly sample

n nodes from MRF i with replacement and uniformly sample n (n ≤ s) nodes from MRF j

without replacement, resulting in two node sets Sij and Dij . We then connect the nodes in Sij
and Dij , denoting them as Eij . We repeat this process for every pair of trees. By construction,

the graph consisting of tree i, nodes in Dij and edges in Eij , ∀j 6= i is still a tree. We will

use these m augmented trees as the tree-structured subgraphs for the Bethe-ADMM algorithm.

Figure 7.4 illustrates the graph generation and tree decomposition process. A simple calculation

shows that for this particular tree decomposition,O(m2nk) equality constraints are maintained,

while for edge decomposition, O(msk+m2nk) are maintained. When the graph has dominant

tree structure, tree decomposition leads to much less number of equality constraints.

For the experiments, we run the Bethe-ADMM algorithm based on tree and edge decompo-

sition with different values of s, keeping m and n fixed. It is easy to see that the tree structure

becomes more dominant when s becomes larger. Since we observe that both algorithms first

converge to the optimal value of (7.3) and then the equality constraints are gradually satisfied,

we evaluate the performance by computing the maximum constraint violation of L(G) at each

iteration for both algorithms. The faster the constraints are satisfied, the better the algorithm

is. The results are shown in Figure 7.5. When the tree structure is not obvious, the two al-

gorithms have similar performances. As we increase s and the tree structure becomes more

dominant, the difference between the two algorithms is more pronounced. We attribute the

superior performance to the fact that for the tree decomposition case, much fewer number of

equality constraints are imposed and each subproblem on tree can be solved efficiently using

the sum-product algorithm.

161

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

Number of cores

R
u

n
ti

m
e
 (

se
c
o

n
d

s)

Figure 7.6: The Open MPI implementation of Bethe-ADMM has almost linear speedup on the CRU

dataset with more than 7 million nodes.

7.4.4 Scalability Experiments on Multicores

The dataset used in this section is the Climate Research Unit (CRU) precipitation dataset [140],

which has monthly precipitation from the years 1901-2006. The dataset is of high gridded

spatial resolution (360 × 720, i.e., 0.5 degree latitude × 0.5 degree longitude) and includes the

precipitation over land.

Our goal is to detect major droughts based on precipitation. We formulate the problem as

the one of estimating the most likely configuration of a binary MRF, where each node represents

a location. The underlying graph is a three dimensional grid (360× 720× 106) with 7,146,520

nodes and each node can be in two possible states: dry and normal. We run the Bethe-ADMM

algorithm on the CRU dataset and detect droughts based on the integer solution after node-based

rounding. For the details of the this experiment, we refer to readers to [63]. Our algorithm

successfully detects nearly all the major droughts of the last century. We also examine how the

Bethe-ADMM algorithm scales on the CRU dataset with more than 7 million variables. We run

the Open MPI code with different number of cores and the result in Figure 7.6 shows that we

obtain almost linear speedup with the number of cores.

Chapter 8

Large Scale Sparse Precision
Estimation

8.1 Introduction

Consider a p-dimensional probability distribution with true covariance matrix Σ0 ∈ Sp++ and

true precision (or inverse covariance) matrix Ω0 = Σ−1
0 ∈ Sp++. Let [R1 · · · Rn] ∈ <p×n

be n independent and identically distributed random samples drawn from this p-dimensional

distribution. The centered normalized sample matrix A = [a1 · · ·an] ∈ <p×n can be obtained

as ai = 1√
n

(Ri − R̄), where R̄ = 1
n

∑
iRi, so that the sample covariance matrix can be

computed as C = AAT . In recent years, considerable effort has been invested in obtaining

an accurate estimate of the precision matrix Ω̂ based on the sample covariance matrix C in the

‘low sample, high dimensions’ setting, i.e., n � p, especially when the true precision Ω0 is

assumed to be sparse [217]. Suitable estimators and corresponding statistical convergence rates

have been established for a variety of settings, including distributions with sub-Gaussian tails,

polynomial tails [159, 23, 120]. Recent advances have also established parameter-free methods

which achieve minimax rates of convergence [22, 120].

Spurred by these advances in the statistical theory of precision matrix estimation, there has

been considerable recent work on developing computationally efficient optimization methods

for solving the corresponding statistical estimation problems: see [7, 59, 89, 134, 88], and

references therein. While these methods are able to efficiently solve problems up to a few

thousand variables, ultra-large-scale problems with millions of variables remain a challenge.

162

163

Note further that in precision matrix estimation, the number of parameters scales quadratically

with the number of variables; so that with a million dimensions p = 106, the total number of

parameters to be estimated is a trillion, p2 = 1012. The focus of this chapter is on designing

an efficient distributed algorithm for precision matrix estimation under such ultra-large-scale

dimensional settings.

We focus on the CLIME statistical estimator [23], which solves the following linear program

(LP):

min ‖Ω̂‖1 s.t. ‖CΩ̂− I‖∞ ≤ λ , (8.1)

where λ > 0 is a tuning parameter. The CLIME estimator not only has strong statistical guaran-

tees [23], but also comes with inherent computational advantages. First, the LP in (9.5) does not

explicitly enforce positive definiteness of Ω̂, which can be a challenge to handle efficiently in

high-dimensions. Secondly, it can be seen that (9.5) can be decomposed into p independent LPs,

one for each column of Ω̂. This separable structure has motivated solvers for (9.5) which solve

the LP column-by-column using interior point methods [23, 217] or the alternating direction

method of multipliers (ADMM) [114]. However, these solvers do not scale well to ultra-high-

dimensional problems: they are not designed to run on hundreds to thousands of cores, and

in particular require the entire sample covariance matrix C to be loaded into the memory of a

single machine, which is impractical even for moderate sized problems.

In this chapter, we present an efficient CLIME-ADMM variant along with a scalable dis-

tributed framework for the computations [19, 200]. The proposed CLIME-ADMM algorithm

can scale up to millions of dimensions, and can use up to thousands of cores in a shared-memory

or distributed-memory architecture. The scalability of our method relies on the following key in-

novations. First, we propose an inexact ADMM [214, 79] algorithm targeted to CLIME, where

each step is either elementwise parallel or involves suitable matrix multiplications. We show

that the rates of convergence of the objective to the optimum as well as residuals of constraint

violation are both O(1/T). Second, we solve (9.5) in column-blocks of the precision matrix at

a time, rather than one column at a time. Since (9.5) already decomposes columnwise, solving

multiple columns together in blocks might not seem worthwhile. However, as we show our

CLIME-ADMM working with column-blocks uses matrix-matrix multiplications which, build-

ing on existing literature [16, 36, 73] and the underlying low rank and sparse structure inherent

164

in the precision matrix estimation problem, can be made substantially more efficient than re-

peated matrix-vector multiplications. Moreover, matrix multiplication can be further simplified

as block-by-block operations, which allows choosing optimal block sizes to minimize cache

misses, leading to high scalability and performance [109, 36, 16]. Lastly, since the core compu-

tations can be parallelized, CLIME-ADMM scales almost linearly with the number of cores. We

experiment with shared-memory and distributed-memory architectures to illustrate this point.

Empirically, CLIME-ADMM is shown to be much faster than existing methods for precision

estimation, and scales well to high-dimensional problems, e.g., we estimate a precision matrix

of one million dimension and one trillion parameters in 11 hours by running the algorithm on

400 cores.

Our framework can be positioned as a part of the recent surge of effort in scaling up ma-

chine learning algorithms [226, 150, 42, 43, 123, 19, 154, 64] to “Big Data”. Scaling up ma-

chine learning algorithms through parallelization and distribution has been heavily explored on

various architectures, including shared-memory architectures [150], distributed memory archi-

tectures [154, 42, 64] and GPUs [157]. Since MapReduce [43] is not efficient for optimization

algorithms, [42] proposed a parameter server that can be used to parallelize gradient descent

algorithms for unconstrained optimization problems. However, this framework is ill-suited for

the constrained optimization problems we consider here, because gradient descent methods re-

quire the projection at each iteration which involves all variables and thus ruins the parallelism.

In other recent related work based on ADMM, [154] introduce graph projection block splitting

(GPBS) to split data into blocks so that examples and features can be distributed among multiple

cores. Our framework uses a more general blocking scheme (block cyclic distribution), which

provides more options in choosing the optimal block size to improve the efficiency in the use

of memory hierarchies and minimize cache misses [109, 16, 36]. ADMM has also been used to

solve constrained optimization in a distributed framework [64] for graphical model inference,

but they consider local constraints, in contrast to the global constraints in our framework.

Notation: A matrix is denoted by a bold face upper case letter, e.g., A. An element of

a matrix is denoted by a upper case letter with row index i and column index j, e.g., Aij is

the ij-th element of A. A block of matrix is denoted by a bold face lower case letter indexed

by ij, e.g., Aij . ~Aij represents a collection of blocks of matrix A on the ij-th core (see

block cyclic distribution in Section 4). A′ refers the transpose of A. Matrix norms used are

all elementwise norms, e.g., ‖A‖1 =
∑p

i=1

∑n
j=1 |Aij |, ‖A‖22 =

∑p
i=1

∑n
j=1A

2
ij , ‖A‖∞ =

165

Algorithm 6 Column Block ADMM for CLIME
1: Input: C, λ, ρ, η

2: Output: X

3: Initialization: X0,Z0,Y0,V0, V̂0 = 0

4: for t = 0 to T − 1 do
5: X-update: Xt+1 = soft(Xt −Vt, 1

η), where

6: Mat-Mul:

{
sparse : Ut+1 = CXt+1

low rank : Ut+1 = A(A′Xt+1)

7: Z-update: Zt+1 = box(Ut+1 + Yt, λ), where

8: Y-update: Yt+1 = Yt + Ut+1 − Zt+1

9: Mat-Mul:

{
sparse : V̂t+1 = CYt+1

low rank : V̂t+1 = A(A′Yt+1)

10: V-update: Vt+1 = ρ
η (2V̂t+1 − V̂t)

11: end for

soft(X, γ) =

Xij − γ , if Xij > γ ,

Xij + γ , if Xij < −γ ,
0 , otherwise

box(X,E, λ) =

Eij + λ, if Xij − Eij > λ,

Xij , if |Xij − Eij | ≤ λ,
Eij − λ, if Xij − Eij < −λ,

max1≤i≤p,1≤j≤n |Aij |. The matrix inner product is defined in elementwise, e.g., 〈A,B〉 =∑p
i=1

∑n
j=1AijBij . X ∈ <p×k denotes k(1 ≤ k ≤ p) columns of the precision matrix Ω̂, and

E ∈ <p×k denotes the same k columns of the identity matrix I ∈ <p×p. Let λmax(C) be the

largest eigenvalue of covariance matrix C.

8.2 Column Block ADMM for CLIME

In this section, we propose an algorithm to estimate the precision matrix in terms of col-

umn blocks instead of column-by-column. Assuming a column block contains k(1 ≤ k ≤ p)

columns, the sparse precision matrix estimation amounts to solving dp/ke independent linear

programs. Denoting X ∈ <p×k be k columns of Ω̂, (9.5) can be written as

min ‖X‖1 s.t. ‖CX−E‖∞ ≤ λ , (8.2)

which can be rewritten in the following equality-constrained form:

min ‖X‖1 s.t. ‖Z−E‖∞ ≤ λ,CX = Z . (8.3)

Through the splitting variable Z ∈ <p×k, the infinity norm constraint becomes a box constraint

and is separated from the `1 norm objective. We use ADMM to solve (8.3). The augmented

166

Lagrangian of (8.3) is

Lρ = ‖X‖1 + ρ〈Y,CX− Z〉+
ρ

2
‖CX− Z‖22 , (8.4)

where Y ∈ <p×k is a scaled dual variable and ρ > 0. ADMM yields the following iterates [19]:

Xt+1 = argminX ‖X‖1 +
ρ

2
‖CX− Zt + Yt‖22 , (8.5)

Zt+1 = argmin
‖Z−E‖∞≤λ

ρ

2
‖CXt+1 − Z + Yt‖22 , (8.6)

Yt+1 = Yt + CXt+1 − Zt+1 . (8.7)

As a Lasso problem, (8.5) can be solved using exisiting Lasso algorithms, but that will lead to

a double-loop algorithm. (8.5) does not have a closed-form solution since C in the quadratic

penalty term makes X coupled. We decouple X by linearizing the quadratic penalty term and

adding a proximal term as follows:

Xt+1 = argminX ‖X‖1 + η〈Vt,X〉+
η

2
‖X−Xt‖22 , (8.8)

where Vt = ρ
ηC(Yt+CXt−Zt) and η > 0. (8.8) is usually called an inexact ADMM update.

Using (8.7), Vt = ρ
ηC(2Yt −Yt−1). Let V̂t = CYt, we have Vt = ρ

η (2V̂t − V̂t−1) . (8.8)

has the following closed-form solution:

Xt+1 = soft(Xt −Vt,
1

η
) , (8.9)

where soft denotes the soft-thresholding and is defined in Step 5 of Algorithm 7.

Let Ut+1 = CXt+1. (8.6) is a box constrained quadratic programming which has the

following closed-form solution:

Zt+1 = box(Ut+1 + Yt,E, λ) , (8.10)

where box denotes the projection onto the infinity norm constraint ‖Z−E‖∞ ≤ λ and is defined

in Step 7 of Algorithm 7. In particular, if ‖Ut+1 + Yt − E‖∞ ≤ λ, Zt+1 = Ut+1 + Yt and

thus Yt+1 = Yt + Ut+1 − Zt+1 = 0.

The ADMM algorithm for CLIME is summarized in Algorithm 7. In Algorithm 7, while

step 5, 7, 8 and 10 amount to elementwise operations which cost O(pk) operations, steps 6

and 9 involve matrix multiplication which is the most computationally intensive part and costs

167

O(p2k) operations. The memory requirement includes O(pn) for A and O(pk) for the other

six variables.

As the following results show, Algorithm 1 has a O(1/T) convergence rate for both the

objective function and the residuals of optimality conditions. The proof technique is similar

to [200]. [79] shows a similar result as Theorem 29 but uses a different proof technique. For

proofs, please see Appendix A in the supplement.

Theorem 28 Let {Xt,Zt,Yt} be generated by Algorithm 7 and X̄T = 1
T

∑T
t=1 Xt. Assume

X0 = Z0 = Y0 = 0 and η ≥ ρλ2
max(C). For any CX = Z, we have

‖X̄T ‖1 − ‖X‖1 ≤
η‖X‖22

2T
. (8.11)

Theorem 29 Let {Xt,Zt,Yt} be generated by Algorithm 7 and {X∗,Z∗,Y∗} be a KKT point

for the Lagrangian of (8.3). Assume X0 = Z0 = Y0 = 0 and η ≥ ρλ2
max(C). We have

‖CXT − ZT ‖22 + ‖ZT − ZT−1‖22 + ‖XT −XT−1‖2η
ρ
I−C2 ≤

‖Y∗‖22 + η
ρ‖X

∗‖22
T

. (8.12)

8.3 Leveraging Sparse, Low-Rank Structure

In this section, we consider a few possible directions that can further leverage the underlying

structure of the problem; specifically sparse and low-rank structure.

8.3.1 Sparse Structure

As we detail here, there could be sparsity in the intermediate iterates, or the sample covariance

matrix itself (or a perturbed version thereof); which can be exploited to make our CLIME-

ADMM variant more efficient.

Iterate Sparsity: As the iterations progress, the soft-thresholding operation will yield a

sparse Xt+1, which can help speed up step 6: Ut+1 = CXt+1, via sparse matrix multiplication.

Further, the box-thresholding operation will yield a sparse Yt+1. In the ideal case, if ‖Ut+1 +

Yt − E‖∞ ≤ λ in step 7, then Zt+1 = Ut+1 + Yt. Thus, Ŷt+1 = Yt + Ut+1 − Zt+1 = 0.

More generally, Yt+1 will become sparse as the iterations proceed, which can help speed up

step 9: V̂t+1 = CYt+1.

Sample Covariance Sparsity: We show that one can “perturb” the sample covariance to

obtain a sparse and coarsened matrix, solve CLIME with this pertubed matrix, and yet have

168

strong statistical guarantees. The statistical guarantees for CLIME [23], including convergence

in spectral, matrix L1, and Frobenius norms, only require from the sample covariance matrix C

a deviation bound of the form ‖C − Σ0‖∞ ≤ c
√

log p/n, for some constant c. Accordingly,

if we perturb the matrix C with a perturbation matrix ∆ so that the perturbed matrix (C + ∆)

continues to satisfy the deviation bound, the statistical guarantees for CLIME would hold even if

we used the perturbed matrix (C+∆). The following theorem (for details, please see Appendix

B in the supplement) illustrates some perturbations ∆ that satisfy this property:

Theorem 30 Let the original random variables Ri be sub-Gaussian, with sample covariance

C. Let ∆ be a random perturbation matrix, where ∆ij are independent sub-exponential random

variables. Then, for positive constants c1, c2, c3, P (‖C + ∆− Σ0‖∞ ≥ c1

√
log p
n) ≤ c2p

−c3 .

As a special case, one can thus perturb elements of Cij with suitable constants ∆ij with |∆ij | ≤
c
√

log p/n, so that the perturbed matrix is sparse, i.e., if |Cij | ≤ c
√

log p/n, then it can be

safely truncated to 0. Thus, in practice, even if sample covariance matrix is only close to a

sparse matrix [134, 88], or if it is close to being block diagonal [134, 88], the complexity of

matrix multiplication in steps 6 and 9 can be significantly reduced via the above perturbations.

8.3.2 Low Rank Structure

Although one can use sparse structures of matrices participating in the matrix multiplication to

accelerate the algorithm, the implementation requires substantial work since dynamic sparsity

of X and Y is unknown upfront and static sparsity of the sample covariance matrix may not

exist. Since the method will operate in a low-sample setting, we can alternatively use the low

rank of the sample covariance matrix to reduce the complexity of matrix multiplication. Since

C = AAT and p � n, CX = A(ATX), and thus the computational complexity of matrix

multiplication reduces fromO(p2k) toO(npk), which can achieve significant speedup for small

n. We use such low-rank multiplications for the experiments in Section 8.5.

8.4 Scalable Parallel Computation Framework

In this section, we elaborate on scalable frameworks for CLIME-ADMM in both shared-memory

and distributed-memory achitectures.

169

In a shared-memory architecture (e.g., a single machine), data A is loaded to the memory

and shared by q cores, as shown in Figure 8.1(a). Assume the p × p precision matrix Ω̂ is

evenly divided into l = p/k (≥ q) column blocks, e.g., X1, · · · ,Xq, · · · ,Xl, and thus each

column block contains k columns. The column blocks are assigned to q cores cyclically, which

means the j-th column block is assigned to the mod(j, q)-th core. The q cores can solve q

column blocks in parallel without communication and synchronization, which can be simply

implemented via multithreading. Meanwhile, another q column blocks are waiting in their

respective queues. Figure 8.1(a) gives an example of how to solve 8 column blocks on 4 cores

in a shared-memory environment. While the 4 cores are solving the first 4 column blocks, the

next 4 column blocks are waiting in queues (red arrows).

Although the shared-memory framework is free from communication and synchronization,

the limited resources prevent it from scaling up to datasets with millions of dimensions, which

can not be loaded to the memory of a single machine or solved by tens of cores in a reasonble

time. As more memory and computing power are needed for high dimensional datasets, we

implement a framework for CLIME-ADMM in a distributed-memory architecture, which auto-

matically distributes data among machines, parallelizes computation, and manages communi-

cation and synchronization among machines, as shown in Figure 8.1(b). Assume q processes

are formed as a r × c process grid and the p × p precision matrix Ω̂ is evenly divided into

l = p/k (≥ q) column blocks, e.g., Xj , 1 ≤ j ≤ l. We solve a column block Xj at a time in

the process grid. Assume the data matrix A has been evenly distributed into the process grid

and ~Aij is the data on the ij-th core, i.e., A is colletion of ~Aij under a mapping scheme, which

we will discuss later. Figure 8.1(b) illustrates that the 2 × 2 process grid is computing the first

column block X1 while the second column block X2 is waiting in queues (red lines), assuming

X1,X2 are distributed into the process grid in the same way as A and ~X1
ij is the block of X1

assigned to the ij-th core.

A typical issue in parallel computation is load imbalance, which is mainly caused by the

computational disparity among cores and leads to unsatisfactory speedups. Since each step in

CLIME-ADMM are basic operations like matrix multiplication, the distribution of sub-matrices

over processes has a major impact on the load balance and scalability. The following discussion

focuses on the matrix multiplication in the step 6 in Algorithm 7. Other steps can be easily

incorporated into the framework. The matrix multiplication U = A(A′X1) can be decomposed

into two steps, i.e., W = A′X1 and U = AW, where A ∈ <n×p, X1 ∈ <p×k, W ∈

170

2X1X

6X5X

4X3X

8X7X

A

(a) Shared-Memory

21A
&

1
21X

&
11A
&

1
11X
&

1
22X

&
22A

&

1
12X
&

12A
&

2
11X
&

2
21X

& 2
22X

&

2
22X

&

Parallel IO

(b) Distributed-Memory

13A12A 14A11A
23A22A 24A21A
33A32A 34A31A

43A42A 44A41A

53A52A 54A51A

63A62A 64A61A

(c) Block Cyclic

Figure 8.1: CLIME-ADMM on shared-memory and distribtued-memory architectures.

<n×k and U ∈ <n×k. Dividing matrices A,X evenly into r × c large consecutive blocks

like [154] will lead to load imbalance. First, since the sparse structure of X changes over time

(Section 3.1), large consecutive blocks may assign dense blocks to some processes and sparse

blocks to the other processes. Second, there will be no blocks in some processes after the

multiplication using large blocks since W is a small matrix compared to A,X, e.g., p could be

millions and n, k are hundreds. Third, large blocks may not be fit in the cache, leading to cache

misses. Therefore, we use block cyclic data distribution which uses a small nonconsecutive

blocks and thus can largely achieve load balance and scalability. A matrix is first divided into

consecutive blocks of size pb × nb. Then blocks are distributed into the process grid cyclically.

Figure 8.1(c) illustrates how to distribute the matrix to a 2 × 2 process grid. A is divided into

3 × 2 consecutive blocks, where each block is of size pb × nb. Blocks of the same color will

be assigned to the same process. Green blocks will be assigned to the upper left process, i.e.,
~A11 = {a11,a13,a31,a33,a51,a53} in Figure 8.1(b). The distribution of X1 can be done in

a similar way except the block size should be pb × kb, where pb is to guarantee that matrix

multiplication A′X1 works. In particular, we denote pb × nb × kb as the block size for matrix

multiplication. To distribute the data in a block cyclic manner, we use a parallel I/O scheme,

where processes can access the data in parallel and only read/write the assigned blocks.

8.5 Experimental Results

In this section, we present experimental results to compare CLIME-ADMM with existing al-

gorithms and show its scalability. In all experiments, we use the low rank property of the

171

(a) Runtime (b) Precision and recall

Figure 8.2: Synthetic datasets

sample covariance matrix and do not assume any other special structures. Our algorithm is

implemented in a shared-memory architecture using OpenMP (http://openmp.org/wp/) and a

distributed-memory architecture using OpenMPI1 and ScaLAPACK [16]2 .

8.5.1 Comparision with Existing Algorithms

We compare CLIME-ADMM with three other methods for estimating the inverse covariance

matrix, including CLIME, Tiger in package flare3 and divide and conquer QUIC (DC-QUIC) [88].

The comparisons are run on an Intel Zeon E5540 2.83GHz CPU with 32GB main memory.

We test the efficiency of the above methods on both synthetic and real datasets. For synthetic

datasets, we generate the underlying graphs with random nonzero pattern by the same way as

in [89]. We control the sparsity of the underlying graph to be 0.05, and generate random graphs

with various dimension. Since each estimator has different parameters to control the sparsity,

we set them individually to recover the graph with sparsity 0.05, and compare the time to get

the solution. The column block size k for CLIME-ADMM is 100. Figure 8.2(a) shows that

CLIME-ADMM is the most scalable estimator for large graphs. We compare the precision and

recall for different methods on recovering the groud truth graph structure. We run each method

using different parameters (which controls the sparsity of the solution), and plot the precision

and recall for each solution in Figure 8.2(b). As Tiger is parameter tuning free and achieves the
1 http://www.open-mpi.org
2 http://www.netlib.org/scalapack/
3 The interior point method in [23] is written in R and extremely slow. Therefore, we use flare which is

implemented in C with R interface. http://cran.r-project.org/web/packages/flare/index.html

172

minimax optimal rate [120], it achieves the best performance in terms of recall. The other three

methods have the similar performance. CLIME can also be free of parameter tuning and achieve

the optimal minimax rate by solving an additional linear program which is similar to (9.5) [22].

We refer the readers to [23, 22, 120] for detailed comparisons between the two models CLIME

and Tiger, which is not the focus of this paper.

We further test the efficiency of the above algorithms on two real datasets, Leukemia and

Climate (see Table 1). Leukemia is gene expression data provided by [72], and the pre-processing

was done by [111]. Climate dataset is the temperature data in year 2001 recorded by NCEP/NCAR

Reanalysis data4 and preprocessed by [88]. Since the ground truth for real datasets are un-

known, we test the time taken for each method to recover graphs with 0.1 and 0.01 sparsity.

The results are presented in Table 1. Although Tiger is faster than CLIME-ADMM on small

dimensional dataset Leukemia, it does not scale well on the high dimensional dataset as CLIME-

ADMM, which is mainly due to the fact that ADMM is not competitive with other methods on

small problems but has superior scalability on big datasets [19]. DC-QUIC runs faster than other

methods for small sparsity but dramatically slows down when sparsity increases. DC-QUIC es-

sentially works on a block-diagonal matrix by thresholding the off-diagonal elements of the

sample covariance matrix. A small sparsity generally leads to small diagonal blocks, which

helps DC-QUIC to make a giant leap forward in the computation. A block-diagonal structure

in the sample covariance matrix can be easily incorporated into the matrix multiplication in

CLIME-ADMM to achieve a sharp computational gain. On a single core, CLIME-ADMM is

faster than flare ADMM. We also show the results of CLIME-ADMM on 8 cores, showing

CLIME-ADMM achieves a linear speedup (more results will be seen in Section 8.5.2). Note

Tiger can estimate the spase precision matrix column-by-column in parallel, while CLIME-

ADMM solves CLIME in column-blocks in parallel.

8.5.2 Scalability of CLIME ADMM

We evaluate the scalability of CLIME-ADMM in a shared memory and a distributed memory

architecture in terms of two kinds of speedups. The first speedup is defined as the time on 1

core T core
1 over q cores T core

q , i.e., Score
q = T core

1 /T core
q . The second speedup is caused by the

use of column blocks. Assume the total time for solving CLIME column-by-column (k = 1)

is T col
1 , which is considered as the baseline. The speedup of solving CLIME in column block

4 www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

173

(a) Speedup Scol
k (b) Speedup Score

q

Figure 8.3: Shared-Memory.

with size k over a single column is defined as Scol
k = T col

1 /T col
k . The experiments are done on

synthetic data which is generated in the same way as in Section 8.5.1. The number of samples

is fixed to be n = 200.

Shared-memory We estimate a precision matrix with p = 104 dimensions on a server

with 20 cores and 64G memory. We use OpenMP to parallelize column blocks. We run the

algorithm on different number of cores q = 1, 5, 10, 20, and with different column block size k.

The speedup Scol
k is plotted in Figure 8.3(a), which shows the results on three different number

of cores. When k ≤ 20, the speedups keep increasing with increasing number of columns k

in each block. For k ≥ 20, the speedups are maintained on 1 core and 5 cores, but decreases

on 10 and 20 cores. The total number of columns in the shared-memory is k × q. For a fixed

k, more columns are involved in the computation when more cores are used, leading to more

memory consumption and competition for the usage of shared cache. The speedup Score
q is

plotted in Figure 8.3(b), where T core
1 is the time on a single core. The ideal linear speedups are

archived on 5 cores for all block sizes k. On 10 cores, while small and medium column block

sizes can maintain the ideal linear speedups, the large column block sizes fail to scale linearly.

The failure to achieve a linear speedup propagate to small and medium column block sizes on

20 cores, although their speedups are larger than large column block size. As more and more

column blocks are participating in the computation, the speed-ups decrease possibly because of

the competition for resources (e.g., L2 cache) in the shared-memory environment.

Distributed-memory We estimate a precision matrix with one million dimensions (p =

106), which contains one trillion parameters (p2 = 1012). The experiments are run on a cluster

174

(a) Speedup Scol
k (b) Speedup Score

q

Figure 8.4: Distributed-Memory.

with 400 computing nodes. We use 1 core per node to avoid the competition for the resources as

we observed in the shared-memory case. For q cores, we use the process grid q
2×2 since p� n.

The block size pb×nb×kb for matrix multiplication is 10×10×1 for k ≤ 10 and 10×10×10

for k > 10. Since the column block CLIME problems are totally independent, we report the

speedups on solving a single column block. The speedup Scol
k is plotted in Figure 8.4(a), where

the speedups are larger and more stable than that in the shared-memory environment. The

speedup keeps increasing before arriving at a certain number as column block size increases.

For any column block size, the speedup also increases as the number of cores increases. The

speedup Score
q is plotted in Figure 8.4(b), where T core

1 is the time on 50 cores. A single column

(k = 1) fails to achieve linear speedups when hundreds of cores are used. However, if using a

column block k > 1, the ideal linear speedups are achieved with increasing number of cores.

Note that due to distributed memory, the larger column block sizes also scale linearly, unlike

in the shared memory setting, where the speedups were limited due to resource sharing. As we

have seen, k depends on the size of process grid, block size in matrix multiplication, cache size

and probably the sparsity pattern of matrices. In Table 2, we compare the performance of 1

core per node to that of using 4 cores per node, which mixes the effects of shared-memory and

distributed-memory architectures. For small column block size (k = 1, 5), the use of multiple

cores in a node is almost two times slower than the use of a single core in a node. For other

column block sizes, it is still 30% slower. Finally, we ran CLIME-ADMM on 400 cores with

one node per core and block size k = 500, and the entire computation took about 11 hours.

175

Table 8.1: Comparison of runtime (sec) on real datasets.

Dataset sparsity
CLIME-ADMM

DC-QUIC Tiger flare CLIME
1 core 8 cores

Leukemia 0.1 48.64 6.27 93.88 34.56 142.5

(1255× 72) 0.01 44.98 5.83 21.59 17.10 87.60

Climate 0.1 4.76 hours 0.6 hours 10.51 hours > 1 day > 1 day

(10512× 1464) 0.01 4.46 hours 0.56 hours 2.12 hours > 1 day > 1 day

Table 8.2: Effect (runtime (sec)) of using different number of cores in a node with p = 106.

Using one core per node is the most efficient as there is no resource sharing with other cores.
node ×core k = 1 k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000

100×1 0.56 1.26 2.59 6.98 13.97 62.35 136.96

25× 4 1.02 2.40 3.42 8.25 16.44 84.08 180.89

200×1 0.37 0.68 1.12 3.48 6.76 33.95 70.59

50×4 0.74 1.44 2.33 4.49 8.33 48.20 103.87

Appendix

8.A Optimization Convergence Rate for CLIME ADMM

All norms in this section are defined elementwise. To recap, we solve the following problem:

min ‖X‖1 s.t. ‖Z−E‖∞ ≤ λ,CX = Z . (8.13)

The Lagrangian of (8.13) is

L(X,Z,Y) = ‖X‖1 + ρ〈Y,CX− Z〉 , (8.14)

where ‖Z−E‖∞ ≤ λ. Assume that {X∗,Z∗,Y∗} satisfies the KKT conditions of (8.14), i.e.,

−ρCTY∗ ∈ ∂‖X∗‖1 , (8.15)

〈Y∗,Z∗ − Z〉 ≥ 0 , (8.16)

CX∗ = Z∗ . (8.17)

176

where (8.16) holds for any Z satisfying ‖Z− E‖∞ ≤ λ. {X∗,Z∗,Y∗} is an optimal solution,

which has the following property.

Lemma 25 Let {Xt,Zt,Yt} be generated by ADMM and {X∗,Z∗,Y∗} be a KKT point. We

have

‖X∗‖1 − ‖Xt+1‖1 ≤ ρ〈Y∗,CXt+1 − Zt+1〉 . (8.18)

Proof: Assume {X∗,Z∗,Y∗} is a KKT point. Using the convexity of `1 norm and (8.15), we

have

‖X∗‖1 − ‖Xt+1‖1 ≤ −ρ〈CY∗,X∗ −Xt+1〉 = −ρ〈Y∗,C(X∗ −Xt+1)〉 . (8.19)

Setting Z = Zt+1 in (8.16) yields

0 ≤ 〈Y∗,Z∗ − Zt+1〉 . (8.20)

Multiplying by ρ and adding to (8.19) complete the proof.

In CLIME ADMM, we have the following iterates:

Xt+1 = argminX ‖X‖1 + η〈Vt,X〉+
η

2
‖X−Xt‖22 , (8.21)

Zt+1 = argmin
‖Z−E‖∞≤λ

ρ

2
‖CXt+1 − Z + Yt‖22 , (8.22)

Yt+1 = Yt + CXt+1 − Zt+1 . (8.23)

where Vt = ρ
ηC(Yt + CXt − Zt).

Throughout the proof of convergence rate, we need the following lemma.

Lemma 26 Let A,B,C,D be matrices of the same size. The following equalities hold:

〈A−B,B−C〉 =
1

2
(‖A−C‖22 − ‖A−B‖22 − ‖B−C‖22) . (8.24)

〈A−B,C−D〉 =
1

2
(‖D−A‖22 − ‖D−B‖22 + ‖C−B‖22 − ‖C−A‖22) . (8.25)

8.A.1 O(1/T) Convergence Rate for Objective Function

In this section, we establish the iteration complexity for inexact ADMM (8.21)-(8.23). We begin

with the following lemma for the X update (8.21).

177

Lemma 27 Let {Xt,Zt,Yt} be generated by (8.21)-(8.23). For any X, we have

‖Xt+1‖1 − ‖X‖1 ≤ −ρ〈Yt+1,C(Xt+1 −X)〉+
ρ

2
(‖CX− Zt‖22 − ‖CX− Zt+1‖22

+ ‖CXt+1 − Zt+1‖22 − ‖CXt+1 − Zt‖22)

+
1

2
(‖X−Xt‖2ηI−ρC2 − ‖X−Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) .

(8.26)

Proof: Let ∂‖Xt+1‖1 be the subgradient of ‖Xt+1‖1. Since Xt+1 is a minimizer of (8.21),

we have

0 ∈ ∂‖Xt+1‖1 + η(Vt + Xt+1 −Xt) . (8.27)

Rearranging the terms gives −η(Vt + Xt+1 − Xt) ∈ ∂‖Xt+1‖1. Using the convexity of `1
norm, we have

‖Xt+1‖1 − ‖X‖1 ≤ −η〈Vt + Xt+1 −Xt,Xt+1 −X〉

≤ −ρ〈C(Yt + CXt − Zt),Xt+1 −X〉 − η〈Xt+1 −Xt,Xt+1 −X〉 (8.28)

≤ −ρ〈Yt + CXt − Zt,C(Xt+1 −X)〉 − η〈Xt+1 −Xt,Xt+1 −X〉

= −ρ〈Yt+1,C(Xt+1 −X)〉 − ρ〈C(Xt −Xt+1),C(Xt+1 −X)〉

+ ρ〈Zt − Zt+1,C(Xt+1 −X)〉 − η〈Xt+1 −Xt,Xt+1 −X〉 . (8.29)

where the last equality uses (8.23). Using (8.24), the second term can be written as

− 〈C(Xt −Xt+1),C(Xt+1 −X)〉

= −1

2
(‖C(X−Xt)‖22 − ‖C(X−Xt+1)‖22 − ‖C(Xt −Xt+1)‖22) . (8.30)

Note ‖C(X−Xt)‖22 = ‖X−Xt‖2C2 . Using (8.25), the third term of (8.29) can be written as

〈Zt − Zt+1,C(Xt+1 −X)〉

=
1

2
(‖CX− Zt‖22 − ‖CX− Zt+1‖22 + ‖CXt+1 − Zt+1‖22 − ‖CXt+1 − Zt‖22) . (8.31)

Applying (8.24) on the last term of (8.29) gives

−〈Xt+1 −Xt,Xt+1 −X〉 =
1

2
(‖X−Xt‖22 − ‖X−Xt+1‖22 − ‖Xt+1 −Xt‖22) . (8.32)

Substituting (8.30)-(8.32) into (8.29) and rearraning the terms complete the proof.

The Z update (8.22) has the following lemma.

178

Lemma 28 Let {Xt,Zt,Yt} be generated by (8.21)-(8.23). For any Z satisfying ‖Z−E‖∞ ≤
λ,

0 ≤ −〈Yt+1,Z− Zt+1〉 . (8.33)

Proof: Since Zt+1 is a minimizer of (8.22), for any Z satisfying the infinity norm constraint,

then

−〈CXt+1 − Zt+1 + Yt,Z− Zt+1〉 ≥ 0 . (8.34)

Using (8.23) completes the proof.

Combining the results in Lemma 27 and 28 yields the O(1/T) convergence rate for the

objective of inexact ADMM (8.21)-(8.23).

Theorem 31 Let {Xt,Zt,Yt} be generated by (8.22)-(8.23) and X̄T = 1
T

∑T
t=1 Xt. Assume

X0 = Z0 = Y0 = 0 and η ≥ λ2
max(C). For any CX = Z, we have

‖X̄T ‖1 − ‖X‖1 ≤
η‖X‖22

2T
. (8.35)

Proof: Assume CX = Z. Multiplying (8.33) by ρ and adding (8.26) yields

‖Xt+1‖1 − ‖X‖1

≤ −ρ〈Yt+1,CXt+1 − Zt+1〉+
1

2
(‖Z− Zt‖22 − ‖Z− Zt+1‖22 + ‖CXt+1 − Zt+1‖22

− ‖CXt+1 − Zt‖22) +
1

2
(‖X−Xt‖2ηI−ρC2 − ‖X−Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) .

(8.36)

Using (8.23), the first term can be written as

− 〈Yt+1,CXt+1 − Zt+1〉 = −〈Yt+1,Yt+1 −Yt〉

=
1

2
(‖Yt‖22 − ‖Yt+1‖22 − ‖Yt+1 −Yt‖22)

=
1

2
(‖Yt‖22 − ‖Yt+1‖22 − ‖CXt+1 − Zt+1‖22) . (8.37)

Substituting back into (8.36) gives

‖Xt+1‖1 − ‖X‖1 ≤
ρ

2
(‖Yt‖22 − ‖Yt+1‖22) +

ρ

2
(‖Z− Zt‖22 − ‖Z− Zt+1‖22 − ‖CXt+1 − Zt‖22)

179

+
1

2
(‖X−Xt‖2ηI−ρC2 − ‖X−Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) . (8.38)

Assuming η ≥ λ2
max(C), ηI − ρC2 is positive semidefinite. Summing over t from 0 to T − 1

and ignoring some negative terms, we have the following telescoping sum

T−1∑
t=0

‖Xt+1‖1 − ‖X‖1 ≤
ρ

2
‖Y0‖22 +

ρ

2
‖Z− Z0‖22 +

1

2
‖X−X0‖2ηI−ρC2

=
ρ

2
‖Z‖22 +

1

2
‖X‖2ηI−ρC2

=
η

2
‖X‖22 . (8.39)

where the first equality is due to X0 = Z0 = Y0 = 0 and the second equality uses CX = Z.

Applying the Jensen’s inequality on the left hand side completes the proof.

8.A.2 O(1/T) Convergence Rate for the Optimality Conditions

For the X update (8.21), we have the following lemma.

Lemma 29 Let {Xt,Zt,Yt} be generated by (8.21)-(8.23). We have

‖CXt+1 − Zt‖22 + ‖Xt+1 −Xt‖2η
ρ
I−C2 ≤ ‖CXt − Zt‖22 + ‖Zt−1 − Zt‖22 + ‖Xt −Xt−1‖2η

ρ
I−C2 .

(8.40)

Proof: Setting X = Xt in (8.28) gives

‖Xt+1‖1 − ‖Xt‖1 ≤ −ρ〈Yt + CXt − Zt,C(Xt+1 −Xt)〉 − η〈Xt+1 −Xt,Xt+1 −Xt〉

≤ −ρ〈Yt,C(Xt+1 −Xt)〉 − η‖Xt+1 −Xt‖22
+
ρ

2
(‖CXt − Zt‖22 + ‖C(Xt+1 −Xt)‖22 − ‖CXt+1 − Zt‖22) . (8.41)

At t, (8.29) becomes

‖Xt‖1 − ‖X‖1 ≤ −ρ〈Yt,C(Xt −X)〉 − ρ〈C(Xt−1 −Xt),C(Xt −X)〉

+ ρ〈Zt−1 − Zt,C(Xt −X)〉 − η〈Xt −Xt−1,Xt −X〉 . (8.42)

Setting X = Xt+1 gives

‖Xt‖1 − ‖Xt+1‖1 ≤ −ρ〈Yt,C(Xt −Xt+1)〉 − ρ〈C(Xt−1 −Xt),C(Xt −Xt+1)〉

180

+ ρ〈Zt−1 − Zt,C(Xt −Xt+1)〉 − η〈Xt −Xt−1,Xt −Xt+1〉 . (8.43)

Using (8.24), the second term becomes

− ρ〈C(Xt−1 −Xt),C(Xt −Xt+1)〉

= −ρ
2

(‖C(Xt−1 −Xt+1)‖22 − ‖C(Xt−1 −Xt)‖22 − ‖C(Xt −Xt+1)‖22) . (8.44)

Similarly, applying (8.24) on the fourth term of (8.43) gives

−η〈Xt −Xt−1,Xt −Xt+1〉 =
η

2
(‖Xt−1 −Xt+1‖22 − ‖Xt −Xt−1‖22 − ‖Xt −Xt+1‖22) .

(8.45)

Adding (8.44) and (8.45) together yields

− ρ〈C(Xt−1 −Xt),C(Xt −Xt+1)〉 − η〈Xt −Xt−1,Xt −Xt+1〉

=
1

2
(‖Xt−1 −Xt+1‖2ηI−ρC2 − ‖Xt −Xt−1‖2ηI−ρC2 − ‖Xt −Xt+1‖2ηI−ρC2)

≤ 1

2
(‖Xt −Xt−1‖2ηI−ρC2 + ‖Xt −Xt+1‖2ηI−ρC2) , (8.46)

where the last inequality uses ‖A −B‖22 ≤ 2(‖A −C‖22 + ‖B −C‖22). Using the inequality

〈A,B〉 ≤ 1
2(‖A‖22 + ‖B‖22), the third term of (8.43) can be written as

ρ〈Zt−1 − Zt,C(Xt −Xt+1)〉 ≤ ρ

2
(‖Zt−1 − Zt‖22 + ‖C(Xt −Xt+1)‖22) . (8.47)

Substituting (8.46) and (8.47) back to (8.43), we have

‖Xt‖1 − ‖Xt+1‖1 ≤ −ρ〈Yt,C(Xt −Xt+1)〉+
ρ

2
‖Zt−1 − Zt‖22

+
1

2
(‖Xt −Xt−1‖2ηI−ρC2 + η‖Xt −Xt+1‖22) (8.48)

Adding (8.41) and (8.48) together yields

0 ≤ ρ

2
(‖CXt − Zt‖22 + ‖C(Xt+1 −Xt)‖22 − ‖CXt+1 − Zt‖22)− η‖Xt+1 −Xt‖22

+
ρ

2
‖Zt−1 − Zt‖22 +

1

2
(‖Xt −Xt−1‖2ηI−ρC2 + η‖Xt −Xt+1‖22)

=
ρ

2
(‖CXt − Zt‖22 + ‖Zt−1 − Zt‖22 − ‖CXt+1 − Zt‖22)

+
1

2
(‖Xt −Xt−1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) . (8.49)

Dividing both sides by ρ
2 and rearranging the terms complete the proof.

For the Z update (8.22), we have the following lemma.

181

Lemma 30 Let {Xt,Zt,Yt} be generated by (8.21)-(8.23). We have

‖CXt+1 − Zt+1‖22 + ‖Zt+1 − Zt‖22 ≤ ‖CXt+1 − Zt‖22 . (8.50)

Proof: Setting Z = Zt in (8.33) gives

0 ≤ −〈Yt+1,Zt − Zt+1〉 . (8.51)

At t, (8.33) becomes

0 ≤ −〈Yt,Z− Zt〉 . (8.52)

Setting Z = Zt+1 yields

0 ≤ −〈Yt,Zt+1 − Zt〉 . (8.53)

Adding (8.51) and (8.53) yields

0 ≤ 〈Yt+1 −Yt,Zt+1 − Zt〉 = 〈CXt+1 − Zt+1,Zt+1 − Zt〉

=
1

2
(‖CXt+1 − Zt‖22 − ‖CXt+1 − Zt+1‖22 − ‖Zt+1 − Zt‖22) . (8.54)

Rearranging the terms complete the proof.

Define R1(t+ 1) as follows:

R1(t+ 1) = ‖CXt+1 − Zt+1‖22 + ‖Zt+1 − Zt‖22 + ‖Xt+1 −Xt‖2η
ρ
I−C2 . (8.55)

We now show that R1(t) is non-increasing by combining the results in Lemma 29 and 30 .

Lemma 31 Let R1(t) be defined in (8.55). We have

R1(t+ 1) ≤ R1(t) . (8.56)

Proof: Adding (8.40) and (8.50) yields

‖CXt+1 − Zt+1‖22 + ‖Zt+1 − Zt‖22 + ‖Xt+1 −Xt‖2η
ρ
I−C2

≤ ‖CXt − Zt‖22 + ‖Zt−1 − Zt‖22 + ‖Xt −Xt−1‖2η
ρ
I−C2 . (8.57)

(8.56) follows from the definition of R1 in (8.55).

182

Lemma 32 Let {Xt,Zt,Yt} be generated by (8.21)-(8.23) and {X∗,Z∗,Y∗} be a KKT point.

We have

R1(t+ 1) ≤ ‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22 + ‖Z∗ − Zt‖22 − ‖Z∗ − Zt+1‖22
+ ‖X∗ −Xt‖2η

ρ
I−C2 − ‖X∗ −Xt+1‖2η

ρ
I−C2 . (8.58)

where R1(t+ 1) is defined in (8.55).

Proof: Adding (8.36) and (8.18) yields

0 ≤ ρ〈Y∗ −Yt+1,CXt+1 − Zt+1〉+
ρ

2
(‖Z∗ − Zt‖22 − ‖Z∗ − Zt+1‖22 + ‖CXt+1 − Zt+1‖22

− ‖CXt+1 − Zt‖22) +
1

2
(‖X∗ −Xt‖2ηI−ρC2 − ‖X∗ −Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) .

(8.59)

Using (8.23) and applying (8.24) on the first term, we have

〈Y∗ −Yt+1,CXt+1 − Zt+1〉 = 〈Y∗ −Yt+1,Yt+1 −Yt〉

=
1

2
(‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22 − ‖Yt+1 −Yt‖22)

=
1

2
(‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22 − ‖CXt+1 − Zt+1‖22) . (8.60)

Plugging into (8.59) yields

0 ≤ ρ

2
(‖Y∗ −Yt‖22 − ‖Y∗ −Yt+1‖22) +

ρ

2
(‖Z∗ − Zt‖22 − ‖Z∗ − Zt+1‖22 − ‖CXt+1 − Zt‖22)

+
1

2
(‖X∗ −Xt‖2ηI−ρC2 − ‖X∗ −Xt+1‖2ηI−ρC2 − ‖Xt+1 −Xt‖2ηI−ρC2) . (8.61)

Dividing both sides by ρ
2 and rearraning the terms, we have (8.58) by using (8.50) and the

definition of R1(t) in (8.55).

Theorem 32 Let {Xt,Zt,Yt} be generated by (8.21)-(8.23) and {X∗,Z∗,Y∗} be a KKT

point. Assume X0 = Z0 = Y0 = 0 and η ≥ λ2
max(C). We have

R1(T) ≤
‖Y∗‖22 + η

ρ‖X
∗‖22

T
, (8.62)

where R1(T) is defined in (8.55).

183

Proof: Summing (8.58) over t from 0 to T − 1 and igonoring some negative terms yield

T−1∑
t=0

R1(t+ 1) ≤ ‖Y∗ −Y0‖22 + ‖Z∗ − Z0‖22 + ‖X∗ −X0‖2η
ρ
I−C2

= ‖Y∗‖22 + ‖Z∗‖22 + ‖X∗‖2η
ρ
I−C2

= ‖Y∗‖22 +
η

ρ
‖X∗‖22 , (8.63)

where the first equality is due to X0 = Z0 = Y0 = 0 and the second equality uses CX∗ = Z∗.

According to Lemma 31, R1(t) is non-increasing. Therefore,

TR1(T) ≤
T∑
t=0

R1(t+ 1) . (8.64)

Dividing both sides by T completes the proof.

The optimality condition for (8.22) is given in Lemma 28, showing that KKT condition (8.16)

is alway satisfied. The optimality conditions for (8.21) is

−η(Vt + Xt+1 −Xt) ∈ ∂‖Xt+1‖1 . (8.65)

Expanding C and using (8.23), it can be rewritten as

−ρC(Yt+1 + Xt −Xt+1 − Zt + Zt+1)− η(Xt+1 −Xt) ∈ ∂‖Xt+1‖1 . (8.66)

If Xt+1 = Xt and Zt+1 = Zt, the KKT condition (8.15) will be satisfied. Therefore, R1(T)

defines the residuals of optimality conditions for (8.21)-(8.23). As R1(T) → 0, CXT =

ZT ,ZT = ZT−1 and XT = XT−1 and thus the KKT conditions (8.15)-(8.17) are satisfied.

8.B Statistical Convergence Rates with Covariance Perturbation

In this section, we analyze the statistical convergence of the CLIME estimator [23] under pertur-

bations of the sample covariance matrix. For the ease of reading, we first define some notations.

Let R1, · · · , Rk, · · · , Rn ∈ <p be n samples generated from a distribution with covariance

matrix Σ0 and true precision matrix Ω0. The estimated covariance matrix is denoted as Σ̂ and

the corresponding estimated precision matrix is Ω̂. The pertubed covariance matrix is denoted

as Ŝ. The covariance matrix C in the main text can be either Σ̂ or Ŝ. The i-th element of Rk

184

is denoted as Rik. For matrix, we use ij to index the ij-th element, e.g., Ω̂ij . ‖ · ‖∞ and ‖ · ‖2
denote the elementwise norm. ‖ · ‖L1 and ‖ · ‖L2 denote the matrix L1 norm and L2 norm. For

the sake of completeness, we start with a brief review of some of the main results for CLIME.

8.B.1 CLIME Estimator: Bounds in terms of λ

For n samples R1, . . . , Rn ∈ <p, the sample covariance matrix Σ̂, is computed as:

Σ̂ =
1

n

n∑
k=1

(Rk− R̄)(Rk− R̄)T =
1

n

n∑
k=1

RkR
T
k −

1

n
R̄R̄T , where R̄ =

1

n

n∑
k=1

Rk . (8.67)

As a result, an entry of the sample covariance matrix is given by:

Σ̂ij =
1

n

n∑
k=1

RikRjk −
1

n

(
1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)
. (8.68)

The analysis for CLIME [23] considers the following family of precision matrices:

U = U(M, q, s0(p)) =

Ω : Ω � 0, ‖Ω‖L1 ≤M, max
1≤i≤p

p∑
j=1

|Ωij |q ≤ s0(p)

 , (8.69)

for 0 ≤ q < 1. Then, the CLIME estimator has the following guarantees:

Theorem 33 Let Ω0 ∈ U(M, q, s0(p)). If λ ≥ ‖Ω0‖L1 maxij |Σ̂ij − Σ0,ij |, then we have

‖Ω̂− Ω0‖∞ ≤ 4‖Ω0‖L1λ , (8.70)

‖Ω̂− Ω0‖L2 ≤ cs0(p)(4‖Ω0‖L1)1−qλ1−q , (8.71)
1

p
‖Ω̂− Ω0‖22 ≤ cs0(p)(4‖Ω0‖L1)2−qλ2−q , (8.72)

where c ≤ 2(1 + 21−q + 31−q) is a constant.

Note that the deterministic bounds in Theorem 33 for precision estimation relies on ‖Σ̂ −
Σ0‖∞ = maxi,j |Σ̂ij − Σ0,ij |. In the next subsection, we establish tail bounds for the scenario

where we (intentionally) perturb each entry of the sample covariance matrix, i.e., we work with

Ŝij = Σ̂ij + ∆ij where ∆ij has a sub-exponential tail.

185

8.B.2 Bounds for λ

The following two norms will play a role in our analysis: For a scalar random variable v, let

‖v‖ψ2 = sup
p≥1

p−1/2(E|v|p)1/p , and ‖v‖ψ1 = sup
p≥1

p−1(E|v|p)1/p . (8.73)

Then, v is called a sub-Gaussian random variable if ‖v‖ψ2 ≤ K2 for a constant K2, and v is

called a sub-exponential random variable if ‖v‖ψ1 ≤ K1 for a constant K1. In the literature,

‖v‖ψ2 is referred to as the sub-Gaussian norm and ‖v‖ψ1 is referred to as the sub-exponential

norm. Note that, ignoring constants, sub-exponential tails decay at exp(−t) whereas sub-

Gaussian tails decay as exp(−t2/2) so that sub-exponential tails are heavier than sub-Gaussian

tails.

The following result will be used in our analysis:

Lemma 33 Let vi, vj be sub-Gaussian random variables with max{‖vi‖ψ2 , ‖vj‖ψ2} ≤ K2.

Then vivj − E[vivj] is a sub-exponential random variable with ‖vivj − E[vivj]‖ψ1 ≤ 4K2
2 .

Proof: By definition,

‖E[vivj]‖ψ1 = |E[vivj]| ≤ E|vivj | ≤ ‖vivj‖ψ1 . (8.74)

Using triangle inequality, we have

‖vivj − E[vivj]‖ψ1 ≤ ‖vivj‖ψ1 + ‖E[vivj]‖ψ1 ≤ 2‖vivj‖ψ1 . (8.75)

Since vi, vj are sub-Gaussian random variables, for any p ≥ 1,

E|vi|p ≤ (K2
√
p)p and E|vj |p ≤ (K2

√
p)p . (8.76)

Then, using Cauchy-Schwartz inequality

E|vivj |p = E|vi|p|vj |p ≤
(
E|vi|2pE|vj |2p

)1/2 ≤ ((K2

√
2p)2p(K2

√
2p)2p

)1/2
= K2p

2 2ppp .

Hence,

‖vivj‖ψ1 = sup
p≥1

p−1(E|vivj |p)1/p ≤ 2K2
2 .

The result then follows from (8.75).

We also need the following Bernstein-type inequality for sums of independent sub-exponential

random variables [196]:

186

Theorem 34 Let v1, . . . , vn be independent centered sub-exponential random variables, and

K1 = maxi ‖vi‖ψ1 . Then, for every b = (b1, . . . , bn) ∈ Rn and every t ≥ 0, we have

P

{∣∣∣∣∣
n∑
k=1

bkvk

∣∣∣∣∣ ≥ t
}
≤ 2 exp

{
−c0 min

(
t2

K2
1‖b‖22

,
t

K1‖b‖∞

)}
, (8.77)

where c0 > 0 is an absolute constant.

We will be also using the following form of the above result:

Corollary 5 Let v1, . . . , vn be independent centered sub-exponential random variables, and

K1 = maxi ‖vi‖ψ1 . Then, for every ε ≥ 0, we have

P

{∣∣∣∣∣ 1n
n∑
k=1

vk

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

{
−c0 min

(
ε2

K2
1

,
ε

K1

)
n

}
, (8.78)

where c0 > 0 is an absolute constant.

Next, we consider perturbing the covariance matrix Σ̂ using independent zero-mean sub-

exponential random variables. First, we illustrate that the nature of the tail bounds stay un-

changed under such perturbations. Then, we show that one can do deterministic perturbations

to get coarser and/or truncated representations of the sample covariance matrix, saving on the

memory foot-print of the covariance matrix without affecting the statistical guarantees.

Let ∆ij be independent zero mean sub-exponential random variables, and we consider the

modified covariance matrix with entries:

Ŝij =
1

n

n∑
k=1

RikRjk −
1

n

(
1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)
+ ∆ij . (8.79)

Then, we have the following result:

Theorem 35 Let K2 = maxi ‖Ri·‖ψ2 and K1 = maxij ‖∆ij‖ψ1 . Assuming K1 ≤ 4K2
2 , we

have

P
{

max
ij
|Ŝij − Σ0,ij | ≥ ε

}
≤ 6 exp

{
−c0 min

(
ε2

36c2
1K

4
2

,
ε

12c1K2
2

)
n

}
, (8.80)

for suitable positive constant c0, c1.

187

Proof: By definition, for any i, j,

P
{
|Ŝij − Σ0,ij | ≥ ε

}
= P

{∣∣∣∣∣
(

1

n

n∑
k=1

RikRjk − Σ0,ij

)
+ ∆ij −

1

n

(
1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)∣∣∣∣∣ ≥ ε
}

≤ P

{∣∣∣∣∣ 1n
n∑
k=1

RikRjk − Σ0,ij

∣∣∣∣∣ ≥ ε/3
}

+ P {|∆ij | ≥ ε/2}

+ P

{∣∣∣∣∣ 1n
(

1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)∣∣∣∣∣ ≥ ε/3
}

(8.81)

where the last inequality follows from the union bound. Each term in the summation considers a

large deviation bound for a sub-exponential random variable. For the first term, from Lemma 33,

K1,1 = ‖RiRj − E[RiRj]‖ψ1 ≤ 4K2
2 . For the second term, from the assumption regarding

∆ij , K1,2 = ‖∆ij‖ψ1 ≤ 4K2
2 . Now, we focus on the third term. Recall that the sub-Gaussian

norm of the sum of sub-Gaussian random variables satisfy the following inequality [196]:∥∥∥∥∥
n∑
k=1

Rik

∥∥∥∥∥
2

ψ2

≤ c1

n∑
k=1

‖Rik‖2ψ2
, (8.82)

for an absolute constant c1. In our context, since ‖Rik‖ψ2 ≤ K2, we have∥∥∥∥∥
n∑
k=1

Rik

∥∥∥∥∥
ψ2

≤
√
c1nK2 ⇒

∥∥∥∥∥ 1

n

n∑
k=1

Rik

∥∥∥∥∥
ψ2

≤
√
c1

n
K2 ≤

√
c1K2 . (8.83)

From Lemma 33, we have

K1,3 =

∥∥∥∥∥
(

1

n

n∑
k=1

Rik

)(
1

n

n∑
k=1

Rjk

)∥∥∥∥∥
ψ1

≤ 4c1K
2
2 . (8.84)

Then, considering all three terms, using Corollary 5 for the first two terms and Theorem 34 for

the third term, we have

P
{
|Ŝij − Σ0,ij | ≥ ε

}
≤ 2 exp

{
−c0 min

(
ε2

9K2
1,1

,
ε

3K1,1

)
n

}
+ 2 exp

{
−c0 min

(
ε2

9K2
1,2

,
ε

3K1,2

)
n

}

+ 2 exp

{
−c0 min

(
ε2n2

9K2
1,3

,
εn

3K1,3

)}

188

≤ 4 exp

{
−c0 min

(
ε2

36K4
2

,
ε

12K2
2

)
n

}
+ 2 exp

{
−c0 min

(
ε2n

36c2
1K

4
2

,
ε

12c1K2
2

)
n

}
≤ 6 exp

{
−c0 min

(
ε2

36c2
1K

4
2

,
ε

12c1K2
2

)
n

}
.

That completes the proof.

In particular, for sufficient number of samples such that c
√

log p/n ≤ 3c1K
4
2 , we have

P
{

max
ij
|Ŝij − Σ0,ij | ≥ c

√
log p/n

}
≤ 6 exp

{
− c2c0

36c2
1K

4
2

log p

}
≤ 6p−c3 , (8.85)

where c3 is a suitable constant. Note that the above corresponds to the result discussed in the

main text.

A special case of such perturbations arise by choosing constant ∆ij for each (i, j) with

|∆ij | ≤ c
√

log p
n in order to truncate or coarsen entries in the sample covariance matrix. In

particular,

(i) if |Σ̂ij | ≤ c
√

log p
n , then it can be safely truncated to 0; and

(ii) numeric representation of any Σ̂ij can be coarsened to the level c
√

log p
n , e.g., one can

rewrite

Σ̂ij = 1.29 317542365︸ ︷︷ ︸
≤c

√
log p
n

as Ŝij = 1.29

without affecting the statistical properties of the estimated precision matrix Ω̂. Such truncation

and coarsening can lead to significant savings in the memory foot-print of the sample covariance

matrix.

Chapter 9

Gaussian Copula Precision Estimation
with Missing Values

9.1 Introduction

In recent years, considerable effort [7, 60, 136, 159, 23, 22, 120, 217] has been invested in

obtaining an accurate estimate of the precision matrix based on the sample covariance matrix,

especially when the true precision matrix is assumed to be sparse [217]. Suitable estimators

and corresponding statistical convergence rates have been established for a variety of settings,

including distributions with sub-Gaussian tails, polynomial tails [159, 23, 120].

Although these sparse precision estimators are primarily designed to deal with fully ob-

served data, recently, they have also been generalized to handle data with missing values [117,

181, 122, 121, 100], which often occur in real world applications, e.g., drop-outs of sensors in

a sensor network or missing measurements of temperature or rain in climate. To deal with data

with missing values, a variety of methods apply expectation maximization (EM) algorithms on

imputed data, which are iterative methods but lack theoretical guarantees [117, 181]. In par-

ticular, [181] proposed an EM algorithm named MissGlasso to deal with missing values using

Glasso. MissGlasso first imputes the missing values in the E-step and then solves the Glasso

problem on the imputed data in the M-step. As EM converges to a local optimum, it is difficult

to establish theoretical guarantees for the MissGlasso procedure. Without using the EM algo-

rithm, [121] employed projected gradient descent to solve a sequence of regression problems

or PGlasso to estimate the sparse precision matrix of incomplete data. Theoretical guarantees

189

190

are also established for the PGlasso estimator. [100] introduced a simple plug-in procedure for

incomplete data which simply applies existing estimators to the observed data by disregarding

the missing values. Such simple plug-in estimators for missing values can leverage existing the-

oretical results and thus still have similar statistical guarantees, including rate of convergence

and consistency. However, these sparse precision estimators rely on the Gaussian assumption,

which may not be appropriate for real datasets which are usually non-Gaussian.

To deal with non-Gaussian data, [118] proposed Gaussian copula graphical models where

existing estimators can be generalized to the non-paranormal distributions simply using one

additional procedure, i.e., estimating nonparametric correlations. Non-paranormal distributions

can be considered as a non-parametric extension of the normal distribution where suitable uni-

variate monotone transformations of the covariates are jointly distributed as a multivariate Gaus-

sian. It has also been shown that the nonparanormal is equivalent to Gaussian copula distribu-

tion [119, 194, 193]. Therefore, the estimated correlation matrix of the data after transformation

can be plugged into the standard sparse precision estimators with Gaussian assumption. The

plug-in procedure can leverage existing theoretical results and achieve the optimal statistical

rate of convergence. A similar procedure has also been studied independently by [212]. How-

ever, whether Gaussian copula graphical models can deal with missing values and maintain the

optimal statistical rate of convergence is still unknown.

In this chapter, we propose Double Plug-in Gaussian (DoPinG) copula estimators to deal

with missing values, which estimates the sparse precision matrix corresponding to the non-

paranormal distribution. DoPingG copula estimators essentially combines two plug-in pro-

cedures for dealing with missing values [100] and non-Gaussian data [118], yielding a fairly

rich family of estimators to deal with incomplete data from the non-paranormal family. Such

estimators consider the following three steps: (1) estimate non-parametric correlations, such

as Kendall’s tau and Spearman’s rho, between all pairs of covariates by suitably disregarding

missing values; (2) estimate the non-paranormal correlation matrix using the Kendall’s tau or

Spearman’s rho correlation matrix; (3) plug the estimated correlation matrix into existing sparse

precision estimators, e.g., graphical LASSO [7, 60], Dantzig selector [217], CLIME [23], etc.

Our analysis follows the development in [118] with one important difference: the samples

we consider can have missing values. We investigate how missing values affect the accuracy

of covariance estimation, and in turn precision estimation. In particular, the theoretical analysis

of DoPinG copula estimators considers two probability spaces, i.e., probability over samples

191

and probability over missing values. We assume that the data is missing completely at ran-

dom (MCAR) [100], where any element is missing with probability δ. We prove that DoP-

inG copula estimators consistently estimate the non-paranormal correlation matrix at a rate of

O(1
(1−δ)

√
log p
n).

For estimating the precision matrix, one can use any of the available estimators, such as the

graphical lasso [7], graphical Dantzig selector [217], as discussed in [118, 100]. We consider

the CLIME estimator [23] for our analysis. The CLIME estimator has strong statistical guaran-

tees for consistency along with rates [23], and also comes with inherent computational advan-

tages [203]. In particular, a large scale distributed algorithm has been developed in [203], which

can scale up to millions of dimensions and trillions of parameters, using hundreds of cores. We

provide experimental results to show the effect of sample size and percentage of missing data

on the model performance. Experimental results show that DoPinG is significantly better than

estimators like mGlasso, which are primarily designed for Gaussian data.

The rest of this chapter is organized as follows. We propose nonparanormal dual plug-in

estimators with missing values in Section 9.2. In Section 9.3, we give the theoretical guarantees

in terms of rates of convergences under element-wise L∞ norm. We present experimental

results in Section 9.4.

9.2 Gaussian Copula Precision Estimation with Missing Values

We consider a p-dimensional non-paranormal distribution [118]. For univariate monotone func-

tions f1, . . . , fp and a positive definite correlation matrix Σ0 ∈ Rp×p, a p-dimensional ran-

dom variable X = (X1, . . . , Xp)
T has a non-paranormal distribution X ∼ NPNp(f,Σ

0) if

f(X) = (f1(X1), . . . , fp(Xp)) ∼ Np(0,Σ
0), a p-dimensional multi-variate Gaussian distribu-

tion with correlation matrix Σ0. We focus on estimating the sparse precision matrix Ω0 = Σ−1
0

corresponding to the non-paranormal distribution.

Let x1, . . . , xn ∈ Rp be samples drawn independently from NPNp(f,Σ
0). We further

assume that for dimension j, xij will be missing with probability δ ∈ [0, 1]. Let bij = 1 if xij
is observed, and bij = 0 otherwise. Thus, P (bij = 1) = 1− δ. We assume the data is missing

completely at random (MCAR) [100].

In order to estimate the precision matrix Ω0 using CLIME, we need an empirical estimate

Ŝn of the correlation matrix Σ0. In particular, the elementwise L∞ norm between the matrices

192

need to be suitably bounded for norm consistency of precision estimation. As shown in [118] ,

Ŝn can be efficiently computed from the empirical Kendall’s tau or Spearman’s rho correlation

matrix. Hereafter, for ease of notation, we drop the subscript n on Ŝ and other sample estimates.

DoPinG copula estimators consider three steps in estimating the precision matrix. First,

suitably generalizing the plug-in procedure for estimating non-parametric correlations to han-

dle missing values, pairwise Kendall’s tau or Spearman’s rho correlation between covariates is

estimated. Second, the correlation matrix corresponding to the non-paranormal distribution is

estimated using the Kendall’s tau or Spearman’s rho correlation matrices. Third, the precision

matrix is estimated by simply plugging in the estimated correlation matrix into existing sparse

precision matrix estimators. We discuss each one of these steps below.

9.2.1 Kendall’s tau with missing values

Given that samples have missing values, we compute the Kendall’s tau for dimensions (j, k) us-

ing the njk effective independent samples which have values for both dimensions. In particular,

we estimate Kendall’s rho as:

τ̂jk =
1

njk(njk − 1)

n∑
i,i′=1
i 6=i′

bijbikbi′jbi′ksign((xji − x
j
i′)(x

k
i − xki′)) , (9.1)

where njk =
∑n

i=1 bijbik. Note for the i-th sample, both the j- and k-th dimensions should

not be missing. In other words, the samples with missing values will not be considered in the

estimation of the Kendall’ tau.

The second step is to estimate the correlation matrix directly based on the Kendall’s tau.

Following [118, 106, 57], we consider the following estimator Ŝτ = [Ŝτjk] for the estimated

correlation matrix Σ0:

Ŝτjk =

sin
(
π
2 τ̂jk

)
if j 6= k

1 if j = k .
(9.2)

9.2.2 Spearman’s rho with missing values

Similar to the estimation of Kendall’s tau for missing values, we also compute the Spearman’s

rho for dimensions (j, k) using the njk effective independent samples which have values for

both dimensions. In particular, njk =
∑n

i=1 bijbik. Let rji be the rank of xji among the njk

193

samples with values and r̄jk be the average, i.e., r̄jk = 1
njk

∑n
i=1 r

j
i bijbik. Spearman’s rho is

defined as follows:

ρ̂jk=

∑n
i=1(rji − r̄jk)(rki − r̄jk)bijbik√∑n

i=1[(rji − r̄jk)2bijbik]
∑n

i=1[(rki − r̄jk)2bijbik]
, (9.3)

which is the first step in DoPinG.

Based on the estimate of the Spearman’s rho (9.3), following [118, 212] , the second step is

to estimate Ŝρ = [Ŝρjk] for the unknown correlation matrix Σ0:

Ŝρjk =

2 sin
(
π
6 ρ̂jk

)
if j 6= k

1 if j = k .
(9.4)

9.2.3 Plugin estimate for CLIME

Having obtained Ŝ (Ŝτ or Ŝρ), we can plugin it into any sparse precision estimators, e.g.,

graphical lasso [7], graphical Dantzig selector [217], CLIME [23]. In particular, we plugin Ŝ

into the CLIME estimator [212]:

Ω̂n = argminΩ̂ ‖Ω̂‖1 s.t. ‖ŜΩ̂− I‖∞ ≤ λn , (9.5)

where λn is a tuning parameter and I is an identity matrix. The CLIME estimator has strong

statistical guarantees [23], and also comes with inherent computational advantages. The estima-

tor can scale up to millions of dimensions and can be run on hundreds of cores [203]. In [203],

(9.5) is decomposed into solving dp/ke independent column block linear programs where each

column block contains k(1 ≤ k ≤ p) columns. Denoting X ∈ <p×k be k columns of Ω̂, (9.5)

can be written as

min ‖P‖1 s.t. ‖ŜP−E‖∞ ≤ λn , (9.6)

which can be solved by an inexact ADMM algorithm [19, 200] given in Algorithm 7 [203]

where ρ, η are parameters of ADMM and

soft(P, γ) =

Pij − γ , if Pij > γ ,

Pij + γ , if Pij < −γ ,
0 , otherwise

194

Algorithm 7 Column Block Inexact ADMM for CLIME

1: Input: Ŝ, λn, ρ, η
2: Output: P

3: Initialization: P0,Z0,Y0,V0, V̂0 = 0

4: for t = 0 to T − 1 do
5: X-update: Pt+1 = soft(Pt −Vt, 1

η), where

6: Mat-Mul: Ut+1 = ŜPt+1

7: Z-update: Zt+1 = box(Ut+1 + Yt, λn), where

8: Y-update: Yt+1 = Yt + Ut+1 − Zt+1

9: Mat-Mul: V̂t+1 = ŜYt+1

10: V-update: Vt+1 = ρ
η (2V̂t+1 − V̂t)

11: end for

box(P,E, λn) =

Eij + λ , if Pij − Eij > λn ,

Pij , if |Pij − Eij | ≤ λn ,
Eij − λ , if Pij − Eij < −λn ,

While steps 5, 7, 8 and 10 amount to elementwise operations, the most intensive computation

is matrix multiplication in steps 6 and 9 which can be solved in parallel.

Note that the estimated correlation matrix Ŝ (Ŝτ or Ŝρ) may be not positive semi-definite.

Sparse precision estimators do require the positive semi-definiteness assumption in theory and

most algorithms may fail if the input correlation matrix is not positive semi-definite [118, 100].

The inexact ADMM algorithm for CLIME in Algorithm 7 does not necessarily require Ŝ to be

positive semi-definite. As long as the linear programs (9.5) have solutions, Algorithm 7 still

works, although there is no guarantee that the solution is positive definite. Therefore, one may

project the input correlation matrix onto the cone of positive semi-definite matrix in order to

obtain a positive definite precision matrix with high probability using Algorithm 7. We study

the effect of the two choices on the performance of DoPinG in experiments in Section 4.

9.3 Theoretical Analysis

In this section, we present statistical guarantees for the proposed DoPinG by leveraging existing

analysis in [118, 23, 212]. Note that the consistency analysis of the CLIME estimate Ω̂ relies

195

on obtaining a consistent estimate of the covariance Σ0, defined in terms of the elementwise

L∞ norm of the difference (Ŝ − Σ0). Therefore, we first analyze supjk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ for the

Kendall’s tau (Ŝ = Ŝτ) and Spearman’s rho (Ŝ = Ŝρ) seperately. Our proof operates on two

probability spaces, i.e., probabilities over the samples PX and probabilities over the Bernoulli

missing values PB . Then, we plug the results into the consistency analysis of the CLIME to

obtain the optimal statistical rate of convergence.

We first consider the probabilities over missing values in the following lemma which we

need in the analysis of Kendall’s tau and Spearman’s rho:

Lemma 34 LetB = [bij] ∈ {0, 1}n×p be an binary matrix. Assume bij is i.i.d. with a Bernoulli

distribution where P (bij = 0) = δ and P (bij = 1) = 1 − δ. Let njk =
∑n

i=1 bijbik. For any

m > 0, and any 0 < ε < 1, we have

PB

∑
j,k

exp

{
−

njk
(1− δ)2(1− ε)n

(m+ 2) log p

)
>

1

pm

≤ exp

(
−(ε2(1− δ)2n/2− 2 log p)

)
, (9.7)

Proof: Since njk is a sum of n independent Bernoulli random variables bijbik with P (bijbik =

1) = (1 − δ)2, by linearity of expectation and independence of samples, we have E[njk] =∑n
i=1E[bijbik] = n(1− δ)2. By standard Chernoff bounds, for any ε < 1, we have

PB (njk < E[njk](1− ε)) ≤ exp
(
−ε2(1− δ)2n/2

)
⇒PB

(
exp

{
−

njk
(1− δ)2(1− ε)n

(m+ 2) log p

}
≥ 1

pm+2

)
≤ exp

(
−ε2(1− δ)2n/2

)
, (9.8)

where we have substituted the expectationE[njk]. By considering probabilities over the missing

values, we have

PB

∑
j,k

exp

{
−

njk
(1− δ)2(1− ε)n

(m+ 2) log p

}
>

1

pm

≤
∑
j,k

PB
(

exp

{
−

njk
(1− δ)2(1− ε)n

(m+ 2) log p

}
>

1

pm+2

)
≤ p2 exp

(
−ε2(1− δ)2n/2

)

196

= exp
(
−(ε2(1− δ)2n/2− 2 log p)

)
, (9.9)

which completes the proof.

9.3.1 Kendall’s Tau with Missing Values

The following theorem shows that supjk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ ≤ O(
√

log p/n) with high probability.

Theorem 36 For any n ≥ 1, for any m > 0, and any 0 < ε < 1, with probability at least

(1− 1
pm)(1− exp(−(ε2(1− δ)2n/2− 2 log p)), we have

sup
jk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ ≤ π

1− δ

√
m+ 2

1− ε

√
log p

n
. (9.10)

Proof: Since τ̂jk is an unbiased estimator of τjk, E[τ̂jk] = τjk. Using (9.2), we have

PX
(∣∣∣Ŝjk − Σ0

jk

∣∣∣ > t
)

= PX
(∣∣∣sin(π

2
τ̂jk

)
− sin

(π
2
τjk

)∣∣∣ > t
)

≤ PX
(
|τ̂jk − τjk| >

2

π
t

)
≤ exp

(
−
njkt

2

π2

)
, (9.11)

where the last inequality uses the Hoeffding bound for the U-statistics [118, 84]. Application

of the union bound yields

PX

(
sup
jk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ > t

)

≤
∑
j,k

exp

(
−

njk
(1− δ)2(1− ε)n

(m+ 2) log p

)
, (9.12)

where we have substituted t = π
1−δ

√
m+2
1−ε

√
log p
n . The bound in the above form is itself a

random variable, and the elements of the sum are identically distributed but are not independent.

By considering probabilities over the missing values and using Lemma 34, we have

PB

(
PX

(
sup
jk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ ≤ t) ≥ (1− 1

pm

))
≥ 1− exp

(
−(ε2(1− δ)2n/2− 2 log p)

)
. (9.13)

Noting that the random variables (X,B) are independent completes the proof.

197

9.3.2 Spearman’s Rho with Missing Values

As we work on the njk effective samples wth values by disregarding missing values, we can

leverage the analysis in [118] except njk is a random variable. Following [118], (9.3) can be

rewritten as [83, 118]:

ρ̂jk=
3
∑n

i=1

∑n
s=1

∑n
t=1sign(xji−x

j
s)(xki −xkt)bijbikbsjbskbtjbtk

n3
jk − njk

=
njk − 2

njk + 1
Ujk +

3

njk + 1
τ̂jk . (9.14)

where τ̂jk is Kendall’s tau statistics and Ujk is a 3rd-order U-statistics

Ujk =
3
∑

i 6=s 6=t sign(xji − x
j
s)(xki − xkt)bijbikbsjbskbtjbtk

njk(njk − 1)(njk − 2)
. (9.15)

Note njk =
∑n

i=1 bijbik is a sum of n independent Bernoulli random variables bijbik with

E(nij) = (1− δ)2n.

Theorem 37 For any m > 0, 0 < ε < 1, and

n ≥ 36

(m+ 2)(1− ε)(1− δ)2 log p
, (9.16)

with probability at least (1− 1
pm)(1− exp(−(ε2(1− δ)2n/2− 2 log p)), we have

sup
jk

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ ≤ 4π

1− δ

√
m+ 2

1− ε

√
log p

n
. (9.17)

Proof: Let 0 < α < 1. According to (9.14), we have

PX(|ρ̂jk − E(ρ̂jk)| > t) ≤ PX(|Ujk − E(Ujk)| > αt)

+ PX
(

3

njk + 1
|τ̂jk − τjk| > (1− α)t

)
. (9.18)

Since −1 ≤ τjk ≤ 1, |τ̂jk − τjk| ≤ 2, then

PX
(

3

njk + 1
|τ̂jk − τjk| > (1− α)t

)
≤ PX

(
6

njk + 1
> (1− α)t

)
. (9.19)

198

Applying Hoeffding’s bound for U-statistics, we have

PX(|Ujk − E(Ujk)| > αt)

≤ exp

(
−2
⌊njk

3

⌋ α2t2

36

)
= exp

(
−
njkα

2t2

54

)
. (9.20)

Combining (9.19) and (9.20) yields

PX (|ρ̂jk− E(ρ̂jk)| > t) ≤ exp

(
−
njkα

2t2

54

)
+ PX

(
6

njk + 1
> (1− α)t

)
. (9.21)

In particular, if njk ≥ 6
(1−α)t , the second term on the RHS is 0. Since ρ̂jk is a biased estimator,

following [118], we use the following bias equation [224]:

Eρ̂jk =
6

π(njk + 1)

[
arcsin(Σ0

jk) + (njk − 2) arcsin(
Σ0
jk

2
)

]
. (9.22)

Note we only use njk effective number of samples. Thus,

Σ0
jk = 2 sin

(π
2
Eρ̂jk + ajk

)
, (9.23)

where

ajk =
πEρ̂jk − 2 arcsin(Σ0

jk)

2(njk − 2)
, |ajk| ≤

π

njk − 2
. (9.24)

If njk ≥ 6π
t + 2, |ajk| ≤ t

6 . Therefore, the analysis is simplified if infjk njk ≥ c0 where

c0 ≥ max

{
6

(1− α)t
,
6π

t
+ 2

}
. (9.25)

Setting α = 3
√

6
8 , t = 4π

1−δ

√
m+2
1−ε

√
log p
n , we have

6

(1− α)t
≤ 24π

t
= 6(1− δ)

√
1− ε
m+ 2

√
n

log p
,

6π

t
+ 2 =

3(1− δ)
2

√
1− ε
m+ 2

√
n

log p
.

Therefore, we choose

c0 = 6(1− δ)
√

1− ε
m+ 2

√
n

log p
. (9.26)

199

Define an event Z = {infjk njk ≥ c0}, and let Z̄ be the complement of the event. Further,

the event of interest is Y =

{
supj,k

∣∣∣Ŝτjk − Σ0
jk

∣∣∣ ≤ 4π
1−δ

√
m+2
1−ε

√
log p
n

}
. Then, the probability

of the event of interest can be lower bounded as:

P (Y) = P (Y |Z)P (Z) + P (Y |Z̄)P (Z̄)

≥ P (Y |Z)P (Z) . (9.27)

Next, we focus on getting lower bounds to both P (Z) and P (Y |Z).

Note njk =
∑n

i=1 bijbik and E[njk] = (1− δ)2n, using Chernoff bounds,

PB
(
njk < (1− ε)(1− δ)2n

)
≤ exp

(
−ε2(1− δ)2n/2

)
. (9.28)

By the union bound,

PB
(

inf
jk
njk < (1− ε)(1− δ)2n

)
≤ exp

(
−ε2(1− δ)2n/2 + 2 log p

)
, (9.29)

which is equivalent to

PB
(

inf
jk
njk ≥ (1− ε)(1− δ)2n

)
≥ 1− exp

(
−ε2(1− δ)2n/2 + 2 log p

)
. (9.30)

If (1− ε)(1− δ)2n ≥ c0, i.e.,

n ≥ 36

(m+ 2)(1− ε)(1− δ)2 log p
, (9.31)

then

PB
(

inf
jk
njk ≥ c0

)
≥ 1− exp

(
−ε2(1− δ)2n/2 + 2 log p

)
, (9.32)

which gives a lower bound to P (Z) as desired. Now, conditioned on Z, i.e., infjk njk ≥ c0,

we have |ajk| ≤ t
6 , and PX

(
6

njk+1 > (1− α)t

∣∣∣∣Z) = 0. Assuming n satisfies (9.31) and

using (9.21), (9.23), we have

PX
(
|Ŝρjk − Σ0

jk| > t

∣∣∣∣Z)

200

= PX
(∣∣∣2 sin

(π
6
ρ̂jk

)
− 2 sin(

π

6
Eρ̂jk + ajk)

∣∣∣ > t

∣∣∣∣Z)
≤ PX

(∣∣∣π
3
ρ̂jk −

π

3
Eρ̂jk − 2ajk

∣∣∣ > t

∣∣∣∣Z)
= PX

(∣∣∣∣ρ̂jk − Eρ̂jk −
6

π
ajk

∣∣∣∣ > 3t

π

∣∣∣∣Z)
≤ PX

(
|ρ̂jk − Eρ̂jk| >

3t

π
−
∣∣∣∣ 6πajk

∣∣∣∣ ∣∣∣∣Z)
≤ PX

(
|ρ̂jk − Eρ̂jk| >

2t

π

∣∣∣∣Z)
≤ exp

(
−

2njkα
2t2

27π2

)
, (9.33)

where the conditioning on Z, i.e., {infj,k njk ≥ c0}, has been dropped in the last inequality

yielding an upper bound. Setting α = 3
√

6
8 , t = 4π

1−δ

√
m+2
1−ε

√
log p
n , by the union bound, we

have

PX

(
sup
jk
|Ŝρjk − Σ0

jk| > t

∣∣∣∣Z
)

≤
∑
j,k

exp

(
−

njk
(1− δ)2(1− ε)n

(m+ 2) log p

)
, (9.34)

which is the same as (9.12). Using Lemma 34, we then have P (Y |Z) ≥
(

1− 1
pm

)
. The result

of the theorem then follows from (9.27) and (9.30).

9.3.3 Plug-in CLIME Estimator

Since Ŝ (Ŝτ or Ŝρ) satisfies (9.10) or (9.17) with high probability, choosing λn ≥
π‖Ω0‖L1

1−δ

√
m+2
1−ε

√
log p
n

or λn ≥
4π‖Ω0‖L1

1−δ

√
m+2
1−ε

√
log p
n ensures that the conditions for consistency of the CLIME

estimate Ω̂ are satisfied. The CLIME estimator considers the following family of precision ma-

trices U = U(M, q, s0(p)) =
{

Ω : Ω � 0, ‖Ω‖L1 ≤ M,max1≤i≤p
∑p

j=1 |ωij |q ≤ s0(p)
}

, for

0 ≤ q < 1. Then, the CLIME estimator has the following guarantees:

Theorem 38 Let Ω0 ∈ U(M, q, s0(p)). If λn ≥ ‖Ω0‖L1 maxij |σ̂n,ij − σ0,ij |, then we have

|Ω̂n − Ω0|∞ ≤ 4‖Ω0‖L1λn , (9.35)

‖Ω̂n − Ω0‖2 ≤ Cs0(p)(4‖Ω0‖L1)1−qλ1−q
n , (9.36)

201
1

p
‖Ω̂n − Ω0‖2F ≤ Cs0(p)(4‖Ω0‖L1)2−qλ2−q

n , (9.37)

where C ≤ 2(1 + 21−q + 31−q) is a constant.

Note that deterministic bounds in Theorem 38 for precision estimation relies on |Σ̂n−Σ0|∞ =

maxi,j |σ̂n,ij − σ0,ij |.

9.4 Experimental Results

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ = 0

δ = 0.1

δ = 0.2

δ = 0.3

(a) Kendall no projection

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ = 0

δ = 0.05

δ = 0.1

δ = 0.2

(b) Spearman no projection

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ = 0

δ = 0.1

δ = 0.2

δ = 0.3

(c) Kendall, projection

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ = 0

δ = 0.1

δ = 0.2

δ = 0.3

(d) Spearman, projection

Figure 9.1: (a,b) ROC curves without projection (Ŝ need not be positive semi-definite), (c,d)

ROC curves with projection (Ŝ is positive semi-definite) with n = 200 and under different

missing probabilities (δ = 0.1 − 0.3). By increasing number of observed data (smaller δ), the

ROC curve approaches the ROC curve of no-missing data (δ = 0).

We present experimental results of DoPinG on both synthetic datasets and real datasets

to illustrate model performance. The first set of experiments on synthetic data illustrate the

202

effect of sample size and percentage of missing data on model performance. Then we compare

DoPinG with mGlasso on both synthetic data and climate dataset.

9.4.1 Synthetic Data

To generate synthetic data, we use the procedure described in [118]. First, a d-dimensional

sparse graph G = (V,E) is generated as follows: Let V = {1, ..., p} correspond to variables

X = (X1, ..., Xd). We associate each index j with a bivariate point Yj = (Y
(1)
j , Y

(2)
j) ∈ [0, 1]2

where each Y (k)
j ∼ Unif[0, 1], k = 1, 2, j ∈ {1, · · · , d}. An edge is associated between ver-

tices (i, j) with probability of P ((i, j) ∈ E) = 1√
2π

exp
(
−‖yi−yj‖

2

0.25

)
where yj = (y

(1)
j , y

(2)
j)

is the observation of Yj and ‖ . ‖ denotes the Euclidean distance. The maximum degree of the

graph is limited to 4. Thereafter, n samples are drawn from NPNd(f
0,Σ0) where f0 is the

Gaussian CDF Transformation with mean 0.05 and standard deviation 0.4. Here, we choose

n = 200, p = 100, and δ ∈ {0.1, 0.2, 0.3}. The final results shown below are averages over 10

experimental runs for both Kendall’s tau and Spearman’s rho. The ROC curve is generated by

varying the tuning parameter λ in the CLIME and calculating the corresponding False Positive

Rate (FPR) and True Positive Rate (TPR) [118].

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ=0.1

N=200

N=300

N=400

N=500

(a) δ = 10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ=0.2

N=200

N=300

N=400

N=500

(b) δ = 20%

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ=0.3

N=200

N=300

N=400

N=500

(c) δ = 30%

Figure 9.2: ROC curve with δ = 0.1, 0.2, 0.3, p = 100, and different number of samples (n).

For a fixed value of δ, with increasing number of samples, the higher TP rates is obtained.

First, we directly run Algorithm 7 using Ŝ (Ŝτ or Ŝρ) estimated using Kendall’s tau and

Spearman’s rho. The ROC curve with different probabilities of missing values is plotted in

Figure 9.1. We observe that the performance of Kendall’s tau and Spearman’s rho is almost the

same for the same percentage of missing values. Note that the tuning parameter λ controls the

sparsity of the estimated graph, i.e., a small value of λ provides a dense graph. When λ is large

203

enough the predicted edges are all among the correct edges leading to a zero FPR. By decreasing

λ, false edges that are not in the original graph are added, i.e., increasing FPR and saturating

TPR. It shows that the estimator is conservative in adding edges. Figure 9.1 also illustrates

that increasing number of missing values (increasing δ) deteriorates model performance, while

increasing variance of estimate.

As mentioned in section 9.2.3, the estimated correlation matrix Ŝ may be not positive semi-

definite. Therefore, we project Ŝ into the positive semi-definite (PSD) cone, and execute Al-

gorithm 7 using the PSD matrix. Figures 9.1 (c,d) plot the ROC curve with projection for

Kendall’s tau and Spearman’s rho respectively. For small δ, e.g. δ = 0.1, to some degree, the

performances with and without projection are similar. However, when more values are missing,

PSD projection greatly improves performance. Increasing percentage of missing values lead to

more and larger negative eigenvalues in Ŝ, and performance worsens for higher δ. Note that

our analysis shows that the effective sample size is (1− δ)2n, and decrease of the recovery rate

(TPR) with decreasing effective sample size is in accordance with our analysis. In other words,

for a fixed n the effective sample size is smaller for a larger value of δ and therefore, DoPinG

has a worse performance with larger value of δ.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

δ = 0

δ = 0.1

δ = 0.2

δ = 0.3

Figure 9.3: ROC curve of mGlasso with n = 200 and different missing probabilities. mGlasso

has a worse performance on non-Gaussian data compared to DoPinG (Figure 9.1).

Figure 9.2 shows the effect of sample size n with different value of δ on the performance

without projection. Under higher percentage of missing values (Figure 9.2(c)), the performance

of the method suffers much more with low sample size, compared to data with lower percentage

of missing entries (Figure 9.2(a)). In particular, with a sample size n = 200 and 30% of missing

data, the effective sample size is ∼ 100 while with 10% of missing data, the effective sample

size is ∼ 160. As a result, to achieve similar recovery rates (TPR,FPR), higher sample size is

needed when more percentage of the data is missing.

204

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision

R
e

c
a

ll

Kendall

Spearman

mGlasso

(a) δ = 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision

R
e

c
a

ll

Kendall

Spearman

mGlasso

(b) δ = 10%

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision

R
e

c
a

ll

Kendall

Spearman

mGlasso

(c) δ = 20%

Figure 9.4: Precision and Recall Curve with different δ. DoPinG is significantly better than

mGlasso for non-Gaussian data.

(a) DoPinG (12240 edges) (b) mGlasso (8778 edges) (c) mGlasso (11860 edges)
Figure 9.5: The graph discovered by DoPinG and mGlasso.

We compare DoPinG with mGlasso [100] on the synthetic data. The ROC curve of mGlasso

is plotted in Figure 9.3. Since mGlasso is designed primarily for Gaussian data, Figure 9.3

clearly illustrates that mGlasso is not suitable for non-Gaussian data. We also plot the precision

and recall curve with different probabilities of missing values (δ = 0, 0.1, 0.2) in Figure 9.4.

The performance of DoPinG is significantly better than mGlasso.

9.4.2 Climate Data

We compare DoPinG (Spearman’s rho) and mGlasso on Climate data. The climate dataset that

we use is obtained from the CMIP5 archive, where we use the temperature predicted over land

locations by a climate model. We reduce the resolution of the data, since we use it only for

illustrative purposes, so that the data contains 500 locations (dimensionality), and yearly aver-

aged samples over 100 years (sample size =100). We randomly remove δ = 20% of the entries.

We try different λ and report the results which have similar number of edges. In particular, we

205

Table 9.1: Edges dicovered by DoPinG and mGlasso on Climate Data. > denotes the number

of edges in DoPinG graph but not in mGlasso graph. < is on the contrary.
Edge No. Edge Diff

DoPinG mGlasso > <

12240 8778 7942 4480

12240 11860 7534 7154

pick the graph with 12740 edges for DoPinG (λ = 0.02) as illustrated in Figure 9.5(a). We

pick two graphs for mGlasso. One has 8778 edges (λ = 0.001) and the other has 11860 edges

(λ = 0.002), as shown in Figure 9.5(b) and 9.5(c) respectively. It seems that DoPinG discov-

ers some interesting sparsity patterns while mGlasso graphs are messy. In Table 1, we present

the difference between DoPinG graph and mGlasso graph. With similar total number of edges,

DoPinG graph shows more structure than mGlasso graph. We plan to further investigate this

behavior in future work.

Chapter 10

Online `1-Dictionary Learning with
Application to Novel Document
Detection

10.1 Introduction

The high volume and velocity of social media, such as blogs and Twitter, have propelled them

to the forefront as sources of breaking news. On Twitter, it is possible to find the latest updates

on diverse topics, from natural disasters to celebrity deaths; and identifying such emerging

topics has many practical applications, such as in marketing, disease control, and national se-

curity [137]. The key challenge in automatic detection of breaking news, is being able to detect

novel documents in a stream of text; where a document is considered novel if it is “unlike” docu-

ments seen in the past. Recently, this has been made possible by dictionary learning, which has

emerged as a powerful data representation framework. In dictionary learning each data point y

is represented as a sparse linear combination Ax of dictionary atoms, where A is the dictionary

and x is a sparse vector [2, 129]. A dictionary learning approach can be easily converted into

a novel document detection method: let A be a dictionary representing all documents till time

t− 1, for a new data document y arriving at time t, if one does not find a sparse combination x

of the dictionary atoms, and the best reconstruction Ax yields a large loss, then y clearly is not

well represented by the dictionary A, and is hence novel compared to documents in the past. At

206

207

the end of timestep t, the dictionary is updated to represent all the documents till time t.

Kasiviswanathan et al. [97] presented such a (batch) dictionary learning approach for de-

tecting novel documents/topics. They used an `1-penalty on the reconstruction error (instead

of squared loss commonly used in the dictionary learning literature) as the `1-penalty has been

found to be more effective for text analysis (see Section 10.3). They also showed this approach

outperforms other techniques, such as a nearest-neighbor approach popular in the related area

of First Story Detection [155]. We build upon this work, by proposing an efficient algorithm for

online dictionary learning with `1-penalty. Our online dictionary learning algorithm is based

on the online alternating directions method which was recently proposed by Wang and Baner-

jee [200] to solve online composite optimization problems with additional linear equality con-

straints. Traditional online convex optimization methods such as [225, 75, 53, 52, 210] require

explicit computation of the subgradient making them computationally expensive to be applied in

our high volume text setting, whereas in our algorithm the subgradients are computed implicitly.

The algorithm has simple closed form updates for all steps yielding a fast and scalable algorithm

for updating the dictionary. Under suitable assumptions (to cope with the non-convexity of the

dictionary learning problem), we establish an O(
√
T) regret bound for the objective, match-

ing the regret bounds of existing methods [225, 53, 52, 210]. Using this online algorithm for

`1-dictionary learning, we obtain an online algorithm for novel document detection, which we

empirically validate on traditional news-streams as well as streaming data from Twitter. Exper-

imental results show a substantial speedup over the batch `1-dictionary learning based approach

of Kasiviswanathan et al. [97], without a loss of performance in detecting novel documents.

Related Work. Online convex optimization is an area of active research and for a detailed

survey on the literature we refer the reader to [177]. Online dictionary learning was recently

introduced by Mairal et al. [129] who showed that it provides a scalable approach for handling

large dynamic datasets. They considered an `2-penalty and showed that their online algorithm

converges to the minimum objective value in the stochastic case (i.e., with distributional as-

sumptions on the data). However, the ideas proposed in [129] do not translate to the `1-penalty.

The problem of novel document/topics detection was also addressed by a recent work of Saha et

al. [170], where they proposed a non-negative matrix factorization based approach for capturing

evolving and novel topics. However, their algorithm operates over a sliding time window (does

not have online regret guarantees) and works only for `2-penalty.

208

10.2 Preliminaries

Notation. Vectors are always column vectors and are denoted by boldface letters. For a matrix

Z its norm, ‖Z‖1 =
∑

i,j |zij | and ‖Z‖2F =
∑

ij z
2
ij . For arbitrary real matrices the standard

inner product is defined as 〈Y,Z〉 = Tr(Y >Z). We use Ψmax(Z) to denote the largest eigen-

value of Z>Z. For a scalar r ∈ R, let sign(r) = 1 if r > 0, −1 if r < 0, and 0 if r = 0. Define

soft(r, T) = sign(r) ·max{|r| − T, 0}. The operators sign and soft are extended to a matrix by

applying it to every entry in the matrix. 0m×n denotes a matrix of all zeros of size m × n and

the subscript is omitted when the dimension of the represented matrix is clear from the context.

Dictionary Learning Background. Dictionary learning is the problem of estimating a collec-

tion of basis vectors over which a given data collection can be accurately reconstructed, often

with sparse encodings. It falls into a general category of techniques known as matrix factor-

ization. Classic dictionary learning techniques for sparse representation (see [2, 151, 129] and

references therein) consider a finite training set of signals P = [p1, . . . ,pn] ∈ Rm×n and op-

timize the empirical cost function which is defined as f(A) =
∑n

i=1 l(pi, A), where l(·, ·) is

a loss function such that l(pi, A) should be small if A is “good” at representing the signal pi

in a sparse fashion. Here, A ∈ Rm×k is referred to as the dictionary. In this chapter, we use a

`1-loss function with an `1-regularization term, and our

l(pi, A) = min
x
‖pi −Ax‖1 + λ‖x‖1, where λ is the regularization parameter.

We define the problem of dictionary learning as that of minimizing the empirical cost f(A). In

other words, the dictionary learning is the following optimization problem

min
A
f(A) = f(A,X)

def
= min

A,X

n∑
i=1

l(pi, A) = min
A,X

‖P −AX‖1 + λ‖X‖1.

For maintaining interpretability of the results, we would additionally require that the A and

X matrices be non-negative. To prevent A from being arbitrarily large (which would lead to

arbitrarily small values of X), we add a scaling constant on A as follows. Let A be the convex

set of matrices defined as

A = {A ∈ Rm×k : A ≥ 0m×k ∀j = 1, . . . , k , ‖Aj‖1 ≤ 1}, where Aj is the jth column in A.

We use ΠA to denote the Euclidean projection onto the nearest point in the convex set A. The

resulting optimization problem can be written as

min
A∈A,X≥0

‖P −AX‖1 + λ‖X‖1 (10.1)

209

The optimization problem (10.1) is in general non-convex. But if one of the variables, either

A or X is known, the objective function with respect to the other variable becomes a convex

function (in fact, can be transformed into a linear program).

10.3 Novel Document Detection Using Dictionary Learning

In this section, we describe the problem of novel document detection and explain how dictionary

learning could be used to tackle this problem. Our problem setup is similar to [97].

Novel Document Detection Task. We assume documents arrive in streams. Let {Pt : Pt ∈
Rmt×nt , t = 1, 2, 3, . . . } denote a sequence of streaming matrices where each column of Pt
represents a document arriving at time t. Here, Pt represents the term-document matrix ob-

served at time t. Each document is represented is some conventional vector space model such

as TF-IDF [130]. The t could be at any granularity, e.g., it could be the day that the document

arrives. We use nt to represent the number of documents arriving at time t. We normalize Pt
such that each column (document) in Pt has a unit `1-norm. For simplicity in exposition, we

will assume that mt = m for all t.1 We use the notation P[t] to denote the term-document

matrix obtained by vertically concatenating the matrices P1, . . . , Pt, i.e., P[t] = [P1|P2| . . . |Pt].
Let Nt be the number of documents arriving at time ≤ t, then P[t] ∈ Rm×Nt . Under this setup,

the goal of novel document detection is to identify documents in Pt that are “dissimilar” to the

documents in P[t−1].

Sparse Coding to Detect Novel Documents. Let At ∈ Rm×k represent the dictionary matrix

after time t− 1; where dictionary At is a good basis to represent of all the documents in P[t−1].

The exact construction of the dictionary is described later. Now, consider a document y ∈ Rm

appearing at time t. We say that it admits a sparse representation over At, if y could be “well”

approximated as a linear combination of few columns from At. Modeling a vector with such

a sparse decomposition is known as sparse coding. In most practical situations it may not

be possible to represent y as Atx, e.g., if y has new words which are absent in At. In such

cases, one could represent y = Atx + e where e is an unknown noise vector. We consider the
1 As new documents come in and new terms are identified, we expand the vocabulary and zero-pad the previous

matrices so that at the current time t, all previous and current documents have a representation over the same
vocabulary space.

210

following sparse coding formulation

l(y, At) = min
x≥0

‖y −Atx‖1 + λ‖x‖1. (10.2)

The formulation (10.2) naturally takes into account both the reconstruction error (with the

‖y − Atx‖1 term) and the complexity of the sparse decomposition (with the ‖x‖1 term). The

reconstruction error measures the quality of the approximation while the complexity is mea-

sured by the `1-norm of the optimal x. It is quite easy to transform (10.2) into a linear program.

Hence, it can be solved using a variety of methods. In our experiments, we use the alternating

directions method of multipliers (ADMM) [19] to solve (10.2). ADMM has recently gathered

significant attention in the machine learning community due to its wide applicability to a range

of learning problems with complex objective functions [19].

We can use sparse coding to detect novel documents as follows. For each document y

arriving at time t, we do the following. First, we solve (10.2) to check whether y could be well

approximated as a sparse linear combination of the atoms of At. If the objective value l(y, At)

is “big” then we mark the document as novel, otherwise we mark the document as non-novel.

Since, we have normalized all documents in Pt to unit `1-length, the objective values are in the

same scale.

Choice of the Error Function. A very common choice of reconstruction error is the `2-penalty.

In fact, in the presence of isotopic Gaussian noise the `2-penalty on e = y − Atx gives the

maximum likelihood estimate of x [209, 213]. However, for text documents, the noise vector

e rarely satisfies the Gaussian assumption, as some of its coefficients contain large, impulsive

values. For example, in fields such as politics and sports, a certain term may become suddenly

dominant in a discussion [97]. In such cases imposing an `1-penalty on the error is a better

choice than imposing an `2-penalty (e.g., recent research [209, 214, 208] have successfully

shown the superiority of `1 over `2 penalty for a different but related application domain of face

recognition). We empirically validate the superiority of using the `1-penalty for novel document

detection in Section 10.5.

Size of the Dictionary. Ideally, in our application setting, changing the size of the dictionary

(k) dynamically with t would lead to a more efficient and effective sparse coding. However, in

our theoretical analysis, we make the simplifying assumption that k is a constant independent of

t. In our experiments, we allow for small increases in the size of the dictionary over time when

required. The problem of designing an adaptive dictionary whose size automatically increase

211

or decrease over time is an interesting open problem.

Batch Algorithm for Novel Document Detection. We now describe a simple batch algorithm

(slightly modified from [97]) for detecting novel documents. The Algorithm 10.3 alternates

between a novel document detection and a batch dictionary learning step.

1: Input: P[t−1] ∈ Rm×Nt−1 , Pt = [p1, . . . ,pnt] ∈ Rm×nt , At ∈ Rm×k, λ ≥ 0, ζ ≥ 0

2: Novel Document Detection Step:
3: for j = 1 to nt do
4: Solve: xj = argminx≥0 ‖pj −Atx‖1 + λ‖x‖1
5: if ‖pj −Atxj‖1 + λ‖xj‖1 > ζ

6: Mark pj as novel

7: Batch Dictionary Learning Step:
8: Set P[t] ← [P[t−1] |p1, . . . ,pnt]

9: Solve: [At+1, X[t]] = argminA∈A,X≥0 ‖P[t] −AX‖1 + λ‖X‖1

Batch Dictionary Learning. We now describe the batch dictionary learning step from Algo-

rithm 10.3. At time t, the dictionary learning step is2

[At+1, X[t]] = argminA∈A,X≥0 ‖P[t] −AX‖1 + λ‖X‖1. (10.3)

Even though conceptually simple, Algorithm 10.3 is computationally inefficient. The bot-

tleneck comes in the dictionary learning step. As t increases, so does the size of P[t], so solv-

ing (10.3) becomes prohibitive even with efficient optimization techniques. To achieve compu-

tational efficiency, in [97], the authors solved an approximation of (10.3) where in the dictionary

learning step they only update the A’s and not the X’s.3 This leads to faster running times,

but because of the approximation, the quality of the dictionary degrades over time and the per-

formance of the algorithm decreases. In this chapter, we propose an online learning algorithm

for (10.3) and show that this online algorithm is both computationally efficient and generates

good quality dictionaries under reasonable assumptions.
2 In our algorithms, it is quite straightforward to replace the condition A ∈ A by some other condition A ∈ C,

where C is some closed non-empty convex set.
3 In particular, define (recursively) X̃[t] = [X̃[t−1] |x1, . . . ,xnt] where xj’s are coming from the novel docu-

ment detection step at time t. In [97], the dictionary learning step is At+1 = argminA∈A ‖P[t] −AX̃[t]‖1.

212

10.4 Online `1-Dictionary Learning

In this section, we introduce the online `1-dictionary learning problem and propose an efficient

algorithm for it. The standard goal of online learning is to design algorithms whose regret is

sublinear in time T , since this implies that “on the average” the algorithm performs as well

as the best fixed strategy in hindsight [177]. Now consider the `1-dictionary learning problem

defined in (10.3). Since this problem is non-convex, it may not be possible to design polyno-

mial running time offline (batch) algorithms that solve it without making any assumptions on

either the dictionary (A) or the sparse code (X). This also means that it may not be possible to

design a polynomial time online algorithm with sublinear regret without making any assump-

tions on either A or X because a polynomial time online algorithm with sublinear regret would

imply would imply a polynomial time offline algorithm for solving (10.1). Therefore, we focus

on obtaining regret bounds for the dictionary update, assuming that the at each timestep the

sparse codes given to the batch and online algorithms are “close”. This motivates the following

problem.

Definition 1 (Online `1-Dictionary Learning Problem) At time t = 0, 1, . . . , the online al-

gorithm picks Ât+1 ∈ A. Then, the nature (adversary) reveals (Pt+1, X̂t+1) with Pt+1 ∈ Rm×n

and X̂t+1 ∈ Rk×n. The problem is to pick the Ât+1 sequence such that the following regret

function is minimized4

R(T) =
T∑
t=1

‖Pt − ÂtX̂t‖1 −min
A∈A

T∑
t=1

‖Pt −AXt‖1 ,

where X̂t = Xt + Et and Et is an error matrix dependent on t.

The regret defined above admits the discrepancy between the sparse coding matrices supplied

to the batch and online algorithms through the error matrix. The reason for this generality is

because in our application setting, the sparse coding matrices used for updating the dictionaries

of the batch and online algorithms could be different. We will later establish the conditions on

Et’s under which we can achieve sublinear regret.
4 For ease of presentation and analysis, we will assume that m and n don’t vary with time. One could allow for

changing m and n by carefully adjusting the size of the matrices by zero-padding.

213

10.4.1 Online `1-Dictionary Algorithm

In this section, we design an algorithm for the online `1-dictionary learning problem, which

we call Online Inexact ADMM (OIADMM) and bound its regret. Firstly note that because

of the non-smooth `1-norms involved it is computationally expensive to apply standard online

learning algorithms like online gradient descent [225, 75], COMID [52], FOBOS [53], and

RDA [210], as they require computing a costly subgradient at every iteration. The subgradient

of ‖P −AX‖1 at A = Ā is sign(ĀX − P) ·X>.

Our algorithm for online `1-dictionary learning is based on the online alternating direction

method which was recently proposed by Wang et al. [200]. Our algorithm first performs a

simple variable substitution by introducing an equality constraint. The update for each of the

resulting variable has a closed-form solution without the need of estimating the subgradients

explicitly.

Algorithm 8 : OIADMM

1: Input: Pt ∈ Rm×n, Ât ∈ Rm×k, ∆t ∈ Rm×n, X̂t ∈ Rk×n, βt ≥ 0, τt ≥ 0

2: Γ̃t ←− Pt − ÂtX̂t

3: Γt+1 = argminΓ ‖Γ‖1 + 〈∆t, Γ̃t − Γ〉+ (βt/2)‖Γ̃t − Γ‖2F
4: (⇒ Γt+1 = soft(Γ̃t + ∆t/βt, 1/βt))

5: Gt+1 ←− −(∆t/βt + Γ̃t − Γt+1)X̂>t

6: Ât+1 = argminA∈A βt(〈Gt+1, A− Ât〉+ (1/2τt)‖A− Ât‖2F)

7: (⇒ Ât+1 = ΠA(max{0, Ât − τtGt+1}))
8: ∆t+1 = ∆t + βt(Pt − Ât+1X̂t − Γt+1)

9: Return Ât+1 and ∆t+1

The Algorithm 8 is simple. Consider the following minimization problem at time t

min
A∈A

‖Pt −AX̂t‖1.

We can rewrite this above minimization problem as:

min
A∈A,Γ

‖Γ‖1 such that Pt −AX̂t = Γ. (10.4)

The augmented Lagrangian of (10.4) is:

L(A,Γ,∆) = ‖Γ‖1 + 〈∆, Pt − AX̂t − Γ〉 +
βt
2

∥∥∥Pt −AX̂t − Γ
∥∥∥2

F
, (10.5)

214

for A ∈ A, Γ ∈ Rm×n, ∆ ∈ Rm×n, and βt > 0. Here, ∆ is a multiplier and βt a penalty

parameter.

OIADMM is summarized in Algorithm 8. The algorithm generates a sequence of iterates

{Γt, Ât,∆t}∞t=1. At each time t, instead of solving (10.4) completely, it only runs one step

ADMM update of the variables (Γt, Ât,∆t). Let Γ̃t = Pt − ÂtX̂t. The update steps are as

follows.

1. First for a fixed A = Ât and ∆t, Γ that minimizes (10.5) could be obtained by solving

argminΓ ‖Γ‖1 + 〈∆t, Γ̃t − Γ〉+ (βt/2)‖Γ̃t − Γ‖2F .

The Γ that minimizes this optimization problem is set as Γt+1.

2. Using Γ = Γt+1 and ∆t, a simple manipulation shows that we can obtain the A that

minimizes (10.5) by solving

min
A∈A

βt
2

∥∥∥∥Pt −AX̂t − Γt+1 +
∆t

βt

∥∥∥∥2

F

. (10.6)

Instead of solving (10.6) exactly, we approximate it by

min
A∈A

βt(〈Gt+1, A− Ât〉+ 1/(2τt)‖A− Ât‖2F),

where τt > 0 is a proximal parameter and Gt+1 is the gradient of ‖Pt − AX̂t − Γt+1 +

∆t/βt‖2F at A = Ât. The above approach belongs to the class of proximal gradient

methods in optimization [192, 214]. The A that minimizes this optimization problem is

set as Ât+1.

3. Update ∆ as ∆t+1 = ∆t + βt(Pt − Ât+1X̂t − Γt+1).

Equality Constraint Violation. OIADMM could temporary violate the equality constraint

in (10.4), but satisfies the constraint on average in the long run. More formally, at each time t

it could happen that Ât+1 and Γt+1 produced by OIADMM is such that Pt − Ât+1X̂t 6= Γt+1.

However, we show (see Theorem 40) that the algorithm has the property that

T∑
t=1

‖Γt+1 − Pt + Ât+1X̂t‖22 = O(
√
T),

which implies that over time, on average, the equality constraint (10.4) gets satisfied. The main

results is summarized in the following theorem:

215

Theorem 39 Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure and

R(T) be the regret as defined above. Assume the following conditions hold: (1) ∀t, the Frobe-

nius norm of ∂‖Γt‖1 is upper bounded by Φ; (2) Â1 = 0m×k, ‖Aopt‖F ≤ D; (3) ∆1 = 0m×n;

(4) ∀t, 1/τt ≥ 2Ψmax(X̂t). Setting ∀t, βt = Φ
D

√
τmT where τm = maxt {1/τt}, we have

R(T) ≤ ΦD
√
T

√
τm

+
T∑
t=1

‖AoptEt‖1.

In the above theorem one could replace τm by any upper bound on it (i.e., we don’t need to

know τm exactly).

Condition on Et’s for Sublinear Regret. In a standard online learning setting, the (Pt, X̂t)

made available to the online learning algorithm will be the same as (Pt, Xt) made available to

the batch dictionary learning algorithm in hindsight, so that X̂t = Xt ⇒ Et = 0, yielding a

O(
√
T) regret. More generally, as long as

T∑
t=1

‖Et‖p = o(T)

for some suitable p-norm, we get a sublinear regret bound.5 For example, if {Zt} is a sequence

of matrices such that for all t, ‖Zt‖p = O(1), then setting Et = t−εZt, ε > 0 yields a sublinear

regret. This gives a sufficient condition for sublinear regret6 and it is an interesting open

problem to extend the analysis to other cases.

As mentioned in Section 10.4.1, OIADMM can violate the equality constraint at each t (i.e.,

Pt − Ât+1X̂t 6= Γt+1). However, we show in Theorem 40 that the accumulated loss caused by

the violation of equality constraint is sublinear in T , i.e., the equality constraint is satisfied on

average in the long run.

Theorem 40 Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. Assume

the following conditions hold: (1), ∀t, the Frobenius norm of ∂‖Γt‖1 is upper bounded by Φ;

(2), Â1 = 0m×k, ‖Aopt‖F ≤ D,

5 This follows from Hölder’s inequality which gives
∑T
t=1 ‖A

optEt‖1 ≤ ‖Aopt‖q(
∑T
t=1 ‖Et‖p) for 1 ≤

p, q ≤ ∞ and 1/p+ 1/q = 1, and by the assuming ‖Aopt‖q is bounded. Here, ‖ · ‖p denotes Schatten p-norm.
6 In a different context, a similar assumption on the rate of error decay appeared in a recent chapter by Schmidt et

al. [173] while analyzing the convergence rates of inexact proximal gradient methods.

216

∆1 = 0m×n; (3), ∀t, 1/τt ≥ 2Ψmax(X̂t). Setting ∀t, βt = Φ
D

√
τmT where τm = maxt {1/τt},

we have
T∑
t=1

‖Γt+1 − Pt + Ât+1X̂t‖22 ≤
2D2

τm
+

4ΥD
√
T

Φ
√
τm

.

Again, as was the case with Theorem 39, we could replace τm in the above theorem by any

upper bound on it.

Running Time. For the ith column in the dictionary matrix the projection onto A can be

done in O(si logm) time where si is the number of non-zero elements in the ith column using

the projection onto `1-ball algorithm of Duchi et al. [51]. The simplest implementation of

OIADMM takes O(mnk) time at each timestep because of the matrix multiplications involved.

However, in practice, we can exploit the sparsities of the matrices to make the algorithm run

much faster. OIADMM is also memory efficient, as at each time t, other than the current

iterates, it only need Ât−1 from previous timesteps.

10.5 Experimental Results

In this section, we present experiments to compare and contrast the performance of `1-batch

and `1-online dictionary learning algorithms for the task of novel document detection. We also

present results highlighting the superiority of using an `1- over an `2-penalty on the reconstruc-

tion error for this task (validating the discussion in Section 10.3).

Implementation of 10.3. In our implementation, we grow the dictionary size by η in each

timestep. Growing the dictionary size is essential for the batch algorithm because as t in-

creases the number of columns of P[t] also increases, and therefore, a larger dictionary is re-

quired to compactly represent all the documents in P[t]. For solving (10.3), we use alterna-

tive minimization over the variables. The complete pseudo-code is given Algorithm (12) (see

Appendix 10.D). The optimization problems arising in the sparse coding and dictionary learn-

ing steps are solved using ADMM’s.

Online Algorithm for Novel Document Detection. Our online algorithm (Algorithm (9))7

uses the same novel document detection step as Algorithm 10.3, but dictionary learning is done

using OIADMM.
7 In our experiments, the number of documents introduced in each timestep is almost of the same order, and

hence there is no need to change the size of the dictionary across timesteps for the online algorithm.
8 Before invoking Algorithm OIADMM we may have to zero-pad the matrices in the arguments appropriately.

217

Algorithm 9 : ONLINE

1: Input: Pt = [p1, . . . ,pnt] ∈ Rm×nt , Ât ∈ Rm×k, ∆t ∈ Rm×nt , λ ≥ 0, ζ ≥ 0, β ≥ 0,

τ ≥ 0

2: Novel Document Detection Step:
3: for j = 1 to nt do
4: Solve: xj = argminx≥0 ‖pj − Âtx‖1 + λ‖x‖1
5: if ‖pj − Âtxj‖1 + λ‖xj‖1 > ζ

6: Mark pj as novel

7: Online Dictionary Learning Step:
8: Set X̂t ←− [x1, . . . ,xnt]

9: (Ât+1,∆t+1)←− OIADMM(Pt, Ât,∆t, X̂t, β, τ)8

Notice that the sparse coding matrices of the Algorithm 10.3, X1, . . . , Xt could be different

from X̂1, . . . , X̂t. If these sequence of matrices are close to each other, then we have a sublinear

regret on the objective function.9

Evaluation of Novel Document Detection. For performance evaluation, we assume that doc-

uments in the corpus have been manually identified with a set of topics. For simplicity, we

assume that each document is tagged with the single, most dominant topic that it associates

with, which we call the true topic of that document. We call a document y arriving at time

t novel if the true topic of y has not appeared before the time t. So at time t, given a set of

documents, the task of novel document detection is to classify each document as either novel

(positive) or non-novel (negative). For evaluating this classification task, we use the standard

Area Under the ROC Curve (AUC) [130].

Performance Evaluation for `1-Dictionary Learning. We use a simple reconstruction error

measure for comparing the dictionaries produced by our `1-batch and `1-online algorithms. We

want the dictionary at time t to be a good basis to represent all the documents in P[t] ∈ Rm×Nt .
This leads us to define the sparse reconstruction error (SRE) of a dictionary A at time t as

SRE(A)
def
=

1

Nt

(
min
X≥0

‖P[t] −AX‖1 + λ‖X‖1
)
.

A dictionary with a smaller SRE is better on average at sparsely representing the documents in

P[t].

9 As noted earlier, we can not do a comparison without making any assumptions.

218

0 0.5 1
0

0.5

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Timestep 1

ONLINE
BATCH

0 0.5 1
0

0.5

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Timestep 2

ONLINE
BATCH

0 0.5 1
0

0.5

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Timestep 5

ONLINE
BATCH

0 0.5 1
0

0.5

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Timestep 6

ONLINE
BATCH

0 0.5 1
0

0.5

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Timestep 8

ONLINE
BATCH

Figure 10.1: ROC curves for TDT2 for timesteps where novel documents were introduced.

Novel Document Detection using `2-dictionary learning. To justify the choice of using an `1-

penalty (on the reconstruction error) for novel document detection, we performed experiments

comparing `1- vs. `2-penalty for this task. In the `2-setting, for the sparse coding step we used

a fast implementation of the LARS algorithm with positivity constraints [62] and the dictionary

learning was done by solving a non-negative matrix factorization problem with additional spar-

sity constraints (also known as the non-negative sparse coding problem [87]). A pseudo-code

description is given in Appendix 10.D.10

Experimental Setup. All reported results are based on a Matlab implementation running on

a quad-core 2.33 GHz Intel processor with 32GB RAM. The parameters to our `1-online dic-

tionary learning algorithm are: (1), initial size of dictionary; (2), regularization parameter; (3),

parameters to OIADMM (βt and τt); (4), ADMM parameters for sparse coding. The `1-batch

and `2-batch dictionary learning algorithm take an additional parameter η which describes the

increase in the batch dictionary size in each timestep. The regularization parameter λ is set

to 0.1 which yields reasonable sparsities in our experiments. OIADMM parameters τt is set

1/(2Ψmax(X̂t)) (chosen according to Theorem 39) and βt is fixed to 5 (obtained through tun-

ing). The ADMM parameters for sparse coding and batch dictionary learning are set as sug-

gested in [97] (see Appendix app:admm). In the batch algorithms, we grow the dictionary sizes
10 We used the SPAMS package http://spams-devel.gforge.inria.fr/ in our implementation.

http://spams-devel.gforge.inria.fr/

219

by η = 10 in each timestep. The threshold value ζ is treated as a tunable parameter.

10.5.1 Experiments on News Streams

Our first dataset is drawn from the NIST Topic Detection and Tracking (TDT2) corpus which

consists of news stories in the first half of 1998. In our evaluation, we used a set of 9000 docu-

ments represented over 19528 terms and distributed into the top 30 TDT2 human-labeled topics

over a period of 27 weeks. We introduce the documents in groups. At timestep 0, we introduce

the first 1000 documents and these documents are used for initializing the dictionary. We use

an alternative minimization procedure over the variables of (10.1) to initialize the dictionary.

In these experiments the size of the initial dictionary k = 200. In each subsequent timestep

t ∈ {1, . . . , 8}, we provide the batch and online algorithms the same set of 1000 documents.

In Figure 10.1, we present novel document detection results for those timesteps where at least

one novel document was introduced. Table 10.1 shows the corresponding AUC numbers. The

results show that using an `1-penalty on the reconstruction error is better for novel document

detection than using an `2-penalty.

Table 10.1: AUC Numbers for ROC Plots in Figure 10.1.
Timestep No. of Novel Docs. No. of Nonnovel Docs. AUC `1-online AUC `1-batch AUC `2-batch

1 19 981 0.791 0.815 0.674

2 53 947 0.694 0.704 0.586

5 116 884 0.732 0.764 0.601

6 66 934 0.881 0.898 0.816

8 65 935 0.757 0.760 0.701

Avg. 0.771 0.788 0.676

Comparison of the `1-online and `1-batch Algorithms. The `1-online and `1-batch algo-

rithms have almost identical performance in terms of detecting novel documents (see Table 10.1).

However, the online algorithm is much more computationally efficient. In Figure 10.2(a), we

compare the running times of these algorithms. As noted earlier, the running time of the batch

algorithm goes up as t increases (as it has to optimize over the entire past). However, the run-

ning time of the online algorithm is independent of the past and only depends on the number

of documents introduced in each timestep (which in this case is always 1000). Therefore, the

running time of the online algorithm is almost the same across different timesteps. As expected

220

0 2 4 6 8
0

100

200

300

400

Timestep

C
PU

 R
un

ni
ng

 T
im

e
(in

 m
in

s)

(a) Running Time Plot for TDT2

ONLINE
BATCH−IMPL

0 2 4 6 8
0.6

0.7

0.8

0.9

1

TimestepSp
ar

se
 R

ec
on

st
ru

ct
io

n
Er

ro
r (

SR
E) Sparse Reconstruction Error Plot for TDT2

ONLINE
BATCH−IMPL

0 5 10
0

100

200

300

400

Timestep

C
PU

 R
un

ni
ng

 T
im

e
(in

 m
in

s)

(b) Run Time Plot for Twitter

ONLINE
BATCH−IMPL

0 5 10
0.5

0.6

0.7

0.8

0.9

1

TimestepSp
ar

se
 R

ec
on

st
ru

ct
io

n
Er

ro
r (

SR
E) Sparse Reconstruction Error Plot for Twitter

ONLINE
BATCH−IMPL

Figure 10.2: Running time and SRE plots for TDT2 and Twitter datasets.

the run-time gap between the `1-batch and `1-online algorithms widen as t increases – in the

first timestep the online algorithm is 5.4 times faster, and this rapidly increases to a factor of

11.5 in just 7 timesteps.

In Figure 10.2(b), we compare the dictionaries produced by the `1-batch and `1-online al-

gorithms under the SRE metric. In the first few timesteps, the SRE of the dictionaries produced

by the online algorithm is slightly lower than that of the batch algorithm. However, this gets

corrected after a few timesteps and as expected later on the batch algorithm produces better

dictionaries.

10.5.2 Experiments on Twitter

Our second dataset is from an application of monitoring Twitter for Marketing and PR for

smartphone and wireless providers. We used the Twitter Decahose7 to collect a 10% sample

of all tweets (posts) from Sept 15 to Oct 05, 2011. From this, we filtered the tweets relevant

to “Smartphones” using a scheme presented in [35] which utilizes the Wikipedia ontology to

do the filtering. Our dataset comprises of 127760 tweets over these 21 days and the vocabulary

size is 6237 words. We used the tweets from Sept 15 to 21 (34292 in number) to initialize

the dictionaries. Subsequently, at each timestep, we give as input to both the algorithms all
7 htpp://gnip.com/twitter/decahose

221

the tweets from a given day (for a period of 14 days between Sept 22 to Oct 05). Since this

dataset is unlabeled, we do a quantitative evaluation of `1-batch vs. `1-online algorithms (in

terms of SRE) and do a qualitative evaluation of the `1-online algorithm for the novel document

detection task. Here, the size of the initial dictionary k = 100.

Figure 10.2(c) shows the running times on the Twitter dataset. At first timestep the online

algorithm is already 10.8 times faster, and this speedup escalates to 18.2 by the 14th timestep.

Figure 10.2(d) shows the SRE of the dictionaries produced by these algorithms. In this case,

the SRE of the dictionaries produced by the batch algorithm is consistently better than that of

the online algorithm, but as the running time plots suggests this improvement comes at a very

steep price.

Table 10.2 below shows a representative set of novel tweets identified by our online algo-

rithm. In each timestep, instead of thresholding by ζ, we take the top 10% of tweets measured

in terms of the sparse coding objective value and run a dictionary-based clustering, described

in [97], on it. Further post-processing is done to discard clusters without much support and

to pick a representative tweet for each cluster. Using this completely automated process, we

are able to detect breaking news and trends relevant to the smartphone market, such as AT&T

throttling data bandwidth, launch of IPhone 4S, and the death of Steve Jobs.

Date Sample Novel Tweets Detected Using our Online Algorithm

2011-09-26 Android powered 56 percent of smartphones sold in the last three months. Sad thing is it can’t lower the rating of ios!

2011-09-29 How Windows 8 is faster, lighter and more efficient: WP7 Droid Bionic Android 2.3.4 HP TouchPad white ipods 72

2011-10-03 U.S. News: AT&T begins sending throttling warnings to top data hogs: AT&T did away with its unlimited da... #iPhone

2011-10-04 Can’t wait for the iphone 4s #Let ustalkiphone

2011-10-05 Everybody put an iPhone up in the air one time #ripstevejobs

Table 10.2: Sample novel documents detected by our online algorithm.

Appendix

10.A Proof of Theorem 39

First, Let us recap the OIADMM update rules.

Γt+1 = argmin
Γ

‖Γ‖1 + 〈∆t, Γ̃t − Γ〉+
βt
2
‖Γ̃t − Γ‖2F , (10.7)

222

Ât+1 = argmin
A∈A

βt(〈Gt+1, A− Ât〉+
1

2τt
‖A− Ât‖2F), (10.8)

∆t+1 = ∆t + βt(Pt − Ât+1Xt − Γt+1). (10.9)

Let Aopt be the optimum solution to (the batch problem)

min
A∈A

T∑
t=1

‖Pt −AXt‖1.

Let Γ̃t = Pt − ÂtX̂t and Γ̂t = Pt − Ât+1X̂t. For any, A? ∈ A, let Γ?t = Pt − A?X̂t. The

lemmas below hold for any A? ∈ A so in particular it holds for A? set as Aopt.

Proof Flow. Although the algorithm is relatively simple, the analysis is somewhat involved.

Define, Γ
opt
t = Pt −AoptXt. Then the regret of the OIADMM is

R(T) =

T∑
t=1

‖Γ̃t‖1 − ‖Γ
opt
t ‖1.

We split the proof into three technical lemmas. We first upper bound 〈∆t, Γ̂t−Γ?t 〉 (Lemma 36),

and use it to bound ‖Γt+1‖1 − ‖Γ?t ‖1 (Lemma 37). In the proof of Lemma 38, we bound

‖Γ̃t‖1 − ‖Γt+1‖1 and this when added to the bound on ‖Γt+1‖1 − ‖Γ?t ‖1 (from Lemma 37)

gives a bound on ‖Γ̃t‖1 − ‖Γ?t ‖1. The proof of the regret bound uses a canceling telescoping

sum on the bound on ‖Γ̃t‖1 − ‖Γ?t ‖1.

We use the following simple inequality in our proofs.

Lemma 35 For matrices M1,M2,M3,M4 ∈ Rm×n, we have the following

2〈M1 −M2,M3 −M4〉 = ‖M1 −M4‖2F + ‖M2 −M3‖2F − ‖M1 −M3‖2F − ‖M2 −M4‖2F .

Lemma 36 Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. For any

A? ∈ A, we have

〈∆t, Γ̂t − Γ?t 〉 ≤
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
+
βt
2

(
‖Γ?t − Γt+1‖2F − ‖Γt+1 − Γ̂t‖2F − ‖Γ?t − Γ̃t‖2F

)
−βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1−Ât‖2F .

Proof: For any A? ∈ A, (10.8) is equivalent to the following variational inequality [167]:

βt〈Gt+1 +
1

τt
(Ât+1 − Ât), A? − Ât+1〉 ≥ 0. (10.10)

223

Using Γ̂t = Pt − Ât+1X̂t and substituting for Gt+1, we have

βt〈Gt+1, A
? − Ât+1〉 = −βt〈(∆t/βt + Γ̃t − Γt+1)X̂>t , A

? − Ât+1〉

= βt〈∆t/βt + Γ̃t − Γt+1, Ât+1X̂t −A?X̂t〉

= βt〈∆t/βt + Γ̃t − Γt+1, Pt −A?X̂t − (Pt − Ât+1X̂t)〉

= 〈∆t,Γ
?
t − Γ̂t〉+ βt〈Γ̃t − Γt+1,Γ

?
t − Γ̂t〉. (10.11)

Substituting (10.11) into (10.10) and rearranging the terms yield

〈∆t, Γ̂t − Γ?t 〉 ≤ βt〈Γ̃t − Γt+1,Γ
?
t − Γ̂t〉+

βt
τt
〈Ât+1 − Ât, A? − Ât+1〉. (10.12)

By using Lemma 35, the first term on the right side can be rewritten as

〈Γ̃t − Γt+1,Γ
?
t − Γ̂t〉 =

1

2

(
‖Γ̃t − Γ̂t‖2F + ‖Γ?t − Γt+1‖2F − ‖Γt+1 − Γ̂t‖2F − ‖Γ?t − Γ̃t‖2F

)
.

(10.13)

Substituting the definitions of Γ̂t and Γ̃t, we have

‖Γ̃t − Γ̂t‖2F = ‖Pt − ÂtX̂t − (Pt − Ât+1X̂t)‖2F = ‖(Ât+1 − Ât)X̂t‖2F ≤ Ψmax(X̂t)‖Ât+1 − Ât‖2F ,
(10.14)

Remember that Ψmax(X̂t) is the maximum eigenvalue of X>X . Using Lemma 35, we get that

the second term in the right hand side of (10.12) is equivalent to

〈Ât+1 − Ât, A? − Ât+1〉 =
1

2

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F − ‖Ât+1 − Ât‖2F

)
. (10.15)

Combining results in (10.12), (10.13), (10.14), and (10.15), we get the desired bound.

Lemma 37 Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. For any

A? ∈ A, we have

‖Γt+1‖1 − ‖Γ?t ‖1 ≤
1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
− βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F −

βt
2
‖Γt+1 − Γ̃t‖2F .

224

Proof: Let ∂‖Γt+1‖1 denote the subgradient of ‖Γt+1‖1. Now Γt+1 is a minimizer of (10.7).

Therefore, 0m×n ∈ ∂‖Γt+1‖1−∆t−βt(Γ̃t−Γt+1). Rearranging the terms gives ∆t+βt(Γ̃t−
Γt+1) ∈ ∂‖Γt+1‖1. Since ‖Γt+1‖1 is a convex function, we have

‖Γt+1‖1 − ‖Γ?t ‖1 ≤ 〈∆t + βt(Γ̃t − Γt+1),Γt+1 − Γ?t 〉

≤ 〈∆t,Γt+1 − Γ̂t〉+ 〈∆t, Γ̂t − Γ?t 〉+ βt〈Γ̃t − Γt+1,Γt+1 − Γ?t 〉. (10.16)

Using Lemma 35, the last term can be rewritten as

βt〈Γ̃t − Γt+1,Γt+1 − Γ?t 〉 =
βt
2

(
‖Γ?t − Γ̃t‖2F − ‖Γ?t − Γt+1‖2F − ‖Γt+1 − Γ̃t‖2F

)
(10.17)

Combining the inequality of Lemma 36 with (10.17) gives

〈∆t, Γ̂t − Γ?t 〉+ βt〈Γ̃t − Γt+1,Γt+1 − Γ?t 〉 ≤
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
− βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F −

βt
2

(‖Γt+1 − Γ̃t‖2F − ‖Γt+1 − Γ̂t‖2F). (10.18)

Since Γt+1 − Γ̂t = (∆t −∆t+1)/βt, we have

〈∆t,Γt+1 − Γ̂t〉 −
βt
2
‖Γt+1 − Γ̂t‖2F =

1

2βt

(
2〈∆t,∆t −∆t+1〉 − ‖∆t −∆t+1‖2F

)
=

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
. (10.19)

Plugging (10.18) and (10.19) into (10.16) yields the result.

Lemma 38 Let {Γt, Ât,∆t} be the sequences generated by the OIADMM procedure. If τt
satisfies 1

τt
≥ 2Ψmax(X̂t). Then

‖Γ̃t‖1−‖Γ?t ‖1 ≤
1

2βt
‖Λt‖2F+

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
,

where Λt ∈ ∂‖Γ̃t‖1.

Proof: Let Λt ∈ ∂‖Γ̃t‖1. Therefore, ‖Γ̃t‖1 − ‖Γt+1‖1 ≤ 〈Λt, Γ̃t − Γt+1〉. Now,

〈Λt, Γ̃t − Γt+1〉 = 〈Λt/
√
βt,
√
βt(Γ̃t − Γt+1)〉 ≤ 1

2βt
‖Λt‖2F +

βt
2
‖Γ̃t − Γt+1‖2F

Therefore,

‖Γ̃t‖1 − ‖Γt+1‖1 ≤
1

2βt
‖Λt‖2F +

βt
2
‖Γ̃t − Γt+1‖2F . (10.20)

225

Adding (10.20) and the inequality of Lemma 37 together we get

‖Γ̃t‖1−‖Γ?t ‖1 ≤
1

2βt
‖Λt‖2F+

1

2βt
(‖∆t‖2F−‖∆t+1‖2F)+

βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
− βt

2

(
1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F .

Setting 1/τt ≥ 2Ψmax(X̂t) means that (−βt/2)(1
τt
−Ψmax(X̂t))‖Ât+1−Ât‖2F ≤ 0, Therefore,

‖Γ̃t‖1−‖Γ?t ‖1 ≤
1

2βt
‖Λt‖2F+

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+
βt
2τt

(
‖A? − Ât‖2F − ‖A? − Ât+1‖2F

)
,

Now, we are ready to prove Theorem 39. Proof: Substituting, Γopt
t = Pt−AoptX̂t for Γ?t

and Aopt for A? in Lemma 38. Set βt = Φ
D

√
τmT .

T∑
t=1

‖Γ̃t‖1 − ‖Γopt
t ‖1

≤
T∑
t=1

(
1

2βt
‖Λt‖2F +

1

2βt

(
‖∆t‖2F − ‖∆t+1‖2F

)
+
βt
2τt

(
‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F

))

≤ D

2Φ
√
τmT

T∑
t=1

‖Λt‖2F +
D

2Φ
√
τmT

T∑
t=1

(‖∆t‖2F − ‖∆t+1‖2F)

+
Φ
√
T

2D
√
τm

T∑
t=1

(‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F)

≤ D

2Φ
√
τmT

· (TΦ2) +
D

2Φ
√
τmT

· (‖∆1‖2F) +
Φ
√
T

2D
√
τm
· ‖Aopt − Â1‖2F

≤ D
√
TΦ

2
√
τm

+ 0 +
D
√
TΦ

2
√
τm

=
D
√
TΦ

√
τm

.

Since

Γ
opt
t = Pt −AoptXt = Pt −Aopt(X̂t + Et) = Γopt

t −AoptEt,

we have then ‖Γopt
t ‖1 + ‖AoptEt‖1 ≥ ‖Γopt

t ‖1. The regret is bounded as follows:

R(T) =

T∑
t=1

‖Γ̃t‖1 − ‖Γ
opt
t ‖1 ≤

ΦD
√
T

√
τm

+

T∑
t=1

‖AoptEt‖1.

226

10.B Proof of Theorem 40

Proof: Let Γ̂t = Pt − Ât+1X̂t. Let us look at ‖Γt+1 − Γ̂t‖2F .

‖Γt+1 − Γ̂t‖2F = ‖Γt+1 − Γ̃t + Γ̃t − Γ̂t‖2F ≤ 2
(
‖Γt+1 − Γ̃t‖2F + ‖Γ̃t − Γ̂t‖2F

)
≤ 2

(
‖Γt+1 − Γ̃t‖2F + Ψmax(X̂t)‖Ât+1 − Ât‖2F

)
. (10.21)

For the first inequality, we used the simple fact that for any two matrices M1 and M2 ‖M1 −
M2‖2F ≤ 2(‖M1‖2F + ‖M2‖2F). The second inequality is because of (10.14). Firstly, since

‖Γt+1‖1 ≥ 0

‖Γt+1‖1 − ‖Γopt
t ‖1 ≥ −‖Γ

opt
t ‖1 ≥ −Υ.

Using this and rearranging terms in the inequality of Lemma 37 (with Aopt instead of A?) gives

‖Γt+1 − Γ̃t‖2F ≤
1

β2
t

(
‖∆t‖2F − ‖∆t+1‖2F

)
+

1

τt

(
‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F

)
−
(

1

τt
−Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F +

2Υ

βt
,

Plugging this into (10.21) yields

‖Γt+1 − Γ̂t‖2F ≤
2

β2
t

(
‖∆t‖2F − ‖∆t+1‖2F

)
+

2

τt

(
‖Aopt − Ât‖2F − ‖Aopt − Ât+1‖2F

)
− 2

(
1

τt
− 2Ψmax(X̂t)

)
‖Ât+1 − Ât‖2F +

4Υ

βt
.

Letting 1/τt ≥ 2Ψmax(X̂t) and summing over t from 0 to T and simplifying the resulting

equation we get

T∑
t=1

‖Γt+1 − Γ̂t‖2F ≤
2D2

τm
+

4ΥD
√
T

Φ
√
τm

.

10.C ADMM Equations for updating X and A’s

Consider the `1-dictionary learning problem

min
A∈A,X≥0

‖P −AX‖1 + λ‖X‖1,

227

where A is defined in Section 10.2. We use the following algorithm from [97] to solve this

problem. It is quite easy to adapt the ADMM updates to update X’s and A’s, when the other

variable is fixed (see e.g., [97]).

ADMM for updating X , given fixed A. Here we are given matrices P ∈ Rm×n and A ∈
Rm×k, and we want to solve the following optimization problem

min
X≥0

‖P −AX‖1 + λ‖X‖1 ≡ min
X≥0,E

‖E‖1 + λ‖X‖1 such that E = P −AX.

Algorithm 10 shows the ADMM update steps for solving this problem. The entire derivation

is presented in [97] and we are reproducing them here for completeness. In our experiments, we

set ϕ = 5, κ = 1/Ψmax(A), and γ = 1.89. These parameters are chosen based on the ADMM

convergence results presented in [97, 214].

Algorithm 10 : ADMM for Updating X
1: ADMM procedure for solving minX≥0 ‖P −AX‖1 + λ‖X‖1
2: Input: A ∈ Rm×k, P ∈ Rm×n, λ ≥ 0, γ ≥ 0, ψ ≥ 0, κ ≥ 0

3: X(1) ← 0k×n, E(1) ← P , ρ(1) ← 0m×n

4: for i = 1, 2, . . . , to convergence do
5: E(i+1) ← soft(P −AX(i) + ρ(i)/ϕ, 1/ϕ)

6: G← A>(AX(i) + E(i+1) − P − ρ(i)/ϕ)

7: X(i+1) ← max
{
X(i) − κG− (λκ)/ϕ, 0

}
8: ρ(i+1) ← ρ(i) + γϕ(P −AX(i+1) − E(i+1))

9: Return X at convergence

ADMM for Updating A, given fixed X . Given inputs P ∈ Rm×n and X ∈ Rk×n, consider

the following optimization problem

min
A∈A

‖P −AX‖1 ≡ min
A∈A,E

‖E‖1 such that E = P −AX.

When repeating this optimization over multiple timesteps, we use warm starts for faster con-

vergence, i.e., instead of initializing A(1) to 0m×k, we initialize A(1) to the dictionary obtained

at the end of the previous timestep.

228

Algorithm 11 : ADMM for Updating A
1: ADMM procedure for solving minA∈A ‖P −AX‖1
2: Input: X ∈ Rk×n, P ∈ Rm×n, γ ≥ 0, ψ ≥ 0, κ ≥ 0

3: A(1) ← 0m×k, E(1) ← P , ρ(1) ← 0m×n

4: for i = 1, 2, . . . , to convergence do
5: E(i+1) ← soft(P −A(i)X + ρ(i)/ϕ, 1/ϕ)

6: G← (A(i)X + E(i+1) − P − ρ(i)/ϕ)X>

7: A(i+1) ← ΠA(max
{
A(i) − κG, 0

}
)

8: ρ(i+1) ← ρ(i) + γϕ(P −A(i+1)X − E(i+1))

9: Return A at convergence

10.D Pseudo-Codes from Section 10.5

Let us start by extending the definition of A, define

Akt = {A ∈ Rm×kt : A ≥ 0m×kt ∀j = 1, . . . , kt , ‖Aj‖1 ≤ 1}, where Aj is the jth column in A.

We use ΠAkt to denote the projection onto the nearest point in the convex set Akt .
Define Akt as

Akt = {A ∈ Rm×kt : A ≥ 0m×kt ∀j = 1, . . . , kt , ‖Aj‖2 ≤ 1}, where Aj is the jth column in A.

We use ΠAkt to denote the projection onto the nearest point in the convex set Akt .

229

Algorithm 12 : BATCH-IMPL
1: Input: P[t−1] ∈ Rm×Nt−1 , X[t−1] ∈ Rkt×Nt−1 , Pt = [p1, . . . ,pnt] ∈ Rm×nt , At ∈

Rm×kt , λ, ζ, η ≥ 0

2: Novel Document Detection Step:
3: for j = 1 to nt do
4: Solve: xj = argminx≥0 ‖pj −Atx‖1 + λ‖x‖1 (solved using Algorithm 10)

5: if ‖pj −Atxj‖1 + λ‖xj‖1 > ζ

6: Mark pj as novel

7: Batch Dictionary Learning Step:
8: Set kt+1 ← kt + η

9: Set Z[t] ← [X[t−1] |x1, . . . ,xnt]

10: Set X[t] ←
[

Z[t]

0η×Nt

]
11: Set P[t] ← [P[t−1] |p1, . . . ,pnt]

12: for i = 1 to convergence do
13: Solve: At+1 = argminA∈Akt+1

‖P[t] −AX[t]‖1 (solved using Algorithm 11 with

warm starts)

14: Solve: X[t] = argminX≥0 ‖P[t] −At+1X‖1 + λ‖X‖1 (solved using Algorithm 10)

Algorithm 13 : L2-BATCH
1: Input: P[t−1] ∈ Rm×Nt−1 , Pt = [p1, . . . ,pnt] ∈ Rm×nt , At ∈ Rm×kt , λ ≥ 0, ζ ≥ 0,

η ≥ 0

2: Novel Document Detection Step:
3: for j = 1 to nt do
4: Solve: xj = argminx≥0 ‖pj −Atx‖2 + λ‖x‖1 (solved using the LARS method [62])

5: if ‖pj −Atxj‖2 + λ‖xj‖1 > ζ

6: Mark pj as novel

7: `2-batch Dictionary Learning Step:
8: Set kt+1 ← kt + η

9: Set P[t] ← [P[t−1] |p1, . . . ,pnt]

10: [At+1, X[t]] = argminA∈Akt+1
,X≥0 ‖P[t] −AX‖2 + λ‖X‖1 (non-negative sparse coding

problem)

Chapter 11

Conclusions

This thesis developed several novel optimization methods to address the issues encountered in

large scale machine learning system, particularly for synchronization and consistency. When

using the stochastic gradient descent (SGD) to solve the empirical risk minimization problems

in a parameter server, it runs the risk of overwriting, which have been addressed in Part I. Part II

developed several algorithms to solve equality-constrained optimization problems. Finally, we

validate the effectiveness and scalability of the proposed methods in a variety of applications.

In Chaper 2, we proposed online randomized block coordinate descent (ORBCD) which

combines online/stochastic gradient descent and randomized block coordinate descent. OR-

BCD is well suitable for large scale high dimensional problems with non-overlapping composite

regularizers. We established the rate of convergence for ORBCD, which has the same order as

OGD/SGD. For stochastic optimization with strongly convex functions, ORBCD can converge

at a geometric rate in expectation by reducing the variance of stochastic gradient. Essentially,

ORBCD updates part of model parameters using partial samples, allowing the overwriting in

SGD.

In Chaper 3, we first reviewed the alternating direction method of multipliers (ADMM). We

developed new proof techniques to analyze the convergence rate for ADM, which establishes

a O(1/T) convergence rate for the objective, the optimality conditions (constraints) and the

variational inequality form of ADMM. The proof techniques facilitate the improvement and

modifications of ADMM which are needed in some scenarios.

In Chapter 4, we generalized the alternating direction method of multipliers (ADMM) to

Bregman ADMM, similar to how mirror descent generalizes gradient descent. BADMM defines

230

231

a unified framework for ADMM, generalized ADMM, inexact ADMM and Bethe ADMM.

The global convergence and the O(1/T) iteration complexity of BADMM are also established.

In some cases, BADMM is faster than ADMM by a factor of O(n/ log(n)). BADMM can

also be faster than highly optimized commercial software in solving linear program of mass

transportation problem.

In Chapter 5, we proposed a randomized block coordinate variant of ADMM named Parallel

Direction Method of Multipliers (PDMM) to solve the class of problem of minimizing block-

separable convex functions subject to linear constraints. PDMM considers the sparsity and the

number of blocks to be updated when setting the step size. We show two other Jacobian ADMM

methods are two special cases of PDMM. We also use PDMM to solve overlapping block prob-

lems. The global convergence and the iteration complexity are established with constant step

size. Experiments on robust principal component analysis and overlapping group lasso show

that PDMM is faster than existing methods.

In Chapter 6, we proposed an efficient online learning algorithm named online ADM (OADM).

We established regret bounds for the objective and constraint violation for general and strongly

convex functions in OADM. We also discuss inexact update to yield efficient x update, includ-

ing mirror descent and composite objective mirror descent. Finally, we illustrate the efficacy of

OADM in solving lasso and total variation problems.

In Chapter 7, we proposed a provably convergent MAP inference algorithm for large scale

MRFs. The algorithm is based on the ‘tree decomposition’idea from the MAP inference litera-

ture and the alternating direction method from the optimization literature. Our algorithm solves

the tree structured subproblems efficiently via the sum-product algorithm and is inherently par-

allel. The empirical results show that the new algorithm, in its sequential version, compares

favorably to other existing approximate MAP inference algorithm in terms of running time and

accuracy. The experimental results on large datasets demonstrate that the parallel version scales

almost linearly with the number of cores in the multi-core setting. We also implemented the

algorithm using MPI and the experimental results show that our implementation scales almost

linearly with the number of MPI processes for grid-structured graphs.

In Chapter 8, we presented a large scale distributed framework for the estimation of sparse

precision matrix using CLIME. Our framework can scale to millions of dimensions and run

on hundreds of machines. The framework is based on inexact ADMM, which decomposes

the constrained optimization problem into elementary matrix multiplications and elementwise

232

operations. Convergence rates for both the objective and optimality conditions are established.

The proposed framework solves the CLIME in column-blocks and uses block cyclic distribution

to achieve load balancing. We evaluate our algorithm on both shared-memory and distributed-

memory architectures. Experimental results show that our algorithm is substantially more scal-

able than state-of-the-art methods and scales almost linearly with the number of cores.

In Chapter 9, we proposed double plugin Gaussian (DoPinG) copula estimators to deal with

non-Gaussian data with missing values. DoPinG estimates the sparse precision matrix corre-

sponding to non-paranormal distributions by directly estimating nonparametric correlations,

including Kendall’s tau and Spearman’s rho. DoPinG uses two plugin procedures, leveraging

existing sparse precision estimators. DoPinG consists of three steps: (1) estimate nonparametric

correlations by disregarding missing values; (2) estimate the non-paranormal correlation matrix

directly based on nonparametric correlations like Kendall’s tau and Spearman’s rho; (3) plug the

estimated correlation matrix into existing sparse precision estimators to yield the sparse preci-

sion matrix. We prove that DoPinG copula estimators consistently estimate the non-paranormal

correlation matrix at a rate of O(1
(1−δ)

√
log p
n), where δ is the probability of missing values.

Through experiments we illustrate that by increasing number of missing values (increasing δ),

the performance of the method get worse and the standard deviation is increasing in consistent

with the theory. The performance of Kendall’s tau and Spearman’s rho is almost the same for

the same percentage of missing values. Experimental results on non-Gaussian data show that

DoPinG is significantly better than estimators like mGlasso, which are primarily designed for

Gaussian data.

In Chapter 10, we proposed a new online `1-dictionary learning algorithm, based on which

we developed a scalable approach to detecting novel documents in streams of text. We estab-

lished a sublinear regret bound, and empirically demonstrate orders of magnitude speedup over

the batch algorithm, without much loss in performance. A further speedup can be achieved by

distributing the algorithm using known techniques. In batch setting, with the `1/`1- formula-

tion, the dual augmented Lagrangian marginally outperforms the primal augmented Lagrangian

in practice.

References

[1] M.V. Afonso, J.M. Bioucas-Dias, and M.A.T. Figueiredo. Fast image recovery using

variable splitting and constrained optimization. IEEE Transactions on Image Processing,

19(9):2345 – 2356, 2010.

[2] M. Aharon, M. Elad, and A. Bruckstein. The k-SVD: An algorithm for designing over-

complete dictionaries for sparse representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006.

[3] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical

Journal, 19:357–367, 1967.

[4] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex Optimization with Sparsity-

Inducing Norms. S. Sra, S. Nowozin, S. J. Wright., editors, Optimization for Machine

Learning, MIT Press, 2011.

[5] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences.

Journal of Machine Learning Research (JMLR), 6:1705–1749, 2005.

[6] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-

mum likelihood estimation for multivariate gaussian or binary data. Journal of Machine

Learning Research (JMLR), 9:485–516, 2008.

[7] O. Banerjee, L. E. Ghaoui, and A. dAspremont. Model selection through sparse maxi-

mum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine

Learning Research, 9:2261–2286, 2008.

[8] S. Barman, X. Liu, S. Draper, and B. Recht. Decomposition methods for large scale LP

decoding. In Arxiv, 2012.

233

234

[9] P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and

structural results. Journal of Machine Learning Research (JMLR), 3:463–482, 2002.

[10] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods

for convex optimization. Operations Research Letters, 31:167–175, 2003.

[11] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Science, 2:183202, 2009.

[12] A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent op-

timization method with applications to tomography. SIAM Journal on Optimization,

12:79–108, 2001.

[13] D. P. Bertsekas. Consined Optimization and Lagrange Multiplier Methods. Athena

Scientific, 1996.

[14] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[15] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical

Methods. Prentice Hall, 1989.

[16] L. Blackford, J. Choi, A. Cleary, J. Demmel, I. S. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’ Guide.

SIAM, 1997.

[17] D. Boley. Local linear convergence of the alternating direction method of multipliers on

quadratic or linear programs. SIAM Journal on Optimization, 23(4):21832207, 2013.

[18] S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of some

recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

[19] S. Boyd, E. Chu N. Parikh, B. Peleato, and J. Eckstein. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundation and

Trends Machine Learning, 3(1):1–122, 2011.

[20] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

235

[21] J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for

l1-regularized loss minimization. In International Conference on Machine Learning

(ICML), 2011.

[22] T. Cai, W. Liu, and H. Zhou. Estimating sparse precision matrix: Optimal rates of con-

vergence and adaptive estimation. Preprint, 2012.

[23] T. Cai, C.H. Zhang, and H. Zhou. A constrained `1 minimization approach to sparse

precision matrix estimation. American Statistical Association, 106:594–607, 2011.

[24] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis ?. Journal

of the ACM, 58:1–37, 2011.

[25] Y. Censor and S. Zenios. Parallel Optimization: Theory, Algorithms, and Applications.

Oxford University Press, 1998.

[26] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line

learning algorithms. IEEE Transactions on Information Theory, 50:2050–2057, 2004.

[27] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge Univer-

sity Press, 2006.

[28] R. H. Chan, J. F. Yang, and X. M. Yuan. Alternating direction method for image inpaint-

ing in wavelet domain. SIAM Journal on Imaging Science, 4:807–826, 2011.

[29] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical model

selection via convex optimization. Annals of Statistics, 40:1935–1967, 2012.

[30] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-

loss linear support vector machines. Journal of Machine Learning Research (JMLR),

9:13691398, 2008.

[31] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming formulation and

approximation algorithms for the metric labeling problem. SIAM Journal on Discrete

Mathematics, 18(3):608–625, March 2005.

[32] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-block

convex minimization problems is not necessarily convergent. Preprint, 2013.

236

[33] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algo-

rithm using bremgan functions. SIAM Journal on Optimization, 3:538–543, 1993.

[34] X. Chen, Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing. Smoothing proximal gradi-

ent method for general structured sparse regression. The Annals of Applied Statistics,

6:719752, 2012.

[35] V. Chenthamarakshan, P. Melville, V. Sindhwani, and R. D. Lawrence. Concept Label-

ing: Building Text Classifiers with Minimal Supervision. In International Joint Confer-

ence on Artifiicial Intelligence (IJCAI), pages 1225–1230, 2011.

[36] J. Choi. A new parallel matrix multiplication algorithm on distributed-memory con-

current computers. In High Performance Computing on the Information Superhighway,

1997.

[37] P. Comtes and J. Pesquet. Proximal splitting methods in signal processsing. Fixed-Point

Algorithms for Inverse Problems in Science and Engineering Springer (Ed.), pages 185–

212, 2011.

[38] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

1995.

[39] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Methods. Cam-

bridge University Press, 2000.

[40] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin, Q. Ho, and E. P. Xing. Petuum: A

framework for iterative-convergent distributed ML. arXiv, 2013.

[41] Kinderlehrer David and Stampacchia Guido. An Introduction to Variational Inequalities

and Their Applications. Society for Industrial and Applied Mathematics, 2000.

[42] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Se-

nior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Neural

Information Processing Systems (NIPS), 2012.

[43] J. Dean and S. Ghemawat. Map-Reduce: simplified data processing on large clusters. In

Communications of the ACM (CACM), 2008.

237

[44] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online predic-

tion using mini-batches. Journal of Machine Learning Research (JMLR), 13:165–202,

2012.

[45] A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

[46] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and Trends

in Signal Processing, 7(3-4):197–387, 2014.

[47] W. Deng, M. Lai, Z. Peng, and W. Yin. Parallel multi-block ADMM with o(1/k) con-

vergence. ArXiv, 2014.

[48] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating

direction method of multipliers. ArXiv, 2012.

[49] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems

in two and three space variables. Transactions of the American Mathematical Society,

82:421–439, 1956.

[50] J. Duchi, A. Agarwal, and M. Wainwright. Dual averaging for distributed optimization:

Convergence analysis and network scaling. IEEE Transaction on Automatic Control,

57:592–606, 2012.

[51] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-

ball for learning in high dimensions. In International Conference on Machine Learning

(ICML), pages 272–279, 2008.

[52] J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective mirror de-

scent. In Conference on Learning Theory (COLT), 2010.

[53] J. Duchi and Y. Singer. Efficient online and batch learning using forward backward

splitting. Journal of Machine Learning Research (JMLR), 10:2873–2898, 2009.

[54] J. Eckstein and D. P. Bertsekas. An alternating direction method for linear programming.

Technical report, Laboratory for Information and Decision Systems, Massachusetts In-

stitute of Technology, 1990.

238

[55] J. Eckstein and D.P. Bertsekas. On the Douglas-Rachford splitting method and the prox-

imal point algorithm for maximal monotone operators. Mathematical Programming,

55:293–318, 1992.

[56] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Comple-

mentarity Problems, volume I. Springer, 2003.

[57] H. Fang, K. Fang, and S. Kotz. The meta-elliptical distributions with given marginals.

Journal of Multivariate Analysis, 82:1–16, 2002.

[58] M. A. T. Figueiredo and J. M. Bioucas-Dias. Restoration of poissonian images using

alternating direction optimization. IEEE Transactions on Image Processing, 19:3133–

3145, 2010.

[59] J. Friedman, T. Hastie, and R. Tibshirani. Model selection through sparse maximum

likelihood estimation for multivariate gaussian or binary data. Biostatistics, 9:432–441,

2008.

[60] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the

graphical lasso. Biostatistics, 9(3):432–441, 2008.

[61] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and sparse group

lasson. arXiv, 2010.

[62] Jerome Friedman, Trevor Hastie, Holger Hfling, and Robert Tibshirani. Pathwise Coor-

dinate Optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

[63] Q. Fu, A. Banerjee, S. Liess, and P. K. Snyder. Drought detection of the last century:

An MRF-based approach. In Proceedings of the SIAM International Conference on Data

Mining, 2012.

[64] Q. Fu, H. Wang, and A. Banerjee. Bethe-ADMM for tree decomposition based parallel

MAP inference. In Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

[65] Q. Fu, H. Wang, A. Banerjee, S. Liess, and P. K. Snyder. MAP inference on million node

graphical models: KL-divergence based alternating directions method. Technical report,

Computer Science and Engineering Department, University of Minesota, 2012.

239

[66] D. Gabay. Applications of the method of multipliers to variational inequalities. In Aug-

mented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems.

M. Fortin and R. Glowinski, eds., North-Holland: Amsterdam, 1983.

[67] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational prob-

lems via finite-element approximations. Computers and Mathematics with Applications,

2:17–40, 1976.

[68] A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algo-

rithms for MAP LP-relaxations. In Proceedings of the Twenty-First Annual Conference

on Neural Information Processing Systems, 2007.

[69] T. Goldstein, X. Bresson, and S. Osher. Geometric applications of the split Bregman

method: segmentation and surface reconstruction. Journal of Scientific Computing,

45(1):272–293, 2010.

[70] T. Goldstein, B. Donoghue, and S. Setzer. Fast alternating direction optimization meth-

ods. CAM report 12-35, UCLA, 2012.

[71] G. H. Golub and C. V. Loan. Matrix Computations. 3rd ed. Johns Hopkins University

Press, 1996.

[72] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,

M. L. Loh, J. R. Downing, M. A. Caligiuri, and C. D. Bloomfield. Molecular classifi-

cation of cancer: class discovery and class prediction by gene expression monitoring.

Science, pages 531–537, 1999.

[73] K. Goto and R. Van De Geijn. High performance implementation of the level-3 BLAS.

ACM Transactions on Mathematical Software, 35:1–14, 2008.

[74] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data

Mining, Inference and Prediction. Springer, 2009.

[75] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex

optimization. Machine Learning, 69(2-3):169–192, 2007.

[76] E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online

convex optimization. In Conference on Learning Theory (COLT), 2006.

240

[77] E. Hazan and S. Kale. Projection-free online learning. In International Conference on

Machine Learning (ICML), 2012.

[78] B. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back substitu-

tion for separable convex programming. SIAM Journal of Optimization, pages 313–340,

2012.

[79] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating

direction method of multipliers. Preprint, 2012.

[80] B. He and X. Yuan. On theO(1/n) convergence rate of the Douglas-Rachford alternating

direction method. SIAM Journal on Numerical Analysis, 50:700–709, 2012.

[81] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.

Neural Computation, 18:1527–1554, 2006.

[82] F. L. Hitchcock. The distribution of a product from several sources to numerous localities.

Journal of Mathematical Physics, 20:224–230, 1941.

[83] W. Hoeffding. A class of statistics with asymptotically normal distribution. The Annals

of Mathematical Statistics, 19:293–325, 1948.

[84] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal

of the American Statistical Association, 58:13–30, 1963.

[85] M. Hong, T. Chang, X. Wang, M. Razaviyayn, S. Ma, and Z. Luo. A block successive

upper bound minimization method of multipliers for linearly constrained convex opti-

mization. Preprint, 2013.

[86] M. Hong and Z. Luo. On the linear convergence of the alternating direction method of

multipliers. ArXiv, 2012.

[87] P. O. Hoyer. Non-negative sparse coding. In IEEE Workshop on Neural Networks for

Signal Processing, pages 557–565, 2002.

[88] C. Hsieh, I. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for

sparse inverse covariance estimation. In Neural Information Processing Systems (NIPS),

2012.

241

[89] C. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix

estimation using quadratic approximation. In Neural Information Processing Systems

(NIPS), 2011.

[90] C.-J. Hsieh, K.-W. Chang, S. Keerthi C.-J. Lin, and S. Sundararajan. A dual coordinate

descent method for large-scale linear SVM. In International Conference on Machine

Learning (ICML), 2008.

[91] Imagenet. Large scale visual recognition challenge (ILSVRC). http://www.

image-net.org/challenges/LSVRC.

[92] C. Jin, Q. Fu, H. Wang, A. Agrawal, W. Hendrix, W. Liao, M. Patwary, A. Banerjee, and

A. Choudhary. Solving combinatorial optimization problems using relaxed linear pro-

gramming: A high performance computing perspective. In International Workshop on

Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Program-

ming Models and Applications, 2013.

[93] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive vari-

ance reduction. In Neural Information Processing Systems (NIPS), 2013.

[94] V. Jojic, S. Gould, and D. Koller. Fast and smooth: Accelerated dual decomposition

for MAP inference. In Proceedings of the twenty-Seventh International Conference on

Machine Learning, 2010.

[95] A. Juditsky, A. Nemirovski, G. Lan, and A. Shapiro. Robust stochastic approximation

approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609,

2009.

[96] Kaggle. The home of data science. https://www.kaggle.com.

[97] S. Kasiviswanathan, P. Melville, A. Banerjee, and V. Sindhwani. Emerging topic de-

tection using dictionary learning. In ACM International Conference on Information and

Knowledge Management (CIKM), pages 745–754, 2011.

[98] S. Kasiviswanathan, H. Wang, A. Banerjee, and P. Melville. Online l1-dictionary learning

with application to novel document detection. In Neural Information Processing Systems

(NIPS), 2012.

http://www.image-net.org/challenges/LSVRC
http://www.image-net.org/challenges/LSVRC
https://www.kaggle.com

242

[99] K. C. Kiwiel. Proximal minimization methods with generalized Bregman functions.

SIAM Journal on Control and Optimization, 35:1142–1168, 1995.

[100] M. Kolar and E. Xing. Estimating sparse precision matrices from data with missing

values. In International Conference on Machine Learning (ICML), 2012.

[101] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

The MIT Press, 2009.

[102] V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transac-

tions on Information Theory, 47(5):1902–1914, 2001.

[103] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the

generalization error of combined classifiers. Annals of Statistics, 30(1):1–50, 2002.

[104] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via

dual decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(3):531 –552, march 2011.

[105] J. Konecny and P. Richtarik. Semi-stochastic gradient descent methods. arXiv, 2013.

[106] W. Kruskal. Ordinal measures of association. Journal of the American Statistical Asso-

ciation, 53(284):814–861, 1958.

[107] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product

algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[108] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logis-

tics Quarterly, 2:83–97, 1955.

[109] M. Lam, E. Rothberg, and M. Wolf. The cache performance and optimization of blocked

algorithms. In Architectural Support for Programming Languages and Operating Sys-

tems, 1991.

[110] M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and pro-

cesses. Springer, 1991.

[111] L. Li and K.-C. Toh. An inexact interior point method for L1-reguarlized sparse covari-

ance selection. Mathematical Programming Computation, 2:291–315, 2010.

243

[112] M. Li, D. Andersen, J. Park, A. Smola, A. Ahmed, V. Josifovski, J. Long, E. Shekita,

and B. Su. Scaling distributed machine learning with the parameter server. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[113] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. Andersen, and A. Smola. Parameter server for

distributed machine learning. In Neural Information Processing Systems (NIPS), 2013.

[114] X. Li, T. Zhao, X. Yuan, and H. Liu. An R package flare for high dimensional linear

regression and precision matrix estimation. http://cran.r-project.org/web/packages/flare,

2013.

[115] Y. Li and S. Osher. Coordinate descent optimization for `1 minimization with application

to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 3:487503,

2009.

[116] Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method for

exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-

2215, 2009.

[117] R. Little and D. Rubin. Statistical analysis with missing data. Wiley, New York, 1987.

[118] H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. High dimensional semipara-

metric gaussian copula graphical models. The Annals of Statistics, 40(40):2293–2326,

2012.

[119] H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estima-

tion of high dimensional undirected graphs. Journal of Machine Learning Research,

10:2295–2328, 2009.

[120] H. Liu and L. Wang. Tiger: A tuning-insensitive approach for optimally estimating

Gaussian graphical models. Preprint, 2012.

[121] P. Loh and M. Wainwright. High-dimensional regression with noisy and missing data:

Provable guarantees with non-convexity. In Neural Information Processing Systems

(NIPS), 2012.

[122] K. Lounici. High-dimensional covariance matrix estimation with missing observations.

ArXiv, 2012.

244

[123] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. Distributed

graphlab: A framework for machine learning in the cloud. In International Conference

on Very Large Data Bases (VLDB), 2012.

[124] Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent

methods. ArXiv, 2013.

[125] Z.-Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex

differentiable minimization. Journal of Optimization Theory and Applications, 72:735,

2002.

[126] L. Zhang M. Mahdavi and R. Jin. Mixed optimization for smooth functions. In Neural

Information Processing Systems (NIPS), 2013.

[127] S. Ma, L. Xue, and H. Zou. Alternating direction methods for latent variable Gaussian

graphical model selection. Neural Computation, 25:2172–2198, 2013.

[128] M. Mahdavi, R. Jin, and T. Yang. Trading regret for efficiency: Online convex opti-

mization with long term constraints. Journal of Machine Learning Research (JMLR),

13(1):2503–2528, 2012.

[129] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and

sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

[130] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cam-

bridge University Press, 2008.

[131] S. Mannor and J. N. Tsitsiklis. Online learning with constraints. In Conference on

Learning Theory (COLT), 2006.

[132] A. F. Martins. The Geometry of Constrained Structured Prediction: Applications to Infer-

ence and Learning of Natural Language Syntax. PhD thesis, Carnegie Mellon University,

2012.

[133] A. F. Martins, P. M. Aguiar, M. A. Figueiredo, N. A. Smith, and E. P. Xing. An aug-

mented Lagrangian approach to constrained MAP inference. In International Conference

on Machine Learning (ICML), 2011.

245

[134] R. Mazumder and T. Hastie. Exact covariance thresholding into connected components

for large-scale graphical lasso. Journal of Machine Learning Research, 13:723–736,

2012.

[135] C. McDiarmid. On the method of bounded differences. pages 148–188, 1989.

[136] N. Meinshausen and P. Buhlmann. High-dimensional graphs and variable selection with

the lasso. Annals of Statistics, 34(3):1436–1462, 2006.

[137] P. Melville, J. Leskovec, and F. Provost. Proceedings of the first workshop on social

media analytics. ACM, 2010.

[138] S. Mendelson. Rademacher averages and phase transitions in glivenko-cantelli classes.

IEEE Transactions on Information Theory, 48(1):251–263, 2002.

[139] O. Meshi and A. Globerson. An alternating direction method for dual MAP LP relax-

ation. In European Conference on Machine Learning (ECML), 2011.

[140] T. D. Mitchell, T. R. Carter, P. D. Jones, M. Hulme, and M. New. A comprehensive

set of high-resolution grids of monthly climate for Europe and the globe: the observed

record (1901-2000) and 16 scenarios (2001-2100). Tyndall Centre for Climate Change

Research, 2004.

[141] A. Nedic and A. Ozdaglar. Cooperative distributed multi-agent optimization. In D. P.

Palomar and Y. C. Eldar, editors, Convex Optimization in Signal Processing and Com-

munications. Cambridge University Press, 2009.

[142] A. Nedic and A. Ozdaglar. Cooperative distributed multi-agent optimization. In Convex

Optimization in Signal Processing and Communications. D. P. Palomar and Y. C. Eldar,

eds. Cambridge University Press, 2010.

[143] A. Nemirovski. Prox-method with rate of convergenceO(1/t) for variational inequalities

with lipschitz continuous monotone operators and smooth convex-concave saddle point

problems. SIAM Journal on Optimization, 15:229–251, 2004.

[144] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimiza-

tion. Wiley, 1983.

246

[145] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,

2004.

[146] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical

Report 76, Center for Operation Research and Economics (CORE), Catholic University

of Louvain (UCL), 2007.

[147] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Pro-

gramming, 120:221–259, 2009.

[148] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization meth-

ods. SIAM Journal on Optimization, 22(2):341362, 2012.

[149] M. K. Ng, P.A. Weiss, and X.M. Yuan. Solving constrained total-variation problems via

alternating direction methods. SIAM Journal on Scientific Computing, 32(5):2710–2736,

2010.

[150] F. Niu, B. Retcht, C. Re, and S. J. Wright. Hogwild! a lock-free approach to parallelizing

stochastic gradient descent. In Neural Information Processing Systems (NIPS), 2011.

[151] B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy

Employed by V1? Vision Research, 37(23):3311–3325, 1997.

[152] H. Ouyang, N. He, L. Tran, and A. Gray. Stochastic alternating direction method of

multipliers. In International Conference on Machine Learning (ICML), 2014.

[153] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization,

1:123–231, 2014.

[154] Neal Parikh and Stephen Boyd. Graph projection block splitting for distributed optimiza-

tion. Mathematical Programming Computation, 6(1):77–102, 2014.

[155] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first story detection with applica-

tion to twitter. In HLT ’10, pages 181–189. Association for Computational Linguistics

(ACL), 2010.

[156] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably

good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

247

[157] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised learning using

graphics processors. In International Conference on Machine Learning (ICML), 2009.

[158] P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-passing for graph-structured

linear programs: Proximal methods and rounding schemes. Journal of Machine Learning

Research, 11:1043–1080, 2010.

[159] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance

estimation by minimizing l1-penalized log-determinant divergence. Electronic Journal

of Statistics, 5:935–980, 2011.

[160] P. Richtarik and M. Takac. Iteration complexity of randomized block-coordinate descent

methods for minimizing a composite function. Mathematical Programming, 2012.

[161] P. Richtarik and M. Takac. Parallel coordinate descent methods for big data optimization.

ArXiv, 2013.

[162] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical

Statistics, 22:400–407, 1951.

[163] R. Rockafellar. The multiplier method of hestenes and powell applied to convex pro-

gramming. Journal of Optimization Theory and Applications, 12:555–562, 1973.

[164] R. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm

in convex programming. Mathematics of Operations Research, 1:97–116, 1976.

[165] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton

University Press, 1970.

[166] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algo-

rithm in convex programming. Mathematics of Operations Research, 1:97–116, 1976.

[167] R. T. Rockafellar and R. J-B Wets. Variational Analysis. Springer-Verlag, 2004.

[168] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponen-

tial convergence rate for finite training sets. In Neural Information Processing Systems

(NIPS), 2012.

248

[169] L. Rudin, S. J. Osher, and E. Fatemi. Nonlinear total variation based noise removal

algorithms. Physica D, 60:259–268, 1992.

[170] A. Saha and V. Sindhwani. Learning evolving and emerging topics in social media: A

dynamic nmf approach with temporal regularization. In ACM International Conference

on Web Search and Data Mning (WSDM), pages 693–702, 2012.

[171] A. Saha and A. Tewari. On the non-asymptotic convergence of cyclic coordinate descent

methods. SIAM Journal on Optimization, 23:576601, 2013.

[172] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternat-

ing linearization methods. In Neural Information Processing Systems (NIPS), 2010.

[173] M. Schmidt, N. L. Roux, and F. Bach. Convergence rates of inexact proximal-gradient

methods for convex optimization. In Neural Information Processing Systems (NIPS),

pages 1458–1466, 2011.

[174] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average

gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.

[175] S. Shalev-Shwartz, Y. Singer, and Nathan Srebro. Pegasos: primal estimated sub-gradient

solver for SVM. In International Conference on Machine Learning (ICML), 2007.

[176] S. Shalev-Shwartz and A. Tewari. Stochastic methods for `1 regularized loss minimiza-

tion. In International Conference on Machine Learning (ICML), 2009.

[177] Shai Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations

and Trends in Machine Learning, 4(2), 2012.

[178] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-Verlag,

1985.

[179] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for infer-

ence. In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for

Machine Learning. MIT Press, 2011.

[180] D. Sontag and T. Jaakkola. Tree block coordinate descent for MAP in graphical models.

In Proceedings of the Twelfth International Conference on Artificial Intelligence and

Statistics.

249

[181] N. Stadler and P. Buhlmann. Missing values: sparse inverse covariance estimation and

an extension to sparse regression. Statistics and Computing, pages 1–17, 2009.

[182] T. Suzuki. Dual averaging and proximal gradient descent for online alternating direction

multiplier method. In International Conference on Machine Learning (ICML), 2013.

[183] T. Suzuki. Stochastic dual coordinate ascent with alternating direction method of multi-

pliers. In International Conference on Machine Learning (ICML), 2014.

[184] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-

level performance in face verification. 2014.

[185] M. Takac, A. Bijral, P. Richtarik, and N. Srebro. Mini-batch primal and dual methods for

SVMs. In International Conference on Machine Learning (ICML), 2013.

[186] R. Tappenden, P. Richtarik, and B. Buke. Separable approximations and decomposition

methods for the augmented Lagrangian. Preprint, 2013.

[187] D. Tarlow, D. Batra, P. Kohli, and V. Kolmogorov. Dynamic tree block coordinate ascent.

In Proceedings of the Twenty-Eighth International Conference on Machine Learning,

2011.

[188] M. Telgarsky and S. Dasgupta. Agglomerative Bregman clustering. In International

Conference on Machine Learning (ICML), 2012.

[189] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B, 58:267–288, 1996.

[190] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-

mization. Journal of Optimization Theory and Applications, 109:475494, 2001.

[191] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.

Preprint, 2008.

[192] P. Tseng. Aprroximation Accuracy, Gradient Methods, and Error Bound for Structured

Convex Optimization. Mathematical Programming, Series B, 125:263–295, 2010.

[193] H. Tsukahara. Efficient estimation in the bivariate normal copula model: Normal margins

are least-favorable. Bernoulli, 3:55–77, 1997.

250

[194] H. Tsukahara. Semiparametric estimation in copula models. Canadian Journal of Statis-

tics, 33:357–375, 2005.

[195] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications, 16(2):264–

280, 1971.

[196] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. El-

dar and G. Kutyniok, editors, Compressed Sensing, chapter 5, pages 210–268. Cambridge

University Press, 2012.

[197] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement on

(hyper)trees: Message-passing and linear-programming approaches. IEEE Transactions

of Information Theory, 51(11):3697–3717, 2005.

[198] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and varia-

tional inference. Foundations and Trends in Machine Learning, 1:1–305, 2008.

[199] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and varia-

tional inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[200] H. Wang and A. Banerjee. Online alternating direction method. In International Confer-

ence on Machine Learning (ICML), 2012.

[201] H. Wang and A. Banerjee. Bregman alternating direction method of multipliers. Neural

Information Processing Systems (NIPS), 2014.

[202] H. Wang and A. Banerjee. Online randomized block coordinate descent. ArXiv, 2014.

[203] H. Wang, A. Banerjee, C. Hsieh, P. Ravikumar, and I. Dhillon. Large scale distributed

sparse precesion estimation. In Neural Information Processing Systems (NIPS), 2013.

[204] H. Wang, A. Banerjee, and Z. Luo. Parallel direction method of multipliers. In Neural

Information Processing Systems (NIPS), 2014.

[205] H. Wang, A. Banerjee, and Z. Luo. Parallel direction method of multipliers. ArXiv, 2014.

[206] H. Wang, F. Fazayeli, S. Chatterjee, and A. Banerjee. Gaussian copula precision estima-

tion with missing values. 2014.

251

[207] X. Wang, M. Hong, S. Ma, and Z. Luo. Solving multiple-block separable convex mini-

mization problems using two-block alternating direction method of multipliers. Preprint,

2013.

[208] J. Wright and Y. Ma. Dense error correction via l1-minimization. IEEE Transactions of

Information Theory, 56(7):3540–3560, 2010.

[209] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse

representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(2):210–227,

February 2009.

[210] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimiza-

tion. Journal of Machine Learning Research (JMLR), 11:2543–2596, 2010.

[211] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance

reduction. arXiv, 2014.

[212] L. Xue and H. Zou. Regularized rank-based estimation of high-dimensional nonparanor-

mal graphical models. The Annals of Statistics, 40(5):2541–2571, 2012.

[213] A. Yang, S. Sastry, A. Ganesh, and Y. Ma. Fast l1-minimization algorithms and an

application in robust face recognition: A review. In International Conference on Image

Processing (ICIP), pages 1849–1852, 2010.

[214] J. Yang and Y. Zhang. Alternating direction algorithms for L1-problems in compressive

sensing. ArXiv, 2009.

[215] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propa-

gation: an empirical study. Jourmal of Machine Learning Research, 7:1887–1907, 2006.

[216] Y. Yu. Better approximation and faster algorithm using the proximal average. In Neural

Information Processing Systems (NIPS), 2012.

[217] M. Yuan. High dimensional inverse covariance matrix estimation via linear program-

ming. Journal of Machine Learning Research, 11, 2010.

[218] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society B, 68:4967, 2007.

252

[219] X. M. Yuan. Alternating direction methods for sparse covariance selection. Preprint,

2009.

[220] X. M. Yuan and J. F. Yang. Sparse and low-rank matrix decomposition via alternating

direction methods. Preprint, 2009.

[221] L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number indepen-

dent access of full gradients. In Neural Information Processing Systems (NIPS), 2013.

[222] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and

hierarchical variable selection. Annals of Statistics, 37:34683497, 2009.

[223] Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma. Stable principal component pursuit. In

IEEE International Symposium on Information Theory, 2010.

[224] D. Zimmerman, B. Zumbo, and R. Williams. Bias in estimation and hypothesis testing

of correlation. Transformation, 24:133–158, 2003.

[225] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.

In International Conference on Machine Learning (ICML), pages 928–936, 2003.

[226] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent.

In Neural Information Processing Systems (NIPS), 2010.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Statistical Learning Theory
	Distributed Machine Learning System
	Contributions and Organization of the Thesis

	I Unconstrained Optimization
	Online Randomized Block Coordinate Descent
	Introduction
	Related Work
	Online and Stochastic Gradient Descent
	Randomized Block Coordinate Descent

	Online Randomized Block Coordinate Descent
	ORBCD for Online Learning
	ORBCD for Stochastic Optimization
	ORBCD with variance reduction

	The Rate of Convergence
	Online Optimization
	Stochastic Optimization
	ORBCD with Variance Reduction

	II Equality-constrained Optimization
	Alternating Direction Method of Multipliers
	Introduction
	Analysis for Batch Alternating Direction Method
	Convergence Rate for the Objective
	Convergence Rate for the Optimality Conditions (Constraints)
	Rate of Convergence of ADM based on Variational Inequality

	Bregman Alternating Direction Method of Multipliers
	Introduction
	Bregman Alternating Direction Method of Multipliers
	Generalized BADMM

	Convergence Analysis of BADMM
	Experimental Results
	Convergence of BADMM with Time Varying Step Size

	Parallel Direction Method of Multipliers
	Introduction
	Parallel Direction Method of Multipliers
	Inexact PDMM
	Connections to Related Work
	Randomized Overlapping Block Coordinate

	Theoretical Results
	Experimental Results
	Convergence of PDMM
	Technical Preliminaries
	Theoretical Results

	Connection to ADMM
	Connection to PJADMM

	Online Alternating Direction Method of Multipliers
	Introduction
	Online Alternating Direction Method
	Regret Analysis for OADM
	General Convex Functions
	Strongly Convex Functions

	Regret Analysis for OADM with = 0
	General Convex Functions
	Strongly Convex Functions

	Further Discussions
	Inexact ADMM Updates (> 0)
	Stochastic Convergence Rates
	Connections to Related Work (= 0)
	Projection-free Online Learning

	Experimental Results
	Generalized Lasso
	Simulation

	Proof of Theorem 19 and 21 in Case 2 in Section 6.5.1
	Proof of Stochastic Convergence Rates

	III Applications
	Bethe-ADMM for Tree Decomposition based Parallel MAP Inference
	Introduction
	Background and Related Work
	Problem Definition
	ADMM based MAP Inference Algorithms

	Algorithm and Analysis
	ADMM for MAP Inference
	Bethe-ADMM
	Convergence
	Extension to MRFs with General Factors

	Experimental Results
	Comparison with Primal based Algorithms
	Comparison with Dual based Algorithms
	Edge based vs Tree based
	Scalability Experiments on Multicores

	Large Scale Sparse Precision Estimation
	Introduction
	Column Block ADMM for CLIME
	Leveraging Sparse, Low-Rank Structure
	Sparse Structure
	Low Rank Structure

	Scalable Parallel Computation Framework
	Experimental Results
	Comparision with Existing Algorithms
	Scalability of CLIME ADMM

	Optimization Convergence Rate for CLIME ADMM
	O(1/T) Convergence Rate for Objective Function
	O(1/T) Convergence Rate for the Optimality Conditions

	Statistical Convergence Rates with Covariance Perturbation
	CLIME Estimator: Bounds in terms of
	Bounds for

	Gaussian Copula Precision Estimation with Missing Values
	Introduction
	Gaussian Copula Precision Estimation with Missing Values
	Kendall's tau with missing values
	Spearman's rho with missing values
	Plugin estimate for CLIME

	Theoretical Analysis
	Kendall's Tau with Missing Values
	Spearman's Rho with Missing Values
	Plug-in CLIME Estimator

	Experimental Results
	Synthetic Data
	Climate Data

	Online 1-Dictionary Learning with Application to Novel Document Detection
	Introduction
	Preliminaries
	Novel Document Detection Using Dictionary Learning
	Online 1-Dictionary Learning
	Online 1-Dictionary Algorithm

	Experimental Results
	Experiments on News Streams
	Experiments on Twitter

	Proof of Theorem 39
	Proof of Theorem 40
	ADMM Equations for updating X and A's
	Pseudo-Codes from Section 10.5

	Conclusions
	References

