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INTRODUCTION: 

 

Cancer is the second leading cause of death in the USA with about 575,000 deaths each 

year and a disease for which death rates are increasing. Between 2000 and 2050, the 

elderly population in the USA is projected to increase by 135%[1]. Moreover, the 

population aged 85 and over, which is the group most likely to need health and long-term 

care services, including cancer care services is projected to increase by 350%. 

Approximately 60% of cancer patients are treated with external beam radiotherapy at 

some point during management of their disease. The goal of radiation therapy (RT) is to 

maximize the dose to the target while limiting the dose to nearby healthy organs or organ 

at risk, (OAR), in order to improve tumor control and normal tissue toxicity. 

Radiation therapy is primarily used to treat cancer by locally targeting radiation 

to the gross tumor volume (GTV) with added clinical target volume that accounts for 

microscopic extensions of the disease (CTV) and an additional planning target volume 

(PTV) that accounts for setup and localization errors . The concept of GTV, CTV and 

PTV to report dose prescription is discussed in the review paper [2]. Radiation beams are 

produced by medical linear accelerators which have now imaging capabilities including 

volumetric imaging using cone beam CT integrated into the treatment delivery process. 

The linear accelerators are mounted on a gantry with a rotating couch, gantry and 

collimator to allow for many beam directions to be focused on the target volume.  

Avoidance of normal tissues is accomplished by directing multiple beams at the target 

using a beams eye view (BEV) of the target, thus delivering a high dose where the beams 

intersect at the target, and a relatively lower dose outside of the intersection and also by 
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modulating the intensity of radiation using Multi Leaf Collimator (MLC) so that the 

maximum dose is delivered to target. Biological sparing of normal tissue is accomplished 

by fractionating the radiation therapy over several weeks with tumor typically being 

irradiated 5 days in a week. The tumor tissue lacks repair mechanisms to repair DNA 

damage from the radiation, whereas normal tissues can repair minor DNA damage. 

Therefore, by fractionating the treatment, normal tissues are provided time to repair, thus 

biologically sparing the normal tissue. 

Although conventionally fractionated radiotherapy is delivered in a four to eight week 

time period,  radiation therapy treatment planning is carried out based on information that 

is currently limited to a single 3D anatomical computed tomography (CT) image data set 

acquired at the onset of treatment design (Fig. 1a). The patient is typically marked for 

repeated alignment with localization lasers in the treatment room. The treatment planning 

is then performed on the CT scan where beam geometries, energies, and collimation are 

determined either by inverse planning using intensity modulation or using conventional 

3D conformal therapy techniques, and the resultant dose distribution is computed. This 

concept may result in significant treatment uncertainties, including geometric miss of 

target/tumor and resulting in excess irradiation of organs at risk (OAR). An example to 

highlight this is shown below in Fig 1 in the case of head and neck cancer patient. 

Fig 1 a, refers to the planning CT used for treatment planning, fig 1b refers to the CT 

acquired on first day of treatment showing correspondence to the planning CT. Fig 1c is 

the CT acquired on the last day of treatment and illustrates how the patient’s aquaplast 

mask does not fit to the external skin due to the weight loss or other changes. A plan 
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delivered based on planning CT to this CT geometry may result in unacceptable OAR 

and tumor doses. 

 

Figs 1.1 a, b, c illustrating the patient’s CT anatomy during planning CT, first day of 

treatment and last day of treatment respectively 

1.2 Imaging workflow in radiation oncology: 

Imaging is included in the radiation oncology process in a variety of ways.  The approach 

taken depends upon: the type of imaging, the availability of the on board imaging 

technology on the linear accelerator (kilo voltage x-ray imaging, cone beam CT, CT on 

rails, MVCT etc...) the clinical objective, and, and the presence of other imaging 

modalities for multi-modality imaging and registration.  The most commonly used 

imaging modalities of CT, PET and MRI and its workflow process in radiation oncology 

is discussed in this section. 

1.2.1 CT Imaging in Radiotherapy Workflow 

CT images are utilized for pre-treatment imaging; treatment planning and treatment 

verification for radiation treatments can be outlined as in Figure 1 below. It should be 

noted in the current setting; ART involves the patient being rescanned for a new 

treatment planning CT in the flow of images from linac to CT as shown in fig 1. 

a b c 
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Figure 1.2.  Workflow for CT-based radiotherapy. (Adapted from reference 3) 
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With the availability of multi-modal imaging for diagnosis and therapy response, the 

imaging work flow in a modern radiation oncology department [3] can be represented as 

shown in Fig 1.3 below. 

 

Figure 1.3: Progression of the radiation therapy workflow towards an image guided  

radiation therapy process, in which images from a variety of imaging modalities are used 

in the design of the therapy.  These images are registered using both rigid and non-rigid 

methods and used for visualization and manual or automated segmentation. Imaging in 

the room is now being more broadly employed to both evaluate geometric targeting (e.g., 
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cone-beam CT, MVCT, etc..) and adaptation based on delivered dose (Adaptive radiation 

therapy)( Adapted from reference 3) 

 A treatment plan is developed based on contouring target volume quantified by patient 

specific imaging i.e. CT, MRI or PET. Appropriate margin expansion for CTV to PTV 

margins for tumor/target can be defined based on quantifying the systematic (Σ) and 

random (σ ) errors as defined by Van herk’s formulae[4] 

 Δ(CTV-PTV Expansion)  = 2.5 Σ + 0.7 σ 

Once a treatment plan has been approved, the plan, isocenter and DRRs or CT scan itself 

are sent to the linear accelerator.  DRRs are used for comparison with megavoltage or 

kilovoltage planar images for appropriate patient alignment.  The CT scan is used to 

estimate appropriate patient alignment by registration and fusion of the CT scan with 

volumetric images acquired at the linear accelerator which can be kilovoltage or 

megavoltage, cone beam or fan beam.  CT imaging is the most dominant imaging used in 

the entire workflow of radiation oncology process.  

1.2.2 Positron Emission Tomography (PET) imaging for target Definition and 

therapy response in Radiation Therapy 

Positron emission tomography (PET) provides functional information on tumor, and may 

also identify the extent and location of active disease. This technique is based on the 

injection of a radioactive tracer with short half-life. The half-life of radioactive 
 
F

18
 to 

trace glucose metabolism using the fluorodeoxyglucose, (FDG) is two hours. The tracer 

concentrates on the area of interest with increased metabolic activity and whose activity 

can be detected using gamma ray detectors. PET/CT scans can be acquired separately 
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and can be integrated with treatment planning using rigid and non-rigid registration 

techniques or may be performed as part of radiation therapy simulation to adjust target 

volumes. PET imaging can also be used to assess tumor response or recurrence after 

completion of radiation. An example of PET imaging pre and post radiation therapy is 

shown below in figure 1.4 as discussed in reference[5]. SUV or Standardized Uptake 

Value is a convenient measure for monitoring and assessing therapy response and is 

calculated either pixel-wise yielding a parametric image, or over a region of interest 

(ROI). This may be done for any image acquired at time point t, or for all images of a 

dynamic series acquired at multiple time points. The SUV is commonly defined as the 

ratio of the tissue radioactivity concentration c (e.g. in MBq/kg = kBq/g) at time point t, 

and the injected activity (e.g. in MBq, extrapolated to the same time t) divided by the 

body weight (e.g. in kg): 

SUV (t) = 
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Figure 1.4: PET imaging showing tumor response before and after completion of 

radiation therapy (see reference 5 for details) 

1.2.3 Magnetic Resonance Imaging (MRI) use in Therapy Planning and Response 

MRI image data can be used in the radiation therapy treatment planning process in 

several ways. Currently morphological data from MR based on T1, T2 imaging and 

similarly weighted images, together with contrast agents can be used to define tumor and 

organ extent as shown in fig 1.5 for a brain tumor example. 

Figure 1.5. T1 and T 2 images of MRI of brain 

T1 

T2 
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There is growing use of functional and metabolic information to complement 

morphological images. These data used can either by digitally transferred to a planning 

system and co-registered with CT, with and without prior distortion correction. 

Alternately the data can be used directly for planning after distortion correction and with 

bulk assignment of attenuation corrections (MR simulation).  

MR simulation requires appropriate set up of the patient in the treatment position, 

registration of surface markers, and assurance of spatial accuracy. Registration to CT also 

benefits from these steps.  MR may also be used to assess changes in target volume 

during therapy and to assess response and residual disease following treatment.   

1.3 Clinical rationale for Adaptive Radiation Therapy: 

1.3.1 Introduction to ART 

The term adaptive radiation therapy was originally coined by Di Yan [6] . Adaptive 

radiotherapy has been introduced as a feedback control strategy to include patient-

specific treatment variation explicitly in the control of treatment planning and 

delivering radiation during the treatment course[7]. The goal of adaptive radiation 

therapy is not only to address inter and intra fraction changes but also to take 

advantage of treatment variation in the individualized treatment optimization. The 

potential of adaptive radiotherapy extends beyond the increase of radiation dose 

delivery accuracy. It could also improve radiotherapy efficacy after patient-specific 

biological changes are incorporated in the adaptive optimal control process. Most 

clinical applications of adaptive radiotherapy have been limited to target position 

correction alone (IGRT), and the extensive feedback information obtained during 



 

 10 

the treatment course has not been fully used in treatment optimization. In the 

following section we present an overview of various approaches to ART and its 

clinical rationale. 

1.3.1 On-line and Off-line Analysis for In-room Image Guidance 

Once the technical development and optimization of in-room imaging tools integrated 

with the actual treatment process, the next important step is the development and 

implementation of clinical protocols for image-based guidance[8]. There is a variety of  

information available in the literature describing such protocols for adaptive radiation 

therapy for different anatomical sites and a nice summary can be found in Seminars in 

Radiation Oncology[9].  It is well known from daily imaging arising from Image Guided 

Radiation Therapy (IGRT) that dose delivery to tumor and organs at risk is affected by 

inter-fraction and intra-fraction motion of organs. Intra-fraction motion defined as motion 

when the radiation beam is delivered occurs due to variety of physiological changes in 

anatomy like breathing, cardiac motion, rectal peristalsis and bladder filling etc. Inter-

fractional (day-to-day) geometric change occurs over the weeks of radiation therapy, due 

to digestive processes, change of breathing patterns, difference in patient setup, and 

treatment response like growth or shrinkage of the tumor or nearby organs at risk. In the 

past, these changes were taken into account by population-based “uncertainty” margins 

around the target area, which may be excessive or conservative and are broadly applied to 

the structures identified before the therapy begins. 

Daily imaging from IGRT has provided clinicians and physicists tools to quantify patient 

specific anatomical changes and thereby devise strategies to incorporate these changes in 
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plan optimization. This approach has the promise to improve therapeutic ratio by 

simultaneously incorporating both dose escalation to the tumor and reduction of dose 

given to organs at risk. This has already resulted in dose escalation strategies using larger 

fractions size hypo-fractionated regimen (Prostate, Lung etc.) by increasing the chance of 

local control without increasing toxicity. 

Adaptive radiotherapy (ART) is currently mostly based on an off-line approach where the 

anatomical and biological changes are monitored over the course of treatment, and the 

treatment is modified when significant changes are identified. However with increased 

automation, on-line ART (while the patient is still on treatment table) can be achieved in 

principle. On-line ART has been implemented by select research groups and its potential 

benefit has been demonstrated for bladder, prostate and head & neck disease sites.[10-12] 

IGRT is typically an on-line concept where the patient or treatment plan is shifted or 

modified for each treatment.  

Off-line analysis has also been used to quantify and separate random and systematic 

uncertainties for individual patients. This information can be used to design decision 

rules to indicate when to correct a set-up deviation for a particular type of treatment, see 

reference [13] for details using electronic portal imaging devices(EPID). Off-line set-up 

verification protocols using EPID can be based on decision rules using a shrinking action 

level (SAL) as discussed in reference [14]. Other approaches are based on average 

deviations observed during the first number of fractions and assuming these deviations 

are valid for the whole treatment, e.g. the no-action level (NAL) protocol [15].  
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However the most significant impact for ART necessity has resulted from the volumetric 

CT (CBCT, MVCT, etc.) acquired at the time of daily treatment. This has resulted in 

variety of adaptive therapy options that will be discussed next. 

By using image information obtained during the first week of treatment, the PTV margin 

can be adapted for an individual patient. A new plan can then be designed using the 

average GTV and OAR positions. In the following weeks, new scans are used to monitor 

the adequacy of the ART treatment plan. It should be noted that the clinically applied 

GTV-to-PTV margins should compensate for all geometrical uncertainties in the 

radiotherapy chain including those induced by target definition, which are not improved 

by in-room image guidance. However 3D image guidance can point to the need for plan 

adaptation based on soft tissue imaging. An example for a head and neck patient is given 

below based on CT scans acquired 3 weeks apart. As seen in Figs 1.6 a, and b, there is a 

significant decrease in tumor volume on the CT scan taken 3 weeks after start of therapy. 

If the original plan had been delivered to the new patient geometry this would have 

resulted in a severe overdose of parotid as seen in figure 1.6 d. The parotid in this 

example would have received 70Gy instead of the 45Gy originally planned, resulting in 

unacceptable toxicity for the patient. Thus a robust strategy to implement ART is 

required to improve therapeutic ratio. 



 

 13 

  

 

Figure 1.6 a, Tumor volume at the treatment planning CT scan, b, Tumor volume, 3 

weeks after start of treatment showing shrinkage of tumor, c) Isodose distribution on 

original CT , d) isodose distribution on new anatomy if original plan was delivered 

without adaptation 
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1.4 Motivation, goals and scientific contribution of this dissertation 

This dissertation aims to develop the necessary scientific knowledge to include organ 

deformation in adaptive dose delivery. Our goal in this dissertation is to develop 

methods and tools based on scientific insight gained to account organ deformation in 

the adaptive dose feedback loop that would ultimately help physicians and physicists 

in the radiation oncology community to better serve their clinical needs. In that 

context, several scientific concepts have been proposed and validated and will be 

highlighted in this section. 

 It is widely accepted that ART accounting organ deformation is a clinical requisite 

and would be greatly beneficial to a certain group of patients receiving radiation 

therapy for different anatomical sites[9]. In this dissertation we first demonstrate the 

need for ART in the treatment of localized prostate cancer and propose plan 

adaptation without deformable image registration tools[16]. However 

implementation of ART is a daunting task as quantifying and accounting anatomical 

changes manually (without deformable image registration) is extremely time 

consuming and not practical in a clinical environment[16]. Deformable image 

registration (DIR) has the potential to map anatomical changes in imaging data 

between two study sets which exhibit organ deformation. Clearly the challenge in 

DIR is to account these anatomical changes accurately to ultimately implement 

cumulative dose tracking on a reference study set. 

DIR based voxel mapping being inherently degenerate, (as in there is no unique 

solution) is a particularly challenging yet extremely important problem in validation 
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for radiation oncology applications. DIR accuracy in the context of radiation therapy 

can be separated into two parts a) validation of image registration from various 

algorithms, b) validation of deformable dose registration (dose warping). Scientific 

methods for both features are proposed and limitations of existing methods are 

examined in this dissertation.  

This dissertation aims to develop tools to independently perform deformable image 

registration (DIR) using open source platform[17] ( 3D Slicer) and propose a frame 

work to validate the accuracy of DIR with an emphasis on radiation oncology 

applications[18]. A novel method of verifying DIR accuracy using virtually 

simulated deformation to mimic clinically observed organ deformation was proposed 

and validated. Independent validation tools for verifying accuracy of image 

registration are implemented using open source modules[18]. The second step in 

implementing ART involves calculating the doses to a deforming anatomy. Again, 

re-planning and re-optimization of treatment plans as done for treatment planning CT 

cannot be applied to daily imaging data because of the time and resource constraints. 

Dose warping defined as applying the deformation vector field (DVF) arising from DIR 

on the original dose distribution has the potential to account for organ deformation and 

accumulate doses. However its application and validity in a clinical environment remains 

controversial[19] .  

The vast majority of research work that has been done on dose warping accuracy studies 

has only examined arbitrary deformations of varying magnitude for dose delivery 

verification. This dissertation proposes to examine the fundamental science of 



 

 16 

deformation linked to its causative physical force. A quantitative relationship between 

force and deformation may give insight into the deformation characteristics of various 

organs if the biomechanical properties of tissues like Young’s modulus and Poisson ratio 

are known. This can be potentially used to create simulated deformations of various 

organs analogous to what has been done for surgical simulations. A database of simulated 

deformations for various organs in response to applied force can give clinicians insight 

into how an organ may deform over an entire course of radiation therapy and can be 

potentially be used to adapt margins in a dose painting /dose escalation scenario. 

  There is a large growing database in the surgical community that has quantified the 

biomechanical properties of organs. A force-deformation relationship has important 

applications in surgical simulations, optimizing surgical tool design,  creating "smart" 

instruments capable of assessing pathology or force-limiting novice surgeons, and 

understanding tissue injury mechanisms and damage thresholds [20].  

In general soft tissue organ deformation can be thought of as a bio-feedback between 

physics and anatomy & physiology of organs. A medical simulator including soft tissue 

organ deformation can be thought of in a three generation step model as shown in figure 

1.7 and discussed in[21-25].  The first generation of medical simulators only considers 

the geometric nature of human organs like variations in shape, volume etc... This can be 

easily quantified using the wide variety of modern imaging methods available. The 

second generation of medical simulators aims to model the physical interaction of human 

organs. Clearly for radiation oncology applications, understanding soft tissue deformation 

and a potential simulation of organ deformation is of paramount importance. This 



 

 17 

dissertation aims to study the physical interaction of organ deformation (second 

generation medical simulator) by quantifying the deformation with its causative physical 

force which in a clinical scenario may be linked to the influence of neighboring organs. 

The third generation of medical simulators accounts for the functional nature of organs 

and are more complicated in design and scope. The flow chart (Figure 1.7) shows how 

different levels of simulation (anatomy, physics and physiology) interact with one 

another. In a radiation therapy context, occurrence of tumor in an organ (physiological 

process) will modify the biomechanical properties of the tissue (physics). For example it 

is known that the mean density of parotid glands (physics) varies during the course of 

head and neck IMRT therapy due to changes in tumor size (physiology) and salivary flow 

(physiology)[26, 27]  

To achieve such advanced simulations, it is necessary to model the phenomena occurring 

at the geometric, physical and physiological levels. Although rapid progress has been 

made in deformable image registration (DIR), more research effort is needed in physical 

modeling of organ deformation from a physics perspective. In particular, modeling soft 

tissue organ deformation is likely to be a key ingredient in creating second and third 

generation medical simulators from the context of radiation therapy applications. 
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Figure 1.7  Three different generations of medical simulators illustrating the interplay 

between physics, physiology & geometry of the organs. (Adapted from reference 25) 

To explore the relationship between deformation and its causative physical force a 

deformable bladder phantom with mechanical and tensile properties comparable to an 

adult human bladder was designed and built using a tissue equivalent viscoelastic 

polymer substance. Using this fundamental relationship, the accuracy of dose 

deformation arising from commercial DIR algorithms was investigated.  A threshold limit 
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for dose warping was ascertained and established from various commercially available 

DIR algorithms beyond which dose recalculation is the deformed geometry is necessary. 

The applicability of dose warping to dose painting scenarios was investigated. This 

dissertation also highlights the need to validate the volume of dose from dose warping as 

traditionally used 3D gamma pass rates used by most research studies may not accurately 

describe dose warping for dose painting.  

1.5 Organization of this document 

This document is organized as follows.  

Chapter 2 details the clinical need for adopting ART in the treatment of localized prostate 

cancer. Specifically imaging data from 10 patients was analyzed using both kvCBCT 

from Elekta Synergy and MVCT from Tomotherapy system. The feasibility of direct 

dose calculation on kvCBCT and MVCT images as well as quantitative soft tissue 

contrast comparison between the various imaging modalities is discussed. ART options in 

the absence of DIR using the planned adaptive software on the Tomotherapy system are 

outlined.  Our results clearly demonstrate the need to develop a strategy that includes 

deformable image registration to adopt ART.  

Chapter 3 details the technical principles and physics of DIR and the various approaches 

of DIR transformation functions with a focus on radiation oncology applications.  Details 

of similarity measures, deformation models and optimization methods for various 

algorithmic implementations are discussed. 

Chapter 4 gives a framework in validating the accuracy of DIR algorithms. The lack of 

verification scheme is one of the major drawbacks in adoption of DIR into clinical 
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practice. We propose a novel method by synthetically deforming CT data with a known 

applied deformation and using the deformation vector field (DVF) arising from that to 

evaluate the accuracy of DIR. Various methods and relative strengths of these methods in 

evaluating the accuracy of DIR is presented in Chapter 4. As discussed before, dose 

tracking based on dose warping is the next logical step towards implementing ART. 

However the accuracy and application of dose warping in a clinical environment remains 

controversial as warping the dose with DVF may not represent the physical process of 

dose deposition from radiation transport principles in a deformed anatomy.  

In Chapter 5 we describe a novel deformable bladder phantom made of a viscoelastic 

polymer substance developed in this project towards verifying the accuracy of dose 

warping. “Deformable dose” from commercial DIR algorithms was compared against the 

“true” dose received by organ in deformed state to illustrate at what deformation, dose 

recalculation in deformed anatomy may be clinically necessary. Dose warping was first 

evaluated using 1D point dose measurement with implanted MOSFETS in the deformed 

anatomy. Five parallel air canals running through the phantom were used to position 

the MOSFETS in deformed anatomy. The dose directly measured by MOSFETS in 

deformed anatomy was compared to the warped dose from 2 DIR algorithms. 

However 1D point dose measurement for an arbitrary deformation cannot be 

considered a comprehensive validation of verifying dose in a deforming anatomy. 

For this reason we modified our phantom to parameterize deformation with applied 

physical force. The importance and scope of quantitative relationship between force 

and deformation is highlighted in Chapter 5. Both 1D deformation along the axis of 



 

 21 

applied force and 3D deformation of organ were quantified. Using the fundamental 

relationship established between force and deformation we assess 3D dose 

comparison for dose warping. Details of verification scheme and applicability 

methods to dose painting are discussed in Chapter 5. 

Chapter 6 gives general summary and conclusions of the dissertation and highlights 

the application of current work to other clinical applications in lung cancer and TMI. 

A model for on-line adaptive radiotherapy is discussed for future clinical 

implementation. 

Appendix details the diffeomorphic demons and B-spline algorithms implemented as 

part of this dissertation, as plug-in modules using 3Dslicer as the visualization 

platform. A detailed procedure manual to perform DIR and evaluate the accuracy of 

DIR is presented. 
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Chapter 2: Implementation and framework of adaptive radiation therapy for 

prostate cancer. 

2.1 INTRODUCTION 

This chapter details the clinical rationale and methodology used in implementing 

adaptive radiotherapy for prostate cancer. The framework suggested as part of this 

dissertation were published in peer reviewed journal, Journal of Applied Clinical Medical 

Physics, Ref [16] and is discussed in this chapter. 

The goal of a radiation treatment as discussed before is to ensure that the target receives 

accurate and adequate dose coverage while the dose to the critical structures is kept as 

low as possible. Intensity Modulated Radiation Therapy (IMRT) [33-35]  and IGRT have 

led to more precise conformal radiation therapy. Conformal therapy has the potential to 

enhance the therapeutic ratio (dose to tumor/Organ at Risk (OAR)). However, due to the 

complexity of treatment delivery and variation in patient/tumor intra-fraction and inter-

fraction position, treatment may still pose risks for a geographic miss [36, 37]. 

The use of CT Imaging in IGRT technology to localize the prostate, bladder and rectum 

each day has made it possible to deliver the dose to the target more precisely. It is well 

known that the confirmation of the relative position and shape of the target and organs at 

risk during daily fractionated treatment is of fundamental importance to accurate dose 

delivery [38]. Although the primary aim of IGRT technologies in the treatment of 

prostate cancer is to accurately localize the tumor for precise targeting, these technologies 

are also capable of monitoring changes in the filling and shape of the bladder and rectum. 
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The ability to monitor and quantify the daily changes in these critical structures is 

necessary to track the actual dose delivered to them.  

The current study evaluates 10 patients for the dosimetric changes due to inter-fraction 

organ motion associated with the treatment of prostate cancer. The two IGRT 

technologies used in the study include Megavoltage CT (MVCT) localization on the 

Tomotherapy Hi-ART machine and kilovoltage Cone Beam CT (kvCBCT) localization 

using the Elekta Synergy system. A framework that can be applied to adapt plans for 

patients treated on the Tomotherapy Hi-ART system was created. The framework 

includes a method to analyze the cumulative Dose Volume Histogram (DVH) calculated 

by the Planned Adaptive Software. These evaluations can then be incorporated into a plan 

modification with the aim of minimizing the differences between planned and delivered 

doses.   

Although previous studies [39] with the Tomotherapy system have demonstrated daily 

dose recalculations, to the best of our knowledge, our study is the first one to attempt to 

create a summation dose and evaluate the dosimetric impact of taking into account the 

changes in daily parameters. The dosimetric information can be used to modify a patient 

plan or Planning Target Volume (PTV) margins based on the evaluation of actual dose 

received. 

2.2 Methods and Materials 

2.2.1 kvCBCT dose calculation accuracy on Elekta Synergy 

The actual dose delivered to the prostate, bladder and rectum for 5 patients was 

investigated by using the daily anatomy information provided by kvCBCT images. The 

feasibility of direct dose recomputation on the kvCBCT images was investigated using 
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the ComTom CT Phantom. The ComTom phantom consists of 37 pins, each 1’’ in 

diameter, which are arranged in 3 concentric rings. There are 18 pins in the outer ring, 

each spaced 20 degrees apart. There are 9 pins in the middle and inner rings respectively, 

all spaced 40 degrees apart. The CT numbers of the 9 pins plus air encompass the range 

of x-ray attenuation normally found for human tissue. The relative electron density of the 

materials in this phantom (compared to a value of 1.0 for water) varied from 1.87 in 

Teflon to 0.15 for low density polyurethane. The kvCT scan of the phantom is shown in 

Figure 2.1.  

5 patients were randomly chosen for this study. Our standard IMRT treatment for 

definitive prostate cancer includes seven equally spaced beams using 10 MV photons in a 

step and shoot delivery. All patients were treated to a dose of 75.6 Gy in 42 fractions. The 

treatments were planned and optimized using the CMS XiO treatment planning system 

and the dose calculation was performed using a convolution/superposition algorithm. The 

PTV margin routinely used at our institution for prostate IMRT is 1 cm in the 

superior/inferior direction, 8 mm everywhere else except posteriorly where the margin is 

5 mm. The patients were instructed to have a “full bladder” at the time of CT simulation 

and during daily treatment. The current study did not include any analysis of seminal 

vesicles coverage. 

One full volumetric kvCBCT study set was randomly chosen for every patient from each 

week of treatment. A total of 9 CT study sets (Week 1 to Week 9) were used for each 

patient to analyze the prostate, bladder and rectal volume changes and their impact on 

dosimetry. The kvCBCT scans were manually contoured by the same Radiation 

Oncologist to account for any deformation in the target, rectum and bladder. The 
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kvCBCT scans were fused with the treatment planning CT scans and the dose was 

recomputed on the treatment planning CT scan.  A two-step process was used in 

registering the kvCT (primary study set) with the kvCBCT (secondary study set) 

scans/images. The primary and secondary study sets were transferred to the CMS Focal 

workstation. An automatic registration was performed to automate the alignment between 

the two study sets. The software computes the geometric transformation that best 

registers corresponding anatomic details in the two study sets of the same patient’s 

anatomy. The alignment criterion is mutual information (MI) which is a measure of the 

statistical similarity of the overlapping data. The transformation that gives the maximum 

value of MI is considered to be the best registration. In the second step, interactive 

registration was used to further refine the automatic registration performed by the 

software. The radiation oncologist manually inspected and refined the alignment of the 

prostate between the kvCBCT and kvCT study sets based on soft tissue match.  
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Figure 2.1 kvCT image of the ComTom Phantom.  

2.2.2  Soft tissue contrast comparison of kvCT, kvCBCT, and MVCT scans 

The Catphan 600 phantom (Phantom Laboratory, Salem, NY) was used in order to 

quantitatively evaluate and compare the soft tissue contrast between the three imaging 

modalities (kvCT, kvCBCT and MVCT). Additionally, the low contrast resolution, image 

uniformity and spatial resolution were compared. The kvCT, kvCBCT and MVCT 

images of CTP 404 module of Catphan 600 phantom are given below in Figures 2.2a–c. 
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Figure 2.2a. kvCT image of the CTP 404 module of Catphan Phantom. 

 

  

Figure 2.2b. kvCBCT image of the CTP 404 module of Catphan Phantom. 
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Figure 2.2c. MVCT image of the CTP 404 module of Catphan Phantom. 

Low Contrast Resolution is the ability of the imaging system to distinguish between 

relatively large objects which differ only slightly in density from uniform 

background[40] . 

The 3D Low contrast resolution (LCR) is computed from the mean and standard 

deviation of the pixel values of polystyrene and LDPE found in the CTP 404 module of 

the Catphan phantom using the formula [41] 

LCR = 
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Image artifacts due to equipment design, beam hardening or image reconstruction 

software can manifest themselves as systematic CT number variations. Hence, scanning a 

uniform phantom and sampling CT numbers in the fixed areas can quantify the presence 

of systematic variations. The 3D uniformity is computed from the pixel values of three 

locations in the CTP 486 uniformity module of the Catphan 600 phantom using the 

formula [41] 

3D Uniformity =   
100

)(

)()(




highMean

lowMeanhighMean

 

Spatial resolution characterizes the imaging system’s ability to distinguish between two 

very small objects placed closely together. Spatial resolution measurements are 

performed with objects which have high contrast from uniform background. Spatial 

resolution is frequently referred to as high contrast resolution [42]. The 3D high contrast 

or spatial resolution of the three imaging modalities was calculated by imaging and 

measuring the resolution pattern on the line pair phantom (CTP 528 module) which has a 

range of spatial frequencies.  

2.2.3 Adaptive Tomotherapy 

The details of MVCT image reconstruction during Tomotherapy are well known and 

have been discussed by Ruchala et al. [43]. The energy of the MVCT beam (3.5 MV) is 

lower than that of the treatment beam (6 MV). The accuracy of dose calculation on the 

MVCT images was reported by Langen et al and has also been independently verified at 

our institution [44]. 

The MVCT images are limited to a 40 cm circle of reconstruction due to the limitation of 

the maximum Tomotherapy collimator width, whereas, the kvCT studies usually have a 
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50 cm circle of reconstruction or larger in case of big bore CT scanners. MVCT scans are 

also typically shorter in the patient’s cranio-caudal direction to save time and reduce the 

imaging dose. Planned Adaptive software inserts the 40 cm field of view MVCT images 

into the corresponding kvCT treatment planning study by creating a combined 

MVCT/kvCT image study set. This is referred to as the merged image. Typically kvCT 

images are acquired with a slice thickness of 3mm and MVCT scanning on Tomotherapy 

has three possible slice thicknesses: fine ( 2mm), normal ( 4mm) and coarse ( 6mm). 

Therefore, interpolation within the MVCT image set is required to maintain a uniform 

3mm slice thickness. A different image-value-density table (IVDT) is used for 

performing dose calculations with MVCT images due to the higher beam energy of the 

Tomotherapy unit (3.5 MV) as compared to the kvCT images. It has already been shown 

that the dose calculation is accurate using the merged images on the Planned Adaptive 

Software when compared to the same plan using the kvCT image [45]. 

In the Planned Adaptive software the original contours used for treatment planning on the 

kvCT study set are overlaid on the merged images, and they are re-contoured, if 

necessary, based on anatomy of the day. Using the merged images as the imaging dataset 

for adaptive plans assumes that the regions of interest outside the MVCT scan in patient 

anatomy have not significantly changed because the MVCT images cover only limited 

length in the cranio-caudal direction. Planned Adaptive software calculates verification 

doses for each patient. This is done by applying the daily delivery sinogram (based on the 

original kvCT plan) in the calculation of dose distribution on the merged image.  

Through the Planned Adaptive software, a summation dose, which is the addition of 

verification doses from each treatment fraction, was generated and compared against the 
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planned dose. Once the summation doses have been created, a cumulative DVH is 

constructed in the Planned Adaptive Software.  Planned Adaptive software facilitates the 

modification of structures (based on patterns of accumulated dose that may have resulted 

in over or under dosage) in the merged image set.  The resultant modified structures are 

then transferred to the Tomotherapy Planning Station for optimization of an “adaptive” 

plan. Adaptive planning allows adjustment of the remaining treatments to correct for 

changes that have occurred up to that point in treatment. Depending upon the anatomical 

site and clinical scenario, additional verifications and adaptive plans can be generated to 

correct for further anatomy variations. This paradigm is called Adaptive Tomotherapy 

Planning.  

5 prostate patients were randomly chosen for this part of this study. All patients were 

treated in supine position using the Helical Tomotherapy unit at University of Minnesota. 

The patients were implanted with three gold seed markers to help align the MVCT study 

set with the kvCT study set and also to minimize inter-user variability in registering 

images. 

The positional variations of inter-fraction organ motion for each treatment fraction were 

systematically monitored and characterized using onboard MVCT images. The 

registration values used to position the patient at the time of treatment were used to 

correct the MVCT scan when creating the merged scan. The rectum and bladder were re-

contoured manually on merged study sets incorporating the bladder and rectal daily 

variation as determined on the MVCT scan. There were only minimal changes in the 

prostate target volume definition on the MVCT scans as compared to kvCT scan. The 
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merged images created with the MVCT scans were then used to create adaptive treatment 

plans using Tomotherapy Planning Station. 

The reconstructed doses were compared with calculated treatment planning doses for 

individual organs through cumulative dose volume histograms (DVHs). The purpose of 

the comparison was to determine if treatment plan improvements can be dosimetrically 

significant and to distinguish between clinically significant and insignificant anatomy 

changes. Cumulative DVHs from the planned adaptive software were analyzed for each 

patient and adaptive radiotherapy strategies were formed based on our analysis of these 5 

patients. 

2.3. RESULTS 

2.3.1. CT number vs. electron density using kvCBCT scans with Elekta Synergy 

The CT number derived from the kvCBCT image was found to vary considerably 

(average variation of 283 HU) from the kvCT image as seen in Figure 2. The CT 

numbers derived from the kvCBCT scans showed the largest deviation from the 

corresponding values from the kvCT image for low relative electron density materials 

such as polyurethane with a maximum deviation of 684 HU for the low density 

polyurethane. Further, the CT number reproducibility for the same material 1 cm superior 

and inferior to a given central axis slice varied by as much as ± 200HU compared to the 

value on the central axis slice. Hence, it was concluded that direct dose re-computation 

on Elekta kvCBCT scans is not accurate or feasible at this time. 
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Figure 2.3 Relative Electron density vs. CT number variation for kvCBCT and kvCT 

scans of ComTom Phantom. 

2.3.2 Prostate, bladder and rectal volume and dose changes using kvCBCT scans on 

Elekta Synergy 

Before each treatment, a kvCBCT scan was acquired and the prostate was aligned to the 

kvCT. The same physician was present and performed the alignment of kvCBCT with 

kvCT to eliminate inter-user variability and interpretation of soft tissue images. The 

CBCT scan for the prostate was imaged at 120 kVp and 1040 mAs. Based on our 

measurements on the CIRS body phantom, this is equivalent to an imaging dose of 2.8 

cGy at the center per day, for a total of 118 cGy over 42 fractions. This dose was not 

added to the actual treatment dose in dose comparisons. 

Figure 4 shows the rectal volume changes in the 5 patients analyzed from each week 

based on the kvCBCT scans contoured by the same Radiation Oncologist. Week 0 
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represents the rectal volume from the treatment planning kvCT scan. As seen in Figure 4 

below, there is a large variation in the rectal volume over the 9 week period. 

Radiation Therapy Oncology Group (RTOG) 0126 criteria of volume of rectum 

receiving 75 Gy (V 75 Gy) was chosen to track rectal doses from kvCBCT scans. This 

is equivalent to the percentage of rectal volume receiving the daily fraction dose of 

180 cGy as compared to the rectal volume from the treatment planning kvCT scan. 

This is illustrated in Fig. 5. Due to the changes in rectal filling on the day of treatment, 

the maximum variation in rectal volume receiving the percentage of prescribed dose 

was as high as 12% (patient 3, Week 3). 

 

 

Figure 2.4 Changes in rectal volume over the course of treatment (42 fractions). 
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 Figure2.5 Change in percentage of rectal volume receiving 1.8 Gy relative to the 

treatment plan value listed by patient. Positive values indicate an increase in the volume 

of the rectum receiving 1.8 Gy; negative values indicate a decrease in rectal volume at 

that dose. Each column represents data from one selected daily cone-beam scan per 

consecutive week of treatment. The average over these values for the course of treatment 

is shown by the yellow bars. 

Figure 6 shows the bladder volume changes for the 5 patients treated 

using the Elekta Synergy system. There was a large variation in bladder 

volume, especially for patient 2, when compared against bladder volumes from 

the kvCT. In this study sample, the bladder volumes seem to decrease during 

treatment when compared to kvCT volumes. Radiation Therapy Oncology Group 

(RTOG) 0126 criteria of volume of bladder receiving 70 Gy (V 70 Gy) was 

chosen to track bladder doses from kvCBCT scans. This is equivalent to the 
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percentage of bladder volume receiving the daily fraction dose of 170 cGy as 

compared to the bladder volume from kvCT scan. The results are reported in 

Fig. 7. Due to the changes in bladder filling on the day of treatment, the 

maximum variation in bladder volume receiving the percentage of prescribed 

dose was as high as 40% (patient 5, Week 3). 

Finally, the changes in prostate target dose, based on recomputation of dose 

using the changes in the target volume as outlined in the kvCBCT images, were 

evaluated. The target dose change compared to planning dose is minimal as 

would be expected from positioning with daily image guidance. This is outlined 

in Fig. 8. 

 

 

Figure 2.6 Change in bladder volume over the course of treatment (42 fractions) for all 5 

patients. 
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Figure. 2.7 Change in percentage of bladder volume receiving 1.7 Gy relative to the 

treatment plan value listed by patient.  Positive values indicate an increase in the volume 

of bladder receiving 1.7 Gy, while negative values indicate a decrease in bladder volume 

at that dose.  Each column represents data from one selected daily cone beam scan per 

consecutive week of treatment.  The average for these values over the course of treatment 

is shown in yellow. 
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Figure 2.8 Change in mean target dose relative to the plan value for each patient.  Each 

column represents data from one selected daily cone beam scan per consecutive week of 

treatment.  The average for these values over the course of treatment is shown in yellow 

2.3.3. Soft tissue contrast comparison of kvCT, kvCBCT, and MVCT scans 

As expected, the kvCT images provided the best contrast resolution while the MVCT 

displayed the poorest. The quantitative values for the 3 imaging modalities are listed in 

Table 2.1 given below. 
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Imaging Modality 

3D Low contrast 

Visibility 

3D IMAGE 

UNIFORMITY (%) 

3-D SPATIAL 

RESOLUTION (line pairs) 

MVCT 3.19 9.3 4 

kvCBCT 1.73 0.9 7 

kvCT 0.11 0.044 7 
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Table 2.1. Quantitative comparison of contrast resolution in the 3 imaging modalities of 

MVCT, kvCBCT, and kvCT. 

2.3.4 . Dose tracking using MVCT on Tomotherapy HI-ART system 

Of the 5 patients analyzed using an Adaptive Tomotherapy plan, 3 showed minimal 

differences between planned and delivered dose in terms of cumulative DVH. Instead of 

reporting cumulative doses received by each organ, the data was analyzed in terms of 

cumulative DVH as reported by the Planned Adaptive software. Three different scenarios 

out of the 5 patient cases analyzed were picked to discuss adaptive radiotherapy 

strategies. A 10 % difference between planned and delivered mean dose was used as the 

threshold for target and critical structures in deciding whether or not to re-optimize a 

given plan.  

Scenario I - good agreement between Planned and Delivered dose (Less than 5 % 

difference between planned and delivered mean doses) 

 Figure 9 displays a scenario where there is good agreement between planned and 

delivered doses after manually contouring on 42 study sets to account for volume 

changes in the bladder, rectum and target. The delivered summation dose for the target is 

slightly more than the planned dose. Overall, based on the Adaptive Tomotherapy plan, 

the actual delivered dose to the patient is in close agreement with the planned dose. In 

such a scenario, a new treatment plan with the merged study set is not required. 
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Figure 2.9 Good Agreement between planned and delivered doses using Planned 

Adaptive software; Dashed line: summation dose. Solid line: planned dose. Cyan line: 

bladder. Brown line: Rectum. Red line: Prostate. 

Scenario II - minimal differences between planned and delivered dose (less than 10% 

difference between planned and delivered mean doses) 

For this patient, the cumulative DVH derived from the summation of verification doses is 

given below in Figure 10. As shown in Figure 10, the cumulative rectal DVH (dashed 

line) is less than the planned DVH for the rectum. The cumulative target DVH is less 

than the planned DVH for the target with the target receiving slight under-dosage even 

though the prescription dose is still covered by the 95% isodose line. Even though the 

planned doses and delivered doses differ slightly (less than 10% threshold limit), a plan 
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modification using the merged study set would not be considered necessary in this 

scenario. 

 

  Figure2.10 Minimal differences between planned and delivered doses using Planned 

Adaptive software; Dashed line: cumulative DVH. Solid line: planned DVH. Cyan line: 

bladder. Brown line: Rectum. Red line: Prostate. 

Scenario III: delivered dose NOT in agreement with planned dose (Greater than 10% 

difference between planned and delivered mean doses) 

Figure 11 shows a patient for whom a Tomotherapy boost of 28.8 Gy over 16 fractions 

had been prescribed to be delivered to the prostate. In this particular patient there was a 

large variation in dose delivered to the rectum when compared with the planned dose. 

The large variation was a result of the patient having a distended rectum during planning 

which caused the volume of rectum irradiated during actual treatment delivery to be 

smaller in most fractions. A 10% difference between planned and delivered mean doses 
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was used as our threshold limit in deciding whether or not to re-optimize the plan based 

on the actual dose delivered. For this particular patient, after reviewing the cumulative 

DVH, the patient plan was modified off-line by choosing a different optimization scheme 

to account for the volume changes in the rectum from daily MVCT scans. 

 

Figure 2.11 Large Differences between planned and delivered doses using Planned 

Adaptive software; Dashed line: cumulative DVH. Solid line: planned DVH. Pink line: 

bladder. Brown line: Rectum. Red line: Prostate. 
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The resulting adapted plan is given below in Figure 12, displaying that the planned and 

delivered doses to target, bladder and rectum are now in close agreement.

 

 

Figure 2.12 Re-optimized plan from the adaptive information whereby planned and 

delivered doses are now in agreement. 

2.4 DISCUSSION 

Positional variation of prostate gland in the treatment of prostate cancer has been 

extensively studied and various Image Guided Technologies which can potentially 

correct for these variations have also been reported. [46-59]. 

Several studies recently in the literature [60-62] [63-65]
  
have shown that dose escalation 

is necessary and leads to an improved clinical outcome in the treatment of prostate 

cancer. Dose escalation, however, leads to increased dose to the critical structures, 

namely bladder and rectum, even with the IMRT treatment modality. There have also 
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been studies which have demonstrated the efficacy of hypofractionated treatments for 

prostate cancer [66-68]given the low 
α
/β[69-72]  value suggested for prostate cancer.  In 

this scenario, the precision and accuracy of the dose delivered to the target and critical 

structures takes on a greater significance. The evaluation of actual dose delivered to the 

prostate, bladder and rectum based on the anatomy of the day may become a clinical 

necessity for these treatments. 

Our study involving kvCBCT with Elekta Synergy system clearly demonstrates that in 

the absence of any special protocol that involves bowel preparation, daily soft tissue 

imaging with the kvCBCT scans show large variations in delivered dose to bladder and 

rectum with the confirmation that the dose delivered to the prostate is satisfactory. Thus 

while clearly IGRT with daily soft tissue imaging improves the accuracy of dose 

delivered to prostate it also has the potential to document and monitor changes in 

anatomy and dose to the critical structures (i.e. bladder and rectum) 

The changes in bladder and rectal volume were random in nature and the clinical impact 

of such variations cannot be well understood unless we quantify the changes and sum the 

doses from one CT scan to the other using a deformable registration model which were 

not done in this study.  The variations of bladder and rectal volumes from weekly 

kvCBCT scans are displayed on the treatment planning CT scan in Figure 13. Currently 

there are no commercial treatment planning systems that have the ability to carry out such 

an analysis in an automated manner. Consequently, even in this study which takes into 

account only a weekly kvCBCT scan for each patient, the time required to do a 

dosimetric analysis of this nature is not practical in a busy clinical setting. Working with 
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the Radiation Oncologist, the physicists in this study spent approximately 3 hours per 

patient to contour bladder and rectum on each 3D kvCBCT studyset.   

 Various strategies have been suggested for off-line adaptive radiotherapy using kvCBCT 

scans in the literature [8, 73-77]. Most involve the creation of a modified target and 

rectum based on the evaluation of daily kvCBCT scans from the first few fractions and a 

modified treatment plan created for the rest of the treatment course based on these 

structures. 

We have shown that the maximum variation in rectum and bladder volumes in our 

kvCBCT study receiving the percentage of prescribed dose was 12% and 40% 

respectively. These large variations could be clinically significant. Clearly the challenge 

is to create cumulative DVH information to interpret the volume changes occurring 

during IGRT.  

This was our motivation to perform the study with the Tomotherapy system using the 

Planned Adaptive software tool. As stated before, 5 patient plans were evaluated with this 

adaptive planning method to determine whether treatment plan improvements could be 

dosimetrically significant and to distinguish between clinically significant and clinically 

insignificant anatomy changes. 
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Figure 2.13 kvCT superimposed with kvCBCT contours showing variation in bladder and 

rectal volumes for a patient over 9 week period.  

The cumulative DVH information from the merged MVCT-kvCT images also gives us 

re-planning options should a significant discrepancy exist between planned dose and 

delivered dose. Our analysis of 5 patients treated on the Tomotherapy Hi-ART system 

found that there was a significant improvement in the treatment plan for one patient based 

on the cumulative DVH analysis from planned adaptive software and subsequent 

reoptimization of the plan.   

Deformation of organs is a complicated process if organ wall changes are to be 

quantified. The deformation of the organ wall was not included in our analysis for 

bladder and rectum using the MVCT images. The bladder and rectum were assumed to be 
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“filled” organs while re-contouring on the MVCT and kvCBCT study sets. The soft tissue 

contrast was found to be insufficient for organ wall delineation. A sample MVCT image 

with and without the original kvCT contours are given below in Figures 14a and 14b to 

illustrate this point. 

 

 Figure 2.14(a) MVCT scan of patient illustrating lack of sufficient image contrast for 

rectal wall delineation. 
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Figure 2.14 b. Outline of MVCT indicating rectum but the rectal wall cannot be 

visualized. 

2.5 Adaptive Re-planning 

 The re-planning options can be divided into the two broad strategies of off-line and on-

line options.  The off-line approach is the most practically feasible approach to 

implement today and a practical implementation strategy is provided here. The off-line 

approach requires cumulating all of the actual delivered doses by accounting for the daily 

volume changes of prostate, bladder and rectum. Therefore in principle, an adaptive 

treatment plan can be created at the end of each week to evaluate for any potential 

changes in delivered dose as compared to planned dose delivery using the cumulative 

DVH.  If a significant discrepancy occurs (greater than the 10% mean dose difference 

threshold) as shown in scenario 3, a re-optimization of the plan will be done to account 
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for these changes. A final plan will then be created which results in a DVH that closely 

matches or has a superior dose distribution when compared to the original planned 

distribution based on the feedback from the changed anatomy. 

In cases where there are only minimal differences in the cumulative DVH midway 

through the treatment, the original plan will continue to be used for patient treatment and 

a final adaptive summation plan will be created at the end of patient treatment with the 

cumulative DVH demonstrating the planned and actual dose delivered. The Adaptive 

Tomotherapy plans for these cases will serve as a clinical quality assurance tool to 

document that the actual delivered doses were in agreement with the planned dose. The 

main drawback of performing the planned adaptive plans is that they are extremely time 

consuming because all the contours have to be manually drawn as in our kvCBCT study. 

An average of 12 hours per patient was spent to contour an entire 42 fraction MVCT 

study set. The other major drawback is that although the summation dose is computed in 

the planned adaptive software this only evaluates the summation dose for one MVCT at a 

time and does not include a deformable registration model which can potentially follow 

the doses delivered to the voxels creating an overall dose pattern. We are currently 

actively pursuing deformable registration tools with MVCT to create such models. 

The on-line adaptive therapy process accounts for the deformation of the prostate, 

bladder and rectum using deformable registration tools based on the anatomy whereby 

DVH is created and compared to the planned DVH while the patient is on the table. Thus 

any changes to the plan or positioning of the patient is done not just by image registration 

data but after on-line evaluation of dose. This process can only be implemented if there 

are automatic software tools which evaluate the deformation of the prostate, bladder and 
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rectum in real time and feed the information to the optimization engine such that DVH 

can be generated in real time while the patient is still on table.  

2.6 CONCLUSION 

Our study involving both kvCBCT and MVCT image guidance have shown the ability to 

track actual doses delivered to prostate, bladder and rectum based on anatomy of the day. 

Due to the large variation in CT number on the kvCBCT images with the Elekta Synergy 

system we conclude that direct dose computation on these images is not feasible. We 

have also quantitatively evaluated the low contrast resolution, spatial resolution and 

image uniformity of the 3 imaging modalities of kvCT, kvCBCT and MVCT using 

CatPhan 600 phantom and have found as expected that the kvCT and kvCBCT images 

have better contrast resolution than the MVCT images. 

Using the planned adaptive software on the Tomotherapy system, our study has 

demonstrated the ability to sum doses from multiple fractions on the merged kvCT-

MVCT study set in order to construct and evaluate a cumulative DVH. We have 

demonstrated a clinical process where using the adapted plan, an adjustment to treatment 

plan optimization may be performed whereby actual delivered doses are in agreement 

with the planned dose based on the information gained from daily MVCT scans. To take 

this investigation further, one has to develop deformable registration tools which can be 

used to calculate cumulative doses to organs at risk and target volumes thereby providing 

a valuable tool for evaluating adapted plans. It is our belief that such evaluations will 

eventually pave the way for a dose-guided radiotherapy paradigm in the treatment of 

localized prostate cancer.  
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Chapter 3 Overview of Deformable Image Registration (DIR) 

3.1 Introduction: 

The problem of registering medical images has been the subject of active research for 

many decades. The fundamental science of image registration is determining a spatial 

transformation – or mapping – that relates positions in one image, to corresponding 

positions in one or more, other images. The meaning of correspondence varies and takes 

different significance depending on the application. For example, the user may be 

interested in structural correspondence [78] (e.g. lining up the same anatomical structures 

before and after radiation treatment to detect response), functional correspondence (e.g. 

lining up functionally equivalent regions of the brains of a group of subjects) or 

structural–functional correspondence (e.g. correctly positioning functional information on 

a structural image). These have resulted in a variety of different registration algorithms 

which are continuously evolving based on the application of image registration to a 

particular area of interest.  

From a radiation oncology perspective, there are three broad applications of medical 

image registration and deformable image registration (DIR) in particular. These are 1) 

Identifying and correlating tumor or organ of interest across a series of medical scans 

(e.g. CT, CBCT, or MRI). 2) Matching of images from different patients (inter-patient 

registration) which has applications in atlas based segmentation, 3) Multi-modal 

registration which means matching images of the same patient acquired by different 

imaging modalities.( CT to MRI or CT to PET/CT etc…) 

However the basic ingredients on how a DIR algorithm is operational is the same [78] 

and is reviewed in this chapter. Any DIR algorithm has three basic components i) 
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similarity measures of how well the images match, ii) deformation model ( parametric or 

non-parametric models) which specifies how a source or moving image can be made to 

match target or fixed image, iii) optimization process that varies the parameters of a 

particular deformation model to maximize the matching criterion. 

Deformable registration is inherently degenerate and is considered an ill-posed problem 

because there is generally no unique solution to a registration problem. Usually image 

registration is presented as an optimization problem. Registration methods can be based 

on information derived from image intensities or from landmark information (such as 

contours or points) placed on the images. Hybrid models are possible using a 

combination of intensities and landmarks.  A review of DIR and the algorithm 

implementation details from the perspective of radiation oncology applications will be 

presented here. First we review two classical definitions of DIR as an image matching 

problem borrowed from theoretical imaging science. 

3.1.1. DIR definition 

 Based on reference [79]deformable image registration can be defined as finding the 

functions h and g in the following mapping between two 3D images I1 and I2: 

I2(x, y, z) = g (I1 (h(x, y, z))) 

where I1 is called the source or moving image and I2 is called the reference or target 

image. The images I1 and I2 can be thought of as mappings from 3D coordinates to image 

intensities. 

The function g is called an intensity mapping function that accounts for a difference in 

image intensities of the same object in I1 and I2. In other words it is used to describe so-

called 1D intensity differences.  The function h is used to describe geometric differences. 
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It is a spatial 3D transformation that describes the mapping between the spatial 

coordinates (x, y, z) in the reference image to map the coordinates (x’, y’, z’) in the 

source or moving image 

so that (x’, y’, z’) = h(x, y, z). These transformations take different forms depending 

on the registration method used. 

2. Alternately way to define DIR matching is presented in the recently published review 

paper in IEEE [80] and is described below based on that review paper.  Let us consider 

source (moving) image as S and fixed or target image as T. The two images are defined 

in image domain Ω and are related by a transformation W. The goal of registration is to 

estimate the optimal transformation that optimizes energy of the form  

M (T, S ο W) + R(W).  

The objective function defined above comprises two terms. The first term M, quantifies 

the level of alignment between a target image T and a source image S . This term is 

commonly refereed as similarity criterion in DIR. 

The optimization problem consists of either maximizing or minimizing the objective 

function depending on how the matching term is chosen. The images get aligned under 

the influence of transformation W. The transformation is a mapping function of the 

domain Ω to itself, which maps point locations to other locations. In general, the 

transformation is assumed to map homologous locations from the target physiology to the 

source physiology. The transformation at every position, x є Ω, is given as the addition of 

an identity transformation with the displacement field, u , or W(x) = x + u(x) 

The second term R, regularizes the transformation ( for example smoothing with 

Gaussian etc..) aiming to favor any specific properties in the solution that the user 
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requires, and seeks to tackle the difficulty associated with the problem. Regularization 

and deformation models are closely related. 

In the case that the transformation is parameterized by a small number of variables and is 

inherently smooth, regularization may serve to introduce prior knowledge regarding the 

solution that we seek by imposing task-specific constraints on the transformation. 

Second, in the case that we seek the displacement of every image element (i.e., 

nonparametric deformation model), regularization dictates the nature of the 

transformation. Before we describe deformation models commonly used in radiation 

oncology applications, a review of similarity measures is presented 

3.2 Similarity measures 

The quality of how well the images are matched after deformable image registration is 

defined by the similarity measures. The two input images into DIR in reality are never 

perfectly matched. Instead a similarity measure is defined, and the optimal registration is 

the one that features a transformation which minimizes this measure. The commonly used 

similarity measures are discussed below based on Ref [50])  

3.2.1 Sum of squared differences (SSD) 

The most widely used similarity metric is the sum of squared differences (SSD) measure 

defined as: SSD = 1/N Σx {T(x)-S(t(x))}
2
 

Where T(x) is the intensity at a position x in an image and S(t(x)) is the intensity at the 

corresponding point given by the current estimate of the transformation t(x). N is the 

number of voxels in the region of overlap. 

SSD is very sensitive to voxels with large intensity differences (outliers) which makes 

SSD only applicable in single-modality registration (e.g. both must be CT or MRI images 
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etc..) contexts, or more precisely, in cases where the images to be registered only differ 

by noise when registered. The least-squares form of SSD makes the measure 

computationally very attractive since fast optimization schemes can be used. 

3.2.2 Correlation Coefficient (CC) 

The Correlation Coefficient metric can be written as: 

CC =   
             

                  
          

              

 

As this is a quadratic form, the same highly efficient numerical methods can be applied as 

for the optimization of SSD-based measures. Usually CC is not suited for multi-modality 

registration since a global linear transformation function of the grey values cannot be 

presumed. However, in a number of small neighborhoods the assumption of a linear 

relationship is valid and the correlation coefficient can be used as an indicator of image 

similarity. This metric has the advantage that it has a reduced dependence on linear 

scaling of image intensities. This means that two images can be registered even though 

one is brighter than the other. 

3.2.3 Mutual Information: 

As discussed in review papers [78-80] [81] image registration can also be considered 

within an information theoretic framework. The basic idea is to exploit a statistically 

significant relationship between the grey values of the input images. This relationship 

does not have to be explicitly known but rather only assumes a probabilistic relationship 

between intensities. The only fact used is that proper registration means proper alignment 

of significant grey value structures that through their statistical relationship lead to 

pronounced peaks in the joint grey value distribution detected as maxima of its mutual 
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information or entropy. The mutual information can be defined in terms of entropies of 

the intensity distribution 

MI = HT + Hs-HT,S 

and HT = - Σi Pi, log Pi ,  Hs = - Σj Qj log Qj and Hi,j = - Σi,j pi,j log pi,j 

where P and Q are probability of intensity i and j occurring in target and source image 

respectively and pi,j is the joint probability of both occurring at the same time. 

MI has evolved into the accepted standard for similarity measures especially in multi- 

modality imaging. 

3.2.4 Normalize Mutual information (NMI) 

This is defined as NMI = (HT + HS)/ HT,S 

This metric was proposed to minimize the overlap problems occasionally seen when 

using the MI metric. 

3.3 Deformation Models: 

Deformable image registration models can be divided into those using parametric 

based registration (model based) and those using non-parametric ones. The parametric 

methods are characterized by featuring a transformation function that is described by a 

limited number of parameters. The parametric methods are also classified as geometric 

transformations derived from interpolation theory[80]. These typically include a) Radial 

basis functions (RBS), b) Elastic body splines (EBS) and Thin plate splines (TPS), c) free 

form deformation using B-splines etc. Using basis functions with compact support, a 

change of a parameter only affects the transformation in a spatially limited neighborhood 

while other parts of the deformation remain unchanged. Hence, with respect to image 

resampling, only the relevant part of the image has to be resampled, which improves the 
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computational performance of DIR. 

In contrast to this, non-parametric methods typically feature a transformation function 

that is based on a vector per voxel describing the displacement of the point represented 

by this voxel. This is converted to a continuous function by interpolation. The non-

parametric deformation models are also called as geometric transformations derived from 

physical models by some authors. These include d) elastic body models that obey Hookes 

law etc. e) Viscous fluid flow methods that obey Navier stokes equation etc.., f) Diffusion 

models like demons registration  g) optical flow methods like Horn and Schunck 

algorithm etc. 

3.3.1 Parametric or model based deformation models: 

A registration method based on a parametric transformation function is usually written as 

a minimization problem in which an optimal set of parameters must explicitly be found 

that minimizes the chosen similarity measure. Typically parametric based deformation 

models rely on constructing a mapping function which maps points from moving (source) 

image to the corresponding landmark points in fixed (target) image. 

The matching of point features in source and target (reference) images can also be done 

manually by a trained anatomy expert based on fiducial markers placed before image 

acquisition or image features extracted from images after scanning.  

3.3.2 Transformations based on radial basis functions 

A generalized way to describe the geometric transformation is creating a 

global function based on a set of radial basis functions (RBF), which are functions 

depending only on the distance between two points. Thin plate splines (TPS) are an 

example of radial basis functions that are derived from minimization of a smoothness 
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measure based on the partial derivatives of the transformation[82] . A known 

synthetically induced deformation using TPS model is used to verify the accuracy of DIR 

in this dissertation and is discussed in the next chapter. The name “thin plate” refers to a 

physical analogy of bending a thin sheet of metal plate orthogonal to the plate such that 

the plate will arrange itself in a configuration where the bending is evenly distributed or 

producing radially symmetric transformations. 

A number of other basis functions for RBF-based transformations have been 

proposed for image registration including elastic body splines (EBS), Wendland 

functions[83]  and Gaussian functions. 

3.3.3 Adaptation of Insight Segmentation Tool Kit (ITK) Thin Plate Spline: 

 ITK uses a variation of the elastic body spline [84] to implement the thin plate spline. 

The elastic body spline is obtained by solving the Navier equilibrium partial differential 

equation for a homogeneous isotropic elastic body subjected to loads [84]:  
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. µ and λ are the coefficients that describe the physical 

properties of the materials derived from Young’s modulus (E) and poisson ratio, (υ) and 

can be written as 

E = 
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)(xu


  is the divergence of the )(xu


. The solution to equation (1) given the force field 

is: 
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The passion ratio  ]2/[   and   1112   . I is the identity matrix. The form 

of )(xG


for the ITK TPS implementation is as follows: 

 

)()( xIrxG
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        (4) 

 

The matrix block element )(xG


in the ITK TPS implementation is a 3x3 matrix. The 

“traditional” thin plate spline [82] )(xG


is replaced by 1x1 matrix  As noted [84], this 

difference derives from the assumption that individual displacements in each coordinate 

axis in the “traditional” thin plate spline is independent. The ITK implementation of the 

thin plate spline assumes that the displacements in each ordinate are coupled as a direct 

consequence of being parts of the solution solving the equation (1). The stiffness of the 

splines could be adjusted by the stiffness factor . When   is set to zero, one obtains the 

interpolating splines [85]. 

Other ITK kernel splines  

The TPS is a member of a family of splines available in ITK for deformable alignment. 
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Other spline models available are given below. 

–Thin Plate Reciprocal Spline: G(x) = r(x)
2
log(r(x))×I.      (5) 

–Elastic Body Spline (EBS): G(x) = ((12×(1−ν)−1)r(x)
2 

×I−3xx T )×r(x) where ν is the 

Poisson’s ratio.                                                                   (6) 

–Elastic Body Reciprocal Spline: G(x)=((8×(1−ν)−1)r(x)×I−3x x T /r(x)).   (7) 

–Volume Spline: G(x) = r(x)
3 

× I.                                        (8) 

The variants are based on variants plugged into the solution of G(x), see reference [84] 

for details. 

3.3.4 Transformations based on a grid of control points 

B-splines: 

B-splines are a commonly used deformation model in radiation oncology applications 

and have been used in commercial implementation of DIR software as well (Velocity 

AI). A common approach to parameterizing a transformation using basis functions is 

to base the transformation on a number of control points arranged in a regular 

grid and four basis functions .In short, a function is represented as a linear combination of 

basis functions such that 

              
 

 

where    is a scaling function and β(u) is a piecewise cubic polynomial and, 

β o(u) = (1 − u)
3
/6 

β 1(u) = (3u
3
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The four piecewise polynomials are shown in the figure 3.1 below. 

 

Figure 3.1 Graphical representation of four piecewise polynomials in B-spline algorithm 

Using these it is possible to develop a transformation function which is locally 

controlled , i.e when a control point is moved the points in the vicinity are transformed 

This technique is sometimes called free form deformation (FFD). The compact support of 

the BSplines means that when evaluating the effect of moving a control point, only the 

vicinity of this point needs to be considered. In  a cubic B-spline FFD transformation 

approach is applied in registration used in mammography for breast cancer [86]. This 

registration is based on MR images and using MI as similarity measure for creation of 

external forces.  

The B-spline approach combined with Mattes MI similarity metric has been widely used 

for several applications in  radiotherapy[87-89] 

3.3.5 Mesh based models 

Mesh based models perform DIR ( also known as deformable mesh registration (DMR) 

based on dividing the entire image into polygons (2D) or polyhedra (3D), where the 
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subdivision follows boundaries in the images. This can be used for finite element analysis 

based methods in image registration.[90, 91] 

A number of authors have based their registration approach on using organ 

segmentations for creating a mesh of points connected by triangles (organ surface), and 

tetrahedra or hexahedra (entire organ volume). Recently this method was used to verify 

the accuracy of automatic target registration by comparing tumor and lymph nodes 

delineated by an anatomy expert on weekly CT scans with those derived from mesh 

registration[92]. 

3.4 Non-parametric deformation models 

Non-parametric deformation models or transformations are typically described by 

a field consisting of a displacement vector per voxel of the reference image. A continuous 

transformation function is defined by interpolation between these vectors and 

consequently the DVF generated in non-parametric models constitute a vast number of 

degrees of freedom. The non-parametric deformation models are also sometimes called 

free form deformation in some of the published work. 

3.4.1 Methods for non-parametric registration 

Deformation models in parametric approaches to some extent are regularized 

by the continuous nature the parametric functions. However regularization is crucial 

when using non-parametric transformations. In this section some examples will 

be given of non-parametric registration methods which rely on physical properties based 

on an underlying physics to guide the registration process. 

3.4.2 Linear Elastic matching 

Hooke’s law of elasticity describes the strain, the deformation a body undergoes, 
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when subjected to a stress, the force per unit area. Under Hooke’s law this is a 

linear relationship is described by 

F = −kx, 

where x is the change in length of the object, F is the restoring force exerted by the 

body, and k is the spring or force constant. Hooke’s law can be rewritten, in terms 

of stress and strain, as 

σ = E* ε, where E is  young’s modulus and σ and ε are the applied stress and strain . The 

deformation along the axis of applied force follows Hooke’s law and can be written as 

x =  
  

 
 = 

 

 
 

 

 
  where E= Young’s modulus of organ and 

 

 
(force per unit area) is the 

applied load. 

In a simple 2 D model the deformation in a direction perpendicular to the direction of 

applied force ( Δ H) can be written in terms of the Poisson ratio of a particular organ as 

follows: y = 
  

 
 =  

 

 
 * 

 

 
 where υ is the poisson ratio of the individual organ defined as the 

ratio of transverse contraction strain to longitudinal extension strain that describes the 

compressibility of a material. Typical organ Young modulus and poisson ratio are given 

in Table 3.1below that can be used in biomechanical algorithms based DIR[91]. 

Organ Poisson’s ratio (υ) Young’s modulus (E) 

(kPa) 

Lung 0.45 5.0 

Bladder 0.45 16 

Breast 0.45 19 

Liver 0.45 7.8 
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Spleen 0.499 50 

Kidney 0.499 24 

Stomach 0.499 500 

Interior 0.4 1.5(abdomen) to 6.0(thorax) 

Table 3.1 Typical Young Modulus and poisson ratio of organs used in DIR 

biomechanical algorithms 

3.4.3 Demons Algorithm 

The demons registration method was introduced by Thirion[93] and has been used in 

several radiotherapy applications.[94-96] 

Optical flow is used to find a driving force at each point based on the intensity gradient of 

the image. The allowed transformations are described using a vector field where each 

voxel has an associated deformation vector describing where this voxel is mapped to in 

the reference image. The main concept here is to drive the voxels of the moving image in 

the direction of the gradient  f if their intensity is higher than the corresponding intensity 

of voxels in fixed image and in the opposite direction if intensity is lower. To regularize 

the flow a Gaussian filter is used.  

The Demons algorithm defines the deformation fields as 

)(xu


 
  -     

          
 = 

       

        

where (m-s) is the external force or the differential force between static and moving 

images and     is the gradient of the static image. 

This method  has been validated on a wide variety of radiotherapy applications[94, 95].  
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3.4.4 Viscous-fluid registration 

A registration method designed to handle large geometric displacements between 

two images is the viscous-fluid registration method by Christensen [97]. The general idea 

in this method is to use a motion model that is derived from continuum physics that 

describes the motion of a viscous fluid for regularizing the registration process. 

The general equation can be described using Navier-Stokes equation namely 

)()]([)()(2 xfxuxu


     

For an incompressible fluid, the conservation of energy, momentum, and mass lead 

to the Navier-Stokes equations to describe the motion of a fluid substance. In the 

viscous fluid model equation above, μ is set to 1 and λ to 0, resulting in the simplified 

equation 
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

  

 The driving force in the viscous-fluid registration is a body force vector field that is 

derived on the basis of image intensities finding the local direction of steepest 

decrease of an SSD similarity measure. The method is very time consuming because it 

requires an iterative solution of a partial differential equation (PDE) and in each iteration 

another PDE must be solved to find a vector field of velocities.  

An example of viscous-fluid registration method extended to include the use of 

landmark information was used in cervical cancer registration with patients with CT 

compatible intra cavitary applicators[98]. A hybrid model is presented here in which 

regions of interest are converted to binary volumes. These volumes are included when 

body forces are calculated which makes it easier to assure that structures of importance in 

the images are matched.  
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3.4.5 Optical flow based registration methods 

The process of estimating optical flow is the process of finding a mapping between the 

fixed and moving image that relates in a quantitative manner how image intensity 

information has changed between the two images. In theory both images are regarded as 

part of one mathematical function where spatial changes have occurred in the time 

between acquisitions transforming one image into the other. The optical flow is a vector 

field consisting of the changes in spatial coordinates. These vectors can be thought of as 

“optical velocity” vectors showing the direction of image intensity flow.  

A well-known method for estimating optical flow is the classical Horn and Schunck 

algorithm [99]. Here the optical flow field is found by minimizing a cost function that 

consists of an intensity term and a term penalizing non-smooth optical flow fields. The 

Horn and Schunck algorithm is available to radiation oncology community through the 

DI-ART platform in public domain[100]. The optimization is based on the calculus of 

variations. Because the Horn and Schunck method performs a global optimization it is 

able to produce very smooth transformations. The method was used for estimating intra-

thoracic tumor motion by Guerrero et al.[101]. Further the Horn and Schunck algorithm 

was found to be the best performing algorithm for dose warp accuracy in stereotactic 

irradiations and also the best performing algorithm in low contrast DIR accuracy studies 

using a deformable gel which played the roles of both a dosimeter and image study set 

[102-104] 

An invertibility term can be added to the Horn and Schunck method as done by Yang et 

al.[105] for obtaining inverse consistent registration (that is registration of moving image 

to the fixed image is the same as the inverse transformation of the fixed image to the 
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moving image, the details of inverse consistency are discussed in next chapter). A 

different approach than the global optimization performed by Horn and Schunck was 

taken by Lucas and Kanade [106] which is also available to the radiation oncology 

community through the DI-ART package[100]. Here an assumption of constant flow in a 

window around the pixel being considered was chosen which can be solved by the least 

squares method. The Lucas and Kanade method leads to a registration result which is of a 

more local nature in that the information about displacements at edges does not propagate 

through areas of uniform intensity. 

The two optical flow estimation methods mentioned above as well as the Demons method 

by Thirion have become the basis for a variety of deformable registration models based 

on non-parametric mode and have been used widely in radiation oncology community for 

a variety of clinical applications. 

Some authors have used calculus of variations in their work on DIR. For example Lu et 

al.[107] used calculus of variations to represent the minimization of their registration cost 

function as a set of elliptic partial differential equations  and validated the method on 

lung and prostate CT images. For applications in  head and neck, Zhang et al.[108] used 

these variational methods in implementing an atlas based segmentation by automatically 

delineating volumes of interest on 32 CT images from 7 different patients. 

3.5 Optimization methodologies 

Optimization refers to the manner in which a transformation function is adjusted to 

improve image similarity metrics discussed in sec 3.2.  A good optimizer can be thought 

of as one which finds the best possible transformation between source and fixed image in 

a quick and robust manner. Deformable image registration as discussed before is in 
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general an ill-posed problem.  There can be many deformation vector fields (DVF) in a 

non-parametric registration resulting in the same deformed image and thereby resulting in 

the same cost value as calculated by the chosen similarity measure. Therefore the 

similarity metric is usually combined with a regularization term. For parametric 

transformations the regularization is often achieved using a combination of a 

regularization energy term on the parameters and the properties of the parameterization 

function itself. Other transformations (like RBFs) function as interpolators and work by 

providing a smooth interpolation of prescribed displacements (the matching of 

landmarks). 

For non-parametric methods the smoothness of the resulting transformation 

is dependent  on the regularization chosen. This is related to the harmonic energy of the 

deformation vector field which is inversely proportional to the smoothness of the DVF. 

The details of harmonic energy of a deformation field are discussed in next chapter. For 

some non-parametric methods the regularization imposed is an implicit result of a search 

strategy instead of a term included in the cost function to optimize. 

3.5.1 Hierarchical approaches 

Most practical implementations of image registration methods utilize some kind 

of Hierarchical coarse-to-fine approach. Several possible approaches exist as discussed in 

Ref[109]: 

Multi-resolution approaches:  

The deformation is first approximated on low resolution versions of the images to be 

registered. The result of this coarse registration is then used as a starting point for a 

registration at a higher resolution. This continues until the deformation has been 
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approximated at the highest resolution. A multi-resolution strategy enables us to 

systematically handle modes of deformation at different scales. By finding a 

minimizing transformation at a low resolution there is a better chance of avoiding local 

minima at a higher resolution. This approach is used in the commercial DIR platform 

Mim Software [110]. 

 It should be noted that most DIR algorithms use different registration methods of 

increasing complexity as part of the hierarchical approach.  Almost every deformable 

registration method requires an initial global (rigid or affine) registration to be made that 

reduces the parametric search space before the deformable model is invoked. 

3.5.2 Optimization methods for parametric registration models 

For parametric methods a number of numerical methods can be used for optimization 

of the cost function. Gradient descents (GD), conjugate gradients (CG), etc… are 

commonly used optimizers for parametric models. 

A key ingredient in efficient optimization of a cost function is how efficient 

it is to compute the derivative of the cost function with respect to each of its parameters. 

If these derivatives cannot be found analytically they may be estimated using finite 

difference approximations. 

3.5.3 Optimization methods for non-parametric registration models. 

The non-parametric deformation models discussed before often needs a method to solve 

the Partial differential equations (PDEs) that arise from various models (Demons, 

Viscous fluid etc...) There are two primary methods to solve PDEs, the finite element 

method and finite difference method. The finite element method solves the PDEs by 

approximating the solution using a mesh to describe the volume and in general leads to a 
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better solution in more complex geometries because the mesh can be made flexible. The 

finite element methods are computationally more intensive. 

On the other hand the finite difference method approximates the PDEs and a solution is 

found by finite difference. These equations can then be solved by assigning appropriate 

boundary conditions applicable to a particular deformation model. 
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Chapter 4 

A framework for deformable image registration validation in radiotherapy clinical 

applications 

This chapter focuses on the details of DIR verification in the context of radiation therapy 

clinical applications. The DIR verification scheme proposed as part of this chapter was 

published in Journal of Applied Clinical Medical Physics, Ref [18].  

4.1 Introduction: 

Image Guided Radiation Therapy (IGRT) has become a widely used treatment modality 

in recent past with advanced treatment processes. IGRT requires daily or frequent 

imaging which can lead to treatment planning modification decisions based on patient 

specific anatomical variations as quantified by the imaging. However, routine IGRT in 

most clinical departments uses only the vendor supplied rigid registration matching 

between original treatment planning CT (kvCT) and the daily imaging study set.   

Deformable image registration (DIR) studies have been advocated to more accurately 

quantify these anatomical and biological variations [111]. Deformable registration is 

essential to map the position of each voxel to a reference CT image for dose tracking and 

to ultimately practice adaptive radiotherapy [6, 9] . The accuracy of deformable 

registration is particularly important in Intensity Modulated Radiation Therapy (IMRT) 

and adaptive radiotherapy that deliver differential doses to different parts of the tumor 

and organs at risk which then sum to a uniform dose. The existing methods of deformable 

image registration can be classified broadly into two categories, parametric or model 

based( B-Splines [86], Thin plate splines [112], linear elastic finite element [90] etc..) and 

non-parametric methods ( optical flow [93], viscous fluid [97],  etc..) 
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There have been many techniques proposed to validate the accuracy of various DIR 

algorithms [95, 108, 113-119].  All DIR evaluation procedures require the use of 

evaluation data and validation methods. Considering the evaluation data one can separate 

the methods into two groups: a. those using real patient image data and b. those using 

phantom image data. In the first set of methods the authors use real patient image that 

they deform artificially to create the reference and the test study. Alternately multiple 

imaging acquisitions on different time moments where changes in anatomy are clearly 

visible and anticipated (e.g. re-planning scans or cone beam CT scans) are used. The use 

of deformable phantoms has also been explored to validate the accuracy of DIR. 

However phantoms as described in [120-122] cannot be routinely used in most busy 

clinical departments because of the lack of resources and time required to build and test 

these phantoms. Further, it is not practical to build a phantom that will be sophisticated 

enough to simulate all anatomical deformations that can occur in a clinical environment.  

It has also been suggested that the presence of uniform intensity regions in the phantom 

images as opposed to more intensity gradients in clinical CT images may limit the 

applicability of phantom tests in DIR verification [113]. 

The validation methods often include using landmark points in regions of interest, as a 

surrogate tool in verifying accuracy of DIR. A frequent problem with this technique is 

locating the landmark points, which in real patients anatomy can be time consuming and 

difficult to identify markers in low contrast regions. The contour based evaluation is 

useful qualitative verification in contour propagation and also for inspecting anatomical 

difference among images. Although contour propagation techniques seem to provide a 

more efficient way of validation compared to markers, including changes in shape 
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volume and location of a structure, they often do not confirm that the volume within the 

contour has been properly registered.  

In this work we describe a commercial software tool kit, ImSimQA (Oncology Systems 

Limited, UK) which can serve as a virtual deformable QA tool by simulating clinically 

observed organ deformations in routine IGRT. In contrast to previous years where 

deformable registration algorithms where available only in a research based setting, today 

several commercially available products are available. Most of these commercially 

available products are “black boxes” in that very little information is known to the 

medical physicist regarding the overall system accuracy of the implemented algorithm 

and what the limitations of the deformable registration algorithm could be for a given 

clinical situation. This is particularly true for IGRT since different organs exhibit varying 

levels of deformation over the course of radiation therapy. Presumably the algorithm will 

have different registration settings to accurately register the images over these varying 

clinical scenarios. Therefore, it is critical that some quantitative validation of the system 

accuracy of the implemented algorithm and its potential limitations in the commonly 

encountered IGRT clinical situations exists [123].   

This work describes a complete set of metrics and tools and a practical framework to 

evaluate a deformation field and highlights the importance of selecting an appropriate 

evaluation tool which is dependent on a given clinical deformation. This will ensure that 

a false positive conclusion is not reached in validating a particular DIR algorithm.  

4.2 MATERIAL AND METHODS.  

In order for a complete and thorough validation of DIR performance in a clinical 

environment the following three characteristics were examined in this study 
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4.2.1 Anatomical correspondence:  

Anatomical correspondence between original and deformed image sets can be identified 

using markers or contours defined by the users. This validation is important because in 

radiotherapy clinical applications, the tumor and organs at risk (OAR) volume changes 

and consequently the partial volume dose received by these structures. The magnitude 

and location of these changes dictate the need for adaptive radiotherapy. Hence the 

accuracy of DIR in relation to this is evaluated in this paper by quantitatively comparing 

the original tumor and OAR segmentation with those obtained from warping the RT 

structures with the Deformation Vector Field (DVF) derived from registration. Dice 

Similarity coefficient, Hausdorff distance and average surface distance were used as three 

metrics to evaluate the accuracy of tumor and OAR segmentation and spatial overlap 

index.  

4.2.2. Deformation field:  The physical characteristics of the deformation fields should 

be investigated. This is because recent applications in Adaptive Radiation Therapy (ART) 

have used the deformation fields arising from image registration process to warp the RT 

Dose and display a deformed dose [124-127]. Hence some quantitative information on 

the physical characteristic of deformation fields is necessary for clinical implementation 

of ART. It is known that matching of structures based on their intensities alone is not a 

sufficient condition to produce physically achievable deformations[128].  

In this work we used a number of methods to evaluate the characteristics of the DVF. 

One of the key methods reported in the literature is the concept of inverse consistency 

[129-131]. Inverse consistency between two images A and B are evaluated as follows in 

this paper. Image A is deformed to match image B, and image B is separately deformed 
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to match image A using two different algorithms. A perfect inverse consistent algorithm 

will produce a true inverse DVF when the roles of source and target images are switched. 

However in practice this is not the case. The inverse consistency error (ICE) between 

forward and inverse registration is calculated by compositive accumulation of forward 

and inverse deformation fields. The magnitude of compositive accumulation will be zero 

for perfectly inverse consistent algorithm. The details of compositive accumulation are 

discussed in the next section. The disadvantage of inverse consistency method is that a 

zero value for ICE is a necessary but not sufficient condition for an accurate algorithm as 

errors in one DVF may cancel with errors in the other to yield a net zero value during 

composition of two deformation maps [129].   

Diffeomorphism is a necessary condition for deformation fields to be physically feasible 

[132]. This property is related to the jacobian of the deformation field. Negative 

jacobians indicate unrealistic physically unachievable organ deformations as organs can 

only be compressed and deformed but cannot undergo non invertible spatial 

transformations like folding of structures [133, 134].  This is the primary advantage of 

diffeomorphic demons over B-Splines algorithm as the jacobian is always non-negative 

in the former.  

In this study, we compute the determinant of the jacobian of the deformation field as a 

criterion for validating physical behavior of deformation. The harmonic energy of the 

deformation field is used to quantify the regularity of the spatial transformation obtained 

by the deformable registration process [135]. The harmonic energy of B-Splines and 

diffeomorphic demons algorithms are calculated in this study to distinguish displacement 

fields based on regularity of the transformation. 
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4.2. 3. Image characteristics: Comparison between original and deformably registered 

images to provide a measure of how well the deformation is recovered in the entire image 

voxel space. 

Mean Square Error (MSE) between registered and original image was computed as a 

measure of how well the deformation is recovered in the entire image voxel space.  

Three clinically relevant examples from Prostate, Head & Neck and Lung case are 

presented and the accuracy of DIR is evaluated using various methods described above 

and the relative merits of these are discussed. 

The workflow and evaluation methods for DIR accuracy used in this paper are 

summarized in the flow chart below.for DIR accuracy used in this paper are summarized 

t b 

The workflow and evaluation of DIR in this paper is outlined in the flow chart below.  

 

 

 

 

 

 

 

 

 

 

 

STEP A. Prepare CT Test Cases using ImSimQA 

Prostate Head & Neck Lung 
Apply Local Deformation 

 

Apply Global Deformation Apply Local Deformation 

Products 

1. Warped CT images  
2. Warped RT structures 
3. Direct and inverse ImSimQA deformation field 

 

STEP B. Apply DIR between Original and Warped image sets in both 

forward and inverse direction using 3DSlicer 

Diffeomorphic Demons algorithm 

 

B-Splines algorithm 

 

a. Prostate original. vs. warped 
b. Head & Neck original. vs. warped 
c. Lung original. vs. warped 

a. Prostate original. vs. warped 
b. Head & Neck original. vs. warped 
c. Lung original. vs. warped 

Products 
1. Direct and inverse deformation field (B-Splines & Diffeomorphic Demons) 
2. Warped RT structures using above deformation fields 
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4.2.4. Overview of methods of deformation in ImSimQA: 

A brief description of the deformation process used in ImSimQA to warp the images to 

produce clinically observed organ deformation is presented below. In ImSimQA, there 

are two choices for the geometric deformation of the image data.  Both implementations 

are based on the Radial Basis Function approach with different kernel functions. For the 

global deformation of the data, the Thin-Plate Spline (TPS)[136] kernel was utilized and 

the Compact Support Radial Basis functions (CSRBF)[137] as the local deformation 

scheme. Both algorithms have a closed form solution and their parameters can be 

computed by solving a linear system through QR decomposition.  

Thin-Plate Splines 

In ImSimQA the algebraic solution of Bookstein [82, 136] is followed which treats the 

TPS solution as an interpolation problem. In order to perform the deformation, two sets 

of landmark points must be chosen which will be referred to as the source points (SP) and 

the target points (TP) from so on. In case of a 2D image, the surface of the image is 

treated as a 2D grid with each yx, of the image coordinates being a part of the image 

grid. The SP and TP are manually inserted on the grid. The vectors, with their origin at 

STEP C. DIR Evaluation Scheme using 3DSlicer 

I. Deformation Field 
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the SP coordinates and directed at the corresponding TP coordinates, show the 

deformation direction of the grid. In order to solve this problem a mapping function 

),( yxf is found that will map the SPs to TPs by deforming the underlying grid. 

Given a set of n corresponding points on a D  dimensioned grid, the TPS warping is 

described by )1( DnD parameters which include )1( DD  global affine transform 

parameters and Dn  coefficients as the RBF parameters. As an example in D2 space, for 

any 









y

x
q  vector in the Image space being SP, the mapping from 'qq  , where 'q  is 

the TP, is given by the equation: 
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Where P  are the target points,  
22 log)( dddU   is the TPS kernel and d  the distance 

between SP and TP. W  are the parameters for the non-rigid part of the function and A  

the parameters of the rigid part. The separation of the rigid and the non-rigid parameters 

is done through QR decomposition and the solution can be extended in any dimension. 

Compact Support Radial Basis Functions (CSRBF) 

The TPS deformation affects the whole image and is characterized as a global 

deformation procedure. For applications which need local deformation, the CSRBF 

model is implemented. The locality effect of the CSRBF is adjusted by calibrating a 

scaling parameter. The algebraic solution to the CSRBF is the same as the TPS with only 
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difference the RBF kernel used. The CSRBF kernel is a Wendland function[83] 

constructed from piecewise polynomials. In ImSimQA the kernel utilized in the CSRBF 

implementation is: 

lddR )1()(     

where d  is the distance between the SP and the TP, 132/  kDl . D  is the 

dimension space of the problem, and k is a smoothing parameter (0 in ImSimQA). In this 

way R  returns a value for 10  d otherwise returns 0. The deformation is applied in a 

radius around the SP. There is a spatial scaling parameter 0a  for adjusting the radius. 

Then the CSRBF is scaled as )/()( adRdRa   and in this way the radius of the 

deformation is adjustable.  In both algorithms anchor markers can be placed inside the 

dataset in places where the restriction of the deformation is needed. If the SP and the TP 

are identical then deformation around these markers is restricted. By default, in both 

algorithms there are anchor points at the border of the dataset, four in the 2D case and 

eight in the 3D case. This is done to avoid excessive warping of the original dataset.   

 Simulating and storing deformations in ImSimQA 

As mentioned above, ImSimQA can perform global and local deformations or a 

combination of both. The deformation algorithms are controlled using marker points that 

are user-defined and can be freely positioned on the image set. The deformation 

workflow is performed in the following work flow. 

a. The user defines the source control marker points and enables the local (CSRBF) 

or global (TPS) deformation procedure. The direction of the deformation is given by 

translating and rotating the control points individually or as a group of points. The control 



 

 82 

points can be moved in three dimensions. For the deformation procedure to start, the 

source and target positions of the control points are used.  

b. A deformation field comprising a three component vector value at each voxel is 

generated.  

c. The source image is then warped using this deformation field. Tri-linear 

interpolation is used to correct floating voxel locations during image warping.  

For more complex deformations, one can combine TPS over CSRBF deformations and 

vice versa. In this way the new data set is a deformation based on a complex calculation 

of deformation. The final deformation field is composed as the addition of both 

deformations which can be applied only once on the original image set.  

For documentation and testing purposes it is possible to export the deformed image set 

(as a new DICOM set), the deformation field as a binary 3D grid and also deformed RT 

structures as a new RT-Structure.   

In Figures 4.1a -f, a simulated deformation example is illustrated. The original axial 

image is a virtually generated phantom CT image.  Figure 4.1a shows the axial image of 

quasar phantom [138] The red marker points in figure a illustrate the original marker 

location. In figure 4.1b, the target location of the markers is a result of marker translation 

and rotation. Target location and source position are linked with a line. The global 

deformation (TPS) result is shown in figure 4.1c while the local deformation (CSRBF) 

result is shown in figure 4.1d. For both deformations the same source and target points 

were used. The magnitude of the deformation field vectors on an axial slice for the TPS 

and CSRBF are shown in figure 4.1e & f respectively. As expected, one can observe a 
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much wider area of iso-contours for the TPS deformation. For the CSRBF, the 

deformations are limited into a small radius around the target marker location.  

 

Figure 4.1a:  Axial image of quasar phantom with original marker points. 

Figure 4.1b Axial image of quasar phantom with target marker points. 

Figure 4.1 c:  Axial phantom image after applying the global (TPS) deformation 

algorithm. 

a b 

c d 

e f 
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Figure 4.1d: Axial phantom image after applying the local (CSRBF) deformation 

algorithm. 

Figure 4.1e Magnitude of deformation vector field from TPS on the axial view 

Figure 4.1f Magnitude of deformation vector field from CSRBF on axial view 

 

4.2.5. Clinical rationale and description of applied known deformation in each 

anatomical site: 

a) Prostate: In prostate IGRT, deformation of the prostate due to variations in rectal 

filling is commonly observed. The need for adaptive radiation therapy for prostate cancer 

due to inter and intra fraction motion is well documented in the literature [107, 139-148].  

We applied a known deformation in the ImSimQA to mimic a distended rectum and 

introduce rectal gas in the synthetically deformed image. This in turn deforms the 

prostate as routinely seen in prostate IGRT. 

For the CT series of the prostate case (512 × 512 ×74 (median) voxels; 0.86 × 0.86 × 5.0 

mm
3
) images were acquired on a SIEMENS Sensation 16 CT scanner which included the 

RT structures used during DIR evaluation. It should be noted all the applied deformation 

in this study is fully three dimensional although only a particular slice view is shown for 

illustration. Figure 4.2 below shows axial view of original kvCT image with RT 

structures, figure 4.3 indicates applied deformation from ImSimQA and figure 4.4 shows 

the changes in RT structures from the applied ImSimQA DVF when compared to original 

RT structures. 
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Figure 4.2: Axial view illustrating the local deformations introduced in the prostate 

and rectal region and gas pocket in the rectum. 
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Figure 4.3: Axial view of the prostate kvCT image with original RT structures namely 

bladder, prostate, rectum and pelvic bones. 
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Figure 4.4: Contour changes in prostate, bladder and rectum from the applied 

ImSimQA DVF when compared with original segmentation of these structures. Solid 

figures refer to original segmentation done by radiation oncologist on kvCT image and 

dotted figures refer to the deformed volumes due to the applied deformation. 

b) Head & Neck: 

There are significant changes in patient anatomy during the course of Head and Neck 

IGRT treatment that are related to decrease of tumor and nodal volumes, patient weight 

and alteration in muscle and fat distribution with an average tumor volume reduction of 

70% of its initial volume at the end of treatment[149]. Similarly, the parotid glands also 

undergo significant volume reduction with an average reduction of 49.8 % and a 

translation of 8.1 mm upon completion of treatment [150]. 

The changes occurring due to patient weight loss could have a significant impact on 

Organs at Risk (OAR) like the parotids, since these structures can now be in the high 
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dose gradient area and tumor could be under dosed.  Adaptive radiotherapy has been 

advocated to mitigate such volume changes [151-156]. We applied a global deformation 

on the ImSimQA software to change the patient neck flexion and studied the deformable 

registration algorithm to track these changes as shown in figs 4.5 a, b c. The induced 

deformation does not correspond to inter fraction variation that occurs during routine 

head and neck IGRT but rather relates to a clinical scenario where the patient was treated 

previously with a completely different neck position and is now being evaluated for 

radiation therapy in the same area in a different treatment position. The induced 

deformation significantly altered the nasal cavity, the alignment of vertebral body, spinal 

cord and skull in comparison with the original image.  

For the CT series of the head and neck case (512 × 512 ×112 (median) voxels; 0.94 × 

0.94 × 3.0 mm
3
) images were acquired on a SIEMENS Sensation 16 CT scanner which 

included the complete set of RT planning structures. Figure 4.5 d shows the sagittal view 

of original kvCT image with associated RT structures, figure 4.6 shows the deformed 

image from ImSimQA after applying the neck flexion and the and the warped RT 

structures as result of applied ImSimQA DVF when compared to original RT structures. 
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Figure 4.5 a,b,c. Original image of skull, rotated image of skull and overlay of original 

and rotated skull respectively  demonstrating the applied neck flexion for validating DIR 

 

un-deformed image 

of skull 

a 

Skull rotated 

counterclockwise in 

deformed image 

b 

c 

Overlay of deformed 

and un-deformed image 
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Figure 4.5 d: Sagittal view of the original head & neck CT image with the associated RT 

structures brain stem, cord, larynx and mandible. 
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Figure 4.6:Sagittal view of the head and neck image from the applied global deformation 

mimicking a large neck flexion. The skull is rotated counter clockwise. The deformed RT 

structures due to the applied deformation are displayed as dotted figures. 

c) Lung: 

Respiratory motion of the order of 1 cm has been observed for tumors close to the 

diaphragm [157, 158]. We introduced a deformation in ImSimQA to mimic dataset from 

inhale and exhale breathing phases of 4DCT. Deformable registration attempted to track 

this worst case scenario.  

In addition to the lung volume changes, we introduce contrast changes in the image to 

assess the quality of DIR during variable contrast enhancement.  The original kvCT 
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images have contrast in the scan, while in the synthetically deformed images from 

ImSimQA the contrast has been taken out. This example was chosen to highlight the 

limitations of diffeomorphic demons algorithm when the intensities of identical tissues 

and organs are different in the two images.  

For the CT series of the lung case (512 × 512 ×123 (median) voxels; 0.98 × 0.98 × 3.0 

mm
3
) images were acquired on a SIEMENS Sensation 64 unit which included the 

complete set of RT planning structures.  

Figures 4.7, and 4.8, below show the coronal view of original kvCT image with contrast, 

and the coronal image from ImSimQA without contrast showing diaphragm motion and 

lung volume changes. 

 

Figure 4.7: Coronal view of the original lung kvCT image showing the lung contours 

and contrast in scan. 
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Figure 4.8: Coronal view of the same lung kvCT image illustrating the applied local 

deformations on the diaphragm and the changes in lung contour associated with that. 

This mimics an inhale and exhale breathing phase of respiratory cycle. The contrast is 

also taken out of this image to validate DIR during variable contrast enhancement. 

4.2.6. Deformable Image registration 

The Insight Segmentation and Registration Toolkit (ITK) was used to perform (a) free-

form parametric deformable registration using a cubic B-Splines [159] and (b) non-

parametric registration using diffeomorphic demons. The DIR and all the analysis tools 

described in this work were integrated into open source platform 3D Slicer [17]via 

custom developed modules. We used the Mattes Mutual Information (MI) metric [160] 

with an evolutionary algorithm followed by gradient descent optimizer for optimization 

[161].  The images are initialized to line up their centers. The evolutionary optimizer 
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works by searching for the minimum metric value by generating random samples about 

the current location in parametric space and iteratively growing or shrinking parameters 

of previous iteration to hone in on the optimum. This process is fairly resilient to noise. 

After this, a regular step gradient descent optimization is performed, with the 

transformation parameters incremented in the direction of gradient. The increment is 

determined in a bipartition manner until it converges on the minimum of the metric. 

Registration is performed in 3 phases: rigid, followed by affine, followed by deformable 

registration. A control point spacing of 60 (pixels), 50 maximum iterations and 10% of 

the image pixels for metric evaluation were used in this study during B-Spline 

registration to achieve optimal balance between quality of DIR and run time of 

registration. Registration was completed in 15 minutes on a Windows 7, 64 bit operating 

system running on Intel quad core 2.8GHz processor with 8GB RAM. 

The same manually deformed images are also registered using diffeomorphic demons 

[162]to provide a smooth and invertible transformation. In general, for non-parametric 

registration methods such as diffeomorphic demons used in this study, the registration is 

expressed as an objective function comprising of an image term and regularization term. 

The image term may be the difference in intensities of two voxels (optical flow as in 

demons) while the regularization term keeps the deformation field well-behaved. This is 

usually done by smoothing the deformation field with a Gaussian at each iteration to 

ensure that it is well-behaved. 

 Details on the implementation of this algorithm and its advantages over Thirion’s 

demons algorithm [93] are discussed in literature[162]. A diffeomorphism by definition 

preserves the topology of objects in the image. In other words, it prevents folding of 
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structures onto itself. Therefore the jacobian is always non-negative. This is a good 

property to have for medical image registration. The second important property of 

diffeomorphism is that they are guaranteed invertible by definition. 

Registration is typically faster and takes about 10 minutes when using diffeomorphic 

demons algorithm using the same hardware platform as previously described. 

4.2.7. Evaluation Scheme: 

I. Deformation Field 

a. Inverse Consistency: 

 For each anatomical site the original kvCT and the synthetically deformed image from 

ImSimQA were used to test inverse consistency of B-Splines and diffeomorphic demons 

algorithms. The two images are registered separately both in the forward and inverse 

directions. A perfect inverse consistent algorithm in theory should give a deformation 

map which is a true inverse of one another. However in reality this rarely occurs because 

most algorithms do not produce true inverse deformation maps since deformable 

registration is inherently degenerative and multiple solutions may exist for a given image 

matching problem.  

We use the concept of compositive accumulation to quantify the inverse consistency 

error. The details of compositive accumulation as discussed in [129, 163] are summarized 

below. 

The concept of compositive accumulation is used to quantify the inverse consistency 

error. The warping by a deformation vector field D is associated with its corresponding 

transformation operation Δ, such that Δ   Id + D, or Δ(x)   x + D (x), where Id is the 

identity transformation such that I d(x) = x.  Mathematically given two images A and B 
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during DIR, the objective is to find a deformation vector field D such that warping of 

image B by D is close to original image A or  A = B ο Δ. 

 If D1 and D2 are two deformation fields, a single warping by compositive addition of D1 

and D2 is equivalent to successive deformation of an image by D1 and then followed by 

D2.  

The warping by a field D is equivalent to the composition with its corresponding 

transformation ∆. One can then use the composition of function in order to replace 

successive warpings (i.e. by different displacement fields) with a single warping (i.e. by 

an equivalent displacement field). Mathematically, this compositive operation denoted as 

⊕, is defined as follows 

 D1 ⊕ D2 = ∆1 ◦ ∆2 − Id. 

By construction, the deformation operation linked to the displacement field D1 ⊕ D2 is 

therefore ∆1 ο ∆2. The operation ⊕  has some interesting and useful properties. First, the 

neutral is of course obtained with the null displacement field, i.e. D ⊕ 0 = 0 ⊕ D = D. It 

can be shown that the associative relations (D1 ⊕ D2) ⊕ D3 = D1 ⊕ (D2 ⊕ D3) = D1 ⊕ 

D2 ⊕ D3 for three displacement fields D1, D2 and D3. 

The composition of two deformation fields makes use of the operation ο. This means  
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D1   D2 = D2 + D1 o D2, meaning that that D1   D2 is equivalent to summing 

deformation field D2 with the field D1 warped by D2 [163] . A simple proof is presented 

below. 

D1   D2 = Δ1 ο Δ2 – Id. By construction the deformation operation linked to D1   D2 is 

Δ1 ο Δ2. 

Since D1 o D2 = D1 ο ∆2, and D = ∆ − Id, one can easily see that: 

D2 + D1 o D2 = D2 + D1 ο ∆2 

= ∆2 − Id + ∆1 ο ∆2 − Id ο ∆2 

= ∆1 ο ∆2 − Id 

= D1 ⊕ D2.
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Further the compositive addition operation   is associative for three deformation fields 

D1, D2 and D3 meaning (D1   D2)   D3 = D1   D2   D3) = D1  D2   D3 

 For the warp, we use a linear interpolator, i.e. we add the right field to the interpolated 

left field for that pixel as the resulting point x will not land exactly in the grid. 

For purposes of inverse consistency, if D1 and D2 are deformation fields from forward and 

inverse registration, the compositive accumulation of forward and inverse deformation 

fields will yield the inverse consistency error (ICE). If the deformation maps are true 

inverses, this composition will yield zero. The L2 norm (absolute magnitude) of the 

composed fields is used to quantify the magnitude of inverse consistency error. 

Further, ICE between the DVF arising from DIR and the synthetic DVF generated from 

ImSimQA software which was used to produce clinically relevant organ deformation was 

evaluated. The ImSimQA can also output inverse DVF of the applied deformation. This 

DVF was compared with the DVF generated from the inverse registration process where 

the roles of source and target images were switched. A compositive accumulation of the 

ImSimQA DVF and the DVF from registration (B-Spline and diffeomorphic demons) 

was done to quantify the ICE between DVFs. If the results of DIR produced a DVF 

which is the exact inverse of applied synthetic DVF in ImSimQA, then this composition 

of DVFs will be zero. The L2 norm of the composed DVFs is computed to quantify the 

ICE between DVFs.  

b. Determinant of jacobian of the deformation Field: 

The jacobian of the deformation field gives information about the image transformation 

consistency[134, 164]. The jacobian is a matrix given by the first partial derivatives of 

the transformation with      
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where     is kronecker delta (                           and Di is the ith component 

of deformation field. 

We computed the determinant of the jacobian of the deformation field in this study to 

validate the physical behavior of deformation. A negative determinant indicates 

singularities in the field and corresponds to a physically unrealistic organ deformation.  A 

determinant greater than 1 indicates expansion at that location while a value less than 1 

indicates contractions. 

c. Mean Harmonic Energy of the Deformation Field:  

The harmonic energy captures the non-linearity of the warp i.e. deviation from an affine 

transformation. The mean harmonic energy is defined as the frobenius norm of the 

jacobian and is inversely proportional to how smoothness of the deformation field [135]. 

The harmonic energy at a voxel can be defined based on the first order partial derivatives 

of the deformation field as follows: 

HE (D) = ½      
      

   
   

   

 

   
    

where Ʋ is the domain of the deformation field. 

 

II. Anatomical correspondence: 

In radiotherapy clinical applications the accuracy of tumor and organ at risk (OAR) 

structures is of paramount importance. Ultimately the changes in the shape and volume of 

these structures and consequently the dose received by them dictate the need for adaptive 

radiation therapy. 

We use the Dice similarity coefficient, Hausdorff distance and average surface distance 

as three metrics to evaluate the accuracy of tumor and OAR for each anatomical site 
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before and after DIR. These metrics have been previously used to compare segmentations 

in radiotherapy applications and are described below [96, 165-167]. The ImSimQA DVF 

was used to warp the original RT structures in addition to CT images. The registration 

DVF from both algorithms was then applied to these RT structures.  If the results of DIR 

were perfect then the RT structures before and after DIR would be the same. The degree 

of mismatch indicates the quality of DIR from an anatomical correspondence perspective.  

a. Dice Similarity Coefficient:  

The metric computes the number of pixels that overlap between the two volumes and 

normalizes it by the half the sum of the number of non-zero pixels in the two volumes. 

The result is a value between 0 (no overlap) and 1 (perfect overlap) as shown in fig 4.9 

 α = 
            

        
 

where A is the gold standard segmentation which in our case refers to segmentation in 

kvCT fixed image, B is the segmentation mapped from the deformably registered image. 

The metric is symmetric and is sensitive to both differences in scale and position. While 

volume overlap is a good indicator of mismatch, it is a poor indicator of shape since is 

not a measure of distance and hence the following metrics are also evaluated to assess the 

overall accuracy. 

b. Hausdorff distance:  

The Hausdorff distance [168] is defined as the maximum of the closest distance between 

two volumes where the closest distance is computed for each vertex of the two volumes. 

The hausdorff distance H(A,B) between 2 sets of points A = {a1, .., am} and B = {b1, .., 

bm} is given by 

H(A,B) = max(h(A,B), h(B,A)) 
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where h(A,B) = maxa€Aminb€B|| a-b||  

h(A,B) is the directed hausdorff distance from A to B, which unlike the hausdorff 

distance is not symmetric. 

h(A,B) identifies the point a ∈ A that is farthest from any point in B, and then measures 

the distance of A to its nearest neighbor in B. The point sets A, B in our case, are the 

centers of the non-zero pixels in the gold standard (original kvCT) and deformably 

registered segmentations. Thus, the hausdorff distance is a measure of the maximum 

distance between two surfaces as shown in fig 4.9 a. It obeys all four properties of metric 

spaces and distance functions. 

– Identity: H(A,A) = 0 

– Positive semi-definiteness: H(A,B) = 0 

– Symmetricity: H(A,B) = H(B,A) 

– Triangle inequality: H(A,C) = H(A,B) + H(A,C) 

The metric is very sensitive to outliers since the most mismatched point is the sole 

determining criteria of the distance.  Some authors use 95% Hausdorff distance (95%HD) 

as the outliers are rejected in 95%HD. 
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Fig 4.9a Hausdorff Distance is the maximum perpendicular distance between closest 

points from two contours of registered images. Black line represents an external contour 

from one image and gray line represents an external contour from another registered 

image. Small circles represent corresponding closest points between each contour. 

Hausdorff distance represents the distance between small circles at black arrow. b) Dice 

coefficient similarity (DSC) is an index of overlap of two different volumes. Solid black 

line represents a volume from one image and dotted black line represents a volume from 

another image after registration.  DSC is a value between 0 (no overlap) and 1 (perfect 

overlap). (Diagram above adapted from Reference [169]) 

c. Average Surface Distance:  

This metric mitigates the outlier problem exhibited by the Hausdorff distance. The metric 

is the average of the absolute distance from each surface pixel in one image to its closest 

point on the other image. This metric is not symmetric, although it satisfies the positive 

semi-definite and identity properties of distance metrics. 

4.9 a 4.9 b 
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M (A, B) = 
     €          € 

   
 

 

III. Image Characteristics: 

a. Mean Square Error: 

We used metric Mean Squared Error (MSE) to define the extent of mismatch between the 

original image A and the deformably registered image B which is the normalized square 

difference between the two images A and B [170] . If f (n) and g (n) represent the value 

(intensity) of an image pixel at location n. The MSE between  

f (n) and g (n) is defined as: 

MSE  = 1/N Σn {f (n) - g (n )}
2
,    

where N is the total number of pixel locations in f (n) or g (n). 

For a perfect image match between images A and B the MSE error is zero. 

The error is reported as Root MSE in this paper where Root MSE =      

4.3 Results: 

The results of the accuracy of DIR evaluation in three clinical cases namely prostate, 

head & neck and lung are presented below 

4.3.1 Inverse Consistency Error: 

Table 4.1 below lists Inverse Consistency Error (ICE) between various DVFs used in 

DIR and ICE between applied ImSimQA DVF and DVF from DIR for the 3 anatomical 

sites studied. 
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Table 4.1. Inverse consistency error of various DVFs and in comparison with ImSimQA 

DVF 

As an example for the prostate case, the DVF from diffeomorphic demons algorithm is 

overlaid on the original kvCT image for forward, inverse and compositive addition of 

forward and inverse DVFs is shown in figures 4.10, 4.11 and 4.12 respectively. Figure 

4.13 relates to the quantitative ICE described in Table4.1 (1.45 mm) for diffeomorphic 

demons algorithm for the prostate case. 
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Figure 4.10: Forward diffeomorphic demons DVF from the registration overlaid on the 

original prostate kvCT image illustrating the local changes due to the DVF. The field 

vectors are pointing outward. 

 

Figure 4.11: Inverse diffeomorphic demons DVF when the role of source and target 

images were switched from previous example, overlaid on the original kvCT image. The 

field vectors are pointing inward. 
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Figure 4.12: Compositive addition of forward and inverse demons DVF overlaid on the 

original kvCT image. If the algorithm was truly inverse consistent this composition would 

yield zero. The magnitude of this compositive addition is 1.45 mm in this example as 

discussed in Table 4.1. 

4.3.2 MSE, Jacobian and Harmonic energy of DVF 

Table 4.2 below lists Root Mean Square Error, Minimum jacobian and Harmonic Energy 

of deformation field for registration algorithms both in forward and inverse directions for 

all 3 anatomical sites: 
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Diffeomorphic 

Demons 

Forward 

25.9 11.8 0.05 0.12 187 51.9 0.32 0.0005 91.33 853.6 0.53 N/A 

Diffeomorphic  25.9 11.6 0.09 0.003 187 66.1 0.43 0.003 91.33 223.3 0.19 N/A 
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Table 4.2 Root Mean Square Error, Minimum jacobian and Harmonic Energy of 

deformation field for registration algorithms both in forward and inverse directions for 

prostate, head and neck and lung anatomical sites: 

4.3.3. Accuracy of RT Structures 

Tables 4.3, below evaluates the accuracy of RT structures for the prostate case, after DIR 

when compared to original segmentation done by the radiation oncologist  in kvCT ( used 

as the gold standard) for both diffeomorphic demons and B-Splines algorithms. This was 

done by applying the registration DVF to RT structures deformed by ImSim DVF. All the 

evaluation is done on the original fixed image (kvCT) coordinate system.  

Table 4.3 Accuracy of RT structures after DIR for Prostate 

Algorithm: Diffeomorphic Demons 

Anatomy 

 

Dice 

Similarity 

Coefficient 

Hausdorff 

Distance 

(mm) 

Average 

Surface 

Distance (mm) 

Prostate 0.85 15.9 2.3 

Bladder 0.93 11.1 0.78 

Rectum 0.79 12.6 1.2 

Femoral Heads 0.99 1.7 0.1 

Demons 

Inverse 

B-Splines 

Forward 

25.9 11.03 0.0006 0.88 187 80.8 0.014 0.53 91.33 68.1 0.000

5 

0.82 

B-Splines 

Inverse 

25.9 10.9 0.0005 0.87 187 51.2 0.005 0.58 91.33 69.2 0.000

4 

0.87 
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Mean values 0.89 10.3 1.1 

Algorithm: B-Splines 

Anatomy 

 

Dice 

Similarity 

Coefficient 

Hausdorff 

Distance 

(mm) 

Average 

Surface 

Distance (mm) 

Prostate 0.91 9.8 1.03 

Bladder 0.95 7.7 0.42 

Rectum 0.89 10.3 0.8 

Femoral Heads 0.99 1.2 0.1 

Mean values 0.94 7.3 0.59 

Table 4.4 below evaluates the accuracy of RT structures for head & neck case. Although 

by visually inspecting the images the registration seems to agree qualitatively (the skull 

and vertebral bodies matched after DIR) the contour comparison statistics are not 

clinically acceptable especially for organ at risk structures. This is primarily due to large 

neck flexion introduced as a known deformation in ImSimQA. Based on this analysis, 

auto registration of images when there is significant neck flexion should be evaluated 

with caution especially when there is a re-treatment being considered.  

Table 4.4  Accuracy of RT structures after DIR for Head & Neck 

Algorithm: Diffeomorphic Demons 

Anatomy 
Dice Similarity 

Coefficient 

Hausdorrf 

Distance(mm) 

Average 

Surface 
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Distance(mm) 

PTV Primary 0.85 8.9 1.8 

PTV Secondary 0.86 9.1 1.5 

Spinal Cord 0.51 12.2 2.4 

Right Parotid 0.84 4.7 0.8 

Left Parotid 0.77 6.6 1.4 

Brainstem 0.64 11.9 2.7 

Mandible 0.63 40.5 4.6 

Larynx 0.86 5.7 1.1 

Right Eye 0.74 7.5 1.8 

Left Eye 0.79 4.9 1.3 

Mean values 0.75 11.2 1.9 

Algorithm: B-Splines 

Anatomy 

Dice Similarity 

Coefficient 

Hausdorrf 

Distance(mm) 

Average 

Surface 

Distance(mm) 

PTV Primary 0.88 8.2 1.5 

PTV Secondary 0.87 8.6 1.4 

Spinal Cord 0.52 10.5 2.2 

Right Parotid 0.84 3.7 0.8 

Left Parotid 0.79 5.9 1.3 

Brainstem 0.52 9.7 3.9 
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Mandible 0.7 13.6 1.9 

Larynx 0.86 5.7 1.1 

Right Eye 0.59 8.7 2.6 

Left Eye 0.83 4.7 0.93 

Mean values 0.74 7.9 1.7 

 

Table 4.5 below computes the accuracy of RT structures for the lung example involving 

variable contrast enhancement. The diffeomorphic demons algorithm produced improper 

displacement estimation in this case because of the difference in intensities of two images 

due to the variable contrast enhancement. The mismatch in RT structures is particularly 

relevant in heart, lung, bronchial tree and vertebral bodies as the hausdorff distance 

exceeds 10mm and the average surface distance is as large as 11.8 mm for heart. This is 

because diffeomorphic demons algorithm tries to match structures of same intensity 

which in our case does not correspond to identical anatomical structures due to the 

differences in contrast between two images. 

Table 4.5. Accuracy of RT structures after DIR for Lung 

Algorithm: Diffeomorphic Demons 

Anatomy 

Dice Similarity 

Coefficient 

Hausdorff 

Distance 

(mm) 

Average 

Surface 

Distance (mm) 

PTV 0.83 8.8 1.4 

Cord 0.95 4.6 0.2 
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Heart 0.37 56.7 11.8 

Lung 0.99 17.7 0.4 

Bronchial Tree 0.49 18 4.2 

Trachea 0.91 15 1.3 

Vertebral Body 0.92 10.3 0.2 

Mean Value 0.78 19.3 2.8 

 

Algorithm: B-Splines 

Anatomy 

Dice 

Similarity 

Coefficient 

Hausdorff 

Distance 

(mm) 

Average 

Surface 

Distance 

(mm) 

PTV 0.88 6.9 2.1 

Cord 0.94 8.3 0.3 

Heart 0.99 4.1 0.2 

Lung 0.99 6.3 0.3 

Bronchial Tree 0.96 1.4 0.1 

Trachea 0.97 1.4 0.2 

Vertebral Body 0.93 10.3 0.2 

Mean Value 0.95 5.5 0.4 
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4.4 Discussion: 

Deformable image registration will continue to be a key component in the 

implementation of adaptive radiotherapy with the ultimate goal of dose tracking and dose 

accumulation based on daily image feedback [126, 127, 146]. Verification of DIR 

accuracy is an important task in implementation of adaptive radiotherapy. We have 

presented a framework to test and evaluate the accuracy of DIR using known 

deformations which are clinically relevant that can be applied to any CT images. The 

accuracy of DIR was evaluated by comparing anatomical correspondence, physical 

characteristics of deformation field, and image characteristics. The relative merits of 

these methods in the final decision making on DIR accuracy for the anatomical sites 

studied is discussed below. 

Prostate: 

 Our results on prostate case indicate that the ICE was comparable to both algorithms. 

Also, the MSE values were very similar for both methods. However the B-Splines 

algorithm had significantly better anatomical correspondence for rectum and prostate 

than diffeomorphic demons algorithm. So considering the anatomical correspondence of 

the RT structures one can conclude that the B-Splines algorithm performed better. In this 

example the MSE and ICE evaluation parameters provide no criteria to determine which 

method performs better. 

Head and Neck:  

For the head and neck case, the ICE was much larger for the demons algorithm (6.5 mm) 

as compared to B-Splines (0.7 mm). The MSE was comparable for both algorithms. 

However, since the induced neck flexion was large, neither algorithm had a desired 
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anatomical correspondence for PTV and organs at risk that could make the result 

clinically acceptable. Similar to the prostate case, this example also indicates that 

considering only the ICE and MSE methods could lead to false positive conclusions.  

Lung:  

In the lung case B-Splines algorithm accurately estimated the deformations between 

images with variable contrast and was clearly superior in all the metrics that were 

evaluated. The demons algorithm had gross errors in areas of contrast differences 

between images. This was the only example where all metrics used for the DIR 

evaluation were in full agreement on the decision making of the DIR algorithm 

performance. 

Verification of absolute accuracy of DIR is a challenging problem as each of the methods 

studied has its own drawback. In the case of inverse consistency, a zero value for ICE is a 

necessary but not sufficient condition for an accurate algorithm as errors in one DVF may 

cancel out errors in the other to yield a net zero value during composition of two 

deformation maps.  

The determinant of the jacobian and the harmonic energy of the deformation field were 

used to classify the registration strategies based on invertibility and smoothness although 

they do not give information on the accuracy of DIR. However, one needs to confirm the 

non-negative value of jacobian of the deformation field to ensure that a given DVF is 

physically achievable by an organ [133, 134, 163]. The harmonic energy captures the 

non-linearity of the warp.  

The harmonic energy of B-Splines was consistently lower in all our examples and was 

generally small since it was physically constrained. The parameters that control it are the 
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maximum deviation the user allows (step length) during registration and the number of 

nodes specified in the command line. The harmonic energy of the diffeomorphic demons 

is controlled by the parameter “sigma” used to smooth the deformation field. Increasing 

sigma will reduce the harmonic energy but will come at the expense of reduced 

registration accuracy.  The harmonic energy from B-Splines registration was consistently 

lower on all our cases indicating that the deformation field from B-Splines was smoother. 

An abnormally large value of harmonic energy may indicate problems with DVF as was 

the case for demons algorithm during registration of images with variable contrast 

enhancement. However, there is nothing in the B-Splines algorithm that prevents 

negative jacobians which is physically unrealistic. Deformation fields from 

diffeomorphic demons on the other hand are guaranteed invertible and the jacobian is 

always non-negative.  

The image quality of a deformed image set and product of a DIR method is significant for 

the daily clinical routine when used to define OARs and target volumes. However, the 

use of the MSE as image quality metric is proven to be inadequate for drawing a useful 

and consistent conclusion. A small value of MSE indicates an overall good accuracy in 

the entire image voxel space but does not guarantee good accuracy of DVF inside the 

organs. Another option to address this issue is to make a selective MSE calculation 

within regions of interest (e.g. OARs) and investigating other image quality metrics. If 

unsure about the DIR image outcome, the images should be reviewed by a clinical expert.   

Ultimately the accuracy of DIR also needs to be validated with contour comparison 

methods as outlined in this study because the registration accuracy of RT structures and 

hence the partial volume doses received by these structures dictate the need for adaptive 



 

 115 

radiotherapy. This evaluation proved to be the most consistent and reliable method in 

validating DIR accuracy in our study. 

DIR results in a daily clinical environment might be very variable and affected from 

various factors such as patient anatomy, image quality, and registration parameters of the 

particular algorithm. It should be well appreciated that the evaluation of a DIR algorithm 

for use in a clinical routine should be conducted in a long term study including a large 

number of clinical cases.  

4.5 Conclusion:  

We conclude that the proposed framework offers the application of known deformations 

on any patient or phantom image sets, that provide clinical medical physicist tools to test, 

understand and quantify limitations of each algorithm before implementing deformable 

image registration in the clinic. The evaluation based on anatomical correspondence, 

physical characteristics of deformation field and image characteristics can facilitate DIR 

verification with the ultimate goal of implementing adaptive radiotherapy. The suitability 

of application of a particular evaluation method is strongly dependent on the clinical 

deformation observed. 
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Chapter 5. Dose warping and experimental validation of accuracy of dose warping 

using deformable phantoms. 

5.1. Introduction: 

Deformable Image Registration (DIR) has gained wide spread acceptance with the 

availability of several commercial DIR platforms. To properly account for changes in 

patient anatomy over time, a cumulative dose distribution accounting for the 

deformations of organs over multiple data sets needs to be implemented. Dose warping or 

“deformable dose” defined as applying the deformation vector field (DVF) arising from 

DIR on the original dose distribution has the potential to accumulate doses to ultimately 

implement adaptive radiotherapy and has been the subject of great interest and 

controversy in the recent past.[19, 171, 172].  It is known that the accuracy of DIR 

algorithms can vary depending on the algorithm used and the suitability of application 

may be site specific[173, 174] potentially leading to errors in dose warping. However, 

verification of accuracy of dose warp remains a challenging problem as warping the dose 

with DVF may not represent the physical process of dose deposition in a deformed 

anatomy. 

There have been a number of studies done to validate the accuracy of dose warping using 

deformable phantoms and dosimeters. [103, 104, 127, 175-178]. Various  approaches 

include 1D (MOSFETs)[179], 2D (film) [176]and 3D (polymer gel)[104, 175] dose 

measurements in the deformed anatomy and also dose simulation in deformed anatomy 

using TPS dose have been done[179] and results compared to the warped dose from DIR.  

For example Yeo et al.,[104] evaluated the accuracy of dose warp for stereotactic 

irradiations for a range of algorithms available in the public domain using the DIRART 
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code [100] for 3 different deformation states of the polymer gel. Similarly, Similarly, Niu 

et al, [175] evaluated dose warp accuracy of the MORFEUS algorithm using a twelve 

field conformal plan while Juang et al, [180] used Presage-Def radio-chromic 3D 

dosimeter to verify a commercial B-spline algorithm.  

In this context the accuracy of “deformable dose” solution provided by commercial DIR 

algorithms is investigated in this chapter. The “deformable dose” in commercial DIR 

platforms is derived by applying the DVF from registration to TPS dose and providing 

the warped dose in the new anatomy. 

We illustrate the concept of “deformable dose” using two different methodologies as 

discussed below. 

 

Figure 5.1 a. Representation of the method to illustrate the concept of dose warping in 

reference image Ir.  

 

a 
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Figure 5.1 b Representation of the method to illustrate the concept of dose warping in the 

reference image Ir..  

a) Let Dr and Dk represent the “true” doses in un-deformed and deformed geometry 

respectively from TPS. If no dose warping is employed, {Dk-Dr} evaluated in 3D will 

indicate the magnitude of errors due to organ deformation. Applying the DVF to Dk will 

result in the warped dose Dk* in the original CT. If deformable image registration is 

perfect between images Ir and Ik, then all the voxels deformed in image Ik, will return to 

the original position when DVF is applied as shown in figure 5.1 b. for a individual 

marker Mk(Reg) = Mr.  The magnitude of difference between Dk the “true” dose received 

by the organ in the deformed geometry and Dk* the warped dose in the reference 

geometry indicates the agreement of dose warping in 3D. For a perfect dose deformation 

this difference {Dk-Dk*} should be zero. This is evaluated systematically by varying the 

amount of deformation using the deformable bladder phantom designed for this study and 

the schema is outlined in the flow chart in figure 5.1c below. The details of the phantom 

and the methods used are discussed in next section. 

5.1 b. Figure from G. Janssens et.al 

(2009) Reference 179 
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Fig 5.1c Flow chart illustrating the schema used to validate the dose warping in 

reference image geometry 

b) Alternately “dose deformation” can also be viewed from an inverse mapping.  Here the 

roles of source and target images are switched, as one is interested to know what is the 

magnitude of difference between warped dose on the deformed anatomy, when compared 

to the true dose received by the organ in deformed anatomy. In this scenario the 

commercial DIR workflows are propagating Dr* in the deformed geometry. This can be 

done in less than 2 minutes. However one must recognize Dr* and Dk are in fact two 

different doses. Dk refers to the “true” dose received by the organ in deformed geometry 

while Dr* is warped version of dose delivered in un-deformed state. If the warped dose 

Dr* is accurate, it is potentially very valuable for the radiation oncologist as the dose 

information (including DVH) can be made available quickly and it has potential 



 

 120 

applications in dose accumulation[79, 81, 101]. However if it is not accurate, then it 

merely equivalent to “photo shopping” of dose. In general agreement of image 

registration does not guarantee accuracy of dose registration and radiation oncologists 

should not make clinical judgment based on the erroneous Dr* dose in the deformed 

anatomy. Deformable dose is useful to get different doses in the same coordinate system 

allowing “voxel” based comparisons to estimate changes in dose received by target and 

organs at risk due to organ deformation. Potentially if Dr* = Dk in a clinically relevant 

criteria, ( 3%, 3mm distance to target agreement)  then one can propagate the warped 

dose to estimate the dose received in deformed geometry without dose recalculation. 

However what is not known is, at what level of deformation, dose recalculation in 

deformed anatomy may be clinically necessary? This chapter seeks to address that by 

systematically evaluating the magnitude of {Dr
*
- Dk} induced by dose deformation  using 

the deformable bladder phantom using the schema outlined below in flow chart in figure 

5.1d below. 



 

 121 

 

Fig 5.1d Flow chart illustrating the schema used to validate the dose warping in 

deformed image geometry. 

Although deformation has been studied in the context of dose warping, it is mostly used 

to describe arbitrary deformations for dose delivery verification.  The fundamental 

science of how to properly characterize different levels of deformation with applied force 

and the limits of applicability of dose warping to a dose painting scenario is not fully 

understood. A quantitative relationship between force and deformation may give insight 

into the deformation characteristics of other organs if their biomechanical properties are 

known and has the potential to create simulated deformations of various organs.  A force-

deformation relationship of organs has important applications in surgical simulations, 

optimizing surgical tool design and understanding tissue injury mechanism and damage 

thresholds[20]. 
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In a clinical context, an increasing number of patient treatment plans are generated with 

dose painting inside the target volume using Intensity Modulated Radiation Therapy 

(IMRT) and Volumetric Modulated Arc Therapy (VMAT) techniques for a wide variety 

of anatomical sites [181-193]. While dose warping may be applicable for a uniform 

homogeneous dose, its applicability in dose painting geometry has not been validated. 

The purpose of this study to a) verify the dose warping accuracy with invivo dosimetry 

using implanted MOSFETs in the deformed anatomy b) characterize the deformation of 

the organ with applied force, c) ascertain and establish a threshold limit for the dose warp 

accuracy from various commercial DIR algorithms studied, d) evaluate the efficacy of 

dose warping in dose painting scenarios and propose suitable validation methods.   

Part 1: 1D dose verification using MOSFETs in deformed anatomy. 

Methods and Materials: 

5.2 Deformable phantom for 1D dose warping verification in deformed anatomy: 

The deformable phantom was made from a solid water prototype (figure 5.2 a) with 

dimensions of 10.5 x 9 x 4.8 cm
3
 measuring 386cc in total volume, mimicking human 

“bladder-like” organ volume and geometry [194]. The solid water prototype was coated 

with mold release and a silicone rubber compound was poured around the organ. It was 

then placed in the vacuum chamber at a pressure of 25 inches of mercury for about 20 

hours. The mold was filled with Akton visco elastic polymer and the phantom was 

removed from the mold after hardening ( fig 5.2b). The Akton viscoelastic polymer 

(Action Products, Hagerstown, MD) used is tissue equivalent with relative electron 

density of 1.02 and physical density of 1.03g/cm
3
[195]. The tensile properties of the 

viscoelastic polymer used are described in more detail in the next section when 
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describing 3D dose verification. 5 parallel air canals that run along the organ were used 

for positioning MOSFET detectors at multiple locations.( Fig 5.3) For measuring the 

actual dose delivered in deformed geometry, metal oxide semiconductor field-effective 

transistor (MOSFET) dosimeter standard TN-502RD, (Best Medical, Canada) were used. 

Dose calculation was performed in un-deformed geometry with varying degree of dose 

gradients. The phantom was deformed using a compression plate and the resulting images 

before and after deformation along with the location of MOSFETs is shown in Fig 5.4. 

The maximum deformation of the organ along the axis of applied force was 15 mm. 

 

 

Figures 5.2 a, b showing the solid water prototype, and the viscoelastic polymer based 

deformable phantom respectively 

 

 

Fig 5.2. a Fig 5.2 b 
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Figure 5.3 Deformable bladder phantom with 5 parallel air canals for 1D dose 

verification using MOSFETs 
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i  

Figure 5.4 CT images of bladder phantom in undeformed and deformed positions along 

with locations of 5 MOSFETS 

5.3 Deformable image registration algorithms studied for 1D dose warping: 

In this work we assess the suitability of DIR based dose warping ( using 1D point dose 

measurement with MOSFETs) for the commercially available DIR algorithm namely the 

free form intensity based deformation from MIM 5.6 (MIM Software, OH) and also the 

B-spline algorithm found in the open source Slicer-RT platform[196] . MIM software 

(MIM) uses a free form fully automatic intensity based deformation with a multi-

resolution approach[110] and the details of the B-spline algorithm using Slicer-RT were 

discussed in Chapter 4. 
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5.4 Beam geometries studied for 1D dose warping: 

Five different beam geometries were studied to evaluate the efficacy of dose warping 

using MOSFETs. They are 

1) A uniform 10 x 10 cm
2
 field 

2) 60 degree Enhanced Dynamic Wedge (EDW 60) with a collimator rotation of 45 

degrees.  

3) 60 degree Enhanced Dynamic Wedge (EDW 60) with collimator angle of 0 

degrees where the induced dose gradient is in an opposite direction to previous 

example 2. This results in a dose gradient across organ as shown in figure 5.5 

below 

4) A sweeping MLC gap across the organ with a gap width of 0.5 cm 

5) A sweeping MLC gap across the organ with a gap width of 1 cm. 

The MOSFETS were moved 3 times along each air canal position and thus a total of 15 

MOSFET measurements were performed for each of the five beam geometries studied. 

 
Figure 5.5 Sagittal view of 60 degree Enhanced Dynamic Wedge doses with original dose 

on original CT (left), and deformed old dose on deformed CT (right).  
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5.5. Dose warping evaluation Scheme for MOSFETs. 

The dose warping accuracy using MOSFETS was evaluated using the following 

methodology similar to the work in Ref [179]. Accuracy of the dose warping was 

assessed by using two comparison techniques. The first validation was made using 

the simulation of dose distribution planning where the warped dose from DIR was 

compared to the directly calculated dose from Eclipse TPS in the deformed geometry. 

The second validation was made with the dose directly measured by the MOSFET 

detectors in the deformed geometry and compared to the warped dose from DIR 

algorithms. Let D(ri) denote the dose received by each MOSFET at position ri in the 

undeformed state. Under the influence of applied deformation the dose received by each 

MOSFET is D(rk)    The percentage error in dose warping accuracy for each MOSFET at 

each beam geometry studied was evaluated using the formulae 

Dose warp error using MOSFETS = {D
DIR

(rk) - D(MOSFETk)/ D(MOSFETk) 

where D
DIR

(rk) refers to the warped dose of MOSFET in the deformed location rk. 

Similarly the dose warp error using Eclipse TPS was evaluated using the formulae 

Dose warp error using TPS = {D
DIR

(rk) - D(TPSk)}/ D(TPSk) 

Where D(TPSk) refers to the dose directly recalculated at each MOSFET location rk  in 

the treatment planning system in the deformed geometry 

5.6.Results of deformable dose evaluation using MOSFETs 

Tables 5.1 to 5.5 detail the 15 individual MOSFET raw data readings and the TPS dose at 

each MOSFET location for both undeformed and deformed geometry when compared to 

the warped dose from DIR algorithms for each of the 5 beam geometries studied. The 
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results of 15 MOSFET measurements were averaged and are summarized in Figures 5.6 

for TPS dose simulation and figure 5.7 for MOSFET measurement. 

 

 

 

Figure 5.6 illustrating the agreement between warped dose from DIR algorithms and 

dose directly recalculated in the TPS in the deformed geometry for each of the 5 beam 

geometries given in section C. The data shown represents the average TPS dose at the 15 

MOSFET locations in the deformed geometry. 
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Figure 5.7 illustrating the agreement between warped dose from DIR algorithms and 

dose directly measured by MOSFETs in the deformed geometry for each of the 5 beam 

geometries given in section C. The data shown represents the average of the 15 MOSFET 

readings for each beam geometry. 
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7 48.9 47.6 2.66 48.6 48 48.9 0.62 47.6 
-

0.83 49.4 1.65 2.92 48.3 
-

0.62 0.62 

8 49.6 48.6 2.02 50.2 48.2 49.6 
-

1.20 48.6 0.83 49.9 
-

0.60 3.53 50.9 1.39 5.60 

9 49.8 48.8 2.01 50.1 49 49.8 
-

0.60 48.8 
-

0.41 50.3 0.40 2.65 50.5 0.80 3.06 

10 48.5 47.2 2.68 48.2 47.4 48.5 0.62 47.2 
-

0.42 48.4 0.41 2.11 48.8 1.24 2.95 

11 49.8 48.8 2.01 48.9 47.7 49.8 1.84 48.8 2.31 49.4 1.02 3.56 47.5 
-

2.86 -0.42 

12 48.4 47 2.89 49.8 47.6 48.4 
-

2.81 47 
-

1.26 49.3 
-

1.00 3.57 48.5 
-

2.61 1.89 

13 48.8 47.9 1.84 50 48.7 48.8 
-

2.40 47.9 
-

1.64 48.9 
-

2.20 0.41 50.7 1.40 4.11 

14 50.8 49.4 2.76 51.1 49.4 50.8 
-

0.59 49.4 0.00 50.4 
-

1.37 2.02 50.5 
-

1.17 2.3% 

15 48.7 47.7 2.05 49 48 48.7 
-

0.61 47.7 
-

0.62 48.5 
-

1.02 1.04 49.3 0.61 2.71 

  
               AVG Percent Change 

(%) 1.76       0.03   0.55   0.09 2.40   
-

0.29 2.03 

  

Table 5.1. MOSFET 

measurements in deformed 

anatomy for 10 x10 cm
2
 field 
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10 x 10 EDW60 Coll45 
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1 37.8 36.8 2.65 38 37.4 37.8 -0.53 36.8 
-

1.60 38.4 1.05 2.67 37.7 
-

0.79 0.80 

2 41.4 40.9 1.21 42.1 41.2 41.4 -1.66 40.9 
-

0.73 43 2.14 4.37 42.5 0.95 3.16 

3 50.7 50.1 1.18 51.2 50.5 50.7 -0.98 50.1 
-

0.79 51.2 0.00 1.39 51.7 0.98 2.38 

4 50.5 50 0.99 50 49.8 50.5 1.00 50 0.40 50.6 1.20 1.61 50.4 0.80 1.20 

5 57.6 56.8 1.39 56.8 54.7 57.6 1.41 56.8 3.84 60.8 7.04 11.2 55.5 
-

2.29 1.46 

6 43.2 42.6 1.39 43.6 43.5 43.2 -0.92 42.6 
-

2.07 44.7 2.52 2.76 42.7 
-

2.06 -1.84 

7 47.9 47.2 1.46 48.7 49.2 47.9 -1.64 47.2 
-

4.07 51.5 5.75 4.67 48.8 0.21 -0.81 

8 56.3 56.1 0.36 57.1 56.3 56.3 -1.40 56.1 
-

0.36 58.2 1.93 3.37 58.3 2.10 3.55 

9 63.8 61.7 3.29 64 64.5 63.8 -0.31 61.7 
-

4.34 66 3.13 2.33 64.04 0.06 -0.71 

10 68.1 66.1 2.94 66.2 64.8 68.1 2.87 66.1 2.01 66.3 0.15 2.31 66.1 
-

0.15 2.01 

11   35.5   36.5 35.8     35.5 
-

0.84 36.7 0.55 2.51 36.7 0.55 2.51 

12   35.6   36.8 35.9     35.6 
-

0.84 36.7 
-

0.27 2.23 36.4 
-

1.09 1.39 

13   44.7   46.8 45.7     44.7 
-

2.19 47.1 0.64 3.06 47.3 1.07 3.50 

14   46.2   47.3 47.7     46.2 
-

3.14 47.3 0.00 
-

0.84 46.2 
-

2.33 -3.14 

15   51.3   53.1 51.7     51.3 
-

0.77 56 5.46 8.32 52.5 
-

1.13 1.55 

  
                 

AVG Percent Change 
(%) 1.68       -0.22   

-
1.03   2.09 3.46   

-
0.21 1.13 

  

            Table 5.2. MOSFET measurements in deformed 

anatomy for EDW 60 with 45 deg collimator angle  
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10 x 10 EDW60  
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∆
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∆
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∆
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∆
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1 39.3 38.9 1.02 39.9 38.3 39.3 
-

1.50 38.9 1.57 38.4 
-

3.76 0.26 40.7 2.01 6.27 

2 44.3 43.9 0.90 45.1 42.8 44.3 
-

1.77 43.9 2.57 43.7 
-

3.10 2.10 46.2 2.44 7.94 

3 51.8 50.9 1.74 52.8 51.2 51.8 
-

1.89 50.9 
-

0.59 51.7 
-

2.08 0.98 53.9 2.08 5.27 

4 60.2 58.2 3.32 60.2 59.7 60.2 0.00 58.2 
-

2.51 60.2 0.00 0.84 61.3 1.83 2.68 

5 66.8 65 2.69 65.6 65.1 66.8 1.83 65 
-

0.15 66.7 1.68 2.46 64.2 
-

2.13 
-

1.38 

6 38.8 38.4 1.03 40 39.9 38.8 
-

3.00 38.4 
-

3.76 38.1 
-

4.75 
-

4.51 40 0.00 0.25 

7 43.8 43.1 1.60 45.3 44.1 43.8 
-

3.31 43.1 
-

2.27 44.2 
-

2.43 0.23 46.2 1.99 4.76 

8 52.4 51.4 1.91 54.1 53.6 52.4 
-

3.14 51.4 
-

4.10 52.4 
-

3.14 
-

2.24 55.5 2.59 3.54 

9 60.8 59.3 2.47 61.1 59.1 60.8 
-

0.49 59.3 0.34 60.5 
-

0.98 2.37 61.8 1.15 4.57 

10 67.9 65.8 3.09 66.3 65.4 67.9 2.41 65.8 0.61 67.1 1.21 2.60 66.5 0.30 1.68 

11 39.1 38.1 2.56 40.2 39 39.1 
-

2.74 38.1 
-

2.31 38.6 
-

3.98 
-

1.03 40.9 1.74 4.87 

12 43.8 42.5 2.97 44.8 42.8 43.8 
-

2.23 42.5 
-

0.70 43.9 
-

2.01 2.57 44.3 
-

1.12 3.50 

13 51.3 49.4 3.70 53 50.8 51.3 
-

3.21 49.4 
-

2.76 51.3 
-

3.21 0.98 54.1 2.08 6.50 

14 60.6 59.7 1.49 60.8 60.2 60.6 
-

0.33 59.7 
-

0.83 60.1 
-

1.15 
-

0.17 60 
-

1.32 
-

0.33 

15 68.6 67.1 2.19 66.9 65.5 68.6 2.54 67.1 2.44 66.8 
-

0.15 1.98 66.2 
-

1.05 1.07 

  
               AVG Percent Change 

(%) 2.18       
-

1.12   
-

0.83   
-

1.86 0.63   0.84 3.41 

  

Table 5.3. MOSFET measurements in 

deformed anatomy for EDW 60 field 
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Gap 0.5 cm 
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1 42.9 40.9 4.66 41.8 40.6 42.9 2.63 40.9 0.74 42.9 2.63 5.67 41.1 
-

1.67 1.23 

2 42.9 40.5 5.59 42.4 41.1 42.9 1.18 40.5 
-

1.46 42.3 
-

0.24 2.92 42.4 0.00 3.16 

3 42.7 43.1 
-

0.94 43 41.4 42.7 -0.70 43.1 4.11 42.7 
-

0.70 3.14 43.6 1.40 5.31 

4 43.7 42 3.89 43.8 42.5 43.7 -0.23 42 
-

1.18 43.7 
-

0.23 2.82 44.4 1.37 4.47 

5 42.2 41 2.84 41.8 40.1 42.2 0.96 41 2.24 41.8 0.00 4.24 41.9 0.24 4.49 

6 42.8 40.4 5.61 41.5 39.5 42.8 3.13 40.4 2.28 43 3.61 8.86 40.5 
-

2.41 2.53 

7 42.5 39.9 6.12 42.1 41.2 42.5 0.95 39.9 
-

3.16 42.9 1.90 4.13 42.1 0.00 2.18 

8 43.3 41.3 4.62 43.6 41.8 43.3 -0.69 41.3 
-

1.20 43.5 
-

0.23 4.07 44.4 1.83 6.22 

9 43.4 40 7.83 43.5 42.8 43.4 -0.23 40 
-

6.54 43.7 0.46 2.10 43.9 0.92 2.57 

10 42.2 39.7 5.92 41.8 39.5 42.2 0.96 39.7 0.51 42.1 0.72 6.58 42.4 1.44 7.34 

11 43.3 41.4 4.39 42.5 41.9 43.3 1.88 41.4 
-

1.19 42.9 0.94 2.39 41.4 
-

2.59 -1.19 

12 43.3 41.6 3.93 43.3 41.5 43.3 0.00 41.6 0.24 43.2 
-

0.23 4.10 42.3 
-

2.31 1.93 

13 43.1 41.7 3.25 43.5 41 43.1 -0.92 41.7 1.71 42.9 
-

1.38 4.63 44.3 1.84 8.05 

14 44.3 42.7 3.61 43.3 42.4 44.3 2.31 42.7 0.71 44.2 2.08 4.25 43.9 1.39 3.54 

15 42.9 41.1 4.20 42.6 41.1 42.9 0.70 41.1 0.00 42.2 
-

0.94 2.68 42.9 0.70 4.38 

  
               AVG Percent Change 

(%) 4.37       0.80   
-

0.15   0.56 4.17   0.14 3.75 

  

Table 5.4. MOSFET measurements in 

deformed anatomy for MLC Gap width of 

0.5 cm  
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1 35.8 35.1 1.96 35 33.7 35.8 2.29 35.1 4.15 35.8 2.29 6.23 34.4 
-

1.71 2.08 

2 35.8 35 2.23 35.4 33.5 35.8 1.13 35 4.48 35.3 
-

0.28 5.37 35.2 
-

0.56 5.07 

3 35.6 35.4 0.56 35.9 34.1 35.6 
-

0.84 35.4 3.81 35.7 
-

0.56 4.69 36.2 0.84 6.16 

4 36.5 35.2 3.56 36.6 35.5 36.5 
-

0.27 35.2 
-

0.85 36.5 
-

0.27 2.82 36.8 0.55 3.66 

5 35.2 33.9 3.69 35 33.9 35.2 0.57 33.9 0.00 34.9 
-

0.29 2.95 34.8 
-

0.57 2.65 

6 35.7 34.3 3.92 34.7 33.4 35.7 2.88 34.3 2.69 35.8 3.17 7.19 33.8 
-

2.59 1.20 

7 35.5 34.8 1.97 35.2 34.8 35.5 0.85 34.8 0.00 36.2 2.84 4.02 35.1 
-

0.28 0.86 

8 36.2 35.4 2.21 36.4 35.1 36.2 
-

0.55 35.4 0.85 36.4 0.00 3.70 37.1 1.92 5.70 

9 36.3 35.2 3.03 36.3 34.9 36.3 0.00 35.2 0.86 36.6 0.83 4.87 36.7 1.10 5.16 

10 35.3 33.9 3.97 34.9 34.4 35.3 1.15 33.9 
-

1.45 35.4 1.43 2.91 35.4 1.43 2.91 

11 36.2 35.2 2.76 35.4 34.2 36.2 2.6% 35.2 2.92 35.8 1.13 4.68 34.5 
-

2.54 0.88 

12 36 35 2.78 35.9 35.1 36 0.28 35 
-

0.28 35.9 0.00 2.28 34.9 
-

2.79 -0.57 

13 35.9 34.5 3.90 36.3 34.6 35.9 
-

1.10 34.5 
-

0.29 35.8 
-

1.38 3.47 36.9 1.65 6.65 

14 36.9 35.8 2.98 37.1 35.2 36.9 
-

0.54 35.8 1.70 36.8 
-

0.81 4.55 36.5 
-

1.62 3.69 

15 35.8 34.6 3.35 35.6 34.5 35.8 0.56 34.6 0.29 35.2 
-

1.12 2.03 35.9 0.84 4.06 

  
               AVG Percent Change 

(%) 2.86       0.58   1.26   0.47 4.12   
-

0.29 3.34 

 

5.7. Conclusion and limitations of MOSFET measurements 

 

The dose warping accuracy studied for the applied deformation (15 mm maximum 

deformation) yielded acceptable results (< 5% overall disagreement) for all the beam 

geometries studied. The dose warping accuracy was better when dose simulation from 

TPS was used as the ground truth. This is due to the inherent uncertainties in MOSFET 

Table 5.5. MOSFET measurements in 

deformed anatomy for MLC Gap width of 

1cm 
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measurement in highly modulated geometries like EDW 60 and MLC gap widths studied. 

It has been shown that the inherent uncertainty in MOSFET measurement in highly 

modulated fields like IMRT is 4.6%[197]. The dose warping accuracy studies using 

MOSFETs have two major drawbacks. 1) Although dose warping accuracy studies using 

1D point dose measurement using arbitrary deformations give some degree of agreement 

and validity to DIR based dose warping, they cannot be extrapolated to agreement in 

other locations within the organ. To meaningfully compare dose warp accuracy, the entire 

3D dose matrix has to be evaluated. 

2) Dose warp accuracy evaluations using arbitrary deformations as done by vast majority 

of research groups do not parameterize the deformation of the organ with its causative 

physical force. To gain scientific insight to the actual deformation of organs, deformation 

must be linked to the physical force causing the observed deformation as described in 

Chapter 1. The fundamental relationship between force and deformation of organs has 

many scientific applications and are discussed in the next section. 

To overcome these drawbacks we designed a new deformable phantom and evaluated the 

dose warp accuracy (3D dose) using a novel methodology which is described in the next 

section 
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PART 2: 3D Dose verification 

 

Applicability and Limits of Dose Warping - Are There Islands of Deformation that 

Fail to Depict Dose Painting? 

5.8. Deformable bladder phantom and deformation studied for 3D dose verification: 

 

The deformable phantom for 3D dose verification was made from the same solid water 

prototype described before, with dimensions of 10.5 x 9 x 4.8 cm
3
 measuring 386cc in 

total volume, mimicking human “bladder-like” organ volume and geometry [194]. The 

solid water prototype was coated with mold release and a silicone rubber compound was 

poured around the organ. It was then placed in the vacuum chamber at a pressure of 25 

inches of mercury for about 20 hours. The mold was filled with Akton visco elastic 

polymer and the phantom was removed from the mold after hardening. The Akton 

viscoelastic polymer (Action Products, Hagerstown, MD) used is tissue equivalent with 

relative electron density of 1.02 and physical density of 1.03g/cm
3
[195]. It has peak 

tensile strength of 157 kPa and Young’s modulus of 17.9 kPa[198]. The mechanical and 

tensile properties of the phantom are comparable to human bladder with Young’s 

modulus of 16 kPa[199, 200] , density of 1.04 g/cm
3
 [201], and peak tensile strength of 

270±140 kPa[202] . A coating of blue plastidip, an air-dry synthetic rubber which resists 

moisture and absorption, was applied on the phantom. The bladder phantom was placed 

between the apparatus for measuring force-deformation properties (Fig. 5.8). The 

apparatus made of acrylic has a mechanical piston at one end, and is fitted with a 

customized miniature load cell with National Institute of Standards and Technology 

(NIST) traceable calibration. The load cell accurately measured the applied force induced 

by the piston on the phantom with excellent reproducibility and linearity[203]. The load 
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cell was connected to a digital process meter and controller which displays the applied 

force on the deformable phantom. A precision weight was used to calibrate the accuracy 

of the load cell and readout.  The applied force on the phantom was varied incrementally 

from 10 N to 70N along the longitudinal axis (+z axis) of the phantom, and although the 

maximum deformation (compression) is along ±z axis, there is expansion and 

compression in other axis and the deformation observed on the organ is three 

dimensional. Deformation is quantified both in terms of maximum 1D deformation 

observed along the direction of applied force and also the 3D deformation quantified by 

the 95 percentile Hausdorff distance (95% HD) [168]. Hausdorff distance measures the 

maximum of the closest distance between two volumes where the closest distance is 

computed for each vertex of the two volumes. The 95% HD ensures that the outliers are 

rejected. To calculate the 95% HD, the external body contour of the deformable phantom 

in each deformation state was contoured and compared against the surface contour in 

undeformed state using Slicer RT[196]. 

 

Fig 5.8 Apparatus for investigating force-deformation properties 

5.9 Deformable image registration algorithms studied for 3D dose warping 
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 In this work we assess the suitability of DIR based dose warping for the various 

commercially available DIR algorithms namely the free form intensity based deformation 

from MIM 6.0.1 (MIM Software, OH) and both the single pass and multi-pass 

deformation from Velocity AI 3.0 (Velocity Medical Solutions, GA). MIM software 

(MIM) uses a free form fully automatic intensity based deformation with a multi-

resolution approach[110]. The details of the algorithm parameters, including smoothness 

criteria, are proprietary and are not user-defined. Velocity AI uses a modified B-spline 

algorithm [87, 89] combined with Mattes mutual information metric[160]. Similar to 

MIM, the algorithm parameters are not user-defined but are instead inherent to the 

software. The number of control points in Velocity AI can be varied depending on the 

choice of multi-pass or single pass registration modes in the software. In the single pass 

mode, (VEL-SD) the finest grid resolution is applied while in the multi-pass mode(VEL-

MD) the grid resolution spacing started at the coarse setting and gradually went down to 

the finest in multiple steps which potentially helps to make the convergence of the 

optimizer in a shorter time. 

5.10. Dose warping validation for Dose painting: 

Dose warping accuracy in deformed anatomy: 

The accuracy of dose warp in deformed image is validated in this study using the 

methodology outlined in the flow chart. (Figure 5.9).The deformable phantom was placed 

between the compression plate and a CT scan was obtained using a GE Light Speed CT 

scanner in the undeformed geometry. Using the same imaging acquisition mode, the 

phantom was successively scanned at various deformed states. The images were 

processed and cropped to remove the acrylic plate holding the phantom. Both the 
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commercial DIR platforms have dose deformation work flow navigators which warp the 

original treatment planning system (TPS) dose in an undeformed state with DVF from 

DIR to display a warped dose in the deformed or new organ geometry. The warped doses 

were then exported from the respective DIR platform as DICOM RT Dose files and 

analyzed for dose warp accuracy.  Next, this was compared to the corresponding dose 

recalculated in TPS. The accuracy of dose warp was evaluated using two different 

metrics. First, 3D γ analysis[204, 205]  which is an extension of the original 2D planar 

gamma evaluation[206] by considering DTA agreement in 3D was performed by 

comparing the warped doses from each of the DIR algorithms with dose from TPS using 

the Slicer RT[196] routines. The passing criteria for all the doses was calculated for those 

voxels receiving greater than 10% of maximum dose ( 10 % threshold) as discussed in 

AAPM Task Group Report 119 [207]. Next, the volumes of high dose paint from various 

DIR algorithms is compared to the volume of high dose gradient from TPS to evaluate 

the efficacy of dose warping in a dose painting scenario. As discussed before, in a dose 

painting scenario the volume of high dose received by the target is of critical importance 

as one attempts to put localized high dose volume to the target. Hence, the ratio of high 

dose volumes between true dose received by the target ( as calculated from TPS)  and 

warped dose from DIR algorithms is more likely to indicate the accuracy of dose warping 

in a dose painting scenario. This is because, the usual 3mm distance to target agreement 

(DTA) used in γ3D analysis may not accurately depict the accuracy of warping due to 

averaging of low and high dose voxels in the area of interest. Further the Dice similarity 

coefficient (DSC) and 95% HD was evaluated for the high dose volume surfaces to 

indicate the spatial agreement of high dose volumes. 
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Figure 5.9 Flowchart illustrating the validation of dose warp accuracy in deformed 

anatomy 

Dose warping accuracy in reference anatomy: 

The accuracy of dose warp in reference image is validated in this study using the 

methodology outlined in the flow chart. (Figure 5.12). In contrast to the previous work 

flow the roles of source and target image are switched here. If DIR and consequently 

dose warping was perfect, then the magnitude of difference between {Dk – Dk*} would 

be zero. As before 3D gamma analysis was used to quantitatively evaluate the agreement 

of 3D doses for each of the beam geometries studied. 
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Figure 5.10 Flowchart illustrating the validation of dose warp accuracy in reference 

image. 

5.11 Deformation states and dose paint spatial location beam geometries: 

In this study we systematically deform the organ in successive increments by changing 

the applied force.  

In this work we introduced islands of high doses (in addition to a reference 10 x 10 cm
2 
 

field) at different spatial locations of the organ viz. a) along the edges and b) center of the 

organ to evaluate the accuracy of dose warp. It should be noted that often in a clinical 

context significant deformation occurs in the area of high dose gradients similar to the 

ones encountered in the prostate/rectal interface, parotid/tumor etc. Hence in this study 

we introduced islands of high doses where there is significant deformation as in the edges 

of the organ and moved the area of high dose paint from edges to the center of organ to 

study if the DIR based dose warping has any impact on the spatial location of dose paint 

for each of the deformation states. This was compared to a reference 10 x 10 cm
2 

uniform 
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dose. The dose painting treatment plans were generated using Eclipse TPS by starting 

with a standard 10 x 10 cm
2 

field and then adding six sub fields with independent jaws of 

varying field sizes to create a localized hot spot. AAA algorithm with 1mmm grid 

resolution was used on all the treatment plans. All plans were generated with a fixed 

gantry angle of 0
 
degrees (AP) 6MV photons beams and a prescription dose of 5Gy.  

 

The beam parameters for the respective dose paint geometries are shown in Tables 5.6 

and 5.7.  

Table 5.6 Beam parameters for dose painting at superior and inferior edges of organ  

Beam 

number 

X1 jaw (cm) X2 jaw (cm) Y1 jaw (cm) Y2 jaw (cm) Monitor 

units 

1 5 5 5 5 430 

1.1 5 5 5 -3.0 30 

1.2 5 5 5 -2.7 30 

1.3 5 5 5 -2.4 30 

1.4 5 5 -3.0 5 30 

1.5 5 5 -2.7 5 30 

1.6 5 5 -2.4 5 30 

 

Table 5.7 Beam parameters for dose painting at center of organ: 

Beam 

number 

X1 jaw (cm) X2 jaw (cm) Y1 jaw (cm) Y2 jaw (cm) Monitor 

units 

1 5 5 5 5 430 
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1.1 5 5 0.3 5 30 

1.2 5 5 0.6 5 30 

1.3 5 5 0.9 5 30 

1.4 5 5 5.0 0.3 30 

1.5 5 5 5.0 0.6 30 

1.6 5 5 5.0 0.9 30 

 

The resulting dose paint volumes are given in Figures 5.11 a b with Figure  5.11 c, 

showing a uniform 10 x 10 cm
2 

field. 

.  

 

Figures 5.11, a, b, c above representing sagittal view of the phantom in undeformed state 

showing dose gradient at the edges, center and a uniform 10 x 10 cm field respectively. 

 



 

 144 

5.12 Results of 3D dose warping 

5.12.1 Response of applied force vs. deformation: 

The applied force on the deformable phantom was incrementally varied from 10N to 70N 

along the +z axis, deforming the phantom as shown in Fig. 5.12 a. The Dice similarity 

coefficient (DSC) (defined in chapter 4) between the un-deformed organ surface and each 

deformed organ surface as a function of applied force is shown in Fig 5.12 b. This gives 

the extent of shape changes in volume of organ. As seen in 5.14 b the DSC is ≥ 0.9 

between 10N to 30N applied force indicating that external shape changes of organ were 

minimal up to 30N. This mass and density preserving deformation ranged from 3mm to 

34mm along ±z axis, representing a bilateral compression of equal displacement from 

both sides. The deformation showed a linear response to the applied force with R
2
= 0.99. 

The 3D deformation as quantified by the 95% HD varied from 2mm to 16 mm with R
2
= 

0.96. This is compared to the predicted deformation along the superior-inferior direction 

(±z) using a simple linear elastic model for human bladder that follows Hooke’s law, z =  

  

 
 = 

 

 
 

 

 
  where E= Young’s modulus (16 Kpa) and 

 

 
(force per unit area) is the applied 

load. (Fig. 5.12c). 

 

 

Fig. 5.12 a. Various deformation states of the phantom in response to applied force. 
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Figure 5.12 b. Dice similarity coefficient of external surfaces between un-deformed 

organ and each deformed state of organ as a function of applied force  

 

 

 

Fig. 5.12 c. Relationship between applied force and deformation observed in the 

deformable phantom and predicted in human bladder. 

5.12.2 Dose warp accuracy with 3D γ3%3mm statistics: 
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Figs. 5.12 d-f, provide 3D γ3%3mm pass rates at each deformation state for dose painting at 

the edges, center, and a uniform 10 x 10 cm
2 
field respectively. Beyond a threshold 

applied force of 30N, γ3%3mm pass rates fall below 90% for all commercial DIR 

algorithms, corresponding to 13 mm maximum organ deformation. For dose painting at 

the center, the dose warp accuracy yielded better results in the 10N to 40N applied 

deformation for the B-spline algorithm used by Velocity AI. The volume of high dose at 

the center was clearly misaligned in MIM beyond 30N as shown in Fig. 5.12 g. Using the 

γ3%3mm metric, the magnitude of deformation was the sole predictor of the dose warp 

accuracy. 

 

 

Fig. 5.12d. 3D γ3%3mm pass rates for dose painting at the edges of organ  
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Fig. 5.12e. 3D γ3%3mm pass rates for dose painting at the center of organ 

 

 

Fig. 5.12f. 3D γ3%3mm pass rates for a uniform 10 x 10 cm
2
 field  
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Fig. 5.12g Sagittal view (y-z plane) of bladder phantom displaying calculated dose 

(from TPS) received by organ at 40N deformation and corresponding warped doses 

from DIR for center dose painting plan.  

5.12.3 Dose warp accuracy using volumes of high dose comparison: 

Figs. 5.12 h-j displays the conformity index (defined as the ratio of volume of high dose 

from DIR to the corresponding volume from TPS) at each deformation state as a function 

of applied force. A conformity index of 1.0 would indicate perfect agreement between the 

dose volumes. For dose painting scenarios, none of the DIR algorithms studied were 

shown to accurately represent the volume of dose received by the organ, even at low 

deformation levels (Figs. 5.12 h,i).  

For a uniform homogenous dose, the conformity index is within ± 2% for applied forces 

of up to 30N (Fig. 5.12j), indicating results in line with the γ3%3mm pass rates.  
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Fig. 5.12h. Conformity index at 5Gy for the dose painting at the edges of the organ  

 

Fig. 5.12i. Conformity index at 5.5 Gy for dose painting at center 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 

10 20 30 40 50 60 70 

C
o

n
fo

rm
it

y 
In

d
e

x 

Force (N) 

Dose painting at edges of organ 

MIM VELMD VELSD 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

10 20 30 40 50 60 70 

C
o

n
fo

rm
it

y 
In

d
e

x 

Force (N) 

Dose painting at center of organ 

MIM VELMD VELSD 



 

 150 

 

Fig. 5.12j. Conformity index at 5Gy for a uniform 10 x 10 cm
2 

field 

 

5.12.4 Dose warp accuracy comparing Dice similarity coefficient between high dose 

volumes: 

Figs. 5.12 k-m displays the Dice similarity coefficient (DSC) at each deformation state as 

a function of applied force for the high dose volumes. A DSC of 1.0 would indicate 

perfect agreement between the overlap of dose volumes. For dose painting scenarios, 

none of the DIR algorithms studied were shown to accurately represent the dose volume 

overlap at 5Gy and 5.5 Gy doses, even at low deformation levels (Figs. 5.12k,l).  For a 

uniform homogenous dose, ( 10 x 10 cm
2
field )  the DSC is within ± 6% for applied 

forces of up to 30N (Fig. 5.12m), indicating results in line with the γ3%3mm pass rates.  
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Fig. 5.12k. DSC at 5Gy for the dose painting at the edges of the organ  

 

 

Fig. 5.12l. DSC at 5.5 Gy for dose painting at center 
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Fig. 5.12m. DSC at 5Gy for a uniform 10 x 10 cm
2 

field 

 

5.12.5 Dose warp accuracy comparing 95% HD between high dose volumes: 

Figs. 5.12 n-p displays the 95% HD (mm) compared between dose volumes from DIR 

algorithms and TPS dose at each deformation state as a function of applied force. This 

indicates the spatial distance of the high dose volume from DIR algorithms away from 

true dose received by the organ (TPS). 
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Fig. 5.12n. 95%HD between 5Gy dose volumes for the dose painting at the edges of 

the organ  

 

 

Fig. 5.12o. 95% HD between 5.5 Gy dose volumes for dose painting at center 
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Fig. 5.12p. 95%HD between 5Gy dose volumes for a uniform 10 x 10 cm
2 

field 

 

5.13 Dose warp accuracy in reference geometry with 3D γ3%3mm statistics: 

Figure 5.13a   below gives the 3D gamma pass rate between un-deformed organ and each 

deformed state of the organ as a function of applied force for each beam geometry 

studied. This figure illustrates what the dose errors in a deforming organ would result if 

dose warping was not employed. As shown in figure, the maximum disagreement and 

necessity for dose warping is warranted for dose painting at edges of the organ where 

there is maximum dose gradient and deformation. 

Figs. 5.13 b-d, provide 3D γ3%3mm pass rates when comparing the warped dose in 

reference geometry to the true dose in deformed geometry each deformation state for 

dose painting at the edges, center, and a uniform 10 x 10 cm
2 
field respectively. 
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As it can be seen, none of the DIR algorithms performed well in showing an 

improvement over baseline disagreement induced due to organ deformation. 

 

Fig. 5.13a. 3D γ3%3mm pass rates between un-deformed organ and each of the 

deformed state of the organ as a function of applied force for all the beam 

geometries 
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Fig. 5.13 b. 3D γ3%3mm pass rates between warped dose in reference geometry for 

dose painting at the edges  of organ when compared to the true dose received by the 

organ in deformed geometry 
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Fig. 5.13 c. 3D γ3%3mm pass rates between warped dose in reference geometry for 

dose painting at the center  of organ when compared to the true dose received by the 

organ in deformed geometry 
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Fig. 5.13 d. 3D γ3%3mm pass rates between warped dose in reference geometry for 

uniform 10 x 10 cm
2 

field when compared to the true dose received by the organ in 

deformed geometry 

5.14 Discussion. 
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Although 3D gamma (γ3%3mm)  pass rates ( in the deformed geometry) are excellent up to 

30N for the dose painting geometries studied, the conformity index(average  dose volume 

30 cc or greater) differs by 20% or larger even for the lowest deformation studied. This is 

in contrast to a uniform 10 x 10 cm
2
 field where the γ3%3mm pass rates and conformity 

index studied at 5 Gy dose level agree with one another. This is also consistent with Dice 

similarity coefficient comparison (DSC) between high dose volumes from dose painting.  

Even at the lowest 10N applied force, the DSC between 5Gy dose volumes is only 0.82 

for dose painting at the edges of the organ.  Thus, although a uniform homogeneous dose 

may yield acceptable results in terms of both 3D gamma pass rates and volume of dose 

received by the organ, this does not apply for dose painting. As a result, while employing 

dose warping for dose painting scenarios like those encountered in Stereotactic Body 

Radiation Therapy (SBRT) and other hypofractionated treatments with adaptive 

radiotherapy potential, the volume of dose received by the target from dose warping 

needs to be evaluated because dose painting is done under the assumption that high dose 

gradients are localized to the target.  

Further when the warped dose in reference geometry was compared to the true dose 

received by the organ in deformed geometry (Section 5.13), all the DIR algorithms 

performed poorly. There was no significant improvement over the baseline disagreement 

except at greater than 40N induced deformation, for dose painting at the edges of organ. 

In many instances it was found that dose warping induced more errors than the baseline 

disagreement. 

It should be noted that although boundary matching appears perfect even at 70 N (34mm 

deformation) between images from all the DIR algorithms, this does not guarantee the 
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accuracy of dose warping. Dose warp accuracy is a function of registration accuracy and 

dose gradient at a particular voxel. As a result, a small registration error at a high dose 

gradient will likely have a greater impact on the overall dose warp accuracy as compared 

to a larger registration error at a low dose gradient[127]. This effect is shown in the 

gamma wash color map at 40 N (18 mm deformation) for dose painting at the edges of 

organ. The maximum disagreement as indicated by the red color wash (γ3%3mm >1) occurs 

in the area of high dose gradient and large deformation for all the DIR algorithms studied 

(Fig.5.14 a-c). Although beyond the scope of this study, the high dose islands described 

at the edges of the bladder phantom are routinely encountered in clinical practice in 

intensity modulated treatment of prostate cancer. Fig. 5.13d shows a typical patient 

anatomy with overlap of prostate with bladder and rectal volumes along with the 

prescribed target dose (75.6 Gy) at the edges of bladder. The deformation of organs and 

the resultant dose warp accuracy for dose painting as described in this study will have a 

significant impact on the partial dose volumes received by the organs at risk. 
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Figs. 5.14 a, b, c showing sagittal view (y-z plane) of gamma volume at 40N deformation 

for dose painting at the superior and inferior edges of the organ for MIM, VELMD and 

VELSD DIR algorithms respectively.  

Fig 5.14 d Sagittal view of a typical patient anatomy with prostate, bladder and rectal 

volumes showing high dose islands at the edges of the organs at risk as studied in the 

deformable bladder phantom 
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It is known that the smoothing parameters used in DIR algorithms have a significant 

impact on dose warp accuracy[104]. MIM uses an intensity based algorithm which seeks 

to minimize the intensity differences between two images while the intensity based B-

spline algorithm used by VelocityAI tries to balance both the intensity information 

regularized by the inherent cost function and the spatial information regularized by the 

smoothness criteria[174]. The presence of uniform low contrast regions throughout the 

deformable bladder phantom makes this scenario particularly challenging for both the 

commercial algorithms studied because of the lack of intensity differences in the internal 

anatomy of the phantom. In the absence of user ability to edit the deformation parameters 

in the commercial DIR platforms, both the algorithms interpolated the deformation 

incorrectly in low contrast regions as the deformation was increased beyond 30N causing 

the resultant errors in dose warping. It is likely that the registration accuracy and 

consequently the dose warping accuracy would have been improved in the presence of 

high contrast features like implanted fiducial markers inside the phantom as found in the 

study using deformable gel[102] . A similar approach with implanted aluminum fiducial 

markers will be done in future studies using the deformable bladder phantom. 

The deformable phantom used in this study has a uniform CT number (±10 HU) and 

density similar to bladder, prostate, pancreas, stomach, kidney, liver, breast, diaphragm 

etc., in human anatomy[102, 171] and, as such, the results in this study would apply to 

those organs. The results do not apply to dose warp accuracy in density changing 

anatomy like the lung or where the mass is not conserved (full vs. empty bladder, organ 

atrophy, tumor inflammation etc). Although symmetric bilateral compression was 

studied, future study will include asymmetric compression, changes in the direction of 
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applied force, and 3D compression. The viscoelastic polymer used can be molded to any 

organ shape and has the potential to adjust the tensile properties to match other organs in 

human anatomy which will be subject of future work. 

5.15 Conclusion 

We have demonstrated the efficacy of dose warping using a tissue equivalent deformable 

bladder phantom for a range of mass and density preserving deformation states. The 

deformation observed was correlated with the applied force showing a linear response for 

both 1D and 3D deformation. A threshold limit of 13mm maximum deformation (1D) 

along direction of applied force and 6.8 mm 3D deformation was established beyond 

which deformable dose from DIR algorithms does not agree with true dose received by 

organ in terms of 3D γ3%, 3mm criteria for the commercial DIR algorithms studied.  This 

illustrates dose recalculation may be necessary for deformations larger than the threshold 

limit derived. For dose painting, although warped doses from DIR may agree with the 

TPS dose in the deformed geometry in terms of overall γ3D pass rates, the dose volumes 

from DIR may be significantly different from the true volume of dose received by the 

target. None of the DIR algorithms studied were able to accurately model the dose 

warping in reference image when compared to the true dose received by the organ in 

deformed geometry due to the uniform low contrast regions present throughout the 

bladder phantom.  

In the absence of user ability to edit the deformation parameters in the commercial DIR 

platforms, one should carefully evaluate the dose warp accuracy in a clinical context 

before routine implementation. The accuracy of deformable image registration does not 

guarantee accuracy of deformable dose. 
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Chapter 6 Summary and applications for future work 

6.1 Summary and general conclusions: 

In this dissertation we have presented a framework to include organ deformation in 

adaptive dose delivery. First, the need for clinical adaptation of treatment plans was 

demonstrated using daily imaging data from 10 patients treated for localized prostate 

cancer[16]. 

It is clear DIR is needed to translate anatomical information between two imaging study 

sets that exhibit organ deformation. Although there are various DIR algorithms available, 

there is no universal consensus on how to validate their accuracy in the context of 

radiotherapy clinical applications. 

DIR validation using deformable physical phantoms is an extremely challenging task 

given the fact no physical phantom can be sophisticated enough to reproduce the various 

organ deformations occurring in human body. Our work is the first published data that 

presented a novel way to evaluate DIR performance by synthetically deforming  patient 

CT data to mimic clinically observed organ deformation and using the DVF from that as 

the ground truth to evaluate the accuracy of DIR[18]. This approach has since gained 

acceptance in the radiation oncology community as other research groups have used a 

similar approach to validate the accuracy of DIR [174, 210]. The framework presented in 

our work based on anatomical correspondence, physical characteristics of deformation 

field and image characteristics can facilitate DIR verification with the ultimate goal of 

implementing adaptive radiotherapy. One of the major conclusions of  our study[18] was 

the fact that although there are several methods to evaluate the accuracy of DIR (Inverse 

consistency error, Mean square error, accuracy of RT structures, etc..) the clinical 
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applicability of a particular chosen metric to evaluate the accuracy of DIR depends on the 

deformation observed. 

This dissertation also establishes the fundamental relationship between organ 

deformations with the physical force producing it as in the case of a second generation 

medical simulator (Fig 1.7 in chapter 1). This work was the first study from a radiation 

therapy investigation that evaluated the organ deformation and subsequent dose warping 

accuracy from the “dose deformation “workflows in commercial DIR platforms from the 

context of applied force. A quantitative relationship between force and deformation has 

the potential to create simulated deformations of various organs if their biomechanical 

properties are known and can be potentially used by clinicians to adapt margins in a dose 

painting scenario. A deformable bladder phantom with mechanical and tensile properties 

comparable to human bladder was designed which was used to assess dose warp accuracy 

from various commercial DIR algorithms studied. Our study also highlights the 

importance of validating the volume of dose from various DIR algorithms as traditionally 

used 3D gamma pass rates may not accurately describe dose warping for dose painting 

scenarios. An entire range of organ deformation from 3mm (10N) to 34mm (70N) was 

studied representing symmetric bilateral compression of equal displacement. Our future 

study will include asymmetric compression, changes in the direction of applied force, and 

3D compression. The viscoelastic polymer used can be molded to any organ shape and 

has the potential to adjust the tensile properties to match other organs in human anatomy 

which will be subject of future work. 
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In the next section we highlight the potential applications of the methods and tools 

developed as part of this dissertation to other radiotherapy clinical applications which 

will also be subject of future work. 

6.2 Implanted fiducial markers in the deformable bladder phantom 

As discussed in section 5.14 in chapter 5, the principal reason for failure of DIR based 

dose warping was because of the presence of uniform low contrast regions in the 

deformable bladder phantom where the accuracy of DIR algorithm and the generated 

DVF is prone to errors because of the lack of information or features that drive the re-

distribution of voxels. Consequently any DIR algorithm will work more optimally if there 

are contrast rich features between the source and target images. To improve the 

applicability of dose warping and test the results for the same applied deformation as 

before, we implanted 21 aluminum markers distributed at random locations across the 

phantom as shown in figure 6.1 below. 18 markers were 1.5mm in size while 3 markers 

were 2.5 mm in size.  The implanted markers will also be used to test the accuracy of 

image registration by comparing the position of fiducial markers from direct 

measurement in target image (undeformed) to those obtained from the calculated image 

obtained by applying the corresponding DVF to each deformed image from 20N to 70N. 

An example image at 20N deformation is shown in figure 6.2 below.  
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Figure 6.1:  21 implanted aluminum markers in deformable bladder phantom to improve 

the accuracy of DIR in low contrast regions 

 

Figure 6.2:  Position of fiducial markers before and after applying the DVF at 20N 

deformation 

Before DIR Calculated target 

image by 

applying DVF 
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6.3 Extension of current project to other radiotherapy clinical applications 

In this section the application of tools and methods developed as part of this dissertation 

to other potential clinical applications will be highlighted.  

Lung 

It is well known that the chest wall is an important dose limiting structure when treating 

lung tumor or breast tumor. Understanding the characteristics of chest wall motion is 

poorly known. As reported in Hui et al[211]., inadequate margin around chest wall may 

under dose to the chest wall. Further, overdosing the ribs can cause chest wall toxicity. 

Studies have shown that 30 Gy to the chest wall can cause severe fractures to the ribs 

along with pain.  

Several studies have shown rib fractures have been observed with doses as low as 20-26 

Gy.[212-214] . For example Stephans et al[213] retrospectively contoured  the chest wall 

for 45 SBRT patients who were treated using treatment plans without specific chest wall 

avoidance criteria. After a median follow up of 18.8 months, 10 patients were shown to 

have chest wall toxicity which was correlated to tumor size and the chest wall dosimetry. 

We  studied the motion of the ribs in order to determine the margin that should be placed 

on the chest wall due to motion, to quantify the dose error at each position[29]. Our 

procedure includes importing the MIP (Maximum Intensity Projection), AVGERAGE, 

and non-gated CT scan and contouring a GTV on each image set. The GTV volumes are 

combined to make the treatment target volume. (ITV,internal target volume). We 

determined 3 points in the CW by using an x,y,z coordinate on the planning system for 7 

patients and observed the motion for each point in the 10 phases. We examined the 



 

 169 

diaphragm displacement in each phase (0%-90%, 10% increments) and also at the 

corresponding displacement of the chest wall. (See figure 6.3 and 6.4).  The motion 

during each phase was quantified and averaged for 7 patients. The chest wall motion was 

compared to the diaphragm motion and the tumor motion in order to determine the 

relationship of the motion and the corresponding dose error to the chest wall due to 

motion 

 

Figure 6.3 illustrating the motion of diaphragm 

 

 

 

 

 

 

Figure 6.4 illustrating the motion of chest wall in 2 different breathing phases. 

 

20% Phase 80% Phase 
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6.2.1 Results: 

Figure 6.5 shows the displacement of the chest wall for ribs 3, 5, and 7 at each phase of 

the breathing cycle and the corresponding diaphragm motion for an average of 7 patients. 

Rib 3 moved between 1-3mm with a standard deviation of 0.1mm. 

Diaphragm movement was between 4-9mm, with a standard deviation of 1.4mm. Further 

the 50% phase showed the largest change in lung volume (cc) when averaged over the 

patients we evaluated as shown in figure 6.6.  

6.2.2 Conclusions 

Quantification of diaphragm motion alone may not be enough to determine chest wall 

margin since the chest wall motion is asymmetric with respect to the diaphragm motion. 

Due to the asymmetric chest wall motion with respect to the tumor, 4DCT scans should 

be considered for breast, lung and TMI to evaluate the tumor and chest wall motion. 

6.2.3 Extension of the lung study in the context of this dissertation 

Instead of following 3 points on the chest wall manually which is extremely time 

consuming and still not comprehensive, the entire ribs from T 1 to T 12 were contoured 

and the motion of each rib can be computed using the center of mass displacement.  

We deformably registered each of the10 breathing phases of 4D CT with planning CT 

using the custom developed open source DIR modules. The deformation matrix from the 

image registration is applied to RT Dose from the original plan. Deformed Doses can 

then be derived for each breathing phase of 4D CT. This is shown below in figs 6.7 and 

6.8 for the 20% and 80% phase respectively. The deformed doses can then be summed 

through all the 10 phases of breathing cycle to obtain a “4D Dose” and the DVH from 4D 

dose can then compared to original RT Dose. This approach has been used in abdomen 
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and liver sites.[79, 81]The resultant DVH for each rib from 4D dose is shown in figure 

6.9.  We are currently analyzing this data and the results will be published soon. 

 

 

 

Figure 6.5 showing the motion of diaphragm in comparison to motion of chest wall as 

quantified by ribs 3, 5, 7 
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Figure 6.6 Lung volume changes (cc) as function of breathing phase 

 

 

Figure 6.7 illustring the undeformed dose and deformed dose in the 20% breathing phase 
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Figure 6.8 illustring the undeformed dose and deformed dose in the 80% breathing phase 

 

 

 

Figure 6.9 illustraing the DVH from 4D dose for all the vertebral bodies (T1 through 

T12) 
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6.2.4 Total Marrow Irradiation (TMI) 

The feasibility of using helical tomotherapy for TMI was demonstrated by Hui et al[211]. 

A TMI work flow methodology can be implemented based on the DIR tools developed as 

part of this dissertation similar to the work of Chao et al[215] as shown in figure 6.10. 

MVCTs are routinely acquired prior to each TMI treatment. Regions of interest can then 

be contoured on each MVCT. The dose for each fraction can be calculated based on the 

MVCT using the Tomotherapy workstation. DIR can be used to establish voxel-to-voxel 

correspondence between the MVCT and the treatment planning kVCT.  

The resultant deformation vector field can be used to map the reconstructed dose from 

each fraction to the same point on the plan dose, and a voxel-to-voxel summed dose from 

all fractions delivered can be potentially computed   

The reconstructed dose distribution and its dosimetric parameters can be compared with 

those of the original treatment plan to evaluate the delivery efficacy or modify the plan 

during the course of therapy if significant deviations are found. 
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Figure 6.10 Adaptive work flow using DIR in TMI treatment based on Chao etal[215] 

6.3 On-line Adaptive Radiation Therapy 

On-line ART is a paradigm which attempts to adapt the delivered dose based on daily 

soft tissue imaging feedback while the patient is still on table. On-line ART is different 

from IGRT  beacause IGRT only corrects for positional variation of target and does not 

take onto account organ deformation for both target and critical structures. The goal of 

on-line ART is to dynamically adapt treatment delivery accounting for organ 

deformation. There are two different methods of implementing on-line ART based on 

daily volumetric CT imaging.  Some research groups have used MLC based tracking[216, 

217] whereby MLC aperture shape and leaf sequencing is varied  to adapt delivery based 

on daily target volume while others have performed a more robust fluence/aperture 

optimization based on daily imaging as done for treatment planning CT. The key 
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requirement for on-line ART in both methodologies is to keep the overall treatment time 

comprable to conventional IGRT treatment. In that regard, optimization and dose 

calculation schemes using graphics processing unit(GPU)  have shown great promise in 

implementing on-line ART.[218-220]. GPU computing have access to hundreds of 

processing cores that can be used for parallel computing thereby providing a very 

powerful computing platform at a fraction of processing times for various scientific 

applications in medical physics[221]. For example automatic segmentation of tumor and 

organs at risk in a 4DCT scan using a Demons algorithm can be achieved in 7 seconds 

using GPU processors [222]. Similarly a fluence map treatment plan re-optimization for a 

prostate IMRT plan was done in 2.8 seconds[220] and a direct aperture optimization for 

prostate and head and neck IMRT plans was done between 0.7 and 3.8 seconds[219] 

using NVIDIA Tesla C1060 GPU card.  It has also been shown that a robust dose 

calculation using convolution/superposition algorithm can be performed in under 2 

seconds using GPU computing.[223]. Thus if  image segmentation, re-optimization and 

dose calculation can be performed in under 2 minutes using GPU computing then on-line 

ART can be clinically implemented. A work flow model for clinical implementation of 

on-line ART is given in fig 6.11. and is subject of future research work. 
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Figure 6.11 An example model for clinical implementation of on-line ART 
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APPENDIX-Documentation of custom modules developed in this project and 

implemented in 3DSlicer 

Slicer modules for dosimetric verfication 

A. Preliminaries 

We used 3D Slicer (www.slicer.org) as our visualization platform. Several organizations 

are involved in the development of Slicer. Slicer is open source and supports loadable 

modules, both of which favor us in this regard. 

A.1 Installing Slicer 

We use a custom, modified version of Slicer, to support RT Dose files.( although since 

developing these modules, Slicer RT was developed in open source format and can import 

RT dose files)  Uninstall any existing versions of slicer you may have on your computer. 

Then get this custom version from author, Raj Varadhan. Please send email to 

rvaradhan@mropa.com for more details. Please use windows 7, 64-bit O/S with minimum 

of 8GB RAM. 

Install, following the usual options. If you are using Windows Vista, it may be preferable 

to not install it in “Program Files”, since log files are written out by modules in the 

installed folder, where write access may be denied to non-administrative users. 

A.2 Installing Custom Modules 

We package functionality in the form of Slicer modules. These may be invoked both from 

within Slicer, or from the command line. Typically command line invocation is verbose, 

giving you lots of log messages as you go along, while the GUI invocation is silent. 

Functionally, they remain the same. 

Get the modules from author Raj Varadhan 

http://www.slicer.org/
mailto:rvaradhan@mropa.com
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Unzip. Place the command line (.exe) and plugin (.dll) files in 

<YourSlicerInstallPath>/lib/Slicer3/Plugins/   . This is typically 

c:\Program Files\Slicer3\ 3.5.2009­12­05\lib\Slicer3\Plugins 

B. Loading data 

Extensive documentation on Slicer can be found at www.slicer.org. A minimal description 

on getting started with loading the KVCT is below. 

B.1 Loading the KVCT data 

While Slicer can load DICOM data, our DICOM library is still somewhat primitive. It 

requires that each series is isolated to a single folder. Lets create a folder kvctdata/ . 

Please all the CT data that correspond to this series in the folder. Be sure to leave out any 

scout files or the Dose and RT Plan files out 

Our example data folder contains 102 files ... 

HeadNeckCase/kvctdata/CT.1.3.12.2.1107.5.1.4.51607.300000090921134542609000003

46.dcm 

... 

HeadNeckCase/kvctdata/CT.1.3.12.2.1107.5.1.4.51607.300000090921134542609000004

47.dcm 

 

Select File ->Add Volume and navigate to HeadNeckCase/kvctdata/ . Select “Parse 

Directory”. Select the series “Rad therapy planning” that shows up with 102 files. Enter a 

meaningful name to remember it by. Let's type in “kvct” on the “Name” field and hit 

apply. 

 

http://www.slicer.org/
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B.2 Basic functionality 

Window / level functionality may be accessed from the “Volumes” module. Volume 

Rendering may be accessed from the “Volume Rendering” module. Fiducials from the 

“Fiducials” module. Measurements / rulers etc from the “Measurements” module. 

 

Each image tab allows one to specify the Orientation (Axial/cornal/sagittal), the label 

image of any, the foreground image if any and the background image. This allows one to 

overlay label maps (in this case the PTV) or overlay a registered image. One can toggle / 

fade between the background and foreground 
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Each image tab allows one to specify the Orientation (Axial/cornal/sagittal), the label 

image of any, the foreground image if any and the background image. This allows one to 

overlay label maps (in this case the PTV) or overlay a registered image. One can toggle / 

fade between the background and foreground
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C. Converting RT contours to binarized label map images 

Let's convert the DICOM RT contours to a label map image. Let's create a directory to 

hold these label map files : 

HeadNeckCase/StructureSetImages/ 

 

Select Modules from the toolbar above. Navigate to the group “Raj” and select the 

module→ “RTStruct to label map” On the module tab, Select the following parameters: 

 Template Volume : kvct 

 OutputDirectory ...../HeadNeckCase/StructureSetImages/ 

 InputFile is the RT structure set file : RS.......dcm 

Hit Apply. The module should take about 20 minutes to run. You should find 40 

Structure_<NAME>.mha images in your OutputDirectory. 

The same module can be invoked from the command line as well and this reports 

progress.... 
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D. Loading / Overlaying the RTContour label maps. 

Select File → Add Volume. Navigate to the OutputDirectory. Let's load one of the 

structures, the PTV : (Structure_PTV_6300.mha). Check “Label Map” ON. Perhaps, key 

in a meaningful name. Hit Apply. 

You should see the label map overlaid on the KVCT data as shown above 

E. Registration 

E.1 Loading the CBCT data 

Let's now load the CBCT image as well in Slicer. Follow the same process as the KVCT. 

ie. Isolate the CBCT files in a directory. Select File → AddVolume. Navigate to the 

folder. Hit “Parse Directory”. Select the appropriate series , in this case, “Unknown 

Series (58 files)”. 

E.2 Dilation of the PTV mask 

We will attempt to restrict our registration to the PTV and its vicinity. This may not be 

necessary always. Let's Select the module “Raj → ImageManipulation → 

BinaryDilateFilter”. 

- Select the label overlay : “Structure_PTV_6300” as the Input Volume. 

- On Output Volume, select “Create New Volume”. You may wish to name it as 

“Structure_PTV_6300_dilated”. 

- Select a “Kernel Radius of “6”. 

- Hit Apply 

The resulting displayed volume is the resampled volume. 
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E.3 Registration of the CBCT to the KVCT 

We first look at the match between the unregistered CBCT and the KVCT. To do this, 

select KVCT as the “background image”, and the CBCT as the foreground image. This 

aligns the images using their origin (derived from the DICOM image position patient 

tag). Toggle/fade the background and foreground. As can be seen, the two images are 

quite misaligned

 

 

Unregistered images (KVCT background and CBCT foreground) 
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E.3.1 Rigid registration 

We will first do a rigid registration of the CBCT to the KVCT. Traverse to the Modules → 

Raj → Registration → RegisterImages. Use the following parameters : 

IO 

FixedImage: KVCT MovingImage: CBCT 

Resample Image: Create New Volume (Give a meaningful name, say CBCT-

RigidRegToKVCT) 

Registration Parameters Load Transform : None 

Save Transform: Create New Transform (Give a meaningful name, say CBCT-

RigidRegToKVCT-Tfm) Initialization: Image Centers 

Registration: Pipeline Rigid Metric: Mattes MI 

 

Advanced Registration Parameters: Verbosity level: Verbose 

Fixed Image Mask: None Interpolation: Linear 

 

Advanced Rigid Registration Parameters: Rigid Max Iterations : ~200 

Rigid Sampling Ratio : ~0.02 

(The larger these parameters are, the more time it takes and the more accurate registration 

typically is). Hit Apply.... 

 

After about 2-3 minutes, you should have a rigid registration. 

This initializes the image based on their centers and then performs a rigid registration. The 

resulting symmetric rigid registration transform matrix (composed of a rotation and a 
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translation) can be viewed on the “Transforms” tab. You may overlay the two images to 

see the results of the rigid registration. 

One can also use the “Checkerboard filter”, from Modules → Filtering → Checkerboard 

filter to view a NxMxR checkerboard of the two images. 

 

 

The resulting metric and transform values at each iteration of registration can be seen from 

the output log, retrieved by hitting the “X” button at the bottom right and looking at the 

results on the “Register Images Standard Output”. 
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E.3.2 Deformable registration using B-spline algorithm. 

Note: Since the development of these modules Slicer RT supports B-spline registration 

in their latest version Slicer 4.3 

Deformable registration is typically performed as the second pass once you are satisfied 

with the results of the rigid registration. We will use the same “Register Images” Module. 

We will also restrict the deformable registration to the dilated PTV region. Use the 

following parameters 

IO 

FixedImage: KVCT MovingImage: CBCT 

Resample Image: Create New Volume (Give a meaningful name if you like, say CBCT-

DeformableRegToKVCT) 

Registration Parameters 

Load Transform : CBCT-RigidRegToKVCT-Tfm 

Save Transform: Create New Transform (Give a meaningful name if you like, say CBCT-

DeformableRegToKVCT-Tfm) Initialization: None (We initialize based on the transform 

resulting from rigid registration) 

Registration: Pipeline BSpline Metric: Mattes MI 

Advanced Registration Parameters: Verbosity level: Verbose 

Fixed Image Mask: Structure_PTV_6300_dilated Interpolation: Linear 

Advanced Rigid Registration Parameters: 

Rigid Max Iterations : ~50 (we've already performed a global rigid registration. This does 

a rigid registration with samples drawn from the mask, which really is not necessary) 
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Rigid Sampling Ratio : ~0.02 Advanced Bspline Registration Parameters: Bspline Max 

Iterations : 40 

Bspline Num Levels: 1 Bspline Sampling Ratio : 0.02 Control point spacing: 60 

The deformable registration will typically take 15~ 30 min, depending on the parameters 

on the Bspline tab. The smaller the control point spacing, the larger the sampling ratio 

and the larger the number of iterations, the more the time taken. 

The log of the B-spline registration along with the computed transform is written out to a 

file bspline-registrationlog.txt. This contains the transform and the current metric value 

and could be used as some indicator of progress. 

One should be able to view the registered results in the same manner as above. 

Future work: 

We should confine the B-spline grid to the mask. At the moment the grid is defined and 

computed over the entire image, although the samples used for computation of the metric 

is restricted to the mask. This is wasteful. We expect to achieve a 4x speedup by 

restricting the B-spline grid in addition to the metric, to the masked region. 



 

 205 

E.3.3 Running RegisterImages from the command line 

One can run RegisterImages from the command line. An example is shown for the 

uploaded lung cancer case : ( In addition you specify the directory path in the below 

command line on where the input and output files reside) 

RegisterImages ­­resampledImage AfterDeformationRegisteredToBeforeDeformation.mha 

­­registration PipelineBSpline ­­initialization ImageCenters ­­verbosityLevel Verbose 

­­metric MattesMI ­­minimizeMemory ­­interpolation Linear ­­rigidSamplingRatio 0.02 

­­rigidMaxIterations 200 ­­affineSamplingRatio 0.02 ­­affineMaxIterations 100 

­­controlPointSpacing 64 ­­bsplineSamplingRatio 0.05 ­­bsplineMaxIterations 40 

­­bsplineNumberOfLevels 1 BeforeDeformation.mha AfterDeformation.mha 

 

The parameters ­­controlPointSpacing , ­­bsplineSamplingRatio , 

­­bsplineMaxIterations have a direct impact on the run-time. The larger the 

controlPointSpacing, sampingRatio and the smaller the number of iterations, the faster the 

execution. 

At the end of the registration, you should have a DeformationField.mhd and a 

DeformationField.raw file in your directory. You may load these in Paraview to 

visualize the deformation. 

The figure below shows the overlay of the two images in VolView using the “Merge 

Volumes” plugin 
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F. Visualizing the deformation field in Paraview 

(a) Load the dataset using File->Open. Paraview cannot load DICOM data. One must 

convert it to a MetaImage or VTI. 

(b) Filters -> Glyph should show you the deformation field. By default a reasonable 

masking of the points is done so as to avoid cluttering the display. You may want to see 

the effect of disabling “Mask Random Points” and setting the “Maximum number of 

points” to manually control the number of displayed glyps 

(c) One can also load the Input data and overlay the field on the data. File → Open 

followed by Filters → Slice. One can change the color mapping of the displayed slice by 

clicking on the slice nodes' “Display” tab → “Edit Color Map” → “Choose Preset” → 

Grayscale. 
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G. Warping the dose file using the registration results 

The plugin takes a 3D image and warps it using a deformation (vector) field image. The 

loaded image is expected to be the image to be warped (also known as the moving 

image). The module has one parameter namely: the deformation field. The field is 

expected to have the same size, origin, spacing as the warped volume. 

If you supply the moving image as the input to the Warp plugin, and set the deformation 

field as that resulting from the registration (in Section E.3.3), you should get the same 

output as the registered volume. This plugin may be run from Slicer or invoked from the 

command line : 

WarpImageUsingDeformationField   ­­field  DeformationField.mhd 

AfterDeformation.mha AfterDeformationWarpedUsingDeformationField.mha 

The file  AfterDeformationWarpedUsingDeformationField.mha should be identical to  

AfterDeformationRegisteredToBeforeDeformation.mha 

Similarly one may warp the dose file
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H. Warped dose accumulation 

The plugin takes two dose images and simply adds them to produce a new result. This can 

be done with each successive warped dose image to get the cumulated dose. (One would 

read in the dose images are read via the ImportRTDose plugin and warp them with the 

plugin in Section G.). The plugin may also be invoked from the command line, for 

instance as : 

CumulateDose    DoseKvct.mha  WarpedDoseCBCT1.mha  DoseKvctAndCBCT1.mha 

CumulateDose    DoseKvctAndCBCT1.mha  WarpedDoseCBCT2.mha  

DoseKvctAndCBCT1AndCBCT2.mha 

 

I. Compare deformation field to reference field 

For dense deformation fields, this is equivalent to computing the MSE between the 

registered and the source image. The plugin MSE found in Raj → ImageManipulation 

computes this. The plugin expects as input the fixed image and the moving image. Slicer 

does not yet support reporting of results on the UI. Hence the output is written to a file. 

The output directory where the MSE between the source and target are stored is expected 

as input on the UI. The file MSEInfo.txt should contain the Sum of Squared Differences, 

the MSE and Root MSE. 

 

The displayed image should show the absolute difference between the two images ( | 

Image1 – Image2| ). As usual the plugin may be invoked from the command line : 
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MSE ­­outputdirectory c:/tmp c:/Data/BeforeDeformation.mha   

c:/Data/AfterDeformationRegisteredToBeforeDeformation.mha 

c:/Data/Output/DifferenceImage.mha 

J. Converting ImSimQA field to a metaimage 

The ImSimQA field cannot be loaded directly into paraview. To make it readable by 

paraview, use the “ReadImSimQAFieldWriteMetaImageField” plugin. This takes as 

input the ImSimQA dfm file and writes as output the field as a metaimage. 

The plugin may also be invoked from the command line as follows : 

ReadImSimQAFieldWriteMetaImageField  ­­inputfile  

c:/Data/TPSDeformationField_20100316.762690.dfm  ­­outputfile  c:/tmp/field.mha 

K. Importing an RT Dose file 

To import an RTDose file into Slicer, use the ImportRTDose plugin.  

The dose values are read from the DICOM file and multiplied by the DoseGridScaling 

(0x3004|000E) attribute. The resulting image will have dose values with units specified 

in DoseUnits attributes via DICOM tag (3004|0002). This is typically Gy. The plugin may 

also be invoked from the command line as follows : 

ImportRTDose  –InputFileName  

RD.1.2.246.352.71.7.1455740796.52337.20090923160357.dcm  Dose.mha 
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One can also contour the converted dose file in Paraview (see option to generate a series 

of values the range) and overlay it on the registered CBCT image along with the 

deformation field as shown below. 
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L. Compute the determinant of the jacobian 

- The jacobian of the transform or of a vector field is an MxN matrix, where M is the 

dimensionality of the transform and N is the dimensionality of the image. In our case, its 

a 3x3 matrix. 

- The sign of the determinant should tell you if the field is well behaved. If the negative, 

it indicates singularities in the field. Typically, if you looked at the deformation grid , one 

could see the misbehavior, usually the grid looping back on itself (thick of a figure 8). 

- The jacobian matrix itself tells you the local scale change or shearing or rotation 

involved in the deformation, if you factorized the matrix. 

- A determinant greater than 1 means its diverging. A determinant less than 1 means 

convergence. We have a Tumor change tracker module that essentially measures 
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volumetric change between scans at two time points by adding the jacobian determinants 

(of the deformation field) on all voxels in the tumor segmented mask region. 

- The min and max of determinant is an indicator of how smooth the spatial 

transformation is. The harmonic energy captures this metric well. It the Frobenius norm 

of the jacobian, and hence is inversely related to how smooth the deformation field is. 

The plugin expects the deformation field as the input and generates a floating point image 

representing the determinant of the jacobian. You may also run it from the command line 

as follows : 

ComputeDeterminantOfJacobian   DeformationField.mhd   

Jacobian_DeformationField.mha 

The figure below shows a slice of the jacobian field and the corresponding in-plane 

components of the deformation field in paraview. Note that the deformation field is well 

behaved; has a scalar range of [0.95, 1.04]. You will notice the larger vectors (red) 

diverging out of the bright regions in the image (regions with |J(T(x)|>1) and converging 

into darker regions (regions with |J(T(x)|<1) as shown below.
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M. Compute the harmonic energy in the field 

The min and max of determinant of the jacobian is an indicator of how smooth the spatial 

transformation is. The harmonic energy captures this metric well. It the Frobenius norm 

of the jacobian, and hence is inversely related to how smooth the deformation field is. 

The neighborhood size used in computing the harmonic energy is 1. 

The plugin expects the deformation field as the input and generates a text file containg the 

result. You may also run it from the command line as follows : 

ComputeHarmonicEnergy  DeformationField.mhd  

HarmonicEnergy_DeformationField.txt Harmonic energy of deformation field : 

DeformationField.mhd is 8.30813e­05 
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APPENDIX 

Troubleshooting: 

(a) I am trying to run the plugin from the command line, but I get “Error while loading 

shared libraries: ....dll” 

You need to add the SlicerInstallationDirectory\bin to your path, so as to enable your 

application to find additional ITK / Slicer libraries.  

For instance: 

PATH=%PATH%;c:\Program  Files\Slicer3  a3.5.2009­12­05\bin 

 


