Nitrate Leaching Flux in Bare Soils with Effective Drainage

Stephen Labuz, Undergraduate\(^1\); John Nieber, Professor\(^{1,2}\); Chris Lenhart, Assistant Professor\(^{1,2}\); Brad Hanson, Senior Scientist\(^{1,2}\)

\(^{1}\)University of Minnesota, \(^{2}\)Department of Bioproducts and Biosystems Engineering

Introduction

Nitrogen in essential for growth and reproduction of all life forms. Nitrate however, in excessive amounts, can degrade ecosystems and pollutant drinking water. Even without fertilizer inputs, Midwestern soils can mineralize with the presence of organic matter, produce nitrate, and transport that nitrate into other water bodies where the nutrient may be limiting.

Bare soils in agricultural fields and stormwater best management practices such as rain gardens, are examples of low nitrogen inputs, effective drainage, and high nitrogen output. Rain gardens with and without drains can be responsible for filtering large volumes of water and use a variety of plants to treat stormwater. Below the rooted zone is where nitrate is being leached in rain gardens and throughout the soil column in bare farm fields.

Because of the damage flooding causes, effective drainage is important to prevent flash floods. Although, nitrate is mobile in soil water and detention time from the surface to the drain may not be long enough for nitrate to be removed in many cases.

Most nitrate leaching research has studied nitrate losses on an agricultural field at the seasonal scale to manage for fertilizer application. This research quantifies nitrate leaching from individual storm events with little nitrogen input to the system. Not only is learning what season leaching is likely to occur important, but also when will the most potent nitrate concentrations occur during drainage.

Methods and Materials

Three tanks (A, B, and C) were constructed in a laboratory setting and fitted with a drain pipe. All three tanks had 2 cm of course sand at the bottom and 30 cm of sandy loam soil overlying the sand (soil is native to southern Minnesota). The contents of the drain pipe are as follows:

- Tank A – 90% sand and 10% iron fillings
- Tank B – 90% sand and 10% grass seed
- Tank C – 100% air space

The water inputs were based on rain achieves of 2012 from the Twin Cities, Minnesota, and using the SCS curve number method (Equation 1) inputs were generated. The 5 most intensive storms were simulated for this project.

\[
Q = \frac{\text{1000}}{\text{CN (group C)}} - 10; \quad S = \left(\frac{\text{0.25}}{\text{Q}^{0.33}}\right)^2
\]

Equation 1 – SCS curve number method which depends on the rain storm depth and ground cover type.

During event simulated event, water samples were collected and tested for nitrate concentration using a nitrate probe (Hach NITRATAX). The overall mass of nitrate exiting the tank was calculated by equation 2.

\[
\sum_{t=2}^{6} Q_t \left(\frac{L}{\text{sec}}\right) \times [\text{NO}_3] \times (T_N - T_{N-1}) = \frac{\text{Total Mass Nitrate Released}}{	ext{tank}}
\]

Equation 2 – Total mass of nitrate exiting the tank is a function of flow, measured nitrate concentration, and difference in time of water sample collected as seen in Figure 8.

Results

Figures 5, 6, 7, and 8 illustrate nitrate leaching through experimental tanks layered with sand and overlying bare soil. There were five separate simulated storm event.

Discussion

All three tanks displayed a similar pattern of high and low concentrations, which was a function of flow strength. During the end of the event, nitrate concentrations were lowest. The startup period of an event had high nitrate concentrations. For example, Tank C (Figure 7) was unstuffed and had the strongest flow, and highest cumulative nitrate output (Figure 8). The tanks with stuffed drain pipes still released nitrate but was less dramatic, along with their flow rates. The most potent nitrate concentrations were experienced at the beginning of an event when water not released from the previous event was pushed through with the addition of a new slug. The stuffed pipes drained more slowly but still effectively drained and released less nitrate.

During the startup period of the fifth event, Tank B (sand enhanced with grass seed) did not experience a spike of nitrate but was completely drained at the end. This result resembles a possible solution to potent nitrate leaching.

Conclusions

Stuffed drain pipes can have several advantages in rural and urban settings including, nitrate reduction, decrease in peak flow out of the system, immobilization of larger particles and debris, and preventing carp from traveling to other habitats connected by drain pipes.

Physical mechanisms, like plant roots should be present wherever mineral soils are to uptake nitrate. Bare agricultural soils should have a cover crop to prevent nitrate from leaching and unrooted zones beneath stormwater best management practices should be free of organic matter, like sand.

References

Contact

Stephen Labuz
University of Minnesota
Email: labuz011@umn.edu
Phone: (651)808-8829

Figure 1 - Setup of each tank

Figure 2 - Looking into a tank with overflow pipe.

Figure 3 - Stuffed drain pipe of Tank A

Figure 4 - Water flowing through Tank B's pipe

Figure 5 - Tank A output nitrate and flow

Figure 6 - Tank B output nitrate and flow

Figure 7 - Tank C output nitrate and flow

Figure 8 - Cumulative nitrate release described by each tank.