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Abstract 

This thesis focuses on the development of handheld sensors for in vivo measurement of 

soft tissue tension. The sensors will aid the surgeon in balancing forces in soft tissues 

during total knee arthroplasty, ACL repair, hip replacement surgeries, shoulder 

stabilization and other orthopaedic procedures by providing real-time measures of tension 

in soft tissue. The proposed method utilizes the application of an unknown transverse 

force on the soft tissue using a handheld probe. An array of miniature sensors on the 

probe is used to measure the resulting curvature of the soft tissue and tissue tension is 

estimated from this measurement. 

The first generation sensor developed in the project utilized capacitive sensing units to 

measure the forces required to displace the ligament by a fixed amount determined by the 

pattern of bumps in the sensor. These force values were used to estimate the tension in 

the ligament. The sensing concept was experimentally demonstrated; however it was not 

found to be suitable for hand held applications due to restrictions involved with the point 

of the contact along the ligament and also due to unreliability associated with estimates in 

the presence of noise. 

A second generation sensor design was developed to estimate the tension from 

displacements of three points on the sensor under three transverse loads. A sensor was 

fabricated using soft rubber bumps. The sensor works reasonably well for controlled 

orientations; however it is not suitable for hand held applications due to its sensitivity to 

orientation errors. Several challenges related to micro-fabrication also cause 

imperfections in the sensor and introduce variability in the results. 

The third generation sensor utilized changes in magnetic field to measure the 

displacements and curvature of the soft tissue. Linear coil springs were used in the sensor 

to ensure accurate calculation of forces from force-displacement relations. The design 

allowed for higher displacements within the sensor and hence was found to be 

significantly less sensitive to orientation errors as compared to the second generation 

sensor. The experimental results both during controlled orientations and handheld 
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operation show that the sensor can measure tension values up to 100 N with a resolution 

of 10 N or better. The feasibility of the sensor to measure tension in biological tissues is 

also demonstrated using experimental tests with a turkey tendon. 

The developed magnetic sensor was also reconfigured for use in two other medical 

diagnosis applications. The sensor was able to measure tissue elasticity with five times 

better resolution and four times the range of other elasticity sensors previously proposed 

in the literature. The sensor could also be used to measure compartment pressure for non-

invasive diagnosis of compartment syndrome.  In-vitro results using both a pneumatic 

compartment and an agarose-gel compartment showed that the sensor could accurately 

measure compartment pressure and could be a non-invasive alternative to invasive 

catheter based measurements for diagnosing compartment syndrome. 
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CHAPTER 1  

INTRODUCTION  

1.1 MOTIVATION 

The importance of balancing tension in soft tissues during various orthopedic procedures 

like total knee arthroplasty (TKA) [1-4], hip replacement surgeries [5], anterior cruciate 

ligament (ACL) repair [6] and shoulder stabilization [7, 8] has been well established. In 

these procedures, the surgeon has to not only handle and manipulate the bone but also the 

surrounding soft tissue, including muscle, fascia, tendon, ligament and capsule. 

Successful handling of these tissues and balancing of tensile forces in them is often the 

key to high reproducibility, good soft tissue healing, restoration of overall limb function 

in the patient, and a long lasting implant [1, 2, 5]. 

1.1.1 Total Knee Arthroplasty 

Total knee arthroplasty (TKA) is a well-established procedure for restoring knee function 

in patients who suffer from degenerative disease of the knee joint. 402,000 primary 

TKAs were performed in the US alone in the year 2003 [9]. This number is expected to 

see an over 8 times increase in the next two decades, with the projections for 2030 

predicted to be as high as 3.48 million procedures a year [9]. 

The anatomy of a human knee is shown in Figure 1-1. During the TKA surgery the 

surgeon not only has to deal with bone but also with the surrounding soft tissue. Several 
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complications that occur after TKA, such as misalignment, instability [10] and loosening, 

have been attributed to poor soft tissue balance. 

 
Figure 1-1: Anatomy of human knee 

Even though many studies have been published attempting to improve the understanding 

of this part of the procedure and a few devices have been developed for assisting 

intraoperatively with soft tissue balancing, they have not been widely used and the soft 

tissue balancing still largely depends on the surgeon’s subjective “feel” during 

surgery [1-4]. Studies show that conventional surgical techniques fail to restore neutral 

mechanical alignment in up to 30% of the cases [11-13] with a recent meta-analysis 

estimating the rate of misalignment in conventional TKA patients to be 31.8% [14]. 

Major deterring factors that prevent the widespread use of the devices developed for 

measuring tension in the past are cost, reliability or complexity involved [2, 15]. An 

inexpensive and easy-to-use device for measuring the tension in the soft tissues around 

the knee would not only help the surgeons in obtaining proper soft tissue balance during 
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TKA, potentially increase the survivorship of TKA; but would also serve as a useful tool 

for the instruction of orthopaedic residents in TKA surgical techniques.  

1.1.2 Hip Replacement Implants 

Over 200,000 Americans underwent hip replacement surgery in the year 2003 which is 

expected to grow to 570,000 in year 2030 [9]. The tension in the abductor muscles keeps 

the hip implant in position.  The ability to measure the tension in the abductor muscles 

during surgery can quantify how securely the joint is established with the new hip 

implant and can significantly help improve surgical outcomes. Controlling the tensile 

forces in the abductor muscles would ensure that the hip prosthesis is in balance and has 

the right amount of normal force to prevent both hip dislocation as well as uneven 

gait [5]. 

1.1.3 ACL Injuries 

Injuries to the anterior cruciate ligament (ACL) are one of the most commonly occurring 

sports-related knee ligament injuries, and more than 50,000 ACL reconstruction 

procedures are performed annually in the US [16]. Intraoperative control of tension in the 

ligament graft can dictate its eventual proper function [6]. If the ligament graft is fixed 

under a level of tension that is too low, postoperative instability with possible cartilage 

degeneration will result. If the ligament graft is fixed under a level of tension that is too 

high, reduced range of motion and possible ligament graft rupture or stretching may 

occur.  

1.1.4 Shoulder Stabilization 

The shoulder is the most frequently dislocated joint in the human body, especially in the 

younger population, and more than half of these patients will progress to recurrent 

episodes of symptomatic global instability. The main treatment for shoulder stabilization 

is reattachment or reefing (advancement of loose or attenuated tissue to tighten it) of the 

loose glenohumeral capsule and ligament complex [8, 17-19]. Insufficient tension in this 

capsule-ligament complex from surgery can be associated with recurrence of instability 
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episodes [7, 8, 20], whereas tighter than normal tension can lead to limited of range of 

motion and abnormal loading with subsequent arthritic changes [17, 18]. 

1.2 EXISTING MEASUREMENT TECHNOLOGIES 

The existing transducers for in-situ measurement of soft tissue tension require significant 

dissection and handling of the tissue [21-23], making them infeasible for use during 

actual surgeries.   

 
Figure 1-2: Buckle Transducer 

The buckle transducer proposed by Salmons [24] in 1969 was one of the first devices to 

measure in vivo force measurement in animal tendons. It is one of the widely used 

transducers for research and has undergone several modifications to adapt it for ease of 

use. The measurement process involves drawing a loop of ligament through a rectangular 

frame and securing it in place using a rectangular crossbar as shown in Figure 1-2, 

resulting in an appearance similar to a buckle. The transducer works by measuring the 

deflection in the frame due to three point bending caused by its interaction with the 

ligament. The obtrusive shape of the transducer precludes its use in actual surgical 

applications [25]. The presence of buckle transducer causes a shortening in length and 

causes change in local stress at the site at which it is attached. 

The liquid metal strain gauge (LMSG) [26, 27] is a mercury (or mixture of indium and 

gallium [28]) filled compliant capillary tube incorporated into electrical wire. The 

electrical resistance of this tube changes as a function of the applied strain, which is used 
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to indirectly calculate the tension. The gauge is attached to the ligament, as shown in 

Figure 1-3, by either using contact cement or by suturing the lead wires of the gauge to 

ligament itself [29]. Apart for involving significant amount of tissue handling and the 

need to attach the LSMG to the ligament itself, LSMGs are sensitive to temperature and 

present a risk of release of toxic substances [28, 29]. 

 
Figure 1-3: Liquid metal strain gauge 

Several other devices have been proposed that employ Hall Effect transducers [21], 

implantable force transducers [30] or optic fibers [31] to measure strain or force in the 

ligament. However all of these devices have to be implanted onto the ligament and hence 

involves considerable amount of tissue handling [21, 22]. 

Krystal et al. [32] presented a method for measuring tension in small ligaments based on 

measuring tension in an axially loaded string by deflecting it laterally and measuring the 

load and deformation. The sensor employed a linearly variable differential transformer 

(LVDT) to measure deformations and a load cell to measure force. The proposed device 

was tested by Kristal et al. [32] and Weaver et al. [33] on small wrist ligaments. The 

sensor required an inertial reference, making it unsuitable as a handheld device; moreover 

it involves estimating the free length of the ligament [29], which would require an extra 

measurement not usually available. 
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1.3 THESIS CONTRIBUTIONS 

This dissertation focusses on developing handheld devices for medical diagnosis, with a 

focus on measuring tension in soft tissues like ligaments and tendons. Major 

contributions of this dissertation include: 

1) Development of a theoretical model and sensing principle for estimating tension 

in ligaments without the need for any inertial measurement, thus enabling 

handheld measurement of tension.  

2) Development of capacitive-sensing based miniature sensors for measuring tension 

in tissues. 

3) Development of a magnetic-sensing based sensor which can be reliably used for 

measurements in a handheld mode.  

4) Experimental validation to confirm that the developed devices can successfully 

measure tension in short synthetic strings and in soft biological tissues. 

5) Reconfiguration and evaluation of the developed magnetic device as a feasible 

tool for soft tissue elasticity measurement and non-invasive compartment pressure 

measurement. 

1.4 THESIS OUTLINE 

Chapter 2 describes a single-probe capacitive sensor to measure the tension in the 

ligaments. This chapter develops a theoretical formulation to estimate the tension in the 

string by measuring the force required to cause a fixed displacement. This chapter also 

discusses the design and fabrication methodology for a sensor based upon the developed 

theoretical formulation and concludes with the experimental verification of the estimation 

method. 

Chapter 3 develops an improved sensing method based on application of multiple forces 

to the string. The chapter develops a theoretical framework to relate the magnitudes of 
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the three forces applied at locations whose positions relative to each other are known. 

The chapter also describes a capacitive sensing based sensor which was designed and 

fabricated to experimentally prove the developed theoretical framework. Compared to the 

single-probe capacitive sensor, the estimates from this sensor are based on a large number 

of observations and hence are relatively less prone to measurement noise. 

Chapter 4 further develops the sensing methodology described in chapter 3 and describes 

a magnetic sensing based sensor. The magnetic sensor provides distinct advantages of 

being resilient to proximity noise, utilizing a more reliable fabrication method and having 

a better resolution over the capacitive based technique. The chapter presents extensive 

modeling of the sensor and presents both theoretical and experimental sensitivity 

analysis. It is further shown in this chapter that the sensor can measure tension with a 

resolution better than 10 N, and is a viable handheld tool for measuring tension in strings. 

Chapter 5 discusses potential application of the multi-probe magnetic sensors for 

measuring quantities other than tension in a string. This chapter discusses two such 

variables - the elasticity of a soft material and pressure inside a compartment - and 

provides experimental results on measurements of both. 
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CHAPTER 2  

SINGLE-PROBE CAPACITIVE SENSOR 

2.1 THEORETICAL MODEL AND SENSOR DESIGN 

The single-probe capacitive sensor was designed to measure tension by applying a single 

point transverse force to the string and measuring the magnitude of force required to 

cause a fixed amount of deflection.  

Figure 2-1 shows the sensing mechanism. When a force (F) is applied to a string (shown 

as dotted line) under tension (T), it causes the string to deform as illustrated by the solid 

line. 

  
Figure 2-1: Sensing mechanism of the first generation sensor 

The tension in the string as a function of 𝐹, 𝜃1 and 𝜃2 is given in equation (2.1) 

𝑇 = 𝐹/(sin(𝜃1) + sin(𝜃2)) (2.1) 

Assuming that the force, 𝐹, acts at the midpoint of the string, and hence 𝜃1 = 𝜃2 = 𝜃 , 

equation (2.1) can be written as equation (2.2). 
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𝑇 =
𝐹

2 sin(𝜃) (2.2) 

The schematic of the first generation sensor is shown in Figure 2-2. The sensor consists 

of three cylinders, referred to as bumps. The center bump is taller than the two side 

bumps. Assuming that the height difference is 𝑋, the distance between the center bump 

and either of the side bumps is 𝑑 and that the bumps are rigid, the angle made by the 

string when the side bumps just come into contact is given by equation (2.3). 

tan(𝜃) = 𝑋/𝑑 (2.3) 

 

  
Figure 2-2: Schematic of the first generation sensor 

During operation, the force (𝐹) on the center bump is measured at the instant the two side 

bumps came into contact. The angle, 𝜃, is known from design, hence the tension can be 

calculated using equation (2.2). The force under each of the bumps is measured using 

capacitive sensors that are placed under each of them.  
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Figure 2-3: Principle of working of a capacitive sensor 

Figure 2-3 shows the working mechanism of a capacitive sensor. A capacitive sensor 

consists of two electrodes, top electrode and bottom electrode, separated by a soft 

dielectric. The capacitance between the top and the bottom electrodes is given by 

equation (2.4). 

𝐶 = 𝜖𝐴/𝑑 (2.4) 

where 𝜖 is the dielectric constant for the dielectric material, 𝐴 is the area of the electrodes 

and 𝑑 is the separation between the two electrodes. 

When a force is applied to the sensor, the dielectric deforms and the separation between 

the two electrodes decreases causing an increase in the capacitance. The change in 

capacitance is measured and is used to estimate the force. 

 
Figure 2-4: Cross sectional view of the sensor 

A sensor was designed to realize the above sensing concept. Figure 2-4 shows a cross 

sectional view of the designed sensor. The sensor consists of two sets of electrodes; top 
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and bottom. The bottom electrodes were designed on a printed circuit board (PCB). The 

top electrodes were fabricated on a flexible copper clad polyimide (PI) layer (DuPontTM 

Pyralux® AC 182500R). The bumps were fabricated by molding urethane rubber 

compound (PMC-746, Smooth-On Inc.) into small cylinders. The shore hardness of the 

rubber was 60A which corresponds to a Young’s modulus of approximately 3.5Mpa. A 

softer urethane rubber compound (PMC-724, Smooth-On Inc.) was used as the dielectric 

layer for the capacitor. The shore hardness of the dielectric material was 40A which 

corresponds to a Young’s modulus of approximately 1.5Mpa. 

  

 
Figure 2-5: Fabrication process for the sensor 
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Figure 2-5 shows the steps required to fabricate the sensor. Each of the steps involved in 

the fabrication sequence is explained below: 

2.1.1 Bottom electrode 

Bottom electrodes are designed and fabricated on a printed circuit board (PCB).  

2.1.2 Top electrode 

A substrate of copper clad polyimide (PI)  layer is taken, and electrode areas are masked 

on the copper using Kapton tape. The unwanted copper is then wet etched to get the 

desired pattern of top electrode.  

2.1.3 Bumps 

A mold is fabricated by drilling accurate holes in an acrylic sheet. The diameter of the 

holes was chosen to be 2 mm and the depth as 1.5 mm for the center bump and 1 mm for 

the side bumps. The center to center distance between the two adjacent holes is fixed to 

3 mm. Urethane rubber is then filled in the three holes and the excess rubber is removed 

by using a blade as squeegee. 

2.1.4 Bonding the top electrode to bumps 

Within 30 minutes of filling the rubber, the mold is placed on top of the PI layer with top 

electrode so that the bumps are aligned with the patterned electrode. The mold is left 

undisturbed overnight to let the bumps cure on top of the PI layer. The PI layer then is 

peeled off the mold.  

2.1.5 Bonding top and bottom electrode 

A small amount of uncured urethane rubber was poured on the PCB. The top electrode 

and bottom electrodes were aligned and the setup was left undisturbed overnight for the 

rubber to cure. The top electrode was then soldered to the ground pad on the PCB. 

A photograph of the sensor is shown in Figure 2-6. It can be seen that the side bumps are 

smaller in height than the center bump. 
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Figure 2-6: Photograph of the sensor 

A 13 channel capacitance to digital conversion chip (AD7147) from Analog Devices is 

used to obtain the capacitance readout. Since the AD7147 can only communicate using 

either SPI or I2C protocol, the data from the chip is acquired using an Arduino Uno and 

transmitted in real time to a computer through serial port. 

2.2  EXPERIMENTAL RESULTS 

Each bump was first characterized to generate the force vs capacitance calibration curve 

for it. Figure 2-7 shows the schematic and photograph of the experimental setup. A force 

gauge of 5N range (Model HP-5 from Handpi TM) was mounted on a vertical test stand. 

The tip of the force gauge was used to apply known forces to the sensor and the sensor 

response was recorded. This process was repeated three times to test for the calibration 

repeatability. 
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Figure 2-7: Schematic (left) and image (right) of the experimental setup used for characterizing the 

sensor 

 

 

 

 
Figure 2-8: Calibration curves for the three bumps of the first generation sensor 
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Figure 2-8 shows the calibration curves for the three bumps. The tests were found to be 

repeatable for each of the bumps. 

 
Figure 2-9: Schematic of the experimental setup for evaluating the sensor performance 

 An experimental setup was designed to apply known tensions to a nylon lace. Figure 2-9 

shows the schematic of the setup which was used to test the sensor for known tension 

values. The setup consists of a force gauge of 200N range (HP-200 from Handpi TM) 

mounted on a vertical test stand. A flat nylon lace of width approx. 5mm is tied to one 

end of the setup and is routed through a pulley on the other side to the force gauge. The 

height of the test stand can be adjusted to change the tension in the lace. The sensor is 

fixed on a translation stage to control orientation. The photographs of the setup from two 

different views are shown in Figure 2-10.  The sensor performance was evaluated at 

tensions between 20-120 N, which is the range of forces used by other studies [34, 35]. 
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Five tests were conducted in quick succession at each tension value to evaluate the 

repeatability. 

   
Figure 2-10: Photographs of the experimental setup for evaluating the sensor performance 

Figure 2-11 shows the calibrated raw data from the three bumps for 60 N and 100 N 

tension values. It is evident that there is a delay between the instant when the center 

bumps come in contact and when side bumps come in contact.  To determine the instant 

of contact a threshold of 0.01 N was chosen and when the readout from the left (or right) 

bumps exceeded the threshold it was assumed to be in contact. Since it is almost 

impossible to ascertain that the two bumps would come into contact at the same instant as 

that would involve approaching the exact middle point of the string with a perfect normal 

contact, the average of forces on the center bump when left bump came into contact and 

when right bump came into contact was treated as the sensor response.  

The spread of the tests for different tensions is shown in Figure 2-12. As predicted by 

equation (2.2), the force experienced by the center bump for a constant displacement of 

the string is seen to be approximately proportional to the tension in the string. 
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Figure 2-11: Calibrated raw data from three bumps for 60 N and 100 N tension values 
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Figure 2-12: Spread of the sensor response of first generation sensor for 5 tests at different tension 
values 

2.3 DISCUSSION 

The single-probe capacitive sensor confirmed the sensing concept of using transverse 

forces required for causing a fixed amount of displacement in the string for the estimation 

of tension. However the sensor was found to be not suitable for handheld applications 

due to several reasons. The sensing concept relied on the fact that the sensor would come 

into contact with the exact midpoint of the string, otherwise the two angles would not be 

equal and equation (2.2) would no longer be valid. This restriction on contact at the 

midpoint would be difficult to enforce in a handheld sensor. Furthermore, the sensor 

derived its tension estimate from just two data points, the force values at the time of 

contact of left and right bump. Hence in a practical situation where multiple sources of 

noise would be present, the estimate would be highly unreliable. 
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CHAPTER 3  

MULTI-PROBE CAPACITIVE SENSOR 

The single-probe capacitive sensors measured the force on the middle sensing elements at 

the time instant when the other elements came into contact and relied on those force 

measurements to estimate the tension. The sensor had a restriction on the point of contact 

with the string which prohibited it from being used as a handheld sensor. Moreover the 

sensor relied on just two data points to estimate the tension which made the sensor 

response unreliable. To overcome these shortcomings a new sensing concept was 

developed which modeled the displacement of the string under three point contacts and 

used those displacements for estimating the tension in the string. A new theoretical model 

is presented below to model displacements of the string at three points under three point 

loads. As it models displacement of three points under the action of three loads, each 

triad of loads can be used to construct the estimator for tension and hence it eliminates 

the need for precise touch detection. 

3.1 MODEL AND SENSOR DESIGN 

The displacement (𝑢) of a string under tension 𝑇 stretched along x-axis between fixed 

points 𝑥 = 0 and 𝑥 = 𝑙, under a transverse per unit length force 𝑓(𝑥) is given by 

equation (3.1) [36]. 
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𝑇
𝑑2𝑢
𝑑𝑥2

= −𝑓(𝑥) (3.1) 

𝑢 �
𝑥
𝑥𝑖
� =

𝐹𝑖
𝑇

× �

(𝑙 − 𝑥𝑖)𝑥
𝑙

; 0 ≤ 𝑥 < 𝑥𝑖
(𝑙 − 𝑥)𝑥𝑖

𝑙
; 𝑥𝑖 ≤ 𝑥 ≤ 𝑙

� (3.2) 

Equation (3.1) can be solved for a point force 𝐹𝑖 acting at point 𝑥𝑖 as shown in Figure 3-1. 

The displacement of any point on this string is given by equation (3.2). 

 
Figure 3-1: Model of a string under a transverse force 

Assuming that the applied force and the displacement at that point could be measured, 

equation (3.2) consists of 3 unknowns, tension (𝑇), point of application of force (𝑥𝑖) and 

the length of the string (𝑙). Since there are three unknowns, at least three equations are 

needed to solve for them, thus a sensor was designed with three sensing elements.   

Each of the three sensing elements was modeled as a spring, referred to as bump, and a 

capacitance based force sensor was positioned under it. The bump is used to apply a point 

force, while the capacitive sensor is used to measure the magnitude of the applied force. 

The bump was assumed to have a linear displacement to force curve, thus the relationship 

between the displacement of the bump, 𝑦, and the normal force exerted on it, 𝐹, can be 

expressed by equation (3.3), where 𝑘 is equivalent of the spring constant for the bump. 
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𝐹 = 𝑘𝑦 (3.3) 

The three bumps were placed along a straight line with a constant pitch, so that their 

relative positions with respect to each other are known. A schematic of the sensor is 

shown in Figure 3-2. 

 
Figure 3-2: Schematic of the generation 2 sensor 

For three point forces acting at points 𝑥1, 𝑥2 and 𝑥3, by the superposition principle, the 

three displacements, 𝑢1, 𝑢2 and 𝑢3 at the respective points, are given by equation (3.4). 
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⎢
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𝑙
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𝑙
(𝑙 − 𝑥3)𝑥1

𝑙
(𝑙 − 𝑥2)𝑥1

𝑙
(𝑙 − 𝑥2)𝑥2

𝑙
(𝑙 − 𝑥3)𝑥2

𝑙
(𝑙 − 𝑥3)𝑥1

𝑙
(𝑙 − 𝑥3)𝑥2

𝑙
(𝑙 − 𝑥3)𝑥3

𝑙 ⎦
⎥
⎥
⎥
⎥
⎤

× �
𝐹1
𝐹2
𝐹3
� (3.4) 

By the geometry of the sensor the distance between the two adjacent points where the 

force is applied is known and is equal to 𝑑. These two additional constraints can be 

expressed as equation (3.5). 

𝑥1 = 𝑥2 − 𝑑 (3.5a) 

𝑥3 = 𝑥2 + 𝑑 (3.5b) 
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The equation (3.4), under the constraints expressed by equation (3.5), can be summarized 

in a matrix form, as given by equation (3.6), where 𝐴1 is given by equation (3.7). 

𝑢 = 𝐴1(𝑙, 𝑥2,𝑇) × 𝐹 (3.6) 

𝐴1(𝑙, 𝑥2,𝑇) =
1
𝑇

⎣
⎢
⎢
⎢
⎢
⎡
(𝑙 − (𝑥2 − 𝑑))(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)(𝑥2 − 𝑑)

𝑙
(𝑙 − (𝑥2 + 𝑑))(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)𝑥2

𝑙
(𝑙 − (𝑥2 + 𝑑))𝑥2

𝑙
(𝑙 − (𝑥2 + 𝑑))(𝑥2 − 𝑑)

𝑙
(𝑙 − (𝑥2 + 𝑑))𝑥2

𝑙
(𝑙 − (𝑥2 + 𝑑))(𝑥2 + 𝑑)

𝑙 ⎦
⎥
⎥
⎥
⎥
⎤

 (3.7) 

Figure 3-3 shows the schematic of the sensor before and after contact with the string. 

Since the displacements of the sensor and the bumps have to be compatible, the 

compression in the bump (𝑦) can be modeled by equation (3.8), where 𝑧 is the 

displacement of the base of the sensor. 

𝑦 = 𝑧 − 𝑢 (3.8) 

 
Figure 3-3: Sensor before and after contact with the string 

Substituting 𝑦 in terms 𝐹 from equation (3.3) in equation (3.8), another relationship 

between 𝑢 and 𝐹 can be obtained. This relationship is given by equation (3.9). 
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𝑢 = 𝑧 − 𝐹/𝑘 (3.9) 

Substituting equation (3.9) in equation (3.6) a relationship expressed by equation (3.10) 

can be obtained. 

𝑍 = (𝐴1 +
1
𝑘
𝐼)𝐹 (3.10) 

where 𝑍 is a vector containing the displacement of the base of the three bumps. Under 

assumption of a normal contact, the three displacements can be assumed to be same, 𝑧, 

hence 𝑍 can be represented as: 

𝑍 = �
𝑧
𝑧
𝑧
� (3.11) 

Equation (3.10) can be solved to find the three force values as a function of displacement 

of the sensor for given tension value. Assuming that (𝐴1 + 𝐼/𝑘) is non singular the 

solution to the above equation is presented in equation (3.12). 
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𝑘2𝑙𝑇2

(−2𝑑2𝑘 + 𝑑𝑘𝑙 + 𝑙𝑇)
𝑘2𝑙𝑇

�−𝑑3𝑘2 + 𝑙𝑇2 + 3𝑑𝑘𝑇x2 + 𝑑2𝑘(−2𝑇 + 𝑘x2)�
𝑘2𝑙𝑇2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (3.12) 

Since the force values are functions of  𝑧, 𝑥2 and 𝑙,which are all unknown, a ratio of linear 

combinations of the force values was constructed that is independent of these variables. It 

was found that the expression given by equation (3.13) is dependent only on the 

tension, 𝑇, in the string. 

𝑅 =
𝐹2

(𝐹1 + 𝐹3)/2
=

2𝑇
2𝑇 + 𝑘𝑑

 (3.13) 

The ratio, 𝑅, described in equation (3.13) will be referred to as the response of the sensor. 

This ratio is essentially a ratio of the force experienced by the center bump to the average 
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force experience by the side bumps. It is a monotonically increasing function of tension 

and approaches unity as the tension increases. 

A sensor was designed to implement the above sensing concept. The basic structure of 

the sensor was similar to that of the single-probe capacitive sensor, however the bumps 

were made from a softer material in order to let them compress and were of equal height. 

 
Figure 3-4: Design of the second generation sensor 

 
Figure 3-5: Photograph of the second generation sensor 

Figure 3-4 shows the design of the proposed sensor. The sensor has three bumps of equal 

height made from urethane rubber (PMC-724 from Smooth-On Inc.). The durometer 

hardness of this rubber was 40A which translates to a young’s modulus of approximately 

24 



  
1.54 MPa. The height of the bumps was chosen to be 1 mm. The center of center distance 

of the adjacent bumps was chosen to be 3 mm. 

The fabrication process was identical to that used for the single-probe capacitive sensors 

except for a different mold and rubber. Figure 3-5 shows the photograph of the sensor 

after fabrication. 

3.2 EXPERIMENTAL RESULTS 

Since the measured output from the sensor was capacitance, each bump of the sensor was 

characterized to generate a capacitance to force calibration curve. The test was performed 

thrice for each bump to test for repeatability of the result. A setup described in section 2.2 

and depicted in Figure 2-7 was used to characterize each bump of the sensor. Figure 3-6 

shows the calibration curve for each of the three bumps. The tests were found to be 

repeatable for each of the bumps. Though a non-linear trend is present in the calibration 

curves, it was ensured that the forces on each bump are between 0.5-2.5 N during testing 

and a linear approximation was used to model the relationship between sensor response 

and force for this range.  

The setup described in section 2.2 and shown in Figure 2-9 and Figure 2-10 was used to 

evaluate the performance of the current sensor. Figure 3-7 shows the calibrated raw data 

from the three bumps for 60 N and 100 N tension values. The side bumps experience 

more force than the center in both the cases, hence the ratio of center to average of side 

would be less than unity. This is as expected from equation (3.13). 
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Figure 3-6: Calibration curves for the three bumps of second generation sensor 

  
Figure 3-7: Calibrated raw data from three bumps for 60 N and 100 N tension values 
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Figure 3-8: Force experienced by center bump vs. average for force experienced by side bumps for 

40N and 80N tension values 

Tests were performed for different tension values in the range 20 N - 100 N. Five tests 

were performed in quick succession at each tension values to test for repeatability. 

Figure 3-8 shows a plot of the force experienced by the center bump vs. the average of 

forces experienced by side bumps for 40 N and 80 N tensions. Again as predicted by 

equation (3.13), the slope of the line between force experienced by the center bump and 

the average of force experienced by the side bumps is independent of force levels. Also 

the output of the sensor is repeatable as shown by five tests. An ordinary least squares 

(OLS) line was fitted to the data for each test at each tension value, and the slope of that 

line was calculated. Figure 3-9 shows the fitted OLS line for one test at each tension 

value. It can be clearly seen that the slopes of the line increases with the increase in 

tension. 

The estimated slopes from each of the five tests for each tension value are plotted against 

the respective tension value in Figure 3-10. From the graph it can be seen that the 

estimates are repeatable and the resolution of the current sensor is 10 N for lower values 

of tension and 20 N for higher values. 
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Figure 3-9: Fitted lines for one test for 20-100N tension 

 
Figure 3-10: Summary of estimated slopes for five tests for 20N-100N tension 
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3.3 DISCUSSION 

The multi probe capacitive sensor confirmed the sensing concept, but there were multiple 

challenges that thwart the successful implementation of the current sensor.  

3.3.1 Challenge 1: Limited permissible displacement 

The height of the bumps is restricted to 1mm because bumps taller than 1 mm tend to 

buckle upon contact with the string. This restriction in height translates to a restriction in 

the amount of allowed displacements before the edges of the PCB come into contact with 

the string. 

3.3.2  Challenge 2: Day to day variability in results 

The sensor results seems to be repeatable when performed in quick succession without 

removing the sensor from the translation stage, however when the sensor is remounted 

again after removal, the results are not consistent.  

 
Figure 3-11: Summary of estimated slopes for five tests for 20N-100N tension 
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Figure 3-11 shows the results for a second set of tests. Again five tests were done in 

quick succession at each tension value to test the repeatability. Same values of threshold 

were used for calculating the slope of OLS line for both the tests. Although both the tests 

show good repeatability within the respective five tests done at quick succession, the 

results of the two tests are quite different. In fact, as shown in Figure 3-12, there is a big 

offset in the results from the two set of tests. This offset causes the achievable accuracy 

of the sensor to be poor. 

 
Figure 3-12: Summary of estimated slopes for 20N-100N tension for both set of tests 
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that occurs from test to test. The equations in section 3.1 were derived for a normal 
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cause variation, but as the displacements would be large, it is suspected that the variation 

would be smaller. 

3.3.3 Challenge 3: Fabrication challenges  

The sensor also suffered from a lack of control in fabrication. The process of molding 

bumps tended to introduce air bubbles in the bump, which caused the force-displacement 

curve to further deviate from linearity and also made it unreliable as the curve depended 

upon the point of contact on the bump. Figure 3-13 illustrates the dependence of force-

displacement on point of contact, due to the presence of bump directly under the point of 

contact, the same bump in scenario (A) will displace more than in scenario (B) for the 

same force.  

 
Figure 3-13: Different point of contact on bump with air bubble 

The process of laying dielectric layer also did not ensure uniform dielectrics, causing the 

initial capacitances to differ from each other by an order of magnitude. 

3.3.4  Challenge 4: Mechanical Crosstalk and Proximity effects 

The sensor was based on the capacitive sensing approach and all the three sensors shared 

a common dielectric. The shared dielectric introduced mechanical crosstalk in the bumps, 

i.e. when force was exerted on one of the bumps some change in capacitance was 

observed not only in that sensor but also the adjacent sensors. Figure 3-14 shows the 

readouts of the three sensors when the force was exerted on the middle bump. 
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Figure 3-14: Capacitance readout of the three sensors when a force was exerted on the middle bump 

 
Figure 3-15: Capacitance change due to hand approaching the sensor 
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Figure 3-16: Position of hand while testing proximity effects 

 Since the sensors were designed to read  the change in capacitance between a ground 

plate and a second plate,  the sensor readout change when any other object that can act as 

ground approaches the sensor. Since the human body can act as a ground plate, the sensor 

readout changes when it approaches the body and the readout gets corrupted. Figure 3-15 

shows the readout from the sensor for two different positions of the hand shown in Figure 

3-16. As can be seen there is an increase in the sensor readout when the hand is close to 

the sensor as compared to when it is far away. 
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CHAPTER 4  

MULTI-PROBE MAGNETIC SENSOR 

This chapter presents a magnetic measurement based design for the multi-probe sensor. 

This design addresses the low repeatability of the estimate obtained from the multi-probe 

capacitive sensor described in the previous chapter. The main reasons of the low 

repeatability of the capacitive sensor were: 

1. Noise due to proximity effects 

2. Small range of permissible displacements 

3. Suspected non-linear behavior between force and displacement of the rubber 

bumps due to rubber properties and fabrication issues. 

This sensor is based on measurement of the change in magnetic field due to the 

displacement of a permanent magnet under force. The rubber bumps are replaced by a 

stainless steel piston in conjunction with coil springs that exhibit a linear force to 

displacement behavior. The coil springs also permit a higher range of displacements. To 

resolve the challenges of repeatable fabrication three dimensional printing methods are 

utilized.  
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4.1 SENSOR DESIGN 

The measurement principle of the sensor is shown in Figure 4-1. The bump assembly of 

this sensor consists of a piston (P), a magnet (M) and a coil spring. A printed circuit 

board with AS5510 Hall-effect magnetic encoder chip (C) from ams AG is placed below 

the spring. When force (𝐹) is applied on the piston (P), the spring under the piston 

compresses and allows the magnet (M) to come closer to the chip (C). The displacement 

of the magnet causes an increase in the density of magnetic field lines incident on the 

surface of the chip, thus causing an increase in the readout of the chip.  

 
Figure 4-1: Bump assembly before and after application of force 

Three such bump assemblies are arranged in a linear fashion similar to the multi-probe 

capacitive sensor. The cross section view of the model for the sensor assembly is shown 

in Figure 4-2 and a photograph of the actual sensor is shown in Figure 4-3 
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Figure 4-2: Cross section view of the model of the multi-probe magnetic sensor 

 
Figure 4-3: Photograph of the multi-probe magnetic sensor 

The sensor assembly comprises of a housing which is printed using a transparent polyjet 

resin. For ease of assembly, the housing is split into two halves: top and bottom which 

can be joined together using a nut and bolt on either sides. There are three cylindrical 

slots in the housing. Each of the three slots are fitted with a linear bearing (SLMU3 from 

Misumi Inc) that allows the pistons of the bump assembly to move freely in the axial 

direction while constraining their motion in the radial direction. The center to center 

distance of these slots is 10 mm. The bump assembly comprises of a circular stainless 
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steel shaft of 3 mm diameter, a neodymium magnet and a spring of spring constant 

1.96 N/mm. On the lower side, the spring is supported on a thin plastic laminate which is 

placed between the circuit board and the springs. The laminate is placed to avoid any 

shorts that might occur due to the spring coming into contact with the traces on the PCB. 

A printed circuit board (PCB) consisting of five AS5510 magnetic encoders, one under 

each slot and two for cancelling the magnetic coupling terms as described in section 4.3, 

is placed in the bottom housing and is aligned to the slots with the help of guide pins. 

Since this sensor, similar to the multi-probe capacitive sensor, also relies on measuring 

the displacement of three points under an action of three point loads, the equation of 

displacements of the points under the action of three forces is still given by 

equation (3.6), which, for the sake of continuity, has been presented again as 

equation (4.1). 

𝑢 = 𝐴1(𝑙,𝑋2,𝑇) × 𝐹 (4.1) 

where, 

𝐴1(𝑙, 𝑥2,𝑇) =
1
𝑇

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡�𝑙 − (𝑥2 − 𝑑)�(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)(𝑥2 − 𝑑)

𝑙
�𝑙 − (𝑥2 + 𝑑)�(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)𝑥2

𝑙
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𝑙
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𝑙
�𝑙 − (𝑥2 + 𝑑)�𝑥2

𝑙
�𝑙 − (𝑥2 + 𝑑)�(𝑥2 + 𝑑)

𝑙 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.2) 

The displacement (Δ𝑦𝑖) of piston 𝑖 upon application of a force 𝐹𝑖 is given by 

equation (4.3), where 𝑘𝑖 is the stiffness of the coil spring under that piston. 

𝐹𝑖 = 𝑘𝑖Δ𝑦𝑖 (4.3) 
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Figure 4-4: Sensor before and after contact with the string 

Referring to Figure 4-4, under a normal contact assumption (the same displacement of the 

base of the three bumps) the compression of springs can be modeled as equation (4.4), 

where 𝑍 is the displacement of the base of three bump assemblies and for normal contact 

is given by equation (4.5). 

Δ𝑌 = 𝑍 − 𝑈 (4.4) 

𝑍 = �
𝑧
𝑧
𝑧
� (4.5) 

Substituting 𝐹 and 𝑈 from equations (4.3) and (4.4) into equation (4.1), a relationship 

between the piston displacements (Δ𝑌) and sensor displacement (𝑍) can be obtained. This 

relationship is given by equation (4.6), where 𝐾, given by equation (4.7), is the stiffness 

matrix of the combined system. 

(𝐼 + 𝐴1𝐾) Δ𝑌 = 𝑍 (4.6) 

Though the sensor has identical springs in the side and center slots, in the interest of 

generality, the stiffness of side spring is denoted by 𝐾𝑠 while that of center spring is 

denoted by 𝐾𝑐.  
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𝐾 = �
𝐾𝑠 0 0
0 𝐾𝑐 0
0 0 𝐾𝑠

� (4.7) 

The displacements of the three pistons, given in equation (4.8), can be obtained by 

solving Equation (4.6). 

�
Δ𝑌1
Δ𝑌2
Δ𝑌3

� =
𝑧

det(𝐴1𝐾 + 𝐼)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

�−𝑑3𝐾𝑐𝐾𝑠 + 𝑙𝑇2 + 𝑑2𝐾𝑠�−2𝑇 + 𝐾𝑐(𝑙 − x2)�+ 𝑇𝑑(𝐾𝑐 + 2𝐾𝑠)(𝑙 − x2)�
𝑙𝑇2

(𝑙𝑇 + 𝐾𝑠𝑑(𝑙 − 2𝑑))
𝑙𝑇

(−𝑑3Kc𝐾𝑠 + 𝑙𝑇2 +𝐾𝑠𝑑2(𝐾𝑐𝑥2 − 2𝑇) + 𝑇𝑑(𝐾𝑐 + 2𝐾𝑠)𝑥2)
𝑙𝑇2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.8) 

Since the displacement values are functions of  𝑧, 𝑥2 and 𝑙, which are all unknown, an 

estimator, given by equation (4.9) can be constructed which depends only on the tension 

in the string. This ratio would be referred to as the response of this sensor. 

𝑅 =
Δ𝑌2

(Δ𝑌1 + Δ𝑌3)/2
=

2𝑇
(2𝑇 + 𝐾𝑐𝑑) (4.9) 

 
Figure 4-5: Theoretical plot of ratio as function of tension 
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Figure 4-5 shows a plot of the sensor response, described by equation (4.9), as a function 

of the tension using the design value of the spring stiffness (𝑘𝑐) and the pitch (𝑑). The 

sensor response is an injective function of the tension (𝑇) and thus can be used to obtain 

an estimate of tension. 

4.2 MODEL OF MAGNETIC FIELD IN SENSOR 

 
Figure 4-6: Magnetic dipole pointing in 𝒚 direction place at origin 

Figure 4-6 shows a magnetic dipole 𝑚 pointing in 𝑦 direction placed at the origin. The 

magnetic field at a point whose coordinates in polar coordinate system are given by 

(𝑟,𝜃,𝜙) is given by equation (4.10) [37]. 

𝐵(𝑟,𝜃) =
𝜇0𝑚
4𝜋𝑟3

� 2 cos(𝜃) 𝑟̂ + sin(𝜃)𝜃� � (4.10) 

If the point of interest lies in the 𝑥 − 𝑦 plane, the magnetic field given by equation (4.10) 

can be represented in a Cartesian coordinate system by equation (4.11). 

𝐵(𝑥,𝑦) =
𝜇0𝑚
4𝜋𝑟3

[ 3 sin(𝜃) cos(𝜃)𝑥� + (3 cos2(𝜃) − 1)𝑦� ] (4.11a) 

where, 
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𝑟 = �𝑥2 + 𝑦2  (4.11b) 

𝜃 = tan−1 �
𝑥
𝑦

 � (4.11c) 

Since the hall-effect sensors utilized in this sensor are unidirectional, due to the relative 

orientation of the permanent magnets and the hall-effect sensor they are limited to 

measuring magnetic field components in 𝑦 −direction. The magnetic effect (𝐵𝑖𝑗) of the 

𝑖th magnet on 𝑗th chip is given by equation (4.12), where 𝑦 is distance of the magnet 

from the chip in vertical direction, 𝑥 is offset (fixed by design) between the chip and the 

magnet under consideration in 𝑥 direction and 𝑚 is an equivalent dipole strength of the 

magnet. For axial (𝑥 = 0) and off-axial (𝑥 ≠ 0) cases, equation (4.12) can be written as 

equation (4.13a) or (4.13b) respectively. 

𝐵𝑖𝑗 = 𝐵(𝑥, 𝑦).𝑦� =
𝜇𝑜𝑚

4𝜋(𝑥2 + 𝑦2)3/2 �3
𝑦2

𝑥2 + 𝑦2
− 1� (4.12) 

𝐵𝑖𝑗 = 𝑘 𝐵𝐴(𝑦) (4.13a) 

𝐵𝑖𝑗 = 𝑘 𝐵𝑂(𝑦, 𝑥) (4.13b) 

where, 

𝐵𝐴(𝑦) =
2
𝑦3

 (4.13c) 

𝐵𝑂(𝑦) =  
1

(𝑥2 + 𝑦2)3/2 �3
𝑦2

𝑥2 + 𝑦2
− 1� (4.13d) 

𝑘 =
𝜇0𝑚
4𝜋

 (4.13e) 
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Figure 4-7: A sample sensor configuration 

A typical sensor configuration is shown in Figure 4-7, where 𝑀𝑖 represent the three 

magnets and 𝐶𝑖 represent the three hall-effect sensor chips; using superposition principle 

the readouts (𝑅𝑖) of the three sensors under each magnet are given by equation (4.14), 

where 𝑘1, 𝑘2 and 𝑘3, as defined by equation (4.13e), are constants representing the 

magnetic strengths of the three magnets. 

𝑅1 = 𝑘1𝐵𝐴(𝑦1) + 𝑘2𝐵O(𝑦2,𝑑) + 𝑘3𝐵O(𝑦3, 2𝑑)

𝑅2 = 𝑘1𝐵O(𝑦1,𝑑) + 𝑘2𝐵A(𝑦2) + 𝑘1𝐵O(𝑦3,𝑑)

𝑅3 = 𝑘1𝐵O(𝑦1, 2𝑑) + 𝑘2𝐵𝑂(𝑦2,𝑑) + 𝑘3𝐵A(𝑦3)

 

(4.14a) 

(4.14b) 

(4.14c) 

4.3 MAGNETIC CROSS COUPLING 

Since the sensor consists of three magnets placed in close proximity of each other, as can 

be seen in equations (4.14) , the readings of each of the magnetic encoders are affected by 

not only the magnet directly above it but also the adjacent magnets. This phenomenon is 

illustrated in Figure 4-8 through Figure 4-10 which shows the readout of the three hall-

effect sensors placed when only one of the pistons is displaced.  
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Figure 4-8: Readout of three chips when only piston 1 is displaced 

 
Figure 4-9: Readout of three chips when only piston 2 is displaced 
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Figure 4-10: Readout of three chips when only piston 3 is displaced 

For the distance between the two extreme slots equal to current design distance 

(= 20 mm), it was experimentally found that the cross coupling between the left (or right) 

magnet and the right (or left) chip is negligible. Further the direction of change depends 

on the relative polarity of the chip and the magnet. This section describes a method by 

which both numerator and denominator of the ratio, given by equation (4.9), can be 

estimated without any coupling terms 

4.3.1 Elimination of coupling terms in the readout of center chip 

Since magnetic field is additive, reading of chip 2 (𝑅2) is given by equation (4.14b), 

reproduced again in equation (4.15). 

𝑅2 = 𝑘1𝐵O(𝑦1,𝑑) + 𝑘2𝐵A(𝑦2) + 𝑘3𝐵O(𝑦3,𝑑) (4.15) 

In order to eliminate the coupling terms from the readout, two additional magnetic 

sensing chips (Chip 4 and Chip 5) were placed on the circuit as shown in Figure 4-11. 

These chips were located so that the distance (𝑑) between chip 1 (or chip 3) and chip 2 is 
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between chip 2 and chip 4 (or chip 5) is maximized to ensure that the effect of magnet 2 

(located above chip 2) on chip 4 (or chip 5) is negligible. 

 
Figure 4-11: Modified circuit board to incorporate two additional magnets 

Since by design, the additional chip 4 (chip 5) is only affected by magnet above chip 1 

(chip 3), the readouts of these two additional chips (𝑅4 and 𝑅5) are given by 

equation (4.16). 

𝑅4 = 𝑘1𝐵O(𝑦1,𝑑) (4.16a) 

𝑅5 = 𝑘3𝐵O(𝑦3,𝑑) (4.16b) 

An estimate, expressed by equation (4.17), then provides the effect of magnet 2 on chip 2 

without any coupling terms. 

𝑅2 − 𝑅4 − 𝑅5 = 𝑘2𝐵A(𝑦2) (4.17) 

Figure 4-12 and Figure 4-13 provide an experimental verification of this methodology. 

When either of the side pistons is displaced, the reading of the center chip changes 

however there is no appreciable change in the readout of center after correction. 
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Figure 4-12: Corrected reading of center chip when piston 1 is displaced 

 
Figure 4-13: Corrected reading of center chip when piston 3 is displaced 
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4.3.2 Elimination of coupling terms in the readout of average of side chips 

Equations (4.14a) and (4.14c), reproduced as equation (4.18), provide an expression for 

the reading of chip 1 and chip 3 respectively. 

𝑅1 = 𝑘1𝐵A(𝑦1) + 𝑘2𝐵O(𝑦2,𝑑) + 𝑘2𝐵O(𝑦3, 2 𝑑) (4.18a) 

𝑅3 = 𝑘1𝐵O(𝑦1, 2 𝑑) + 𝑘2𝐵O(𝑦2,𝑑) + 𝑘3𝐵A(𝑦3) (4.18b) 

If sensors 1 and 2 are configured to read the proximity to south pole as positive and the 

magnet above them are positions so that the south pole of these magnets face these 

sensors, while the sensor 3 is configured to read the north pole as positive and magnet 

above it is positioned so that its north pole faces this sensor, then equation (4.18) can be 

modified and re-written as equation (4.19). 

𝑅1 = 𝑘1𝐵A(𝑦1) + 𝑘2𝐵O(𝑦2,𝑑) − 𝑘2𝐵O(𝑦3, 2 𝑑) (4.19a) 

𝑅3 = − 𝑘1𝐵O(𝑦1, 2 𝑑) − 𝑘2𝐵O(𝑦2,𝑑) + 𝑘3𝐵A(𝑦3) (4.19b) 

The sum of these magnetic fields is given by equation (4.20). 

𝑅1 + 𝑅3 = 𝑘1𝐵A(𝑦1) + 𝑘2𝐵O(𝑦2,𝑑) − 𝑘2𝐵O(𝑦3, 2 𝑑) − 𝑘1𝐵O(𝑦1, 2 𝑑)

− 𝑘2𝐵O(𝑦2,𝑑) + 𝑘3𝐵A(𝑦3) 
(4.20) 

It has been shown in Figure 4-8 and Figure 4-10 that there is negligible coupling between 

the extreme magnets; hence the terms involving 𝐵𝑂(𝑦𝑖, 2 𝑑) can be assumed as zero. 

Hence the equation (4.20) will be reduced to (4.21), which does not involve any coupling 

terms. 

𝑅1 + 𝑅3 = 𝑘1𝐵A(𝑦1) + 𝑘3𝐵A(𝑦3) (4.21) 

Figure 4-14 shows the readings of the different chips when the center piston is displaced, 

as can be seen that along with chip 2, the reading of chip 1 and chip 3 also change, 

however due to the opposite signs of the two changes, the change in average of the two is 

negligible as compared to the individual changes. 
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Figure 4-14: Average reading of side chips when piston 2 is displaced 

The quantities given by equations (4.17) and (4.21) can be used as the numerator and 

denominator to estimate the ratio, given by equation (4.9), without any coupling terms.  

This is a bold assumption which is not fully justifiable given the displacement and 

magnetic field has a non-linear relationship which is discussed in section 4.4.1 and is also 

shown in Figure 4-17. However given the complexity of non-linear relationship between 

the displacements of the three pistons and changes in magnetic field at the three sensors, 

it is not feasible to account for both the coupling effects and the non-linearity at the same 

time. A comparison between using displacement and magnetic field has been presented in 

section 4.3.3 using data generated by simulating the system in Matlab to illustrate that 

using magnetic field data instead of displacement still provides a similar monotonic 

relationship between the estimated ratio and the tension. 

4.3.3 Simulated sensor response using magnetic field instead of displacement 

A simulation study was conducted in Matlab to analyze the effect of using the change in 

magnetic field data obtained directly from the chip instead of using the displacement 

data. 
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At the start of the simulation, the sensor was assumed to be in contact with the string with 

no force being exerted on the string. During the simulation, the sensor was then moved 

forward in increments of 0.1 mm and the expected values of the compressions were 

calculated using equation (4.6). The expected compression values were then converted 

into expected change in magnetic field as obtained from the hall-effect sensors using 

equations (4.14) and (4.16). The sensor’s forward movement was continued till the 

average of readings from side sensors exceeded 150 counts. The values of the various 

parameters used for this simulation are shown in Table 4-1, these values were the design 

values except for the strength of permanent magnets which was estimated by fitting a 

model to data presented in Figure 4-17. 

Table 4-1: Parameter values used for simulation 

Parameter Description Value 
𝑙 Length of string 76.2 mm (= 3 inches) 
𝑥2 Position of center sensor from end of string 38.1 mm (=1.5 inches) 
𝑑 Pitch of hall effect sensors 10 mm 
𝑘 Strength of permanent magnets 40000 
𝑦0 Initial distance between magnets and chips 6.3 mm 

 

Figure 4-15 shows the expected values of displacement and change in magnetic field 

obtained for 40 N and 80 N tensions. 
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Simulated data for 40 N tension 

  
Simulated data for 80 N tension 

Figure 4-15: Simulated compression and magnetic field data  

An ordinary least square line, given by (4.22), was then fit using average of side readings 

as the 𝑥 values and the center reading as 𝑦 values. Such an exercise was conducted using 

both the expected displacement, given by equation (4.6) as the readings and also using 

change in magnetic field obtained using equations (4.14) and (4.16). The obtained value 

of the slope (𝛽1) was used as the response of the sensor in lieu of the ratio described by 

equation (4.9). Figure 4-16 shows the response of the sensor obtained for different 

tension values in both the case. Using change in magnetic field in place of displacements 

results in a very similar response curve and hence justifies the use of magnetic field to 

eliminate the cross coupling effects of the different magnets as described in section 4.3.2. 
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𝑦 = 𝛽0 + 𝛽1 𝑥 (4.22) 

 
Figure 4-16: Simulated comparison of sensor response when using magnetic field data 

4.4 CHARACTERIZATION OF SENSOR ELEMENTS 

The characterization of each bump assembly of the sensor was performed by applying 

known displacement (or force) to one piston at a time and measuring the change in the 

readout of the Hall-effect sensor under that piston. 

4.4.1 Characterization under known displacement 

To characterize the response of the bump assemblies as a function of compression, 

known displacement, varying between 0 mm to 3 mm, were applied to each of the pistons 

(one at a time) using a micrometer screw gauge in steps of 0.254 mm (.01 inch). The 

process was repeated thrice to test the repeatability.  
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Figure 4-17: Displacement vs Magnetic field calibration curves for magnetic sensor 

Figure 4-17 show the response of the three bump assemblies. It can be seen from the 

three curves that the response of the bump assemblies to the compression was repeatable, 

however as expected was nonlinear. 

4.4.2 Characterization under known force 

To characterize the response of the bump assemblies as a function of applied force, 

known forces, in the range 0 N to 5 N, were applied to each of the pistons using a force 

gauge of 5N range (Model HP-5 from Handpi TM) as shown in Figure 4-18. The process 

was repeated thrice to test the repeatability.  
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Figure 4-18: Setup used for calibrating magnetic sensor for known forces 

Figure 4-19 show the response of the three bump assemblies. It can be seen from the 

three curves that the response of the bump assemblies to the applied force was repeatable. 

  

 
Figure 4-19: Force vs Magnetic field calibration curves for magnetic sensor 
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4.5 EXPERIMENTAL RESULTS WITH SYNTHETIC 

STRING 

A nylon lace of width 1 cm was used to test the performance of the sensor. A photograph 

of the lace is shown in Figure 4-20.  

 
Figure 4-20: Photograph of the lace 

 
Figure 4-21: Schematic of Test Setup 
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An experimental setup was designed to apply known tensions to this nylon lace. Figure 

4-21 and Figure 4-22 shows the schematic and photograph of the setup which was used to 

test the sensor for known tension values. The setup consists of a force gauge of 200 N 

range (HP-200 from Handpi TM) mounted on a vertical test stand. The nylon lace was 

tied to one end of the setup and was routed through a pulley on the other side to the force 

gauge. The height of the test stand was adjusted to change the tension in the lace. The 

string was routed through an attachment plate as shown in Figure 4-23 to control the free 

length of the string against which the sensor was pushed. The attachment plate shown in 

this figure constraints the free length of the string to 3 inches (= 76.2 mm). 

 
Figure 4-22: Photograph to experimental setup 
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Figure 4-23: Attachment plate for setting free length 

4.5.1 On-stage testing with fixed orientation 

For the initial set of testing, the sensor was mounted on a 𝑥 − 𝑦 translation stage as 

shown in Figure 4-24. The translation stage was used to ensure that the orientation of the 

sensor with respect to the lace remains constant. It was ensured that a normal contact 

occurs between the sensor and the string by visually adjusting the angle of the attachment 

plate and sensor. Furthermore the sensor was positioned so that the center piston comes 

into contact with the free length of the string at approximately its mid-point. 

 
Figure 4-24: Magnetic sensor mounted on a translation stage 
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Figure 4-25 shows the plot of center bump reading vs. the average of readings from side 

bumps for three different tension values.  The center and side readings show a linear 

trend for each tension as predicted by the equation (4.9).  Also the slope of the line 

increases with increase in tension.  

 
Figure 4-25: Sensor response for three different tension values 

The slope of that line was estimated by fitting an ordinary least squares (OLS) line to the 

data. The equation of the OLS line is given by equation (4.23), where 𝑥 the average 

readings of the side sensors, 𝑦 is the reading of the center sensor and 𝜖 is the error. 

𝑦𝑖 = 𝛽̂0 + 𝛽̂1 𝑥𝑖 + 𝜖𝑖 (4.23) 

Figure 4-26 shows the OLS fitted line for different tension values.  It can be seen that the 

slope of the line consistently increases with the increase in tension as predicted by 

equation (4.9). The 𝑅2 values for the OLS fit were typically found to be greater than 

0.995.  
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Figure 4-26: Fitted line for different tension values 

The OLS line fitting using equation (4.23) assumes that the values of 𝑥 are observed 

without any error, however in this case since both 𝑥 and 𝑦 are the readings obtained from 

similar sensors there error variances could be of same order. It can be shown that the 

slope estimate obtained from OLS of 𝑦 on 𝑥 (𝛽̂𝑦𝑥) and that obtained by OLS of 𝑥 on 𝑦 

(𝛽̂𝑥𝑦) follow a relationship given by equation (4.24), where 𝑅2 is the coefficient of 

determination. Furthermore all the available solutions would lie within the 

interval [𝛽̂𝑦𝑥, 1/𝛽̂𝑥𝑦] (or [1/𝛽̂𝑥𝑦, 𝛽̂𝑦𝑥]) [38]. Since the observed 𝑅2 values were found to 

be large (typically > 0.995), the error in 𝑥 was ignored and OLS estimate slope of 

equation (4.23) was assumed to be the sensor’s response. 

𝛽̂𝑦𝑥 𝛽̂𝑥𝑦 = 𝑅2  (4.24) 
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To further evaluate the OLS fitting, the residuals of the fitted line were analyzed. Figure 

4-27 shows a plot of the residuals against the fitted 𝑦 values for a one test conducted at 

different tension values, since the magnitude of the residuals does not show any 

systematic dependence on the fitted values; we can conclude that the system is 

homoscedastic. Figure 4-28 and Figure 4-29 shows the q-q plot and histograms of the 

residuals for the same tests, these two plots visually confirm the normality of the 

residuals. 

 
(A) Test conducted at 20 N tension 

 
(B) Test conducted at 40 N tension 

 
(C) Test conducted at 60 N tension 

 
(D) Test conducted at 80 N tension 

Figure 4-27: Residuals vs fitted values 
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(A) Test conducted at 20 N tension 

 
(B) Test conducted at 40 N tension 

 
(C) Test conducted at 60 N tension 

 
(D) Test conducted at 80 N tension 

Figure 4-28: QQ plot of residuals 

The sensor was tested at various tension values varying between 20 N to 80 N in 

increments of 10 N. Each set of test consists of 10 individual tests at each tension value, 

where each test comprises of one push of the sensor against the string using the setup 

shown in Figure 4-24. Three such sets (a total of 30 individual tests at each tension) are 

shown in Figure 4-27. The plot shows a good agreement between the three sets. 
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(A) Test conducted at 20 N tension 

 
(B) Test conducted at 40 N tension 

 
(C) Test conducted at 60 N tension 

 
(D) Test conducted at 80 N tension 

Figure 4-29: Histogram of residuals 

 

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

600

700

Residuals

Fr
eq

ue
nc

y

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

600

700

Residuals

Fr
eq

ue
nc

y

-3 -2 -1 0 1 2 3
0

200

400

600

800

Residuals

Fr
eq

ue
nc

y

-3 -2 -1 0 1 2 3
0

100

200

300

400

500

600

700

Residuals

Fr
eq

ue
nc

y

61 



  

 
Figure 4-30: Sensor response for controlled orientation 

 
 Figure 4-31: Deviation in sensor response from its group mean for controlled orientation 
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The deviation of the sensor responses from the mean response for that particular tension 

values is shown in Figure 4-31. On visual inspection, the plot does not reveal any 

systematic change in variance of the deviations with the tension, indicating a 

homoscedastic system. The overall standard deviation of these errors was found to be 

0.0018. 

 
Figure 4-32: Mean response of sensor for controlled orientation 

Figure 4-32 shows the mean value of the sensor response along with an error bar 

corresponding to the expanded uncertainty with a coverage factor of 1.96 (corresponding 

to 95% level of confidence) as defined by National Institute of Standards and Technology 

(NIST) [39]. The expanded uncertainty (𝑈), defined by equation (4.25), is a value such 

that it can be confidently believed that the measured value 𝑌 lies between 𝑦 ± 𝑈, where 𝑦 

is the measurement result, 𝑘 is the coverage factor chosen on the basis of the desired level 

of confidence and  𝑢𝑐 is a reliable estimate of the standard deviation of 𝑦. With the 

desired level of confidence as 95%, the sensor was found to have a resolution better than 

10 N, i.e. there was no overlap between the error bars shown in Figure 4-32. 
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𝑈 = 𝑘 𝑢𝑐 (4.25) 

4.5.2 Handheld testing 

A handle was designed and fabricated using 3-D printing for ease of holding the sensor 

while handheld testing. Figure 4-33 shows a photograph of the sensor attached to the 

handle. The sensor was tested at various tension values varying between 20 N to 100 N in 

increments if 10 N. Each set of test consists of 10 individual tests at each tension value, 

where each test comprises of one push of the sensor against the string using the setup 

shown in Figure 4-22. The mean of three such sets (a total of 30 individual tests at each 

tension) along with the mean of the three tests from section 4.5.1 are shown in Figure 

4-34. The responses were found to be in agreement with each other, thus making the 

sensor a viable tool for handheld tension measurement.  

 
Figure 4-33: Photograph of handheld magnetic sensor 
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Figure 4-34: Comparison of Sensor response for handheld and on-stage testing 

 

Figure 4-35 shows the mean response of the ten tests in each handheld group along with 

the spread in the response for tensions varying between 20 N and 100 N. The deviation of 

the sensor responses from the mean response for that particular tension values is shown in 

Figure 4-36. On visual inspection, the plot does not reveal any systematic change in 

variance of the deviations with the tension, indication a homoscedastic system. The 

overall standard deviation of these errors was found to be 0.0066, which is approximately 

3.6 times that found for controlled orientation in section 4.5.1. 
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Figure 4-35: Sensor response for handheld testing 

 
Figure 4-36: Deviation in sensor response from its group mean for handheld testing 
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Figure 4-37 shows the mean value of the sensor response along with an error bar 

corresponding to the expanded uncertainty with a coverage factor of 1.96 (corresponding 

to 95% level of confidence) as defined in section 4.5.1. With the desired level of 

confidence as 95%, the sensor did not have a resolution of 10 N for tension values greater 

than 40 N.  

 
Figure 4-37: Mean response of sensor for handheld tests 

In order to achieve a 10 N resolution throughout the range, the expanded uncertainty, as 

defined by equation (4.25), for 95% level of confidence should be less than the difference 

between the mean readouts of each pair of consecutive group. Table 4-2 list the mean 

sensor response for different tension values. The minimum difference between 

consecutive values occurs between 90 N and 100 N and is equal to 0.0163. An expanded 

uncertainty of less than 0.0163 at 95 % level of confidence corresponds to a required 

standard deviation of less than 0.0042. 
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Table 4-2: Mean sensor response for different tensions 

Tension (N) Mean sensor response 
20 0.7111 
30 0.7597 
40 0.7912 
50 0.8160 
60 0.8412 
70 0.8623 
80 0.8802 
90 0.9005 
100 0.9168 

 

The temporal trend of the deviations of the sensor response from the mean response for 

that particular tension is shown in Figure 4-38, since there is no observable temporal 

trend, the individual tests can be assumed to be independent of each other.  

 
Figure 4-38: Temporal trend of the deviations of the sensor for hand held sensor 

For independent observations of a random variable 𝑋, the relationship between the 

standard deviation of 𝑋 (𝜎𝑋) and the standard deviation of the mean of 𝑛 independent 
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observations 𝑋� (𝜎𝑋�) is given by equation (4.26). Thus one method of obtaining the 

desired resolution could be to take an average of 𝑛 handheld readings such that the 

standard deviation of the mean of those readings is less than the required threshold. 

𝜎𝑋� =
𝜎𝑋
√𝑛

 (4.26) 

For the observed data it was found that the expected standard deviation of the mean of 

3 observations would be 0.0038 which is less than the standard deviation required for a 

10 N resolution. The actual standard deviation for a mean of three consecutive tests for 

the observed data was found to be 0.0043, which leads to a 10 N resolution for tension 

values up to 90 N. 

Table 4-3: Sensor response for three users 

Tests User 1 User 2 User 3 
1 0.8593 0.8296 0.8287 
2 0.8373 0.8287 0.8542 
3 0.8388 0.8274 0.8318 
4 0.8367 0.8365 0.8272 
5 0.8454 0.8364 0.8424 
6 0.8435 0.8419 0.8346 
7 0.8429 0.8486 0.8351 
8 0.8423 0.8541 0.8434 
9 0.8397 0.8435 0.8653 
10 0.8500 0.8438 0.8439 

Mean 0.8436 0.8390 0.8407 
𝝈 0.0068 0.0086 0.0119 

 

It should however be noted that the value of 𝑛 depends upon the standard deviation of 

individual tests. The standard deviation of individual tests depends upon the multiple 

factors like change of relative orientation between the sensor and string from test to test, 

which would depend upon the experience of the user with the sensor. Table 4-3 shows the 

sensor responses for ten tests conducted by three different users at a tension of 60 N. 
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User 1 is the author of the dissertation, and can be considered to have prior experience 

with the sensor; the other two users were first time users of the sensor with no prior 

experience.   

As can be seen from the table, the means of the ten responses for all the three users are 

similar; however the standard deviations of the responses are different. For the three users 

listed below, the number of tests required will be 3, 5 and 8 respectively, thus for 

practical implementation the number of tests required would have to be an adaptive 

parameter. One such adaptive technique could be to ask users to take data till the standard 

deviation of their readings divided by the square root of the number of tests becomes less 

than a certain threshold, as the same time a level of confidence associated with the tests 

could be presented to the user after each individual test so that user has an option to stop 

testing once he/she is satisfied by the level of accuracy.  

4.6 EXPERIMENTAL RESULTS WITH BIOLOGICAL 

TISSUE 

The performance of the sensor was evaluated on tendons acquired from turkey 

euthanatized for causes unrelated to this study. The specimen was wrapped in saline 

soaked gauge and was stored frozen (at -20°C) until dissection prior to testing. Figure 

4-39 shows the tendon/bone preparation for testing. The claw of the turkey along with 

some residual bone was casted using a casting resin.  

The prepared sample was mounted on an optical table as shown in Figure 4-40(a). The 

casted bone was clamped down on the table, while the free end of the tendon was held in 

a serrated grip attached to a force gauge. The force gauge was mounted on a test stand 

whose height could be adjusted to adjust tension in the tendon. The sensor was mounted 

on a translation stage which was fixed on the optical table such the orientation of the 

sensor with respect to the tendon was approximately normal, as shown in Figure 4-40(b). 
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Figure 4-39: Casted turkey foot for testing 

 
Figure 4-40: Experimental setup with turkey ligament 
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The tendon was pre-stretched to a 100 N tension and the tension was slowly lowered to 

20 N in 10 N intervals. Ten tests were performed at each tension value by pushing the 

sensor against the tendon till the average of side readings exceeded 100 counts. Two such 

set of experiments were conducted with the same ligament one after the other. Figure 

4-41 shows the mean sensor response for the ten tests at each tension values for both set 

of tests. A good agreement was observed between the two set of experiments. 

 
Figure 4-41: Sensor response vs applied tension for turkey tendon 

4.7 SENSITIVITY ANALYSIS OF THE SENSOR 

A theoretical and experimental sensitivity analysis was performed to evaluate the effects 

of length of the string and position of contact of the sensor along the string on the sensor 

response. For the purpose of theoretical sensitivity analysis, a simulated sensor response 

was obtained using a process similar to the one used in section 4.3.3.  
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4.7.1 Length of string 

The simulated response of the sensor for three different free length of the string is shown 

in Figure 4-42. While estimating the simulated response, it was assumed that the middle 

bump of the sensor makes contact at the mid-point of the string. As predicted by 

equation (4.24) it does not depend upon the length of the string.  

 
Figure 4-42: Simulated response of the sensor for three different free lengths 

An experiment was conducted to verify the simulation. Three attachment plates, similar 

to the one shown in Figure 4-23, were designed for the three lengths. The mean of ten 

tests conducted at different tensions are shown in Figure 4-43. Unlike the simulated 

results, experimental sensor response show monotonic increase with increase in length. 

In order to explain the variation in the sensor response due to change in length, the 

theoretical model was further improved to take into account the increase in tension due to 

transverse force applied by the sensor. The change in tension in the string was modeled 

using equation (4.27), where 𝐾𝑇 is a gain dependent on the material properties of the 

string and 𝑢(𝑥2) is the displacement of the string at the point of contact of the middle 
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bump of the sensor, as shown in Figure 4-4. This updated estimate of tension was used 

when calculating the expected values of the compressions using equation (4.6) at each 𝑧 

value. 

Δ𝑇 = 𝐾𝑇 𝑢(𝑥2) (4.27) 

 
Figure 4-43: Experimental response of the sensor for three different free lengths 

The simulated response of the sensor using the improved model for a 𝐾𝑇 of 6 N/mm, 

shown in Figure 4-44, agrees with the experimentally observed responses shown in 

Figure 4-43. 

The effect of the length on the sensor response could potentially limit the sensor’s 

applications when the value of 𝐾𝑇 is unknown. However in situations when 𝐾𝑇 is small, 

i.e. when the change in tension due to the transverse force applied by the tension is small, 

or when the value of 𝐾𝑇 can be estimated, the sensor can still be utilized. 
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Figure 4-44: Simulated response of the sensor for different free lengths with an improved model 

4.7.2 Location of contact 

The effect of position of contact of the sensor along the string on the sensor response was 

analyzed by simulating the sensor response at 5 positions along the length of the string 

spanning a length equal to 20 % of the string length. The simulation was conducted using 

the improved model described in section 4.7.1 which takes into account the change in 

tension due to pushing. Figure 4-45 shows the simulate response for string of length 

3 inches. 
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Figure 4-45: Simulate response for string of length 3” at five contact locations 

 
Figure 4-46: Experimental response for string of length 3” at five contact locations 
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Figure 4-47: Simulated response for string of length 3” at five contact locations with 𝑲𝑻 = 𝟎 

An experiment was conducted to verify the simulation. The mean of ten tests conducted 

at different tensions for five different contact locations are shown in Figure 4-46. Both 

experimental and theoretical response show a slight effect of position, however it is less 

pronounced as compared to length. This effect is again completely eliminated, as shown 

in Figure 4-47, if 𝐾𝑇 is assumed to be zero. 

4.8 DISCUSSION 

The multi-probe sensor based on magnetic sensing principle addressed the shortcomings 

of the previously proposed sensors. It was experimentally demonstrated that the sensor 

could measure the tension in a string with a resolution better than 10 N for tensions 

values up to 80 N under controlled orientation.  

The sensor was also able to measure tensions values up to 100 N in a handheld setting; 

however the resolution based on single test was worse than 10 N. It was established that 

the individual handheld tests could be considered as independent tests and a mean of 
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several handheld tests can be taken to estimate tension with a resolution of 10 N. It was 

further demonstrated that the standard deviation of the individual tests depends upon the 

experience of the user with the sensor technology. 

A sensitivity analysis was then conducted to determine the effects of change in length and 

contact position on the sensor response. It was found that though the initial modeling 

suggested that the sensor response was independent of these two factors, they do affect 

the sensor response because of the change in tension that occurs due to the application of 

transverse force. 
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CHAPTER 5  

OTHER POTENTIAL APPLICATIONS OF 

THE MULTI-PROBE MAGNETIC SENSOR 

During the course of this dissertation, the multi-probe magnetic sensor developed in 

chapter 4 was also used for measuring properties other than tension in the string. This 

chapter discusses two such properties. A model for measuring a combined effect of 

elasticity and stiffness is presented in the first section. It is then shown that with a 

suitable reconfiguration, the sensor can be enabled to measure just the elasticity of the 

material and experimental results are presented. In the second section, it is shown that the 

same sensor can used for non-invasively measuring pressure inside a compartment, hence 

making it a viable sensor for diagnosis of compartment syndrome. 

5.1 MODEL FOR MEASURING THE COMBINED EFFECT 

OF ELASTICITY AND TENSION 

A homogeneous elastic material taut along 𝑥-axis under tension,𝑇, is shown in Figure 

5-1(a). When a transverse point force, 𝐹, is applied to the material, the material will 

deform as shown in Figure 5-1(b).  
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Figure 5-1: A homogenous elastic material under tension (a) with no force applied (b) with a point 

load applied 

The total deformation in the material can be modeled as a combination of the buckling of 

the material due to boundary condition (tension) and the local deformation caused in the 

material due to its elasticity. The displacement due to the buckling of the material under 

tension can be modeled by modeling the material as an inelastic string, while the effect of 

local deformation can be modeled using a spring of stiffness 𝑘𝑡. Since the total 

deformation is the sum of both these deformations, the homogeneous elastic material can 

be modeled as a combination of these two elements as shown in Figure 5-2. 

 
Figure 5-2: Model of the homogeneous model under a single transverse force 

Figure 5-3 shows a schematic of the multi-probe magnetic sensor before and after being 

pushed against the material. 
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Figure 5-3: Schematic of the multi-probe magnetic sensor before and after being pushed against the 

material 

The displacement of three points on the inelastic string under the action of three point 

loads is still given by equation (3.6), which, for the sake of continuity, has been presented 

again as equation (5.1). 

𝑈 = 𝐴1(𝑙,𝑋2,𝑇) × 𝐹 (5.1) 

where, 

𝐴1(𝑙, 𝑥2,𝑇) =
1
𝑇

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡�𝑙 − (𝑥2 − 𝑑)�(𝑥2 − 𝑑)

𝑙
(𝑙 − 𝑥2)(𝑥2 − 𝑑)

𝑙
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𝑙
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𝑙
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𝑙
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𝑙
�𝑙 − (𝑥2 + 𝑑)�(𝑥2 − 𝑑)

𝑙
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𝑙
�𝑙 − (𝑥2 + 𝑑)�(𝑥2 + 𝑑)

𝑙 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.2) 

Assuming that the local deformations at three points are independent of each other, the 

compression, Δ𝑉, of the equivalent tissue spring of stiffness 𝑘𝑡 at each of the locations is 

given by equation (5.3). 

Δ𝑉 = 𝐾𝑡−1𝐹 (5.3a) 

where, 

𝐾𝑡 = �
𝑘𝑡 0 0
0 𝑘𝑡 0
0 0 𝑘𝑡

�  (5.3b) 
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Also, the compressions, Δ𝑌, in the three springs of the sensor are given by equation (5.4). 

Δ𝑌 = 𝐾𝑠−1 𝐹 (5.4a) 

where, 

𝐾𝑠 = �
𝑘𝑠 0 0
0 𝑘𝑐 0
0 0 𝑘𝑠

� (5.4b) 

Referring to Figure 5-3(b), under a normal contact assumption (equal displacements of 

the base of the three bumps) the compressions in the springs of the sensor, the 

compressions in equivalent tissue springs and the displacement of the inelastic string 

follows a relationship given by equation (5.5), where 𝑍 is the displacement of the base of 

three bump assemblies and for normal contact is given by equation (5.6). 

𝑈 + Δ𝑉 + Δ𝑌 = 𝑍 (5.5) 

𝑍 = �
𝑧
𝑧
𝑧
� (5.6) 

A relationship between 𝐹 and Δ𝑌, given by equation (5.7), can be established by 

substituting equations (5.3), (5.4) and (5.5) in equation (5.1). 

(𝐾𝑠−1 + 𝐾𝑡−1 + 𝐴1) F = 𝑍 (5.7) 

Equation (5.7) can be solved to obtain the displacements of the three pistons and a ratio 

similar to one given in equation (3.13) can be constructed. For the model under 

consideration, this ratio is given by equation (5.8). 

𝑅 =
𝐹2

(F1 + F3)/2
= �

𝑘𝑠
𝑘𝑐
� �

𝑘𝑠 + 𝑘𝑡
𝑘𝑐 + 𝑘𝑡

� �
2𝑇

�2𝑇 + � 𝑘𝑐𝑘𝑡
𝑘𝑐 + 𝑘𝑡

� 𝑑�
� (5.8) 

82 



  
This ratio consists of a product of two terms; the first term corresponds to the effect of 

the tissue elasticity, while the second term corresponds to effect of boundary conditions 

(tension). The sensor can be reconfigured to measure each term with a minimal influence 

of the other term. 

5.1.1 Measurement of Tension 

If the spring constants of the sensor are chosen such that, 𝑘𝑠 = 𝑘𝑐 ≪ 𝑘𝑡, i.e. the side and 

the center spring constants are equal and the tissue material is much stiffer than the 

springs of the sensor then the ratio described in the equation (5.8) reduces to equation 

(5.9) which is the same as one expressed by equation (4.9) and has been discussed in 

detail in Chapter 4. 

𝑅 = �
2𝑇

2𝑇 + 𝑘𝑐 𝑑
� (5.9) 

5.1.2 Measurement of tissue stiffness 

The knowledge of material properties for soft materials is vital for many applications 

including but not limited to fields of robotics and medical treatment. The knowledge 

becomes especially important in biomedical applications [40-51]. For instance it can be 

used for reliable diagnosis by palpation of the patient’s tissue [44], for diagnosing breast 

cancers[52], to provide a tactile perception during minimally invasive surgery to 

distinguish between healthy and diseased tissues [43, 53], or for teleoperation [54]. 

If the tension in the string is very large then the second term of the product in the 

equation (5.8) will tend towards the unity and the ratio can be reduced to equation (5.10), 

which can used to estimate the stiffness of the soft materials. 

𝑅 = �
𝑘𝑠
𝑘𝑐
� �
𝑘𝑠 + 𝑘𝑡
𝑘𝑐 + 𝑘𝑡

� (5.10) 
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To evaluate the correctness of the equation (5.10), springs of different stiffness were 

procured from Lee Springs Inc. The sensor was configured with three distinct side and 

center spring combinations, listed in Table 5-1. 

Table 5-1: Spring constants of side and center springs for different sensor configurations 

Config. # 𝑘𝑠 (N/mm) 𝑘𝑐 (N/mm) 𝑟 =  𝑘𝑐/𝑘𝑠 

1 0.28 0.84 3.00 
2 0.84 1.96 2.33 
3 0.28 1.96 7.00 

 

The sensor was tested by pushing it against sorbothane rubber specimens (Part No. 

8450K3, McMaster-Carr) of hardness varying from Shore 30OO to Shore 80A. The 

Young’s moduli of the target rubber specimens used are listed in Table 5-2 [46].  The 

target specimens have Young’s modulus ranging from 0.14 MPa to 8.68 MPa. 

Table 5-2:  Young’s Moduli of the sorbothane rubber specimens 

Shore Scale Young’s Modulus (MPa) 

30OO 0.14 
30A 0.87 
40A 1.54 
50A 2.18 
70A 5.48 
80A 8.68 

 

During experimentation, the sensor was mounted on a translation stage to prevent oblique 

contact. The rubber samples were mounted on an aluminum back plate fixed in front of 

the sensor using double sided tape, this can be considered as an equivalent of infinite 

tension as the aluminum plate would not allow any macro deformation, hence 𝑈, defined 

by equation (5.1), would be zero. 

The translation stage was then moved forward till the average of forces experienced by 

the side bumps exceeded 1 N. Figure 5-4 shows a photograph of the experimental setup. 

Each rubber specimen was tested five times with each sensor configuration to evaluate 

the repeatability of the reading. 
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Figure 5-4: Photograph of experimental setup 

Sample readouts for three different rubbers (30A, 40A and 80A) for the second sensor 

configuration (as shown in Table 5-1) are shown in Figure 5-5. As predicted by the 

equation (5.10), the plots between side and center forces are linear. 

 

Figure 5-5: Sample readouts for different rubbers 

An ordinary least square line (OLS) was then fit to this data and the slope of the line was 

calculated. The sensor response (𝑚(𝑘𝑡)), given by equation (5.11), was calculated by 

normalizing the slope value obtained by the OLS fit when the sensor was pushed against 

an aluminum plate (𝑘𝑡 → ∞), so as to ensure that the sensor responses of all three 

configurations are upper bounded by unity.  
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𝑚(𝑘𝑡) = �
𝑘𝑠 + 𝑘𝑡
𝑘𝑐 + 𝑘𝑡

� (5.11) 

The sensor responses for the three configurations (listed in Table 5-1) for rubbers listed in 

Table 5-2 are shown in Figure 5-6 with the solid line representing the mean of the five 

responses and the error bars representing the range of response. 

 
Figure 5-6: Experimental response of the sensor 

The resolution of the sensor varies with the value of the target material’s Young’s 

modulus. However, the sensor response was found to be repeatable with the standard 

deviations for the three sensor configurations over repeated tests being 0.0032, 0.0054 

and 0.0035 respectively. For a level of confidence of 95%, the expanded uncertainty (U) 

[39] for any particular range of Young’s modulus can be calculated and is defined by 

equation (5.12). 

𝑈 = 2 × 1.96 × 𝜎 ×
Δ𝐸
Δ𝑅

 (5.12) 
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where Δ𝐸 and Δ𝑅 are the changes in Young’s modulus and mean sensor response in the 

range of interest respectively. 

Using equation (5.12), for rubber of Young’s modulus between 0.14 MPa – 0.87 MPa, 

the measurement uncertainties of the three sensor configurations are 0.03 MPa, 0.04 MPa 

and 0.02 MPa respectively, while between 0.87 MPa – 1.54 MPa, the measurement 

uncertainties of the three sensor configurations are 0.14 MPa, 0.14 MPa and 0.07 MPa 

respectively. 

 
Figure 5-7: Estimated capacitance ratio versus Young's modulus of the rubber sample. Inserts: data 

plotted in lin-log scale. 

© 2011 IEEE. Reprinted, with permission, from [46] 
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Figure 5-8: Ratio of capacitive change versus Young’s modulus for flexible tactile sensors 

© 2009 IEEE. Reprinted, with permission, from [50] 

A similar elasticity sensor was presented earlier by Peng et al . , Figure 5-7 and Figure 

5-8 shows the results from two of their sensors. Comparing Figure 5-6 with these two, it 

can be clearly seen that the magnetic sensor developed in this dissertation has much 

better repeatability as compared to the sensors developed by Peng et al. The resolution of 

measurement for the flexible tactile sensor was reported as 0.1 MPa in the range of 0.1-

0.5 MPa [45], which is approximately five times worse than the resolution of 0.02 MPa 

for the magnetic sensor presented in this section.  However, the results of Figure 5-7 were 

obtained in a handheld mode of operation where significant orientation errors could have 

played a role in increasing variability of the sensor response. 

5.2 COMPARTMENT PRESSURE MEASUREMENT 

The diagnosis of compartment syndrome (CS) is difficult due to the limited number of 

measurement options available [55]. Compartment syndrome (CS) is a condition in which 

the intramuscular pressure (IMP) in a muscle compartment becomes elevated 

significantly above the arterial pressure, which leads to reduced flow to the muscle and 

nervous tissue. Without treatment, compartment syndrome can lead to paralysis, loss of 
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limb, or death. A fasciotomy, a surgical process in which the physician cuts open the skin 

and fascia covering the affected compartment, is typically recommended when the tissue 

perfusion pressure — mean arterial pressure minus IMP [56] — falls below 30-40 mmHg 

[57]. Fasciotomy also poses risk factors of development of chronic venous insufficiency 

(CVI) [58] and could potentially lead to physiological abnormalities of the lower 

extremity venous system [59]. Since fasciotomy has high morbidity and high rate of 

complications [59] and can lead to infections [60], a method of accurate measurement of 

IMP could be helpful in diagnosing CS. However a direct and accurate measurement of 

the IMP via catheter is invasive [55] and poses a potential risk of complications and 

infection to the patient. 

 
Figure 5-9: Pressure vessel used for measuring compartment pressure 

Flegel et al. [61] presented a theoretical formulation to allow the use of the multi-probe 

magnetic sensor for measuring pressure in a compartment. It was shown that if the 
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magnetic sensor is configured with different side and center springs, then the pressure (𝑃) 

in the compartment follows the relationship given by equation (5.13), where 𝑅𝑓 is the 

ratio of force experienced by side springs to that experienced by center spring and is 

given by equation (5.14). 

𝑃 ∝ 𝑅𝑓 − 1 (5.13) 

𝑅𝑓 = �
(𝐹1 + 𝐹3)/2

𝐹2
� (5.14) 

A setup shown in Figure 5-9 was realized to evaluate the sensor’s performance with 

regards to measuring pressure in a compartment. For a magnetic sensor with center spring 

stiffness of 1.96 N/mm and side spring stiffness of 0.88 N/mm, the experimental results 

obtained for different pressures are shown in Figure 5-10. As predicted by equation 

(5.13), the pressure was found to be proportional to the force ratio. The resolution of 

sensor was found to be 0.1 psi in the range of 0.75 psi to 2.5 psi (approx. 40-130 mmHg.) 

 
Figure 5-10: Linear correlation between pressure and sensor response 
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Figure 5-11: Experimental setup for measuring pressure with agarose gel compartment 

 
Figure 5-12: Comparison of catheter and magnetic sensor for pressure magnetic 

The performance of the sensor was also evaluated during handheld operation and was 

compared to a catheter based commercial sensor from Twin Star medical, Minneapolis 
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MN USA. Figure 5-11 shows a photograph of the experimental setup. It consists of a 

1.0% agarose gel contained in a compartment. A piston was used to apply pressure on 

one of the walls of the gel compartment. A catheter based reference sensor was inserted 

in the gel compartment and the magnetic sensor was pushed against the other wall of the 

compartment to non-invasively measure pressure in the compartment. 

Figure 5-12 shows the response of the magnetic sensor (on 𝑥 axis) plotted against the 

readout of the catheter sensor (on 𝑦 axis.) The plot shows a good agreement between the 

readouts of the two sensors, making the sensor developed as a part of this thesis a non-

invasive alternate to the catheter sensor. 
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CHAPTER 6  

CONCLUSIONS 

Balancing tension in soft tissues during various orthopedic procedures is crucial for good 

soft tissue healing, restoration of overall limb function in the patient, and a long lasting 

implant. However, there do not exist any easy to use devices which can measure tension 

in soft tissues without requiring significant tissue handling. This dissertation focused on 

developing such a handheld device which can non-invasively measure tension in 

ligaments by simply pushing against them. 

The dissertation presented two main estimation methodologies - a single probe estimation 

technique and a multi probe estimation technique. A capacitive sensor based 

measurement was developed for the single probe sensor and its performance was 

demonstrated. Multi-probe sensors were implemented using both capacitive and magnetic 

sensing principles. Extensive characterization of the magnetic sensor was performed to 

evaluate the performance of the sensor both with controlled orientations and with 

handheld operation. The viability of the sensor to measure tension in biological tissues 

was also demonstrated using tendons extracted from a turkey leg. It was demonstrated 

that the developed sensors can successfully measure tensions values up to 100 N in both 

synthetic short strings and soft tissues.  

Several other alternate applications of the multi-probe magnetic sensor for medical 

diagnosis were presented. The first alternate application for the sensor was measurement 

of tissue elasticity for diagnostics of tissue health. The resolution of the sensor developed 
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in this dissertation was found to be 0.02 MPa in the range 0.14 MPa – 0.87 MPa. This is a 

substantial improvement over the resolution of 0.1 MPa in the range of 0.1 – 0.5 MPa 

reported in the literature. In fact the resolution of the sensor developed in this dissertation 

was found to be better than the resolution reported in literature, even with the developed 

sensor having four times as much range.  

A second alternate application for the sensor was diagnosis of compartment syndrome by 

non-invasively measuring pressure inside a muscle compartment. The sensor was found 

to have a 0.1 psi resolution for pressure between 0.75-2.5 psi. The readings of the 

handheld sensor were found to be in good agreement with a commercially available 

catheter sensor making it a viable non-invasive sensor for measuring pressures in 

compartments. 

In conclusion, a non-invasive handheld sensor for performing multiple medical diagnoses 

was developed and the performance of the sensor was evaluated with synthetic and 

biological materials. 
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